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Soft active materials, such as shape memory polymers, liquid crystal elastomers, 

soft tissues, gels etc., are materials that can deform largely in response to external 

stimuli. Micromechanics analysis of heterogeneous materials based on finite element 

method is a typically numerical way to study the thermal-mechanical behaviors of soft 

active materials with phase evolution. While the constitutive models that can precisely 

describe the stress and strain fields of materials in the process of phase evolution can 

not be found in the databases of some commercial finite element analysis (FEA) tools 

such as ANSYS or Abaqus, even the specific constitutive behavior for each individual 

phase either the new formed one or the original one has already been well-known. So 

developing a computationally efficient and general three dimensional (3D) 

thermal-mechanical constitutive model for soft active materials with phase evolution 

which can be implemented into FEA is eagerly demanded. 

This paper first solved this problem theoretically by recording the deformation 

history of each individual phase in the phase evolution process, and adopted the idea 

of effectiveness by regarding all the new formed phase as an effective phase with an 

effective deformation to make this theory computationally efficient. A user material 
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subroutine (UMAT) code based on this theoretical constitutive model has been 

finished in this work which can be added into the material database in Abaqus or 

ANSYS and can be easily used for most soft active materials with phase evolution. 

Model validation also has been done through comparison between micromechanical 

FEA and experiments on a particular composite material, shape memory elastomeric 

composite (SMEC) which consisted of an elastomeric matrix and the crystallizable 

fibre. Results show that the micromechanics and the constitutive models developed in 

this paper for soft active materials with phase evolution are completely relied on. 
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Chapter 1. Introduction 

1.1 Motivation of this thesis 

Soft materials such as polymers, elastomers, soft tissues and gels, etc., can display 

large deformation as opposed to hard materials such as metals and ceramics, etc.. Soft 

materials can be made active in response to diverse stimuli, such as mechanical 

stresses, electric fields, magnetic fields, temperature, light, PH value and trace amount 

of enzymes. For example, thermally activated shape memory polymers (Wei et al., 

1998; Behl and Lendlein, 2007; Liu et al., 2006; Qi et al., 2008; Chung et al., 2008; 

Mather et al., 2009; Westbrook et al., 2010) can reach a mechanical deformation as 

large as 400% in response to thermal actuation; photo activated polymers (Lendlein et 

al., 2005; Scott et al., 2005a,b, 2006; Long et al., 2009) can respond to illumination 

and deform diversely such as bending; liquid crystal elastomers (Corbett and Warner, 

2007; Dunn, 2007; Hon et al., 2008; Wang et al., 2011) can be activated and deform 

largely by both temperature change and light irradiation. Those excellent properties 

permit SAMs to a variety of application fields such as aerospace remotely deployable 

structures, novel drug delivery and surgery devices in biomedicine and bioengineering, 

and microsystem actuation components (Tobushi et al., 1996; Liu et al., 2004; Yakacki 

et al., 2007). To accelerate the realization of these applications, it is desirable to 

understand the actuation mechanism and to develop constitutive models for these 
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materials. Along this effort, many material specific models were developed for 

amorphous shape memory polymers (Westbrook et al., 2011), semi-crystalline shape 

memory polymers (Barot et al., 2008), two-way shape memory polymers (Westbrook 

et al., 2010), shape memory elastomeric composites (Ge et al., 2012), and liquid 

crystal elastomers (Jin et al., 2010). Although these models can capture the behaviors 

of specific materials excellently, it will be beneficial to summarize the common 

features of these materials and to develop a corresponding theoretical framework. 

The large deformation is mainly generated by new phase formation due to the 

stimuli, for example, cooling or stretch induced crystallization of shape memory 

polymers, or light activated network rearrangement of liquid crystal elastomers, both 

can be regarded as new phase the mechanical and physical material properties of 

which are different from the original material formed by external stimuli. Recently, 

we found that the actuation mechanism of many SAMs can be explained and modeled 

by the coupling between deformation and continuous phase evolution where a 

transition from one phase to another phase occurs as a continuous function of time 

and external stimuli, such as temperatures. Here, we use the term “phase” to represent 

a set of material points that have a distinctive deformation history compared with 

other material points in the material. In this framework, the existence of the phase can 

be physical, for example, in semicrystalline polymers, the newly formed crystalline 

polymer can be regarded as a phase. Or it can be quasi-physical, for example, in some 

light activated polymer networks where chemical reactions occurring at 
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macromolecular level, such as scissioning and reforming of a polymer chain, can 

relax stress and deformation locally and impart new deformation history, although 

there is no macroscopically well-defined phase. Moreover, we note that as compared 

with crystalline materials, such as metals, the term “phase” is loosely defined, and in 

many cases, there does not exist a phase diagram. 

One basic assumption of a recent one-dimensional (1D) generalized theoretical 

framework for soft active materials with phase evolution by Long et al. (2010) is that 

when the new phase forms, it has no deformation. In another word, the newly formed 

phase uses the configuration at its forming as its reference (undeformed) configuration. 

This assumption was proposed and used by many researchers (Rajagopal and 

Srinivasa, 1998a,b; Rajagopal and Wineman, 1992; Wineman and Shaw, 2007; Qi et 

al., 2008) for different polymeric and elastomeric material systems. One great 

challenge of this framework is, because phase formation is a continuous process, 

tracking the deformation history for phases forming at different times very 

computationally expensive, which limits the theory only applicable to some special 

deformation conditions. In order to overcome this challenge, Long et al. (2010) also 

have proposed a 1D theory called the effective phase model which considers all the 

newly formed phases as an effective phase with an effective deformation to improve 

the computational efficiency. Simulations under different simultaneous evolutions and 

mechanical boundary value problems show that the effective phase model admits 

excellent agreement with the generalized theoretical framework, but none of them 
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have been evaluated by experiments.  

The other hand, soft active materials may turn to be anisotropic after formation of 

new phases, since the arrangement of the new phases in the whole material may not 

homogenous. Either the theoretical or experimental study of the anisotropic 

materials is difficult to realize, while the numerical analysis using finite element 

method of micromechanics is the best solution to such problems. Micromechanics 

requires the specific material model that can preciously describe the 

thermal-mechanical properties of soft active materials with phase evolution as well 

as computationally efficient.  

1.2 Plan of this thesis 

This thesis extended the 1D generalized theoretical framework into a 

three-dimensional (3D) one, then developed a 3D effective phase model and 

implemented it into the finite element analysis tool ABAQUS as a user material 

subroutine (UMAT). In addition, these 3D models were verified with experiments on 

a Sylgard/PCL shape memory elastomeric composite (SMEC) material, which 

consists of an elastic polymeric matrix (Sylgard) and crystallizable fiber networks 

(PCL). As temperature changes, the crystallizable fiber networks undergo 

crystallization or melting, which can also be coupled with simultaneous mechanical 

deformation. Comparisons between model predictions (numerical simulations) and 

experiments under different thermo-mechanical conditions showed excellent 
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agreement and thus validated the efficacy of these phase evolution models. On the 

basis of the UMAT, micromechanics analysis of the anisotropic SMEC with oriented 

fibre using ABAQUS also has been done. Numerical predictions have been validated 

by the experimental data based on the Tangoblack/PCL SMEC which consists of 

Tangoblack as a rubbery matrix and PCL as the crystallizable fibre with different 

fibre orientations in the matrix. 

This thesis is organized as following: in Chapter 2, a 3D generalized theoretical 

framework (GTF) and a 3D effective phase model (EPM) were presented to describe 

the finite deformation behavior of SAMs systems with phase evolution; in Chapter 3, 

the Sylgard/PCL SMEC material was briefly introduced and the thermo-mechanical 

experiments on the SMEC were presented. Comparisons between model predictions 

and experimental results were also made; in Chapter 4, the micromechanics of 

ASMEC and comparison with experiments on Tangoblack/PCL ASMEC were 

shown as an application example of the EPM. Details of the user material subroutine 

(UMAT) code with EPM implemented written by FORTRAN language can be found 

in the appendix, which can be packaged into the Abaqus material database for 

customer use in the future.  
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Chapter 2. Thermal-mechanical Constitutive Models 

2.1 Basic assumptions 

Typically in continuum mechanics, we consider a material point that contains 

numerous material particles. The position of this material point is given by its 

reference coordinate X . As the body deforms, 
( , )tx X

 gives the position of the 

material point X , at time t , in the current configuration. The deformation gradient 

is 





x
F

X . 

