Some Experiments with Reprogramming
LINPACK Routines for Parallel Machines

L. D. Fosdick
C. J. C. Schauble

F. M. Dedolph

B. Schlaman

CU-CS-408-88 August, 1988

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309-0430

We gratefully acknowledge the computing support of Encore Computer Corporation.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

ABSTRACT

During the summer of 1986, experiments in parallel
programming were made on the Encore Multimax for the
purpose of gaining experience in and learning efficient
methods for programming parallel machines. Four
components of the Linpack package, the Gaussian
elimination routine and its companion back-solution
routine, DGEFA and DGESL, with the QR Decomposition
routine and its back-solution routine, DQRDC and DQRSL,
were rewritten to allow parallelism in this experiment.
Timings are compared against the original sequential
versions.

2-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

1. INTRODUCTION

The purpose of this report is twofold. First of all, it documents the results of
experiments done in Summer 1986 in writing, running, and timing parallel versions of
four Linpack routines. Secondly, it advocates the use of the Force macro extension of
Fortran 77 as the language for writing parallel versions of existing Fortran code.

1.1. Statement of Project

The main goal of this project was to code and test optimally parallel programs on
the Encore Multimax computer. We wanted to observe the improvements in execution
times between sequential and parallel versions of a program. Fortran 77 was chosen as
the language for the project because of the wide variety of commercially available
numerical packages using Fortran.

The Linpack routines [DBM79], a collection of Fortran subroutines developed for
use in solving linear algebraic equations and linear least squares problems, were chosen
as a source of routines because they are in Fortran, they are well-documented, and they
have been used previously for benchmarking parallel machines [Don81]. Rewriting
well-tested sequential programs into parallel programs simplifies testing; the output for
any input has to match for both versions. Compatibility with existing library routines
makes the substitution of the new routine simply a matter of relinking existing programs.
For this reason, a constraint of the project was to maintain complete compatibility with
the Linpack routines.

A parallel Gaussian elimination routine from the Linpack package of Fortran
subroutines rewritten in the Force had been used as an example in some papers
describing the Force [Jor84]. To follow up this research, the Linpack Gaussian
elimination routine, DGEFA, and its accompanying back-solution routine, DGESL, were
chosen to be rewritten in parallel. It was also decided to include two similar routines for
the QR Decomposition, entitled DQRDC and DQRSL.

1.2. QOutline of this Report

The remainder of this paper is divided into three sections. Section 2 provides the
details of the project: a description of the machine, the language, and the parallelized
algorithms used for the experiment. Section 3 describes the experiments and the results
for each of the routines. Section 4 summarizes the results, suggests what has been
learned by the project, and considers possible future experiments.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

2. EXECUTION OF PROJECT
2.1. Environment

2.1.1. Machine Used

The Encore Multimax is a shared-memory MIMD (Multi-Instruction, Multi-Data)
machine. This experiment used a model with eight, tightly-coupled, 32-bit processors
connected to the common memory and the I/O interfaces by a wide high speed bus (the
"Nanobus"). The operating system, provided by Encore, is UMAX 4.2, which allows
multi-threading.

The machine was on loan from the Encore Computer Corporation and open to use
by the entire University. Experimentation on this machine was highly encouraged. For
more information on this machine, see the Multimax Technical Summary [Enc87].

2.1.2. Language Used

Parallelism in the programs is implemented with the Force parallel programming
constructs developed by Jordan [Jor87]. These constructs are built as an extension to
Fortran 77 for shared-memory multiprocessors. A version of the Force macro-processor
has been installed on the Encore.

The natural program state for a Force program is many parallel processes working
together on one set of code. Sequential code to be executed by a single process can be
coerced by the barrier construct, when needed. These processes may or may not have an
actual processor associated with them. The number of processes is chosen at the
beginning of execution, at which time the processes are automatically initiated.
Eventually the processes terminate at a fixed point, usually at the end of the program.
Thus, the programmer is spared the burden of spawning, destroying, and keeping track of
a set of processes.

Original Force Code:
Critical Region TT
TT =TT + T
End critical
Preprocessed Code:
CALL spin_lock (LTT)

TT = TT + T
CALL spin_unlock (LTT)

Figure 1: Example of a Critical Section

4-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

A Force program is converted into a Fortran 77 program with extensions for
handling the parallel constructs. A macro preprocessor translates the parallel instructions
into manufacturer-supplied system commands which support parallelism on the
Multimax; the result is a Fortran program with the machine-specific parallel library
calls. A description of the parallel constructs with their syntax and semantics is detailed
in Jordan et al [JBA87]. Since the Linpack routines are in Fortran, using a parallel
extension of Fortran for the reprogramming is a reasonable approach. Inserting the Force
constructs to express the parallelism of the revised routines is easier than using the actual
primitive parallel commands.

For example, the original Force code and the preprocessed code of a Critical
section and a Barrier section are given in Figures 1 and 2. The Crirical section acts like
a mutually exclusive operating system critical section. The library functions, spin_lock
and spin_unlock , are the system-supplied commands to lock and unlock shared memory
locations. Spin-locks provide synchronization between the hardware and the processes.
The spin_lock function does a busy wait until the location specified is free; then it locks
the location and returns control to the calling procedure. Similarly, the spin_unlock frees
the locked cell. Because of the busy waits, these commands are most efficiently used for

Original Force Code:

Barrier
TT = - TT / X(J,J)
End Barrier

Preprocessed Code:

CALL spin_lock (BARLCK)

IF (FFNBAR.LT. (NP - 1)) THEN
FFNBAR = FFNBAR + 1
CALL spin_unlock (BARLCK)
CALL spin_lock (BARWIT)

ENDIF

IF (FFNBAR .EQ. (NP-1)) THEN
TT = - TT / X(J,J)

ENDIF

IF (FFNBAR.EQ.Q) THEN

CALL spin_unlock (BARLCK)
ELSE

FEFNBAR = FFNBAR - 1

CALL spin unlock (BARWIT)
ENDIF

Figure 2: Example of a Barrier

.5.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

short critical sections.

