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Cosmological Constraints from a Measurement of the Polarization Power Spectra of the Cosmic

Microwave Background with the SPTpol Experiment

Thesis directed by Assoc. Prof. Nils Halverson

SPTpol is a polarization-sensitive receiver installed on the South Pole Telescope in its third

season of mapping Cosmic Microwave Background (CMB) temperature and polarization anisotropies.

The receiver contains 588 (180) dual polarization pixels at 150 (95) GHz comprising a total of 1536

transition edge sensor bolometers. In its first year, SPTpol mapped 100 deg2 to a depth of ∼ 8

and 10 µK-arcmin at 150 GHz in temperature and polarization, respectively. With this deep field

map, the SPTpol collaboration produced the first statistically significant detection (7.7 σ) of gravi-

tational lensing B-mode polarization. Additionally, the SPTpol experiment just completed its first

of three years mapping 500 deg2 to a depth of ∼ 12 and 15 µK-arcmin in temperature and polar-

ization at 150 GHz. High signal-to-noise measurements of the polarization power spectra from the

survey will further constrain cosmological parameters and extensions to the ΛCDM cosmological

model. Measurements of large-scale polarization anisotropies will also place tighter constraints on

the existence of primordial B-mode polarization generated by gravitational waves from the epoch

of inflation.

In this work we discuss the development of the SPTpol receiver and, in particular, the

seven 150 GHz detector modules at the heart of the focal plane. We describe the observational

strategies used during the first two seasons of SPTpol measurements as well as the reduction of

detector timestreams into maps and CMB polarization power spectra. To extract constraints on

cosmological parameters from the SPTpol power spectra we have written a new Bayesian likelihood

module for the CosmoMC Markov Chain Monte Carlo package, which we also describe. Finally, we

present cosmological constraints from the first year of SPTpol observations. Pre-existing constraints

on ΛCDM parameters improve by a few percent with the inclusion of these data. While this is a
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modest step forward in our understanding of the early universe, the completed SPTpol dataset will

have the power to tightly constrain the sum of neutrino masses and help determine the source of

recently detected large-scale B-mode polarization.



Dedication

To my great-grandmother Anna Payne. She always wanted to go to college and further

her education. Unfortunately, the realities of life in the mid-1930s forced her to stay home, help

raise her siblings, and work the family farm. I hope I’ve been able to take advantage of all the

opportunities you couldn’t and then some.



vi

Acknowledgements

There’s no way I could thank everyone who helped me along the way, but I’ll try to highlight

some of them. First of all, my parents are the best anyone could ever hope for, and I’m only here

because of their endless love, encouragement, and patience. I couldn’t hope to be even a tenth

as good a parent one day as they were and still are to me. Second, I have to thank my brother

Nick for his support and helping to keep me sane. You gave me great advice in college and I

try to keep it in mind every day. Third, I’m quite... quirky... and I was lucky enough to find a

partner who not only loves me for my quirks but who also shares most of them with me. Callan,

I can’t wait for our turtle, Strider. And I would be remiss if I forgot to thank her parents, who

are incredibly welcoming and supportive. Thanks for being my second family. Fourth, I’ve met a

lot of great people in graduate school, especially my fellow Armer House roommates. Devin, Sam,

Adam, Anthony, Jordan, Grant (and Greg because, hey, the flood weeks count)... you’ve all been

fantastic and have really made my time in Boulder special. I couldn’t have asked for a better set of

colleagues and friends. Fifth, I absolutely have to thank my advisor Nils Halverson and lab mentor

Jay Austermann for their guidance and always being willing to talk a problem over with me. And

that is rarely easy to do because I’m terrible at providing context; I just launch into whatever it

is that’s giving me problems. It takes a lot of patience to put up with that - and my occasional

clumsiness in lab - and they both have it in spades. Finally, it has been a pleasure and a sincere

honor to count myself as a member of the SPT collaboration. I’ve never met a more talented and

dedicated group of researchers and I am incredibly privileged to have been given the chance to be

a part of it.



Contents

Chapter

1 Introduction 1

1.1 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Expansion and the Friedmann Equations . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Initial Conditions with Inflation . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 ΛCDM Cosmological Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 CMB Temperature Anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 The Photon-Baryon Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 The Temperature Angular Power Spectrum . . . . . . . . . . . . . . . . . . . 18

1.2.3 Sensitivity to Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 CMB Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Linear Polarization and the Stokes Parameters . . . . . . . . . . . . . . . . . 23

1.3.2 Polarizing the CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 The South Pole Telescope and the SPTpol Receiver 32

2.1 The South Pole Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 The SPTpol Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Detector Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 95 GHz Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



viii

2.3.2 150 GHz Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Frequency-Domain Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 SPTpol 150 GHz Module Design 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Corrugated Silicon Platelet Feed Horn Array . . . . . . . . . . . . . . . . . . 47

3.2.2 Detector Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Mounting Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 RF Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Passive Readout Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Dark Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Observations and Data Products 68

4.1 CMB Field Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 2012 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 2013 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Data Reduction: From Timestreams to Power Spectra 74

5.1 Timestream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Timestream Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Absolute Telescope Boresight Pointing . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Absolute Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Polarization Angle Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 T → P Deprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



ix

5.2.4 Data Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Pseudo-Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Estimation of Unbiased Power Spectra: the MASTER Algorithm . . . . . . . . . . . 94

5.4.1 Mode-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Beam Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.4 Bandpower Window Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.5 Bandpower Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Jackknives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Cosmological Parameter Fitting 111

6.1 Bayesian Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Fisher Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Fisher Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Generalized Fisher Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.3 Estimating the Bandpower Covariance Matrix . . . . . . . . . . . . . . . . . . 117

6.2.4 SPTpol Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Parameter Fitting Through MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Chain Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.3 The SPTpol Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.4 Likelihood Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.5 Adding WIMP Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Results 133

7.1 Bandpowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.1 SPTpol Bandpower Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Cosmological Constraints from SPTpol . . . . . . . . . . . . . . . . . . . . . . . . . . 143



x

7.2.1 ΛCDM constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.2 Extensions to ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 Future Work 160

Bibliography 165

Appendix

A Determination of Science Band Frequencies in Detector Timestreams 170



xi

Tables

Table

1.1 ΛCDM Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 SPTpol Optical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 SPTpol Bandpass Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 SPTpol Detector Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Detector Dark Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 SPTpol Observing Breakdown: January 27, 2012 - April 15, 2014 . . . . . . . . . . . 73

5.1 PTEs for SPTpol 2012 Deep Field Jackknife Tests . . . . . . . . . . . . . . . . . . . 110

6.1 SPTpol Fisher Forecasts for ΛCDM Parameters . . . . . . . . . . . . . . . . . . . . . 119

6.2 CosmoMC minimizer results for 204 sets of simulated SPTpol bandpowers. . . . . . 128

7.1 SPTpol 150 GHz TE Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 SPTpol 150 GHz EE Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 ΛCDM constraints - SPTpol Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 ΛCDM constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 ΛCDM Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



Figures

Figure

1.1 Recent high signal-to-noise CMB polarization power spectra measurements plotted

in units of µK2 as a function of spherical harmonic multipole l. In 2013 the SPTpol

collaboration recently published a lensing correlation detection of B modes con-

sistent with the best-fit ΛCDM model (rising dashed line at l & 100) (21). The

POLARBEAR collaboration has also published lensing B-mode measurements (22).

In early 2014 the BICEP2 experiment submitted a first detection of large-scale B

modes consistent with a tensor-to-scalar ratio r = 0.2 (dashed line at l . 100) (23).

Also plotted are data from ACTPol (24), QUIET (14), QUaD (10), and WMAP (25). 3

1.2 Samples from a Markov Chain Monte Carlo (MCMC) calculation of parameter con-

straints using Planck CMB temperature anisotropy measurements (15). The color

map corresponds to values of ΩΛ at a given point in ln(1010As)− σ8 space. . . . . . 13

1.3 CMB TT power spectrum from a Planck best-fit ΛCDM model (31) (black). The

shaded region shows the smallest possible uncertainties for single multipoles set by

cosmic variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Effects of increasing Ωbh
2 (top) and Ωch

2 (bottom) on the CMB TT power spectrum

while keeping H0 and Ωk fixed. Parameter values increase according to dashed, solid,

and thick lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Graphic depicting the directional relations between Stokes Q, U , and V . . . . . . . . 24



xiii

1.6 Directions of polarization patterns for positive and negative E- andB-mode anisotropies.

28

1.7 Effects of increasing Ωbh
2 (top) and Ωch

2 (bottom) on the CMB EE polarization

power spectrum while keeping H0 and Ωk fixed. Parameter values increase according

to dashed, solid, and thick lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 The SPT with newly installed primary mirror guard ring, side shields, and snout to

mitigate polarized ground pickup for SPTpol observations. . . . . . . . . . . . . . . . 33

2.2 Cut-away view of the SPT secondary mirror cryostat (50). Light rays enter the

system after bouncing off the primary mirror located off-image to the upper left.

They terminate on the SPTpol focal plane housed in a separate cryostat. Both

cryostats, however, share the same vacuum. . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The SPTpol focal plane. (Left) Feedhorns before band-defining filters are installed.

(Right) Back side of focal plane with cryogenic readout electronics boards, ther-

mal sinking points, and additional structures to increase the rigidity of the readout

boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Metal mesh filters define the high-edge of the bandpasses. (Left) 95 GHz filter

installed. (Right) 150 GHz filter plus harmonic blocker. . . . . . . . . . . . . . . . . 37

2.5 SPTpol bandpass transmission. Black is the South Pole atmospheric transmission

with 0.26 mm PWV, the median value during winter months (52). The 150 GHz

bandpass is plotted in red while the 90 GHz bandpass is in blue. Bandpasses for

the 2012 (2013) observing season are in solid (dashed) lines. SPTpol bandpass

transmissions have been normalized to a maximum value of one. . . . . . . . . . . . 37

2.6 Internal view of SPTpol 95 GHz pixel. (Top) Cutaway of single feed plus pixel

package. (Bottom) Magnified view of 95 GHz pixel and TES structure. Inside the

choke the waveguide is 2.35 mm in diameter, which defines the low-frequency edge

of the detector bandpass. Figure from (59). . . . . . . . . . . . . . . . . . . . . . . . 42



xiv

2.7 A prototype SPTpol 150 GHz pixel. The device is 5 mm across with a 1.6 mm OMT.

Bandpass-defining stub filters shown here were not included in the final pixels. Figure

appears in (60). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 (Top) Circuit schematic of a DfMUX readout system, adapted from (61). c© 2008

IEEE. (Bottom) One of 144 frequency combs measuring detector resonant frequencies

in the SPTpol experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 The SPTpol focal plane. Seven 84-pixel modules of 150 GHz detectors sit at the

center of the camera, while 180 individually packaged 95 GHz pixels surround the

modules, for a total of 768 polarization-sensitive pixels (1536 detectors). The focal

plane is ∼ 225 mm in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 (Top) One of seven 150 GHz corrugated silicon platelet feed horn arrays in the

SPTpol focal plane. The array is 2.3 inches wide and contains 84 feed horns with

4.26 mm apertures. (Bottom) Cross-sectional view of the feed horn profiles showing

the corrugations and waveguides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 (Top) Schematic of one SPTpol 150 GHz pixel. Areas with white hashing are regions

where the silicon substrate has been etched away leaving released silicon nitride.

(Bottom) One of the seven SPTpol 150 GHz detector arrays during module assembly,

before installing the BS wafer. The array is 2.3 inches across. . . . . . . . . . . . . . 51

3.4 Expanded cross-sectional view of the detector wafer sandwich. Boss features in

the WIP slip into the back-etched cavities of each pixel OMT, extending the horn

waveguide to the OMT and providing pixel-waveguide registration. The BS wafer

terminates the waveguides with λ/4 backshorts. . . . . . . . . . . . . . . . . . . . . . 52



xv

3.5 (Top) BS wafer with filled moats. The moats alternately rotate by 45◦ to match the

alternating rotations of the pixels. (Bottom) A schematic of the BS moat and OMT

fence layout with respect to pixel features. The moats are aligned to be above each

TES island, and the OMT fence closes the gap between the detector array and BS

array except where microstrip lines are present. . . . . . . . . . . . . . . . . . . . . . 53

3.6 (Top) Flexible invar tabs used to connect the silicon feed horn arrays to the metal

mounting structures in the 150 GHz modules. Each tab is 0.5 mm thick, while the

flexing portion is 0.4 mm thick to reduce stress near the epoxy joint. The flexible

portion of the tab, between the registration features, is 7.4 mm long. (Bottom) The

tabs installed on a feed horn array prior to module assembly. . . . . . . . . . . . . . 56

3.7 (Top) Mounting ring with berylium copper clamps installed in a module. The invar

tabs screw into the six feet in the ring, while four flexible cables are clamped down

to the outer walls of the ring. The berylium copper clamps supply vertical pressure

to the detector wafer stack. (Bottom) The interface plate installed on top of the

mounting ring with its many mounting holes. The flexible readout cables snake

underneath the plate and come out the center of the module. . . . . . . . . . . . . . 57

3.8 (Top) Image of RF skirts, showing flexure portion. (Bottom) Skirts installed with

final RF tape applied as the module is prepared for shipment to the South Pole. . . 59

3.9 (Top) Populated LC board. (Bottom) Two LC boards with protective shielding in

place and mounted to a module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 (Top) Return loss for six horns in one SPTpol feed horn array. Dashed line is the

expectation for the feed horn profile only. (Middle) 300 K insertion loss measure-

ments of the same horns. (Bottom) Beam profile at 150 GHz for one representative

horn. Dots are measurements while solid lines are expectations from simulations. . . 65



xvi

3.11 (Top) Measurements of the electrothermal time constant of one representative detec-

tor at several points in its superconducting transition. Devices exhibit time constants

< 1 ms at nominal operation points. (Bottom) Power spectral densities (PSDs) for

three devices in the same 150 GHz pixel. “X” and “Y” are optically loaded while

the “Dark” device is not coupled to the sky. All three device PSDs have white noise

levels consistent with expectations. The PSD of the differenced timestreams of the

optically loaded devices shows a much reduced 1/f knee. . . . . . . . . . . . . . . . . 66

4.1 Azimuth and elevation coordinates for a single CMB field observation. The telescope

starts at low elevation and scans right and left before taking an elevation step and

repeating. The field is split into “lead” and “trail” halves, which are forced to match

in azimuth for removal of ground contamination. Lead and trail coordinates have

been offset by 0.05◦ in azimuth and elevation for clarity. . . . . . . . . . . . . . . . . 69

5.1 Example bolometer timestream as a detector scans across the center of RCW38.

Additional optical power from the source reduces the requisite electrical power to

keep the detector biased at the same point in its transition, causing the source to

manifest as a drop in readout current. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 (Top) Representative azimuth bearing axis tilt measurement with corresponding fit

to determine pointing parameters a2 and a3. (Bottom) a2 (blue) and a3 (red) as a

function of time since SPTpol deployment in January 2012. The azimuth axis tilt

grows by several arcminutes per year. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Flowchart for how offline pointing model corrections are calculated and applied to

the data. “Tilt” and “HII region” parameters are determined ahead of time and

saved in auxiliary config files. Corrections for thermometry, metrology, and atmo-

spheric refraction are handled in real-time. Corrections to az/el are added to the raw

telescope az/el, coordinates are converted to RA/Dec, and final pointing is passed

to the mapper routine for binning timestreams into pixels. . . . . . . . . . . . . . . . 81



xvii

5.4 CMB T map from the SPTpol 500 deg2 survey field 2013 observations. Resolution

is 1 arcmin/pixel. The Oblique Lambert azimuthal equal-area projection is applied

(80). (Top) Signal or “sum” map, coadding all observations of the 2013 season into

a single map. (Bottom) Noise or “difference” map, generated by subtracting coadds

of the first and second half of the observing season. T noise reaches a white floor of

12.4 µK·arcmin at 3500 < l < 4500 when minimal timestream filtering is applied. . . 84

5.5 CMB Stokes Q polarization map from the SPTpol 500 deg2 survey field 2013 ob-

servations. Here, colorscale indicates local polarization direction (±Q) expressed as

differential intensity. Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal

equal-area projection is applied (80). Polarization angles have been “flattened” to

remove curvature induced by the projection. The strong vertical/horizontal features

are indicative of E-mode polarization being imaged with high signal-to-noise. (Top)

Signal or “sum” map, coadding all observations of the 2013 season into a single map.

(Bottom) Noise or “difference” map, generated by subtracting coadds of the first

and second half of the observing season. Stokes Q noise reaches a white floor of 16.7

µK·arcmin at 3500 < l < 4500 when minimal timestream filtering is applied. . . . . . 85

5.6 CMB Stokes U polarization map from the SPTpol 500 deg2 survey field 2013 ob-

servations. Here, colorscale indicates local polarization direction (±U) expressed as

differential intensity. Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal

equal-area projection is applied (80). Polarization angles have been “flattened” to

remove curvature induced by the projection. The strong ±45◦ features are indica-

tive of E-mode polarization being imaged with high signal-to-noise. (Top) Signal or

“sum” map, coadding all observations of the 2013 season into a single map. (Bottom)

Noise or “difference” map, generated by subtracting coadds of the first and second

half of the observing season. Stokes U noise reaches a white floor of 17.1 µK·arcmin

at 3500 < l < 4500 when minimal timestream filtering is applied. . . . . . . . . . . . 86



xviii

5.7 CMB E-mode polarization map from the SPTpol 500 deg2 survey field 2013 obser-

vations. Here, colorscale indicates local polarization direction (±E) expressed as

differential intensity. Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal

equal-area projection is applied (80). (Top) Signal or “sum” map, coadding all ob-

servations of the 2013 season into a single map. (Bottom) Noise or “difference” map,

generated by subtracting coadds of the first and second half of the observing season. 87

5.8 (Top) Two-dimensional biased E-mode pseudo-spectrum from SPTpol 2013 full sur-

vey observations with Cl normalization and Fourier resolution ∆l = 6.25. The

spectrum is converted to Dl and azimuthally averaged in multipole bins of ∆l = 50

to generate the more familiar one-dimensional power spectrum. The E-mode acous-

tic peaks are clearly visible as harmonic rings with high signal-to-noise even before

azimuthal averaging. The vertical stripe of much lower power at low lx is due to

timestream polynomial subtraction along the scan direction, which is mostly parallel

to lx. (Bottom) E-mode noise power spectrum with the same color scale. Sample

variance is not included. A small rise in noise is visible below l ∼ 150 but otherwise

the noise is white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 (Top left) The SPTpol 2012 150 GHz deep field apodization window. The edges of

the region transition to zero using a 15′ cosine taper. Point sources with > 50 mJ

flux at 150 GHz are masked with 5′ disks and a 5′ cosine taper. (Top right) The TT

mode-coupling matrix, log scale. (Bottom left) The EE mode-coupling matrix, log

scale. (Bottom right) The TE mode-coupling matrix, log scale. White elements are

negative. When binned to ∆l=50 bandpowers, mode-coupling due to the apodization

window between Fourier modes is < 10%. . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 The SPTpol 2012 deep field 150 GHz beam function Bl and its fractional errors

δBl/Bl. Bl is arbitrarily normalized to unity at l = 0. . . . . . . . . . . . . . . . . . 98



xix

5.11 The SPTpol 2012 deep field 150 GHz transfer functions Fl, binned to ∆l = 50. The

TE transfer function, not plotted for clarity, is the geometric mean of the TT and

EE transfer functions. The initial iterations exhibit oscillations from mode-coupling

induced by the map apodization window, but by the fifth and final iteration only

the effects of timestream filtering on the power spectra remain. . . . . . . . . . . . . 100

5.12 The lowest three bandpower window functions for the SPTpol 2012 150 GHz deep

field EE power spectrum. Window functions are calculated with a resolution of

∆l = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.13 (Top) TE×EE cross-covariance matrix measured from 105 cross-spectra simulations.

(Bottom) Cross-covariance matrix constructed using auto-covariance block diagonals. 107

6.1 Partial derivatives of CMB power spectra with respect to ΛCDM cosmological pa-

rameters used to obtain parameter Fisher forecasts. Derivatives are calculated nu-

merically using CAMB and the step sizes printed in the figure legend. (Top Left)

DTT
l derivatives. (Top Right) DEE

l derivatives. (Bottom Left) DTE
l derivatives.

Dashed lines are negative values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom) power spectra

(black) plotted with averaged Fisher forecasted bandpowers for the 2012 deep field

and completed full survey (red/blue). Forecasted bandpowers are offset by ∆l ±

15 for clarity. The average of 100 random bandpower realizations agrees with the

input cosmological theory (solid line). Forecasted error bars for the deep field are

everywhere comparable to but better than the measured uncertainties, as expected. . 120

6.3 Representative 2-D slice in the Ωch
2−Ωbh

2 plane of a Markov chain. The color bar

designates at what fractional point in the chain each step takes place. The initial

steps of the chain in dark blue are “burn-in.” When the first half of the chain is

thrown out, however, the remaining steps are draws from the desired probability

distribution function P (~θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xx

6.4 2-D marginalized parameter likelihood contour grid resulting from a test chain using

a realization of simulated SPTpol bandpowers. Contours show the 68 and 95% confi-

dence regions. In red are constraints from Planck that define the input cosmology for

the sims. In black (blue) are constraints from ∆l = 50 (∆l = 100) simulated band-

powers. We also used the actual SPTpol deep field bandpower covariance matrix

and window functions for this test. The cosmological constraints all match within

a fraction of the 1-σ uncertainties on the parameters. This simultaneously validates

the likelihood module, bandpower covariance matrix, and the bandpower window

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Perturbations to the CMB power spectra δDl from WIMP annihilation scaled to

eWIMP = 1 (pann(z) = 2×10−27 cm3/s/GeV). (Top) Corrections to the TE spectrum.

(Bottom) Corrections to the EE spectrum. . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom) power spectra

on a linear scale. We measure six acoustic peaks in the EE spectrum with high

significance and achieve the highest signal-to-noise measurements of the EE damping

tail to date. The solid black lines in both plots are the ΛCDM expectation from

Planck (31) TT measurements and have not been fitted to the SPTpol data. . . . . 135

7.2 The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom, log scale) power

spectra, plotted with data from BICEP2 (23), WMAP (25), QUIET W-band (14),

and QUaD (94). The solid black lines in both plots are the ΛCDM expectation from

Planck (31) TT measurements and have not been fitted to the SPTpol data. . . . . 136

7.3 Pseudo-spectra SPTpol 150 GHz deep field bandpowers (blue) overplotted with 95

GHz bandpowers (red). Error bars include noise variance only. The two sets of

bandpowers agree within errors. Since the bandpowers are biased by filtering and

analysis systematics, the black theory line is meant only to guide the eye. . . . . . . 139



xxi

7.4 SPTpol 2012 deep field bandpowers (black) overplotted with bandpowers calculated

with an alternate pipeline (red). The solid black line is the Planck ΛCDM expecta-

tion. The two sets of bandpowers agree well indicating no obvious bias introduced

by either analysis pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5 SPTpol 2012 deep field bandpowers (black dots) overplotted with bandpowers from

four 100 deg2 sub-fields from 2013 full survey observations. The solid black line is

the Planck ΛCDM expectation. 2013 bandpowers have been offset horizontally for

clarity. Differences between the four fields are consistent with sample variance. . . . 142

7.6 1-D marginalized ΛCDM constraints from 2012 SPTpol data (red). Constraints from

the separate 2013 sub-fields are also included. H0 is a derived quantity, while Pcal,

DPSEE
3000 , and DPSTE

3000 are nuisance parameters in the SPTpol likelihood. The fourth

nuisance parameter Tcal is not shown as it is tightly constrained by its Gaussian prior.144

7.7 SPTpol 2012 deep field bandpowers with two ΛCDM model curves. The solid blue

line is the Planck ΛCDM expectation while the solid red line is the SPTpol best-fit

model. Dashed lines are residuals for the respective models. . . . . . . . . . . . . . . 145

7.8 2-D marginalized constraints on the scalar amplitude ln 1010(As) and Pcal for the

SPTpol 2012 deep field bandpowers. A strong degeneracy between the two parame-

ters is evident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.9 1-D marginalized ΛCDM parameter constraints. . . . . . . . . . . . . . . . . . . . . . 149

7.10 2-D marginalized ΛCDM parameter likelihoods. . . . . . . . . . . . . . . . . . . . . . 150

7.11 2-D marginalized ΛCDM +α−1 parameter likelihoods. As of printing these chains

had not fully converged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.12 2-D marginalized ΛCDM + eWIMP parameter likelihoods. . . . . . . . . . . . . . . . 157

7.13 2-D marginalized ΛCDM + r parameter likelihoods. As of printing these chains had

not fully converged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.1 SPTpol 2013 survey field 2-D EE pseudo-power spectrum in Cl normalization. . . . 161



xxii

8.2 Preliminary SPTpol 2013 survey field TE and EE power spectra with noise variance

error bars. Bandpower resolution is ∆l = 6.25. The Planck ΛCDM model is in

black. In red we plot the raw pseudo-spectra while in blue we partially unbias the

bandpowers by taking into account the instrument beam and a by-eye calibration

factor of 0.85. Mode-coupling and the filter transfer function have been ignored. . . 162



Chapter 1

Introduction

Cosmologists have made remarkable progress over the past two decades in understanding the

contents, structure, and evolution of the universe. Detailed observations of temperature and polar-

ization anisotropies in the Cosmic Microwave Background (CMB) provide a straightforward means

to study a young and relatively simple universe before the formation of large-scale structure. The

CMB also carries information about the low-redshift universe since cosmic structure alters primor-

dial anisotropies. For example, gravitational lensing of the CMB caused by large-scale structure

can be used to make a census of and map the distribution of matter (1; 2; 3; 4). Localized spectral

distortions of the CMB from inverse-Compton scattering known as the thermal Sunyaev-Zel’dovich

effect (SZE) (5; 6) mark locations of galaxy clusters, which can be used to study dark energy and

its effects on the expansion of the universe (7). The optical depth of the CMB informs our under-

standing of the epoch of reionization. Finally, measurements of the kinetic SZE offer a path toward

constraining the timing and duration of reionization (8).

First measured by the COBE satellite (9) and more recently by many other experiments (e.g.,

10; 11; 12; 13; 14; 15), CMB anisotropies have motivated a new era of precision cosmology. Coupled

with independent measurements of the Hubble constant (16), Type Ia supernovae (17), baryon

acoustic oscillations (BAO) (18), and general properties of galaxy clusters (e.g., 19; 20), CMB

anisotropy measurements have led to the standard ΛCDM cosmological model, which describes

a spatially flat universe composed predominantly of dark energy (∼ 69% of total energy content

of the universe) and cold dark matter (∼ 26%) with structure sourced by nearly scale-invariant
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Gaussian fluctuations during its earliest moments.

Through a combination of satellite, balloon-borne, and ground-based observations over the

past decade, the power spectrum of CMB temperature anisotropies has been measured with high

signal-to-noise over angular scales ranging from the full sky down to ∼ 1′. Current CMB experi-

ments are now focusing efforts on taking high-fidelity observations of the even-parity E-mode and

far fainter odd-parity B-mode polarization angular power spectra to further probe fundamental

physics and the initial conditions of the universe. Knowledge of these polarization anisotropies can

break parameter degeneracies in the temperature power spectrum and point to deviations from the

standard ΛCDM cosmological model. Figure 1.1 provides a compilation of recent CMB polarization

measurements.

In this work, we describe the development, deployment, data analysis, and first cosmological

constraints from a new CMB polarization experiment, SPTpol. To acknowledge the contributions

of many people the use of the first-person plural is used throughout, however the content high-

lights the particular contributions of the author, who had a significant hand in all stages of the

experiment. These contributions include detector development and receiver design, instrument de-

ployment and characterization, software generation and validation for several key components of

the data reduction pipeline, and the creation of the likelihood analysis used to obtain cosmological

parameter constraints, which are the main result of this work.

This introductory chapter aims to orient the reader and motivate the cosmological model

with which we interpret the cosmological significance of the CMB observations presented here. It

begins with a discussion of an expanding universe with a Friedmann-Lemâıtre-Robertson-Walker

(FLRW) spacetime metric, its initial conditions under the framework of inflation, and the current

leading cosmological model (ΛCDM). We then discuss the CMB, its temperature anisotropies and

their power spectrum, and what we might learn about the early universe from studying it. Next,

we describe the generation of CMB polarization and the E- and B-mode power spectra. The

introduction finally concludes with an outline of the remaining chapters.
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1.1 Cosmology

Modern cosmology began with the formulation of General Relativity (26) and the discovery

that the universe is expanding (27). This paradigm-shifting discovery immediately implied a period

of extreme density and temperature in the early universe labeled the “Big Bang.” While the idea

of a big bang and an expanding universe led to strong theoretical expectations for such things

as the Comic Microwave Background and the formation of the light elements during big bang

nucleosynthesis, the Big Bang theory had several troubling problems. How could the observed CMB

be so uniform in temperature across distances that could never have been in causal contact (the

Horizon Problem)? Why is the observed curvature of the universe so close to flat when the equations

of General Relativity require the curvature to increase in amplitude over time? Furthermore,

Grand Unification Theories predict the creation of heavy magnetic monopole particles in the early

universe yet none have been observed. Finally, while incredibly uniform, there are nevertheless

small anisotropies in the CMB corresponding to density fluctuations in the early universe. What

generated these fluctuations?

It was only with the development of the theory of inflation in the 1980s that these questions

had theoretically motivated answers. Together with present-day observations of the expansion of

the universe, temperature and polarization anisotropies in the CMB, the BAO feature in galaxy-

galaxy distance correlations, and the physics of galaxy clusters, the Big Bang theory and the concept

of inflation have culminated in the ΛCDM cosmological model. So far inflation has little verified

observational evidence, however, and we know that ΛCDM cannot be the final answer since it

ignores known physics that have measurable effects on the universe. Through new observations of

these and other cosmological probes we seek to more accurately measure parameters in the ΛCDM

model in search of new physics and a better understanding of the initial conditions of the universe.

This section is inspired and adapted from discussions in (28; 29; 30) and begins with a review

of the Friedmann equations and the properties of an expanding universe. We then briefly discuss

the concept of inflation and how early quantum fluctuations in the spacetime metric lead to the
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large-scale structure observed today. The section concludes with a description of the ΛCDM model

and its parameters, which is the theoretical framework with which the observations and analyses

discussed in this work are interpreted.

1.1.1 Expansion and the Friedmann Equations

We begin by considering an expanding universe that obeys the cosmological principle: on

large scales the universe is homogeneous and isotropic. Following this principle, we assume that

observations made of the universe on Earth would look statistically identical to observations made,

say, half an observable universe away. In this case all three spatial dimensions are expanding as a

function of time following the diagonal Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime

metric in cartesian coordinates for a flat universe,

gµν =



−c2 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2


. (1.1)

Here c is the speed of light and a(t) is the expansion scale factor at time t. The scale factor

parameterizes the relative size of the universe and is defined to be unity today and approaches zero

as t→ 0. It is often advantageous to consider distances in a coordinate system where the expansion

of the universe is factored out like what we have done here; the scale factor just resizes the “grid”

one works on. These are called comoving coordinates. For example, the comoving horizon at time

t, which is the comoving distance light has traveled since time t = 0, is simply

η(a) ≡
∫ t

0

cdt′

a(t′)
. (1.2)

The comoving horizon is often used as a time variable called the conformal time since it is mono-

tonically increasing with time t and properly accounts for the expansion of the universe.

Under the FLRW metric we can also express distances in (comoving) spherical (r, θ, φ) coor-
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dinates by taking advantage of the isotropy of the universe

ds2 = −c2dt2 + a(t)2dσ2

dσ2 =
dr2

1− κr2
+ r2dΩ2

dΩ2 = dθ2 + sin2 θdφ2.

(1.3)

Following the nomenclature of (28) we parameterize the general curvature of the universe with κ,

which takes on values continuously from −1 ≤ κ ≤ 1. In the limiting cases of κ = {−1, 0, 1} the

spatial part of the FLRW metric dσ2 becomes

dσ2 =



dχ2 + sinχdΩ2, κ = 1

dχ2 + χdΩ2, κ = 0

dχ2 + sinhχdΩ2, κ = −1

, (1.4)

corresponding to closed, flat, and open spatial geometries, respectively. We have also introduced a

curvature-corrected comoving radial distance χ,

dχ =
dr√

1− κr2
. (1.5)

The scale factor a(t) can also be expressed as a function of the observable redshift parameter

z. Redshift is a measure of how much a photon’s observed wavelength λobs has stretched due to

cosmic expansion since it was emitted when it had wavelength λemit. Quantitatively, redshift and

the scale factor are related via

z ≡ λobs − λemit

λemit

(1 + z) =
λobs

λemit
=

1

a
.