Following the continuum assumption, we further assume that this material point 

can be decomposed into a collection of phases, including the original phase (the 

phase already existing prior to the phase evolution) and the newly formed phases due 

to phase evolution. Each of these phases has its own volume fraction, constitutive 

behavior, and particular stress-free configuration. In order to describe and analyze 

the environmental-mechanical behavior during phase evolution more conveniently, 

several assumptions and prescriptions are made: 

(i) During phase evolution, new phases are formed in a stress-free configuration. 

New phases formed at different time have different deformation history. 

(ii) During phase evolution, the deformation transfer is simplified by an averaging 

scheme that assumes both the original phase and new phases formed at different time 

undergo a same deformation increment. 
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(iii) The local interplay between phases is ignored for the sake of simplicity, which is 

a basic assumption in modeling isotropic materials composed of several phases 

(Dorfmann and Ogden, 2004; Liu et al., 2006; Qi and Boyce, 2005). 

(iv) The overall mechanical response of a material point is the summation of 

responses of all the individual phases weighted by their respective volume fractions. 

In order to correctly describe the environmental-mechanical process during phase 

evolution, firstly, we should model a constitutive behavior for each individual phase. 

Here, the finite hyperelastic model is adopted for all phases. The mechanical behavior 

of each phase can be derived from the strain energy and the Cauchy Stress is: 

 
1 ( ) 




F
σ F

F

Ti i
i i i

i

W
J  (2.1) 

where Fi  
is the deformation gradient, det( ) Fi iJ , iσ  and iW  represent the 

Cauchy stress and the strain energy function, respectively, for the i-th phase formed at 

the i-th time increment. Note that different phase may exhibits different constitutive 

behavior corresponding to its distinct strain energy function. 

Secondly, we should track the deformation kinematics of each evolving phase with 

respect to its own stress-free configuration. For this step, it is significant to specify the 

stress-free configuration of each new phase. As introduced in the assumptions and 

prescriptions, we adopt the concept that newly formed phases are undeformed and 

stress free in the configuration where they are formed. Based on this concept, we 

suppose that in the environmental-mechanical scenario the material point experiences 
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continuous deformation and simultaneous phase evolution with time. We also suppose 

that each new phase develops at a time increment t . Prior to the moment of 

environmental stimulus being turned on (at time 0t  ), the material point is assumed 

to be in its original single phase. This assumption is not necessary but rather 

convenient. Later, at time mt m t  , there are 1m  phases including one original 

phase, and m newly formed phases, where m  is an integer. The deformation 

kinematics of all phases relative to their individual stress-free configurations are: 

 

m

i m k

k i





 F F , 0 0

1

ˆ
m

m k

k





 
  
 
F F F , (2.2) 

where i mF  is the deformation gradient for the i-th phase (formed at time it i t  ) at 

current time ( mt m t  ), 0 mF  is the deformation gradient for the original phase at 

current time, 
0F̂  is an initial deformation gradient for the original phase defined as 

0
0

ˆ 



x
F

X
, which occurs prior to the environmentally activated phase evolution, and 

1

k
k

k


 



x
F

x
 is the incremental deformation gradient experienced by the material 

point as it moves from 1xk  to xk  during the k-th time increment. The 

multiplicative operation  
1

n

k
k

  is defined as        
2 1

1

  
n

k n
k

 which 

goes toward left. Eq. (2.2) indicates that the i-th phase experiences only the 

deformation since its creation during the i-th time increment, and during a particular 

time increment, all existing phases experience the same increment in deformation. 

To correctly describe the environmental-mechanical process during phase evolution, 
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we also should calculate the volume fraction kinematics of each phase during phase 

evolution. Although a specific phase evolution rule is needed for a typical material, it 

can be assumed generally that the new phase formed at the i-th time increment, with a 

volume fraction of if  at the expense of all existing phases, including the original 

phase as well as previously newly formed phases, which also can be a function of time, 

according to a typical phase evolution rule. A specific phase evolution rule for the 

Sylgard/PCL SMEC would be introduced in chapter 3. 

2.2 Generalized theoretical framework (GTF) 

At time mt m t  , there are 1m  phases, where m  phases have been newly 

formed due to the application of environmental stimuli. The total Cauchy stress of a 

material point at time mt  
with a superscript m , 

m , can be written as the summation 

of the stresses in all the existing phases weighted by their respective volume fraction: 

  0 0

1

(1 ) ( ) ( ) 



   F F
m

m

m m i i i m

i

f f    (2.3) 

where 
1

m

m i

i

f f


   is the summation of volume fractions for all newly formed phases 

and 1 mf  is the volume fraction of the original phase. 0  represents the Cauchy 

stress response of the initial material phase while i  represents the Cauchy stress 

response of the new phase formed at the i-th time increment. 

At the next time increment 1 ( 1)mt m t    , a new phase with the volume fraction 

of 1mf   is formed, and the whole material will experience the same deformation 
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gradient increment 1mF . Thus, the total Cauchy stress will be: 

  +1

+1 0 0 1 1 1 1 1

1

(1 ) ( ) ( ) ( )      



      F F F
m

m

m m i i i m m m m

i

f f f     (2.4) 

where 

1

1

1

m

m i

i

f f






  , 0 1 1 0m m m    F F F  and 1 1i m m i m    F F F . 

In Eq. (2.3) and Eq. (2.4), the deformation gradient in each phase i mF  ( 0,...,i m ) 

should be updated then stored as an internal variable in each time increment. Since a 

deformation gradient is an asymmetric 3×3 tensor and has 9 independent components, 

one needs 10 internal variables ( if  and i mF ) in each time increment to track the 

kinematics in each phase. As the number of new phases increases linearly with time 

increments, the computational memory cost increases 10 times the number of new 

phased with time increments, which can quickly exhaust computer CPU and memory 

resource. Therefore, the 3D generalized theoretical framework is computationally 

expensive and it is necessary to develop an efficient model. 

2.3 Effective phase model (EPM) 

In order to improve the computational efficiency, an effective phase model was first 

proposed by Long et al for 1D (2010). Below, this model is extended into a 3D one. 

Assume that the new phases formed at different time have the same constitutive 

behaviors, i.e., the Cauchy stress of each newly formed phase can be presented in the 

same expression, the mechanical contributions of all the new phases can be lumped 

into as an effective phase with an effective deformation. This effective phase and its 
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effective deformation are continuously updated to account for the response of the 

formation of each new phase at each time increment as in the generalized theoretical 

framework. 

At time mt m t  , the mechanical contributions of m  newly formed phases can be 

represented by an effective phase with a combined volume fraction of 
1

 
m

m i

i

f f  

and an effective deformation gradient Fm
, which when applied on the effective phase 

should give the same Cauchy stress as that from the generalized theoretical framework 

given in Eq. (2.3), i.e., 

 
0 0 1(1 ) ( ) ( )  F F

m

m m m mf f    (2.5) 

in Eq. (2.5), the Cauchy stress is composed of two physically distinct contributions 

weighted by their respective volume fraction. The first one is the stress response of the 

initial material phase while the second one accounts for the combined stress response 

of all the evolving phases.  

At time 1 ( 1)mt m t    , a new phase with volume fraction of 1 m+f
 
is formed. 

Accompanying this new phase, the material point undergoes a further deformation 

1mF , which is experienced by all three phases, the original one, the effective phase 

and the newly formed one, based on the generalized theoretical framework. The total 

Cauchy stress is now calculated as 

 1

1 0 1 0 1 1 1 1 1 1 1(1 ) ( ) ( ) ( ) ( )

              F F F F F
m

m m m m m m m m mf f f f   

 (2.6) 
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where 
1 1( )m mf f   gives the volume fraction of the m  combined phases at time 

1mt  , enforcing the unity of the summation of the volume fractions of all phases. 