The Barrier forces all the processes that are executing to go into a busy wait for a
spin-lock. Each time a process reaches the barrier, one is added to a count, originally set
to zero. When the count is one less than the number of processes, the last process
executes the sequential code within the barrier, resets the count, and frees the remaining
processes.

Consider the Force code in Figure 3 which defines a Presched DO. This is a
DOALL macro which assigns each iteration of the loop to a different process to be run
concurrently. The preprocessed Fortran code using the system primitive commands is
shown below it. Here, the variable NP contains the number of processors that have been
allocated to the program, while ME is the identifier of the particular process itself and is
in the range 1, ..., NP. Also the original Force macros, which are changed to comments
by the preprocessor, have been included.

These examples are all taken from the parallel QR Back-substitution routine,
PQRSL. They clearly show that the Force code is simple to understand as well as to
program.

The Force is currently available on five shared-memory machines: the Encore
Multimax, the Sequent Balance 8000, the Alliant FX, the Cray 2, and the Denelcor HEP.
This allows portability of parallel programs and provides a common language in which to
express a parallel algorithm. Even though the various manufacturers of parallel
computers supply quite different primitive parallel commands for Fortran parallel
programming, a program written in the Force can be run on more than one machine
without any changes. This is another motivation for using the Force.

Original Force Code:

Presched DO 73 I = 1, N-J+1
II =1 + J -1
T =T + X(II,J)*QTY(II)
73 End Presched DO

Preprocessed Code:
C Presched DO 73 I = 1, N-J+1

14
po 73 1 =1+ ME - 1, N-J+1, NP
IT=I+J3-1

T =T + X(II,J)*QTY(II)
C 73 End Presched DO
73 CONTINUE

Figure 3: Example of a Presched DO

Fosdick, Schauble, Dedolph & Schlaman August, 1988

loop for each column k

P.:
@ . e . e find maximum element in
i th portion of column k

1}
CRITICAL B P" Pi : match ith
SECTION @ max against global max

to obtain pivot element

test for singularity
of column k

BARRIER

P.:
swap ith portion
of pivot row

compute

BARRIER global multipler

P,: compute
row multipliers
A = Ay * @

Pi : reduce row

Ajj = Aj — Ap* Ay

BARRIER reset and
synchronize

Figure 4: PGEFA Algorithm, Version 1 (Jordan)

For further information on the Force, see [JBA87] [Jor87].

2.2. PGEFA: A Parallel Version of DGEFA

When the original Force macro preprocessor was designed, a parallel version of the
Gaussian elimination routine, DGEFA, was written as an example of the implementation
[Jor84]. Because of the number of barriers and synchronizations, this program design

.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

does not appear to be optimal; so one goal of our project was to write a new version
designed to optimize performance. Both of these routines are equivalent to the Linpack
DGEFA routine; they use the same input parameters and produce identical output.

Preliminary timing runs of both routines showed that the presumably sub-optimal
original Force routine outperformed the new version by up to 40%. The poor
performance of the "optimal" program led to a series of experiments designed to enhance
the understanding of parallelism on the Multimax. The results of the experiments were
used to further optimize the first algorithm, generating a third version of the routine.

2.2.1. Version 1

The design of the algorithm for the original parallel version of the Gaussian
elimination routine is shown in Figure 4. The outer loop contains three explicit barriers
with one critical section and two pre-scheduled DO loops. (A explanation of the symbols
used in the figures which follow is given in Appendix A.)

The main work is done in an inner loop within a loop over all the columns of the
input matrix. This inner loop reduces the rows of the matrix in parallel by the global
multiplier. It performs O (n2) operations and accesses the elements in row order. The
inner loop is done with a self-scheduled DO loop, which has an implicit barrier before
the first execution of the DO loop body and a short critical section used to update the
index variables after each iteration. Once execution of the self-scheduled DO loop body
begins, execution proceeds asynchronously.

1. find maximum element for column 1
BARRIER 2. test for singularity of column 1
3. compute row multipliers: A;; = ~A;; /A,

A
\\\\ ,’ ,I loop for each column k
W
P
Pl - G) - P Epdate column*l
Aﬁ = Aji + Ajk Aki
P,.: null, i #k+1
Pl ~ P) (P, P, find pivot for colutpn.ki-l
and compute row multipliers
BARRIER update and
synchronize
\ \\ // 7

Figure 5: PGEFA Algorithm, Version 2

8-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

The overall strategy of Jordan’s algorithm is to reduce any operation on a column to
a parallel operation, usually with a pre-scheduled DO loop. If this is to be efficient, the
cost of making the loop parallel must be minimal. For example, even the search for the
maximum (pivot) element in a column is divided between processes. Such a fine-grained
task may cost more in synchronization overhead than in execution. Certainly, it will be
inefficient for small vectors.

2.2.2. Version 2

Parallel processing experience shows that program constructs which cause
processes to wait are major bottlenecks to efficient program performance. For this
reason, reducing the number of barriers was a primary focus in efforts to optimize the
Version 2 algorithm shown in Figure 5. Theoretically, this provides an optimal
algorithm if the amount of computation done is the same as the algorithm without
barriers.

The key point of the algorithm is that both the search for the pivot elements and the
calculation of the multipliers are done during the parallel reduction of the submatrix.
This sets up the next submatrix for reduction, so that as soon as the current submatrix
reduction is complete, work can begin on the next. Conceptually, the larger the amount
of work done in parallel, the better.