(1.6)

From this definition we see that z = 0 today and z →∞ as a or t→ 0.

We are not just interested in the expansion of the universe but also its rate of expansion,

which is parameterized by the Hubble parameter H. It is defined to be the logarithmic time

derivative of the scale factor:

H(a) ≡ 1

a

da

dt
. (1.7)
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H = H0 today and is currently measured to be 67.8 ± 0.77 km s−1 Mpc−1(31), which has overall

units of 1/time. It is often re-expressed as a function of h (called the reduced Hubble constant),

H0 = 100h km s−1Mpc−1. (1.8)

Inverting H0 gives the Hubble time, tH , a rough estimate of the age of the universe neglecting any

changes to the rate of expansion as a function of time. This estimate turns out to be 14.5 Gyr,

which is reasonably close to the current number of 13.798±0.037 Gyr (31). Multiplying the Hubble

time by the speed of light gives the Hubble distance, dH , and a Hubble volume is defined to be a

sphere with radius dH .

The rate of expansion is sensitive to time (or scale factor, or redshift), however. This depen-

dence is expressed with the first Friedmann equation

H(a)2 =

(
ȧ

a

)2

=
8πG

3c2
ρ(a)− κ

a2c2
, (1.9)

where G is the gravitational constant, ρ(a) is the energy density of the universe with scale factor

a, and overdots denote derivatives with respect to time t. We also define the critical density ρcr,

ρcr(a) =
3H(a)c2

8πG
, (1.10)

and the ratio of density to the critical density is the density parameter Ω(a) = ρ(a)/ρcr(a). Ω is

the sum of densities from each component of the universe,

Ω =
∑
i

Ωi =
∑
i

ρi
ρcr

, (1.11)

where i ∈ {γ, b, c, Λ} corresponding to radiation, baryons, cold (pressureless) dark matter, and

vacuum or dark energy, respectively. For this treatment we lump neutrinos in with the radiation

term as they are highly relativistic but one could keep track of their density separately and in

practice this is done (32). We will take Ω0 to mean Ω(a = 1). As elucidated in (28), the critical

density relates the density of the universe to its curvature via

Ω− 1 =
κ

H2a2c2
= −Ωk. (1.12)
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We have used a short-hand notation of expressing curvature as having an effective energy density

ratio Ωk for simplicity. Note that Ωk is not included in Equation 1.11 since curvature is generated

only by what populates the stress-energy tensor Tµν , namely physical sources of energy density.

The total density Ω will depend on with what the universe is filled and how the density of

each of these constituents changes with the scale factor. These density relationships are governed

by the conservation of energy as expressed in General Relativity,

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (1.13)

where w is the constant equation of state of a (relativistic) perfect fluid with pressure p and density

ρ,

p = wρc2. (1.14)

If we assume that each constituent of the universe can be approximated as a perfect fluid then we

find

ρi(a) =



ργ,0 a
−4, w = 1/3 (radiation)

ρb,c,0 a
−3, w = 0 (baryonic and cold dark matter)

ρκ,0 a
−2, w = −1/3 (curvature)

ρΛ,0 a
0, w = −1 (vacuum energy)

, (1.15)

where i ∈ {γ, b, c, κ, Λ} again corresponding to radiation, baryons, cold dark matter, curvature,

and dark energy, respectively, and ρi,0 are the measured densities today. We will hereafter drop the

use of subscript zeros. It is worth noting that the dark energy (or cosmological constant) density

is constant; while the other components of the universe dilute over time, the relative contribution

of ΩΛ grows and eventually dominates the energy density of the universe. This has profound

consequences for the acceleration of the scale factor a, which can be calculated from the second

Friedmann equation,

ä

a
= −4πG

3c2
ρ(1 + 3w). (1.16)

We see that when the universe is dominated by a component with w < −1/3 the acceleration ä > 0

and the expansion of the universe accelerates.
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Using these density functions we can expand the first Friedmann equation to reveal how the

relative contribution to Ω from each component changes as a function of scale factor or equivalently

of redshift:

Ω(a) =
∑
i

Ωi(a) = Ωγa
−4 + Ωma

−3 + Ωka
−2 + ΩΛ

Ω(z) =
∑
i

Ωi(z) = Ωγ(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ.

(1.17)

Here Ωm = Ωb + Ωc. If we can measure the density parameters Ωi then we can reconstruct the

expansion history of the universe and predict its future by evaluating the Friedmann equations.

Observational methods that are sensitive to the density parameters, preferably in orthogonal ways

to avoid degeneracies between parameters, are thus highly interesting and informative.

1.1.2 Initial Conditions with Inflation

In the 1980s the inflationary paradigm was introduced to solve the Horizon, Flatness, and

Monopole problems (see 33, and references therein). The model of inflation posits an early period of

superluminal expansion ∼ 10−35 s after the Big Bang. During inflation, the universe expands in size

by at least 60 e-foldings, forcing the causal horizon to shrink by the same factor. Regions of space

once causally connected and in thermal equilibrium are therefore quickly separated by vast distances

much greater than the current Hubble radius. This effectively freezes in thermal fluctuations on

scales larger than the causal horizon. Only at later times when these scales re-enter the horizon

can anisotropies begin to evolve. Inflation thus solves the Horizon problem by providing a means

for large scales on the sky to be in rough thermal equilibrium. Additionally, any potentially large

initial curvature is greatly diluted by the rapid expansion making the universe immediately after

expansion at least 60 e-foldings flatter than measured today. Finally, the volume of an initially

causally-connected patch of the universe increases by at least a factor of e60∗3 ' 1078 during

inflation. Since magnetic monopoles would be produced right before or perhaps during inflation

with a density of about one per Hubble volume (30) the density of monopoles after inflation is

fantastically small rendering any chance of observing one today virtually zero. Inflation therefore
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neatly solves these three major problems of the Big Bang theory, and we will soon see it also solves

the fourth “density fluctuation” problem.

The simplest (slow-roll) models of inflation consider a scalar field φ called the inflaton with

potential V (φ) that permeates space (29). During inflation there is significant vacuum energy and

V (φ) slowly rolls “downhill” from its roughly constant value. This configuration has negative pres-

sure and causes exponential expansion according to the second Friedmann equation. Furthermore,

if the universe contains something other than the inflaton before inflation begins then rapid ex-

pansion causes the vacuum energy to quickly dominate the universe (30). Eventually the inflaton

decays, however, which slows inflation while the potential settles into a new (but not necessarily

global) minimum. The energy associated with V (φ) is here converted to radiation and matter in a

process known as reheating. These new particles then dominate the energy density making ä < 0

and a normal FLRW period of expansion begins. This decelerating period of normal expansion

continues until the universe is once again dominated by vacuum energy, which appears to be the

case today with ΩΛ ∼ 0.7. Mathematically, today’s period of accelerating expansion is the same as

that during the inflationary epoch 10−35 s after the Big Bang.

Through the process of inflation the curvature is effectively set to zero, regardless of its

initial value, and the universe is populated with radiation and matter. Work in the 1980s, however,

revealed that the density of these new particles is not perfectly uniform across space (34; 35; 36; 37),

which explained the origin of the density fluctuations in the early universe. Under the assumption

that gravity is quantized, quantum fluctuations in the (cartesian) spacetime metric would produce

small perturbations in curvature across space (29):

gµν =



−c2(1 + 2Ψ) 0 0 0

0 a2(1 + 2Φ) + h+ h× vxz

0 h× a2(1 + 2Φ)− h+ vyz

0 vxz vyz a2(1 + 2Φ)


. (1.18)

The functions Ψ and Φ represent scalar (density) fluctuations in the Newtonian gravitational po-

tential and spatial curvature, respectively. vxz and vyz are vector perturbations, which are set
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to zero by inflation like the total curvature so we will not consider them in this work. Finally,

h+ and h× are tensor perturbations related to gravitational waves propagating (arbitrarily) along

the ẑ-direction. These waves propagate at the speed of light, causing distortions in the spacetime

curvature as they pass.

During inflation these quantum fluctuations are blown up to scales larger than the current

causal horizon, which “freezes” them in before they can change further. Fluctuations at increas-

ingly larger scales then re-enter the horizon after inflation as the Hubble radius increases. The

result after inflation are power spectra of nearly scale-invariant primordial scalar (s) and tensor (t)

perturbations (38):

Ps = As

(
k

k0

)ns−1

Pt = At

(
k

k0

)nt

,

(1.19)

where the amplitudes As and At are defined at a pivot scale k0. Smaller modes with larger wavenum-

ber k enter the horizon earlier. By convention Ps is scale-invariant when the scalar spectral tilt

ns = 1 as is Pt when the tensor spectral tilt is nt = 0. Over cosmic time gravity acts on these

primordial fluctuations, which grow and eventually form galaxies and galaxy clusters.

A deviation from true scale-invariance is expected for the power spectra of initial fluctuations

since inflation has to end (30). The rate of decay of the inflaton potential is dependent on derivatives

of the potential field and is parameterized for slow-roll models in natural units by the dimensionless

parameters

ε ≡
m2

p

16π

(
1

V

dV

dφ

)2

η ≡
m2

p

8π

(
1

V

d2V

dφ2

)
,

(1.20)

which are model dependent but often similar in amplitude and much less than unity. Here mp is

the planck mass. The scalar and tensor spectral tilts can be expressed in terms of these so-called

slow-roll parameters

ns = 1− 6ε− 2η

nt = −2ε.

(1.21)
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Since ε is positive the power spectra of both scalar and tensor fluctuations for many models of

inflation are expected to be slightly tilted.

A final parameter of observational significance is the tensor-to-scalar ratio r, which quantifies

the relative contributions of primordial tensor and scalar fluctuations to the spacetime metric,

r ≡ At

As
. (1.22)

Since tensor perturbations are an expected result of inflation, a detection of non-zero r would be

strong evidence that inflation took place and that it is the source of the initial curvature fluctuations

in the universe. Finally, since gravitational waves are only generated by quantum fluctuations in

the spacetime metric, a non-zero r would also be evidence that gravity is indeed truly quantized,

and the values of r and nt could give theorists new information and clues about the unification of

gravity with the other forces of nature (30).

1.1.3 ΛCDM Cosmological Model

Given current measurements of large-scale structure (18), the Hubble parameter (16), and

anisotropies in the temperature of the CMB (e.g. 39; 13; 25; 31; 40) among other cosmological

probes, we seek a physically motivated cosmological model that fits the data with as few parameters

as possible. In the past 15 years ΛCDM has emerged as a leading candidate. In the process it

has made several a priori predictions that have since been observationally verified, including the

location of the BAO feature (41) and the presence of CMB polarization anisotropies with similar

acoustic structures to those observed in the temperature fluctuations (42; 10).

In ΛCDM, the universe is assumed flat (κ = 0) and is dominated at present times by a cos-

mological constant or dark energy with equation of state w = −1, which is causing the expansion of

the universe to accelerate as discussed in Section 1.1.1. The CDM refers to cold (pressureless) dark

matter, which is the next largest constituent of the universe in late times. Current measurements

show that there is ∼ six times more dark matter than baryonic matter. Dark matter does not in-

teract with matter or radiation except gravitationally. While difficult to detect directly, it therefore
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Figure 1.2: Samples from a Markov Chain Monte Carlo (MCMC) calculation of parameter con-
straints using Planck CMB temperature anisotropy measurements (15). The color map corresponds
to values of ΩΛ at a given point in ln(1010As)− σ8 space.

Table 1.1: ΛCDM Parameter Definitions

Parameter Value(a) Description
Free

Ωbh
2 0.02214± 0.00024 Baryon density ratio

Ωch
2 0.1187± 0.0017 CDM density ratio

100θs 1.04147± 0.00056 100× angular size of the sound horizon at decoupling
ns 0.9608± 0.0054 Primordial scalar fluctuation spectral tilt

ln(1010As) 3.091± 0.025 Amplitude of primordial scalar perturbations
τ (b) 0.092± 0.013 Optical depth due to reionization

Derived
ΩΛ 0.692± 0.01 Dark energy density ratio
H0 67.80± 0.77 Expansion rate today in km s−1 Mpc−1

σ8 0.826± 0.012 Amplitude of linear matter fluctuations at 8 h−1 Mpc scales.
Fixed

k0 0.05 Mpc−1 Pivot scale for scalar and tensor perturbations
Ωk 0 Curvature density ratio
w -1 Equation of state of dark energy

Ωγh
2(c) 2.47× 10−5 Radiation density ratio∑
mν 0.06 eV (Minimum) sum of neutrino masses
T0 2.7255 K CMB temperature today
r 0 Tensor-to-scalar ratio
nt 0 Primordial tensor fluctuation spectral tilt

Notes:
(a) Current parameter values taken from Planck+WP+highL+BAO constraints in Table 5 of (31).
(b) The optical depth τ suppresses all scales smaller than the horizon at reionization. See section 1.2.
(c) Ωγh

2 is defined entirely by natural constants and the CMB temperature.
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has several indirect gravitational effects, for example on the dynamics of galaxies (43) and galaxy

clusters (44), the strength of gravitational lensing (45), and the amplitude of CMB temperature

anisotropies. The large amount of dark matter compared to baryonic matter is required to bring

observations of all of these effects into agreement.

The value of ΩΛ, and hence the time when dark energy starts dominating the energy density

of the universe, effects the rate of structure formation. If ΩΛ “turns on” early in the history of the

universe, then gravity does not have much time to generate large overdensities before expansion

dilutes pre-existing potential wells. In this case few structures like galaxy clusters will form. On the

other hand, if ΩΛ turns on much later then gravity has more time to create large overdensities and

therefore more galaxy clusters. This effect on structure formation can be measured in part through

the parameter σ8, the RMS amplitude of linear matter density fluctuations measured today on

8 h−1 Mpc scales. By its definition σ8 is highly-correlated with As (the amplitude of primordial

density fluctuations), but it is also anti-correlated with ΩΛ as can be seen in Figure 1.2, which is

the expected behavior.

ΛCDM is characterized by six free cosmological parameters and several fixed parameters.

Several more parameters can be derived under the assumption of zero curvature and a cosmological

constant with equation of state w = −1. We summarize these parameters in Table 1.1. Many more

common cosmological parameters are derived, such as the age of the universe today t0 and the

redshift at the epoch of recombination z∗, but we do not report their values here for brevity. There

is some choice in parameterization, for example whether to use H0, ΩΛ, or 100θs (the sound horizon

when the CMB was emitted — see Section 1.2.1) as a free parameter and derive the others. ΛCDM

assumes zero curvature so by construction we derive the dark energy density to be ΩΛ = 1−Ωm−Ωγ .

Furthermore, the sound horizon 100θs is less degenerate with other parameters than H0 so we make

H0 a derived quantity, however we apply external constraints or priors on H0 limiting its allowed

values. The cosmological constraints presented in this work are in the form of means and 68%

confidence levels for the free and derived parameters of the ΛCDM model.
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1.2 CMB Temperature Anisotropies

The temperature fluctuations of the CMB are particularly sensitive to the physics of the early

universe. As such, measuring their power spectrum can yield a bounty of cosmological information.

We again adapt arguments made in (28; 29; 30) to explore how to tie theory to observations. The

section begins with a description of the photon-baryon plasma before the epoch of recombination,

which is important for understanding the structure and origin of CMB temperature and polarization

anisotropies. With the anisotropies sufficiently motivated, we then provide the framework for

quantifying the level of temperature anisotropies at various scales in the form of an angular power

spectrum. Finally, we point out salient features of the temperature power spectrum and explore

how these features are affected by ΛCDM model parameters.

1.2.1 The Photon-Baryon Plasma

After inflation the universe expands and cools according to the Friedmann equations, with

temperature falling linearly with redshift.1 For the first ∼ 380, 000 years after the Big Bang

high temperatures keep protons ionized and free electrons result in a small photon mean free path

rendering the universe opaque to radiation. Frequent scatterings between photons and electrons

(Thomson interactions) and electrons and baryons (Coulomb interactions) produce a tightly coupled

fluid known as the photon-baryon plasma.

The photon-baryon plasma exhibits some interesting properties resulting from this tight cou-

pling. Baryons fall into dark matter gravitational potential wells causing overdensities. The photons

are pulled in with them, however, and the resulting radiation pressure provides a restoring force

to the original increase in density. This is the configuration of a simple harmonic oscillator and

thus density oscillations are induced in the photon-baryon fluid, the so-called acoustic oscillations.

Baryons are not massless particles, however, so their additional gravity supplies an extra forcing

term to the harmonic oscillator causing them to sink further into the potential wells. As described

1 So long as matter stays in thermal equilibrium with the background radiation the temperature of the universe
is T (z) = T0(1 + z) with T0 = 2.7255 K, the average temperature of the CMB today.
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in (29) the resulting toy configuration is that of a forced harmonic oscillator,

δ̈ +
k

m
δ =

F0

m
, (1.23)

where δ is the amplitude of a density fluctuation, k is the spring constant for the restoring force

from radiation pressure, and F0 is the external driving force from the baryons. The solution as a

function of time is that of a cosine oscillating about a point above zero,

δ = A cosωt+
F0

mω2
, (1.24)

where m is the mass of a particle and ω is the frequency of oscillation. We note that because the

baryon forcing term offsets the zero-point of oscillations the density maxima (odd or compression

peaks) have higher absolute amplitudes than the density minima (even or rarefaction peaks). Mea-

surements of asymmetric amplitudes between the compression and rarefaction acoustic peaks are

therefore very sensitive to the baryon content of the universe.

Another interesting consequence of tight coupling in the photon-baryon fluid is that the

acoustic fluctuations in photon temperature, which just track the baryon overdensities, travel at

the sound speed

cs =

√
1

3(1 +R)
c ; R ≡ 3

4

Ωb

Ωγ
, (1.25)

where it is clear that adding baryons decreases the sound speed. With this information we define

the comoving sound horizon

rs(z) =

∫ η(z)

0
csdη

′, (1.26)

which is the comoving distance traveled by a sound wave at conformal time η(z) (29).

These acoustic oscillations persist until the universe cools to ∼ 3000 K. The distribution of

free electrons is then no longer energetic enough to keep hydrogen ionized and the protons and

electrons recombine during what is known as the epoch of recombination. Without free electrons

photons decouple from baryons and begin free streaming as the universe becomes transparent for the

first time. The radiation field, which will eventually redshift to microwave wavelengths over cosmic

time, thus maintains the acoustic thermal fluctuations imprinted on it by baryons immediately
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before its “last scattering.” This is the origin of both the CMB and its temperature anisotropies.

Since the optical depth of the universe τ � 1 before the epoch of recombination the CMB is the

oldest electromagnetic radiation we can study to learn about the early universe.

A detailed calculation of CMB temperature fluctuations resulting from sound waves in the

photon-baryon plasma assuming initial conditions set by inflation (see, e.g., 29) reveals that the

acoustic oscillations should have extrema at scales corresponding to harmonics of rs(z∗), the sound

horizon evaluated at the redshift of matter-radiation decoupling. This is often expressed as the

angular size of the sound horizon today

θs =
rs(z∗)

DA(z∗)
, (1.27)

where DA(z∗) = χ/(1 + z∗) is the angular diameter distance to the epoch of recombination. Recall

that the curvature-corrected comoving radial distance χ = r for a flat universe, but χ > r when the

curvature κ > 0 and χ < r when κ < 0. The acoustic peaks therefore encode information about κ.

The scale of the first acoustic peak corresponds to the sound horizon at matter-radiation de-

coupling. Density fluctuations at this scale had only just performed one compression since entering

the horizon. These acoustic peaks would persist to arbitrarily small scales if it were not for the

finite mean free path of photons. Any anisotropies at scales smaller than the photon mean free

path are suppressed by photon diffusion in a process known as diffusion or Silk damping (46).

From briefly studying the physics of the photon-baryon plasma, we have found a set of

expectations for features in the CMB temperature anisotropy power spectrum. We should observe

a series of acoustic peaks at scales corresponding to harmonics of the sound horizon θs at the epoch

of recombination. Furthermore, the scale of the first peak constrains the curvature of the universe.

Due to the presence of baryons, odd peaks will also be enhanced over even peaks. Finally, at small

scales the acoustic peaks should be suppressed by photon scattering in what is known as the CMB

damping tail.
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1.2.2 The Temperature Angular Power Spectrum

During the epoch of recombination the radiation field decouples from baryons and starts free

streaming carrying with it the imprint of the baryon density fluctuations, which are observable

today as temperature anisotropies in the CMB. If we make a full-sky map of these fluctuations δT

we can express them in terms of a spherical harmonic expansion on the sky

δT

T
(θ, φ) =

∞∑
l=0

l∑
m=−l

aTlmY
l
m(θ, φ), (1.28)

where θ and φ are the polar and azimuthal coordinates on a sphere and l is the multipole moment.

We have made explicit that the amplitude coefficients for the spherical harmonics are for the

temperature anisotropy field. We also note as an aside that for small scales it is reasonable to

approximate multipoles as flat-sky Fourier modes, l ' k.

A power spectrum is defined by measuring the variance of the aTlm coefficients (29),〈
aTlma

∗,T
l′m′

〉
= δll′δmm′C

TT
l

CTTl =
1

2l + 1

l∑
m=−l

∣∣aTlm∣∣2 , (1.29)

where δxx′ is the kronecker delta. Temperature anisotropies at any given scale or multipole l will

have zero mean across the sky,
〈
aTlm
〉

= 0, but there is non-zero variance in the aTlm coefficients and

this is what the CMB temperature power spectrum quantifies as a function of angular scale. Note

also that the number of independent aTlm coefficients at a given multipole is finite, namely 2l + 1.

There is therefore a fundamental statistical limit to the knowledge we have of anisotropies at any

given scale. This uncertainty is called cosmic variance,

δCTTl,CV =

√
2

2l + 1
CTTl . (1.30)

If an experiment measures less than the full sky then 2l+ 1 modes per multipole is an overestimate

of the available modes. Sample variance is an approximation that factors in the fraction of observed

sky fsky,

δCTTl,SV =

√
2

(2l + 1)fsky
CTTl . (1.31)
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Figure 1.3: CMB TT power spectrum from a Planck best-fit ΛCDM model (31) (black). The shaded
region shows the smallest possible uncertainties for single multipoles set by cosmic variance.

fsky is always less than one since even satellite experiments must mask out portions of the sky

contaminated by galactic foreground signals. A theoretical CTTl spectrum is plotted in Figure 1.3

in units of µK2. Historically, the spectrum is multiplied by l(l + 1)/2π to make an ns = 1 scale-

invariant spectrum constant in multipole l (29), which is the power spectrum scaling used in this

figure as well as the rest of this work,

Dl ≡
l(l + 1)

2π
Cl. (1.32)

The shaded region defines the cosmic variance uncertainty limit for individual multipoles l. This

represents the most accurate measurement one could make of the temperature anisotropies, i.e

observations over the full sky with zero noise. We can decrease our uncertainties by binning single

multipoles into bandpowers at the expense of losing information about the shape of the spectrum.

We can also measure other spectra, such as the power spectra of polarization anisotropies. Beyond

those two caveats, however, by measuring the CMB power spectra with uncertainties limited by

cosmic variance up to some multipole lmax we will have extracted all available information at those

scales.

Figure 1.3 also delineates three important regions of the TT spectrum. Large angular scales or
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multipoles l . 100 represent super-horizon fluctuations at the epoch of recombination. These scales

were larger than the sound horizon at z∗ and therefore never experienced acoustic oscillations. They

are therefore measurements of the primordial anisotropies laid down by inflation modulo effects

experienced as the photons free streamed to us today. One important phenomenon known as the

Integrated Sachs-Wolfe (ISW) effect most strongly effects this region of the spectrum. Anisotropies

are enhanced by photons blueshifting while falling into gravitational wells. However, the potential

wells are diluted by the expansion of the universe as the photon climbs out. The net result is an

increase in photon energy observed as a higher CMB temperature at relevant scales. The opposite

is true for photons that pass through potential “hills.” This enhancement in anisotropy variance

at large scales is partially responsible for the first acoustic peak being significantly higher than the

rest.

Between multipoles of 100 . l . 1000 the acoustic peaks set up by oscillations in the photon-

baryon plasma are clearly visible. The first and third peaks correspond to scales compressing once

and twice, respectively, before matter-radiation decoupling. The second peak is at scales that un-

derwent one compression and one rarefaction. At multipoles l & 1000 the damping tail is observed,

where photon diffusion suppresses the acoustic oscillations. Several physically interesting exten-

sions to the ΛCDM model affect the power of the damping tail, so high-resolution measurements

of the CMB will be crucial for probing new physics (47).

1.2.3 Sensitivity to Cosmology

The CMB temperature angular power spectrum CTTl is a fundamental observable whose

features depend on the underlying cosmology. The location of its acoustic peaks as quantified by

θs helps set the curvature of the universe and is the reason for assuming the curvature is flat in

ΛCDM. The relative heights of the even and odd peaks is controlled by the level of baryons Ωbh
2,

and the ratio of the first and second peaks to the third is sensitive to the amount of dark matter

Ωch
2 through its indirect effect on the expansion rate at early times.

Figure 1.4 demonstrates some of these effects. Increasing Ωbh
2 increases the disparity between
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even and odd peaks, driving the odd (compression) peaks to higher amplitudes. More baryons also

reduces the sound speed, which pushes the sound horizon and the first acoustic peak to smaller

scales. The spacing of the harmonic peaks necessarily increases as the frequency of oscillations in

the photon-baryon plasma decreases with cs. Changing Ωch
2 affects the redshift zeq at which matter

and radiation equally contribute to Ω. For example, decreasing Ωch
2 causes zeq to also decrease

(matter-radiation equality happens later and therefore closer to recombination) (47). This means

that radiation contributes more to gravitational potential wells at smaller scales or equivalently

earlier in time. Because the density of radiation is ∝ (1 + z)4, this also means that potential

wells will partially dilute while baryons compress in them. The increase in local radiation pressure

compared to the reduced gravity drives the amplitude of the acoustic oscillations up in what is

called radiation driving. The relative heights of the first and second peaks to the third offer a

measure of which scales feel this additional radiation driving and therefore the amount of dark

matter through its effect on zeq.

The effect of the amplitude of primordial scalar fluctuations As as well as the scalar spectral

tilt ns are to simply scale the overall amplitude of the TT spectrum and relative power of large

to small scales, respectively. A lower ns corresponds to a redder TT spectrum with more power

at large scales (low multipoles) relative to small scales (high multipoles). Unfortunately for the

TT spectrum there is a final parameter, the optical depth τ due to reionization, that is completely

degenerate with the scalar amplitude. Once the universe becomes reionized at late times scatterings

of CMB photons off of free electrons partially erases anisotropy information at scales smaller than

the current horizon. Thus the amplitude of fluctuations measured on the sky are reduced by e−τ at

nearly all scales. Since the amplitude of the TT spectrum actually measures Ase
−2τ , the relative

importance of As and τ are impossible to determine. Measurements of CMB polarization at large

scales corresponding to times after reionization can break this degeneracy, however.
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Figure 1.4: Effects of increasing Ωbh
2 (top) and Ωch

2 (bottom) on the CMB TT power spectrum
while keeping H0 and Ωk fixed. Parameter values increase according to dashed, solid, and thick
lines.
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1.3 CMB Polarization

In addition to having temperature anisotropies, the CMB is also weakly polarized at the

∼ 10% level. These polarization anisotropies are sensitive to the same physics that generate the

CMB TT power spectrum and thus provide a way around the cosmic variance limit. However, as

we will explore, additional physical phenomena beside primordial density fluctuations can generate

polarization. Precise measurements of CMB polarization can thus improve our knowledge of the

photon-baryon fluid and ΛCDM parameters as well as offer new windows on the very early universe

and structure formation. We begin this section with a discussion of how polarization is generated

and parameterized by the Stokes parameters. We then explore more specifically the mechanisms

for generating polarization in the CMB itself. Finally, we discuss the power spectra of CMB

polarization and what cosmological information can be gleaned from them. Arguments in this

section are adapted and compiled from discussions in (48; 29; 49).

1.3.1 Linear Polarization and the Stokes Parameters

The polarization of a photon is defined as the direction parallel to its E-field. It is possible

to decompose polarization into two orthogonal directions, say, in the ε̂1 and ε̂2 directions. In this

way, the E-field of any propagating photon can be expressed as

E(x, t) = (ε̂1E1 + ε̂2E2)eik·x−iωt. (1.33)

Note that in general E1 and E2 are complex coefficients so that phase information of the two basis

E waves may be kept. In the case of linearly polarized light the phase difference between E1 and

E2 is zero. By placing E1 and E2 out of phase by 90 ◦ one makes a basis set out of two “circularly”

polarized waves such that the direction of the first E-field, call it ε̂+, is constantly changing with

positive rotation while the second, ε̂−, is changing with negative rotation. These circular basis

vectors are related to the linear ones via (48)

ε̂± =
1√
2

(ε̂1 ± iε̂2). (1.34)
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Figure 1.5: Graphic depicting the directional relations between Stokes Q, U , and V .

If one is capable of measuring E1 and E2, E+ and E−, or a combination thereof then one can fully

define the polarization of the incident radiation.

These basis vectors are only physically useful if one can measure incoming radiation with

respect to them. For this we can utilize the Stokes polarization parameters. These parameters are

combinations of E-field magnitudes that distinguish between different types of polarization, i.e.,

linear or circular. There are four Stokes parameters, I, Q, U , and V , where

I = |Ex|2 + |Ey|2 = |Ea|2 + |Eb|2 = |E+|2 + |E−|2

Q = |Ex|2 − |Ey|2 = −2Re(E∗aEb)

U = 2Re(ExE
∗
y) = |Ea|2 − |Eb|2

V = 2Im(ExE
∗
y) = |E+|2 − |E−|2, (1.35)

and where Ea and Eb are the E-fields in orthogonal directions ε̂a and ε̂b that are rotated with

respect to ε̂x and ε̂y by 45 ◦.

Figure 1.5 demonstrates the relationships between the Stokes parameters. Q and U are both

measures of linear polarization while V is a measure of circular polarization. I is simply the total

intensity of the light. The Stokes parameters are related such that

I2 > Q2 + U2 + V 2. (1.36)



25

The equality is for coherent light. If light is partially coherent then the phases between the two

constituent E-fields in each Stokes parameter will vary with time “mixing” Ex into Ey, for example.

The mixing results in destructive interference and reduces the total intensity of the light (48). Since

in general light is not perfectly coherent, in practice time-averaged magnitudes (
〈
|Ex|2

〉
,
〈
|Ey|2

〉
,

etc.) are measured. By measuring Q, U , and V , one can fully characterize the polarization state

of the incident radiation.

1.3.2 Polarizing the CMB

In this section we describe some of the underlying physics producing polarization in the CMB.

This is followed with a discussion of the decomposition of polarization into E modes and B modes.

The section concludes with a discussion of the theoretical EE and BB power spectra and what we

stand to learn from them.

1.3.2.1 Sources of Polarization

We now turn to physical processes that produce polarization in the CMB. Let us begin with a

review of Thomson scattering between a photon and an electron. A single photon with polarization

vector ε̂0 travels toward an electron. The electron senses the E-field of the photon and begins

oscillating up and down in the ε̂0 direction. Since the particle is oscillating at the frequency of the

incoming photon, and hence constantly accelerating, it radiates a photon at the same frequency

in some new direction with polarization vector ε̂1. The process appears as if the original photon,

which was absorbed by the electron, has simply scattered off the electron in a new direction. The

direction of polarization ε̂1 is not known before the scattering, but certain directions are favored

by others as one can see by looking at the differential Thomson scattering cross-section (48)

dσT
dΩ

=

(
e2

mec2

)2

|ε̂∗1 · ε̂0|2, (1.37)

which shows that the cross-section for scattering is greatest when the polarization vectors of the in-

coming and outgoing photons are parallel. Thomson scattering thus tends to preserve the direction
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of linear polarization of a single photon.

Let us now consider Thomson scattering of an electron in an isotropic bath of photons corre-

sponding to the CMB spectrum monopole moment or equivalently the spherical harmonic Y 0
0 . Here

the intensity of radiation is the same in every direction. Note that since the CMB is a blackbody

to high accuracy, and since the blackbody intensity curve is monotonic in temperature, higher in-

tensity is associated with higher temperature. In this configuration, it is clear from symmetry that

the total polarization from Thomson scattering will be zero even though a single scattering event

gives polarized light (29); for every linearly polarized scattered photon there is another scattered

photon with polarization in an orthogonal direction resulting in no net polarization.

