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We study a class of resource allocation problems know as distributed sensor coverage

problems, whereby sensors are distributed to regions in space with the goal of maximizing the

detection high value events. Computing an optimized allocation of sensors onto regions would

become intractable for a centralized controller in large scale system and would require continuous

communication to all agents in the system, which may not be feasible. We analyze the alternate

approach of a distributed sensor coverage problem, where each sensor is responsible for selecting

a region to search. When each sensor acts in their own interests to select a resource, degradation

in system performance can occur. Game Theory is used as a mathematical framework to model

and study the behavior of large groups of agents in the sensor coverage problem. We study the

lower bound on performance of the distributed sensor coverage problem and conjecture that this

bound is e
e+1 . We support this claim with provable properties about the structure of games

bounded by this price of anarchy, and through empirical simulations.
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Chapter 1

Introduction

Resource allocation is a general set of problems whereby a centralized controller attempts

to allocate agents to a set of resources. One such example is network routing, such as cars

traveling on a finite set of roads or information being routed on a computer network. Ideally,

the goal of a centralized controller is to assign allocations to each agent in order to optimize

some global objective. In traffic routing, for example in Figure 1.1, the controller would assign

a complete route for every vehicle on the road in such a way to minimize traffic congestion or

commute times. If the number of cars on the road is small, then a centralized, global planner

can find the optimal routing allocation for every car. However, if the number of cars grows large,

then finding an optimal allocation quickly becomes intractable. There is also the problem that

a centralized controller would be required to have communication to all of the agents in order

to send allocation commands to them. This is problematic, since many large scale system this

may not be feasible.

Instead of centralized control, we instead propose a decentralized control architecture.

In the example of traffic routing, we can devise a distributed control policy whereby drivers

individually choose their own routes and attempt to optimize only their individual commute

times. Normally, the shortest route might provide the fastest commute, but if that particular

route has a large traffic jam, then the driver could choose a longer route that would provide a

faster commute than any alternative. This illustrates the fact that in such systems, the individual

payoff or cost, which we will call a utility, is dependent not only on the player’s individual
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action, but also on the actions of others. We say that when agents choose an action in order

optimize their utility, those agents are acting self interested. In situations where agents act self

interested, there is no guarantee the global system objective is optimized. In fact, situations arise

where if every player acts self interested, then the global system performance can suffer dramatic

losses compared to the centralized optimal. This phenomenon was famously illustrated in what

is called the tragedy of the commons [6]. Insight into conditions for which this occurs can help

engineers design distributed systems which avoid and minimize this phenomenon. Characterizing

the degradation of global system performance due to decentralized decision making is referred

to as price of anarchy [8] which is an area of current research and the focus of this work.

Examples of systems such as traffic routing are referred to as social systems because they

are used to describe and model elements of human behavior, i.e. the driver. A system designer

has no control on the utilities of the drivers, so instead the focus is on offering incentives to

alter the driver’s decision, such as tolling or adding strategically placed new roads to reduce

congestion. Game Theory was developed as a mathematical framework to model and study

the behavior of large groups of agents interacting together [18, 23]. Game theory has a long

history of modeling social behaviors in economics such as auctions and investment coalitions.

There has been a recent interest in applying these same tools of game theory to modeling

and designing engineering systems. In these systems, the designer can carefully craft agent

utilities and decision policies in such a way that desirable global behavior results. Examples of

these systems include weapon target assignment [2], missile guidance [7], network coding [11],

and sensor coverage [3, 15].

We turn our attention to modeling and studying the distributed sensor coverage problem

under a game theoretic framework. Consider the problem where a set of areas that need to

be searched. We will conduct this search with a collection of sensors that can individually be

positioned at any search area. Each sensor has a detection probability, which is the probability

the sensor will detect an event, and every search area has assigned a event value. We seek to

position each sensor to a search area with the goal of maximizing detection of high value events
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within that region. This type of problem is what we call the sensor coverage problem.

In the traditional study of the sensor coverage problem, a global planner would allocate each

sensor to a search region. However, this can be problematic since the global planner must have

communication to each of the sensors and have complete information of the entire system state.

Instead we decentralize the sensor coverage problem whereby every sensor has a local

control policy by which to make its own search selection. In this distributed setting, we can

model this system as a game, where sensor are the players, allowing us to use the rich set of tool

developed under the game theoretic framework. This thesis is dedicated to bounding the global

performance loss when players act self-interested in a decentralized control paradigm.

A

Route 2

%%

Route 1

��

Route 5

CC
Route 3 //

Route 4

99 B

Figure 1.1: A graph representing the possible routes of cars traveling from point A to B.

1.1 Previous Work

Since computing optimized centralized solutions for resource allocation problem becomes

intractable for large scale problems, previous work has focused on efficient approximation algo-

rithms to this approach. However, these results only guarantee an allocation that is a factor of

1 − 1
e of the optimal, or approximately 63% [5]. If we consider the distributed resource alloca-

tion problem, then there is a gap in the literature with respect to performance bounds for these

algorithms. [22] showed that if the system meets certain basic properties, then we can guarantee

the solution is within 1
2 of the optimal. However, this is a general result, and it is not know

under what set of conditions can this 50% of optimal be improved on. Several recent works

have attempted to address this question, by focusing on specific problem sets such as network
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routing [19] or network coding [10]. Only limited work has attempted to address distributed

performance guarantees in the sensor coverage problem. [14] analyzed the subset of distributed

resource allocation games where all the players are equal, sometimes called anonymous players,

using the Shapley value utility design (Section 2.1.4). However the assumption of anonymous

players is very restrictive, and leaves the more general question of the effect on performance

when including all non-anonymous players. Furthermore, Shapley value in computationally in-

tractable for large scale systems, limiting it’s use in practical systems. [4] studied the sensor

coverage problem with non-anonymous players using the wonderful life utility (Section 2.1.3),

and showed that when considering problems consisting of only 2 sensors, the performance is

within 80% of the optimal. Also presented was a conjecture of 79% for games with greater than

2 sensors. This leaves open the problem of performance bounds in the general n-player sensor

coverage problem, and if there exist any rigorous design methodologies for utility functions that

result in optimized performance bounds.

1.2 Our Contributions

This thesis is dedicated to studying the distributed sensor coverage using the wonderful

life utility design. We discover a set of games H in (Definition 4.2.1) that has the following

properties

• v2 = v3 = · · · = vn = 1

• p1 = 1

• p2 = p3 = · · · = pn = 1− v
1

1−n

1

• ane = (xn, x1, x1, . . .)