As an example, assume that the machine being used has three processors and the
program is working on a large square matrix. Assume also that the current execution
point is where the first row is the pivot row, £ = 1 and that process P, is assigned the job
of reducing the second column. After the reduction of the second column is complete,
process P, will search for the pivot element and calculate the multipliers to be used in
the next step of the reduction. While process P, is doing this, processes P3 and Py, are
busy reducing columns 3 and 4, respectively. Since P and P3 have less work than the
other processor, they should finish their tasks before P, and will be assigned next the
tasks of reducing columns 5 and 6, within the construct of a self-scheduled DO loop.
This approach maximizes the amount of work done in parallel because calculation of the
multipliers is done in parallel with the reduction of the previous submatrix.

2.2.3. Version 3

The third version, given in Figure 6, was designed after experimentation with
Versions 1 and 2, as an improvement of the original Force algorithm (Version 1). The
improvement is to change access in the main inner work loop from row-ordered access to
column-ordered access. The multipliers are precalculated outside the inner main loop to
facilitate this.

Otherwise, the strategy of the algorithm is identical to the earlier version. At each
step, the work to be done on a column is divided between the processes. The difference
between the Version 1 and Version 3 algorithms is in the matrix element access patterns
used to reduce the submatrix inside the main inner loop. Calculation of the multipliers
adds yet another barrier to this algorithm, for a total of four explicit barriers inside the
large outer loop. [Ded86]

Fosdick, Schauble, Dedolph & Schlaman

loop for each column &

August, 1988

P.:
e . e . e find maximum element in
ith portion of column k

P,: matchith
max against global max
to obtain pivot element

CRITICAL
SECTION

test for singularity
of column k

P.:
@ e e swap £ th portion
of pivot row

compute

BARRIER global multipler
o= I/Akk

BARRIER

P,: compute
@ e e row multipliers
A=Ay * o

BARRIER synchronize

P, : reduce column
A =A. + A, * A,.
@ e e j‘forj’": k+1{’f..,n ki
reset and
BARRIER synchronize

(

Figure 6: PGEFA Algorithm, Version 3

-10-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

i N

Figure 7: Basic Concept of PGESL Algorithm

2.3. PGESL: A Parallel Version of DGESL

PGESL is a parallel version of the Linpack subroutine DGESL. PGESL solves the
real system Ax =b or ATx =b using a pivot vector and the matrix produced by
DGECO, DGEFA, or PGEFA. This parallel general solution is written for the Encore
Multimax computer using Fortran 77 and Force macros. The basic strategy for this
routine is given in Figures 7, 8, and 9, and is discussed below. Two versions of PGESL
are described later. Both versions are designed to be used as a substitute for DGESL and
require the same input parameters as DGESL. The only noticeable difference should be
in the speed of the two subroutines.

Since the input matrix is in the form of an LU decomposition (a lower and upper
triangular matrix superimposed), the problem Ax =b is solved in two parts. First, the
elements of the vector y for the problem Ly =b are found. Second, the elements of x
are determined for the problem Ux =y. Likewise, ATx =b is determined by solving
UTy =b and LTx =y. The parallel algorithm PGESL takes advantage of the fact that
when solving each of the subproblems, several of the matrix operations are independent
from one another and can be done in parallel.

The basic algorithm used in PGESL consists of solving a small triangular portion of
an upper/lower triangular system sequentially and then updating the remaining rows of
the b or y vector in parallel. This, in turn, yields a smaller triangular matrix to solve.

-11-

Fosdick, Schauble, Dedolph & Schlaman

BARRIER

initialization

loop over matrix
k rows at a time
m=1,..,Nik

solve triangular
submatrix of size k

A ke 1: N-(m-1)k, N-mk+1: N-(m-1)k

P.: update b

1

forj =N-mk+1,.,N - (m-1k
bl = bl - Alj* b,]

solve remaining submatrix

AI:Nwlk, 1:N-mk

Figure 8: PGESL Algorithm for Ux =y

BARRIER

initialization

loop over matrix
up to k& rows at a time
I = last row of last group done

AR

BARRIER

1. determine submatrix size, m
2. pivot last row, if needed
3. solve A

1 m, 141 l+m

P,: update b
for j =1+1,..,l4m
by =b; ~ Aij* bj

solve remaining submatrix

AI+I:N, I+1:N

Figure 9: PGESL Algorithm for Ly = b, Version 2

-12-

August, 1988

Fosdick, Schauble, Dedolph & Schlaman August, 1988

For example, suppose the problem to be solved is Ux =y where U is an N x N matrix.
The algorithm finds £ elements of x sequentially, say x(N —k + 1) - -+ x(N). Then the
y(@) --- y(N —k) elements are updated in parallel by multiplying the
XN —k+1) -+ x(N) elements by a portion of the rows of the U matrix. Now the
problem becomes U’x” =y, where U’ is an (N —k)x (N — k) matrix. The process of
solving for k elements sequentially and updating the element of y in parallel is repeated
until all the elements of x have been computed.

A similar method is used to solve UTy =b. Due to the fact that elements of y may
be pivoted, the above algorithm must be modified to compute Ly =b.

Version 1 and Version 2 differ only in their treatment of the lower triangular matrix
when solving Ax =b. They both use the algorithm discussed above for determining
Ux =y or UTy =b. When computing Ly=b, however, Version 1 solves only one
element of y at a time. The processes then update the appropriate elements of the b
vector in parallel.

Version 2 uses the modified algorithm for Ly =b. It checks the pivot vector within
a loop until it finds an element which is to be pivoted or until it has checked k successive
elements without encountering any element to be pivoted. At this point, the number of
rows the triangle is to contain is determined. Depending upon the values of the pivot
vector, 1 to k£ consecutive elements of y are computed sequentially and then the elements
of the b vector are updated in parallel.