A similar situation arises for a dipole anisotropy in the radiation field corresponding to the

spherical harmonics Y 0,±1
1 . For concreteness, we assume there is a dipole moment in temperature

only in the ε̂x direction, with an electron at the origin. Radiation coming from the ±ε̂y,z directions

has the same temperature and so produces no net polarization in the scattered directions. Radiation

from the ±ε̂x directions have different temperatures because of the dipole anisotropy but these

differences cancel at the origin where the light is incident on the electron. Therefore the light

scatters off the electron in such a way as to produce no net polarization.

We must turn to a quadrupole anisotropy, spherical harmonics Y 0,±1,±2
2 , to successfully output

polarized light. Indeed, thanks to the orthogonality of the spherical harmonics, the quadrupole

moment is the only local anisotropy that can produce polarization via Thomson scattering. Consider

now the case where an electron sees a local quadrupole with hotter radiation above and below it

and cooler radiation to its sides. Even though the incident radiation is in general unpolarized

the scattered radiation is influenced more by the hotter (more intense) radiation than the cooler.

This favors the hotter radiation’s scattered direction in the quadrupole over the cooler radiation’s

scattered direction resulting in overall linearly polarized light. Note that in all three quadrupole

cases, Thomson scattering results in linearly polarized light and therefore we do not expect to see

circular polarization in the CMB. We thus anticipate, and generally assume, that Stokes parameter

V = 0 in the CMB and so measuring Q and U will fully define the polarization.
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What mechanisms, then, produce quadrupole anisotropies in the photon-baryon fluid before

the epoch of recombination? We see there are three sets of spherical harmonics associated with

the quadrupole moment and there are three physical perturbations that produce them: scalar,

vector, and tensor perturbations corresponding to m = 0,±1,±2, respectively (49). Scalar pertur-

bations are simply density perturbations resulting from gravity. Consider a plane wave perturbation

throughout the photon-baryon fluid with peaks and troughs of hotter and cooler radiation. Move-

ments of the baryons will be in the same direction as the plane wave, away from the hotter regions

and towards the cooler. If you are an electron sitting at a crest or trough then locally you see a

temperature quadrupole and Thomson scattering from that point will result in linearly polarized

light. Vector perturbations come from vortical motions in the fluid, which we argued above should

be erased by inflation. Finally, tensor perturbations result from gravitational waves. This is an

oscillating stretching of photon wavelengths in the plane of a wave’s peaks and troughs, which is

orthogonal to its direction. The stretching of wavelengths preferentially in one direction also results

in a local quadrupole anisotropy.

1.3.2.2 E Modes and B Modes

It would be informative if by mapping Q and U we could recover information about the state

and distribution of matter at the epoch of recombination. Since the absolute directions of Q and U

are arbitrarily defined, usually by the configuration of an experiment measuring them, they provide

little direct physical implications. However, if they are re-expressed in a different basis set then one

gains power to say more about the underlying physics. This new basis set contains the E modes

(even-parity or “curl-less”) and B modes (odd-parity or “divergence-less”). In Fourier space they

are related to Q and U at a particular multipole moment l via the relations

El = +Ql cos 2φl + Ul sin 2φl

Bl = −Ql sin 2φl + Ul cos 2φl,

(1.38)

where Ql and Ul are the Fourier transforms of Q and U and φl = arctan ly/lx is the phase angle

between lx and ly. E-mode anisotropies are such that their intensities change in directions per-
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Figure 1.6: Directions of polarization patterns for positive and negative E- and B-mode
anisotropies.

pendicular or parallel to the direction of local polarization, which exhibits even parity. B-mode

anisotropies, on the other hand, change in directions 45◦ rotated from the polarization direction,

which is odd-parity behavior. See Figure 1.6. The orthogonal characteristics of E- and B-modes

give us knowledge about the physics during recombination as well as the growth of structure after

matter-radiation decoupling.

The “curl-less” and “divergence-less” analogies of E and B modes are useful in determining

which types of perturbations generate them. Scalar perturbations appear like a local divergence,

with fluid streaming from hot to cold. There is no “curl” in this situation and so one expects only

an E-mode contribution from scalar density fluctuations (49). Tensor perturbations decompose into

“curl” and “divergence” components and so generate both E and B modes. It is worth emphasizing

that while both scalar and tensor perturbations generate E modes, only tensor perturbations can

source primordial B-mode polarization.

A couple caveats should be addressed. First, Thomson scattering only produces E-mode

polarization. The direction of polarization is a result of one direction of scattered light being more

intense than the orthogonal direction and in this scenario there is no way to scatter light 45◦ off

the quadrupole axis. The question then arises from where do the B modes actually originate?

The answer lies in the difference between local anisotropies sensed by an electron and larger-scale
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anisotropies. Larger-scale perturbations modulate the local quadrupole signal changing the sign

and/or amplitude of the local polarization (49). This can mix E modes into B modes. Even though

Thomson scattering cannot produce B modes from local scatterings, B modes are nevertheless

produced by more global perturbations modulating the local quadrupole fluctuations. Second,

the presence of intervening structure at small angular scales means that E-mode polarization can

be gravitationally lensed. As Figure 1.6 illustrates, this introduces a curl component by slightly

twisting the polarization vectors, which mixes part of the E-mode signal into lensing B modes at

high l.

1.3.2.3 EE, TE, and BB Power Spectra

We can define power spectra CEEl and CBBl for E-mode and B-mode polarization anisotropies

just as we defined the temperature power spectrum. Since the scalar density fluctuations in the

photon-baryon plasma generate local quadrupole moments that electrons sense, we expect the EE

spectrum to exhibit acoustic peak features. Acoustic peaks are out of phase by 90◦ between the TT

and EE spectra since the resulting polarization amplitude scales with the velocity of the fluid in

local quadrupole anisotropies and the fluid velocity is maximum between fluid oscillation extrema.

Given the shared physical source of the temperature and E-mode polarization anisotropies, we

expect the fluctuations to be correlated and so we also define the TE power spectrum,

CTEl =
1

2l + 1

l∑
m=−l

(
aTlma

∗,E
lm + aElma

∗,T
lm

)
. (1.39)

The TT , EE, and TE spectra all constrain parameters in similar ways given their shared de-

pendence on the physics of the early universe. Figure 1.7 demonstrates how the EE spectrum

changes with baryonic and dark matter density, which cause similar effects to those seen on the

TT spectrum. Current measurements of the polarization power spectra from several experiments

are plotted in Figure 1.1. The acoustic peaks are clear in the EE and TE spectra in modern

measurements, and the BB spectrum has only just been detected.

As discussed above the BB spectrum has two sources: lensing B modes at small angular
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31

scales and inflationary gravitational-wave (IGW) B-modes generated by gravitational waves from

the epoch of inflation at large angular scales. The amplitude of IGW B modes therefore constrains

the energy scale of inflation. We again point out that a non-zero detection of the tensor-to-scalar

ratio r not only strongly hints at the existence of gravitational waves but also implies that gravity

is quantized. The scientific knowledge to be gained from IGW B-mode polarization as well as its

importance is evident. The lensing B modes are a significant foreground, however. To measure

gravitational-wave B modes over a wider range of multipoles to better constrain the tensor spectral

index nt and learn more about inflation the lensing B modes will need to be accurately measured

and removed.

1.4 Outline

This chapter has reviewed the concepts necessary to motivate and interpret the cosmological

constraints presented in this work. Chapter 2 discusses the design of the SPTpol receiver as well

as the detector technologies it employs. Relevant information about the South Pole Telescope

(SPT), in which SPTpol is installed, will also be addressed. Chapter 3, largely a copy of a SPIE

proceedings article written by the author, describes in detail the design and development of the

seven 150 GHz detector modules at the center of the SPTpol focal plane, which the author led. In

Chapter 4 we describe observational strategies and relevant nomenclature necessary to understand

the analysis methods discussed below. We also define the datasets used in this analysis. Chapter

5 details the analysis pipeline written to generate maps and CMB temperature and polarization

power spectra from SPTpol observations. The chapter highlights major contributions from the

author, including telescope pointing corrections, unbiasing of measured power spectra, and the

calculation of the bandpower covariance matrix. In Chapter 6 we explain the methodologies used

to obtain cosmological parameter fits from SPTpol data products, which were also led by the

author. We present the main results of this analysis in the form of polarization power spectra and

new cosmological parameter constraints in Chapter 7. This work concludes in Chapter 8 with some

remarks on near-term projects extending the analysis presented here.



Chapter 2

The South Pole Telescope and the SPTpol Receiver

As we discussed in Chapter 1 there is much to gain from observations of CMB polarization

anisotropies. Measurements of the polarization power spectra can side-step the cosmic variance limit

in information obtained from the temperature anisotropy power spectrum and help to constrain new

physics beyond the ΛCDM model. With this in mind, we designed and built a new polarization-

sensitive receiver for the South Pole Telescope (SPT) called SPTpol. This chapter summarizes

the salient features of the SPTpol receiver as well as the telescope. We also describe the detector

and readout technologies that make detecting sub−µK temperature and polarization anisotropies

possible.

2.1 The South Pole Telescope

The SPTpol receiver is installed in the SPT, which is located 1 km from the geographic South

Pole and the Amundsen-Scott South Pole Station. At a physical elevation of 9,301 ft above sea

level and in the center of the Antarctic Plateau, the median precipitable water vapor (PWV) at

the South Pole is less than 0.5 mm (52) making the site an ideal location to observe microwave

frequencies. The telescope is a 10-meter off-axis Gregorian with a primary mirror surface accuracy

better than 25 µm, which provides diffracted-limited resolution of 1.6, 1.2, and 1.0 mm at 95,

150, and 220 GHz, respectively across a 1.2◦ diameter field-of-view (53). To mitigate polarized

ground pickup a 1-m guard ring was installed around the primary in the 2011-2012 austral summer

maintenance season. New side shields that span the length of the telescope boom to the new guard
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Figure 2.1: The SPT with newly installed primary mirror guard ring, side shields, and snout to
mitigate polarized ground pickup for SPTpol observations.
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Figure 2.2: Cut-away view of the SPT secondary mirror cryostat (50). Light rays enter the system
after bouncing off the primary mirror located off-image to the upper left. They terminate on the
SPTpol focal plane housed in a separate cryostat. Both cryostats, however, share the same vacuum.
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Table 2.1: SPTpol Optical Loading

Element Te [K] η Ls Ts [K] ηe ηcum Popt [pW]
Bolometer 0.25 0 (0) 0.55 (0.55) 0.25 0.45 (0.45) 1.0 (1.0) ∼ 0 (∼ 0)

Cavity 0.25 0 (0) 0 (0) 0.25 1.0 (1.0) 0.450 (0.450) ∼ 0 (∼ 0)
Feed horn 0.25 0 (0) 0 (0) 0.25 1.0 (1.0) 0.450 (0.450) ∼ 0 (∼ 0)

Band-def filters 0.25 0.05 (0.05) 0 (0) 0.25 0.95 (0.95) 0.450 (0.450) ∼ 0 (∼ 0)
Harmonic Blocker 0.25 0.05 (0.05) 0 (0) 0.25 0.95 (0.95) 0.427 (0.427) ∼ 0 (∼ 0)

IC Blocker 0.50 0.05 (0.05) 0 (0) 0.50 0.95 (0.95) 0.406 (0.406) ∼ 0 (∼ 0)
Lens 6.00 0.02 (0.02) 0.02 (0.02) 10.0 0.96 (0.96) 0.385 (0.385) 0.08 (0.09)

Lens filter 6.00 0.05 (0.05) 0 (0) 10.0 0.95 (0.95) 0.370 (0.370) 0.06 (0.07)
Secondary 10.0 0.09 (0.33) 0.02 (0.05) 10.0 0.88 (0.63) 0.352 (0.352) 0.26 (1.1)
10 K filter 10.0 0.05 (0.05) 0 (0) 10.0 0.95 (0.95) 0.313 (0.211) 0.10 (0.09)
IR Shader 100.0 0.01 (0.01) 0 (0) 100.0 0.99 (0.99) 0.297 (0.211) 0.24 (0.25)
70 K filter 100.0 0.05 (0.05) 0 (0) 100.0 0.95 (0.95) 0.294 (0.209) 1.18 (1.23)
IR shader 100.0 0.01 (0.01) 0 (0) 100.0 0.99 (0.99) 0.279 (0.198) 0.23 (0.23)
IR shader 100.0 0.01 (0.01) 0 (0) 100.0 0.99 (0.99) 0.277 (0.196) 0.22 (0.23)
Window 300.0 0.01 (0.01) 0 (0) 300.0 0.99 (0.99) 0.274 (0.194) 0.67 (0.67)
Primary 220.0 0.02 (0.02) 0 (0) 10.0 0.98 (0.98) 0.271 (0.192) 1.09 (1.21)

Atmosphere 230.0 0.12 (0.07) 0 (0) 230.0 0.88 (0.92) 0.266 (0.189) 5.96 (3.87)
CMB (band avg.) 2.73 1.0 (1.0) 0 (0) 2.73 0 (0) 0.201 (0.143) 0.22 (0.13)

Total 10.3 (9.2)

Notes: See text for definitions. Values for 95 (150) GHz are quoted assuming a feed horn plus detector
efficiency of 90%. Data from (51).

ring were installed the following year for the second season of SPTpol observations. Finally, an

absorbing “snout” was installed on top of the telescope boom where the beam enters the telescope

structure to further control polarization systematics. Figure 2.1 shows the primary mirror, the

guard ring, the new side shields, and the snout in early 2012.

During observations light reflects off the primary and passes through an environmental win-

dow at the base of the snout where it enters the telescope structure. It then passes through a

zotefoam1 vacuum window where it enters a cryostat that fully encompasses the 1-m secondary

mirror of the telescope. Figure 2.2 demonstrates the light path through the rest of the (cold) optics

chain. Several IR-reducing metal mesh capacitive filters2 reduce the heat load on the system. The

rays then strike the secondary mirror, which acts as a cold stop cooled to ∼ 10 K. The secondary

mirror is surround by eccosorb HR-10,3 a high-emissivity material in millimeter wavelengths. The

secondary cryostat also has several thermally isolated radiation shields at 300, 50, and 4 K to reduce

1 http://www.zotefoams.com/
2 http://www.astro.cardiff.ac.uk
3 http://www.eccosorb.com/products-eccosorb-hr.htm
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ambient temperature radiation heating the mirror. The cryostat is cooled with a Cryomech PT410

pulse tube cooler4 and is cryogen-free. After striking the secondary mirror, light rays enter the

SPTpol receiver cryostat. Another series of metal mesh filters further reduce the incident power,

and a weak lens focuses the rays on the SPTpol focal plane. The receiver cryostat is cooled to ∼ 270

mK in operation by a Cryomech PT415 pulse tube cooler and a custom Simon Chase 3He-4He-3He

sorption refrigerator5 .

Table 2.1 summarizes the optical loading power on the 95 and 150 GHz detectors from

the telescope optics chain (51). For each element in the system we list emission temperature Te,

emissivity η, scattering fraction Ls, scattering temperature Ts, transmission (or reflection) efficiency

ηe, cumulative transmission efficiency ηcum up to that element in the optics chain, and the resulting

optical power Popt incident on a single-polarization detector. Values for 150 GHz detectors are

given in parentheses. We assume a feed horn plus detector efficiency of 90%, which agrees with

detector and receiver characterization tests (54). The total optical power incident on the focal plane

is ∼ 10 pW with less than 0.25 pW from in-band CMB power. The optical loading budget must be

well-understood when designing detectors to maximize sensitivity while minimizing detector noise.

We describe the detector technology in more detail in Section 2.3.

2.2 The SPTpol Receiver

The SPTpol receiver is a dichroic polarization-sensitive instrument. At the center of the focal

plane 588 dual-polarization pixels are divided into seven independent 84-pixel modules sensitive to

150 GHz. Around the focal plane perimeter 180 dual-polarization pixels sensitive to 95 GHz are

individually installed. The pixel count is 768 for a total of 1536 optically sensitive detectors. Each

150 GHz module also has four “dark” detectors uncoupled to incident radiation for diagnostic

purposes. Light is coupled to the detectors by feed horns, which in turn couple to the incident

radiation on the focal plane. The front of the focal plane is shown in the left of Figure 2.3, where

4 http://www.cryomech.com/products/cryorefrigerators/pulse-tube
5 http://www.chasecryogenics.com/3h-coolers.html
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Figure 2.3: The SPTpol focal plane. (Left) Feedhorns before band-defining filters are installed.
(Right) Back side of focal plane with cryogenic readout electronics boards, thermal sinking points,
and additional structures to increase the rigidity of the readout boards.

the feed horns are clearly visible. The back of the focal plane (right) exhibits cold readout electronics

boards and thermal sinking structures.

The receiver has four temperature stages to shield the focal plane from its environment.

Each stage is thermally isolated by thin Vespel6 legs, which have low thermal conductivity while

providing rigidity to the receiver. The detectors and cold mK readout electronics are attached to

the 250 mK ultra-cold (UC) head of the Chase fridge. Readout cables are thermally shorted to the

inter-cold (IC) stage at 450 mK and heat-exchanger (HEX) at ∼ 3 K before reaching the 4 K cold

electronics. The receiver’s thermal stages are labeled in the right of Figure 2.3.

Bandpasses that define to what frequencies of light detectors will be sensitive are created with

a combination of feed horn waveguides and metal mesh filters. A waveguide acts as a high-pass

filter only allowing modes with wavelengths smaller than the size of the waveguide through. The

feed horn waveguides thus define the low frequency (high-pass) side of the bandpasses. The high

frequency (low-pass) edges of the bands are defined by additional metal mesh filters. Both 95 and

150 GHz low-pass filters also have a harmonic blocker to reduce high-frequency or “blue” leaks

in the filter transmission, however the 150 GHz low-pass filter doubles as the 95 GHz harmonic

6 http://www.dupont.com
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Table 2.2: SPTpol Bandpass Summary

Band ν0 ∆ν ν1 ν2

2012 Observations
150 145.8± 0.3 44.5± 1.1 119.4 172.4
95 91.4± 0.6 30.8± 2.7 73.0 109.7

2013 Observations
150 146.6± 0.7 45.0± 2.5 119.4 174.5
95 93.4± 1.0 34.6± 2.5 73.0 114.8

Notes: All values are in GHz. ν0 is the band center while ∆ν is the effective bandwidth. ν1 and ν2 are
the low and high 25% transmission points, respectively.

Figure 2.4: Metal mesh filters define the high-edge of the bandpasses. (Left) 95 GHz filter installed.
(Right) 150 GHz filter plus harmonic blocker.
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Figure 2.5: SPTpol bandpass transmission. Black is the South Pole atmospheric transmission with
0.26 mm PWV, the median value during winter months (52). The 150 GHz bandpass is plotted in
red while the 90 GHz bandpass is in blue. Bandpasses for the 2012 (2013) observing season are in
solid (dashed) lines. SPTpol bandpass transmissions have been normalized to a maximum value of
one.
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blocker. We show the three band-defining filters being installed in Figure 2.4 while the resulting

bandpasses at 95 and 150 GHz are plotted in Figure 2.5 for the 2012 and 2013 observing seasons. For

comparison the atmospheric transmission with 0.26 mm PWV at the South Pole is also plotted.

The bands are designed to fit in windows of high atmospheric transmission between water and

oxygen lines that cause both heavy absorption and additional detector loading if the band has

significant transmission inside the lines. Central frequencies, effective bandwidths, and the 25%

transmission low and high edges of the bandpasses are summarized in Table 2.2 for the 2012 and

2013 observing seasons. New low-pass filters were installed between seasons to increase sensitivity

to higher frequencies.

2.3 Detector Technology

Both the 95 and 150 GHz detectors in the SPTpol focal plane are transition edge sensor

(TES) bolometers. Bolometers are simply heat detectors, where incident radiation is absorbed

by a detector, raising its temperature. By monitoring changes in detector temperature one infers

changes in incident radiation. These devices have three basic components: a temperature-dependent

resistor, or thermistor, with temperature Td, an absorber with heat capacity C, and a weak thermal

link with thermal conductance G between the thermistor/absorber and a thermally stable bath

of temperature Tb. The heat capacity C and thermal conductance G set the characteristic time

constant for the detector, τ0 = C/G. The detector requires roughly time τ0 after absorbing radiation

before being able to make a new independent measurement of the incident light.

The SPTpol TES thermistors are superconductors, the resistance of which are strongly depen-

dent on temperature. Above a critical temperature Tc the superconducting material has “normal”

resistance RN that obeys Ohm’s law V = IR. Below Tc the resistance rapidly drops to zero, at

which point the material is superconducting. This superconducting transition is an ideal state in

which to operate a device, as here the resistance varies most strongly with temperature. TESs are

therefore detectors operated in their superconducting transitions. A slight increase in temperature

from the absorption of a photon results in a relatively large increase in resistance.
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To maintain stability we operate the detectors in voltage biased mode, which creates negative

electrothermal feedback. In the presence of zero incident radiation at bath temperature Tb, we apply

a constant electrical bias voltage Vb to the device. Power is dissipated in the detector since

Pe =
V 2

b

R(T )
, (2.1)

where R is the resistance of the thermistor. Vb is chosen so that Joule heating raises the detector

temperature to Td ∼ Tc, the center of the thermistor’s superconducting transition. Some of this

power is conducted away by the weak link to the thermal bath, but the detector finds an equilibrium

resistance/temperature exponentially with time constant τ0, ignoring any power that may itself

radiate away (55). In the presence of incident radiation, the detector absorbs optical power Popt

as well as electrical bias power Pe, which increases Td above Tc. This in turn raises the device’s

resistance and thus drops the dissipated electrical bias power according to Equation 2.1. The

detector temperature decreases and a new equilibrium is reached. Negative electrothermal feedback

forces the total power dissipated in a device Ptot to be constant,

Ptot = Pe + Popt = constant, (2.2)

and it greatly increases the dynamic range of the device since it stays near the same superconducting

transition point.

The narrower the superconducting transition of a device the more sensitive it will be to small

thermal fluctuations from CMB power. We quantify the width of the superconducting transition

with the dimensionless quantity

α =
d lnR

d lnT
. (2.3)

TES bolometers can achieve an α of up to 500 (55). Since a larger α means the detector responds

more quickly to temperature deviations, α also acts as a large additional effective thermal conduc-

tance, greatly reducing the effective time constant of a device (56; 57). Our TES bolometers have

time constants of < 1 ms (58). α is also related to the strength of the negative electrothermal
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feedback quantified by the loop gain L (55),

L(ω) =
−δPe

δPtot
=

Peα

GTb(1 + iωτ0)
=

L
1 + iωτ0

. (2.4)

Here ω is the frequency of an optical signal. The loop gain decreases at high frequencies due

to the detector time constant τ0. The larger L the closer Td stays at the desired transition bias

point when there is a change in incident optical power. With finite loop gain, if Popt is great

enough to increase Td above Tc then the detector will return to its normal resistance state and lose

most of its sensitivity in a process called saturation. The total expected experiment loading, from

both electrical bias and incident optical power, must be well-modeled when designing a device to

avoid detector saturation while in operation. Given the loading model shown in Table 2.1, SPTpol

detectors were designed with saturation powers Psat ∼ 25 pW to account for electrical biasing power

Pe to operate each device.

The sensitivity of a detector in operation can be parameterized by its responsivity S (55),

S =
δI

δPopt
=
−1

Vb

L
L+ 1

1

1 + iωτ0
. (2.5)

The responsivity measures the ratio of the change in electrical current through the device δI with

the change in incident optical power δPopt. This is also referred to as detector gain. At frequencies

below the time constant cutoff and in the limit of high loop gain, the responsivity is just the negative

inverse of the voltage bias Vb. The responsivity or gain is an important detector property that must

be well characterized over time to correctly convert to and interpret the absolute amplitude of sky

power observed by a detector.

Both the 95 and 150 GHz detectors in SPTpol are TES devices. Though the basic function-

ality of the devices is the same, the detectors were designed and fabricated by different groups and

with different facilities. The following subsections will summarize the main differences between the

95 and 150 GHz pixels while Table 2.3 lists general detector properties.
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Table 2.3: SPTpol Detector Properties

95 GHz 150 GHz
RN 1.0± 0.1 Ω 1.2± 0.2 Ω
Tc 535± 35 mK 478± 29 mK
Psat 44± 11 pW 22.4± 5.7 pW
τ0 0.5− 1 ms 0.5− 1 ms

Notes: See text for definitions. Data from (51).

2.3.1 95 GHz Pixels

A 95 GHz pixel is installed in its own separate profiled feed plus waveguide module. Using

HFSS7 simulations we designed the profiling to emulate the polarization properties of more tradi-

tional corrugated circular feeds, which are more difficult and expensive to fabricate than profiled

feeds. The circular waveguide in each 95 GHz pixel module defines the low-frequency end of the

detector bandpass. Finally, the detectors are mounted above a quarter-wavelength backshort to

optimize coupling to the electric field of the TE11 mode launched by the circular waveguide. A 95

GHz pixel module is shown in cross-section in Figure 2.6.

Each detector is fabricated on an individual silicon chip at Argonne National Laboratory. A

thin palladium-gold (PdAu) absorbing stripe is deposited on a relieved thermally isolated silicon-

nitride (SiN) membrane. The geometry of the so-called SiN “island” legs attaching it to the rest of

the pixel controls the thermal conductance G between the device and the pixel bath temperature.

The orientation of the membrane in the waveguide defines its polarization angle with respect to

the electric field of the TE11 mode. A second detector chip is rotated by 90◦ and mounted on top

of the first chip making a polarization-sensitive pixel. The distance between detectors is controlled

by laying 25 µm Al bonding wire between the chips (59).

Incident power is dissipated by the lossy PdAu, which heats up a TES on the edge of the

membrane (Figure 2.6). The resulting change in current through the device is read through a pair

of superconducting niobium (Nb) electrical leads. Since a high detector α can cause instability deep

in the superconducting transition during operation, Nb dots are deposited on the TES membrane

7 http://www.ansys.com/Products/Simulation+Technology/Electronics/Signal+Integrity/ANSYS+HFSS
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Figure 2.6: Internal view of SPTpol 95 GHz pixel. (Top) Cutaway of single feed plus pixel package.
(Bottom) Magnified view of 95 GHz pixel and TES structure. Inside the choke the waveguide is
2.35 mm in diameter, which defines the low-frequency edge of the detector bandpass. Figure from
(59).

to decrease α in the 95 GHz pixels (59). Finally, additional PdAu overlaps the TES to increase its

heat capacity and slow down the intrinsic electrothermal time constant of the device. A summary

of 95 GHz detector properties appears in Table 2.3.
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Figure 2.7: A prototype SPTpol 150 GHz pixel. The device is 5 mm across with a 1.6 mm OMT.
Bandpass-defining stub filters shown here were not included in the final pixels. Figure appears in
(60).

2.3.2 150 GHz Pixels

A prototype SPTpol 150 GHz pixel fabricated at NIST-Boulder is shown in Figure 2.7.

Incident light is feed horn-coupled to a 1.6 mm orthomode transducer (OMT) that splits the

signal into two orthogonal polarization states. The light is then propagated through coplanar

waveguide (CPW) and finally lossless Nb microstrip to two TESs. As in the 95 GHz pixels a

single TES is sensitive to a single polarization state, though in this case both devices are fabricated

on the same chip. A third “dark” TES is sometimes included for characterizing electrothermal

properties, calibration tests, and controlling systematics. Each TES is thermally isolated by floating

on a relieved SiN island supported by SiN legs, the dimensions of which determine the thermal

conductance G of the device. An Au meander surrounding the TES converts the signal to heat

via ohmic dissipation, which is finally sensed by the TES. Basic detector properties for the fielded

150 GHz pixels are summarized in Table 2.3. We give more details about the detector wafers and

mechanical packaging in Chapter 3 but we note here that detector property uniformity is increased

dramatically by fabricating devices on the same silicon wafer as was done for the 150 GHz arrays.
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2.4 Frequency-Domain Multiplexing

The detectors operate at temperatures below ∼ 500 mK so stringent control of the receiver’s

power budget is critical for maintaining base temperatures for extended periods. Besides dissipation

of optical power, power conducted by readout wires for thousands of detectors could easily saturate

the cooling power of the Chase fridge. In order to limit thermal loading on the receiver’s mK

temperature stages from readout wiring we use a digital frequency-domain multiplexing (DfMUX)

readout scheme (61).

With DfMUX readout, each detector is placed in a distinct LCR resonance circuit. See

Figure 2.8 for a schematic. A comb of different biasing frequencies is sent as a single carrier signal

to multiple detectors simultaneously. Each detector is biased by a different carrier frequency, for

which its LCR circuit uniquely has low impedance. The number of detectors biased by a single

carrier signal, and therefore a single pair of wires, is the system’s multiplexing factor. In SPTpol

the multiplexing factor is 12 and there are 144 such frequency combs to read out the entire focal

plane. Resonances for a single comb are plotted in Figure 2.8. The height and width of each

resonance while in operation are inversely proportional to the detector resistance, which changes

with optical loading.

For a given comb, changes in current through each device is summed through a single inductor,

which relays the information as a change in magnetic flux through a series array of superconducting

quantum interference devices (SQUIDs). To maintain a large dynamic range in the SQUIDs a

nulling signal is also injected through the inductor. The nuller is 180◦ out-of-phase with the carrier

signal, which cancels the relatively large carrier amplitude leaving only small changes in current

through the TESs. Finally, the SQUID array output signal is demodulated to retrieve changes in

readout current for each device separately. This demodulated readout current is the raw detector

measurement with which to start an analysis.
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Figure 2.8: (Top) Circuit schematic of a DfMUX readout system, adapted from (61). c© 2008
IEEE. (Bottom) One of 144 frequency combs measuring detector resonant frequencies in the SPTpol
experiment.



Chapter 3

SPTpol 150 GHz Module Design

3.1 Introduction

In this chapter we discuss the design and detector properties of the 150 GHz portion of the

SPTpol focal plane, which has been split into seven 84-pixel modules. Each module is an indepen-

dent camera including coupling feed horns, radio frequency (RF) shielding, and passive readout

electronics. The chapter is organized as follows: Section 3.2 describes the module design in detail.

Notable features of both individual hardware elements and the modules as a whole are discussed.

Section 3.3 provides a summary of detector dark properties, including critical temperatures, normal

resistances, and saturation powers. Finally, Section 3.4 reviews the lab-measured optical properties

of the modules, namely detector optical efficiencies and electrothermal time constants, as well as

early optical results for silicon platelet corrugated feed horn arrays developed at NIST-Boulder.

3.2 Module Design

A large focal plane poses significant challenges for fabrication, assembly, and testing. To

mitigate these issues, portions of SPTpol were designed with a modular format. While the 95

GHz band of SPTpol is comprised of 180 polarization-sensitive pixels (360 detectors fabricated

at Argonne National Laboratory) individually packaged with corresponding light-coupling feed

horns (59), the 150 GHz portion of the focal plane is split into seven identical modules, each

containing 2.3 inch wide monolithic feed horn and detector arrays fabricated at NIST in Boulder,

CO. Figure 3.1 shows a front-side view of the SPTpol focal plane where the 150 GHz modules
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and 95 GHz pixel assemblies are clearly distinguishable. Modularity has several benefits. First,

maintaining detector uniformity is easier when fabricating across smaller wafers. Second, a modular

design makes possible testing whole units of the focal plane without requiring the full experiment

apparatus. This greatly increases testing throughput and accelerates feedback into the design

process. Finally, the modular units are simple to install into and remove from the SPTpol focal

plane, which makes in-field modifications more tractable and timely. In the following subsections

we describe in detail distinguishing characteristics of the module components.

3.2.1 Corrugated Silicon Platelet Feed Horn Array

When coupling free space to detectors, corrugated feed horns exhibit several appealing char-

acteristics, namely high transmission efficiency, low cross-polarization and sidelobes, highly sym-

metric beam shapes, and wide bandwidths (62). Since measuring CMB polarization anisotropies

requires tight control of systematics, many past experiments with relatively few pixels used indi-

vidual corrugated feed horns (63; 64; 65; 66; 67; 68; 69; 70). Modern experiments contain many

hundreds of tightly packed pixels, however, and the production of a corresponding monolithic feed

horn array with standard electroforming techniques would be prohibitively difficult and expensive.

Instead, the SPTpol 150 GHz modules contain monolithic arrays of corrugated feed horns built up

from 33 silicon platelets, each 500 µm thick, which have been stacked and gold-plated. The arrays

were developed and fabricated at NIST-Boulder (71; 72). In addition to the attractive properties

that corrugated feed horns exhibit, these silicon platelet arrays are coefficient of thermal expansion

(CTE) matched to the detector arrays (also fabricated on silicon wafers), have lower thermal mass

compared to conventional aluminum feed horns, and maintain high thermal conductivity despite

being silicon in bulk due to the gold-plating.