• aopt = (x1, x2, . . . , xn).

We show that the worst case performance for H is e
e+1 ≈ 73%, which is lower than conjectured

in [4]. We then study the set of games F such that H ⊂ F which has the folowing properties
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• p1 = 1

• ane
1 = xn

• aopt
1 = x1

• vn = 1

• Wr({a}r) = vr − 1, ∀r 6= xn.

We prove that the performance of any game is bounded below by a game in F . This shows that

games with the worst performance have a single player with detection probability of 1, and this

player is allocated to the resource with the lowest value in the equilibrium. This contrasts with

the optimum allocation where a player of detection 1 must select the highest value resource or

it can’t be an optimum. This shows that poor performance is driven, in part, by the greatest

separation in resource selection between the optimum and equilibrium allocations for a player

of detection probability 1, which we later define as the pivot player in Definition 3.3.2. We show

that the pivot player also bounds the welfare at all other resources in the equilibrium and hence

bounds the relative amount of welfare at all resources. We conjecture the performance of all

single selection distributed sensor coverage problems is bounded below by e
e+1 . This result is

much improved over the general 50% result presented in [22]. Finally, simulations are used as

empirical evidence to support the claim of 73%.



Chapter 2

Background

Let N = {1, . . . , n} consist of a set of players and for each player i ∈ N , Ai represents

the set of available actions for player i. The game consists of a set of resources R, such that

Ai = R. This implies each player action consists of selecting a single resource in R. When each

player selects an action, the players become allocated to the resources. A = A1×· · ·×An is the

set of all joint allocations and each a = (a1, a2, . . . , an) represents a joint allocation of all agents

to resources. Each player has a utility function Ui : A → R+. Every possible action results in a

utility for the player, and serves as a criteria for determining if one particular action is better

than another. As we can see from this definition, every player’s utility depends not only on its

own resource selection, but also on the action selection of every other player.

2.1 Distributed Welfare Games

Player utility does not quantify global system performance. In order to quantify global

system performance, we introduce global performance measure called a welfare function. A

welfare function W : A → R+, defines the global performance of any allocation. We restrict our

attention to the class of separable welfare function of the form

W (a) =
∑
r∈R

Wr ({a}r) ,



7

where Wr : 2N → R+ is the welfare function for resource r ∈ R, and {a}r ⊆ N represents the

set of players selecting resource r using allocation a ∈ A. That is

{a}r ≡ {i ∈ N : ai = r} .

Definition 2.1.1. A resource welfare function Wr : 2N → R+ is called submodular if for all

S ⊆ T ⊆ N and any agent i ∈ N ,

Wr(S ∪ {i})−Wr(S) ≥Wr(T ∪ {i})−Wr(T ). (2.1)

Submodular welfare functions are thought of as the idea of diminishing returns: as players

are added to a resource, the amount of welfare available to subsequent players gets reduced.

Submodular welfare functions naturally occur in certain game types such as the sensor coverage

problem [12], and they are required to show certain performance guarantees [22]. Now consider

the tuple

G =
(
N,R, {Ai}i∈N , {Wr}r∈R , {Ui}i∈N

)
.

G is said to be a single selection distributed welfare game, and we can define G as the set of all

single selection resource allocation games.

Consider a game G ∈ G where we select a single player i at random from N and allow

player i to select an action based on the follow strategy

ai = argmax
ãi∈Ai

Ui(ãi, a−i), (2.2)

where a−i is the joint allocation of all players other player i. We say players following this

strategy are self-interested. Suppose we continue the process of randomly selecting a player

and following the strategy in Equation 2.2. Adding player action dynamics such as this in a game

is called learning. Now consider a case that after many iterations, every player in the game

has a strategy to remain on the same action. In this case, every player cannot increase their

utility by changing actions, as long as all other players remain at the same resource. When this

situation occurs, we say the game has reached an equilibrium. The above example illistrates
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how an equilibrium could occur in such a setting. The idea of an equilibrium is an important

solution concept in game theory [17]. A natural question is whether given a game, following a

fixed strategy such as that described in Equation 2.2, will always result in an equilibrium. The

work of John Forbes Nash in [16] showed that in any game with a finite action set, there exists

at least one equilibrium allocation. These equilibrium allocations are commonly referred to as

Nash equilibrium.

Definition 2.1.2. An joint allocation ane ∈ A is said to be a pure Nash equilibrium if for all

players i ∈ N , and all ãi ∈ Ai

Ui

(
ane
i , ane

−i
)
≥ Ui(ãi, a

ne
−i).

An allocation can be thought of as being a Nash equilibrium when no player has any

unilateral incentive to deviate from their current resource selection. We will henceforth refer to

pure Nash equilbrium as just a Nash equilibrium or just equilibrium. It is important to consider

the existence of a Nash equilibrium when designing game utilities.

2.1.1 Utility Design

Let S ⊆ N be the set of players that share the same resource r ∈ R. Within the context of

distributed welfare games, the utility function is constructed to distribute the available resource

welfare to each of the players such that

Ui (ai = r, a−i) = fr(i, S),

where fr : N × 2N → R+ is the welfare sharing protocol for player i ∈ S [13]. Hence, a

player’s utility is local as it only depends on S. Ideally we want to design utility functions for

each player in such a way that results in global allocations that garner maximum possible welfare.

Currently there is no systematic design methodologies for utility functions that lead to optimized

welfare performance [15]. However, there are important properties of utility functions one must

consider. First, and most important, is whether the utility guarantees the existence of a Nash
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equilibrium. This ensures the game has a stable operating point, because if no equilibrium exists,

players could continually switch resources. Other factors the game designer must consider is

informational dependency and budget balanced utility functions [15]. Informational dependency

is the amount of information about the game a player needs to compute it’s utility. High

informational dependency can cause implementation problems, communication between every

player may not be feasible, and high computational complexity in tracking and computing

utilities in vary large scale games can cause delays.

We review commonly suggested utility functions and their properties.

2.1.2 Equal Share

The simplest sharing protocol, equal share is based on the notion that any welfare avail-

able at a resource is equally distributed among players that select that resource. More formally,

let S ⊆ N be the set of all players the select the same resource r, then the equal share protocol

for player i ∈ S is

fES
r (i, S) =

Wr(S)

|S|
. (2.3)

Only the number of players selecting a resource is required for computing equal share protocol,

and therefore information dependency is very low. However, the equal share protocol, in general,

does not guarantee the existence of a Nash equilibrium. Only if extra restrictions on allowable

player sets are enforced, then can one guarantee a Nash equilibrium to exist when using equal

share utility design [15].