The parallel code for Ux =y is the same for both versions and is different from the
original Linpack routine. The DDOT function call in the Linpack routine is replaced by
in-line code which computes the dot product. [ScS86]

24. PQRDC: A Parallel Version of DQRDC

PQRDC is a parallel version of the Linpack subroutine DQRDC. The algorithm is
shown in Figure 10. The purpose of PQRDC is to compute the QR factorization of the
matrix X. PQRDC can be substituted for the DQRDC routine; the parameters for both
are identical. The parallel QR decomposition subroutine is written for the Encore
Multimax computer using Fortran 77 and Force macros.

PQRDC and DQRDC use Householder transformations to calculate the QR
decomposition. The actual Q matrix is not computed. Since Q is a product of
Householder matrices, the vector used to compute each Householder matrix is stored in
the original matrix. Because the elements of these vectors and the R matrix overlap on
the diagonal, the elements associated with the Householder vectors are stored in an
auxiliary vector.

When applying the Householder transformation to the columns of the X matrix,
each iteration is independent of the other iterations. Therefore, this portion of the
algorithm can be performed in parallel. This is the modification used for the PQRDC
subroutine. [Sch86b]

13-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

loop for each column j

nom(j:n)= X {G:wmm, j)I 1 * sign X (G, Jj))
BARRIER X(Gmm,j)=X(@G:n,j)/ nom(j:n)
X(G.j)=XG,H+1

Po: X(jin, k)
P,D . GD . @ =X(m, k) + U:n)
! *X(jn, k)* U(n)

update
BARRIER auxiliary vector

with new X (j,j)

Figure 10: PQRDC Algorithm

2.5. PQRSL: A Parallel Version of DQRSL

PQRSL is a parallel version of the Linpack subroutine DQRSL. This routine is
written for the Encore Multimax computer using Fortran 77 and Force macros at the
University of Colorado at Boulder. PQRSL is designed to be used as a substitute for
DQRSL; the only noticeable difference should be in the speed of the two subroutines. It
takes the output of PQRDC (or DQRDC) and computes the coordinate transformations,
projections, and/or the least squares solutions, as requested. It requires the same input
parameters as DQRSL and produces the same results.

The Linpack DQRSL code is the basis for the PQRSL routine. In that code, three
areas are candidates for possible improvement by a parallel algorithm. The first is in the
back substitution computation of the vector b which solves the least squares problem of
minimizing | ly =X, bl |, where X = QR and y is some input vector. This is replaced
by a wavefront algorithm, as illustrated in Figures 11 and 12, since each value in the
result vector depends only on the values in the matrix in the subtriangle below it. An
additional global array of multivalued semaphores keeps track of the rows and columns
of the matrix already visited.

Other results from DQRSL include Qy, OTy, Xb, and the residual r = y —Xb.
These vectors are computed as follows: each element of the vector is determined using
the result of the dot product of the vector with a column of the Q matrix. DQRSL
performs this computation in a loop over the columns, using the BLAS subroutines,
DDOT and DAXPY. The parallel version again loops over the columns, obtaining the
dot product and doing the updating, but does both of these computations utilizing pre-
scheduled DO loops. This algorithm is shown in Figure 13.

-14-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

oooocoo-

Figure 11: Basic Concept of the PQRSL Wavefront Algorithm

loop for each column &

initialize semaphore array

P, : wait for semaphore
for diagonal element of column i
to be clear

P; : solve for bi

Pi: forj =i-1,..,1,
Pt~ Q’) - (P, wait for j th element of column i and
update: bj = bj - b;* in

Figure 12: PQRSL Algorithm, Computation of b

The output vectors are initialized by copying the input vector y or the computed
vector QTy. The DQRSL routine does this with calls to the BLAS routine, DCOPY; the
parallel version uses pre-scheduled DO loops. As a result of these changes to DQRSL,

-15-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

the parallel version, PQRSL, does not require the Linpack BLAS subroutines, DCOPY,
DDOT, and DAXPY. [Sch86a]

3. RESULTS

Graphical representations of the results obtained by both the original Linpack and
the revised versions executed using different numbers of processes are shown in
Appendix B. Notice that the speedups are less than linear.

The runs using seven, eight or more processes from the eight available processors
show degradation in performance. This is mainly due to swapping. The Encore is a
time-shared machine; the operating system must periodically access at least one
processor to keep the system running. The Force allows any number of processes to be
requested (even above the actual number of processors available); however, if more
processes are activated than the number of physical processors, the overhead of context
switching between processes becomes quite high. Also, the Force barriers and critical
sections are implemented in a sequential manner by spin-locks, which should only be
used for short waits; the greater the number of processes in use, the more serious a
bottleneck they become [BeJ88].

Most of the runs were made when the load on the machine was low. However, they
were not necessarily done in a single-user environment. This also relates to the poor
performance for a higher number of processes.

3.1. PGEFA vs. DGEFA

Four aspects of timing the three algorithms were considered: timing variations,
performance predictability, comparisons with Linpack, and speedup. Most of the timing
was done when the number of users on the system was low (less than four). Graphical
results can be found in Appendix B.7.1.1 and B.7.1.2.

During the experiments, variations of over 7% were observed on identical runs
conducted back to back with no other users on the system. There seem to be four factors
that affect run time variation:

(1) the number of users: the fewer the better.

(2) the number of processes used: it is best not to exceed the actual number of physical
Processors.

(3) the run time: programs with run times longer than ten seconds show less variation.
(4) chance.

Most of the results generated with other users on the system match closely with results
generated when no other users were on the system.

For the experiments comparing the standard Linpack DGEFA routine against the
parallel versions, repeated runs were made with no one else on the system and the system
load factor was recorded after each run. Fifty Gaussian elimination runs were conducted.
These were done in groups of five, with each set representing five runs with the same
number of processes and a 100x100 matrix as input. Because each set was small, the

-16-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

loop for each column j

initialize
Oy =y

P,: compute
ith portion of DotProd

Qj* Oy

P.: form
compfete DotProd

compute multiplier
BARRIER o= DotProd / Q i

Pl.: update
Oy, =Qy—a* Qy

reset and
synchronize

Figure 13: PQRSL Algorithm, Computation of Qy Vector
(Similar to computation of QTy, Xb, and
the Residual of y — X Kb

standard statistical measure of variance is not used to measure the timing variations.
Instead, the percentage difference between the fastest and slowest execution times is used
as a measure of run time variation.