Each of the seven SPTpol feed horn arrays are 2.3 inches wide and 16.5 mm tall, contain

84 single-moded corrugated feed horns with 4.26 mm apertures, and are optimized for a bandpass

centered at 145 GHz. The feed horns taper off to a section of 1.22 mm wide square waveguide,

which is used to define the lower edge of the bandpass, and ends with a single 1.6 mm diameter
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Figure 3.1: The SPTpol focal plane. Seven 84-pixel modules of 150 GHz detectors sit at the center
of the camera, while 180 individually packaged 95 GHz pixels surround the modules, for a total of
768 polarization-sensitive pixels (1536 detectors). The focal plane is ∼ 225 mm in diameter.



49

Figure 3.2: (Top) One of seven 150 GHz corrugated silicon platelet feed horn arrays in the SPTpol
focal plane. The array is 2.3 inches wide and contains 84 feed horns with 4.26 mm apertures.
(Bottom) Cross-sectional view of the feed horn profiles showing the corrugations and waveguides.
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circular waveguide platelet. The left of Figure 3.2 is a picture of one SPTpol feed horn array,

while the right shows a cross-section of a feed horn array to highlight the feed horn profile. 300 K

vector network analyzer (VNA) measurements reveal that the feed horns have excellent uniformity

in transmission properties, both across a single array and between the seven arrays. See Section

3.4 below for details.

3.2.2 Detector Arrays

Each module contains a detector array containing 84 dual-polarization pixels operated at

∼ 270 mK. The arrays are monolithically fabricated by photolithography techniques on silicon

wafers at NIST-Boulder. The pixels are the result of development by the TRUCE collaboration

(58; 73; 60; 74; 72). Figure 3.3 shows a schematic of a single pixel as well as one SPTpol detector

array. Power is coupled to a released orthomode transducer (OMT), which splits the light into two

orthogonal polarization states. The coupled power then travels down a coplanar waveguide (CPW)

to microstrip transition, then through microstrip, and is eventually deposited on two transition edge

sensor (TES) islands by a length of lossy gold meander. The TES devices themselves are made

of an aluminum manganese alloy. TES devices operating in the middle of their superconducting

transitions are extremely sensitive to small changes in incoming optical power. We use a digital

frequency-domain multiplexing readout system developed at McGill University (75) to measure

the change in detector temperature and therefore optical signal from the sky. Superconducting

microstrip carries the signal from the TES out from each pixel and to the array edges where four

banks of 90 wire bonding pads exist.

So that each detector array is sensitive to both Stokes Q and U polarization parameters, the

orientation of an OMT is rotated by 45◦ with respect to its neighbors in an alternating pattern.

By installing the 150 GHz modules into the SPTpol focal plane rotated by 30◦ with respect to one

another, we simultaneously measure Stokes Q and U with three sets of independent measurements.

These independent measurements allow for more tests to search for systematics in the data.

In addition to two optically-coupled TES devices per pixel, five pixels on each array also
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Figure 3.3: (Top) Schematic of one SPTpol 150 GHz pixel. Areas with white hashing are regions
where the silicon substrate has been etched away leaving released silicon nitride. (Bottom) One of
the seven SPTpol 150 GHz detector arrays during module assembly, before installing the BS wafer.
The array is 2.3 inches across.
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Figure 3.4: Expanded cross-sectional view of the detector wafer sandwich. Boss features in the
WIP slip into the back-etched cavities of each pixel OMT, extending the horn waveguide to the
OMT and providing pixel-waveguide registration. The BS wafer terminates the waveguides with
λ/4 backshorts.

have a third TES, which is not connected to the OMT and is therefore a “dark” device. These

dark TESs provide diagnostic checks for each array and can be used to test for non-OMT coupling

power. Including the dark devices, each array has a total of 173 detectors. There are also two

normal resistors on each array, which can be used to determine the array temperature.

Each detector wafer is sandwiched between two ancillary silicon wafers that not only physi-

cally protect the detectors, but also help maximize in-band coupling, reduce out-of-band coupling,

and minimize optical crosstalk. Figure 3.4 shows an expanded cross-sectional view of the complete

detector array sandwich. The first ancillary wafer is a waveguide interface plate (WIP) located

between the feed horns and a detector array. The WIP contains 250 µm tall boss features that

continue the circular waveguide from the end of the feed horn to within 25 µm of the lower surface

of the released pixel OMTs. The boss features neatly register within the back-etched cavities be-

hind the OMTs and along with 1 mm wide slip fit alignment pins in the feed horn array provide

OMT-waveguide alignment to ∼ 25µm.

The second ancillary silicon wafer is a λ/4 backshort (BS) wafer, shown in Figure 3.5. Not
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Figure 3.5: (Top) BS wafer with filled moats. The moats alternately rotate by 45◦ to match the
alternating rotations of the pixels. (Bottom) A schematic of the BS moat and OMT fence layout
with respect to pixel features. The moats are aligned to be above each TES island, and the OMT
fence closes the gap between the detector array and BS array except where microstrip lines are
present.
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only does the backshort wafer terminate the waveguides, but it also contains eccosorb (76) filled

moats positioned above each TES island. During detector development we found that prototype

devices had a tendency to absorb high frequency out-of-band power coupling directly to the TES

silicon nitride islands (74). This was exacerbated by using on-chip λ/4 stub filters to define the

bandpass so that no filtering was applied before light coupled through the feed horns. By placing

black material above or below the TES islands, however, the amount of out-of-band power picked

up by the devices reduced by factors of 2-3. SPTpol pixels use low-pass filters in front of the feed

horns to define the band, which removes high frequency out-of-band light. We nevertheless installed

the eccosorb moats to absorb any stray non-OMT-coupled light that may regardless find its way

to our detectors.

Additionally, the BS wafer rests on top of the detector wafer in the sandwich. To not crush

the detectors, it is stood off from the detector array by 25 µm tall silicon dots scattered across the

BS wafer. This creates a 25 µm gap between the pixel OMTs and the backshort cavities, which

allows light to leak out of the waveguide and couple to the TES’s directly instead of through the

OMT and microstrip. To reduce this potential source of optical crosstalk, the backshort cavities are

surrounded by 25 µm tall silicon fences to close as much of the gaps as possible. The only remaining

gaps allow the microstrip underneath to leave the cavity and continue to the devices themselves.

Figure 3.5 contains an illustration of the moat geometry and OMT fencing with respect to the pixel

layout.

3.2.3 Mounting Hardware

While the feed horn and detector sandwich arrays are both made of silicon, the rest of the

focal plane and modules are comprised of copper and aluminum. Since these metals contract ∼ 20

times more than silicon when cooling from 300 to 4 K, we need a mounting scenario that prevents

fracturing the detector arrays, the feed horns, or both. We use six flexible T-shaped tabs made

of invar mounted to the six corners of the feed horn array, shown in Figure 3.6. As the copper

mounting components in the module shrink with respect to the silicon upon cooling, the tabs flex to
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absorb the size difference. Invar has a linear coefficient of thermal expansion that is only twice that

of silicon, a negligible difference over the size scales in question resulting in differential contraction

between the invar and silicon of < 4µm.

The tabs are permanently adhered to a silicon feed horn array using a thin layer of stycast

2850 (77) on the corner walls of the array. Alignment features in both the feed horn array and

the tabs ensure the tabs are installed in the proper position. Prototype tests using copper tabs

revealed that differential contraction between copper and silicon produced enough stress in the

stycast epoxy to weaken the glue joint, which caused the tabs to fall off upon multiple thermal

cycles. We optimized the shape of the invar tabs to reduce stress on the epoxy joint, making the

flexible portion 7.4 mm long. While the tab is 0.5 mm thick, the flexible portion of each tab is

thinned to 0.4 mm to direct the point of highest stress in the tab away from the epoxy joint.

Additionally, the mounting hardware to which the tabs attach is oversized at 300 K. Upon cooling

to 4 K, the distance between two opposite tab mounting points equals the width of the feed horn

array, so that at operating temperatures where the epoxy is most brittle there is zero flexing in the

tabs and negligible stress to the epoxy joints.

While this invar/epoxy configuration proved robust to multiple thermal cycles, the invar-

silicon joint must remain intact to ensure pointing and beam properties are consistent throughout

an observing season. For additional security, #2-56 threaded invar posts were epoxied into through-

holes in each of the six corners of the feed horn arrays, again using stycast as the epoxy. A mounting

tab protruding from the invar tabs slips over these threaded mounting posts, is epoxied into place,

and a nut screwed onto the post provides vertical pressure. With the added nut-and-bolt mounting,

we ensure that even in the unlikely event that one of the lateral epoxy joints fail, the tab is still

securely in place. The tabs can be seen installed on a feed horn array in Figure 3.6.

The invar tabs attach to a star-shaped copper mounting ring, shown in Figure 3.7. The

ring serves multiple functions in the module. First, it acts as the point to which the invar tabs,

and therefore the feed horn array, can mount. The mounting ring shape is designed to provide

tool access, both for assembling various components of the module as well as for wire bonding the
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Figure 3.6: (Top) Flexible invar tabs used to connect the silicon feed horn arrays to the metal
mounting structures in the 150 GHz modules. Each tab is 0.5 mm thick, while the flexing portion
is 0.4 mm thick to reduce stress near the epoxy joint. The flexible portion of the tab, between the
registration features, is 7.4 mm long. (Bottom) The tabs installed on a feed horn array prior to
module assembly.
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Figure 3.7: (Top) Mounting ring with berylium copper clamps installed in a module. The invar
tabs screw into the six feet in the ring, while four flexible cables are clamped down to the outer
walls of the ring. The berylium copper clamps supply vertical pressure to the detector wafer stack.
(Bottom) The interface plate installed on top of the mounting ring with its many mounting holes.
The flexible readout cables snake underneath the plate and come out the center of the module.
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detector arrays to flexible readout cables (see Section 3.2.5). Each of the six sides of the mounting

ring has #0-80 tapped mounting holes, which are used to screw down strain relief bars for the

readout cables as well as to hold beryllium copper clips that vertically constrain the detector wafer

sandwich. Second, the mounting ring functions as a heat strap between the silicon feed horns and

detectors and the focal plane millikelvin plate. The thermal conductivity of invar is three orders

of magnitude lower than copper below 1 K, so the invar tabs play an insignificant role in cooling

the silicon. Instead, cooling is achieved through the beryllium copper vertical clamps, as well as

the RF skirts (see Section 3.2.4) that mount to a copper interface plate which itself attaches to

the mounting ring. This interface plate, also shown in Figure 3.7, provides a location for more

structure mounting. In addition to the RF shields, the readout board sub-assembly attaches here.

The interface plate is also the surface that bolts directly to the focal plane millikelvin plate.

3.2.4 RF Shielding

RF light can couple directly to our readout electronics, acting as a source of extra noise in

our system. As an independent camera, each module must be RF-tight when installed in the focal

plane, only allowing light to enter the module through the feed horns, before which capacitive metal

mesh low-pass filters define the upper edge of our observing band and the high-pass filter of the

feed horn waveguide defines the lower edge of the band. Having long flexible tabs between the

silicon feed horns and metal mounting hardware leaves the sides of the module completely open.

To close these large gaps, thin copper skirts shown in Figure 3.8 attach to the sides of the interface

plate and come down the length of the module, to roughly a half inch from the top of the silicon

feed horn array.

These RF skirts also act as a mechanical shield for the delicate wire bonds on the detector

wafers, only a few millimeters away from the edge of the feed horn array. Aluminum tape seals the

small gaps left between the skirts, adhering to the sides of the feed horn array. Figure 3.8 shows

a complete module assembly, with RF skirts installed and aluminum tape applied. Since the feed

horns are metal-plated, there is a contiguous conducting surface all the way from the feed horn
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Figure 3.8: (Top) Image of RF skirts, showing flexure portion. (Bottom) Skirts installed with final
RF tape applied as the module is prepared for shipment to the South Pole.

apertures to the focal plane millikelvin plate when the module is installed ensuring light can only

enter the system through the feed horns.

As mentioned previously, the RF skirts also cool the silicon feed horn and detector arrays.

The interface plate to which the skirts attach is the same width as the silicon arrays at 300 K.

As the module cools, the interface plate shrinks with respect to the silicon array. The differential
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contraction squeezes the RF skirts tighter against the walls of the feed horn array, which provides

pressure points through which to cool the silicon. Too much pressure on the silicon from the skirts

could chip or crack it, however. To avoid this outcome, the RF skirts have a horizontal band across

them that has been thinned to act as a flexure point, reducing the total pressure on the feed horn

array while allowing the skirts to supply enough pressure to effectively cool the silicon.

3.2.5 Passive Readout Electronics

To reduce loading on the millikelvin stage, the detectors are read out with a digital frequency-

domain multiplexing (DfMUX) readout system (75). In a frequency-domain system, each detector

is placed in series with an inductor L and capacitor C making an RLC resonance circuit. We AC

bias many detectors simultaneously with a “comb” of bias frequencies sent along a single pair of

wires. Given the L and C in series with a detector, each detector only sees the bias tone to which

its resonance circuit is tuned. The signals are then sent to a series array of 100 superconducting

quantum interference devices (SQUIDs) followed by a low-noise amplifier cooled to 4 K, which

together amplify the detector signals. The SPTpol DfMUX system uses a multiplexing factor of

12×, so 12 detectors (6 pixels) are biased with one set of wires and one SQUID series array.

While the SQUID arrays are cooled to 4 K, the passive LC resonance circuits reside with the

detector arrays and are therefore cooled to ∼ 270 mK. Printed circuit boards containing inductors

and capacitors that define the resonance frequency of each detector (LC boards) are connected

via aluminum supports to the 150 GHz modules. Each board has 12 photolithographed chips of

eight 22 µH inductors fabricated at NIST-Boulder, as well as capacitors stacked to achieve the

requisite capacitance. Therefore, each board can define the resonance frequencies for up to 96

different detectors. In practice, only 90 channels on each of two LC boards are needed to define

the resonance channels for all the detectors in a single 150 GHz module.

To protect the delicate inductor chips and wire bonds connecting them to the circuit boards,

thin aluminum shields are placed over the LC boards. Since the fiberglass body of the circuit board

is black at infrared wavelengths, the aluminum shields also reduce the surface area of the boards
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Figure 3.9: (Top) Populated LC board. (Bottom) Two LC boards with protective shielding in place
and mounted to a module.
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that could otherwise terminate warm stray light in the experiment cryostat, reducing the parasitic

heat load on the millikelvin refrigerator.

The LC boards are physically displaced from the detector arrays by several inches in each

module. To bridge the gap, we use the flexible circuit cables mentioned previously. The cables

contain 90 copper traces printed on a polyimide substrate, which are 47 µm wide and have 94 µm

center-center pitch. The traces are tinned to be superconducting to reduce parasitic resistance in

the RLC circuits. A final polyimide overlay layer protects the traces and reduces the chance of

electrical shorts between the cables and module hardware. The cables are rubber cemented into

position and strain-relieved with clamping bars. One end of the cable has a series of bare copper

bond pads. We wire bond from the detector array bond pads to the flexible cable pads using 25

µm thick aluminum bonding wire. The other end of the flexible cable has 90 zero-insertion-force

(ZIF) contacts. This end of the cable is then easily attached to an LC board by plugging into a

ZIF connector on the board. Two cables plug into each LC board, which are populated on both

the front and back sides.

3.3 Dark Properties

Several detector properties can be obtained by measuring the current through a device as

a function of applied voltage bias (an IV curve)(58; 74). Please refer to the cited references for

examples of this measurement technique. Lab observations of device IV curves provided measure-

ments of dark properties for five of the seven deployed detector arrays. We also fitted the width and

height of detector RLC resonance peaks above and below device superconducting transitions to

obtain normal resistances RN and parasitic resistances in series with detectors, respectively. There

are systematics at the level of 10-20% for these resonance fits due to calibration uncertainties in

the lab, however devices observing the sky can be well calibrated to a celestial source. Table 3.1

contains a summary of the results for each wafer. Means and standard deviations are provided,

as well as the number of detectors measured. Normal resistances and measured saturation powers

are corrected for in-series parasitic resistance, and only devices with both RLC resonance fits and
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Table 3.1: Detector Dark Properties

Wafer Tc (mK) RN (Ω) Psat (pW)

C1 476.8± 2.0 87 1.1± 0.1 76 20.9± 3.8 74
C3 463.3± 7.1 132 1.2± 0.2 134 19.6± 2.4 134
C4 467.1± 3.2 114 1.2± 0.2 123 21.4± 2.5 122
C5 467.6± 2.2 131 1.2± 0.2 131 21.0± 3.0 131

D4 Low 478.2± 34.0 48 1.3± 0.3 48 19.9± 2.4 48
D4 High 538.9± 32.3 76 1.0± 0.1 76 34.9± 4.3 76

Avg (No D4 High) 468.9± 12.4 512 1.2± 0.2 512 20.6± 2.9 509
Avg (With D4 High) 478.0± 28.6 588 1.2± 0.2 588 22.5± 5.7 585

Notes: Summary of in-lab detector dark tests for five of the seven deployed detector wafers.
Wafer D4 has a clear bimodal distribution in device properties and has been split into “D4
Low” and “D4 High.” Means and standard deviations are given as well as the number of devices
tested for each wafer and property.

IV curve measurements are included. Four of the wafers show good uniformity in superconducting

critical temperature Tc, normal resistance, and saturation power Psat. Wafer D4, however, does

have a clear bimodal distribution of devices, split into “Low” and “High” columns based on whether

devices have saturation powers above or below 25 pW. Disregarding the “High” outlier distribution

in wafer D4, the average dark properties across the five lab-tested arrays are Tc = 468.9±12.4 mK,

RN = 1.2± 0.2 Ω, and Psat = 20.6± 2.9 pW. Including all measured devices on the five arrays the

averages are Tc = 478.0± 28.6 mK , RN = 1.2± 0.2 Ω, and Psat = 22.5± 5.7 pW.

During detector development, early device designs exhibited high values for α = d logR/d log T ,

a dimensionless ratio that quantifies the sharpness of a device’s superconducting transition. Higher

values for α means a device is more sensitive to changes in temperature, (the loop gain of the device

is proportional to α in the device transition), but also means the device can become unstable when

biased too deep in the transition. Indeed, our early devices were unstable at operating bias points

of ∼ 0.8RN, near typical operating points for our 150 GHz detectors (51). We tested several TES

geometries to find an appropriate transition shape and deposited a non-superconducting metal,

palladium gold (“bling”), around each TES to increase the detectors’ time constants. We found

that having a solid bar for the TES and extending the bling over the edge of the microstrip leads
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heading to the TES and into the TES region itself lowered α sufficiently while keeping 150 GHz

detector loop gains in transition at an acceptable level. A companion paper (59) discusses SPTpol

95 GHz pixel development and provides further detail about how the TES geometry affects α.

3.4 Optical Properties

Before integration into 150 GHz modules, we measured the return loss and insertion loss for

each silicon feed horn array at 300 K. Representative results for one feed horn array are provided

in Figure 3.10, where measurements for six separate horns are overplotted. All horn arrays show

return loss of < −20 dB at 300 K except for the frequency range 133-138 GHz. The dashed line

in the return loss plot represents the expectation for the feed horn profile only, not including the

square to circular waveguide section, which is known to have a return loss of ∼ −20 dB. The

insertion loss at 300 K is in the middle plot of Figure 3.10 and is ∼ −0.2 dB ' 5% on average.

Figure 3.10 (Right) shows pre-deployment 150 GHz VNA measurements of one representative

feed horn. Dots are measurements of the H-plane, E-plane, and cross-polarization, while solid lines

are expectations from simulations. The beam power drops below -20 dB at ∼ ±40◦ from the beam

center, and cross-polarization power is below -25 dB. Measured beams of the detectors as deployed

on the telescope also appear nominal, with an average full width half maximum (FWHM) of 1.06

arcminutes and beam eccentricity of e = 0.04 for the 150 GHz pixels (51).

Optical efficiency measurements were taken for a small subset of detectors prior to SPTpol

deployment. Using a set of metal mesh capacitive low-pass filters to define the upper edge of our

bandpass, we illuminated the detectors with radiation from a cold load set to several temperatures

between 4 and 30 K. The measured difference in power compared to the expected in-band power

gives the detector plus feed horn optical efficiency (74). These measurements indicated detector

optical efficiencies of ∼ 90%.

We measured the electrothermal time constants of many devices in the lab at various points

in their superconducting transitions. We apply an AC voltage bias of frequency ω to a detector

just as we would in standard operation, but also apply additional voltage bias at a second bias
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Figure 3.10: (Top) Return loss for six horns in one SPTpol feed horn array. Dashed line is the
expectation for the feed horn profile only. (Middle) 300 K insertion loss measurements of the same
horns. (Bottom) Beam profile at 150 GHz for one representative horn. Dots are measurements
while solid lines are expectations from simulations.
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Figure 3.11: (Top) Measurements of the electrothermal time constant of one representative detector
at several points in its superconducting transition. Devices exhibit time constants< 1 ms at nominal
operation points. (Bottom) Power spectral densities (PSDs) for three devices in the same 150 GHz
pixel. “X” and “Y” are optically loaded while the “Dark” device is not coupled to the sky. All
three device PSDs have white noise levels consistent with expectations. The PSD of the differenced
timestreams of the optically loaded devices shows a much reduced 1/f knee.
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tone ω + δω, which amplitude-modulates the detector response. The output current amplitude

at the negative sideband ω − δω (where no external voltage is applied) is a pure measurement of

the electrothermal response of the device (78). We plot the response as a function of δω and fit

a single pole to the data, which gives us the time constant of the device. A representative plot

of electrothermal time constant measurements is shown in Figure 3.11. These measurements are

taken several times when the device is biased at different points in its transition. Across the arrays

the electrothermal time constants are generally < 1 ms while in the superconducting transition.

We have also measured detector noise between field observations while on the telescope. Fig-

ure 3.11 shows the noise for three detectors in a single representative 150 GHz pixel. Detectors

“X” and “Y” are optically coupled and looking at the sky, while the “Dark” detector is not op-

tically active. Given in-lab calibration factors with systematics at the 10 - 20% level, the white

noise levels of all the devices are consistent with expectations, 47 aW/
√

Hz with no optical loading

and 76 aW/
√

Hz with nominal optical load. Additionally, differencing optically loaded detector

timestreams removes correlated long timescale atmospheric fluctuations. As a result, the power

spectral density of the differenced timestreams shows a significant reduction in the 1/f knee, in-

creasing the frequency range that can be used for extracting relevant science.



Chapter 4

Observations and Data Products

The SPTpol receiver was installed in January 2012 and with the exception of two brief

maintenance periods has been observing continuously ever sense. In this short chapter we describe

the observational strategies used during the 2012 and 2013 seasons and define related nomenclature

to orient the reader for a detailed discussion of data analysis in the following chapters. We begin

by discussing the structure of a single CMB field observation and required ancillary calibration

measurements. We then describe 2012 observations in particular, followed by a similar explanation

for 2013 measurements. The chapter concludes with a short note on the average observing efficiency

so far obtained by SPTpol and which datasets will be used in the following cosmological analysis.

4.1 CMB Field Observations

The CMB polarization anisotropies of interest are at an amplitude of a few µK and lower.

Since current detectors are background noise-limited (their intrinsic noise is less than the Poisson

noise of the background sky signal) the only options at our disposal to increase signal-to-noise are

to measure the sky with more pixels and for longer periods of time. While the signal-to-noise of

a single observation is low, by stacking or coadding thousands of observations of a single patch

over several years the noise averages down and the small-amplitude sky signal of interest becomes

evident.

The primary unit of this coadding process is a single CMB field observation. Since bolometers

are sensitive to changes in incident power, during one such observation the SPT maps a patch of
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Figure 4.1: Azimuth and elevation coordinates for a single CMB field observation. The telescope
starts at low elevation and scans right and left before taking an elevation step and repeating. The
field is split into “lead” and “trail” halves, which are forced to match in azimuth for removal
of ground contamination. Lead and trail coordinates have been offset by 0.05◦ in azimuth and
elevation for clarity.

sky by continuously raster scanning. At constant elevation the SPT scans right and then left. We

refer to these as right-going and left-going scans. After a right/left scan set, the telescope makes

a small step in elevation and observations continue. When the telescope reaches the top of the

defined CMB field it returns to a lower elevation to start a new observation. Given pixel spacing on

the focal plane and the size of each elevation step, a single CMB field observation does not obtain

uniform elevation coverage. To fill in the resulting coverage gaps, observations begin at a number of

slightly different elevations or dither steps. By combining observations at each dither step, a single

uniform-coverage observation or bundle can be defined. The azimuth and elevation coordinates for

a single CMB field observation are plotted in Figure 4.1.

There are potentially large polarized systematic signals related to features on the static
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ground surrounding the telescope. Since these systematics can potentially dwarf the small CMB

polarization signal, our scan strategy includes methods to mitigate such ground pick-up. The CMB

field is divided into two patches, a “lead” patch and a “trail” patch. We observe the lead patch

for 35 minutes, during which the sky rotates by 35 minutes of Right Ascension (5 degrees on the

sky in the center of the patch). By this point the trail patch has caught up in azimuth and we

begin observations again. With this lead-trail strategy, both halves of the CMB field are observed

over exactly the same patch of ground. By subtracting the lead map from the trail map we remove

any systematic signal from the ground. While this analysis method impedes our ability to image

particular features in CMB temperature and polarization anisotropies, the statistical properties in

both patches should remain the same. A power spectrum analysis such as that described in the

following chapter would therefore yield the same statistical information without the ground signal

contaminant.

This observation and analysis strategy is attractive from the standpoint of controlling sys-

tematics, but it has significant downsides. The resulting power spectra have higher sample variance

since the effective area on the sky being analyzed is reduced by a factor of two. Furthermore, the

final map depth is
√

2 shallower since the same observing duration is spent on twice the area. The

option to perform a lead-trail analysis is therefore reserved for situations when ground pick-up is

expected or indeed measured when cleaning CMB field maps. Please refer to Section 5.5 for more

details about map cleaning and validation. We do not perform a lead-trail analysis in this work,

however field observations were nevertheless observed in the lead-trail fashion described above.

Besides the CMB field observations themselves, several ancillary observations are also peri-

odically made for calibration purposes. Approximately once every fridge cycle (∼ 36 hours), the

magnitude and direction of tilt of the telescope azimuth bearing axis is measured with tilt meters.

This is needed for telescope pointing corrections discussed in the following chapter. Also once per

fridge cycle the entire focal plane is scanned across RCW38 and MAT5A, two HII regions in the

Milky Way. The temperature of RCW38 at millimeter wavelengths is well known and we use these
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observations to calibrate and convert our detector measurements from current to units of KCMB.1

MAT5A observations are also part of our pointing corrections. Between CMB field observations we

take short RCW38 measurements, where only a fraction of the focal plane passes over the source.

These “very fast” scans are used for tracking short-term changes in telescope pointing. Periodic

measurements of a chopped thermal source behind the secondary mirror (known as the calibrator)

as well as “elevation nods” are used to interpolate detector calibrations between RCW38 obser-

vations and to measure the change in detector sensitivity as a function of elevation, respectively.

Finally, observations with the telescope not moving, called noise stares, are also periodically taken

to determine the noise properties of each detector while in operation.

4.2 2012 Observations

During the 2012 observation season, from roughly February to late November, we focused ef-

forts on obtaining a deep map of a relatively small patch of sky. This field, centered at ra23h30dec-

55 , is referred to in this work as the SPTpol deep field or sometimes the “2012 deep field.” The

patch was designed to be only 100 deg2 on the sky. While a small area such as this results in

significant sample variance in a power spectrum analysis, the focus of these observations was a

statistically significant detection of lensing B modes. Lensing B modes peak at multipoles l ∼ 1000

and so a potential detection benefits from a deeper map more than a wider map. Indeed, the

SPTpol collaboration published the first detection of lensing B modes using data from the 2012

deep field observations (21). Cross-correlating with Herschel-Spire measurements, which trace

large-scale structure that gravitationally lenses passing CMB E-mode polarization into lensing B

modes, we found evidence for B modes in our deep field map inconsistent with zero amplitude at

7.7σ.

1 All temperatures reported or plotted in this work are implicitly in KCMB. We measure changes in CMB intensity
B and we report these changes as temperature fluctuations KCMB of a 2.73 K blackbody. The conversion factor
between intensity and temperature is just the derivative of the blackbody function dB

dT
evaluated at 2.73 K.
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4.3 2013 Observations

After our positive detection of lensing B modes, observations changed focus to placing tighter

constraints on the tensor-to-scalar ratio r. Since IGW B modes peak at low multipoles, we now

wanted to map a larger area of sky to beat down sample variance errors. In 2013 we switched to

observing the SPTpol survey field, centered at ra0h30dec-57.5. The survey field is 500 deg2 and

completely overlaps the deep field. We continued to observe in lead-trail mode. Since the lead and

trail halves are wider in the survey field, we increased the azimuth scan speed of the telescope in

order to ensure the lead and trail halves completely overlapped in azimuth. The faster scan speed

was also meant to force interesting science signals to appear in our data at higher frequencies and

therefore further away from intrinsic low-frequency noise in our system and detectors. This allows

us to study lower multipole modes otherwise buried in instrument noise. A short discussion of

choosing this so-called “science band” and how it related to scan speed is given in Appendix A.

4.4 Datasets

We cannot observe the deep and survey fields with 100% efficiency. Downtime occurs for

regular telescope maintenance during the austral winter as well as for significant periods during the

summer season when telescope and receiver repairs and upgrades take place. Additionally, after

the reserves of liquid helium have boiled off in the mK fridge during normal operation, the fridge

must be cycled to re-condense liquid helium and re-cool the receiver to base temperatures. This

takes several hours every roughly 36 hours. Finally, periodic calibration measurements discussed

above must take place to correctly interpret CMB field data.

A total of 809 days elapsed between SPTpol first-light on January 27, 2012 and April 15,

2014. In that period, 45.4% of the total available time was spent observing CMB fields. During

austral summer months when the Sun is in the SPTpol deep and survey fields, secondary CMB fields

are measured to look for new galaxy clusters. Of the 367.4 days of integration time on CMB fields,

39.1% (37.3%) of it has been spent on the deep (survey) field. A further 148.8 days of integration
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Table 4.1: SPTpol Observing Breakdown: January 27, 2012 - April 15, 2014

Target Integration Time [Days]
CMB Fields
ra23h30dec-55 (Deep Field) 143.8
ra0hdec-57.5 (Survey Field) 137.0

ra5h30dec-55 31.4
ra23hdec-35 16.6
ra1hdec-35 10.8
ra3hdec-35 6.9
ra5hdec-35 9.8
ra3hdec-25 11.1

Astronomical Sources
RCW38 41.0
MAT5A 21.6
Cen A 15.4

Other(a) 4.6
Auxiliary Sources

Calibrator 36.0
El Nods 10.1

Noise Stares 9.7
Polcal 10.3

Notes: 809 days elapsed between SPTpol first-light and April 15. 2014. 516.2 days of integration time
has been spent on observations, which is broken down by target above.
(a) Other includes Venus, Mars, and the Moon used for beam measurements.

time have been spent observing calibration sources. Table 4.1 summarizes how observation time

has been spent since first-light.

As Table 4.1 demonstrates, a wealth of data, both cosmological and astrophysical, has been

obtained with the SPTpol receiver. The cosmological analysis presented in this work focuses entirely

on the 150 GHz 2012 deep field observations. While intermediate analysis products for 2013 data

are often used as examples in the following chapters, they are not included in the final cosmological

constraints presented in Chapter 7. A future cosmological analysis is underway that considers the

first year of survey field observations, however, which we briefly discuss in Chapter 8.



Chapter 5

Data Reduction: From Timestreams to Power Spectra

In this chapter we discuss data reduction and analysis techniques used to process SPTpol

observations into maps and power spectra. Enormous information compression takes place, trans-

forming ∼ 1012 detector time samples over the course of one observing season into ∼ 102 numbers

encoding the CMB temperature and polarization power spectra. We begin the chapter by describing

detector timestream filtering and cleaning. The chapter proceeds with a discussion of map-making

and additional filtering steps made at the map-level. We next describe the generation of biased

power spectrum estimates from the processed maps, which is followed by a discussion of unbiased

power spectrum estimation via the MASTER algorithm. The chapter concludes with a description

of map and power spectrum validation through jackknife null tests.