2.1.3 Marginal Contribution

The marginal contribution (MC) sharing protocol computes a player utility by the net

welfare increase that player brings to the resource. For any set of players S ⊆ N that select the

same resource r, then the marginal contribution protocol for player i ∈ S is

fMC
r (S) = Wr(S)−Wr(S \ {i}). (2.4)
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When used as a utility design, this protocol is commonly referred to as the wonderful life

utility because it can be thought of as comparing the welfare at a resource with and without a

player and shows how much a player adds to the welfare at a resource. Marginal contribution

has shown promise as a sharing protocol for distributed engineering systems. It guarantees the

existence of a Nash equilibrium and has moderate informational dependency [15]. The research

in this thesis is devoted to the analysis of the marginal contribution protocol on the distributed

sensor coverage problem.

2.1.4 Shapley Value

The Shapley value [20] comes from the idea that any group of players sharing the same

resource form a coalition to distribute the available welfare to each player. Formally, for any set

of players S ⊆ N that select the same resource r, then the Shapley sharing protocol for player

i ∈ S is

fSV
r (S) =

∑
T⊆S\{i}

|T |! (|S| − |T | − 1)!

|S|!
(Wr (S ∪ {i})−Wr (S)) . (2.5)

The Shapley value can be thought of as the average marginal contribution for player i out of

all possible combinations of coalitions that can be formed with i. The Shapley value has many

important properties as a sharing protocol including the existence of a Nash equilibrium [15].

However, this utility function has high informational dependence and for large scale games can

be intractable to compute for every player.

2.2 Performance Metrics

There are many different utility functions that can be considered by a system designer,

but let us only consider utility functions that guarantee the existence of a Nash equilibrium.

There can exist many equilibrium allocations in any given game, and any equilibrium allocation

is not, in general, an optimum. Ideally, we would want to design the game such that any resulting

equilibrium achieves a welfare that is as close to optimum as possible. But how do we evaluate

the performance of a game design?
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2.2.1 Price of Stability

The price of stability (PoS) forms a best case scenario measure of a game and is formed

as a ratio of best equilibrium allocation with the optimum allocation. Let G be a set of games,

then we define the price of stability as

PoA(G) ≡ inf
G∈G

(
max

ane∈NE(G)

W (ane;G)

W (aopt;G)

)
, (2.6)

where NE(G) is the set of all equilibrium allocations for game G and

aopt = argmax
a∈A

W (a). (2.7)

We can think of the price of stability as the best possible performance one could expect from

a game. If the price of stability is less than 1, then there exists a game where the optimum

allocation cannot be an equilibrium [15].

Theorem 2.2.1. Let G be the set of single selection resource allocation games using the marginal

contribution utility design. Then PoS(G) = 1.

2.2.2 Price of Anarchy

The price of anarchy (PoA) forms a worst case scenario analysis of a game and is formed

as a ratio of the worst equilibrium allocation with the optimum allocation. Let G be a set of

games, then we define the price of anarchy as

PoA(G) ≡ inf
G∈G

(
min

ane∈NE(G)

WG(a
ne)

WG(aopt)

)
. (2.8)

When considering how to design and evaluate utility functions, optimizing the price of anarchy

is promising as a design criteria. Constructing a utility function by optimizing price of anarchy

would ensure a that a game undergoing learning dynamics is guaranteed a minimum level of

performance regardless of game specifics. While the price of anarchy is formally defined in

Equation 2.8, with a slight abuse of notation, for a specific game G ∈ G with allocations ane

and aopt we refer to W (ane)
W (aopt) as the game price of anarchy. This notation is used when proving
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different game properties. In what follows, we define a sensor coverage problem, and study this

problem as a distributed welfare game in Chapter 3, then conjecture the price of anarchy for the

set of all single selection sensor coverage problems using the wonderful life utility function in

Chapter 4. The hope is that proving the PoA for this set of games can give insight that might

assist in determining the price of anarchy for more general sets of games. Designing utility

functions that result in an optimized price of anarchy is an open problem, and this thesis is

aimed at answering this question.



Chapter 3

Sensor Coverage Problem

The goal of the sensor coverage problem is to allocate sensors to search sectors in such

a way to maximize detecting high value events. If we consider a situation where there is no

global planner allocating sensors to search regions, then every sensor is responsible for choosing

which sector to search. Such a situation is a distributed sensor coverage problem. We can pose

this distributed sensor coverage problem as a resource allocation game where the sensors are

players, and the search sectors are resources, and each player can choose an action by selecting

a particular resource. We will study this problem as an instance of a distributed welfare game

discussed in Section 2.1.

p1

��

p2

{{

p3

��

V (x1) V (x2) V (x3)

p1

OO

p2

OO

p3

OO

Figure 3.1: Example of a 3 player game resource allocation game. The top represents an
equilibrium allocation and the bottom represents the optimal allocation.
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3.1 Our Model

Let N be the set of sensors that represent the players. Each player i ∈ N has a detection

probability pi, which is the probability of detecting an event that occurs in the sector that the

sensor is allocated. Let R be the set of search sectors that represent the resources. Each resource

r ∈ R has a value vr, which encodes the value of a potential event, if detected.

The welfare function is a global measure of performance for an allocation and represents a

system level objective. In sensor coverage, we wish to quantify the probability of detecting high

value events from within search regions. Conceptually, we would expect our welfare function

to increase when player detection probability increases, or when a player selects a resource of

higher value. We construct the resource welfare function Wr : 2N → R+as

Wr(S) =

(
1−

∏
k∈S

(1− pk)

)
vr. (3.1)

Where r ∈ R is any resource, and S ⊆ N is the set of players that select r. This resource welfare

can be thought of as the expected value of detecting the event. For convenience we define a joint

detection probability which represents the probability at least one player will detect the event

on that resource as

pr(S) =

(
1−

∏
k∈S

(1− pk)

)
. (3.2)

Now consider a subset players S ⊆ N such that every player in S selects resource r. Instead

of computing the joint detection probability and finding resource welfare with Equation 3.1, we

can equivalently write the resource welfare, for any ordering of the players in S as

Wr(S) = p1vr + p2(1− p1)vr + · · ·+ p|S|(1− p1)(1− p2) · · · (1− p|S|−1)vr. (3.3)

We also define the quantity

Zr(S) = (1− pr(S)) vr = vr −Wr(S), (3.4)

where Zr(S) can be thought of as the amount of resource value remaining and available for other

potential players at resource r. We restrict our attention to modeling a global welfare for all
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resources by summing the welfare in all the individual resources. Such global welfare functions

are considered separable, and are defined as

W (a) =
∑
r∈R

Wr(S). (3.5)

Since no systematic procedure exists for designing utility functions for specific game

performance objectives, we choose the marginal contribution (MC) utility design for our analysis

of the distributed sensor coverage problem. Generally for MC we construct the utility function

as

Ui(ai = r, a−i) =fMC
r (i, {a}r)

=Wr({a}r)−Wr({a−i}r).