Using this measure, the following are typical variations with no other users on the
system. Six of ten groups have variations less than 0.6%. Three of the ten groups show
variations between 1.2% and 1.7%. The tenth group has a variation of 3.5%; no reason
for the difference could be found.

For comparison, several single-process Linpack runs were made with no other users
on the system. The average time of five runs for matrices of dimension 20x20, 50x50,
100x100, and 150x150 was compared to the averages for the other algorithms. Appendix
B.7.1.1 shows bar graphs of the results when all the runs were pivoted; Appendix
B.7.1.2 shows the results when each run had only a single pivot. Also some
multiprocessor run results for 200x200 matrices are shown. For matrices of dimension
100 or more, the Linpack version runs in 50% of the time of the Version 1 algorithm,

-17-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

33% of the Version 2 algorithm, and 52% of the Version 3 algorithm, all executed as a
single process. As expected, parallelism has a cost.

The best parallel algorithm requires two processes to match the single process
Linpack performance, but all the algorithms using three processes are faster than the
Linpack performance. More processes substantially improve on the run times, as long as
the processors are physically available. For example, the Version 1 algorithm will solve
a 100x100 matrix in 4.9 seconds with seven processes, compared to 17.2 seconds for the
Linpack sequential version, a speedup factor of 3.5.

The time complexity of the Linpack DGEFA routine is of order O (n3) foran n x n
matrix. As can be seen by Figure 4, Version 1 of PGEFA spreads the work over p
processes, reducing the time complexity by 1/p. This is apparent in the bar graphs given
in Appendix B, although the speedup is less than perfect because of the synchronization
and required sequential code in the routine. Version 3 is basically the same algorithm as
Version 1, but should show a little more speedup because of the contiguous access of the
column elements which require less paging than the row-ordered access of Version 1.
The results in Appendix B agree.

While Version 2 also spreads the work of updating the matrix elements over the p
processes, it also introduces additional code within the loop to avoid extra barriers. This
essentially sequential control flow code is duplicated by all the processors. Thus, the
speedup is less than that of Version 1 and 3.

3.2. PGESL vs. DGESL

Four experiments were conducted using various versions of the PGESL routine.
The DGESL and PGESL routines are capable of running two different "jobs". The first
job is to solve the real system Ax =b; the second, to solve ATx =b. The user can
specify which job is to be done by setting an input parameter. The solve routines also
perform column pivoting based upon the values contained in a pivot vector.

The purpose of the first experiment was to find an optimal value, called SIZE, for
the number of elements which should be solved sequentially. The experiment used 1, 2,
4, 6, and 8 processes while varying the SIZE from 1 to 15. The tests were run three times
on two different matrices of size 150 x 150 and 100 x 100. The results, in Appendix
B.7.2.1, which are the mean times for the three runs, show the optimal value for SIZE to
be around six. The version of PGESL used for the first experiment is only capable of
solving Ax = b; it does not perform pivoting.

The remaining experiments, each consisting of five runs on three different matrices,
were conducted for the Linpack DGESL routine and the two PGESL routines. The sizes
of the input matrices were 50 x 50, 100 x 100, and 150 x 150. The experiments consisted
of running both jobs on the three matrices for pivoting every column, pivoting no
columns, and pivoting every fourth column. The experiments were timed for 1, 2, 4, 6,
and 8 processes. The results, for runs with no pivoting and with full pivoting, are the
mean times of the three middle timing values found and are shown in Appendix B.7.2.2
and B.7.2.3.

The results show that the sequential Linpack version runs appreciably faster than
the two parallel versions using one process. It is not until the parallel versions use four to

18-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

six processes that they begin to be faster than the Linpack version. The speedup obtained
by the parallel versions over the Linpack version is only a little over one. Part of the
explanation is memory contention in the way that the parallel versions access the shared
array elements. The Linpack code accesses the elements of the input matrix in a
column-wise fashion; the parallel versions access the elements by rows.

For an n x n matrix, the Linpack routine, DGESL, has a multiplication count of
(n2+n)/2. As can be seen by the algorithms shown in Figures 8 and 9, the only
parallelization done for PGESL was in the updating of the matrix as each value was
determined. This reduces the number of operations for that part of the algorithm by p,
the number of processors, making it O (n2/p). However, because the code which
computes the solution for each submatrix is sequential and requires synchronization, the
speedups shown in the bar graphs in Appendix B are less than p .

3.3. PQRDC vs. DQRDC

Three different experiments were conducted involving sequential and parallel
versions of the QR decomposition. Seven matrices were used in each experiment,
varying from 50x50 to 200x100. Five runs were made of each experiment; the results
given in Appendix B.7.3.1 through B.7.3.3 are the means of the three middle timing
values obtained for each experiment.

The first experiment used two different parallel versions of the QR decomposition
along with the Linpack routine. The difference between the two versions is that the first
contained one Force barrier while the other contained two barriers. (See Figures 10
and 14.) The parallel versions used for this test did not contain any of the pivoting code
necessary to be compatible with the Linpack routine. The experiment was basically
intended to see if there was a noticeable difference between using one barrier or two
barriers. The results, shown in Appendix B.7.3.1, indicate that there is virtually no

loop for each column j

s ! AN
norm(j:n)= 11X (jin,)11 * sign(X (, j))
BARRIER X@Gm,j)=X(:m,j)/ nom(:n)
X(,j)=X(@,j)+1 .. AndUpdate

Pk: X(mn, k)
@ e @ =X@Gm, k) + Ul(j:n)
*X(@Gin, k)*U(n)

Figure 14: PQRDC Algorithm, Version 2

-19-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

difference and that the barriers are fairly cheap to use. This was consistent with the
results of the PGEFA experiments.