According to the idea of the EPM, the effective phase at the m+1-th time increment 

should be updated by including the newly formed phase. The effective deformation in 

the new effective phase combined by 1m  evolving phases is given by 

1 1  F F Fm m m
, where 

1Fm
 is the new effective deformation gradient increment 

due to this update. The total Cauchy stress in Eq. (2.6) can be rewritten as, 

 1

1 0 1 0 1 1 1(1 ) ( ) ( )

        F F F F
m

m m m m m mf f    (2.7) 

compared with Eq. (2.6), the effective deformation gradient increment 
1Fm  

can be 

calculated by, 

 
1 1 1

1 1 1 1 1 1

1 1

( )
( ) ( ) ( )  

  

 

  
    F F F F Fm m m

m m m m m

m m

f f f

f f
    (2.8) 

when doing the numerical iterations, Fm
 has been derived by the last time step, and for 

a given 1mF , the right hand side of Eq. (2.8) is known. For the sake of simplicity, Eq. 

(2.8) can be further written as 

 
1 1( ) F Fm m   (2.9) 

where 
1 1 1

1 1 1 1

1 1

( )
( ) ( )  

 

 

  
   F F Fm m m

m m m

m m

f f f

f f
   . It should be noted that the 

deformation gradient increment 
1Fm
is an asymmetric 3×3 matrix with 9 unknown 

variables, whereas the Cauchy stress is a symmetric 3×3 matrix with 6 components, so 

Eq. (2.9) only provides 6 independent equations, preventing it from being solved 

directly. In order to proceed, we operate polar decomposition on 
1Fm  

and 1mF , 
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1 1 1 1 1 1,             F V R F V Rm m m m m m

 (2.10) 

where V  is the stretch tensor which is symmetric with 6 variables, R  is the rotation 

tensor which is also symmetric with T RR I . As in many plasticity theories, 

constitutively determining the rotation component R  is impossible as it does not 

yield any stress. We therefore make the following assumption, 

 
1 1   R Rm m

 (2.11) 

i.e., the incremental rotation in the effective phase is the same as that in the whole 

material point which can be known when 1mF
 
is given. With this assumption, Eq. 

(2.9) can be rewritten as, 

 
1 1 1( )   V R Fm m m   (2.12) 

Our goal is to find the root 
1Vm  

of a real-valued tensor function 
1 1( ) Vm  . 

In this paper, Newton-Raphson method is used to solve Eq. (2.12) numerically. The 

Newton-Raphson method requires a material Jacobian of the constitutive model, for 

the specific SMEC material used in this paper, the specific material Jacobian for 

which can be found in Chapter 3. 

As each time increment, the internal variables that need to be recorded are only the 

9 components of 
1Fm
 in the effective phase mode, which do not increase as the new 

formed phases increase, so it will efficiently save the computational time compared 

with the generalized theoretical framework, and can be implemented into finite 

element analysis. 
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Chapter 3. Material And Experiments Validation 

3.1 Material preparation of SMEC 

The material used to validate the 3D generalized theoretical framework and the 

effective phase model in this paper is the Sylgard/PCL shape memory elastomeric 

composite (SMEC), which was reported by Luo and Mather (2009). Briefly, the 

SMEC was prepared using a silicone rubber (Sylgard 184, Dow Corning Corp., 

Midland, MI) as the elastomeric matrix and a poly (ε-caprolactone) (PCL; Mw = 

65000g/mol, Sigma-Aldrich, St Louis, MO) as the fiber reinforcement. Details about 

fabrication process and the morphology of the Sylgard/PCL SMEC can be found in 

Luo and Mather (2009). In the Sylgard/PCL SMEC system, the silicone rubber 

provides elasticity and PCL as a crystallizable polymer works as a “switch” to fix the 

temporary shape and recover to the permanent shape due to the crystallization and 

melting. In this paper, instead of investigating the shape memory effects, we focus on 

the phenomena that are in line with the theories described above, i.e., the influence of 

phase evolution (crystallization) and the concurrent mechanical deformation to the 

stress responses.  

3.2 Dynamic Mechanical Analysis for SMEC 

To study the kinematics of phase evolution of SMEC, to be exactly, the 

crystallization process of PCL, dynamic test was conducted using a dynamic 
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mechanical analyzer (Q800 DMA, TA Instruments) at a constant temperature and a 

constant frequency, and measuring the tensile storage modules changes of SMEC. 

Only the isothermal phase evolution case was considered in the following experiments 

to be simply, which also can demonstrate the theories in this paper. 

First, the Sylgard/PCL SMEC (a 12.83×4.8×0.85mm rectangular film) was heated 

to 80°C and held for 30 minutes at this temperature to ensure PCL completely melted; 

the temperature was then lowered at a rate of -5°C/min to 38°C, 35°C, and 32°C, 

respectively. As soon as the desired low temperature reached, a small dynamic tensile 

load of 0.001N at 1Hz was applied whilst the temperature was kept unchanged for 60 

minutes. Fig. 3-1 shows the experimental results of tensile storage modulus of SMEC 

increase nonlinearly with time. This is due to the crystallization of PCL when the 

temperature is lowered to below its melt-crystal transition temperature which is 

60.6°C according to Luo and Mather (2009). 
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Figure 3-1. Kinematics of storage modulus of SMEC at different temperature, 

representing the kinematics of isothermal crystallization at different temperature. 

At 38°C, the crystallization went on slowly in the beginning 30 minutes and without 

finishing after 60 minutes; as the temperature decreased to 35°C, the crystallization 

became faster after the first 20 minutes, and almost finished in 60 minutes; as the 

temperature decreased to 32°C, the crystallization began just after 10 minutes and 

finished in about 50 minutes. The crystallinity of SMEC can be considered as a 

constant without changing with temperature, since the finally values of storage 

modulus after crystallization finished are almost the same at different temperature 

35°C and 32°C. The kinematics of isothermal crystallization of SMEC can be 

modeled by Avrami’s phase transition theory (Avrami, 1939, 1940, 1941; Maffezzoli 
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et al, 1995), which will be introduced in chapter 4.  

3.3 Thermo-mechanical experiments on SMEC 

To further explore the coupling between SMEC crystallization and stress-strain 

behaviors, thermo-mechanical experiments were conducted by using the same DMA 

(Q800, TA Instruments) on SMEC. Uniaxial stretch was added on a SMEC film 

(12.83×4.8×0.85mm) and the corresponding load was measured in different thermal 

conditions. To test the mechanical behavior of SMEC at totally melting status, first 

kept the temperature at 80°C for 30mins to ensure the sample had completely melted, 

then uniaxially stretched it with a strain rate of 1%/min at 60°C for 25 minutes to make 

it finally reach a 25% strain deformation and measured the nominal stress during the 

stretch process. To test the mechanical behavior of SMEC at totally crystallized status 

or at the procedure of crystallization, it was also required to keep the temperature at 

80°C for 30mins first to ensure the sample was totally melted, then decreased the 

temperature at a rate of -5°C/min to 32°C, after holding at this temperature for 60 

minutes, for 10 minutes, and without holding, respectively, then uniaxially stretched 

the sample with a strain rate of 1%/min for 25 minutes and measured the nominal 

stress during stretch to test the mechanical behaviors of SMEC under different phase 

evolution stage. After holding for 60mins at 32°C, the crystallization has finished 

according to the dynamic test in chapter 3.2; while after holding for 10mins or without 

holding, the crystallization process was concurrently coupled with uniaxial 

deformation. Experimental results of stress-strain behaviors of SMEC at above 4 
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different thermal-mechanical conditions are shown in Fig. 3-2. 

 

Figure 3-2. Stress-Strain behavior of SMEC under different thermal-mechanical 

conditions. 

To enrich the phenomena of stress-strain behavior of SMEC at various phase 

evolution stages, uniaxial stretch with a strain rate of 1%/min for 25 minutes after 

cooling down to 30°C, then held for 10 minutes and without holding had also been 

done. Corresponding experimental results of the stress-strain behaviors of SMEC at 

these 2 different thermal-mechanical conditions are shown in Fig. 3-3. 
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Figure 3-3. Enrichment of the stress-strain behavior of SMEC under different 

thermal-mechanical conditions. 

