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Abstract

Visual representations of programs can facilitate program understanding by presenting aspects
of programs using explicit and intuitive representations. We have designed a completely visual static
and dynamic representation of an imperative programming language. Because our representation of
control is completely visual, programmers of this language can understand the static and dynamic
semantics of programs using the same framework. In this paper, we describe the semantics of
our language, both informally and formally, focusing on support for control constructs. We also
illustrate how simple programs written in this language will look both statically and dynamically.
Our representation makes explicit some parts of program execution that are implicit in textual
representations, thus our programs may be easier to understand.

1 Introduction

1.1 Motivation

Although visual programming languages have been a subject of research for at least thirty years, they
have failed to make an impact on programming language design in proportion to the enthusiasm of
the investigators in the field. Although various reasons have been advanced for this (see [2] and [5] for
a discussion of problems with visual languages), one problem is that most proposed visual languages
have simply been visual overlays of textual languages. Semantics of such visual languages can only be
understood through reference to the semantics of the underlying textual languages. While this may
sometimes allow certain patterns to become apparent (loop constructs may be visible as loops, for

example), the act of constructing programs, and the reasoning behind it, is just as difficult as it would

*This material is based upon work supported by the National Science Foundation under Grant No. CCR-9208486



have been in the underlying textual language. In fact, it may have been even more difficult, because the
programmer must be aware of the underlying semantics and the new visual syntax. This extra burden
results in the lack of a compelling reason to adopt visual versions of existing textual languages.

There are two ways to address this problem. The first is to avoid it entirely by not basing visual
languages on pre-existing textual languages. By doing this, however, one would sacrifice the extensive
pre-existing body of compiler and optimization technology for a given language. The second approach
is to design the visual presentations so that they may be understood in isolation from their underlying
textual semantics. In such situations, a visual program and its constructs could be understood in
terms of a purely visual semantics: a program could be understood and constructed through the use of
visual reasoning. Relatively few visual languages have been proposed that display such properties; they
are known as completely visual languages, and base their semantics on graphical transformation rules.
Although some of these languages are based on an underlying textual representation, it is not necessary
to understand them in such terms. A properly designed completely visual representation of a textual
language could allow programmers to use visual reasoning to construct their programs (some individuals
would probably prefer such an approach), yet use conventional compiler technology to produce efficient
compiled code.

One problem with the design of completely visual languages is that their semantics is not com-
pletely understood. In particular, no formal semantic framework exists for describing and investigating
completely visual languages.

The work presented below explores the use of the completely visual paradigm as a visual notation for
textual languages. We present one possible visual notation and assign it a syntax and semantics. We do
not claim that our notation is the best one, or that its use is an improvement over the equivalent text.

We simply wish to provide a framework for further development of this model.

1.2 Overview

In the paper below, we define control structures for a completely visual language; that is, a language
in which the execution semantics derive from graphical rules applied to the visual representation of the
current program state (state in this case meaning both the current values of variables and the current
program continuation). Note that by completely visual, we do not mean a programming language that
contains no text; for certain aspects of programs, we believe that text may be more appropriate. The
language we describe, called VIPR (Visual Imperative PRogramming language), is based roughly on the
C programming language. We are also considering object-oriented features in VipPRr; they are discussed

in a companion paper [3]. The language discussed in this paper is intended to be a starting point for



further research in completely visual programming languages; the specifics of the language will likely
change over time.

This paper focuses on control constructs in VIPR. We first present an informal description of sequen-
tial control, conditional and unconditional branches, and procedure invocation. An important aspect of
our work is that our representation is simple enough that we can formally define its semantics. To our
knowledge, such a formal definition has not been given to a visual imperative programming language. In
this paper, we outline the formal semantics of the constructs introduced and refer the interested reader
to a companion paper for more details [4].

After defining the semantics of our language, we illustrate our ideas by presenting a more complex
example program in the language. This example, a bubble sort program, serves to illustrate that the
static and dynamic program representation use the same framework and shows how simple programs are
represented.

The design of VIPR is an ongoing effort and certain aspects of VIPR’s visual representation will not
be addressed in this paper. For example, expressions and functions that return values are represented
textually in this paper whereas the language will eventually contain a completely visual representation
of these based on expression continuations. Likewise, the current representation of data, data types, the
environment, and the store are textual. Finally, while we have defined the representation and semantics
of parameter passing, we omit the details in this paper because they do not significantly add to the
discussion of control.