5.1 Timestream Processing

Over the course of an observing season, we record ∼ 1012 bolometer samples from the 1536

optically sensitive detectors in the SPTpol receiver in the form of time-ordered-data (TOD). TOD,

otherwise known as timestreams, record the electrical current supplied to a bolometer to maintain

a specified bias point in its superconducting transition as a function of time. As a bolometer scans

over a bright point source, for example, additional optical power from the sky is incident on the

detector, requiring less electrical power to maintain the detector bias point. Therefore, additional

optical power presents itself as a negative dip in bolometer timestreams. We provide an example

timestream of a bolometer observing the HII region RCW38 in Figure 5.1.
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Figure 5.1: Example bolometer timestream as a detector scans across the center of RCW38. Ad-
ditional optical power from the source reduces the requisite electrical power to keep the detector
biased at the same point in its transition, causing the source to manifest as a drop in readout
current.

The raw timestreams are calibrated to be in units of KCMB by calculating bolometer gain or

responsivity (response per degree Kelvin) using a combination of regular observations of RCW38

and calibrator stares. At the beginning of each fridge cycle (roughly every 36 hours), each bolometer

scans across RCW38 to obtain current bolometer gains. Bolometer responsivity is a function of

detector bias point and therefore of optical loading levels and thus changes with weather and

elevation. During a fridge cycle, we make regular calibrator stares: the bolometers observe a hot

thermal source behind the secondary mirror of the telescope. Light from the calibrator is fed via

light pipe through a hole in the mirror. By monitoring changing responses to the calibrator we can

interpolate bolometer gains between RCW38 observations. Additionally, periodic elevation nods

are taken where the telescope makes small dips in elevation. These dips change the airmass we

look through and therefore the atmospheric loading on the bolometers, which provides a measure

of bolometer gain versus elevation.

Since polarization is a differential measurement between two detectors, relative gain mismatch

between two detectors in a polarization-sensitive pixel can leak temperature into polarization. For

example, if the gains between two bolometers are changing too rapidly to be accurately interpolated
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over given the cadence of calibrator observations, a significant 1/f noise component will remain

in the differenced timestream reducing sensitivity to low-multipole modes in resulting maps. For

the work presented here, where the signal-to-noise in the TE and EE spectra at relatively low

multipoles l ∼ 500 is high, map noise is sub-dominant to sample variance and therefore the effects

of relative gain mismatch are neglected. It will become a focus of attention in future BB spectra

analyses, however, when placing constraints on primordial B modes from inflation where the sample

variance is more than an order of magnitude smaller.

5.1.1 Timestream Filtering

Before mapmaking, timestreams are lightly filtered to reduce computational needs and remove

several contaminating signals. Bolometer TOD are recorded at ∼ 191 Hz, which represents modes

on the sky far smaller than our beam. We down-sample the timestreams by a factor of four to

reduce memory and computational requirements. To avoid high-frequency noise aliasing into the

SPTpol science band (∼ 1− 3 Hz) we low-pass filter the timestreams at a frequency corresponding

to a multipole moment of l = 10, 000. The low-pass frequency is different for each bolometer

timestream as it depends on the angular velocity on the sky and therefore telescope elevation. See

Appendix A for details.

To remove low-frequency noise from the atmosphere and the instrument itself, each timestream

is effectively high-pass filtered by removing a fourth-order Legendre polynomial fit on a per-scan

basis (one left- or right-going scan at a single elevation step). If a bolometer scans over a point

source brighter than 50 mJ (at 150 GHz) during the scan then TOD taken within 5′ of the point

source is masked from the fit. For the angular extent of a single scan during 2012 observations, a

fourth order polynomial subtraction equates to 1.3◦ on the sky per degree of freedom in the fit.

Finally, we Fourier transform the timestreams and obtain their power spectral densities

(PSDs). Spectral lines corresponding to harmonics of the pulse tube cooler frequency of 1.53

Hz are notched and the timestreams are inverse Fourier transformed. We also save the integrated

PSD power in several bands to be used during mapmaking for inverse variance weighting the
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timestreams.

5.1.2 Absolute Telescope Boresight Pointing

During observations the antenna control unit uses an “online” pointing model to roughly track

a source or a field of interest to within a few arcminutes RMS from observation to observation.

For full-season coadds, however, we require sub-arcminute RMS pointing to maintain sensitivity to

small-scale features and/or point sources at multipoles out to l ∼ 10, 000. Thus, during data analysis

we re-calculate the absolute telescope pointing using an “offline” pointing model. Offline pointing

corrects for a series of effects on the raw telescope boresight azimuth and elevation achieving RMS

pointing of 12′′ averaged over a full observing season.

The offline pointing model contains ten parameters that define corrections to the telescope’s

azimuth and elevation during an observation:

δaz = (a2 cos az + a3 sin az) tan el + (a4 − det) tan el +
a5

cos el

δel = a0 sin el + a1 cos el − (a2 sin az − a3 cos az)− a6 − del − θrefr.

(5.1)

Below we describe what each parameter is, the size of the correction it makes, and how we determine

the parameter.

• a0a0a0, a1a1a1: Amplitude of telescope boom flexure due to gravity. Boom flexure varies with the

elevation of the telescope and changes by ∼ 20′′ for 40◦ < el < 65◦. Being partially de-

generate with a6, a0 and a1 are iteratively solved for by alternately freezing them for fits

of a6 and vice versa until they converge. These parameters are static so long as the tele-

scope structure remains constant but must be recalculated whenever the telescope boom is

modified. For example between the 2011 and 2012 observing seasons side shields attached

to the boom and primary mirror were removed to install a new guard ring around the pri-

mary mirror, which changed the values of a0 and a1. Similarly, between the 2012 and 2013

seasons new larger side shields were installed, again changing the boom flexure parameters.

• a2a2a2, a3a3a3: Amplitude of azimuth bearing axis tilt. The azimuth axis is not perfectly perpen-
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dicular to the ground, with a tilt magnitude of ∼ 3′. The tilt actually increases by several

arcminutes per year as the telescope settles on its snow/ice foundation. This necessitates

the occasional re-leveling of the telescope to “zero” the azimuth axis. Due to the az tilt a

scan commanded to be at constant elevation instead slightly varies in elevation as a function

of azimuth, generating sinusoidal shifts in the apparent position of an object as it moves

across the sky. In RA/Dec coordinates, a point source thus shows up as a large circle when

many observations taken at different times (azimuths) are coadded. This is the dominant

correction made by the offline pointing model.

Approximately once per fridge cycle, a series of “az tilt” measurements of the telescope

are taken. The telescope stops at a series of azimuths during which we record tilt meter

readings. A sinusoidal model is fit to the measurements to determine the current values of

a2 and a3. We interpolate between tilt measurements to obtain values of the tilt param-

eters for every time sample during an observation. Figure 5.2 shows a representative tilt

measurement with fit parameters, as well as the values of a2 and a3 since the deployment

of SPTpol in January of 2012. The gap in measurements is during the telescope servicing

period between the 2012 and 2013 observing seasons.

• a4a4a4, a5a5a5, a6a6a6: These parameters are the elevation axis tilt, the cross-elevation collimation

(horizontal zero-point), and the elevation collimation (vertical zero-point), respectively. a4

fluctuates with a daily RMS of 12′′ and is partially degenerate with a5, which is ∼ 11′ and

dependent on telescope focus bench position. The vertical zero-point a6 is ∼ 14′ with a 20′′

daily RMS. We take regular observations of two HII regions, RCW38 (Dec = -47.51◦) and

MAT5A (Dec = -61.362◦). For each observation we correlate a bolometer’s timestream with

a template timestream of the observed source. The time at which the correlation is greatest

signifies when the bolometer was pointed directly at the source. We record the pointing

coordinates of the telescope at this time. After subtracting known bolometer pointing

offsets from telescope boresight we obtain a cloud of data points measuring the position
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Figure 5.2: (Top) Representative azimuth bearing axis tilt measurement with corresponding fit to
determine pointing parameters a2 and a3. (Bottom) a2 (blue) and a3 (red) as a function of time
since SPTpol deployment in January 2012. The azimuth axis tilt grows by several arcminutes per
year.
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of the telescope boresight when centered over the source relative to the absolute position

of the source. With a5 fixed, we fit this residual az/el offset to obtain measurements of

a4 and a6. This also provides an absolute az/el pointing calibration. To obtain pointing

corrections for CMB field observations we linearly interpolate between recorded values of

a4, a5, and a6.

The horizontal zero-point a5 must be fixed in order to determine a4. At a given focus

position a4 will vary with a5 differently between two sources at different elevations due to

the cos el term in the model. By fixing a5 at several different values and fitting for the

median a4 over all the observations taken at that focus position, we can find the value of

a5 that gives the same median a4 fit for both RCW38 and MAT5A. We then fix a5 to this

value for all other observations taken at the same telescope focus position.

• detdetdet, deldeldel: Corrections for telescope metrology and thermometry, which both have ∼ 20′′

daily RMS. The telescope structure can warp due to differential ambient temperature vari-

ations from the wind and the Sun, for example. Tens of sensors continuously record the

temperature of the telescope structure. These are combined to form a measurement of

warping in the telescope boom, both up/down and left/right, at each time sample.

• θrefr: Correction for atmospheric refraction. We follow (79) to calculate θrefr as a simple

function of ambient temperature and pressure while assuming atmospheric partial pressure

due to water vapor is negligible,

θrefr
∼= 77.6× 10−6

[
P

1 mb

] [
1 K

T

]
cot el, (5.2)

where P and T are the ambient atmospheric pressure and temperature. The refraction

correction is ∼ 30′′ for typical elevations.

The offline pointing calculation is separated into several blocks and procedures based on the

prior knowledge necessary to determine each model parameter. A flowchart of the entire procedure

is plotted in Figure 5.3. Determining so-called “tilt” and “HII Region” parameters requires ancillary
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Figure 5.3: Flowchart for how offline pointing model corrections are calculated and applied to the
data. “Tilt” and “HII region” parameters are determined ahead of time and saved in auxiliary
config files. Corrections for thermometry, metrology, and atmospheric refraction are handled in
real-time. Corrections to az/el are added to the raw telescope az/el, coordinates are converted to
RA/Dec, and final pointing is passed to the mapper routine for binning timestreams into pixels.

telescope observations and is relatively slow. These parameters, therefore, are calculated in advance

and stored in auxiliary config files to be called as necessary when maps are being generated. When

a user wants to create an offline pointing-corrected map, the raw pointing data is passed to the

pointing data handler, which requests modifications be made according to an input pointing model

and relevant software flags. Based on the timestamps of the raw pointing, the model then pulls

the relevant pointing parameters from the pre-processed auxiliary files and interpolates to match
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the input data timestamps. Thermometry, metrology, and atmospheric refraction corrections are

calculated on-the-fly. Once the model has generated az/el corrections, they are passed back to the

pointing handler, converted to RA/Dec coordinates, and finally passed to mapmaking routines.

5.2 Maps

With knowledge of corrected telescope boresight pointing as well as detector offsets from

boresight, bolometer timestreams can be mapped to positions on the sky. We choose a map

projection and resolution to define a grid of pixels. Each pixel is simply a “pointing bin” with

a specified range of Right Ascension and Declination. The bolometer timestreams are then parsed

into each map pixel according to its pointing information and inverse variance weighted according

to the bolometer’s polarization efficiency and PSDs in the SPTpol science band (∼ 1 − 3 Hz)

over the course of an observation. See Appendix A for a discussion of how the science band is

determined. Weight maps, recording the number of times bolometers “hit” a map pixel weighted

by inverse bolometer noise variance, are also computed. Maps are multiplied by their weight maps

before summing.

Individual maps for temperature T (Stokes total intensity I) as well as Stokes Q and U are

generated using knowledge of each detector’s polarization angle. Q and U are defined relative to

a specified direction on the sky. We choose horizontal/vertical lines to be ±Q in our maps. One

caveat is that projecting the curved sky onto a flap map will rotate polarization angles relative

to this definition. Since we know the functional form of the projection, however, we can account

for this rotation. We therefore “flatten” the polarization angles to maintain a consistent Q/U

definition across the map. After polarization flattening, +Q is horizontal and −Q is vertical in

the maps. Finally, with knowledge of polarization angle, Q and U maps can be combined into an

E-mode map (10). Starting with the Fourier transforms of the Q and U maps, m̃Q and m̃U ,

m̃E = m̃Q cos 2φ+ m̃U sin 2φ, (5.3)

where φ = arctan ly/lx is the phase angle between lx and ly. Inverse Fourier transforming back to
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real space results in an E-mode map, though in practice we never work with real-space E modes.

The (Fourier transforms of) T and E maps are the basic inputs for the CMB power spectrum

analysis. Figures 5.4, 5.5, 5.6, and 5.7 show the T , Q, U , and E-mode maps for the 2013 500

deg2 full survey observing season. (The SPTpol 100 deg2 deep field used for the cosmological

constraints presented here is centered at ra23h30dec-55 and is part of the full survey centered

at ra0h30dec-57.5).

Map generation is repeated for each individual observation, leaving ∼ 2500 lead+trail map

pairs for the 2012 deep field and ∼ 700 lead+trail pairs for the 2013 full survey field. These single

observations are then sorted by dither step, ranked sequentially in time, and in the case of the 2012

deep field observations, combined into 122 “bundles:” map coadds with approximately uniform

elevation coverage made from temporally proximate observations with at least one observation at

each dither step. Lead and trail bundles are tracked separately, as well as maps made from only

left-going or right-going scans. These sub-bundles are used to check for systematics contaminating

the maps and are discussed in more detail in Section 5.5.

Coadding all bundles from the 2012 observing season, the deep field reaches a map depth of 7

(10) µK·arcmin in temperature T (Polarization P ) at 150 GHz. That is, 7 (10) µK fluctuations in

T (P ) in a square arcminute pixel have a signal-to-noise ratio of one. Additionally, the full coadd

of the 2013 full survey achieved a depth of 12 (17) µK·arcmin in T (P ). These are the deepest

maps ever made of the CMB temperature and polarization anisotropies with this angular resolution

(∼ 1′ at 150 GHz). In comparison, the previous record-deep maps were from the SPTsz 2500 deg2

temperature survey with a nominal depth of 18µK·arcmin at 150 GHz (13µK·arcmin in two 100

deg2 deep fields, one of which is identical to the SPTpol deep field). In other words, with just one

year of full survey observations the SPTpol 500 deg2 field is deeper than the deepest 8% of the

SPTsz 2500 deg2 survey. Another two years of observing are scheduled for SPTpol after which we

project a final map depth of ∼ 7 (10) µK·arcmin in T (P ) in the full 500 deg2 survey and ∼ 5 (7)

µK·arcmin in the deep field.

While survey area increased by a factor of five between the 2012 and 2013 observing seasons
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Figure 5.4: CMB T map from the SPTpol 500 deg2 survey field 2013 observations. Resolution
is 1 arcmin/pixel. The Oblique Lambert azimuthal equal-area projection is applied (80). (Top)
Signal or “sum” map, coadding all observations of the 2013 season into a single map. (Bottom)
Noise or “difference” map, generated by subtracting coadds of the first and second half of the
observing season. T noise reaches a white floor of 12.4 µK·arcmin at 3500 < l < 4500 when
minimal timestream filtering is applied.
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Figure 5.5: CMB Stokes Q polarization map from the SPTpol 500 deg2 survey field 2013 ob-
servations. Here, colorscale indicates local polarization direction (±Q) expressed as differential
intensity. Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal equal-area projection is
applied (80). Polarization angles have been “flattened” to remove curvature induced by the projec-
tion. The strong vertical/horizontal features are indicative of E-mode polarization being imaged
with high signal-to-noise. (Top) Signal or “sum” map, coadding all observations of the 2013 season
into a single map. (Bottom) Noise or “difference” map, generated by subtracting coadds of the first
and second half of the observing season. Stokes Q noise reaches a white floor of 16.7 µK·arcmin at
3500 < l < 4500 when minimal timestream filtering is applied.
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Figure 5.6: CMB Stokes U polarization map from the SPTpol 500 deg2 survey field 2013 ob-
servations. Here, colorscale indicates local polarization direction (±U) expressed as differential
intensity. Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal equal-area projection is
applied (80). Polarization angles have been “flattened” to remove curvature induced by the pro-
jection. The strong ±45◦ features are indicative of E-mode polarization being imaged with high
signal-to-noise. (Top) Signal or “sum” map, coadding all observations of the 2013 season into a
single map. (Bottom) Noise or “difference” map, generated by subtracting coadds of the first and
second half of the observing season. Stokes U noise reaches a white floor of 17.1 µK·arcmin at
3500 < l < 4500 when minimal timestream filtering is applied.
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Figure 5.7: CMB E-mode polarization map from the SPTpol 500 deg2 survey field 2013 observa-
tions. Here, colorscale indicates local polarization direction (±E) expressed as differential intensity.
Resolution is 1 arcmin/pixel. The Oblique Lambert azimuthal equal-area projection is applied (80).
(Top) Signal or “sum” map, coadding all observations of the 2013 season into a single map. (Bot-
tom) Noise or “difference” map, generated by subtracting coadds of the first and second half of the
observing season.
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the map depth degraded by less than
√

5. During the austral summer of 2012-2013 several aspects

of the focal plane were upgraded, including the band-defining low-pass filters in the optics chain as

well as one of the seven 150 GHz modules. The modifications improved integrated array mapping

speed from 17.9 µK
√
s to 15.9 µK

√
s at 150 GHz.

5.2.1 Absolute Calibration

While individual timestreams are calibrated relative to RCW38, this is only accurate at

the ∼ 10% level. We obtain an absolute calibration based on correlations between SPTpol and

absolutely-calibrated SPTsz maps over the deep field. Schematically, we make half-season maps

of SPTpol deep field observations and 16 sets of SPTsz maps over the same area of sky using the

same filtering choices and accounting for small differences between the beams of the experiments.

We then take Fourier transforms of the maps and calculate the cross-spectrum of the SPTpol

half-season maps (SPTpol × SPTpol). Next, we calculate 16 cross-spectra between the full-season

SPTpol map and the 16 SPTsz maps (SPTpol × SPTsz)i. We calculate the ratios (SPTpol ×

SPTsz)i/(SPTpol × SPTpol) and we find the mean and standard deviation of each multipole bin

in the ratios. Finally, we calculate a weighted mean of the ratio by inverse variance weighting each

multipole bin. The resulting number is the amount of correlation between uncalibrated SPTpol

maps and the calibrated SPTsz maps. By multiplying the SPTpol maps by this correlation number

we bootstrap the SPTpol calibration from that of SPTsz. (A similar procedure is used to absolutely

calibrate SPTsz to Planck). For the 150 GHz 2012 observations of the deep field, to obtain our

final temperature calibration we multiply our maps by

A150 = 0.8933± 0.0137, (5.4)

where the error is the quadrature sum of the (SPTpol × SPTsz) and (SPTsz × Planck) calibration

statistical errors.
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5.2.2 Polarization Angle Calibration

In order to reliably construct maps of Stokes Q and U polarization, we require accurate mea-

surements of each detector’s polarization angle relative to some pre-defined “zero” angle. The 150

GHz detectors are fabricated on photolithographed monolithic silicon wafers with detector pairs at

90◦ relative to each other in pixels that alternately rotate by 45◦. Additionally, the seven hexag-

onal wafers are installed in the focal plane with 60◦ rotations, meaning the 1176 optical 150 GHz

bolometers are in polarization angle groups stepped by 15◦. Being monolithically fabricated, the

nominal polarization orientation of each 150 GHz detector is well known, up to small displacements

and rotations introduced during focal plane assembly. However, other potential systematic effects

introduced by elements in the optics chain of the telescope, for example polarized reflections off the

capacitive metal-mesh band-defining low-pass filters or telescope mirrors, could change the effective

polarization angle of a given detector on the sky. Therefore we must rely on measurements of an

external polarized calibrator to determine the detector polarization angles.

We constructed a polarized calibrator (polcal) source 3 km from the telescope. A hot thermal

source is chopped behind a stationary wire grid polarizer to create a well-defined polarization state

to measure. To reduce detector atmospheric loading from observing near the horizon, a large

reflector reflects detector beams to 60◦ elevation. The polcal source is visible through a small hole

in the reflector. We focus a single bolometer beam on the polcal and begin rotating a second

polarizer to modulate the polarization signal in 15◦ steps. The response of a detector to the polcal

source will be maximum when the rotating wire grid angle is aligned with the detector angle and

minimized when the rotating grid is anti-aligned by 90◦.1 A minimum response greater than zero

indicates cross-polar pickup (a 0◦ detector is slightly sensitive to polarization at 90◦, for example)

and therefore a reduced polarization efficiency. By fitting a sinusoidal model to a detector’s response

to the polcal source we determine both its polarization angle relative to the polcal fixed grid as

well as its polarization efficiency. Since some detectors may be π/2 out of phase with the fixed wire

1 In reality, since vertically polarized light excites electrons in a vertical wire grid, which are then reflected, the
detector response is maximum when the rotating wire grid is out of phase with its detector angle by π/2.
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grid, the measurements are repeated after rotating the fixed grid by 90◦.

Each detector is measured several times when possible, achieving a statistical error of less

than 2◦ per detector. For each angle grouping on a given module, we average these measurements

to obtain nominal polarization angles and polarization efficiencies for that grouping. Detectors

that did not measure the polcal source with sufficient signal-to-noise or were saturated during

measurements are assigned the corresponding polarization angle and efficiency for its module angle

grouping. With< 2◦ statistical error per detector, the focal plane average angle error is 0.1◦. A suite

of polcal tests were performed modifying the source to maximize potential sources of systematics

in the calibration measurement. From these additional tests, we find the systematic error on the

average polarization angle of the 150 GHz detectors to be less than 1◦.

5.2.3 T → P Deprojection

A variety of effects can leak total intensity (T ) measurements into Stokes Q and U maps,

known as T → P leakage. For example, mis-calibration of gains in a detector pair will produce a

scaled “monopole” copy of the T measurement in the Q and U maps. Higher-order effects, such as

differential detector pointing or beam ellipticities corresponding to first- and second-derivatives of

the T map, respectively, can also leak T into P . Given the low polarization fraction of the CMB,

T → P leakage is a serious systematic contaminant that must be addressed.

For this analysis we characterize and deproject the monopole leakage term, which generates a

false polarization signal P ′ = εPT for P ∈ {Q,U}. We measure differential detector pointing to be

∼ 6′′ and beam ellipticity to be < 5%, rendering higher-order T → P leakage terms sub-dominant

to the true polarization signal according to simulations for the EE and TE power spectra. To

estimate the degree of monopole leakage, we take a weighted average of half-season cross-correlated

T and P maps,

εP =

∑2500
l=300wl

CTPl
CTTl∑2500

l=300wl
. (5.5)

Here wl is a weighting function designed to minimize the uncertainty of εP . For the 2012 deep field
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analysis, we measure εQ = 0.0105± 0.0010 and εU = −0.0137± 0.0010 while for the 2013 full field

analysis we find εQ = 0.0039 ± 0.0010 and εU = −0.0046 ± 0.0010. Deprojection simply entails

subtracting a copy of the measured T map scaled by εP . To test that the deprojection procedure

does not instead bias our polarization maps we apply the same procedure to leakage-free simulated

maps and find negligible bias in the resulting CMB power spectra.

5.2.4 Data Quality Cuts

Not all bolometer timestreams are included in the final maps. We make a series of data

quality cuts to reduce systematics entering our power spectra. At the timestream level, scans are

flagged for removal if at least one of several types of “glitches” are detected. For example, an

energetic cosmic ray striking a detector will produce a sharp spike in the bolometer timestream, in

which case that scan is removed. Occasionally we also observe discrete DC jumps in timestream

amplitudes, which are interpreted as changes in SQUID bias due to discrete jumps in magnetic

flux quanta. Since a change in SQUID bias point affects the conversion from current to power

units during timestream calibration, a bolometer that exhibits DC jumps is flagged and removed

for an entire observation. We also cut timestreams based on their noise properties. For each of the

seven 150 GHz modules we calculate the median timestream RMS for module bolometers during

each observation after masking point sources. If a single timestream exhibits an RMS less than 0.25

times or greater than 3.5 times the median timestream RMS for that module than the timestream is

flagged and removed. This step takes place after polynomial subtraction. Timestream cuts remove

5% of the data.

There are also data quality cuts at the bolometer level. If more than five bolometer scans are

flagged during an observation then the entire bolometer timestream is removed. If, for example,

a SQUID reading out a particular bolometer is turned off during an observation, the bolometer

timestream is likewise ignored. During the 2012 observation season, all bolometers from the C4

module were cut due to unexplained excess noise, one seventh of the total 150 GHz array. The entire

readout chain, from detector module to room-temperature readout electronics, was replaced for the
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2013 season. No evidence of excess noise has since been observed in the new module. Bolometers

are also cut if they do not have reliable polarization calibration data. Finally, bolometers that

respond poorly to the internal calibrator or to elevation nods cannot be reliably calibrated and are

removed from the analysis.

5.3 Pseudo-Spectra

Once maps pass all jackknife null tests (see Section 5.5) we combine left-going and right-

going bundles into a single set of summed map bundles mX
i where X can be either T or E and

i is the bundle index. These bundles contain true sky signal as well as map noise. The noise

between bundles should not correlate, however, and we take advantage of this to both generate

signal-only power spectra as well as obtain an estimate of our noise power spectra. We take the

Fourier transforms of each bundle m̃X
~l,i

where ~l = (lx, ly) and multiply by l(l + 1)/2π to convert to

the standard CMB power spectrum normalization: DX
l = l(l+ 1)CXl /2π. With this normalization

convention spectra are flatter over a wide range of multipoles. This is beneficial when binning

spectra into bandpowers, where it is ideal if the spectrum is slowly varying over the multipole

range being binned. We then multiply m̃X
i by the complex conjugate of a different bundle transform

m̃Y ∗
j , i 6= j, to generate two-dimensional cross-spectra D̂XY

ij (Figure 5.8). We azimuthally bin this

spectrum into bandpowers and take the average over i, j to obtain an estimate of the binned XY

power spectrum D̂XY
b . The entire series of steps is neatly encapsulated with the equation

D̂XY
b =

〈
l(l + 1)

2π
Re
[
m̃X
~l,i
m̃Y ∗
~l,j

]〉
l∈b
. (5.6)

For N bundles, there are N(N − 1)/2 unique cross-spectra per XY spectrum. Thus for 122

bundles, we average 7381 cross-spectra for both the TE and EE power spectrum estimates. Since

noise doesn’t correlate between bundles, the D̂XY
b are free of noise bias. To estimate the remaining

noise variance N̂XY
b we take the variance of the D̂XY

b,ij bundle cross-spectra (see Section 5.4.5).

The D̂XY
b are biased estimates of the true XY spectra and are thus known as “pseudo-

spectra.” Several effects during observing and analysis conspire to bias our spectra estimates.
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Figure 5.8: (Top) Two-dimensional biased E-mode pseudo-spectrum from SPTpol 2013 full survey
observations with Cl normalization and Fourier resolution ∆l = 6.25. The spectrum is converted
to Dl and azimuthally averaged in multipole bins of ∆l = 50 to generate the more familiar one-
dimensional power spectrum. The E-mode acoustic peaks are clearly visible as harmonic rings
with high signal-to-noise even before azimuthal averaging. The vertical stripe of much lower power
at low lx is due to timestream polynomial subtraction along the scan direction, which is mostly
parallel to lx. (Bottom) E-mode noise power spectrum with the same color scale. Sample variance
is not included. A small rise in noise is visible below l ∼ 150 but otherwise the noise is white.
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Polynomial filtering of timestreams acts as a high-pass filter, reducing the power present in the

maps at low multipoles. On the other hand, map pixelization low-pass filters the data reducing

power at higher multipoles. Additionally, we observe only a small fraction of sky, and the resulting

sky apodization mixes power between Fourier modes and limits the available modes to measure at

low multipoles. Finally, the finite resolution of the receiver effectively convolves maps by a roughly

Gaussian beam, which likewise multiplies m̃X
i by a Gaussian in Fourier space. To obtain constraints

on cosmological parameters, the end goal of this analysis, we must unbias the pseudo-spectra.

5.4 Estimation of Unbiased Power Spectra: the MASTER Algorithm

The maps and their resulting binned power spectra D̂XY
b are biased measurements of the CMB

sky. In order to obtain estimates of the unbiased spectra, we must understand the effects of our

observing strategy and analysis pipeline on the intrinsic spectra. We follow the MASTER algorithm

(81) to determine what these effects are and remove them from our power spectra estimates. In

terms of an unbiased measurement of the binned true sky spectra DXY
b′ , the pseudo-spectra are

given as

D̂XY
b = Kbb′D

XY
b′ . (5.7)

The “biasing kernel matrix” Kbb′ encapsulates a series of linear operations performed on the true

spectra. It can be expanded into constituent operations as

Kbb′ = Pbl
(
Mll′ [WWW]Fl′B

2
l′
)
Ql′b′ . (5.8)

By inverting Kbb′ we can obtain an estimate of the unbiased binned true-sky CMB power spectra:

DXY
b = K−1

bb′ D̂
XY
b′ . (5.9)

Therefore, we must measure and understand each component of the biasing kernel.

As described in (81), Pbl is the binning operator, which takes independent multipoles l and
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bins them into bandpowers b,

Pbl =


1

∆l(b)
, l(b−1) < l < l(b)

0, otherwise

, (5.10)

while Qlb is its reciprocal operator

Qlb =


1, l(b−1) < l < l(b)

0, otherwise

. (5.11)

The other components of the kernel matrix, the mode-coupling matrix Mll′ [WWW], the TOD filtering

transfer function Fl′ , and the beam function Bl′ are specific to our experiment and analysis and

will be discussed separately in the following sections.

5.4.1 Mode-Coupling

When making full-sky maps each multipole in the resulting spectra are independent of each

other due to the orthogonality of the spherical harmonic functions Y m
l . When only a portion of the

sky is observed, however, the full-sky is multiplied by an effective apodization mask in real space

leading to correlations between Fourier modes. The mode-coupling matrix Mll′ [WWW] accounts for the

mixing induced by the map apodization window WWW. The SPTpol window transitions smoothly from

unity in the center of the map region to zero with a cosine apodization over 15′ at its boundaries.

Point sources with flux > 50 mJ at 150 GHz are also masked with a 5′ disk. The disks are tapered

to zero with a 5′ cosine taper. The SPTpol 2012 deep field sky apodization mask is shown in the

top left of Figure 5.9.

The mode-coupling matrix is calculated analytically following the description in Appendix A

of (81). Separate matrices are calculated for the TT , EE, and TE spectra. To conserve power in

Fourier space when applying an apodization mask WWW to a real-space map, each coupling matrix is

normalized according to ∑
l′

Mll′ [WWW] = R−2

∫
d2rW2 ≡ w2, (5.12)
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Figure 5.9: (Top left) The SPTpol 2012 150 GHz deep field apodization window. The edges of the
region transition to zero using a 15′ cosine taper. Point sources with > 50 mJ flux at 150 GHz are
masked with 5′ disks and a 5′ cosine taper. (Top right) The TT mode-coupling matrix, log scale.
(Bottom left) The EE mode-coupling matrix, log scale. (Bottom right) The TE mode-coupling
matrix, log scale. White elements are negative. When binned to ∆l=50 bandpowers, mode-coupling
due to the apodization window between Fourier modes is < 10%.

where R is the physical extent of a (projected) map in radians. In theory, the act of apodizing the

sky can also couple power between Fourier modes of different spectra. This is automatically taken

into account for the TT and EE spectra when calculating the TE mode-coupling matrix and we

have ignored coupling between BB, EE, and TT under the assumption that power in EE � BB.

We plot the SPTpol deep field mode-coupling matrices in Figure 5.9. Note that when binned to

the final spectrum resolution of ∆l = 50, mode-coupling between adjacent spectrum bandpowers

is < 10%.
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5.4.2 Beam Function

The telescope optics and pixel feedhorns define a “beam function” or “beam,” which encodes

from where on the sky power coupling to the detectors is coming. In other words, it is the in-

strument’s spatial response to a delta function input (point source). The SPTpol beam is a 1.18′

full-width at half-maximum (FWHM) Gaussian at 150 GHz with a gradually decreasing low-power

“shelf” that extends from roughly 5′ to at least a degree beyond the beam center. The true sky is

convolved by our beam function during observations, which effectively low-pass filters our data re-

ducing our sensitivity to smaller-scale features in the maps. According to the convolution theorem

this is equivalent to multiplying the power spectra of our maps by B2
l , the square of the Fourier

transform of our beam function (squared since both maps entering the power spectrum have been

convolved by the beam function).