The second experiment tested a fully Linpack compatible parallel version of the QR
decomposition when pivoting is not requested. The last experiment tested the parallel
version when pivoting is requested. (When pivoting is requested, more steps are done
sequentially than when pivoting is not requested.) It is expected that the job with no
pivoting should require less time than the job with pivoting. The results given in
Appendix B.7.3.2 and B.7.3.3 confirm this.

For an n x m matrix, the sequential version of the routine, DQRDC, requires about
nm? — m3/3
multiplications as well as additions. For square matrices, n = m, this becomes
2m3/3.
The portion which was rewritten into a parallel algorithm applied the Householder
transformations and computed norms for each column. These are both operations of
O (nm) and are done m times; so reducing the executing time for these portions of the
routine by a factor of p, the number of processes, should have a great effect. When
running with six processes, the speedup shown by the graphs in Appendix B for PQRDC
is four or better for large matrices, as expected.

All the test cases used had n = m, and for a given n, the effect of these changes
should be more apparent on the square matrices, where n = m. This is indeed true, as
the speedup approaches five for the largest square matrix used, 150x150.

The results for the parallel versions running as a single process are slightly slower
than the results for the Linpack DQRDC version. This, with the less than perfect
speedup, reflects the overhead cost of parallelism.

3.4. PQRSL vs. DQRSL

Four experiments were conducted using various versions of the PQRSL routine.
The results of these experiments are in Appendix B.7.4.1 and B.7.4.2. Seven matrices
were used in each experiment, sized from 50x50 to 200x100. Each run was repeated five
times; the average of these times with the best and worst runs removed is used in the
graphical results. In all cases, the subroutine performed all the possible computations.

The purpose of the first experiment was to find the improvement in running time (if
any) achieved by the parallel routine compared to the original Linpack routine for the
seven different matrices and 1, 2, 4, 6, 8, and 10 processes. Experiments 2 through 4
were done to see how each of the three different portions of PQRSL that were
parallelized affected the overall performance. (See Figures 12 and 13.) Experiment 2
ran a version of PQRSL without the wavefront algorithm; instead, the original Linpack
DQRSL code computed the result vector. Experiment 3 used the DQRSL nonparallel
computations of the output vectors with calls to DDOT and DAXPY instead of the
parallel code. Finally, Experiment 4 substituted the pre-scheduled DO loops for
initialization of the vectors by the original DQRSL calls to DCOPY. These three
experiments were run on the same seven matrices as Experiment 1 for 1, 2, 4, 6, and 8
processes. ‘

-20-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

Appendix B.7.4.1 compares the average running time for each matrix size using
differing numbers of processes, under the four experiments, against the original Linpack
version, DQRSL. The final graph, Appendix B.7.4.2, shows the effect of matrix size on
the different experiments using six processes.

With only one process, the sequential Linpack version, DQRSL, runs about twice as
fast as the parallel version, PQRSL, with DQRSL doing better as the matrices increase in
size. Of course, there is some overhead needed for the Force routines and some
cumbersome code required by the parallel algorithms used in PQRSL. For instance, the
wavefront algorithm necessitates the use of an array of semaphores; the array
initialization and testing is expensive when only one process is available. As the number
of processes is increased, the efficiency of PQRSL improves; given four or more
processes, it takes about only half the time of DQRSL.

The results of Experiments 2 through 4 show that the parallel computations of the
output vectors have the most effect on speeding up the execution time. In fact, without
that parallel part of PQRSL, the routine takes longer than DQRSL on matrices smaller
than 150x100, on as many as six to eight processes.

However, the other two parallelizations provide some improvement in running time,
as the complete PQRSL routine performs better than any version omitting one of the
three parallelizations. While the wavefront algorithm for back substitution improves the
efficiency of the routine somewhat, it does not seem as effective as expected. However,
only one of the five output vectors is computed using this method. Thus, it should be
expected that the results show a one to four difference in the speedup caused by each
experiment. Finally, the pre-scheduled DO initializations which replaced the DCOPY
calls to the BLAS routines seem to have the least effect on the relative speedup.

The following provides a more detailed analysis. Consider an n x m matrix
X =0R; let k=min{n,m}, and let Q =(0;Q,), where Q; is of length k. The five

possible output vectors are Qy, QTy = gg , the least squares approximation of

Xb = 0101y, the residual r =0,0%y, and the solution b =R-1QTy. The Linpack report
[DBM79] gives the multiplication count for these vectors in DQRSL to be as follows:

Qy 2n —k)k

0Ty @n—-k)k

Xb 2Q2n - k)k

r 2(2n —k)k

b Qn -k + k22

Because all the examples used had n 2 m, m can replace k in all the formulas above. In
the case where n =m (X is a square matrix), the formulas become simpler. This
provides the multiplication counts in the following table.

Rectangular X Square X

Qy 2n —m)m n2
0Ty @n-m)m n?
Xb 2(2n —m)m 2n2

r 22n —m)m 2n?
b Qn —m)m + m22 3n2/2

-21-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

The addition counts are similar.

Since the test data produced all the possible output vectors, it would seem that the
total number of multiplications would be the sum of these formulas:
T1Q2n-m)m + m?2/2.
However, the vector, QTy, is used in the computations of the vectors, b, Xb, and the
residual. This reduces the count to
42n-m)m + m272.

By spreading out the work of the parallel matrix-vector computation over p
processes, it would be hoped to divide the first term by p. However this revised
algorithm requires a critical section to put together the dot product, and the actual factor
is a little less than p. Since this term has a large factor, namely 4, the parallel matrix-
vector computation has more effect than the other parallelizations incorporated by
PQRSL.