While many aspects of VIPR has been defined both informally and formally, the language is still in
its infancy. As such, we do not have a working compiler for the language that translates and executes
pictorial representations. Our current implementation strategy has been to create an interpreter for a
textual version of VIPR (very similar to C) and use that interpreter to generate visualizations of both
static and dynamic VIPR programs. We see the translation of VIPR programs as important and necessary

research goal, and we intend future work to focus on the problems associated with such translation.

2 Related Work

2.1 Completely Visual Programming Languages

The research that comes closest to our own is other work in completely visual programming languages.
Although much visual language work has concentrated on visual models of basically textual languages,
in which the semantics of the visual language derive from the semantics of the underlying textual
language (and not from the graphical properties of the visual representation), a few visual languages

have been designed whose semantics derive entirely or predominantly from graphical rules. The most



significant such language is Pictorial Janus [10], which was originally designed to model the execution
of the constraint logic programming language Janus, but whose execution semantics may be derived
from graphical rules applied to the visual representation. Kahn described such languages as “completely
visual.”

Pictorial Janus is unique in that a snapshot of the dynamically executing program contains a complete
copy of the static program being executed. Kahn’s definition of completely visual languages included
this requirement, but if we relax the definition to allow languages where the state and the program are
separate, another class of languages may be considered completely visual: the graphical transformation
languages. In these languages, a program consists of a set of before/after pairs of diagrams. State consists
of a set of graphical entities and their relationships. If the “before” part of a before/after pair matches
part of the state, the state is transformed to conform to the “after” part of the pair. BitPict [7]is one of
the simplest of such languages, in that its before/after pairs are simple pixel patterns. ChemTrains [1]
and Vampire [12] allow more complex visual entities and relations, and also permit variables in the
transformation rules.

Completely visual languages of both types have the advantage that the user does not need to under-
stand two different (albeit related) sets of semantics, the semantics of the visual model and that of the
underlying textual model, but can understand and write programs with knowledge of only the visual
semantics. Our work differs from other work with completely visual languages because we are defining
a representation of a simple imperative language with state, variables, and common control structures

such as if, while, and goto.

2.2 Relation to Existing Visual Imperative Languages

VIPR is a departure from other visual imperative languages, most of which are based on a control flow
graph model, and which are not completely visual, but rather rely on the semantics of some underlying
textual language. Pict [8] is the archetypal language in this model. Pict was designed to allow the
user to do everything “visually,” but in this case, “visually” meant through the use of icons representing
computation steps. The language itself was a representation of flow charts, where each flow chart symbol
was replaced by a Pict icon. The language was found to be popular with beginning programmers, who
were convinced that they were not programming, but the authors found limitations in the kinds of
programs that could be implemented with the system, and they also found that the amount of screen
space required to implement even trivial programs was prohibitive. Other similar systems that refine

the design of visual equivalents of textual imperative languages include C? [11] and PECAN [13].



State (X = 0)
(Thisisasimple VIPR program)

/* This is a simple VIPR program */

int x;
void main ()
{

x = 1;

if (x == 1) {
printf ("Hello World");
}

Figure 1: VipR Hello World Program and C Equivalent
3 Informal Syntax and Semantics of VIPR

3.1 Overview of VIPR

VIPR is a statically-typed, imperative programming language. Its appearance and semantics are based
roughly on Kahn’s Pictorial Janus [10], which is a completely visual language that supports constraint
logic programming. VIPR is different from Pictorial Janus in that its underlying model of computation
is a familiar imperative language with procedures. Formally, the VIPR language described here is very
similar to Tennent’s Simple Imperative Language [14].

Because VIPR’s semantics are imperative, programs, both static and dynamic, include a graphical
“state” object that participates in every operation. Whereas this state object is implicit in textual
languages, it is explicit in VIPR. As mentioned, the purpose of this paper is not to explore visualizations
of this state information, and as such, the internals of the state object will be represented textually
in the remainder of this paper. Likewise, while we are currently working on a visual representation of
language expressions, in this paper we present expressions textually.