We construct our beam function from full-season coadds of point sources and nine observa-

tions of the planet Mars. With a maximum angular diameter of 17.9′′ (82), Mars can be safely

treated as a point source in this analysis and therefore a map of Mars is also a measurement of

the instrument’s beam. We Fourier transform each observation and azimuthally average to obtain

Bl. We combine many observations of Mars to reduce noise in our measurement of the beam at

intermediate angular scales, out to roughly 25′ from the center of Mars. The beam at larger angles

primarily affects the low-multipole region of Bl. Ignoring beam features beyond just 6′ produces a

fractional change in Bl of < 1% at l < 300. Therefore, for the deep field analysis, where the lowest

multipole being considered is l = 500, we truncate the beam at 45′ and arbitrarily normalize Bl to

unity at l = 0.

The measurement of the beam must also account for residual telescope pointing jitter, which

is not measured with a single observation. The jitter is estimated to be ∼ 12′′ by measuring the

FWHM of full-season coadds of the brightest point sources in the deep field and comparing them

to the FWHM of single Mars observations. The Mars observations are convolved with a Gaussian

to match the width of the full-season point source coadds. The effective FWHM of the 150 GHz
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Figure 5.10: The SPTpol 2012 deep field 150 GHz beam function Bl and its fractional errors δBl/Bl.
Bl is arbitrarily normalized to unity at l = 0.

beam including pointing jitter is 1.18′, corresponding to l ∼ 9000, which is more than sufficient for

a power spectrum analysis with lmax = 5000. (Bl drops to 0.67 at l = 5000 when normalized to

unity at l = 0).

Finally, compared to its maximum value the beam function is down three orders of magnitude

where the observed shelf beyond ∼ 5′ begins and only decreases farther from the beam center.

Measurements of the shelf are therefore noisy compared to the gaussian core of the beam. The

shelf is well-fit by an exponential function, however. To reduce noise in the beam function at large

angles, azimuthally averaged Mars observations are fit to an exponential between 5−9′. We replace

the measured beam with the exponential fit for angles > 6′ from the beam center and keep the

measured beam inside this cutoff. We take as our beam function Bl the Fourier transform of this
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hybrid beam. Beam errors come from the standard deviation of beam measurements from the nine

Mars observations. The SPTpol beam function as well as its fractional errors are plotted in Figure

5.10. Beam errors are less than 1% for the multipole range of interest, 500 < l < 5000.

5.4.3 Transfer Function

Before binning into maps detector timestreams are filtered to remove large-scale atmospheric

fluctuations and aliased power from scales smaller than the map pixel scale. These effective high-

and low-pass filters, respectively, bias our estimates of the true sky power spectra. We quantify

the biasing effects of timestream filtering on the true spectra with spectrum transfer functions

FXl , where X ∈ {TT,EE, TE}. From known input theoretical spectra CXl,th we generate simulated

CMB skies. We “observe” these skies with the actual recorded pointing information from the

observations, generating simulated timestreams. These timestreams are then processed identically

to the actual data, coadded into bundles, smoothed by the SPTpol beam function, and multiplied

by the SPTpol apodization window. The simulated bundles are converted to (biased) power spectra

Ĉl,sim following the procedure laid out in Section 5.3. A total of 204 pseudo-spectra realizations

are generated. By averaging over many simulations and comparing to the input spectra, we can

quantify the collective effects of timestream filtering in our analysis pipeline.

Again following the procedure laid out in (81), we take an iterative approach in calculating

FXl . To zeroth order, the transfer functions are simply the ratio of the mean simulated power

spectra over the input spectra:

FXl,0 =

〈
ĈXl,sim

〉
w2Cl,thB

2
l

. (5.13)

Since the beam function is accounted for separately in the kernel Kbb′ , we remove its effects on the

simulated spectra in the calculation of the transfer function. In this first iteration we approximate

the mode-coupling matrix as diagonal and include its normalization factor w2 to conserve Fourier

power in the apodized spectrum. We next iterate the transfer function to remove the effects of
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Figure 5.11: The SPTpol 2012 deep field 150 GHz transfer functions Fl, binned to ∆l = 50. The TE
transfer function, not plotted for clarity, is the geometric mean of the TT and EE transfer functions.
The initial iterations exhibit oscillations from mode-coupling induced by the map apodization
window, but by the fifth and final iteration only the effects of timestream filtering on the power
spectra remain.

mode-coupling by including Mll′ [WWW] in the calculation:

FXl,i+1 = FXl,i +
Mll′F

X
l′,iCl′,thB

2
l′

w2Cl,thB
2
l

. (5.14)

In general FXl converges after the first iteration but we use the fifth iteration for final transfer

functions. This iterative approach works well for TT and EE spectra, but due to several zero-

crossings in the TE spectrum, the calculation is especially sensitive to Fourier resolution and the

specific input theoretical spectrum. Since TE spectra are generated by taking the cross-spectra of

T and E maps, we side-step this instability in the TE transfer function by taking the geometric
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mean of the TT and EE transfer functions,

F TEl =
√
F TTl FEEl . (5.15)

The initial and final iterations of the TT and EE SPTpol 2012 deep field transfer functions are

plotted in Figure 5.11. The initial iterations exhibit clear oscillations due to mode-coupling from

the apodization window, but by the fifth and final iteration they have been completely cleaned.

5.4.4 Bandpower Window Functions

We do not have the sensitivity to make high signal-to-noise measurements of each multipole

in a spectrum and therefore bin our spectra into bandpowers of width ∆l ≥ 50 according to

Db = PblDl (5.16)

for each bandpower b that covers a specified multipole range, where Pbl is the binning operator. In

order to obtain meaningful constraints on cosmological parameters we must compare our binned

spectra Db to unbinned theoretical spectra Dth
l . We define weighting functions W b

l /l indexed by

the bandpower b, known as bandpower window functions, that transform from unbinned to binned

power spectrum space:

Dth
b =

W b
l

l
Dth
l . (5.17)

Once binned, the theoretical spectrum bandpowers can be directly compared to our measured

bandpowers.

The window functions specify how much power from each individual multipole contributes to

a single bandpower so they are themselves functions of the biasing kernel matrix. Beginning with
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Figure 5.12: The lowest three bandpower window functions for the SPTpol 2012 150 GHz deep
field EE power spectrum. Window functions are calculated with a resolution of ∆l = 5.

Equations 5.7 and 5.16,

W b
l

l
Dth
l = Dth

b

= K−1
bb′

[
D̂th
b′

]
= K−1

bb′

[
Kb′bD

th
b

]
= K−1

bb′

[(
Pb′l′Ml′lFlB

2
l Qlb

) (
PblD

th
l

)]
= K−1

bb′
(
Pb′l′Ml′lFlB

2
l

)
Dth
l .

(5.18)

The bandpower window functions are thus

W b
l

l
= K−1

bb′
(
Pb′l′Ml′lFlB

2
l

)
(5.19)
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with normalization ∑
l

W b
l

l
= 1. (5.20)

We plot the first three SPTpol 150 GHz EE spectrum bandpower window functions in Figure 5.12

with ∆l = 50. The shape of the window functions is largely set by the mode-coupling and therefore

the Fourier transform of the map apodization window. It makes intuitive sense that the window

functions would resemble sinc functions (the real-space map apodization window is largely a 2-D

boxcar) with damped Fourier ringing due to the gradual cosine taper at the edges of the apodization

mask. From the window functions it is clear that the mode-coupling induces correlations between

adjacent bandpowers.

5.4.5 Bandpower Covariance Matrix

The bandpower covariance matrix Cbb′ quantifies the uncertainties and correlations between

bandpowers. This also accounts for correlations between bandpowers from different spectra, giving

the covariance matrix a 2 × 2 block structure for TE and EE 150 GHz spectra included in this

analysis. The “on-diagonal” blocks are auto-covariance (TE × TE and EE × EE), while the two

“off-diagonal” blocks encode correlations between spectra as cross-covariance (TE × EE). The

covariance matrix includes contributions from sample variance from limited sky coverage, noise

variance from the measured cross-spectra, uncertainties in the instrument beam, and calibration

uncertainty.

Sample covariance Ĉ
s

bb′ for the auto-covariance blocks is estimated directly from the variance

in the set of N = 204 bundle realizations. Each simulated set contains 122 bundles, which match

the coverage of the actual data bundles. For each realization, unbiased cross-spectra Dsim
b,i are

generated exactly as described in Sections 5.3 and 5.4. In general Dsim
b,i are vectors including both

TE and EE bandpowers. We then simply take the variance of these simulated cross-spectra to

obtain our estimate of sample covariance:

Ĉ
s

bb′ =
∑
i

(
Dsim
b,i −Dsim

b

)T (
Dsim
b′,i −Dsim

b′

)
N − 1

. (5.21)
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The noise covariance Ĉ
n

bb′ is calculated from the variance between the measured cross-spectra

DAB
b and contains two terms. The first term assumes complete independence between cross-spectra

and is similar to the sample covariance except that now we are concerned with the variance in our

measurement of the sample mean (our measured power spectra):

Ĉ
n1

bb′ =
∑
i

(
DAB
b,i −DAB

b

)T (
DCD
b′,i −DCD

b′

)
N(N − 1)

, (5.22)

where now N is the number of cross-spectra, and AB and CD denote either TE or EE. The

second term accounts for additional covariance from correlations between cross-spectra since they

share a subset of maps between each other. We first calculate an N ×N map-overlap matrix M ,

where rows and columns index a particular cross-spectrum. Its elements are equal to one if two

spectra share a map and zero otherwise. The diagonal is left to be zero even though it represents

cross-spectra that share two maps, since this is exactly what is calculated in the first noise term

above. By taking the outer product of the map-overlap matrix M with ∆DAB
b,i = DAB

b,i −DAB
b we

extract the components of each cross-spectrum that correlate with other cross-spectra. Then we

find the variance of the sample mean as before:

Ĉ
n2

bb′ =
∑
i

(
∆DAB

b,i

)T (
M ⊗∆DCD

b′,i

)
N(N − 1)

. (5.23)

The total bandpower covariance matrix from sample and noise covariance is then

Ĉbb′ = Ĉ
s

bb′ + Ĉ
n1

bb′ + Ĉ
n2

bb′ . (5.24)

As in previous SPT analyses (e.g. (83), (39), (13)) elements far from the diagonal of the auto-

covariance blocks Ĉ
X×X
bb′ are noisy due to limited simulated realizations but the general shape is well

known given the map apodization window. We therefore “condition” each block in the covariance

matrix to conform to the expected shape. Bins are replaced with the average of correlation matrix

elements the same distance from the diagonal. Additionally, all elements greater than ∆l = 400

from the diagonal are set to zero where no correlation is expected. A conditioned covariance matrix
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takes the form

Cbb′ =

∑
b1−b2=b−b′

Ĉb1b2√
Ĉb1b1Ĉb2b2∑

b1−b2=b−b′ 1
. (5.25)

Additional bin-to-bin covariance is generated due to uncertainties in the measurement of the

beam function B`. A “beam correlation matrix” is first constructed,

ρρρbeamij =

(
δDi

Di

)(
δDj

Dj

)
(5.26)

where

δDi

Di
= 1−

(
1 +

δBi
Bi

)−2

, (5.27)

and δBi
Bi

comes from the uncertainty in our measurements of Mars (see Section 5.4.2). The beam

correlation matrix is then converted to a covariance matrix via the measured bandpowers

Cbeam
ij = ρbeamij DiDj . (5.28)

In general, Di and Dj could be either TE or EE bandpowers.

Finally, we add covariance from calibration uncertainty σcal. There are two sources of cali-

bration uncertainty: imperfect knowledge of our absolute temperature calibration A and our po-

larization efficiency P . Temperature calibration affects the TE and EE spectra equally while

polarization efficiency enters as the number of polarized input maps in a spectrum. For each block

in the covariance matrix we generate a total calibration uncertainty

εXY = σXcalσ
Y
cal, (5.29)

where X and Y are either TE or EE. Since absolute calibration and polarization efficiency enter

at the map level, calibration uncertainty enters as the variance of the map amplitudes squared. For

independent random variables A and B

var(AB) = E[A2]E[B2]− E[A2]2E[B2]2. (5.30)

Thus, for maps with uncertainty in amplitude A and polarization efficiency P , the calibration error
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for each spectrum is

σEEcal =
√

var(A2P 2) =
√
E[A4]E[P 4]− E[A2]2E[P 2]2

σTEcal =
√

var(A2P ) =
√
E[A4]E[P 2]− E[A2]2E[P ]2,

(5.31)

which can be further expanded into functions of the mean and variance of A and P . The calibration

covariance is then defined as

Ccal
ij = εXYDiDj , (5.32)

where again Di and Dj are TE or EE bandpowers corresponding to X and Y .

5.4.5.1 TE × EE Cross-Covariance

The TE × EE cross-covariance block is important when simultaneously fitting TE and EE

bandpowers to account for correlations between the spectra. When applied to this block, the simple

conditioning procedure described above results in low signal-to-noise due to the limited number of

simulated bundles. Instead of measuring it, we construct the TE × EE block from the higher

signal-to-noise conditioned auto-covariance blocks CX×X
ll′ . In this section we work with native

multipoles l instead of bins b but the procedure is the same for both. The diagonal of the TE×EE

block is defined as an algebraic combination of the auto-covariance diagonals CX×X
ll assuming the

covariance blocks can be related through theoretical expectations of sample and noise variance.

According to (84)

CTT×TT
ll =

2

(2l + 1)fsky

(
CTTl +NTT

l

)
CEE×EE
ll =

2

(2l + 1)fsky

(
CEEl +NEE

l

)
CTE×TE
ll =

1

(2l + 1)fsky

[(
CTEl

)2
+
(
CTTl +NTT

l

) (
CEEl +NEE

l

)]
CTT×EE
ll =

2

(2l + 1)fsky

(
CTEl

)2
CTE×TT
ll =

2

(2l + 1)fsky
CTEl

(
CTTl +NTT

l

)
CTE×EE
ll =

2

(2l + 1)fsky
CTEl

(
CEEl +NEE

l

)
,

(5.33)
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Figure 5.13: (Top) TE×EE cross-covariance matrix measured from 105 cross-spectra simulations.
(Bottom) Cross-covariance matrix constructed using auto-covariance block diagonals.
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where fsky is the fraction of sky observed, CXl is a theoretical power spectrum, and NX
l is a

noise spectrum. Absorbing 1/
√

(2l + 1)fsky into each theory and noise spectrum, we can obtain

an expression for the diagonal of the TE × EE cross-covariance matrix in terms of diagonals of

the auto-covariance matrix blocks. First we define the theory and noise spectra in terms of the

auto-covariances:

CTEl = sign
(
CTEl

)√√√√√abs

CTE×TE
ll −

√
CTT×TT
ll CEE×EE

ll

2


CTTl +NTT

l =

√
CTT×TT
ll

2

CEEl +NEE
l =

√
CEE×EE
ll

2
.

(5.34)

Substituting Equations 5.34 into Equations 5.33, we find that along its diagonal

CTE×EE
ll = 2 sign

(
CTEl

)√√√√√abs

CTE×TE
ll −

√
CTT×TT
ll CEE×EE

ll

2

√CEE×EE
ll

2
. (5.35)

The off-diagonal shape of the TE×EE cross-covariance matrix is of course controlled by its

correlation matrix ρρρTE×EE , which is constructed from the average of the conditioned TE and EE

correlation matrices. It should be noted that the diagonal of the TE ×EE correlation matrix can

be negative and non-unity since the TE and EE spectra are not perfectly (anti)-correlated; the

signs of the diagonal follow the signs of the measured TE bandpowers and are propagated out from

the diagonal along +45◦ lines according to results from test simulations. By construction, however,

ρρρTE×EE is unity along its diagonal, so it is scaled by the normalized amplitude of the TE × EE

diagonal along +45◦ lines, again according to results from test simulations:

ρρρTE×EE =
CTE×EE
ll√

abs
(

CTE×TE
ll

)
CEE×EE
ll

〈
ρρρTE×TE + ρρρEE×EE

〉
. (5.36)

The final TE × EE cross-covariance matrix is computed via

CTE×EE
ll′ = ρρρTE×EE

√
abs

(
CTE×TE
ll

)
CEE×EE
l′l′ (5.37)
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In Figure 5.13 we plot a TE×EE cross-covariance matrix measured from 105 simulations of CMB

cross-spectra next to the same matrix constructed with the above procedure. Tests indicate that

the theoretically expected cross-covariance can be reproduced with high fidelity given sufficient

signal-to-noise in the input auto-covariance block matrices. Sufficient signal-to-noise is achieved if

there is at least one simulation for every bandpower in the final TE and EE spectra.

5.5 Jackknives

To look for systematic signals contaminating our maps we design and perform a set of null

tests known as jackknives. We define half-season splits designed to enhance a potential systematic

signal. For example, if observations made with the Sun above the horizon were contaminated by

the Sun, then by subtracting a coadd of “Sun-up” bundles from a coadd of “Sun-down” bundles

the true sky signal would difference away and leave the contaminant. We generate cross-spectra

from these differenced, or jackknife, bundles using the same procedures as those used to generate

pseudo-spectra for the full season of data as described in Section 5.3. We bin these spectra into

nine bandpowers of ∆l = 500 from 500 < l < 5000. Next we calculate the χ2 statistic with nine

degrees of freedom to quantify the residual power compared to the null hypothesis: that there is

no contaminant signal and that the bandpowers should be consistent with zero. We then compute

and collect the probabilities to exceed (PTEs) for all jackknife tests performed on the 150 GHz

TE and EE spectra. A uniform distribution of PTEs is expected between zero and one, and we

a priori define a PTE less than 0.05 or greater than 0.95 as a jackknife failure and evidence of a

systematic contaminant in our maps.

For the 2012 deep field analysis we define four separate jackknife tests. 1) We look for

temporally-dependent systematics by differencing coadded bundles of the first half of the season

from those of the second half. Potential systematics include drift in detector calibration, non-

stationary readout noise, or Sun contamination after it rises at the end of the observing season.

2) We split bundles according to left-going or right-going telescope scans. This test searches for

scan-dependent effects such as residual telescope wobble after steps in elevation, which only happen
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Table 5.1: PTEs for SPTpol 2012 Deep Field Jackknife Tests

Jackknife TE EE

1st Half / 2nd Half 0.43 0.64
Left / Right 0.58 0.06

Ground 0.74 0.44
Moon 0.12 0.58

before right-going scans introducing a decaying modulated atmosphere signal into the maps. 3)

Potential contamination from stationary objects or features on the ground is probed by making

map coadds in az/el ground coordinates. We measure the RMS noise in these maps as a function of

azimuth and rank each CMB field observation from least to most RMS noise based on its azimuth at

the time of observation. Differencing the highest-RMS maps from the lowest-RMS maps generates

a ground jackknife. 4) We test for potential systematics introduced when the Moon is above the

horizon. The jackknife is simply differencing “Moon-up” against “Moon-down” observations.

There are a total of eight jackknife tests for the 2012 deep field analysis: four tests on both

the TE and EE power spectra. The PTEs for each test is summarized in Table 5.1. Based on

our a priori rubric, we find that our jackknife spectra pass all tests. We therefore conclude that

our maps and resulting power spectra are free of significant systematic bias and we proceed to use

them to place constraints on cosmological parameters.



Chapter 6

Cosmological Parameter Fitting

After data reduction is complete, we are left with three primary data products: a vector of

bandpowers, a bandpower covariance matrix, and a set of bandpower window functions that enable

one to compare the measured bandpowers to a theoretical spectrum. The task at hand is to take

these data products and obtain constraints on cosmological parameters. We will describe in this

chapter a fitting technique using a Bayesian likelihood formulation to estimate the goodness of fit of

a given model to the data. This technique is easily extended to the process of Fisher Forecasting,

a way for estimating the constraining power of an experiment even before data are collected,

which we will briefly describe. Finally, we also discuss a Markov Chain Monte Carlo (MCMC)

process for intelligently stepping through a many-dimensional parameter space to estimate the

probability distribution functions of each model parameter. This discussion includes concerns of

chain convergence as well as a description of a new likelihood code written by the author to obtain

cosmological constraints from SPTpol data.

6.1 Bayesian Likelihood

We adopt a Bayesian approach to determine the probability distribution functions (PDFs)

of cosmological parameters of interest. To begin, Baye’s Theorem states that

P (~θ| ~D) ∝ L( ~D|~θ)P (~θ), (6.1)

where P (~θ| ~D) is the posterior probability of an M -length vector of theory parameters ~θ given a

data vector ~D, L( ~D|~θ) is the likelihood of the data given the input theory, and P (~θ) is the prior
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probability on the theory parameters. Given the data we measure (the CMB polarization power

spectra bandpowers), we would like to estimate the PDFs of theoretical cosmological parameters

~θ. In other words, we aim to determine the posterior probability of the theory parameters given

the measured power spectra.

Estimating ~θ equates to maximizing the posterior probability in Equation 6.1. If the prior is

uniform then maximizing the likelihood function L( ~D|~θ) also maximizes the posterior probability.

What then is the likelihood for the measured bandpowers? Recall that a power spectrum Cl is the

azimuthal average of a 2-D power spectrum, with a constant multipole l making a circle in Fourier

space (Figure 5.8). As l increases so too does the circumference of the circle and therefore the

number of measurements going into the Cl average. Thus, at even relatively low multipoles, the

likelihood of the Cl’s or the binned bandpowers Db’s is well-approximated by an N -dimensional

Gaussian distribution according to the Central Limit Theorem,

L( ~D|~θ) ∼=
1√

(2π)N |Cbb′(~θ)|
exp
−
(
~Db − ~Dth

b (~θ)
)T

C−1
bb′ (

~θ)
(
~Db′ − ~Dth

b′ (
~θ)
)

2
, (6.2)

where ~Db is an N -length vector of measured bandpowers, ~Dth
b (~θ) is an N -length vector of theoretical

bandpowers that are functions of the parameters ~θ, and Cbb′(~θ) is the N ×N bandpower covariance

matrix, which is a function of the theory parameters through the sample variance component.

Taking the natural log of L( ~D|~θ) and disregarding constants1 we find

−2 lnL =
(
~Db −Dth

b (~θ)
)T

C−1
bb′ (

~θ)
(
~Db′ −Dth

b′ (
~θ)
)
, (6.3)

which we note is just a χ2 statistic. Thus, maximizing the likelihood to determine best-fit (maximum

likelihood) theoretical parameters ~θML is simply a χ2-minimization problem.

We have so far assumed the prior P (~θ) is uniform, which would only add a constant to the

lnL. In the analysis below we will apply a Gaussian prior to some of the parameters. This simply

1 An additional term is also generated, ln |Cbb′(~θ)|/2, but since in practice the data covariance matrix is kept

constant during the minimization procedure it adds an arbitrary offset that does not effect what values of ~θ maximize
the likelihood.
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adds an additional χ2 term to the lnL,

χ2
prior(

~θ) =
∑
i

(
θi − θ̂i

)2

σ2
θi

(6.4)

where θ̂i is the expected mean of parameter θi, σ
2
θi

is its variance, and i indexes all parameters with

Gaussian priors. We then minimize the total lnL to find ~θML.

In summary, by using a Bayesian approach we have reduced the complicated process of

cosmological parameter estimation to a simple χ2-minimization operation. The inputs are the

measured CMB power spectra bandpowers Db, their covariance matrix Cbb′ , and the bandpower

window functions W b
l /l that are used to bin theoretical spectra into bandpowers Dth

b (~θ). By varying

~θ we map out the PDFs of the theoretical parameters to determine their maximum likelihood values

~θML and estimate their variance.

6.2 Fisher Forecasting

It is possible to extend the Bayesian treatment above to forecast how well a future experiment

will constrain cosmological parameters even before any data are collected. In the following we adapt

the treatment of (29) to derive an estimate of new parameter constraints from several CMB power

spectra fitted simultaneously with uncertainties quantified by the parameter covariance matrix

Cθiθj . We will employ the Fisher information matrix and thus this technique is called Fisher

forecasting.

6.2.1 Fisher Formalism

We begin by noting that the uncertainty of a given parameter θi is related to the curvature

of the likelihood (85),

F = −∂
2 lnL
∂θ2

i

. (6.5)

Evaluated at θi,ML where the likelihood is maximized, the curvature tells us how “peaky” the

likelihood is. If the curvature is high the likelihood is very peaked at θi,ML and so falls off rapidly

as you move away from the parameter’s maximum likelihood value. In this case θi,ML has low
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uncertainty. On the other hand, if the curvature is low the likelihood is relatively smooth near

θi,ML. A large region of parameter space has nearly the same value for the lnL and so θi,ML has a

larger uncertainty.

If we take many measurements and average the likelihood curvature we obtain the M ×M

Fisher information matrix,

Fθiθj = −
〈
∂2 lnL
∂θi∂θj

〉
, (6.6)

where we have generalized to multiple variables ~θ = (θi, θj , · · · , θM ). In the limit that the lnL is

Gaussian the inverse of the Fisher matrix gives us the parameter covariance

Cθiθj ≥
(
F−1

)
θiθj

. (6.7)

We have invoked the Cramer-Rao bound, which states that the true parameter covariance cannot

be smaller than that estimated from the inverse Fisher matrix (85).

Given our formulation of the lnL from Equation 6.3, let us now derive the Fisher matrix for

cosmological parameter estimation. For ease of derivation we will assume the bandpower covariance

matrix is diagonal with elements Cbb. It will later be a trivial matter to generalize to a non-diagonal

covariance matrix. We will also work with M = 1 theory parameters to start. First we note that

the matrix operation of Equation 6.3 can be rewritten as a summation over the N bandpowers Db

− lnL =
χ2

2
=

N∑
b=1

(
Db −Dth

b

)2
2Cbb

. (6.8)

We have assumed flat priors on all parameters for simplicity.2 We must only take the second

derivative with respect to a single parameter θ to find the curvature matrix:

−d lnL
dθ

=
∑
b

−
(
Db −Dth

b (θ)
) dDth

b (θ)

dθ

F =
−d2 lnL
dθ2

=
∑
b

1

Cbb

[(
dDth

b (θ)

dθ

)2

+
(
Dth
b (θ)−Db

) d2Dth
b (θ)

dθ2

]
.

(6.9)

2 In practice the cosmological parameters are quite sensitive to the CMB power spectra bandpowers making
the lnL in the vicinity of the best-fit parameters reasonably peaky. Since the data themselves are therefore quite
discriminatory, whether the parameter priors are uniform or Gaussian affects the parameter posterior probability
very little. We use Gaussian priors only for instrument-specific “nuisance” parameters in our likelihood.
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Note that Db and Cbb are measured or defined and thus do not vary with θ.3 Averaging over the

distribution to obtain the Fisher matrix F we note that the second term tends to zero since the

measured Db are sometimes greater and sometimes less than the theoretical Dth
b . Thus for a single

parameter we find that the 1× 1 Fisher matrix is given by

Fθθ =
∑
b

1

Cbb

(
dDth

b (θ)

dθ

)2

. (6.10)

To Fisher forecast the constraining power of a new or on-going CMB experiment we must only

have a model or estimate of its bandpower covariance matrix and knowledge of how the theoretical

bandpowers vary as functions of our chosen cosmological parameters. The as yet unmeasured

bandpowers are conveniently not required, however Equation 6.10 must be evaluated at a specific

value of θ so the result is model-dependent.

The above discussion assumes a uniform prior on the cosmological parameters. If, on the other

hand, we have prior knowledge on the parameters from, say, a past experiment we can forecast the

constraints from fitting both experiments’ data simultaneously (e.g. 86). If a prior experiment

measures a parameter variance CAθθ and we calculate a Fisher matrix for a new experiment FBθθ,

then the combined parameter constraints are just

CA+B
θθ =

[(
CAθθ
)−1

+ FBθθ

]−1
. (6.11)

That is, simply add the Fisher matrices of the two experiments and take the inverse to find the

combined parameter constraints.

6.2.2 Generalized Fisher Formalism

Equation 6.10 is easily extended to multiple theoretical parameters ~θ. The elements of the

full Fisher matrix, and in turn the parameter covariance matrix, are then given by

(
C−1

)
θiθj
≤ Fθiθj =

∑
b

1

Cbb

(
∂Dth

b (~θ)

∂θi

)(
∂Dth

b (~θ)

∂θj

)
. (6.12)

3 As noted above, Cbb has a sample variance component and is therefore technically a function of θ. However,
when forecasting parameter constraints a theoretical model is assumed around which we calculate the curvature of
the likelihood. Therefore Cbb remains constant.
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This treatment still assumes that the covariance matrix is diagonal, however. Since the CMB power

spectra are correlated, resulting in a block-diagonal covariance matrix even in a full-sky treatment

where mode-coupling is zero, the theoretical bandpowers are restricted to a single power spectrum;

TE or EE but not both. If we wish to forecast the constraining power of multiple CMB power

spectra fitted simultaneously we must revert to a matrix formalism:

Fθθ′ =

(
∂ ~Dth

b (~θ)

∂~θ

)T

(Cbb′)
−1

(
∂ ~Dth

b′ (
~θ′)

∂~θ′

)
. (6.13)

~Dth
b is now an N · S-length vector and Cbb′ is an N · S ×N · S bandpower covariance matrix for S

power spectra each with N bandpowers. The bandpower covariance matrix is now inverted, which

can be a difficult numerical problem depending on the signal-to-noise of the model covariance

matrix. However, no assumptions have been made about its shape so we are free to model off-

diagonal effects like mode-coupling if we so choose. Finally, the sum over bandpowers is taken care

of automatically by matrix multiplication (outer product) operations.

To evaluate Fθθ′ we assume a particular theoretical model ~θML about which to calculate the

likelihood curvature and determine how the resulting theoretical power spectra vary as functions

of the input parameters. This need only be done once for a given model. By using an accurate

Boltzmann code called CAMB (Code for Anisotropies in the Microwave Background, (32)) to

generate CMB power spectra for given values of cosmological parameters, we numerically evaluate

the bandpower partial derivatives

∂ ~Dth
b (~θ)

∂θi

∣∣∣∣∣
~θ=~θML

∼=
~Dth
b (~θML + ∆θi)− ~Dth

b (~θML −∆θi)

2∆θi
(6.14)

for a small change in a parameter value ∆θi. These are compiled into an N · S × M matrix,

transposed, and matrix multiplied with the bandpower covariance matrix to obtain the final M×M

Fisher matrix. Power spectrum partial derivatives as functions of several ΛCDM cosmological

parameters are plotted in Figure 6.1. One can immediately glean insight into how parameters affect

the CMB power spectra. For example, the spectrum derivatives with respect to Ωbh
2 and Ωch

2

oscillate around zero indicating these two parameters affect the location of the acoustic peaks. The

scalar amplitude As and the optical depth τ , however, mostly affect the amplitude of the spectra.
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Figure 6.1: Partial derivatives of CMB power spectra with respect to ΛCDM cosmological pa-
rameters used to obtain parameter Fisher forecasts. Derivatives are calculated numerically using
CAMB and the step sizes printed in the figure legend. (Top Left) DTT

l derivatives. (Top Right)
DEE
l derivatives. (Bottom Left) DTE

l derivatives. Dashed lines are negative values.

6.2.3 Estimating the Bandpower Covariance Matrix

We must also estimate a future experiment’s bandpower covariance matrix in order to carry

out the parameter forecast. To do so we again use the theoretical expectations for power spectra

covariances from (84) cited in Equations 5.33. We assume the bandpower covariance matrix is

block diagonal. While we know this will not be true since no experiment can measure the full sky

and therefore mode-coupling will be present, this represents a best-case scenario. Again invoking

the Cramer-Rao bound we know that any future parameter constraints after an experiment collects
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data must necessarily be no better than those obtained from this treatment assuming we evaluate

the Fisher matrix at the true maximum likelihood parameter values ~θML. Expanding the noise

spectra Nl we find

CTT×TT
ll =

2

(2l + 1)fsky

(
CTTl + w−1

T el
2σ2
)

CEE×EE
ll =

2

(2l + 1)fsky

(
CEEl + w−1

P el
2σ2
)

CTE×TE
ll =

1

(2l + 1)fsky

[(
CTEl

)2
+
(
CTTl + w−1

T el
2σ2
)(

CEEl + w−1
P el

2σ2
)]
,

(6.15)

and similarly for the cross-covariance blocks. We will call these “Knox formula errors” after the

author who first formulated these theoretical expectations (87). Here we approximate the experi-

ment’s beam as Gaussian with a standard deviation in radians given by

σ =
γb√

8 log 2

π

10800
, (6.16)

where γb is the beam FWHM in arcminutes. In the limit that map noise is white as a function of

multipole then the beam function defines the shape of the noise spectrum. The amplitude of the

noise term is given by the inverse weight in units of µK2

w−1
X =

(
nX

π

10800

)2
(6.17)

where nX is the forecasted survey map depth in µK·arcmin and X ∈ {T, P}.