It would also be hoped that the wavefront algorithm would be reduced by a factor of
p; however, with start-up time, necessary synchronization, and semaphore overhead (m
initial assignments plus m?2/2 comparisons and decrements), it is less efficient. Also, it
has less effect on the overall speedup, as it has a smaller term in the operation count of
the algorithm.

In the case where m < n, the first term will be larger, as 2rn —m > n. Hence,
improvement of this term will appear to have more effect. This can be seen by
comparing the bar graphs in Appendix B of the square matrices against those of the
rectangular matrices. Similarly, improvement of the second term, that is, inclusion of the
wavefront algorithm, will have more effect on the square matrices.

The parallel initialization has the smallest effect. This modification merely spreads
the work of copying the k& elements of a vector over p processes, while the original
version called the subroutine, DCOPY, to do the same thing. Since the largest number of
processes used that proved consistent in these tests was six, we would expect the time for
this copying to be k /6, especially as a subroutine call has been eliminated. However, the
parallel version was written to copy only one element per loop iteration, while DCOPY is
carefully designed to perform seven copying operations per iteration, giving it a smaller
percentage of loop overhead. A better test would have been to have used the DCOPY
loop body in the parallel version. Nevertheless, only five vectors are copied in this way:
4 of length n and 1 of length m. So the original operation count for this part of the code
was 4n +1m and has been reduced to (4n +m)p or (4n +m)/6. Since
4n +m < 5n < n?, we should not expect to see much effect in comparison to the
other work being performed by this routine.

222

Fosdick, Schauble, Dedolph & Schlaman August, 1988

4. SUMMARY

This project served as a good introduction to parallel programming. It provided
experience in the possible speedups, problems, and limitations of parallel computing.
Further, it gave the Force group working under Prof. Jordan useful feedback concerning
the operation of the Force on the Encore.

4.1. Guidelines

Some guidelines for parallelizing Fortran programs using the Force on shared-
memory non-vector machines with a small number of processors emerge from this
project. These programming methodologies follow:

(1) Column ordered access is faster than row ordered access. This is standard for any
Fortran implementation.

(2) A self-scheduled DO loop usually works best to divide the work between processes.
Simple vector operations (on non-vector machines) are performed better by pre-
scheduled DO loops.

(3) Any operation performed even a few times on a vector is worth doing in parallel,
provided the vector is long enough and the application computer does not have
special vector hardware.

(4) Any complicated task should be reformulated in at least two different parallel
algorithms and tested before the final algorithm choice is made.

(5) Speedup seems greatest when all the processes are performing essentially identical
work, with few synchronizations.

(6) To debug a parallel program, begin by running it as a single process, i.e., in a
sequential manner.

It should also be noted that the time to learn the Force constructs and to embed them
into the existing Fortran code was only a small part of the total effort of the project. This
suggests the ease and naturalness of using the Force to describe Fortran parallel
algorithms.

Debugging Force programs, as in debugging any parallel program, proved difficult.
The preprocessor added additional lines of code to the program, so Fortran compiler
errors referred to incorrect line numbers. [A new Force compiler now being written
should correct this problem.] Usually, any new code was run as a single process to weed
out sequential code errors before doing parallel testing. Most parallel problems were
found to be the incorrect use of shared or critical variables.

4.2. Further Work

Since these routines are in the Force, it would be quite easy to port the programs to
other parallel computers. In this way, the speedup of the different computers, relative to
the efficiency of their Fortran compiler and primitive parallel commands, could be
compared [Pon88].

In hindsight, it is easy to see places where the parallel code could have been made
more efficient. For instance in PQRSL, the code which replaces the DAXPY calls in
DQRSL only computes one vector element at a time. The DAXPY routine does four
elements within a loop iteration. By unrolling the parallel loop body to allow four or so

-23-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

computations instead of one, slightly more speedup should be obtained. In general, many
of the loops which were parallel over all the processes had small bodies and probably
would have benefited from some unrolling.

Parallel versions of the BLAS routines have been developed for many parallel
machines [Har87]. These are the routines which do most of the work of the Linpack
routines, like SAXPY (ax +y) or SDOT (x-y), for vectors x and y. Hence, creating a
parallel version of the Linpack routines is not as important as it might have been.

However, except for the PQRSL and parts of the PGESL routines, most of the work
done for this project was on the structure or algorithm design of the main subroutines,
almost ignoring the BLAS routines. It would be interesting to observe the improvements
possible by running these routines with the parallel set of BLAS routines. Furthermore,
the comparison of the PGESL and PQRSL routines with and without the parallel BLAS
routines might be worth some experimentation.

4.3. Acknowledgements

We would like to thank Muhammed Benten for patiently explaining the Force
constructs and the operation of the Encore Multimax and for keeping us well-informed as
the Force macro-processor was updated.

24-

Fosdick, Schauble, Dedolph & Schlaman ' August, 1988

5. BIBLIOGRAPHY

[Ar]87]

[Bel88]

[Ded86]
[DBM79]
[Don81]
[Enc87]

[Har87]

[Jor84]

[JBA87]

{Jor87]

[Pon88]
[Sch86a]
[Sch86b]

[ScS86]

N. S. Arenstorf and H. F. Jordan, *‘Comparing Barrier Algorithms’’, CSDG
87-3, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO, June 1987.

M. S. Benten and H. F. Jordan, ‘‘Multiprogramming and the Performance of
Parallel Programs’’, CSDG 88-2, Department of Electrical and Computer
Engineering, University of Colorado, Boulder, CO, Jan. 1988.

F. M. Dedolph, ‘‘Experiments in Parallel Programming on the Multimax’’,
for L. D. Fosdick, University of Colorado, Boulder, CO, Oct. 1986.