Constitutive model adoptions for totally melting and crystallized SMEC according to 

the experimental results will be introduced in chapter 4, and model predictions for the 

mechanical behaviors with phase evolution will be shown. 
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Chapter 4: Model Validation by Experiments 

4.1 Phase evolution rule of SMEC material 

As the temperature is lowered from a temperature above its melting temperature to 

a temperature below its crystallization temperature, a crytallizable material will 

undergo melt-crystallization transition. Here, we use Avrami’s phase transition theory 

(Avrami, 1939, 1940, 1941) to describe the kinetics of crystallization of SMEC at a 

constant temperature. Avrami’s equation is expressed by 

  1 ( ) exp    
 

n
t Zt  (4.1) 

where ( )t  is the degree of crystallinity referred to its maximum value of the volume 

of the crystallized phase in the material; t  is the crystallization time, when 0t  , 

( ) 0t  ; when  t , ( ) 1t ; n  is the Avrami exponent, empiric value for 

which is either 3 or 4; and Z  is the kinematic constant which is dependent on 

temperature (Maffezzoli et al, 1995), 

 exp( )exp( )
( ) ( )

  
 

1 2
0 0

g m

E E
Z z

k T T k T T
 (4.2) 

where 0z  is a kinematic constant, 1E  and 2E  represent the activation energies 

accounting respectively for the counteracting effects of undercooling and diffusion. 

k  is the Boltzman constant, 
gT  is the glass transition temperature, for PCL which 

is -49.5°C (Luo and Mather, 2009), and 0

mT  is the theoretical melting point, for PCL 

which is 60.6°C (Luo and Mather, 2009). Values of parameters , ,0 1 2z E E can be 
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identified by dynamic mechanical analysis experiments on SMEC as chapter 3.2 

shows. 

4.2 Constitutive behavior of SMEC 

According to some literatures (Benveniste, 1987; Castaneda, 1991; Dunn, 1998), 

the total stress in a composite material point is the summation of the stresses in all the 

consisted materials weighted by their respective effective volume fraction. For SMEC 

composed of Sylgard and PCL, the total stress comes from Sylgard and PCL weighted 

by their respective effective volume fraction, which is written by 

    Total Syl PCL
Syl PCL     (4.3) 

where Syl Syl Syl     and  PCL PCL PCL  
 
are the effective volume fraction of 

Sylgard and PCL in the whole SMEC, respectively, which are equivalent to their 

respective volume fraction   weighted by their respective stress concentration factor 

 . 
Syl and 

PCL represent the respective constitutive model for Sylgard and PCL 

which will be introduced in the following, we figured them out according to the 

mechanical behaviors of SMEC at different thermal-mechanical conditions. 

4.2.1 3-D Constitutive model for rubbery Sylgard 

For the experiments on SMEC in this paper, the phase evolution process involved, 

to be exactly, is the crystallization process of PCL. In the range of experimental 

temperature in this paper, Sylgard stays in its rubbery status. Here we use 
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Neo-Hookean near incompressible model to describe the stress-strain behavior of 

Sylgard rubber, the Cauchy stress is: 

 ( ') ( 1)   B INkT K J  (4.4) 

where N  is the chain density, k  is the Boltzmann constant, T  is the temperature, 

NkT  is equivalent to the shear modulus. K  is the bulk modulus. 'B  is the deviatoric 

Left Cauchy-Green deformation tensor, 
( )

'
3

tr
 

B
B B . TB FF . J  is the 

determinant of F  and I  is a unit tensor. 

4.2.2 3-D Constitutive model for crystallized PCL 

In the experimental circle in this paper, PCL will perform crystallized and melted 

status according to the temperature change. From Luo an Mather (2009), when PCL is 

melted, it has a much lower storage modulus compared with Sylgard and can be 

considered as a viscous liquid that does not carry load; when PCL is crystallized, it can 

be regarded as a hyperelastic solid that will carry load, so we only need to figure out 

the 3D constitutive model for crystallized PCL. 

Here we use the new two-term 1I  based hyperelastic model (Lopez-Pamies, 2010) 

to describe the stress-strain behavior of crystallized PCL, which has been verified to 

capably predict the mechanical behavior of a variety of rubber elastic solids over their 

entire range of deformations. The stored-energy function of this new two-term 1I  

based hyperelastic model is: 
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1 1

1 1 1

3 3
( ) ( 3 ) ( 3 )

2 2

 

   
1 2

1 1 2 2

α α
α α α α

1 2

1 2

W I μ I μ I
α α

 (4.5) 

Where 1  and 2  are constants, 1  and 2  stand for the shear modulus, 1I
 
is the 

first principal invariant of the left Cauchy-Green deformation tensor B . The 

corresponding Cauchy stress tensor, associated with the near incompressibility 

constraint, resulting from Eq. (4.5) is: 

 1 1 1 1

1 1(3 3 ) ( 1)      B I 1 1 2 2α α α α

1 2μ I μ I K J'  (4.6) 

Where '
B  is the deviatoric part of B . K  is the bulk modulus, J  is the determinant 

of F  and I  is a unit tensor. 

4.2.3 Total stress in SMEC  

As demonstrated at the beginning of this chapter, the total Cauchy stress in the 

composite material SMEC is a summation of the stresses in Sylgard and PCL, 

weighted by their respective effective volume fraction; also as mentioned in chapter 

4.2.2, the stress in PCL fibers only comes from the crystallized part, 

 ( ) ( )   F PCL PCL

Crystalc t  (4.7) 

where c  is the crystallinity of PCL fiber in the composite material which can be 

determined by differential scanning calorimetry (DSC), ( )t is the relative degree of 

crystallinity as introduced in chapter 4.1, ( ) 1t  when the PCL is saturated 

crystallized. ( )c t  represents the volume fraction of crystallized PCL. 

Combined with Eq. (4.4), the total stress in SMEC can be expressed by, 



 

24 

 

 ( ) ( ) ( )     F F  Total Syl PCL
Syl PCL Crystalc t    (4.8) 

( )F
Syl  follows the near incompressible Neo-Hookean model introduced in chapter 

4.2.1, and ( )F
PCL

Crystal  follows the near incompressible two-term 1I  based 

hyperelastic model introduced in chapter 4.2.2. All the parameters involved can be 

identified by the corresponding thermo-mechanical experiments on SMEC in chapter 

3.3. 

4.3 Parameter fitting 

There are a total of 16 parameters involved in the thermo-mechanical models for 

SMEC material with phase evolution process. Among which 2 are material 

component parameters, 4 come from the kinetic of isothermal crystallization of PCL, 

and 10 are from the 3D constitutive models for SMEC. Among the 16 parameters, 4 

are cited from credible literatures, 12 are fitting parameters which are determined by 

experiments in this paper.  

4.3.1 Volume fraction of Sylgard and PCL in SMEC 

The SMEC material used in this paper was provided by Luo and Mather, from their 

fabrication process, the volume fraction 
Syl  of Sylgard is 0.87, the volume fraction 

PCL  of crystallized PCL is 0.13. 
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4.3.2 Parameters in Avrami’s equation 

The empiric value of Avrami exponent n  is either 3 or 4 (Avrami, 1939, 1940, 

1941), in this thesis we chose 4n . The kinetic constant Z  is a function of 

temperature T  from Eq. (4.1) in chapter 4.1, 

 exp( )exp( )
( ) ( )

  
 

1 2
0 0

g m

E E
Z z

k T T k T T
 (4.9) 

parameters , ,0 1 2z E E  in Eq. (4.9) can be determined by dynamic mechanical analysis 

experiments at different temperature as chapter 3.2 shows. By fitting Z  in the three 

curves in Fig. (3-1) at temperature 38°C, 35°C , and 32°C , respectively, as Fig. (4-1) 

shows, 

 

Figure 4-1. Parameters fitting in Avrami’s equation for the isothermal kinematic of 
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crystallization of SMEC. 

the 3 unknown parameters , ,0 1 2z E E can be derived by a linear equation set consisted 

of 3 equations when Z  and T  are specified according to Eq. (4.9). Here we 

obtained 191.18, / 232.82, / 153.06  0 1 2z E k E k . With these parameters, we can 

calculate Z  for any given T , then get the isothermal evolution rule for SMEC at any 

temperature. For example, = 0.068Z  when 30 CT = , which was used in the model 

predictions with crystallization happened at 30°C in chapter 4.3. 