Where a−i ∈ A is the joint allocation of all players other than player i, {a}r ⊆ N is the set of

player that select resource r in allocation a, and a = (ai, a−i).

3.2 Existing Performance Bounds

Vetta [22] showed that if the following properties are met, then we are guaranteed a lower

bound on the system performance.

Theorem 3.2.1. If G ∈ G is a distributed welfare game where for each resource r ∈ R

• The welfare function Wr is submodular,

• For each set of players S ⊆ N and playeri ∈ S, the distribution rule satisfies fr(i, S) ≥

Wr(S)−Wr(S \ {i}),

• For each set of players S ⊆ N , the distribution rule satisfies
∑

i∈S fr(i, S) ≤Wr(S),

then if an equilibrium exists the price of anarchy is greater than or equal to 1
2 .

So since our model of the sensor coverage problem meets these criteria, we are guaranteed

that any equilibrium allocation will be within 1
2 of the optimal. We now seek to study whether

this bound is tight for the sensor coverage problem, or there exists a greater bound.
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3.3 Preliminary Analysis

It is interesting to note that a sensor’s utility can be equivalently defined using Equation

(3.4) as

Ui(ai = r, a−i) = piZr({a}r). (3.6)

With this form we can construct a new definition for a Nash equilibrium.

Claim 3.3.1. An joint allocation ane ∈ A is said to be a Nash equilibrium if for every player

i ∈ N , such that ai = r, and all r̃ ∈ R

Zr(
{
ane
−i
}
r
) ≥ Zr̃(

{
ane
−i
}
r̃
)

Proof. From Definition 2.1.2 we know that the allocation ane ∈ A is a Nash equilibrium if for

every player i ∈ N and resource r̃ ∈ R

Ui(a
ne
i = r, ane

−i) ≥ Ui(ãi = r̃, ane
−i).

We can use Equation (3.6) to get

piZr(
{
ane
−i
}
r
) ≥piZr̃(

{
ane
−i
}
r̃
)

=⇒ Zr(
{
ane
−i
}
r
) ≥Zr̃(

{
ane
−i
}
r̃
).

Where r̃ is the resource selected by player i in the allocation ãi.

This fact gives important insight that a player’s incentive to deviate to another resource

is entirely dependent on the relative amount of resource value remaining at every resource and

not their individual detection probability. We can also use this concept to define a special player

type.

Definition 3.3.2. We say that any player i ∈ N is a pivot player if i = argmin
i∈N

(
Zx(
{
ane
−i
}
x
)
)
,

where x is the resource selected by player i in the equilibrium allocation ane, and we denote ane
−i

as the equilibrium allocation where player i has been removed.
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The pivot player can be thought of as the player that has the minimum amount of resource

value left when removed from its respective resource. In any game, there exists at least one pivot

player and the pivot player is important in that it bounds the amount of value left over at every

other resource in order for an allocation to be considered an equilibrium.

Claim 3.3.3. Let i ∈ N be the pivot player such that ane
i = x in game G ∈ G. Then for every

resource r̃ 6= x we have Wr̃({ane}r̃) ≥ vr̃ − Zx(
{
ane
−i
}
x
).

Proof. From Claim 3.3.1 we know for every r̃ 6= x

Zx(
{
ane
−i
}
x
) ≥ Zr̃(

{
ane
−i
}
r̃
).

Using Definition 3.4 and the fact that
{
ane
−i
}
r̃
= {ane}r̃ since ai 6= r̃

Zx(
{
ane
−i
}
x
) ≥vr̃ −Wr̃({ane}r̃)

=⇒ Wr̃({ane}r̃) ≥vr̃ − Zx(
{
ane
−i
}
x
).



Chapter 4

Results

4.1 A Previous Conjecture

Doroudi [4] presented two important insights into the problem of determining the price of

anarchy for the single selection sensor coverage problem using the marginal contribution utility

design. First was finding the price of anarchy of 4
5 for the restricted class of games for which

there is only two players. For games with more than 2 players, [4] conjectured that the price of

anarchy occurred within a set of games that has the following properties

• p1 = 1

• vn = 1

• ane = (xn, x1, x2 . . . , xn−1)

• aopt = (x1, x2, x3, . . . , xn).

Where a = (x1, x2, . . .) means a1 = x1, a2 = x2, etc. This set of games can be thought of as

where the players are all ’spread out’ in both the equilibrium and optimal allocations. There

was no explicit minimum for the price of anarchy found in [4] for this set of games. To support

his claim, Doroudi studied this class of games for when there only 3 players, and numerically

optimized the remaining parameters of the 3 player game under the constraints to maintain ane as

an equilibrium allocation which gave a PoA ≈ 0.7942 with p2 ≈ 0.5295, p3 ≈ 0.1458, v1 ≈ 2.1254,
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and v2 ≈ 1.1707. However, consider a different 3 player game of a different type such that it has

the following properties

• p1 = 1, p2 = 1
3 , p3 = 1

3

• v1 = 2.25, v2 = 1, v3 = 1

• ane = (x3, x1, x1)

• aopt = (x1, x2, x3).

Now it is simple to show that for this new game that W (ane)
W (aopt) = 24

31 ≈ 0.7742 < 0.7942. Which

proves that the conjecture in [4] is false. The structural form of the above counter example leads

us to the following conjecture.

4.2 A New Conjecture

Definition 4.2.1. Let us consider a new class of gamesH ⊂ G defined by the following properties

• v2 = v3 = · · · = vn = 1

• p1 = 1

• p2 = p3 = · · · = pn = 1− v
1

1−n

1

• ane = (xn, x1, x1, . . .)

• aopt = (x1, x2, . . . , xn).

Theorem 4.2.2. Let H ⊂ G be the class of games described in definition 4.2.1. Then PoA(H) =

e
e+1 .