To introduce VIPR, we include in Figure 1 a “Hello World” program both in VIPR and its equivalent in
C. This example serves to illustrate many important aspects of our language. First, program statements
are represented as circles. Thus, there are circles for the assignment statement and the print statement.
Next, sequential execution is indicated by nesting circles inside one another. Thus, because the printf

statement circle is inside the assignment circle, the semantics are that it executes after the assignment.



Finally, the example shows that conditionals are indicated by including two possible circles inside the
same circle. Each of these circles indicates a possible branch and must be guarded by a condition
(indicated by text on the left of the circles ending with a question-mark).

Throughout the examples presented, we will write the actions associated with a statement as text
on the upper right-hand side, outside the circle with which the action is associated. Predicated guards
on statements are written as text on the upper left-hand side outside the statement being guarded.
Comments in VIPR appear in parentheses. Note that both the action and the guard are optional (e.g.,
the outmost circle in Figure 1 has neither, as does the else part of the conditional). If the guard is
missing, a true guard is assumed. If the action is missing, then a null statement is assumed.

Intuitively, execution of a VIPR program goes as follows. A state object is present in the outermost
of the nested rings. Each execution step involves merging the outermost two rings of the diagram. When
rings merge, the action associated with the ring being consumed takes place on the state. Thus, rings
may not merge unless a state object is present. When more that one ring is present when a merge
is about to happen, the guards are evaluated in the current state and the guard evaluating to true
determines what ring will merge. Other nested rings with false guards disappear and are not evaluated.
Execution terminates when there are no further nested rings.

One of the interesting aspects of our representation is that not only does it have a two-dimensional
representation, but that the two-dimensional representation suggests a corresponding three-dimensional
interpretation. Programs may be visualized as pipes containing branches and merge points, and execution
is equivalent to moving through a particular path down the pipe. The two-dimensional representation
can then be interpreted as a stylized perspective drawing of the view down the pipe, and the dynamic
view of execution can be interpreted as a trip through the pipe. Equivalently, a VIPR program may be
envisioned as a three-dimensional flow chart with the two-dimensional representation being a view down

the flow chart in the direction of the control flow.

3.2 Control Constructs in VIPR
3.2.1 Sequential Control

The most basic kind of control is sequential control, which is implicit in every textual imperative pro-
gramming language. In VIPR a sequence of sequential statements is represented by nested circles.
Figure 2 shows three sequential C assignment statements and their equivalent in VIPR. Execution of
these assignments progresses from the outermost ring inward, as illustrated in Figure 3. The outermost
ring combines with nested rings in succession and each combination results in a modification to the

state. Thus, the effect of assignment on the state, implicit in textual languages, is explicit in ViPr. This



x = 10;
4 * x;
x + (2 % y);

N <
non

Figure 2: Static Representation of Sequential Statements in VIPR

X =10,Y =40,Z=90

Figure 3: Dynamic Representation of Sequential Statements in VIPR



if (y == 0) {
newx = 1000;
} else {
newx = x / y;
}
X

= newx;

Figure 4: Representation of a Conditional Statement in VIPR

example also further illustrates the perception that VIPR execution represents traveling down a tube—as

each statement is executed, its disappearance gives the viewer the perception that is has been passed by.

3.2.2 Conditional and Unconditional Branching

Conditional branch structures are represented in VIPR by adding an optional guard clause to each
statement in the program. For example, in the “Hello World” program, the two branches of the if
statement were represented by two circles with guards of X==1 and X!=1. The guard mechanism is very
general and any number of alternative guarded statements can appear inside a circle. Because there is no
linear order to these guards, their semantics are that they may be evaluated in any order and at most one
of them can evaluate to true. If none of the guards are true, the program is in error. Thus, we support
conditional semantics very similar to Dijkstra’s guarded-if construct [6]. With these semantics, if-then,
if-then-else, and case statements can be easily represented. if-then-elsif-else semantics simply
requires nested if-then-else conditionals.

Figure 4 contains the static VIPR representation of a C if statement where an assignment follows
both branches of the conditional. This example also illustrates the use of arrow notation in Vipr. First,
note the guards attached to the two statements that are conditionally executed, just as we saw in the
“Hello World” example. Next, note the circles nested inside these rings. These rings have no associated
actions but are necessary because they are used as anchors for the arrows leading to the statement

following the if. The arrow notation in VIPR is a simple substitution rule that says whatever circle the



while (x > 0) {
sum = sum + X;
x=x-1;

}

print(sum);

x <=07? rint(sum)

Figure 5: Representation of a while Loop in VIPR

arrow points to (the arrow’s target) can be substituted for the circle that is the source of the arrow.
Thus, the “x = newx” statement could semantically be substituted into both branches of the conditional.
While these semantics are also true in the case of the textual if statement, the ability to substitute is
implicit, whereas in VIPR “substitutability” is obvious and explicit.