4.3.3 Parameters in the 3-D constitutive models of SMEC 

As introduced in section 4.2, when the PCL is completely melted, the total stress in 

the SMEC is fully contributed by Sylgard, 

 ( )  F
Total Syl

Syl   (4.10) 

when applied by the Neo-Hookean incompressible model for rubbery Sylgard as 

section 4.2.1 introduced, Eq. (4.8) can be written in the following form 

  ( ') ( 1)    B I
Total

Syl Syl NkT K J   (4.11) 

where the polymer crosslinking chain density of Sylgard N equals 1.8×10
26 

m
-3

 which 

can be examined by DMA for neat Sylgard (Luo and Mather, 2009). The stress 

concentration factor 
Syl

 
can be fitted by the uniaxial stretch experiment at 

temperature 60°C after holding for 60 minutes in Fig. 3-2, we obtained 0.51Syl  as 

in the fitting Fig. 4-2 shows.  



 

27 

 

 

Figure 4-2. Parameters fitting in the constitutive model for Sylgard rubber based on 

the experimental results in SMEC totally melting status. 

The bulk modulus K is an estimated value which is around 300 times the shear 

modulus for a near incompressible material, here we chose K=300MPa. 

Based on the relationship of + 1Syl PCL  , from a rigorously mathematical 

analysis (Dunn, 1998), we can obtain 4.31PCL   

Also as introduced in section 4.2, when the PCL is in its maximum degree of 

crystallinity, in another word, completes its crystallization, the total stress in the 

SMEC can be expressed according to Eq. (4.8), 

 ( ) ( )    F F  Total Syl PCL
Syl PCL Crystalc   (4.12) 

when applied by the near incompressible two-term I1 based hyperelastic model for 
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crystallized PCL as section 4.2.3 introduced, Eq. (4-12) can be written in the following 

form, 

  1 1 1 1

1 1 2 1( ) (3 3 ) ( 1)          F B I  1 1 2 2α α α αTotal Syl
Syl PCL c μ I μ I K J  '

(4.13) 

the crystallinity c  equals 0.12 which can be determined by DSC on the SMEC 

material (Luo and Mather, 2009), the bulk modulus K  for crystallized PCL here we 

chose is 1000MPa, the combined effect of parameters 1α , 2α , 1μ , and 2  can be 

regarded as the shear modulus, by fitting the uniaxial stretch experiment at 

temperature 32°C after holding 60 minutes to make sure the PCL finished its 

crystallization in Fig. 2-1, we obtained 1 11.59MPaμ , 1 0.06α , 2 8.64MPaμ , 

and 2 34.36 α  as Fig. 4-3 shows, 
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Figure 4-3. Parameters fitting in the constitutive model for crystallized PCL based on 

the experimental results in SMEC saturated crystallized status. 

To summarize the above analysis, a total of 16 parameters which are involved in 

these 3D thermo-mechanical models for SMEC material with phase evolution were 

identified and listed in Table 4-1.  

Table 4-1 List of the parameters 

Parameter Value Description (Fitting parameter are described in italics) 

Composition 

vSyl  0.87 Volume fraction of matrix (Sylgard) (Determined by 

fabrication) 

vPCL 0.13 Volume fraction of fiber (PCL) (Determined by 
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fabrication) 

Kinetics of isothermal crystallization  

z0 

E1/R 

E2/R 

191.18s
-1
 

232.82K 

153.06K 

Kinematic constant (Fitting parameter) 

Activation energy (Fitting parameter) 

Activation energy (Fitting parameter) 

n 4 Avrami exponent 

Mechanical behaviors 

γSyl 0.51 Stress concentration factor of Sylgard (Fitting 

parameter) 

γPCL 4.31 Stress concentration factor of PCL (Fitting 

parameter) 

N 1.8×1026
m-3

 Polymer crosslinking chain density (From DMA for 

neat Sylgard) 

K 

c 

300MPa 

0.12 

Bulk modulus of Sylgard (Fitting parameter) 

Crystallinity of PCL (From DSC for SMEC) 

μ1 111.59MPa Shear modulus of crystallized PCL (Fitting 

parameter) 

α1 0.06 Constant of crystallized PCL (Fitting parameter) 

μ2  8.64MPa Shear modulus of crystallized PCL (Fitting 

parameter) 
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α2 

K 

-34.36 

1000MPa 

Constant of crystallized PCL (Fitting parameter) 

Bulk modulus of crystallized PCL (Fitting 

parameter) 

4.4 Newton-Raphson method to solve the effective deformation 

gradient in the effective phase model 

In the 3D effective phase model proposed in this paper, Newton-Raphson method 

was used to derive the effective deformation gradient increment at each time 

increment. The equation that needs to be solved was Eq. (2.12) in section 2.3 as, 

 
1 1 1( )   V R Fm m m   (4.14) 

which is an implicit equation of 
1Vm
, and   is known by  

 
1 1 1

1 1 1 1

1 1

( )
( ) ( )  

 

 

  
   F F Fm m m

m m m

m m

f f f

f f
    (4.15) 

as Fm
 has been known from last time increment and 1Fm , 1 mf  have been given 

in the new time increment. 

According to Newton-Raphson method, 
1Vm

 can be calculated by several 

iterations until converging if given an proper estimated initial value  1 0Vm , 

    
  

  

11 1
0

1 1
1 0

1
1

0

 

 



  
   


  



σ V R F Σ
V V

σ
V V

V

m m m

m m

m

 (4.16) 

To do the iteration shown in Eq. (4.16), the material Jacobian 1



σ

V
 is required. 

For the specific constitutive model used in this paper for the crystallized phase of PCL, 
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the two-term I1 based model, as shown in section 4.2.2, here we give the details of how 

to get this specific material Jacobian. The expression of Cauchy stress is, 

 1 1 2 21 1 1 1

1 1 2 1(3 3 ) ( 1)          B II I K J '  (4.17) 

according to the mechanical meanings of the involved tensors and parameters, 

 

T T
T T

T T

1

tr( ) tr( ) tr( )

3 3 3

tr( ) tr( ) tr( )

det( ) = det( )

     
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' B FF VV
B B FF VV

B FF VV

F V

I

J =

 (4.18) 

based on the basic tensor algebra, 

 
 

:
 


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Vσ σ

V V V
 (4.19) 

from the relationship of σ and V by Eq. (4.17) and Eq. (4.18), 
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 (4.20) 

where 1 1 2 21 1 1 1

1 2(3 tr( ) 3 tr( ) )    T T
VV VV

      ,  is the identical forth-order 

tensor,  is the transformation forth-order tensor. 

Finally, the material Jacobian required in Eq. (4.16) can be derived by, 
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4.5 Model Predictions 

The generalized theoretical framework can be written in MATLAB to do the 3D 

numerical simulations, while the effective phase model can be implemented in 

ABAQUS as a UMAT to do the finite element analysis. Model predictions have been 

compared with the experimental results of stress-strain behavior of uniaxial stretch 

with concurrent phase evolution presented in Fig. 3-2. Fig. 4-4 shows the comparison 

of numerical simulations and experiments at different temperature and with different 

phase evolution process.  

 

Figure 4-4. (1). Numerical simulations of GTF and EPM compared with experimental 

results at temperature 32°C; (2). Numerical simulations of GTF and EPM compared 

with experimental results at temperature 30°C. 

The effective deformation gradient of the effective phase F  in EPM calculated 

during the numerical simulation process is also shown in Fig. 4-5, compared with the 

deformation gradient F  given to the whole material. 
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Figure 4-5. Effective deformation gradient of the effective phase compared with the 

deformation gradient given to the whole material during the simulation process. 

It can be seen that the 3D models can capture the stress-strain behavior of the 

SMEC material with phase evolution very well, and verified the accuracy of the 

generalized theoretical framework and the efficiency of the effective phase model. 

4.6 Conclusions 

This thesis developed a generalized three-dimensional theoretical framework for 

SAMs with phase evolution process, and proposed a more computationally efficient 

effective phase model which can be implemented in the finite element analysis tools. 

In this paper, both the generalized theoretical framework and the effective phase 
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model have been validated by experiments based on a SMEC material, the effective 

phase model has been implemented in ABAQUS by writing a user material subroutine 

(UMAT) to do the three-dimensional finite element analysis. Experiments were done 

at different thermal-mechanical conditions with phase evolution and simultaneous 

external mechanical stretch. Comparisons between numerical simulations of model 

predictions and experimental results admit great consistent. 