Proof. The class of games described in definition 4.2.1 relies on only two game parameters: v1

and then number of players n. Let p′ = p2 = p3 = · · · = pn = 1− v
1

1−n

1 . Then we know for any
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n-player game Gn ∈ H

W (ane)

W (aopt)
=

∑
r∈RWr ({ane}r)∑
r∈RWr ({aopt}r)

=

∑
r∈R pr ({ane}r) vr∑
r∈R pr ({aopt}r) vr

=

{
1−

(
1−

(
1− v

1
1−n

1

))n−1
}
v1 + p1vn

p1v1 + p2 + · · ·+ pn

=

(
1− 1

v1

)
v1 + 1

v1 + p′ + · · ·+ p′

=
v1

v1 + p′ (n− 1)
.

Then this implies that the price of anarchy is

PoA(Gn) = min
v1∈[1,∞)

(
v1

v1 + p′(n− 1)

)
(4.1)

Clearly, the minimum does not occur at the boundary, so therefore must occur when the gradient

is equal to zero.

=⇒ ∂PoA(Gn)

∂v1
= 0

=⇒
(

∂

∂v1
v1

)
(v1 + (n− 1)p′)− ∂

∂v1
(v1 + (n− 1)p′) (v1) = 0

=⇒ (v1 + (n− 1)p′)− v1

(
1 +

1

v
n

n−1

1

)
= 0

=⇒ (n− 1)p′ − v1

v
n

n−1

1

= 0

=⇒ (n− 1)− n− 1

v
1

n−1

1

− 1

v
1

n−1

1

= 0

=⇒ n

v
1

n−1

1

= (n− 1)

=⇒ v
1

n−1

1 =
n

n− 1

=⇒ v1 =

(
n

n− 1

)n−1

Substituting back into the original equation, we get

PoA(Gn) = min
v1∈[1,∞)

(
v1

v1 + p′(n− 1)

)
=

(
n

n−1

)n−1
(

n
n−1

)n−1
+ n−1

n

(4.2)

To show that the price of anarchy is e
e+1 , we must show that the sequence PoA(Gn) is mono-

tonically decreasing and convergent to e
e+1 .
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Monotonic Decreasing Let tn =
(

n
n−1

)n
, this implies

PoA(Gn) =

(
n

n−1

)n−1
(

n
n−1

)n−1
+ n−1

n

=

(
n

n−1

)n
(

n
n−1

)n
+ 1

=
tn

tn + 1

Now let a = n2 and b = n2 − 1. Clearly, a > b. Now by the identity for factoring

difference of powers

an − bn = (a− b)

n−1∑
k=0

akbn−k−1

=⇒ n(a− b)an−1 > an − bn > n(a− b)bn−1

=⇒ (n2)n − (n2 − 1)n ≥ n(n2 − 1)n−1

=⇒ nn+1nn = n(n2)n ≥ n(n2 − 1)n + n2(n2 − 1)n−1

> n(n2 − 1)n + (n2 − 1)(n2 − 1)n−1

= (n+ 1)(n2 − 1)n = (n+ 1) ((n+ 1)(n− 1))
n

= (n+ 1)n+1(n− 1)n

=⇒
(

n

n− 1

)n

>

(
n+ 1

n

)n+1

=⇒ tn > tn+1

=⇒ tn
tn + 1

>
tn+1

tn+1 + 1

PoA(Gn) > PoA(Gn+1).

Therefore PoA(Gn) is monotonically decreasing.

Convergence Let vn1 =
(

n
n−1

)n−1
, this implies

PoA(Gn) =

(
n

n−1

)n−1
(

n
n−1

)n−1
+ n−1

n

=
vn1

vn1 + n−1
n

=⇒ lim
n→∞

PoA(Gn) =
lim

n→∞
vn1

lim
n→∞

vn1 + lim
n→∞

(
n−1
n

) =
lim

n→∞
vn+1
1

lim
n→∞

vn+1
1 + 1

=
e

e+ 1
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Since vn+1
1 = (1 + 1

n )
n and lim

n→∞

(
1 + 1

n

)n ≡ e. Therefore PoA(Gn) is monotonically

decreasing and converges to e
e+1 , which implies PoA(H) = e

e+1 .

We conjecture that the price of anarchy of all single selection sensor coverage problems

is e
e+1 . To support this claim we will prove that for any game, there exists a new game with

non-decreasing price of anarchy that possess some of the same properties as the set of games

described byH. First we show an important property about the effect of increasing the detection

probability of the pivot player on the price of anarchy.

Lemma 4.2.3. Given any game G ∈ G, let i ∈ N be the pivot player, with pi 6= 1, such that

ane
i = x and aopt

i = y. Also, let i be alone in the equilibrium allocation. If vx

Zy

(
{aopt

−i }y
) ≤ W (ane)

W (aopt) ,

there exists a game H ∈ G such that pi = 1 and PoA(H) ≤ PoA(G).

Proof. Let S ⊆ N be the set of players that select resource y in the optimum. If player i is alone

on resource y in the optimum, then we merely use Lemma A.0.1 to increase pi = 1. Now, let’s

consider the case where there are two or more players on y. Let j ∈ S be the player such that

Zy

({
aopt
−j
}
y

)
≤ Zy

({
aopt
−k
})

for all k 6= i ∈ S. We write the welfare in the optimum at resource

y as

Wy

({
aopt}

y

)
=py

({
aopt
−i,j
}
y

)
vy + pjZy

({
aopt
−i,j
}
y

)
+ pi (1− pj)Zy

({
aopt
−i,j
}
y

)
=py

({
aopt
−i,j
}
y

)
vy + piZy

({
aopt
−i,j
}
y

)
+ pj (1− pi)Zy

({
aopt
−i,j
}
y

)
Where aopt

−i,j is the optimum allocation with players i and j removed. Let Z ′ = maxr 6=y Zr ({aopt}r)

be the largest value available at any other resource in the optimum. We can write

W (ane)

W (aopt)
=

∑
r 6=x Wr ({ane}r) + pivx∑

r 6=y Wr ({aopt}r) + py

({
aopt
−i,j
}
y

)
vy + pjZy

({
aopt
−i,j
}
y

)
+ pi (1− pj)Zy

({
aopt
−i,j
}
y

) .
Now since we know that (1− pj)Zy

({
aopt
−i,j
}
y

)
= Zy

({
aopt
−i
}
y

)
and vx

Zy

(
{aopt

−i }y
) ≤ W (ane)

W (aopt) , we
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Figure 4.1: The conjectured price of anarchy for n-player games, 1