One may ask why the “x = newx” assignment is not executed as one of the guarded alternatives in
the outer ring. The rule for circles appearing as the target of an arrow, where the arrow is pointing to
the outside of the circle, is that they are will not be executed unless the source of the arrow has already
been executed. For an example where the arrow points to the inside of a circle, see the next section.
The arrow in VIPR is exactly equivalent to the familiar goto statement of textual languages. Thus, any

form of unconditional branching is possible in VIPR using the arrow notation.

3.2.3 Iteration

With the semantics of conditional execution and the arrow substitution rule, the representation of
a while statement follows immediately. Figure 5 illustrates the VIPR code for a while loop that sums
the numbers from 1 to x and prints them. The most interesting thing about this example is that loops

require the arrow to point to an enclosing circle instead of an external circle.



P)

void main()

{
‘ call p;

print(x);

}

void p ()

{
x=x+1
return;

}

Figure 6: Procedure Call and Return in VIPR

3.2.4 Procedure Call and Return

Procedures are sets of nested rings outside the main procedure’s rings (see Figure 6). Procedure invo-
cation in VIPR is a slightly modified version of the goto arrow. A procedure call is a ring that possesses
an arrow pointing to the procedure being called. Every ring representing a procedure call must also
indicate where the continuation of the procedure will be. Thus, procedure continuations, implicit in
textual languages, are explicit in VIPR.

To understand our representation, consider the C code in Figure 6. In this example there are two
procedures, main, which contains a call to procedure p, and p, which simply increments a global variable
and returns. In VIPR, the procedure call ring contains a smaller circle attached to the inside of the ring,
connected by an arrow to a circle representing the print statement that is executed upon return. Thus,
the small attached circle is used to indicate a special parameter passed to every procedure indicating
what statement to execute directly upon return.

Each procedure definition ring (e.g., the one for p in the figure) has a corresponding small attached
circle representing the continuation formal parameter. Any ring representing a return statement has an
arrow leading from it to the continuation formal parameter, which at call time will have been combined
with the caller’s continuation and thus leads to the statement to be executed on return. Note that using
this notation, the statement doing the call does not use any names (the “(call p)” notation is simply
a comment). Likewise, procedures do not require names (again the “(p)” is just a comment).

As mentioned above, the graphical mechanism of procedure call and return is a special case of the

semantics of the goto arrow. Because there is an arrow from the calling ring to the procedure construct,
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(assume n has a value)

/* assume n has a value */

f =1;
while (n > 0) {
f =1f % n;

n=n-1;
}

/* £ contains n! */

Figure 7: Iterative Definition of Factorial in VPR and C Equivalent

the procedure construct is substituted for the call ring. The commands to be executed on return are
substituted for the return ring because of the chain of arrows running from the return ring to the small
continuation parameter ring on the inside of the procedure ring, and then from the small continuation

argument ring on the procedure call ring to the commands to be executed upon return.

3.2.5 Iterative and Recursive Definitions of Factorial

To conclude this section, we present both an iterative and recursive definition of a program that computes
the factorial of some number (n) that has been given an initial value in the state. In Figure 7, we present
the iterative version of the factorial program both in C and in VIPR. In Figure 8, we present the recursive

version of the factorial program both in C and in VIPR.

4 Formal Semantics of VIPR

4.1 Description of Approach

In this section, we will describe a restricted version of ViPR that models the Simple Imperative Language
(SIL). There are several advantages to this approach. The SIL is a subset of most conventional imperative

languages, so by modeling it we demonstrate that a large subset of the control constructs of these
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void main()

{
f=1;
n = <?>; /* assign n */
fact();
/* £ contains n! */
}
void fact()
{
if (n == 1) return;
else {
f =1f % n;
n=n-1;
fact();
}
}

Figure 8: Recursive Definition of Factorial in ViPR and C Equivalent

languages may be modeled in VIPR. Second, the semantics of the SIL are well understood and accepted
(see [14] for a more detailed discussion of the semantics of the language), so it will suffice to describe
the syntax of the VIPR constructs and give the equivalent SIL constructs. A formal denotational and
operational description of the general VIPR language is beyond the scope of this paper, but may be found
in [4]. In addition [4], contains a proof that the semantics of the constructs presented below, interpreted
as general VIPR constructs, are equivalent to the semantics of the Simple Imperative Language as

conventionally defined.