With the UMAT implemented by this effective phase model in ABAQUS, finite 

element analysis of complicated mechanical behaviors of some SAMs based 

composite material can be done. For example, the numerical simulations of shape 

memory behaviors of anisotropic SMEC with different fiber orientations, since the 

theoretical framework for anisotropic materials has not been well developed; the other 

example is, to simulate and analysis the triple shape memory behavior of the triple 

shape polymeric composite (Luo and Mather, 2010) which is composed of a low mT
 

semicrystalline polymer and a gT
 based shape memory polymer matrix.  

Works on the micromechanical analysis of anisotropic shape memory elastomeric 

composites will be shown in the following chapters. 
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Chapter 5. Micromechanics of anisotropic shaper memory 

elastomeric composites (ASMEC) 

5.1 Experimental material of ASMEC 

As mentioned in chapter 4, if the crystallizable fibre immersed in the elastomeric 

matrix is oriented, the overall material properties of the shape memory elastomeric 

composites will be anisotropic, and we call this kind of SMEC as ASMEC. 

The experimental material ASMEC used in our group is fabricated by the 3D 

printer using 3D printing technology. There are two approaches to reach printed 

shape memory composites (PSMCs) using the 3D printer: the first one is straight 

printing of multiple materials; the second one is a more complex hybrid 

printing/impregnation process with a sacrificial material and then a non-printed 

active material. For the first approach, as long as the composite is designed using a 

CAD software, it can be printed directed by the 3D printer. The fabrication of the 

anisotropic shape memory elastomeric composites (ASMECs) was using the second 

approach by the 3D printer. The fabrication process follows six steps (Fig. 1):  

1) Design the composite in CAD.  

2) Print the structure on the 3D printer. In the ASMEC case, the Tangoblackplus is 

chosen as rubbery matrix material.  

3) Along with the composite structure, an indicator is printed. Once the color or 



 

37 

 

the shape of the indicator changes, it indicates that the channels completely form, 

and the printing process should be paused immediately.  

4) Manually remove the sacrificial material from channels.  

5) Fill the channels with crystallizable fiber melts (PCL). This step needs to be 

operated at 80°C.  

6) Resume the printing process to close up the channels.  

Composites with seven fiber orientations (0°, 15°, 30°, 45°, 60°, 75° and 90°) 

were made. 

  

Figure 5-1. Fabrication process of ASMEC. 

Figure 5-1 (a) shows the fabrication steps 3-6. (b) shows the corresponding 

photographs for the 75° fiber orientation case at the fabrication steps 3-6. (c) takes the 

90° to introduce the geometry of the composite. The sample has dimension 25 mm×7 

mm ×3mm (length ×width ×thickness). The coordinate system x-y-z is the globe 

coordinate system, where the x-axis along the length direction and the y-axis along the 
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width direction. The coordinate system 1-2-3 is the local coordinate system. 

Originally, for the 0° fiber orientation case, the 1-, 2-, 3-axes are coincident with the x-, 

y-, z-axes, respectively. In an arbitrary θ, using the 3-axis as a rotation axis, the 1-axis 

is rotated counterclockwise from x-axis by θ. In the 90° fiber orientation case, the 

1-axis is rotated counterclockwise by 90° and coincident with the y-axis. A zoomed in 

figure for a repeating unit is used to introduce the size of fibers. The dimension of the 

entire cross section is 2∆L×3∆L (here, ∆L=1mm ). The fibers with square cross 

section b × b. In the real sample, each end of the holes is sealed by a 0.25mm thick 

“cap” to prevent PCL melt from leaking. Regardless of the size of these “caps”, the 

volume fraction of fibers is: 2 26fv b L  . If b is taken to be ∆L and 
fv  becomes 1/6 

(16.7%). 

5.2 Material properties of constituents of ASMEC 

For the elastomeric matrix, we choose the Neo-Hookean near incompressible 

model to describe its stress-strain behavior as chapter 4 shows, the Cauchy stress is

( ') ( 1)   B INkT K J ; for the crystallized PCL fibre, to be simply, we also 

choose the Neo-Hookean near incompressible model to describe its stress-strain 

behavior, the Cauchy stress is ( ') ( 1)  B IK J ; 

The effective phase model implemented into the user subroutine (UMAT) to 

describe the phase evolution process of PCL needs a material Jacobian to be 

calculated for the specific N-H constitutive mode. Following shows the calculation 
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of this specific material Jacobian. 

First, the Cauchy stress should be written in a formation of V , 

( ) ( )
( ) ( 1) ( ) (det( ) 1)

3 3

( )
( ) (det( ) 1)

3

tr tr
k k

tr
k

 



      

  

T
T

T
T

B FF
σ B I J I = FF I F I

VV
                                                      = VV I V I

 (5.1) 

Then according to the tensor algebra,  

       

2
( ) ( d e t ( ) )

3

  
      

  
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V
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

              (5.2)

 

To make the material Jacobian as a symmetric matrix, equation 5.2 need to be 

rewritten as, 

1 1
( ) det( ) )

3 2

   
        

  
V V V I + I V V (V I + I V

V

T TK


  (5.3)

 

With this computationally efficient effective phase model implemented UMAT 

code, Finite element analysis for ASMEC using Abaqus/Standard is possible.  

5.3 Modeling of representative volume element 

An appropriate representative volume element or a representative unit cell is 

required for the modeling of micromechanical analysis for ASMEC, to simulate the 

periodic distribution of fibre in the matrix. Here shows a 2D illustration of how to 

select a representative volume element, the conventional way is to set the fibre in the 

diagonal of the RVE, but for a 3D modeling, it will be complicated for computation 

modeling with fibre cross the corner. So we switched the RVE to let it includes two 

fibres to avoid just one fibre which will cross the corner. Geometry of the RVE 
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depends both on the fibre orientation and on the fibre volume fraction. 

According to the experimental material, here shows 5 cases of modeling of RVE 

with fibre orientation as 
o o o o o0 , 30 , 45 , 60 , 90          , and the volume 

fraction of fibre is 16.7%. 
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Figure 5-2. Modeling of RVE with 5 cases of different fiber orientations. 

5.4 Periodic boundary conditions 

Since the RVE is periodically distributed in the material, so the periodic boundary 

conditions need to be added to the RVE. For 3D periodic boundary conditions, which 

means the 3 pairs of two opposite faces have the same deformed shape after loading 

or displacement conditions. To accomplish the 3D periodic boundary conditions, the 

relative displacements of two opposite nodes on the two opposite faces should be 

equal, and all the constrained equations should be written into the input file. In this 

thesis, a Matlab code was programmed to find the two opposite nodes in the two 

opposite faces first according to their coordinate positions, and then wrote the 

equations in the form that can be recognized by the Abaqus/Standard to constrain the 

3D periodic boundary conditions. 

In addition to the periodic boundary conditions, other boundary conditions also 
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need to be added to the RVE as that added to the macrostructure. Figure 5-3 shows 

the illustration of the external boundary conditions that added to the 0o= RVE. 

 

Figure 5-3. 3D illustration of the boundary conditions added to the RVE 

Node 1 was pinned to fix the rigid body movement of the RVE, and the 

displacement in z direction of node 4 and node 8, the displacement in y direction of 

node 3 and node 4 were set to be zero to fix the rigid body rotation of the RVE, by 

complying to the experimental conditions, which is the load control uniaxial tension 

at different thermal conditions, the concentrated force was added to node 4 to 

accomplish load control, where the uniaxial nominal stress in x direction can be 

calculated by the concentrated force divide the original cross-section area. And since 

the experimental material sample was clipped at both the end, which means face II 

need to be kept planer in the RVE modeling.  