1+(1− 1
n )

n , is shown in red, and

all games e
e+1 is shown in green.
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can use Lemma A.0.1 to increase pi to p′ ∈ [pi, 1] such that (1− p′)Zy

({
aopt
−i,j
}
y

)
= Z ′ and

W (ane)

W (aopt)
≥

∑
r 6=x Wr ({ane}r) + p′vx∑

r 6=y Wr ({aopt}r) + py

({
aopt
−i,j
}
y

)
vy + pjZy

({
aopt
−i,j
}
y

)
+ p′ (1− pj)Zy

({
aopt
−i,j
}
y

)
=

∑
r 6=x Wr ({ane}r) + p′vx∑

r 6=y Wr ({aopt}r) + py

({
aopt
−i,j
}
y

)
vy + p′Zy

({
aopt
−i,j
}
y

)
+ pj (1− p′)Zy

({
aopt
−i,j
}
y

)
=

∑
r 6=x Wr ({ane}r) + p′vx∑

r 6=y Wr ({aopt}r) + py

({
aopt
−i,j
}
y

)
vy + p′Zy

({
aopt
−i,j
}
y

)
+ pjZ ′

.

Since we know by definition of Z ′, there exists another action a′j 6= y such that W
(
a′j , a

opt
−j
)
=

W
(
aopt
j , aopt

−j
)
in the denominator in the last line of the equation above. Denoting a′ =

(
a′j , a

opt
−j
)

we have

W (ane)

W (aopt)
≥

∑
r 6=x Wr ({ane}r) + p′vx∑

r 6=y Wr ({a′}r) + py

({
aopt
−i,j
}
y

)
vy + p′Zy

({
aopt
−i,j
}
y

) .
Noting that vx

Zy

(
{aopt

−i }y
) ≤ W (ane)

W (aopt) =⇒ vx

Zy

(
{aopt

−i,j}y
) ≤ W (ane)

W (aopt) allows us to repeat the process

above with every other player in S until player i is alone on resource y. Then we use Lemma

A.0.1 to raise p′ = 1 and get

W (ane)

W (aopt)
≥
∑

r 6=x Wr ({ane}r) + vx∑
r 6=y Wr ({a′}r) + vy

.

After allowing a′ to reallocate to a new optimum, and thereby increasing the denominator in

the equation above while leaving the equilibrium unchanged, we now have a new game H ∈ G

and we know that PoA(H) ≤ PoA(G).

Theorem 4.2.4. Let Gn ∈ G be any n-player single selection sensor coverage game using

marginal contribution utility design. Then there exists a game H ∈ G with the following proper-

ties

• p1 = 1

• ane
1 = xn

• aopt
1 = x1

• vn = 1.
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such that PoA(H) ≤ PoA (Gn).

Proof. Let i ∈ N denote the pivot player of game Gn with Zx

({
ane
−i
}
x

)
= Y , where x is the

resource selected by player i in the equilibrium allocation. First, consider the case where there

exists at least one player j ∈ N with detection probability of pj = 1 that selects resource q in

the equilibrium. We can use Lemma A.0.4 to reduce the value of the resource selected by that

player in the equilibrium allocation to Y . Since the detection probability is 1, then regardless of

the value of the resource, no other player would ever have any incentive to move to that resource.

We know from definition of the pivot player, the lowest available value at any resource is Y , so

the allocation remains an equilibrium. We can repeat this for any number of players that have

detection probability of 1. Since any player that has probability 1 now has Zq

({
ane
−j
}
q

)
= Y ,

they are all a valid pivot players. So that set of games now has the pivot player with a detection

probability of pi = 1.

Now, without loss of generality, let the new set of resource values be v1 ≥ v2 ≥ · · · ≥ vn.

Regardless of the value of pi, if the pivot player is alone and no other resource is unallocated,

then by definition the pivot is already on resource xn. If the player is not on resource xn then

since the number of players equals the number of resources there exists at least one resource that

is empty. We also know that any empty resource has value less than Y , or the pivot player would

have incentive to deviate to that resource and would not be an equilibrium allocation. We can

raise the value of all of these empty resources to have a value of Y . This will not change welfare

or allocation in the equilibrium, and the welfare in the optimum is non-decreasing. Let x ∈ R

be the resource selected by the pivot player in the equilibrium allocation. We can write the sum

of the welfare at resources x and xn as Wx ({ane}x)+Wxn

(
{ane}xn

)
= piY +Wx

({
ane
−i
}
x

)
+0,

since resource xn is empty and therefore garners a welfare of 0. We can now move the pivot

player to the empty resource a′i = xn and since we now have vn = Y , this implies, under

the new allocation a′ =
(
a′i, a

ne
−i
)
, that Wx ({a′}x) + Wxn

(
{a′}xn

)
= Wx

({
ane
−i
}
x

)
+ piY =

Wx ({ane}x) +Wxn

(
{ane}xn

)
. Which shows the welfare in the equilibrium is unchanged. With
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Lemma B.0.6, we can now scale all the resources such that vn = 1.

We now have the pivot player on resource xn and vn = 1. All we now have to consider is

the case where the pivot player doesn’t have detection probability of 1. First suppose that all

games Gn−1 ∈ G is bounded below by a game with the pivot player pi = 1. Now if 1

Zy

(
{aopt

−i }y
) >

W (ane)
W (aopt) then we can use Lemma A.0.2 to reduce the detection probability of the pivot player

to pi = 0, which is equivalent to a game with n − 1 players. Which by assumption is bound

below by a game of n − 1 players with pi = 1. And we know from [4] that every 2-player

game is bounded below by a game with pi = 1. Now all we have to consider is the case where

1

Zy

(
{aopt

−i }y
) ≤ W (ane)

W (aopt) . We can use Lemma 4.2.3 to increase the pivot player to 1, which

completes the proof.

The above theorem proves the important property that the price of anarchy occurs when

the pivot player has detection probability of 1, and is allocated to the resource, xn, that has

the least available value. We also know that any optimum allocation must have the pivot player

allocated to the highest value resource, x1, or it can’t, by definition, be an optimal allocation.

We now can show, using Claim 3.3.3, how this condition can be used to bound the welfare

garnered in the equilibrium allocation at other resources.

Theorem 4.2.5. Let Gn ∈ G be a n-player single selection sensor coverage problem using

marginal contribution utility design with the following properties

• p1 = 1

• ane
1 = xn

• aopt
1 = x1

• vn = 1.