4.2 A Note on Syntax

For the syntactic specification of VIPR, we employ a formalism known as relational grammars [15], which
are a class of two-dimensional grammars. Relational grammars differ from conventional grammars in
that the righthand sides of productions in the latter are simply strings of terminals and non-terminals,
where the only spatial relationships—textual ordering and adjacency—are implicit; righthand sides of
relational grammars consist of a multiset of terminals and non-terminals, along with a set of spatial
relations among the elements of the multiset. Two-dimensional grammar productions are generally
textual, although they may be illustrated by graphical specifications. The graphical specifications alone,

however, are generally ambiguous and cannot be used in a grammar without additional annotations.
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Another difference between conventional grammars and two-dimensional grammars is that conven-
tional grammars used for syntax are context free, while two-dimensional syntactic descriptions are often
context sensitive. In textual languages, program units are generally contiguous pieces of text, and con-
structs that span non-adjacent units, such as the connection between the declaration of an identifier
and its use, are specified through non-syntactic methods. In visual languages, on the other hand, such
relationships are often made explicit through a graphic representation (a definition of a procedure and a
call to the procedure may be connected by an arrow, for example), and there is no compelling reason to
separate out such graphical constructs from a syntax. In relational grammars, particularly the subclass
known as picture layout grammars [9], context sensitivity is modeled by allowing the spatial relations on
the righthand side of a rule to reference objects that are not part of the corresponding multiset. These
objections are known as remote objects. In the textual version of the grammar rules, remote objects
are italicized; in the graphical versions of the grammar rules, they are either italicized or printed with
dotted lines.

It should be noted that it is difficult to parse two-dimensional grammars efficiently. This is not a
concern for us as we are using the two-dimensional grammar as an abstract syntax. We assume that the
graphical input has been parsed, and that a tree or graph conforming to the syntactic description has

already been derived.

4.3 Formal Definition

Figures 9 and 10 give the formal syntax of the SIL subset of VIPR in graphical form, along with the
equivalent SIL constructs. Figure 14 in Appendix A gives the equivalent two-dimensional syntax rules in
textual form. Note that [C] denotes the semantic meaning of the construct C. The particular valuation
function to be used (Command, Procedure, etc.) should be evident from the context.

Rules 1, 2, and 3 describe the large-scale structure of a program. A program comnsists of a main
procedure and a possibly empty set of procedures. Each of these entities is disjoint; they do not overlap.

The main procedure is unlike the others in that it contains a distinguished state object (as specified
in rule 4). Since execution can only take place in the presence of the state object, execution must begin
with the main procedure. As we have discussed earlier, control is transferred to other procedures by
copying the called procedure into the main procedure.

A main procedure contains a command, which may be any of the commands described in rules 5
through 9. (Rule 10, describing the return statement, is not applicable to main procedures since it
requires the presence of a small ring representing the continuation parameter passed to procedure, and

the main procedure has no continuation parameter.)
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Syntax SIL equivalent

1) Program -> Main Proc-Set [Main] ; [Proc-Set]
2) Proc-Set -> Proc Proc-Set [Proc] ; [Proc-Set]
3) Proc-Set ->

4) Main -> [Command]

5) Command -> action

Qg

6) Command -> action; [Command]
action

7) Command -> if cond then [Command1] else [Command2];

[Command3]

cond

“cond

8) Command -> while cond do [Command1] ; [Command2]

cond

‘cond

Figure 9: Graphical Formal Syntax of SIL Subset of VIPR
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Syntax SIL equivalent

9) Command -> call name(Proc); [Command]

N

Proc

10) Command -> return

11) Proc -> name(Proc): [Command]

Figure 10: Graphical Formal Syntax of SIL Subset of VIPR (continued)

Rule 5 describes a single command, generally the command performed just before program termi-
nation (since there is no subsequent command contained within it). This command has an associated
action, usually an assignment or input/output operation. As described earlier in our informal semantics,
the effect of this construct is to merge the ring with the immediately surrounding main procedure ring
and perform the associated action.