Equations of the 3D periodic boundary conditions are detailed as following, for 

face I and II, where face I is set to be the slave face and face II is set to be the master 
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face, and U means the displacement (Galvanetto etc. 2010): 

 

I 1 II 4

x x x x

I 1 II 4

y y y y

I 1 II 4

z z z z

U U U U ;

U U U U ;

U U U U ;

  

  

  

 (5.4) 

and for faces III and IV, where face III is set to be the slave face and face IV is set to 

be the master face: 

 

III 1 IV 2

x x x x

III 1 IV 2

y y y y

III 1 IV 2

z z z z

U U U U ;

U U U U ;

U U U U ;

  

  

  

 (5.5) 

and for faces V and VI, where face V is set to be the slave face and face VI is set to 

be the master face: 

 

V 1 VI 5

x x x x

V 1 VI 5

y y y y

V 1 VI 5

z z z z

U U U U ;

U U U U ;

U U U U ;

  

  

  

 (5.6) 

And for face II, to keep planar, which means the displacement in x direction of all 

the nodes on face II should be the same: 

 II 4

x xU U 0   (5.7) 

5.5 Model validation by comparing with experimental data 

To rely on the micromechanical analysis, the numerical simulation needs to be 

validated by comparing with experimental data. First, for the uniaxial tension at 

80
o
C, the stress-strain behavior curves at 5 cases of different fiber orientations are 

shown in figure 5-4. 
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Figure 5-4. Numerical results of stress-strain behavior of ASMEC with different fiber 

orientations on the uniaxial tension condition at 80
o
C. 

 From Figure 5-4, the stress-strain behavior of ASMEC at different fiber 

orientations is not of much difference, while the material is a little bit stiffer with 0
o 

fiber orientation and a little bit softer with 60
o 
fiber orientation, which has the same 

trend with the experimental results from Figure 5-5. Reason for this is the fiber at its 

melting status and does not contribute to the material stiffness, so the effect of fiber 

orientation is less.  
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Figure 5-5. Experimental results of stress-strain behavior of ASMEC with different 

fiber orientations on the uniaxial tension condition at 80
o
C. 

 For the uniaxial tension at 30
 o

C, the effect of fiber orientation to the overall 

material behavior is obvious, as Figure 5-6 shows, 
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Figure 5-6. Numerical results of stress-strain behavior of ASMEC with different fiber 

orientations on the uniaxial tension condition at 30
o
C. 

  Which has the same trend with the experimental results as Figure 5-7 shows, 
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Figure 5-7. Experimental results of stress-strain behavior of ASMEC with different 

fiber orientations on the uniaxial tension condition at 80
o
C. 

  The interesting phenomena is the stress-strain behavior of 90
o 
fiber orientation is 

quite the same with that of 45
o
 fiber orientation, and the material is much more softer 

at 60
o
 fiber orientation than that of 90

o
 fiber orientation, which has not been 

understood by us theoretically. 

  The shape memory cycle is shown as strain in the loading direction changes with 

temperature and time increasing, the numerical results are in Figure 5-8 and 

experimental results are in Figure 5-9. 
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Figure 5-8. Numerical simulations of shape memory cycle 
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Figure 5-9. Experimental results of shape memory cycle 

  In the loading step at high temperature, the material was elongated because of 

external loading and strain in the loading direction increases, the difference between 

different fiber orientations is just the value of strain differs a little bit because of the 

shear modulus differs a little bit which can be seen from figure 5-4; in the cooling 

step, the strain increases a little bit because of shear modulus which is linear with 

temperature decreases a little bit as temperature decreases; in the holding process, 

the strain decrease comes from thermal expansion in the crystallization process of 

fiber; the most strain decrease happens in the unloading process, the biggest strain 

fixity is with 0
o
 fiber orientation and the smallest strain fixity is with 60

o
 fiber 

orientation, the trend is the same with figure 5-6 shows; in the heating process, the 
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strain increases first since thermal expansion happens and recovers to 0 finally 

because of melting happens. Comparisons with experimental results, we can see the 

trend are all the same while there are some differences in the value, which can be 

acceptable and can give verification of the numerical analysis. 

5.6 Stress contour at different fiber orientations 

Stress results including Mises stress and the stress component in the loading 

direction obtained from the FEM of 5 cases fiber orientations are presented and 

discussed in this section. These are shown in order to emphasize that all stresses were 

studied for the 5 cases to provide confidence in the finite element model and results. 

5.6.1 0
o
 fiber orientation 

  

 

Figure 5-10. Contour view cut illustration at 0
0
 fiber orientation. 

  The contour of Mises stress and stress component in x direction will be shown 
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from two view cut planes, one is parallel to the fiber and the other is perpendicular to 

the fiber. Following figures show the stress contour during a shape memory cycle. 

 

Figure 5-11．Stress contour at the end of loading process with 0
o
 fiber orientation. 

After loading at high temperature, the stress mainly occurs in the elastomer matrix 

since the fiber is under melting status and can be regarded as not carry load.  

 

Figure 5-12． Stress contour at the end of unloading process with 0
o
 fiber orientation. 

After unloading process, where the fiber has already been crystallized, stress in the 

fiber is compressed and much higher than that in the elastomer which is still 
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stretched.  

 

Figure 5-13. Stress contour during the heating process where melting just begins with 

0
o
 fiber orientation. 

As soon as melting begins, the stress both in the elastomer and in the fiber are 

decreased.  

 

Figure 5-14. Stress contour during the heating process where melting almost finish 

with 0
o
 fiber orientation. 

The stress in the fiber decreases much more than that in the elastomer after melting 

finishes, and the overall Mises stress in the material is close to 0, while there are 
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concentrated stress in the contact corners of fiber and elastomer. 

5.6.2 30
o
 fiber orientation 

The contour of Mises stress and stress component in x direction will be shown 

from two view cut planes, one is parallel to the fiber and the other is the diagonal 

plane of the RVE.  
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Figure 5-15. 3D illustration of the two view cut planes of 30
o
 fiber orientation. 

 

Figure 5-16．Stress contour at the end of loading process with 30
o
 fiber orientation. 

Differ from the stress contour of 0
0
 fiber orientation, after loading with 30

0
 fiber 

orientation, the maximum stress occurs at the contact corner of the fiber and 

elastomer and the fiber curved.  
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Figure 5-17. Stress contour at the end of unloading process with 30
o
 fiber orientation. 

 

Figure 5-18. Stress contour during heating process where melting just begins with 30
o
 

fiber orientation. 
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Figure 5-19. Stress contour during heating process where melting almost finishes with 30
o
 

fiber orientation. 

5.6.3 45
o
 fiber orientation 

The contour of Mises stress and stress component in x direction will be shown 

from two view cut planes, one is parallel to the fiber and the other is the diagonal 

plane of the RVE.  

 

Figure 5-20． 3D illustration of the two view cut planes for 45
o
 fiber orientation 



 

59 

 

 

Figure 5-21. Stress contour at the end of loading process with 45
o
 fiber orientation. 

 

Figure 5-22．Stress contour at the end of unloading process with 45
o
 fiber orientation. 

 

Figure 5-23. Stress contour during heating process where melting just begins with 45
o
 fiber 

orientation. 
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Figure 5-24．Stress contour during heating process where melting almost finishes with 45
o
 

fiber orientation. 

5.5.4 60
o
 fiber orientation 

The contour of Mises stress and stress component in x direction will be shown 

from two view cut planes, one is parallel to the fiber and the other is the diagonal 

plane of the RVE.  
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Figure 5-25. 3D illustration of the two view cut planes. 

 

Figure 5-26．Stress contour at the end of loading process with 60
o
 fiber orientation. 
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Figure 5-27. Stress contour at the end of unloading process with 60
o
 fiber orientation. 

 

Figure 5-28．Stress contour during heating process where melting just begis with 60
o
 fiber 

orientation. 

 

Figure 5-29．Stress contour during heating process where melting almost finishes with 60
o
 

fiber orientation. 
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5.6.5 90
o 

fiber orientation 

The contour of Mises stress and stress component in x direction will be shown 

from two view cut planes, one is parallel to the fiber and the other is perpendicular to 

the fiber.  

 

Figure 5-30. 3D illustration of two view cut planes for 90
o
 fiber orientation. 

 

Figure 5-31．Stress contour at the end of loading process with 90
o
 fiber orientation. 
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Figure 5-32. Stress contour at the end of unloading process with 90
o
 fiber orientation. 

 

Figure 5-33．Stress contour during heating process where melting just begins with 90
o
 fiber 

orientation. 
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Figure 5-34. Stress contour during heating process where melting almost finishes with 90
o
 

fiber orientation. 

5.7 Discussion 

For the ASMEC material studies in this chapter, we can conclude that, in generally, 

the overall mechanical properties and shape memory behaviors of ASMEC are 

strongly influenced by fiber orientations.  