6.2.4 SPTpol Forecasts

As discussed in Section 5.2, the SPTpol deep field in 2012 achieved a final depth of 7 (10)

µK·arcmin in T (P ) at 150 GHz over 100 deg2 and we predict the same depth over 500 deg2 after

three full years of observing on the full survey field. Using these depths as well as the measured

beam FWHM of 1.18′ we generate 100 realizations of TE and EE bandpowers. To each theoretical

bandpower Dth
b we add a small offset δDb defined as Knox formula error times Gaussian noise

centered at zero with unit standard deviation. An average bandpower over many realizations will

be the theoretical expectation, and the standard deviation of a given bandpower will be the Knox
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Table 6.1: SPTpol Fisher Forecasts for ΛCDM Parameters

Dataset Cosmological parameter constraints
σ(Ωbh

2) σ(Ωch
2) σ(log(1010As)) σ(ns) σ(Σmν) σ(Yp)

×104 ×103 ×102 ×103 [meV] ×102

planck-2013 2.83 2.67 2.48 7.31 302 2.36
+ spt-pol-df 2.77 2.56 2.42 7.06 250 2.33
+ spt-pol-ff3yr 2.60 2.23 2.21 6.38 177 2.23

Notes: Two single-parameter extensions are included; the sum of the masses of neutrino species Σmν ,
and the primordial helium abundance Yp. spt-pol-df is the 100 deg2 deep field, (500 < l < 3000), and
spt-pol-ff3yr is the completed 3-year 500 deg2 full field survey, (50 < l < 3000). spt-pol-df and
spt-pol-ff3yr projections include TE and EE 150 GHz bandpowers only. Blue (orange) constraints
are improvements by at least a factor of 1.10 (1.5) over the planck-2013 temperature-only constraints
(31).

error. We plot the average bandpower over 100 realizations Dth
b with their Knox errors overtop of

measured SPTpol deep field TE and EE bandpowers in Figure 6.2.

Using the resulting covariance matrix generated from these 100 bandpower realizations we

forecasted new ΛCDM parameter constraints including planck-2013 data, which we present in

Table 6.1. We consider separately the addition of the 100 deg2 deep field bandpowers spt-pol-df

at 500 < l < 3000 and the bandpowers from the completed three-year 500 deg2 full survey spt-

pol-ff3yr at 50 < l < 3000. In both cases we only consider the TE and EE bandpowers at

150 GHz but the forecasting process is easily extended to additional power spectra and multiple

frequencies (and their cross-spectra). While improvements over ΛCDM parameters are expected to

be modest, the SPTpol dataset will begin exploring a large parameter-space of model extensions

sensitive to the physics of the power spectra damping tails, of which we only show two: the sum

of the neutrino masses Σmν and the amount of primordial helium Yp. Additionally, we note that

even without information on BB spectra, the TE +EE bandpowers from the completed 500 deg2

survey will significantly increase our constraints on Σmν through its effect on the lensing of the

CMB power spectra.
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Figure 6.2: The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom) power spectra
(black) plotted with averaged Fisher forecasted bandpowers for the 2012 deep field and completed
full survey (red/blue). Forecasted bandpowers are offset by ∆l ± 15 for clarity. The average of
100 random bandpower realizations agrees with the input cosmological theory (solid line). Fore-
casted error bars for the deep field are everywhere comparable to but better than the measured
uncertainties, as expected.
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6.3 Parameter Fitting Through MCMC

We obtain constraints on cosmological parameters using the CosmoMC package (38). While

calculating the likelihood as discussed in Section 6.1 is straightforward, including instrument-specific

nuisance parameters we must explore a ∼ 10-D parameter space to search for the global χ2 min-

imum and the curvature of the likelihood about that point. Performing a thorough grid search

over this volume is impossible. Instead, we use a Markov Chain Monte Carlo (MCMC) approach

to intelligently step through parameter space to find the maximum likelihood values of the cosmo-

logical parameters. In this section we will briefly review the basic MCMC algorithm employed by

CosmoMC. We will then describe the new likelihood package we have written to handle SPTpol

datasets. Finally, we will describe a new ΛCDM extension we have included in CosmoMC to place

constraints on energy injected into the CMB via WIMP particle annihilation as explored by (88)

to which Fisher forecasts predict SPTpol will be sensitive.

6.3.1 Markov Chain Monte Carlo

In order to intelligently sample a large volume of parameter space one must resort to a method

that preferentially finds and samples regions of high probability density. The method employed by

CosmoMC is Markov Chain Monte Carlo (MCMC). In this context, a Markov chain is a countable

stochastic sequence of parameter states ~θn with n steps for which the probability of every state is

only dependent on the previous state (e.g. 89),

Pr
(
~θn+1|~θn, ~θn−1 · · · ~θ1

)
= Pr

(
~θn+1|~θn

)
. (6.18)

We wish to define an algorithm that chooses steps in parameter space ~θ causing a chain to linger in

regions of high probability density such that the number of samples in a region is proportional to

the probability density. When convergence criteria are met, samples in the chain are draws from a

distribution function f(~θ) that approximates the N -dimensional parameter posterior distribution

function P (~θ). As the number of samples n increases f(~θ)→ P (~θ).
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CosmoMC has several stepping algorithm choices and we use the standard Metropolis-

Hastings option for the cosmological constraints presented in this work. The algorithm is as follows:

(1) Choose an initial set of parameter values ~θn=1.

(2) Step the parameter values to ~φ according to a symmetric proposal density q(~φ|~θn) = q(~θn|~φ).

The proposal density defines the step size one should take in parameter space and is usually

taken as Gaussian when no information about the parameters is known. Here it is defined

as a parameter-parameter covariance matrix as measured by Planck. It is updated as a

chain progresses.

(3) Calculate an acceptance probability α to accept the move to ~φ,

α(~φ|~θn) = min

{
1,
P (~φ)

P (~θn)

}
. (6.19)

The probability density P (~φ) is calculated by generating a set of theoretical CMB power

spectra given ~φ and passing these spectra to the SPTpol likelihood module (see Section

6.3.3) to compare to the measured bandpowers.

(4) If α = 1 then move to the new position ~θn+1 = ~φ, otherwise move with the probability α.

If the move is rejected then set ~θn+1 = ~θn.

(5) Repeat until desired convergence criteria are met (Section 6.3.2). The density of samples

in parameter space is then a measurement of the desired probability distribution function

P (~θ).

The first point in parameter space ~θ1 is not in general near the region of highest probabil-

ity density. Therefore each chain will have a “burn-in” period. During burn-in the probability

distribution f(~θ) the chain is sampling does not well-approximate the desired distribution P (~θ).

These chain steps must be discarded to keep from biasing our estimate of P (~θ). To quantitatively

determine the burn-in period of a chain one can divide the chain into smaller units and study the

resulting parameter means and variances. The burn-in portion will yield results discrepant with
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Figure 6.3: Representative 2-D slice in the Ωch
2 − Ωbh

2 plane of a Markov chain. The color bar
designates at what fractional point in the chain each step takes place. The initial steps of the chain
in dark blue are “burn-in.” When the first half of the chain is thrown out, however, the remaining
steps are draws from the desired probability distribution function P (~θ).

the distribution of results from the rest of the chain sub-units. Figure 6.3 shows an example of a

series of chain steps measuring the probability density of Ωch
2 and Ωbh

2. We conservatively take

the burn-in period to be the first 50% of chain steps, which are color-coded blue in the figure. The

start of the chain in dark blue clearly measures a distribution that does not well approximate P (~θ).

The density of the remaining red chain points, however, directly corresponds to the marginalized

probability densities of Ωch
2 and Ωbh

2.
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6.3.2 Chain Convergence

As discussed above, the distribution function f(~θ) a Markov chain draws from only approaches

the desired posterior distribution P (~θ) as the number of samples n → ∞. We must therefore

determine what n is sufficient to consider f(~θ) a reasonable approximation for P (~θ), after which we

call the chain “converged.” To test for chain convergence we use a variant of an empirical estimator

posed by (90). The test requires running several chains in parallel. In this analysis, we run m = 8

chains for every combination of input data and model of interest. Furthermore, consider chain i a

series of n steps
{
ψ1
i , ψ

2
i , · · · , ψni

}
following the nomenclature of (89). Then for each parameter θ

in a given model we consider the ratio of the variance of the chain means B over the mean of the

chain variances W

ψ̄i(θ) =
1

n

n∑
j=1

ψji (θ)

B(θ) =
1

m− 1

m∑
i=1

(
ψ̄i(θ)− ψ̄(θ)

)2
W (θ) =

1

m(n− 1)

m∑
i=1

n∑
j=1

(
ψji (θ)− ψ̄i(θ)

)2

Rθ =
B(θ)

W (θ)
.

(6.20)

Here we have defined ψ̄i(θ) to be the average value for θ from chain i and ψ̄(θ) the average value

of θ from all chains. Rθ is always greater than one, but as the number of samples n → ∞

Rθ → 1. Typically, Rθ < 1.2 is taken as evidence for convergence (91); for this analysis we consider

Rθ < 1.1 for all parameters as a necessary condition for chain convergence. A similar statistic is

also calculated for each eigenvalue λ of the covariance matrix of the chain means, where there are

N eigenvalues for N parameters in ~θ. For all eigenvalues we require Rλ < 1.1 for convergence. We

consider Rθ, Rλ < 1.1 for all θ and λ as sufficient criteria for chain convergence in this analysis.

6.3.3 The SPTpol Likelihood

To calculate the likelihood for the SPTpol bandpowers, we have written a new likelihood

module for CosmoMC specific to SPTpol. While only 150 GHz TE and EE data are included in
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this analysis, with trivial extensions the SPTpol likelihood module will handle all six unique cross-

and auto-spectra between T , E, and B maps, as well as multiple frequencies simultaneously in

future analyses.

In addition to the six standard ΛCDM parameters, the SPTpol likelihood introduces four

nuisance parameters specific to the SPTpol experiment and analysis. The first two are foreground

terms, DPSEE
3000 and DPSTE

3000 , parameterizing the level of residual polarized point source power at

` = 3000 in the EE and TE spectra after point source masking. Point source power between

T and E maps should not correlated as there should be no preferred polarization direction for

point sources. However, we have found that differential beam ellipticity between two detectors

in a polarization-sensitive pair can leak unpolarized Poisson power into our E-mode maps, which

shows up as non-zero point source power in our TE spectrum. Thus we keep the nuisance TE

Poisson term to characterize this systematic power. We give these foreground parameters uniform

priors ranging from 0 to 10 µK2. The third and fourth nuisance parameters are temperature and

polarization calibration, Tcal and Pcal, respectively. After rescaling the bandpowers and covariance

matrix according to the calibration parameters as discussed in Sections 5.2.1 and 5.2.2 we apply

a ±5σ Gaussian prior to Tcal centered on unity with a standard deviation of 0.0137. Finally, we

keep a uniform prior from 0.5 to 1.5 on Pcal to obtain an analysis-independent measurement of any

residual polarization mis-calibration.

The likelihood module takes as input the three primary SPTpol analysis products: a list of TE

and EE bandpowers, their 2× 2 block covariance matrix, and their bandpower window functions.

While this analysis includes only 150 GHz data, with keyword flags the likelihood module can accept

other auto- and cross-frequency spectra, as well as other CMB power spectra besides TE and EE.

Therefore future SPTpol analyses will be able to immediately obtain cosmological constraints when

considering many more spectra. The module also requires a parameter .ini file to specify the priors

to place on the four nuisance parameters. With this parameterization we choose to let CosmoMC

find our calibration uncertainties for us by leveraging the prior knowledge we have of the ΛCDM
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model4 . Therefore we do not include calibration covariance in the bandpower covariance matrix.

After initializing data arrays, the likelihood calculates expected “foreground” spectra using Cl

normalization. Both the EE and TE foreground spectra contain a WIMP annihilation correction

spectrum (see Section 6.3.5). These correction spectra are collectively parameterized by a single

amplitude eWIMP for TT , TE, and EE power spectra. The EE and TE spectra also include

the Poisson terms discussed above to quantify residual polarized point source power after point

source masking. These nuisance foreground parameters are converted to Cl normalization for this

calculation. The foreground spectra are then added to the theoretical CMB power spectra calculated

by CAMB for a given set of parameter values ~θ, which are scaled by the SPTpol calibration

parameters:

CTEl (~θ)→ 1

T 2
calPcal

CTEl (~θ)

CEEl (~θ)→ 1

T 2
calP

2
cal

CEEl (~θ).

(6.21)

The calibration parameters are defined as corrections at the map level so the absolute calibration

Tcal comes in squared while Pcal comes in as the number of polarization maps used to generate a

particular power spectrum. The parameters calibrate the measured SPTpol bandpowers, so they

are applied to the theoretical spectra in a reciprocal sense.

The combined expected TE and EE spectra are converted to Dl normalization and binned

with the SPTpol bandpower window functions to generate theoretical bandpowers Dth
b according

to Equation 5.17. A Gaussian likelihood is then calculated given these theoretical bandpowers,

the measured SPTpol bandpowers DSPTpol
b , and the SPTpol bandpower covariance matrix Cbb′ .

Finally, to include the effects of a Gaussian prior on Tcal we add the negative natural logarithm of a

Gaussian centered around the Tcal expectation µT = 1.0 with a standard deviation of σT = 0.0137

from Section 5.2.15 . The total SPTpol likelihood for a given set of theory and nuisance parameters

4 This could, of course, bias our results if we freeze parameter values to current best-fit values as constrained
by other experiments. More accurately, we can fit SPTpol data simultaneously with other data, in particular data
from Planck, which for our purposes has effectively zero noise at large angular scales and thus tightly constrains the
amplitude of the spectrum.

5 The absolute calibration factor of 0.8933 is already applied to the SPTpol maps, making the expectation value
in the power spectra unity.



127

~θ is thus given by

− lnLSPTpol =
(
DSPTpol
b −Dth

b

)T
C−1
bb′

(
DSPTpol
b′ −Dth

b′

)
+
|lnCbb′ |

2

− lnLPrior =
1

2

(Tcal − µT )2

σ2
T

+
lnσ2

T

2

lnLTotal = lnLSPTpol + lnLPrior.

(6.22)

The total likelihood is returned to CosmoMC, which compares it to the current likelihood value

and determines whether to take a step in parameter space and how large that step should be. It is

clear from Equations 6.22 that ~θ = ~θML when lnLTotal is minimized.

6.3.4 Likelihood Validation

To validate the new likelihood module operates as anticipated we ran a test chain in CosmoMC

with one of the 204 realizations of simulated bandpowers used to estimate the bandpower sample

variance as input. As we do for cosmological constraints from the measured SPTpol deep field

bandpowers, 150 GHz TE and EE bandpowers are included from 500 < l < 5000. We used

the complete bandpower covariance matrix as calculated in Section 5.4.5 but left out calibration

covariance as discussed above. The final SPTpol 2012 deep field bandpower window functions were

also used. If the likelihood module is working as intended, and the covariance matrix properly

accounts for correlations between the TE and EE spectra, the best-fit cosmological parameters

should agree with the input parameters used to generate the simulations. In Figure 6.4 we plot

the resulting 2D marginalized parameter contours from this test chain. In red we plot the 2D

contours from Planck, the best-fit values from which were inputs to the SPTpol simulations. In

black are the parameter constraints from the simulated bandpowers binned to ∆l = 50. We also

plot the bandpowers binned to ∆l = 100 in blue. The latter is a test that our window functions are

calculated properly. So long as the binning is not so coarse that we smooth over relevant features

in the power spectra, the cosmological parameter constraints should be independent of multipole

binning since the bandpower window functions encode how to translate from bandpowers to single

multipoles. All the parameter constraints for both binning cases agree with the input parameters to
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Table 6.2: CosmoMC minimizer results for 204 sets of simulated SPTpol bandpowers.

θ θth µθ σθ ∆θ/σθ

Ωbh
2 0.0222 0.0221 0.0004 -0.28

Ωch
2 0.1185 0.1179 0.0034 -0.17

nS 0.9624 0.9609 0.0077 -0.19
ln 1010AS 3.0947 3.0987 0.0357 0.11
100θMC 1.0415 1.0413 0.0011 -0.12
H0 67.94 68.08 1.37 0.10
Tcal 1.00 0.9994 0.0025 -0.24
Pcal 1.00 0.9970 0.0218 -0.14

within a fraction of the 1-σ uncertainties suggesting that the likelihood and bandpower covariance

matrix are working as intended.

The CosmoMC package also has a minimizer routine, which finds the best-fit parameter val-

ues but does not thoroughly explore parameter space. By using the minimizer on all 204 sets of

simulated bandpowers we can quickly find the best-fit parameters for each realization and compare

the resulting parameter distributions to the simulation input parameters. This provides an addi-

tional consistency test for the SPTpol likelihood and the bandpower covariance matrix. In Table

6.2 we include the input parameter values θth, mean parameter values µθ from the CosmoMC min-

imizer, the standard deviation of the minimizer values σθ, and the fractional differences between

expected and measured values scaled by the standard deviation from the 204 SPTpol simulated

bandpower realizations ∆θ/σθ. Only sample variance was included in the bandpower covariance

matrix. The optical depth was also frozen at the input value τ = 0.0943 for this test to avoid a

strong degeneracy with the scalar amplitude As as is done when fitting measured SPTpol band-

powers. All parameters are within 0.3σ of expected values and often much closer. Combined with

the results of the full CosmoMC test chain above, we conclude that the SPTpol likelihood and

bandpower covariance matrix function properly.
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Figure 6.4: 2-D marginalized parameter likelihood contour grid resulting from a test chain using a
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constraints from ∆l = 50 (∆l = 100) simulated bandpowers. We also used the actual SPTpol deep
field bandpower covariance matrix and window functions for this test. The cosmological constraints
all match within a fraction of the 1-σ uncertainties on the parameters. This simultaneously validates
the likelihood module, bandpower covariance matrix, and the bandpower window functions.
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6.3.5 Adding WIMP Annihilation

It is possible to constrain the particle properties of dark matter using the CMB power spectra.

Potential dark matter particles, e.g. WIMPs, will annihilate and/or decay injecting energy into the

radiation background. Different particle models will lead to varying energy injection profiles as a

function of redshift z. As discussed in (88) energy deposition from particle annihilation or decay

can be modeled following (
dE

dtdV

)
ann

= pann(z)c2Ωcρ
2
c(1 + z)6

(
dE

dtdV

)
dec

= pdec(z)c
2Ωcρc(1 + z)3,

(6.23)

where Ωc is the fraction of the energy density coming from cold dark matter, ρc is the critical density

for a flat universe, and pann(z) and pdec(z) encode energy deposition as a function of redshift

for a given dark matter particle model. Energy injection changes the ionization history of the

universe, and using publicly available codes such as CAMB and RECFAST (92) one can calculate

resulting perturbations to the CMB power spectra. The perturbations can then be decomposed into

orthogonal components. Fitting for the amplitude of these principle components places constraints

on the input particle models.

While performing a principle component analysis on energy injection profiles calculated in

(93) for a range of WIMP particle mass and Standard Model particle annihilation channels, (88)

found that the amplitude of the first principle component captures 99.97% of the relevant infor-

mation. The effects of a wide range of WIMP particle annihilation models on the CMB power

spectra, therefore, can be parameterized by a single variable, namely the amplitude of the first

principle component eWIMP(z). This component is normalized such that pann(z) = εeWIMP(z),

with ε = 2× 10−27 cm3/s/GeV.

To constrain WIMP particle annihilation as studied by (88), we added into CosmoMC their

corrections δDl to the CMB power spectra obtained by mapping eWIMP(z) to Dl-space. This

introduces a single new parameter eWIMP, which parameterizes the amplitude of the principle

component. Figure 6.5 contains the perturbations to the TE and EE power spectra for eWIMP = 1.
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Figure 6.5: Perturbations to the CMB power spectra δDl from WIMP annihilation scaled to
eWIMP = 1 (pann(z) = 2 × 10−27 cm3/s/GeV). (Top) Corrections to the TE spectrum. (Bottom)
Corrections to the EE spectrum.
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We have included eWIMP as a fifth nuisance parameter in the SPTpol likelihood with a flat prior

range of 0−10. Additionally, we have written a modified package of CosmoMC that adds the δDl to

the theoretical expectations from CAMB. This generalized version of CosmoMC allows us to vary

the amplitude of the δDl simultaneously for all experiments that measure the CMB power spectra

to obtain a joint-experiment constraint on eWIMP. Constraints on eWIMP presented in Chapter 7 use

this modified CosmoMC package while all other cosmological constraints use the base CosmoMC

package coupled with the SPTpol likelihood module.



Chapter 7

Results

In previous chapters we have described the design and operation of the SPTpol experiment, as

well as the data analysis tools and techniques required to transform raw detector timestreams into

maps, power spectra, and finally constraints on cosmological parameters. We now present the main

data products and scientific results from this analysis. These data products are first reported in the

form of CMB polarization power spectra bandpowers from the SPTpol 2012 deep field. Efforts taken

to validate and cross-check our power spectra measurements are described in some detail. We then

present ΛCDM parameter constraints resulting from fitting the SPTpol polarization power spectra.

While there is only mild sensitivity in the SPTpol dataset considered here to test for physics beyond

ΛCDM, we nevertheless place constraints on three simple single-parameter extensions. The chapter

concludes with a brief discussion of the results and their implications.

7.1 Bandpowers

We present bandpowers and uncertainties for the SPTpol 2012 deep field TE and EE spectra

at 150 GHz in Figure 7.1 as well as in Figure 7.2 plotted with measurements from other experiments.

Tables 7.1 and 7.2 quantify the bandpowers and their errors. Errors are the square-root of the

diagonal elements of the relevant auto-covariance block and do not include beam or calibration

uncertainties. Bandpowers span the range 501 ≤ ` ≤ 5000. In this multipole range, the TE and

EE transfer functions are never less than 0.7 and we have verified that systematic power induced by

filtering and analysis choices is sub-dominant to the theoretical input spectrum in our simulations,
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Table 7.1: SPTpol 150 GHz TE Power Spectrum

` range `eff D` [µK2] σ [µK2] ` range `eff D` [µK2] σ [µK2]

501 - 550 521 -57.0 19.6 1501 - 1550 1523 -1.4 7.9
551 - 600 572 7.1 22.6 1551 - 1600 1573 10.1 8.2
601 - 650 622 -21.9 26.1 1601 - 1650 1623 -11.6 7.0
651 - 700 672 -41.1 28.1 1651 - 1700 1673 -32.9 6.7
701 - 750 722 -108.5 30.0 1701 - 1750 1723 -23.1 6.0
751 - 800 772 -101.4 26.6 1751 - 1800 1773 -15.9 5.1
801 - 850 822 -70.9 21.4 1801 - 1850 1823 -3.4 5.0
851 - 900 872 4.1 20.4 1851 - 1900 1873 0.8 4.6
901 - 950 922 62.5 21.9 1901 - 1950 1923 -10.1 4.3
951 - 1000 973 -22.9 20.7 1951 - 2000 1973 -14.1 4.1
1001 - 1050 1023 -55.1 19.6 2001 - 2100 2047 -14.9 2.4
1051 - 1100 1073 -100.3 17.0 2101 - 2200 2147 -2.0 2.0
1101 - 1150 1123 -61.3 13.6 2201 - 2300 2248 -4.1 2.0
1151 - 1200 1173 -18.3 12.7 2301 - 2400 2348 -8.1 1.7
1201 - 1250 1223 20.6 12.3 2401 - 2500 2448 -0.5 1.5
1251 - 1300 1273 -22.6 13.1 2501 - 3000 2745 -2.6 0.5
1301 - 1350 1323 -56.9 12.2 3001 - 3500 3246 -0.1 0.5
1351 - 1400 1373 -38.0 11.4 3501 - 4000 3746 0.5 0.5
1401 - 1450 1423 -46.4 9.2 4001 - 4500 4246 1.8 0.7
1451 - 1500 1473 -5.1 8.4 4501 - 5000 4747 1.0 0.8

Notes: We provide the `-band range, weighted multipole value `eff , bandpower D`, and associated
bandpower uncertainty σ. Errors do not include beam or calibration uncertainties.

Table 7.2: SPTpol 150 GHz EE Power Spectrum

` range `eff D` [µK2] σ [µK2] ` range `eff D` [µK2] σ [µK2]

501 - 550 521 8.6 1.7 1501 - 1550 1523 14.1 2.0
551 - 600 572 7.2 2.5 1551 - 1600 1573 19.5 2.3
601 - 650 622 38.1 4.3 1601 - 1650 1623 21.1 2.2
651 - 700 672 40.9 5.2 1651 - 1700 1673 14.9 2.1
701 - 750 722 31.6 5.1 1701 - 1750 1723 8.5 1.6
751 - 800 772 12.0 3.3 1751 - 1800 1773 8.3 1.5
801 - 850 822 15.1 2.5 1801 - 1850 1823 7.4 1.5
851 - 900 872 13.8 2.9 1851 - 1900 1873 8.2 1.5
901 - 950 923 35.3 4.3 1901 - 1950 1923 9.5 1.5
951 - 1000 973 30.1 5.1 1951 - 2000 1973 10.3 1.5
1001 - 1050 1023 29.7 4.9 2001 - 2100 2047 6.2 0.9
1051 - 1100 1073 28.6 3.8 2101 - 2200 2147 5.3 0.8
1101 - 1150 1123 14.4 2.3 2201 - 2300 2248 5.9 0.8
1151 - 1200 1173 11.1 2.2 2301 - 2400 2348 4.0 0.9
1201 - 1250 1223 19.3 2.7 2401 - 2500 2448 1.7 0.8
1251 - 1300 1273 31.1 3.5 2501 - 3000 2745 1.7 0.4
1301 - 1350 1323 30.9 3.6 3001 - 3500 3246 0.9 0.5
1351 - 1400 1373 16.4 2.9 3501 - 4000 3746 0.1 0.6
1401 - 1450 1423 14.5 2.0 4001 - 4500 4246 0.0 0.7
1451 - 1500 1473 8.0 1.6 4501 - 5000 4747 1.3 1.0

Notes: We provide the `-band range, weighted multipole value `eff , bandpower D`, and associated
bandpower uncertainty σ. Errors do not include beam or calibration uncertainties.
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Figure 7.1: The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom) power spectra on a
linear scale. We measure six acoustic peaks in the EE spectrum with high significance and achieve
the highest signal-to-noise measurements of the EE damping tail to date. The solid black lines
in both plots are the ΛCDM expectation from Planck (31) TT measurements and have not been
fitted to the SPTpol data.
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Figure 7.2: The SPTpol 150 GHz 2012 deep field TE (Top) and EE (Bottom, log scale) power
spectra, plotted with data from BICEP2 (23), WMAP (25), QUIET W-band (14), and QUaD (94).
The solid black lines in both plots are the ΛCDM expectation from Planck (31) TT measurements
and have not been fitted to the SPTpol data.
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shown as a solid black line in Figures 7.1 and 7.2.

The bandpowers are binned into three widths: δ` = 50 from 501 ≤ ` ≤ 2000, δ` = 100

from 2001 ≤ ` ≤ 2500, and δ` = 500 from 2501 ≤ ` ≤ 5000. The third through eighth peaks of

the EE power spectrum are apparent with high signal-to-noise. This is the highest signal-to-noise

measurement of the EE damping tail to date, which is less affected by secondary anisotropies like

residual point source power and the thermal and kinetic SZ effects than the TT power spectrum.

Many simple extensions to the ΛCDM model, for example the amount of primordial helium Yp

and the number of relativistic species Neff , are sensitive to the damped amplitude of the photon-

baryon acoustic oscillations at higher multipoles. A measurement of the EE damping tail is an

important step towards placing tighter constraints on extensions to the ΛCDM model. Indeed,

recent forecasts suggest that future measurements of the polarization power spectra will constrain

cosmological parameters better than the temperature power spectrum alone given sufficient sky

coverage and noise (95).

7.1.1 SPTpol Bandpower Validation

Before presenting cosmological constraints from the SPTpol power spectra we note that in

addition to cross-checking the SPTpol likelihood, bandpower covariance matrix, and bandpower

window functions, we also performed a series of validation tests on the final SPTpol deep field TE

and EE bandpowers themselves. Three types of cross-checks were performed:

(1) Frequency: While this analysis focuses on the cosmological constraints from the 150

GHz data, we processed 95 GHz data and generated bandpowers using the same pipeline.

Timestream and map filtering are slightly different between the 95 and 150 GHz datasets

to cater to specific science goals for the different frequency bands, but real CMB features

in the deep field should correlate in the power spectra between frequencies. Figure 7.3

overplots both 95 and 150 GHz (pseudo-spectra) bandpowers generated from 2012 deep

field observations. Since the bandpowers are generated for the same patch of sky we include
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only noise variance in the error bars. The 95 and 150 GHz bandpowers agree within their

errors, which is the expected behavior if features in the power spectra are real properties

of that particular patch of sky.

(2) Alternate Pipeline: To test for biases due to the bandpower analysis pipeline itself we

calculated the bandpowers with an alternate pipeline. The second pipeline varies several

key aspects of the bandpower calculation. First, instead of generating cross-spectra for all

122 bundles for the deep field a set of 40 half-season maps are made from combinations of

the bundles. These 40 super bundles are then crossed, which varies the effect of noise bias on

the bandpowers. Second, we use a harmonic inpainting method discussed in (96) to “paint”

over point sources instead of masking them. This greatly reduces the complication of the

map apodization window and we therefore assume the resulting mode-coupling matrix

is diagonal. Finally, a 2-D transfer function is removed from each super bundle Fourier

transform before calculating 2-D power spectra and azimuthally averaging; normally a 1-

D transfer function is removed from the azimuthally averaged power spectra in a final

“unbiasing” step. The resulting alternate bandpowers for the 150 GHz deep field EE

observations are plotted in Figure 7.4. While there are differences in the bandpowers,

they are generally small compared to the calculated errors. Importantly, the EE peak at

l ∼ 1000 is low compared to the Planck ΛCDM expectation in both pipelines, suggesting

this suppression of EE power is a feature of the deep field and not of the analysis.

(3) Sample Variance: We wished to verify that the low EE peak at l ∼ 1000 as well as the

general “peakiness” of the SPTpol bandpowers compared to the Planck ΛCDM expecta-

tion were consistent with variations due to sample variance. In parallel to the 2012 deep

field cosmological analysis we have been processing full survey observations from the 2013

observing season. The full survey has four contiguous 100 deg2 patches the same shape and

extent as the 2012 deep field, including the deep field itself, centered at ra22h30dec-55,

ra23h30dec-55, ra0h30dec-55, and ra1h30dec-55. We generated four sets of 2013
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Figure 7.3: Pseudo-spectra SPTpol 150 GHz deep field bandpowers (blue) overplotted with 95 GHz
bandpowers (red). Error bars include noise variance only. The two sets of bandpowers agree within
errors. Since the bandpowers are biased by filtering and analysis systematics, the black theory line
is meant only to guide the eye.
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Figure 7.4: SPTpol 2012 deep field bandpowers (black) overplotted with bandpowers calculated
with an alternate pipeline (red). The solid black line is the Planck ΛCDM expectation. The two
sets of bandpowers agree well indicating no obvious bias introduced by either analysis pipeline.
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maps each centered on these sub-fields. The filtering was chosen to be as similar as possi-

ble to that used for the 2012 deep field analysis. A notable exception is that a 15th-order

polynomial subtraction was applied to the 2013 maps, which closely matches the degrees on

the sky per degree of freedom in the fit achieved by the 4th-order polynomial subtraction

used on the 2012 deep field timestreams.1 Additionally, we removed the 10% most non-

linear detectors during 2012 deep field map-making while this cut was not made for 2013

observations. We take advantage of the broad similarities in filtering between 2012 and

2013 observations to assume the 2012 transfer function while unbiasing 2013 bandpowers,

though we note this is only an approximation. The beam functions were also assumed

to be the same between observing years, which again is only approximately true. Since

the locations of point sources in each field are different, however, we calculated distinct

mode-coupling matrices for each sub-field.

The resulting (approximately) unbiased power spectra bandpowers for the four 2013 sub-

fields are plotted in Figure 7.5. Bandpowers have been offset in multipole for clarity. For

the 2012 deep field EE (TE) bandpowers, sample variance dominates over noise variance

for multipoles l < 1700 (l < 2000). In comparison, the sample variance dominated ranges

for the 2013 EE (TE) bandpowers are l < 1150 (l < 1450) due to higher levels of noise in

the final maps. However, the bandpowers for the four sub-fields vary by amounts consistent

with sample variance. Additionally, we note that the 2012 deep field bandpowers (black)

are in good agreement with the 2013 deep field bandpowers (blue).