Rule 6 describes sequential execution. The meaning of this construct is the meaning of the action
on the outermost ring, followed by the meaning of the command construct contained within. The
execution of the construct is modeled graphically by having the outer ring merge with the surrounding
main procedure ring, performing the associated action, and leaving the command contents as the new
contents of the main procedure ring, ready to be executed.

Rule 7 denotes a conditional statement. The two alternatives are labeled with conditions, one the
negative of the other. If the positive condition holds, the enclosed command, denoting the then-part,
executes, and if the negative condition holds, the enclosed command, representing the else-part, executes.
At the end of each alternative, control transfers to the third ring, containing the commands that execute
after the conditional statement completes. This joined execution thread is not necessary; execution could

continue inside each alternative, in the same way that:
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if Expr then Stmtl else Stmt2; Stmt3
is equivalent to:
if Expr then begin Stmt1;Stmt3 end else begin Stmt2;Stmt3 end

The format presented here is more readable and better demonstrates programmer’s intent.

Rule 8 specifies the structure of a while loop. Aslong as the condition holds, Command] is repeatedly
executed. The repetition is given by the arrow that leads from inside Commandl to the outer ring of
the while statement. When the last statement of Command1 is executed, the final statement is replaced
by the while command itself. At some point, the negative condition succeeds, and execution proceeds
outside the iteration.

Rule 9 models procedure calls. The outer ring with the arrow pointing to the Proc object (which is
not a part of the Command construct but is rather part of the context) denotes a graphical substitution
of the procedure for that ring. The inner Command construct is the return continuation, which is passed
to the procedure as a parameter. As we shall see in rules 10 and 11, the return construct will reference
this return continuation in such a manner that the return continuation command is substituted for the
return command ring. This models call and return in the conventional manner.

Rule 10 represents procedure returns. In the procedure call in rule 9, a reference to commands to
be executed after return is passed as an argument. This reference is in the form of an arrow, which also
represents graphical substitution. The arrow from the ring in the return construct links to the arrow to
the return continuation, thus signaling that the return ring should be graphically replaced by the object
it points to: in this case, the return continuation. Note that the outer ring and the small parameter
ring are not part of the construct, but are rather part of the rule context, in this case the surrounding
procedure.

Rule 11 describes the form of a procedure. It consists of a large ring with a small ring representing
the continuation parameter, and some command construct in the interior. The meaning of the construct
is the meaning of the command, prefaced with a system-generated procedure name, which is used in

calls to the procedure.

5 An Illustrated Example

In this section we illustrate the execution of a VIPR program by showing the static and dynamic repre-
sentations of a bubble sort function. The textual representation of the bubble sort is shown in Figure 11
and the corresponding static representation is shown in Figure 12.

Figure 13 shows snapshots of the dynamic representation of the bubble sort function at four different

steps in its execution. The four snapshots are labeled with the corresponding statement number from
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int al[100], n;
[1] void BubbleSort(void)
{
int hold, j, pass, exch;

[2] pass = n;

[3] do
{
[4] exch = 0;
[5] for (j=0; j < (pass-1); j++)
{
[6] if (aljl > alj+11)
{
[7] hold = al[jl;
[8] aljl = al[j+11;
[9] al[j+1] = hold;
[10] exch = 1;
}
}
[11] pass——;
[12] } while (exch);
}

Figure 11: Vipr Bubble Sort Function

Figure 11. In the interest of space and simplicity, some text labels have been omitted, and areas that are
too crowded are shaded, indicating that there is some lost information. In an actual implementation of
VIPR such overcrowding would be handled by culling out all objects that appear below screen resolution.
State objects have been omitted for the same reason.

Figure 13(a) shows the dynamic representation just prior to executing the if at statement [6]. The
shaded circle inside the j++ statement contains a copy of the for statement (excluding the loop variable
initialization). This copy was obtained by substitution of the circle pointed to by the j++ statement in
Figure 12.

Figure 13(b) shows the situation when the conditional of the if statement has passed and the
exchange beginning at statement [7] is about to execute. Substitution of the j++ statement has occurred.