The EPM which has been implemented into the commercial code ABAQUS with 

subroutine in FORTRAN (UMAT) is reliable by comparing with experiments, that 

means, numerical methods (FEA) can be applied to easily accomplish the analyses of 

mechanical properties of some heterogeneous materials. Micromechanical analyses of 

RVE with different fiber orientations of ASMEC have been verified to be successful 

by comparing with experiments, which indicated that the micromechanical analyses 

of materials with phase evolution can be done and more complicated cases can be 

studied in the future such as considering the contact between fiber and matrix or to 

do the optimal designing of material to realize the desired material properties.  

 

  



 

66 

 

References 

1. Avrami, M., 1939, Kinetics of phase change I – General theory. Journal of Chemical 

Physics 7 (12), 1103-1112. 

2. Avrami, M., 1940, Kinetics of phase change II – Transformation – Time relations 

for random distribution of nuclei. Journal of Chemical Physics 8, 212-224. 

3. Avrami, M., 1941, Granulation, phase change, and microstructure – Kinetics of 

phase change III. Journal of Chemical Physics 9 (2), 177-184. 

4. Barot, G., Rao, I.J., Rajagopal, K.R., 2008. A thermodynamic framework for the 

modeling of crystallizable shape memory polymers. International Journal of 

Engineering Science 46 (4), 325-351. 

5. Behl, M., Lendlein, A., 2007. Shape-memory polymers. Materials Today 10 (4), 20. 

6. Benveniste, Y., 1987, A new approach to the application of Mori-Tanaka theory in 

composite-materials. Mechanics of Materials 6 (2), 147-157. 

7. Castaneda, P.P., 1991, The effective mechanical-properties of nonlinear isotropic 

composites. Journal of the Mechanics and Physics of Solids 39 (1), 45-71. 

8. Chung, T., Rorno-Uribe, A., Mater, P.T., 2008. Two-way reversible shape memory 

in a semicrystalline network. Macromolecules 41, 184-192. 

9. Corbett, D., Warner, M., 2007. Linear and nonlinear photoinduced deformation of 

cantilevers. Physical Review Letters 99 (17). 

10. Dorfmann, A., Ogden, R.W., 2004. A constitutive model for the Mullins effect 



 

67 

 

with permanent set in particle-reinforced rubber, International Journal of Solids and 

Structures 41 (7), 1855. 

11. Dunn, M.L., 1998, One-dimensional composite micromechanics. International 

Journal of Mechanical Engineering Education 26, 38-50. 

12. Dunn, M.L., 2007. Photomechanics of mono- and polydomain liquid crystal 

elastomer films. Journal of Applied Physics 102 (1). 

13. Galvanetto, U., Aliabadi, M.H. F., 2010. Multiscale Modeling in Solid Mechanics: 

Computational Approaches. Imperial College Press.  

14. Ge, Q., Luo, X., Rodriguez, E.D., Zhang, X., Mather, P.T., Dunn, M.L., Qi, H.J., 

2012. Thermomechanical behavior of shape memory elastomeric composites. Journal 

of the Mechanics and Physics of Solids 60, 67-83. 

15. Hon, K.K., Corbett D., Terentjev, E.M., 2008. Thermal diffusion and bending 

kinetics in nematic elastomer cantilever. European Physical Journal E 25 (1), 83-89. 

16. Jin, L., Zeng, Z., Huo, Y., 2010. Thermomechanical modeling of the 

thermo-order-mechanical coupling behavior in liquid crystal elastomers. Journal of 

the Mechanics and Physics of Solids 58 (11), 1907-1927. 

17. Lendlein, A., Hongyan, J., Junger, O., Langer, R., 2005. Light-induced 

shape-memory polymers. Nature 434 (7035), 879. 

18. Liu, Y., Gall, K., Dunn, M.L., McCluskey, P., 2004. Thermomechanics of shape 

memory polymer nanocomposites. Mechanics and Materials 36 (10), 929-940. 

19. Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R., Diani, J., 2006. Thermomechanics 



 

68 

 

of shape memory polymers: uniaxial experiments and constitutive modeling. 

International Journal of Plasticity 22 (2), 279. 

20. Long, K.N., Scott, T.F., Qi, H.J., Bowman, C.N., Dunn, M.L., 2009. 

Photomechanics of light activated polymers. Journal of the Mechanics and Physics of 

Solids 57 (7), 1103-1121. 

21. Long, K.N., Dunn, M.L., Qi, H.J., 2010. Mechanics of soft active materials with 

phase evolution. International Journal of Plasticity 26, 603-616. 

22. Lopez-Pamies, O., 2010, A new I1-based hyperelastic model for rubber elastic 

materials. Comptes Rendus Mecanique 338, 3-11. 

23. Luo, X., Mather, P.T., 2009, Preparation and characterization of shape memory 

elastomeric composites. Macromolecules 42 (19), 7251-7253. 

24. Luo, X., Mather, P.T., 2010, Triple-shape polymeric composites (TSPCs). 

Advanced Functional materials 20, 2649-2656. 

25. Maffezzoli, A., Kenny, J., Torre L., 1995. On the physical dimensions of the 

Avrami constant. Thermochimica Acta 269/270, 185-190. 

26. Mather, P.T., Luo, X., Rousseau, I.A., 2009. Shape memory polymer research. 

Annual Review of Materials Research 39, 445-471. 

27. Qi, H.J., Boyce, M.C., 2005. Stress-strain behavior of thermoplastic polyurethanes. 

Mechanics of Materials 37, 817-839. 

28. Qi, H.J., Nguyen, T.D., Castro, F., Yakacki, C.M., Shandas, R., 2008. Finite 

deformation thermo-mechanical behavior of thermally induced shape memory 



 

69 

 

polymers. Journal of Mechanics and Physics of Solids 56, 1730-1751. 

29. Rajagopal, K.R., Srinivasa, A.R., 1998a. Mechanics of the inelastic behavior of 

materials. Part I, theoretical underpinning. International Journal of Plasticity 14 

(10-11), 945-967. 

30. Rajagopal, K.R., Srinivasa, A.R., 1998b. Mechanics of the inelastic behavior of 

materials. Part II, inelastic response. International Journal of Plasticity 14 (10-11), 

969-995. 

31. Rajagopal, K.R., Wineman, A.S., 1992. A constitutive equation for nonlinear 

solids which undergo deformation induced microstructural changes. International 

Journal of Plasticity 8 (4), 385-395. 

32. Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005a, Chemistry: 

photoinduced plasticity in cross-linked polymers. Science 308 (5728), 1615. 

33. Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005b, Photoinduced 

plasticity in cross-linked polymers. Science 308 (5728), 1615. 

34. Scott, T.F., Draughon, R.B., Bowman, C.N., 2006, Actuation in crosslinked 

polymers via photoinduced stress relaxation. Advanced Materials 18 (16), 2128. 

35. Tobushi, H., Hara, H., Yamada, E., Hayashi, S., 1996. Thermomechanical 

properties in a thin film of shape memory polymer of polyurethane series. Smart 

Materials and Structures 5 (4), 483-491. 

36. Wang, B., You, Y., Huo, Y., 2011. Opto-thermo actuation of multilayered liquid 

crystal polymer films. Thin Solid Films 519 (15), 5310-5313. 



 

70 

 

37. Wei, Z.G., Sandstorm, R., Miyazaki, S., 1998. Shape-memory materials and 

hybrid composites for smart systems. I. Shape-memory materials. Journal of Materials 

Science 33, 3743-3762. 

38. Westbrook, K.K., Parakh, V., Chung, T., Wan, L.C., Dunn, M.L., Qi, H.J., 2010. 

Constitutive modeling of shape memory effects in semicrystalline polymers with 

stretch induced crystallization. Journal of Engineering Materials and 

Technology-Transactions of the ASME 132 (4). 

39. Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y., Qi, H.J., 2011. A 3D finite 

deformation constitutive model for amorphous shape memory polymers: A 

multi-branch modeling approach for nonequilibrium relaxation processes. Mechanics 

of Materials 43, 853-869. 

40. Wineman, A., Shaw, J., 2007. Combined deformation- and temperature-induced 

scission in a rubber cylinder in torsion. International Journal of Non-Linear 

Mechanics 42 (2), 330. 

41. Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., Gall, K., 2007. 

Unconstrained recovery characterization of shape-memory polymer networks for 

cardiovascular applications. Biomaterials 28 (14), 2255-2263. 

 