Then there exists a game H ∈ G such that for any resource r 6= xn ∈ R and joint probability

pr ({ane;H}r) 6= 1, Wr ({ane;H}r) = vr − 1 and PoA(H) ≤ PoA(G).
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Proof. For all resources r 6= xn, let S ⊆ N be the set of players that select resource r in the

equilibrium allocation. If there exists a player i ∈ S, selecting resource y in the optimum such

that
Zr({ane

−i}r)
Zy

(
{aopt

−i }y
) ≥ W (ane)

W (aopt) , then we can use Lemma A.0.2 to reduce the detection probability

of player i such that Wr ({ane}r) = vr − 1. If this condition is not met, then we know that

every player k ∈ S has
Zr({ane

−i}r)
Zy

(
{aopt

−i }y
) < W (ane)

W (aopt) . If there is only one player allocated to resource

r, then we can use Lemma 4.2.3 to increase the detection probability to 1. Consider the case

where there are more than one player on resource r, which would imply there exists at least one

empty resource in the equilibrium, and any empty resource must have value of 1. Let j ∈ S be

the player such that Zr

({
ane
−j
}
r

)
≤ Zr

({
ane
−k
}
r

)
for all k ∈ S. Also let l ∈ S be the player

such that Zr

({
ane
−l
}
r

)
≥ Zr

({
ane
−k
}
r

)
for all k ∈ S. Then we can use Lemma 4.2.3 to increase

the detection probability of player l such that Zr

({
ane
−j
}
r

)
= 1. There now exists another

action a′j 6= r with a′ =
(
a′j , a

ne
−j
)
such that W

(
a′j , a

ne
−j
)
= W

(
ane
j , ane

−j
)
. Once on this new

resource, we can use Lemma 4.2.3 to increase the detection probability to pj = 1, and we have

Wr ({a′}r) = vr − 1. After letting the aopt reallocate to the new optimum allocation, we have a

game H ∈ G, such that the welfare at all resources in the equilibrium at resources r ∈ R such

that pr ({ane}r) 6= 1, is Wr ({ane}r) = vr − 1.



Chapter 5

Simulations

We seek to empirically test our hypothesis that the price of anarchy over all single selection

distributed sensor coverage problems is e
e+1 by simulating many randomly sampled games. To

simulate a n-player game we first sample the detection probabilities p = (p1, p2, . . . , pn)
> ∈

[0, 1]n where each detection probability is drawn uniformly as pi ∼ Unif(0, 1). We then follow a

similar procedure to sample resource values v = (v1, v2, . . . , vn) ∈ Rn where each resource value

is sampled according to vi ∼ Unif(0, 1). After sorting the values so we have v1 ≥ v2 ≥ · · · ≥ vn,

we can then scale the by 1
vn

, so for every game sampled has vn = 1.

Once the game parameters have been sampled, we need to find both the optimal welfare.

This is performed by exhaustively searching all possible allocations a ∈ A until we have found

aopt ∈ A such that

W (aopt) ≥W (a).

Once the optimal welfare is found, we then turn our attention to finding an equilibrium welfare.

In order to find the welfare, we must first find a valid equilibrium allocation. The process of

numerically computing the equilibrium is commonly known as game learning. Many efficient

learning algorithms exist in the literature such as regret matching and fictitious play [9], however

we exhaustively search all possible equilibrium allocations until we find

a∗ = argmin
ane∈NE(G)

W (ane).
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5.1 Results

We simulated games between 2 and 5 players, each with 10000 game samples. Table 5.1

summarizes the results of the simulations including minimum and average price of anarchy. As

can be seen from the table, the minimum empirical PoA is less than the price of anarchy as

conjectured in Theorem 4.2.2. Also it should be noted that the average price of anarchy is close

to 1, and we can see how most of the mass of the games samples are distributed in Figures

5.2-5.5.

Number of players Conjectured PoA Worst Observed PoA Maximum PoA Average Observed PoA
2 0.8000 0.8064 1 0.9848
3 0.7714 0.8032 1 0.9670
4 0.7596 0.8034 1 0.9524
5 0.7532 0.7813 1 0.9413

Table 5.1: Simulation results.

However, since we know from Lemma 4.2.3 that the price of anarchy occurs only in games

where p1 = 1, we now repeat the simulations above, but now only consider games with p1 = 1.

The results are shown in Table 5.2 and Figures 5.7-5.10.

Number of players Conjectured PoA Worst Observed PoA Maximum PoA Average Observed PoA
2 0.8000 0.8018 1 0.9745
3 0.7714 0.7838 1 0.9414
4 0.7596 0.7751 1 0.9229
5 0.7532 0.7841 1 0.9141

Table 5.2: Simulation results with p1 = 1.
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Figure 5.1: Price of anarchy for game samples with different number of players is shown in blue.
The red line represents 1

1+(1− 1
n )

n , the conjectured price of anarchy for n-player games, and the

green line represents e
e+1 .
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Figure 5.2: Price of anarchy of 10000 samples for 2 player sensor coverage games. The red line
indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.3: Price of anarchy of 10000 samples for 3 player sensor coverage games. The red line
indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.4: Price of anarchy of 10000 samples for 4 player sensor coverage games. The red line
indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.5: Price of anarchy of 10000 samples for 5 player sensor coverage games. The red line
indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.6: Price of anarchy for game samples with different number of players is shown in blue.
The red line represents 1

1+(1− 1
n )

n , the conjectured price of anarchy for n-player games, and the

green line represents e
e+1 .
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Figure 5.7: Price of anarchy of 10000 samples for 2 player sensor coverage games with p1 = 1.
The red line indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.8: Price of anarchy of 10000 samples for 3 player sensor coverage games with p1 = 1.
The red line indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.9: Price of anarchy of 10000 samples for 4 player sensor coverage games with p1 = 1.
The red line indicates the lower bound conjectured in Theorem 4.2.2.
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Figure 5.10: Price of anarchy of 10000 samples for 5 player sensor coverage games with p1 = 1.
The red line indicates the lower bound conjectured in Theorem 4.2.2.



Chapter 6

Conclusions and Future Work

This thesis studies the distributed sensor coverage problem using the mathematical tools

of game theory, and investigates the worst case performance of equilibrium allocations using the

wonderful life utility design. We define a class of games H in Definition 4.2.1, and show the

price of anarchy is this set of games is e
e+1 ≈ 73%, which is below previously conjectured bounds

[4]. We then conjecture that e
e+1 is the price of anarchy for all single selection sensor coverage

games. We support this claim with provable properties about the structure of games bounded

by this price of anarchy. We show that the price of anarchy occurs in the set of games that has

the following properties

• p1 = 1

• vn = 1

• ane
1 = xn

• aopt
1 = x1

• Wr({a}r) = vr − 1, ∀r 6= xn.