Figure 13(c) shows the program at the end of the for loop (statement [5]). This state may have been
reached by executing through the sequential statements that are the outer circles of Figure 13(b) or by
taking the alternate branch from Figure 13(a). With the increased resolution we can see that the j++

statement contains a complete copy of the for loop.
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Figure 12: Static Representation of Bubble Sort Function
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~a[J]>a[J+

(a) [6] if (@] > alj+1])

~j<(pass-1)? :
.@

(c) [5] j++

(d) [11] pass--

Figure 13: Dynamic Execution of Bubble Sort Function
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Figure 13(d) shows the situation at the end of a pass through the bubble sort, where the exch flag
is to be tested. Here we can see that if an exchange has taken place (exch == true) we will execute
another complete pass of through the bubble sort. Otherwise, the function will return. Note that at
this point, the shaded circle labeled (return) would contain the continuation of the program from the
point of call of the BubbleSort function. The program continuation is obtained through substitution

from the continuation parameter of the function.

6 Summary

In this paper, we have described the control structures in a completely visual imperative programming
language. The execution semantics of our language, VIPR, derive from graphical transformation rules
on the visual representation, and as such are independent of any underlying textual language. One
advantage of this approach is that a user of the language can understand it without first understanding
a textual language.

Because VIPR is completely visual, the static program and its dynamic execution are presented in the
same framework. Such an framework, specifically for imperative languages, may be valuable in unifying
a great deal of related work in visualizing specific static and dynamic aspects of programs.

Because the execution semantics of VIPR derive entirely from the visual representation, programming
language elements that are implicit in textual languages are explicit in VIPR. For example, the presence
of a return continuation parameter (e.g., the return address), absent in textual languages, is present in
VipR. The state, which is implicitly passed from statement to statement in textual languages, is explicit
in VIPR. We anticipate that because these language elements are explicit in VIPR, programmers may
understand them more easily.

Finally, we have defined the semantics of VIPR formally. To our knowledge, ours is the first formal
definition of a completely visual imperative programming language. With such a definition, we will be
able to reason formally about aspects our our language and prove how it relates to other formally defined
textual languages.

VIPR is a young language that is still being designed. The implementation of VIPR is also just
beginning. Owur current implementation strategy is to build an interpreter for a textual equivalent of
VIPR and then translate textual VIPR into the visual representation. Beyond that, we anticipate building
a programming environment in which visual VIPR programs could be written and executed. Our goal
with VIPR is to attempt to better understand the design, formal semantics, and implementation issues

of completely visual imperative languages.
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A Textual Two-dimensional Syntax Rules of VIPR

1) Program — {Main,Proc-Set},
Main outside Proc-Set

2) Proc-Set — {Proc,Proc-Set},
Proc outside Proc-Set

3) Proc-Set - {}

4) Main - {state,ring,Command},
contents(ring) = { Command},
state connects-outside ring

5) Command - {ring,action}
action on ring,
contents(ring) = {}

6) Command - {ring,action,Command},
action on ring,
contents(ring) = { Command}

7) Command - {ringa,ringsy,rings,rings,cond;,cond,,
Command;,Command,, Commands,arrowy,arrowy} ,
contents(ring,) = { ringy,rings,rings,arrow,arrows},
cond; on ringy, cond, on rings, text(cond;) = "text(condy),
contents(ringy) = { Command,},
contents(rings) = { Commandy},
contents(rings) = { Commands},
arrow; connects Command; to ringa,
arrow, connects Command, to rings

8) Command - {ringy,rings,rings,cond;,cond,,
Command;,Commandy, arrow},
contents(ring;) = {ringy,rings, arrow},
cond; on ringy, cond; on rings, text(cond;) = “text(cond,),
contents(ringy) = { Commandy},
contents(rings) = { Commandy},
arrow connects Command, to ring;

9) Command - {ring,smallring,arrow,,arrow,,Command},
contents(ring) = { Command,smallring,arrows},
smallring connects-inside ring,
arrow; connects smallring to Command,

Proc outsidering,
arrow, connectsring to Proc

10) Command - {ring,smallring,arrow},
ring insideringy,
smallring connects-inside ring,
arrow connects ring to smallring

11) Proc - {ring,Command},
contents(ring) = { Command,smallring},
smallring connects-insidering

Figure 14: Textual Syntax Rules for SIL Subset of ViPR

22