With these tests we find that the deep field bandpowers are consistent between frequencies, across

observation seasons, and when varying the analysis pipeline. Additionally, differences between

independent 100 deg2 sub-fields of the full survey field are consistent with sample variance between

fields. Considering the results of these tests, as well as results from the suite of jackknives performed

on the input maps, we conclude that the deep field bandpowers are free from significant bias and

1 Each full survey field observation is ∼ four times wider on the sky, which requires higher-order polynomial
filtering to achieve the same effective high-pass filtering on the timestreams. One-to-one timestream filtering is not
possible, however.
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Figure 7.5: SPTpol 2012 deep field bandpowers (black dots) overplotted with bandpowers from four
100 deg2 sub-fields from 2013 full survey observations. The solid black line is the Planck ΛCDM
expectation. 2013 bandpowers have been offset horizontally for clarity. Differences between the
four fields are consistent with sample variance.
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we proceed to use them to constrain cosmology.

7.2 Cosmological Constraints from SPTpol

The second set of primary results of this analysis consists of cosmological constraints from

the SPTpol 2012 deep field 150 GHz TE and EE bandpowers. We assume a six-parameter ΛCDM

model as discussed in Chapter 1 but freeze the optical depth at τ = 0.0927 and include the four like-

lihood nuisance parameters discussed above for a total of nine free parameters. We also test several

simple one-parameter extensions to the base ΛCDM model. First, we present ΛCDM constraints

using SPTpol data, both alone and in combination with other datasets. Second, we explore several

ΛCDM extensions, namely the presence of anti-correlated cold dark matter isocurvature perturba-

tions, annihilating WIMP particles injecting energy into the CMB, and a non-zero tensor-to-scalar

ratio r.

7.2.1 ΛCDM constraints

ΛCDM constraints using only SPTpol 150 GHz TE and EE 2012 deep field bandpowers are

presented in the first column of constraints in Table 7.3. 1-D marginalized parameter likelihoods

are also plotted in Figure 7.6 in red. We plot the SPTpol bandpowers with the best-fit Planck

ΛCDM model from (31) (blue) as well as the best-fit SPTpol ΛCDM model (red) in Figure 7.7.

Colored dashed lines are the corresponding bandpower residuals.

Most notably the SPTpol bandpowers prefer a significantly lower fraction of cold dark matter

than the recently released Planck TT constraints (31). Both the EE and TE bandpowers are

slightly “peakier” than what is expected under the Planck ΛCDM model, which drives Ωch
2 down.

This can be better understood when considering the effects of gravitational lensing, which smooths

the acoustic peaks by mixing power between nearby Fourier modes. Decreasing the strength of

lensing causes the acoustic peaks to become more peaked. However, if you keep the strength of

lensing fixed, as is the case in ΛCDM, you can still decrease the net effect of lensing on the CMB by

lowering Ωch
2. This reduces the amount of matter that actually performs the gravitational lensing
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Figure 7.6: 1-D marginalized ΛCDM constraints from 2012 SPTpol data (red). Constraints from
the separate 2013 sub-fields are also included. H0 is a derived quantity, while Pcal, D

PSEE
3000 , and

DPSTE
3000 are nuisance parameters in the SPTpol likelihood. The fourth nuisance parameter Tcal is

not shown as it is tightly constrained by its Gaussian prior.
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Figure 7.7: SPTpol 2012 deep field bandpowers with two ΛCDM model curves. The solid blue line
is the Planck ΛCDM expectation while the solid red line is the SPTpol best-fit model. Dashed
lines are residuals for the respective models.
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and still results in peakier power spectra with all else the same.

To quantify the quality of the fit to the SPTpol bandpowers we calculate χ2 statistics by

jointly comparing the measured EE and TE bandpowers to theoretically expected bandpowers

generated from the Planck and SPTpol ΛCDM models and the bandpower window functions.

Comparing to the SPTpol model we find χ2
SPTpol = 75.7 with 64 degrees of freedom, corresponding

to a PTE of 0.15. In comparison, for the Planck model we find χ2
Planck = 88.5 with 72 degrees

of freedom (PTE=0.09). The Planck PTE corresponds to an effective Gaussian significance of

1.7σ. Given the small area of sky obtaining a fit this poor to the Planck ΛCDM model is therefore

unlikely, but not significantly so.

We also generated ΛCDM chains for the four 2013 sub-fields, the results of which are also

included in Table 7.3. We stress that the cosmological constraints for the four 2013 sub-fields

should only be qualitatively compared to the 2012 deep field constraints since the bandpowers

have not been rigorously unbiased. Nevertheless, the ra23h30dec-55 (deep) field constraints

from both 2012 and 2013 exhibit the same low values of Ωch
2. In comparison, the other fields

are more consistent with expectations from previously published experiments. This variation in

Ωch
2 between sub-fields, together with only a marginally low PTE compared to the Planck model,

suggests the low fraction of dark matter density is a chance unlucky feature of the deep field.

It is worth noting that other ΛCDM parameters also vary between the 2013 sub-fields but

each are consistent with each other within their errors. Despite good agreement in the DC level of

bandpowers between sub-fields, the large variation in scalar spectral amplitude As is due in part

to a strong degeneracy between As and the SPTpol polarization calibration Pcal as can be seen in

Figure 7.8. Including other datasets breaks this degeneracy under the assumption that the external

data are pre-calibrated. This is evident in Table 7.4 where the errors of both As and Pcal decrease

dramatically when additional datasets are jointly fitted with SPTPol data.

To improve cosmological constraints from SPTpol alone we also consider other datasets si-

multaneously. In particular, we include measurements of the CMB TT spectrum from Planck (31)

and SPTsz (13), which we label as “S13.” Three nuisance foreground terms accounting for Sun-
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Table 7.3: ΛCDM constraints - SPTpol Only

Parameter SPTpol Field
ra23h30 (2012) ra0h30 ra1h30 ra22h30 ra23h30 (2013)

Free
Ωbh

2 0.023± 0.001 0.02± 0.002 0.024± 0.002 0.022± 0.002 0.022± 0.002
Ωch

2 0.08± 0.013 0.106± 0.025 0.102± 0.017 0.115± 0.022 0.085± 0.019
100θs 1.043± 0.002 1.048± 0.004 1.041± 0.003 1.043± 0.003 1.049± 0.003
ns 1.004± 0.057 0.908± 0.078 0.899± 0.074 0.84± 0.075 0.948± 0.076

ln(1010As) 3.11± 0.123 2.901± 0.147 3.165± 0.156 2.859± 0.165 3.06± 0.14
τ (0.0927) (0.0927) (0.0927) (0.0927) (0.0927)

Derived
ΩΛ 0.858± 0.045 0.739± 0.142 0.769± 0.084 0.695± 0.139 0.84± 0.075
H0 87.36± 8.31 74.66± 12.15 76.49± 8.5 70.49± 9.34 86.41± 11.92
σ8 0.654± 0.08 0.693± 0.105 0.754± 0.093 0.684± 0.08 0.654± 0.109

Nuisance
Tcal 0.998± 0.013 0.999± 0.014 0.999± 0.014 0.998± 0.014 1.0± 0.014
Pcal 1.091± 0.06 0.957± 0.071 1.077± 0.081 0.891± 0.074 1.06± 0.071

DPSEE
3000 0.206± 0.128 1.566± 0.636 0.443± 0.346 0.728± 0.458 0.783± 0.434

DPSTE
3000 0.594± 0.158 0.337± 0.264 1.095± 0.439 1.521± 0.515 0.725± 0.328

Notes: We report the mean and standard deviations for each parameter. The primary SPTpol con-
straints are from the deep field, ra23h30dec-55 (2012). Constraints from the 2013 sub-fields should
be considered qualitative as the bandpowers have not been rigorously unbiased. For all fields the optical
depth is frozen at τ = 0.0927. We caution the independent use of the scalar amplitude ln(1010As) due
to the degeneracy with Pcal.

Table 7.4: ΛCDM constraints

Parameter Dataset
SPTpol Planck+S13 CMB CMB+BAO+H0

Free
Ωbh

2 0.02259± 0.00132 0.02208± 0.00026 0.02206± 0.00025 0.02212± 0.00022
Ωch

2 0.0799± 0.0127 0.11899± 0.00242 0.11835± 0.00235 0.11784± 0.00131
100θs 1.04333± 0.00236 1.04169± 0.00057 1.04165± 0.00054 1.04177± 0.00048
ns 1.00448± 0.05694 0.95992± 0.00668 0.96078± 0.00645 0.96158± 0.00506

ln(1010As) 3.10955± 0.12296 3.07861± 0.02386 3.07188± 0.02355 3.07212± 0.02328
τ (0.0927) 0.08509± 0.01247 0.0827± 0.01218 0.0833± 0.01157

Derived
ΩΛ 0.85805± 0.04452 0.69143± 0.01471 0.69462± 0.01415 0.69822± 0.00761
H0 87.36± 8.31 67.81± 1.09 68.0± 1.05 68.27± 0.59
σ8 0.65449± 0.08043 0.82106± 0.01191 0.81631± 0.01198 0.81477± 0.01066

Nuisance
Tcal 0.99831± 0.0134 — 0.99656± 0.01292 0.99613± 0.01302
Pcal 1.09053± 0.05994 — 1.03804± 0.01695 1.03901± 0.01766

DPSEE
3000 0.20593± 0.12775 — 0.16209± 0.10959 0.16807± 0.11561

DPSTE
3000 0.59376± 0.1578 — 0.61516± 0.15391 0.61577± 0.1562

Notes: Here Planck refers to Planck TT bandpowers plus WMAP9 polarization, labeled
Planck+WP in Table 5 of (31). CMB refers to the combination Planck+S13+SPTpol. Mean
fits for SPTpol likelihood nuisance parameters are included for appropriate datasets.
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Figure 7.8: 2-D marginalized constraints on the scalar amplitude ln 1010(As) and Pcal for the SPTpol
2012 deep field bandpowers. A strong degeneracy between the two parameters is evident.

yaev Zel’dovich and residual poisson power are included with the S13 dataset as outlined in their

analysis. We note that the Planck, S13, and SPTpol likelihoods treat foregrounds independently.

We also ignore any correlations between experimental results due to, for example, shared sky. We

refer to Planck+S13+SPTpol as the “CMB” dataset. Table 7.4 and Figure 7.9 summarize the

results of these chains, which are plotted in blue. We also include ΛCDM constraints for CMB-

SPTpol (Planck+S13) in red. As anticipated from Fisher forecasts, the inclusion of SPTpol

data only marginally improves constraints on ΛCDM parameters. The largest improvement is seen

in 100θs where the uncertainty is reduced by a factor of only 1.056. This is not itself surprising as

the addition of several new high signal-to-noise acoustic peaks from both the TE and EE spectra

add to our knowledge of the sound horizon at the epoch of recombination. The true power of the

completed SPTpol dataset, however, will lie in constraining extensions to the base ΛCDM model,

where high signal-to-noise measurements of the power spectra damping tails will be beneficial. The

current errors in the damping tail preclude detailed analyses of these effects.

While powerful, CMB-only datasets nevertheless exhibit degeneracies between the rate of

expansion H0, the sound horizon at the epoch of recombination θs, and the dark energy content of
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Figure 7.9: 1-D marginalized ΛCDM parameter constraints.
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Figure 7.10: 2-D marginalized ΛCDM parameter likelihoods.



151

the universe ΩΛ (or equivalently the curvature Ωk, though it is fixed to zero in the ΛCDM model).

Therefore, we also include two non-CMB datasets to partially break these degeneracies: a prior

on H0 from (16) and BAO (baryon acoustic oscillations) measurements from SDSS Data Release

11 (18) which place a prior on θs. Adding these datasets tightens ΛCDM constraints, as can be

seen in Figures 7.9 and 7.10 in black. Given the number of acoustic peaks now measured with high

signal-to-noise in multiple CMB datasets the BAO θs prior contributes relatively little, reducing

errors by only a factor of 1.125. An independent measurement of H0, however, reduces uncertainties

on several parameters through degeneracies with the Hubble constant, the uncertainty on which

reduces by 1.78. These degeneracies are obvious as highly elliptical 2-D marginalized parameter

likelihood contours like those plotted in Figure 7.10.

7.2.2 Extensions to ΛCDM

With relatively few parameters the base ΛCDM model does a remarkable job fitting both

the temperature and polarization anisotropy power spectra of the CMB. However, as both CMB

and external datasets achieve higher signal-to-noise tensions between them are beginning to emerge

(13; 47). This tension could possibly point to physics beyond ΛCDM. Indeed, we already know

ΛCDM cannot be the full picture. For example, constraints from neutrino oscillation and double

beta-decay experiments place limits on the sum of the neutrino masses 0.06 <
∑
mν < 1.8 eV

(97; 98) while ΛCDM assumes
∑
mν = 0.2 Non-zero neutrino mass has a number of effects

on the CMB power spectra including affecting the strength of gravitational lensing and therefore

the amplitude of the lensing B-mode polarization power spectrum, as well as altering ΩΛ to keep

a constant curvature, which affects large-scale modes through the Integrated Sachs-Wolfe (ISW)

effect (47).

While the completed SPTpol survey will be able to place interesting constraints on several

well-motivated ΛCDM extensions through their effects on the power spectra damping tails, we in-

stead focus on three extensions that affect larger angular scales better measured by the SPTpol 2012

2 We note, however, that we have fixed
∑
mν = 0.06 eV in this analysis to compare directly to results from (31).
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deep field power spectra. We explore new constraints on α−1, the amplitude of an anti-correlated

cold dark matter isocurvature perturbation mode in Section 7.2.2.1. We then consider the limits

placed on the amplitude eWIMP of WIMP particle annihilation energy injection in Section 7.2.2.2.

Finally, in light of recent measurements of a non-zero tensor-to-scalar ratio r by the BICEP2 ex-

periment (23), we explore new limits on r using solely the SPTpol TE and EE polarization power

spectra. 2-D marginalized parameter constraints for each extension are plotted in Figures 7.11,

7.12, and 7.13 at the end of the section.

7.2.2.1 ΛCDM + α−1

Initial perturbations in the density of different components of the content of the universe are of

two types, or modes. “Adiabatic” perturbations are such that the relative density of components,

such as dark matter, baryons, neutrinos, etc., are in phase. This produces fluctuations in the

curvature of the universe. With “isocurvature” modes, on the other hand, the relative densities of

components change while maintaining a constant curvature. By changing the relative contributions

of adiabatic and isocurvature modes to initial density fluctuations one changes the sound horizon

at recombination, which moves the acoustic peaks in CMB power spectra. Current measurements

of locations of acoustic peaks in the TT and TE spectra are consistent with purely adiabatic initial

perturbations (25) but the possibility still exists for isocurvature fluctuations to be present at a

small level. The SPTpol dataset provides high signal-to-noise measurements of the acoustic peaks

in the EE spectrum as well, which should tighten constraints on the presence of isocurvature

perturbations.

We test for the existence of a cold dark matter isocurvature mode anti-correlated with adia-

batic fluctuations, the amplitude of which is parameterized by α−1. This has been constrained in

the past with WMAP data (99; 25) achieving a constraint of α−1 < 0.0036 at 95% confidence. New

ΛCDM +α−1 constraints including SPTpol data are included at the top of Table 7.5. The SPTpol

dataset alone constrains α−1 < 0.093 at 95% confidence. The CMB+BAO+H0 dataset, however,

dramatically improves this constraint to just α−1 < 0.0009 at 95% confidence, however we stress
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that at the time of printing the CMB+BAO+H0 isocurvature chains had not fully converged, so

this result is tentative.

7.2.2.2 ΛCDM + eWIMP

As discussed above we have added a variable eWIMP in CosmoMC that parameterizes energy

injection in the CMB from WIMP particle annihilation as explored by (88). The constraint is

interpreted as an amplitude of the particle annihilation cross-section, scaled by ε = 2 × 10−27

cm3/s/GeV. Chain results are found in the center of Table 7.5. Perturbations to CMB power spectra

from energy injection in (88) are not calculated past l = 2500 so these chains limit bandpowers

to below this threshold. Using the dataset Planck+SPTpol+BAO+H0 we place a limit of

eWIMP < 1.23 at 95% confidence, corresponding to a WIMP particle annihilation cross-section of

pann < 2.46 × 10−27 cm3/s/GeV at the same confidence level. This is comparable to constraints

achieved using WMAP7 data (88). Since the measurement is limited to l < 2500 the addition of

more area from the SPTpol survey field should improve these constraints.

7.2.2.3 ΛCDM + r

Recently, the BICEP2 experiment published a detection of presumed inflationary gravitational-

wave (IGW) B modes, which is parameterized by the tensor-to-scalar ratio r (23). Using data from

the 2012 observing season we published the first detection of lensing B modes (21), which dominate

at intermediate to small angular scales. However, the scan strategy for the first year of observing

was not optimized for measuring large angular scale modes to search for IGW B modes. The

SPTpol deep field dataset is therefore not sensitive to r in the same way as BICEP2. Our ability

to constrain r instead comes from the contribution to scalar modes (temperature and E-mode po-

larization) from initial tensor perturbations in the spacetime metric, i.e. inflationary gravitational

waves. Allowing a non-zero value of r therefore adds additional power to our EE and TE spectra.

Constraints for ΛCDM + r chains are included in the bottom of Table 7.5. The previous
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best constraint r < 0.11 at 95% confidence3 comes from a combination of TT power spectra mea-

surements including Planck, WMAP9 polarization, and SPT and ACT high-multipole bandpowers

(31). With only SPTpol data we measure this constraint to be r < 0.95 at 95% confidence. The

CMB data, however, improves the constraint to r < 0.09 at 95% confidence. We again stress that

the chains for the tensor-to-scalar ratio had not fully converged before printing so this is also a

tentative result. While the constraint on r cited by (31) is near the limit of what is achievable from

temperature power spectrum measurements alone (100; 87), future improvements in signal-to-noise

of the polarization power spectra will improve limits on r regardless of the final determination of

the source of excess low-multipole B-mode power detected by BICEP2.

7.3 Discussion

We have presented measurements of the 150 GHz CMB TE and EE polarization power

spectra made from observations with the SPTpol experiment in 2012. The EE spectrum shows

six acoustic peaks with high signal-to-noise, and we have measured the EE damping tail with the

highest significance to date. The measurement is sample variance limited up to l = 1700 (2000) in

EE (TE); we must observe more sky to measure these lower multipoles with higher signal-to-noise

at the given bandpower width ∆l = 50. While there is some tension observed between SPTpol

bandpowers and the best-fit Planck ΛCDM model, the tension is not statistically significant and

appears to be the result of sample variance. Indeed, the Planck ΛCDM model is a good fit to the

bandpowers from a collection of four 100 deg2 sub-fields of the SPTpol survey field (Figure 7.5)

so we anticipate this tension shrinking when expanding the analysis to include the full 500 deg2

survey field.

The SPTpol full survey is now in its second year of observations and should reach the 2012

deep field map depths across the entire field by the end of 2015. With such a survey, sample

variance will be reduced by more than a factor of two compared to the deep field analysis presented

3 Technically, this is a constraint of r at a spectral pivot point of k0 = 0.002 Mpc−1, though the fit also assumes
the tensor-mode spectral index nT = 0 making r insensitive to scale.
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Table 7.5: ΛCDM Extensions

Parameter Dataset
SPTpol Planck+S13 CMB CMB+BAO+H0

ΛCDM + α−1

Free
Ωbh

2 0.02262± 0.00127 0.02171± 0.00026 0.02164± 0.00027 0.02194± 0.00022
Ωch

2 0.07773± 0.01255 0.12432± 0.00262 0.12273± 0.00226 0.11945± 0.00146
100θs 1.04419± 0.00227 1.04105± 0.00065 1.04111± 0.00049 1.0415± 0.00042
ns 1.01122± 0.05744 0.94263± 0.00795 0.94761± 0.00584 0.9521± 0.00475

ln(1010As) 3.11738± 0.11772 3.0607± 0.02062 3.06289± 0.02213 3.06282± 0.02276
τ (0.0927) 0.06954± 0.01048 0.07248± 0.01047 0.07663± 0.01162
α−1 < 0.09294 < 0.00075 < 0.00081 < 0.00091

Derived
ΩΛ 0.86616± 0.04189 0.6571± 0.01699 0.66625± 0.0147 0.68773± 0.00866
H0 89.03± 8.46 65.45± 1.13 65.95± 1.0 67.46± 0.62
σ8 0.65617± 0.08157 0.83049± 0.01114 0.82844± 0.01271 0.81836± 0.01054

ΛCDM + e
(a)
WIMP

Free
Ωbh

2 0.02145± 0.00126 0.02233± 0.0003 0.02216± 0.00027 0.02225± 0.00023
Ωch

2 0.07393± 0.01206 0.11777± 0.00273 0.11816± 0.00267 0.11741± 0.00139
100θs 1.04362± 0.00221 1.04127± 0.0006 1.04122± 0.00058 1.0413± 0.00054
ns 1.05686± 0.06027 0.9715± 0.00947 0.96721± 0.00862 0.96943± 0.00619

ln(1010As) 3.22366± 0.12469 3.12485± 0.03173 3.10208± 0.02932 3.10663± 0.02773
τ (0.0927) 0.08662± 0.013 0.08333± 0.01257 0.08516± 0.01194

eWIMP < 3.67642 < 1.60479 < 1.1956 < 1.2268
Derived

ΩΛ 0.87648± 0.03912 0.69788± 0.01631 0.6948± 0.01604 0.69976± 0.00805
H0 90.4± 8.64 68.31± 1.25 68.01± 1.19 68.37± 0.63
σ8 0.67523± 0.08778 0.83789± 0.01353 0.82918± 0.01317 0.82877± 0.01213

ΛCDM + r
Free

Ωbh
2 0.02251± 0.0013 0.02208± 0.00027 0.02172± 0.00025 0.02202± 0.00022

Ωch
2 0.08035± 0.01303 0.11861± 0.00263 0.12315± 0.00272 0.11911± 0.00205

100θs 1.04326± 0.00227 1.04174± 0.00054 1.04108± 0.00057 1.04163± 0.00049
ns 1.00758± 0.05702 0.96217± 0.00762 0.94482± 0.00823 0.95522± 0.00914

ln(1010As) 3.10579± 0.12221 3.07227± 0.02476 3.05919± 0.02076 3.06669± 0.02274
τ (0.0927) 0.08271± 0.01273 0.07025± 0.01198 0.07825± 0.0117
r < 0.95497 < 0.13149 < 0.09135 < 0.19434

Derived
ΩΛ 0.85618± 0.04608 0.69358± 0.01583 0.66404± 0.01781 0.69037± 0.01181
H0 87.03± 8.42 67.96± 1.17 65.86± 1.17 67.69± 0.85
σ8 0.65692± 0.08029 0.82075± 0.01267 0.82581± 0.00927 0.8183± 0.01043

Notes: Here Planck refers to Planck TT bandpowers plus WMAP9 polarization, labeled
Planck+WP in Table 5 of (31). CMB refers to the combination Planck+S13+SPTpol. All model
extension constraints are 95% confidence level upper limits. As of the time of printing, chains in red have
not fully converged.
(a) S13 is not included when running the eWIMP extension. The maximum multipole is limited to
l = 2500 for these chains.
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Figure 7.11: 2-D marginalized ΛCDM +α−1 parameter likelihoods. As of printing these chains
had not fully converged.
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Figure 7.12: 2-D marginalized ΛCDM + eWIMP parameter likelihoods.
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Figure 7.13: 2-D marginalized ΛCDM + r parameter likelihoods. As of printing these chains had
not fully converged.
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here, and high-fidelity measurements of the damping tail should extend beyond l = 3000. The final

dataset will be rich with cosmological information, allowing us to place tighter constraints on the

tensor-to-scalar ratio r and several other interesting extensions to the ΛCDM model, such as the

quantity of primordial helium Yp, the sum of neutrino masses Σmν , and the number of relativistic

species Neff (see Table 6.1).

With only 100 deg2 mapped to interesting depths, SPTpol currently contributes little new

direct cosmological information. We do see, however, that the addition of the 2012 deep field

power spectra improves constraints on ΛCDM parameters at the few percent level. Additionally,

we can begin to explore extensions to ΛCDM and we find that the SPTpol deep field bandpowers

combined with external datasets can place interesting constraints despite its lack of sensitivity to

low multipoles and its high sample variance. Both of these points are in some ways a scientific

bonus as the original intent of the 2012 observations was to convincingly detect lensing B modes;

they were not optimized in any way to deliver considerable improvements in cosmological parameter

constraints. The fact that improvements can be made with this incomplete dataset speaks to the

considerable scientific potential of SPTpol and its forthcoming observations.

Looking towards the future, the search for IGW B modes has become and will continue to be

the primary drive in the CMB community. While recent measurements by BICEP2 are promising

(23), more information about polarized foregrounds is needed to confirm a discovery of inflationary

gravitational waves. Lensing B modes are also a significant foreground contaminant that not only

mask the true amplitude of IGW B modes but also the shape of their power spectrum, which is

vital for distinguishing between different inflationary models. As lensing B-mode measurements

were the primary science goal of the SPTpol experiment, the completed survey will measure the

amplitude of the B-mode spectrum with high significance. With the final SPTpol dataset the

primordial B-mode spectrum can be delensed, which increases the significance of a detection and

begins to uncover structure in the IGW B-mode spectrum at multipoles l & 100. SPTpol will

therefore play a crucial role in our understanding of the early universe.



Chapter 8

Future Work

We have presented a power spectrum analysis of the first year of observations made with

the SPTpol experiment. The final coadded deep field map reaches a depth of 7 (10) µK·arcmin in

temperature (polarization), the deepest ever of the CMB at ∼ 1 arcminute resolution. However,

the map is relatively small at 100 deg2 or just 0.25% of the sky. This means the resulting power

spectra are sample variance limited at multipoles below ∼ 1700. It is at these large scales that

most sensitivity to ΛCDM model parameters resides. Additionally, the intriguing gravitational

wave B-mode signal peaks at only l ∼ 100, which is at scales larger than what the SPTpol deep

field observations can probe.

To address both of these issues the second season of SPTpol observations was spent mapping

the 500 deg2 survey field. A power spectrum analysis of these new observations very similar to

that discussed in this work is currently underway being led by the author. The larger CMB field

and increased scan speed provides sensitivity to much larger scales and the author anticipates no

major hurdles to expanding the multipole range of study down to l = 100 or lower. The 2-D EE

spectrum of the 2013 survey field map coadd exhibits six acoustic peaks before azimuthal averaging.

Figure 8.1 reproduces the 2-D spectrum with Cl normalization shown in Figure 5.8 and the acoustic

peaks are readily apparent by eye. Azimuthally averaged EE and TE power spectra from 2013

survey field observations are also plotted in Figure 8.2 with noise variance errors at a resolution

of ∆l = 6.25, eight times finer than that used for the 2012 deep field analysis discussed in this

work. These pseudo-spectra have not yet been fully corrected for filtering and mode-coupling, but
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Figure 8.1: SPTpol 2013 survey field 2-D EE pseudo-power spectrum in Cl normalization.

the instrument beam and a by-eye calibration factor of 0.85 have been applied. The data show

astonishing agreement with the expected Planck ΛCDM model and represent a substantial step

forward in signal-to-noise. The strong agreement with ΛCDM at large angular scales is also a

demonstration of the ability of SPTpol to actually measure scales at such low multipoles, which

is crucial for the search of primordial B-mode polarization. The power of these new survey field

power spectra will manifest as stronger constraints on ΛCDM parameters, particularly the scalar

spectra index ns that benefits from a long lever arm in angular scales being measured.
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Figure 8.2: Preliminary SPTpol 2013 survey field TE and EE power spectra with noise variance
error bars. Bandpower resolution is ∆l = 6.25. The Planck ΛCDM model is in black. In red
we plot the raw pseudo-spectra while in blue we partially unbias the bandpowers by taking into
account the instrument beam and a by-eye calibration factor of 0.85. Mode-coupling and the filter
transfer function have been ignored.
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This new analysis will also include 95 GHz auto-spectra as well as 95 × 150 cross-spectra.

The number of CMB power spectra entering into the cosmological parameter constraints therefore

increases from two to six, a substantial increase in information. All of these spectra are not inde-

pendent, of course, and accounting for this greatly complicates the bandpower covariance matrix,

which will grow to be a 6× 6 block of ∼ 40× 40 matrices (one element per power spectrum band-

power). The covariance calculation pipeline is already generalized and able to calculate the various

off-diagonal blocks, however. Furthermore, the SPTpol likelihood module has been written to ac-

cept any number of CMB power spectra at different auto- and cross-frequency combinations. The

addition of 95 GHz data and 95×150 power spectra represents a complication in bookkeeping only;

the abilities to calculate necessary data products and actually use them to constrain cosmology

already exist.

Delensing of low-multipoleB modes will also soon become an important process in searches for

primordial B modes and in constraining various inflationary models. To date the SPTpol dataset

contains the deepest maps at the requisite angular scales for delensing and will have significant

impact in near-term B-mode searches such as those conducted by SPTpol, BICEP2, and the Keck

experiments. Indeed, based on cross-correlations with tracers of large-scale structure, the 2012 deep

field observations can already reduce lensing B-mode power by a factor of two (21). Since we have

observed the same patch of sky, joint-analyses with BICEP2 are also in discussion to both delens

their low-multipole B-mode measurements and cross-correlate the datasets to look for a common

cosmological signal. The detection of B modes at large angular scales must be verified by other

experiments, and SPTpol is one such experiment with the capabilities to do so.

As the SPTpol survey field reaches lower map depths its delensing power will only increase.

But to significantly increase our delensing capabilities we must map CMB polarization to unprece-

dented depths, below ∼ 5 µK·arcmin at multipoles greater than l ∼ 1000. At these depths B modes

will be imaged rather than just statistically detected. This will require a more powerful experiment.

SPT-3G, the third generation receiver that will be installed on the SPT, is currently in development.

It will be contain more than 15,000 detectors, and measure CMB polarization at three frequencies,
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95, 150, and 220 GHz. Crucially, the multi-frequency data will provide the power to constrain

polarized foregrounds like galactic synchrotron and dust, which threaten to overwhelm any true

cosmological B-mode signal. The mapping speed of SPT-3G will also be an order of magnitude

greater than that of SPTpol, allowing it to map 2500 deg2 down to a depth of 2.5 (3.5) µK·arcmin

in T (P ) at 150 GHz and 4.2 (6) µK·arcmin in T (P ) at 95 and 220 GHz over a three-year survey.

At such un-probed depths, SPT-3G is poised to place tight constraints on the tensor-to-scalar ratio

(a standard deviation σ(r) = 0.01), the sum of neutrino masses (σ(Σmν) = 74 meV), and discover

thousands of new galaxy clusters that will inform our understanding of structure formation and

dark energy. The SPT-3G dataset will doubtless become a treasure trove of cosmological and as-

trophysical data with which scientists will be able to tease out more of the intricate workings of

nature. The future of CMB observations is bright, and a new era of cosmological discovery is just

beginning.
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Appendix A

Determination of Science Band Frequencies in Detector Timestreams

The science band is a function of angular size (or multipole l) of relevant features in the CMB

as well as the scan speed on the sky. In the flat-sky approximation spherical harmonic transforms

are replaced by the more pedestrian Fourier transforms and

~l ∼= ~k, (A.1)

where ~k = (kx, ky) is the Fourier conjugate to physical dimension ~x = (x, y) in a flat cartesian grid

and multipole l is just the radial distance from the origin in the Fourier domain, l =
√
l2x + l2y.

If the angular extent θ of a feature on the sky is known, one obtains the corresponding multipole

using

l ∼=
180

θ
. (A.2)

Here θ is in degrees on the sky. For example, point sources in SPTpol maps appear at the size

of the detector beams, ∼ 1 arcminute, which corresponds to l ∼= 10, 800. During 2012 deep field

observations the telescope azimuthal scan speed was 0.48 deg/s, or 0.27 deg/s on the sky in the

field-center at EL = 55◦ (Dec = -55◦). Angular frequency is easily translated to temporal frequency

via the simple equation

f =
lvsky

360
, (A.3)

where vsky is the scan rate on the sky in degrees/s, l is the multipole corresponding to a given

feature’s angular extent, and f is the resulting temporal frequency at which the feature will present

itself in a bolometer’s timestream. Thus a multipole range 100 < l < 5000 translates to a science
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band in the detector timestreams of 0.075 − 3.75 Hz. For the 2013 survey field observations, we

increased our azimuthal scan speed to 1.09◦/s and the field center was at EL = 57.5◦. The same

multipole range, therefore, is mixed up by the increased scan speed to 0.16 − 8.13 Hz. This helps

avoid low-frequency detector 1/f noise.