Simulating games, we show that the price of anarchy of all games simulated remained above the

proposed bound of e
e+1 . It is still unproved that the price of anarchy of the set of all games G

is in fact e
e+1 . However, since the bound proposed in Theorem 4.2.2 is tight, we can claim that

e
e+1 acts an upper bound for the price of anarchy for G. That is PoA (G) ≤ e

e+1 .



37

It is important to note the 73% for single selection distributed sensor coverage problem

is well above the general bound of 50% as shown in Section 3.2. However, this result is for a

specific game type. It is an open problem to determine under what general game constructions

can we expect to find a price of anarchy to be above 50%. Ideally, we strive to develop rigor-

ous, systematic tools to design utility functions that optimize guaranteed bounds on distributed

systems. Also, it must be noted that any of the results presented are for games with static con-

ditions. How these results generalize to games whereby the structure is dynamic, the continual

changing of values of the resources in the sensor coverage problem, for example, is unsolved.

Other important questions that remain, are the effect of restrictions on player action sets, lim-

ited inter-player communication, and system learning dynamics that are unsynchronized among

agents.



Appendix A

Algebraic Properties

We present a series of algebraic properties that will assist us in our work.

Lemma A.0.1. Let p ∈ [0, 1] and a, b, c, d ∈ R+. Given any a
b such that a

b ≤
pa+c
pb+d , then

a+c
b+d ≤

pa+c
pb+d .

Proof. Suppose a+c
b+d > pa+c

pb+d , this implies

a+ c

b+ d
>
pa+ c

pb+ d

=⇒ (pb+ d) (a+ c) > (pa+ c) (b+ d)

=⇒ pab+ pbc+ ad+ cd >pab+ pad+ bc+ cd

=⇒ ad(1− p) >bc(1− p).

If p = 1, then we have 0 > 0, which is a contradiction. If p 6= 1, then we have

=⇒ ad >bc

=⇒ pab+ ad >pab+ bc

=⇒ a (pb+ d) >b (pa+ c)

a

b
>
pa+ c

pb+ d
.

Which is a contradiction. Therefore a+c
b+d ≤

pa+c
pb+d .

Lemma A.0.2. Let p ∈ [0, 1] and a, b, c, d ∈ R+. Given any a
b such that a

b ≥
pa+c
pb+d , then

c
d ≤

pa+c
pb+d .
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Proof. Suppose c
d > pa+c

pb+d , this implies

c

d
>
pa+ c

pb+ d

c (pb+ d) >d (pa+ c)

pbc+ cd >pad+ cd

pbc >pad.

If p = 0, then we have 0 > 0, which is a contradiction. If p 6= 0, then we have

bc >ad

pab+ bc >pab+ ad

b (pa+ c) >a (pb+ d)

pa+ c

pb+ d
>
a

b
.

Which is a contradiction. Therefore c
d ≤

pa+c
pb+d .

Lemma A.0.3. Let a, b, c, d ∈ R+. Given any a+c
b+d such that a

b ≤
c
d , then

a
b ≤

a+c
b+d .

Proof. Now suppose a
b > a+c

b+d , this implies

=⇒ a

b
>

a+ c

b+ d

=⇒ a(b+ d) > b(a+ c)

=⇒ ab+ ad > ab+ bc

=⇒ ad > bc

=⇒ a

b
>

c

d

Which is a contradiction. Therefore a
b ≤

a+c
b+d .

Lemma A.0.4. Let p ∈ [0, 1] , a, b ∈ R+, and v ∈ [1,∞). Given any v+a
pv+b such that v+a

pv+b ≤ 1,

then v+a
pv+b ≥

1+a
p+b .
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Proof. From Lemma A.0.3, we know that a
b ≤ 1. Now suppose that v+a

pv+b < 1+a
p+b . This implies

=⇒ (p+ b)(v + a) < (1 + a)(pv + b)

=⇒ pv + pa+ bv + ab < pv + b+ pva+ ab

=⇒ pa+ bv < b+ pva

=⇒ bv − pva < b− pa

=⇒ v(b− pa) < b− pa

=⇒ v < 1

Which is a contradiction since v ∈ [1,∞) =⇒ v ≮ 1.



Appendix B

Game Properties

Lemma B.0.5. Let G ∈ G be a N player, M resource game. Then there exists a N player, N

resource game H ∈ G such that PoA(H) ≤ PoA(G).

Proof. Case N > M : By definition

PoA(G) =
W (ane)

W (aopt)
=

∑
r∈RWr ({ane}r)∑
r∈RWr ({aopt}r)

Now add N −M resources, each with value Y , to game G to create a new game H. No player

has incentive to deviate from ane, so therefore remains an equilibrium allocation. This implies

that pr ({ane}r) = 0 =⇒ Wr ({ane}r) = 0 for each of the added resources. The optimum is

non-decreasing, so this implies

PoA(H) =

∑
r∈RWr ({ane}r)∑
r∈RWr ({aopt}r)

≤ PoA(G)

Case N < M : Since each player can choose at most one resource, this implies there is M −N

empty resources in both the equilibrium and optimum. Since the optimum is also an equilibrium,

that means that the empty resources occur at the N − M least valuable resources in both

allocations. This implies that pr ({ane}r) = 0 =⇒ Wr ({ane}r) = 0 for those empty resources.

Which implies that

PoA(G) = PoA(H)
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Lemma B.0.6. Let G ∈ G be any arbitrary game with price of anarchy PoA(G). If we scale all

resource values in g by the same constant c ∈ R \ {0}, then the price of anarchy is unchanged.

Proof. By definition

PoA(G) =
W (ane)

W (aopt)
=

∑
r∈RWr ({ane}r)∑
r∈RWr ({aopt}r)

=

∑
r∈R pr ({ane}r) vr∑
r∈R pr ({aopt}r) vr

Now scale each resource in g by the same constant c ∈ R \ {0}

∑
r∈R pr ({ane}r) cvr∑
r∈R pr ({aopt}r) cvr

=
c
∑

r∈R pr ({ane}r) vr
c
∑

r∈R pr ({aopt}r) vr
=

∑
r∈R pr ({ane}r) vr∑
r∈R pr ({aopt}r) vr

=
W (ane)

W (aopt)
=PoA(g)
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