J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK
User's Guide, SIAM, Philadelphia , 1979.

J. J. Dongarra, ‘‘Some Linpack Timings on the CRAY-1", Tutorial on
Parallel Processing, 1981, 363-380.

Encore Computer Corporation, Multimax Technical Summary, Encore
Computer Corporation, Marlboro, MA, 1987.

W. J. Harrod, ‘‘Parallel Programming with the BLAS”, in The

Characteristics of Parallel Algorithms, L. H. Jamieson, D. B. Gannon and R.
J. Douglass (editor), The MIT Press , 1987, 253-276.

H. F. Jordan, “‘Structuring Parallel Algorithms in an MIMD, Shared
Memory Environment’”, CSDG 84-2, Department of Electrical and
Computer Engineering, University of Colorado, Boulder, CO, Sep. 1984.

H. F. Jordan, M. S. Benten, N. S. Arenstorf and A. V. Ramanan, Force
User's Manual, Revised edition, Department of Electrical and Computer
Engineering, University of Colorado, Boulder, CO, June 1987.

H. Jordan, *“The Force™, in The Characteristics of Parallel Algorithms , L.
H. Jamieson, D. B. Gannon and R. J. Douglass (editor), MIT Press,
Cambridge, MA, 1987, 395-436.

C. G. Ponder, ‘“‘Benchmark Semantics’’, SIGPLAN Notices 23, 2 (Feb.
1988), 44-48.

C. J. C. Schauble, ‘‘PQRSL Report”, for L. D. Fosdick, University of
Colorado, Boulder, CO, Aug. 1986.

B. Schlaman, ‘‘PQRDC Report’’, for L. D. Fosdick, University of Colorado,
Boulder, CO, Aug. 1986.

B. Schlaman and C. J. C. Schauble, ‘“‘PGESL Report’’, for L. D. Fosdick,
University of Colorado, Boulder, CO, Aug. 1986.

28

Fosdick, Schauble, Dedolph & Schlaman August, 1988

6. APPENDIX A: Key to Symbols Used in Parallel Figures

There are three basic symbols used in the figures describing the parallel algorithms
shown in this paper. They represent processes executing in parallel, critical sections, and
barriers. These symbols are connected by lines, in the manner of sequential flow charts.
Thick lines represent the flow for all the processes, as for the return to repeat a loop. The
meaning of dots is much like ellipses; dashed lines are used to imply the flow of those
processes not drawn, but active.

CRITICAL "
(A) . CB) " CC) SECTION) BARRIER

The first symbol above shows a number of processes operating in parallel. Each
process may be labeled. Since this represents a Force algorithm, each process is
executing essentially the same code, differing only by the process identifiers.

The second symbol represents a critical section. Each process, which is labeled on
the arc coming into the section, has to wait its turn to enter the section of mutual
exclusion. This accounts for the circles being staggered and not in a straight line.

The third and final figure shows the Force barrier. All processes must synchronize
at this point. Each process pauses upon reaching the barrier. When all the processes
have halted, the last process to reach this point executes the code within the barrier, if
any. Then all the process are allowed to continue on.

-26-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7. APPENDIX B: Graphical Results
7.1. PGEFA
7.1.1. DGEFA vs. PGEFA, All Rows Pivoted

» 6:

ho]

c

3

© 5:

w

R

Cé’ 4:

=

2

= 3:

c

=]

'

m .

2N 2:

©

L

O

>

< 1:
0:

Number of Processes

7.1.1.1. Matrix Size: 50 x 50

: Version1 : Version2 Version3

KEY: N ocera

227

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGEFA vs. PGEFA, All Rows Pivoted (cont.)

B0 Ll iiiienccesmmsresEssemsessemseenEsesscmseEssanencann.

50:

40:

30:

20:

10:

Average Running Time in Seconds

Number of Processes
7.1.1.2. Matrix Size: 100 x 100

T80 e e iiiee e e iieenesaasssrmacaasceaen s anaeeenaneannnn.n-

160:

140:

Seconds

120:

ime in

100:

80:

60:

40:

Average Running Ti

20:

Number of Processes

7.1.1.3. Matrix Size: 150 x 150

-28-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGEFA vs. PGEFA, All Rows Pivoted (cont.)

110:

100:)
L o0)
o
8)

S s)
]
= 70: E
[
E 60: .
}_
2 50]
E
= 40:]
r
g a0 l
©
o0)
<
10: .
0:

L Number of Processes
7.1.1.4. Matrix Size: 200 x 200

Version3

Versiont Version2

.29.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.1.2. DGEFA vs. PGEFA, Only One Row Pivoted

7 e eeucecsussuesasmsamsamaammnansNssasnsnEm s N ..y

o 6:

©

s

3 5:

9]

=

an 4:

=

2

= 3:

=

3

o

% 2:

<

S

)

>

<C 1:
0:

Number of Processes

7.1.2.1. Matrix Size: 50 x 50

KEY: N vorsion

Version2

Version3

-30-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGEFA vs. PGEFA, Only One Row Pivoted (cont.)

60:

40:

30:

10:

Average Running Time in Seconds

7.1.2.2. Matrix Size: 100 x 100

180 ittt aesenaeamsscamsecessssasssscacaaaaccmeeenn s

160;
140:

120:

100:

80:

60:

40:

Average Running Time in Seconds

20:

Number of Processes

7.1.2.3. Matrix Size: 150 x 150

-31-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGEFA vs. PGEFA, Only One Row Pivoted (cont.)

R« T2
100;)
8L oo)
[t
8 .
g s)
n
£ 70: E
(]
E so0:]
b_
2 50)
£
o 40: A
&
& a0)
©
2 20 |
>3
10: 4
0:

Number of Processes

7.1.2.4. Matrix Size: 200 x 200

-32-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.2. PGESL

7.2.1. Optimal Size of Submatrix for PGESL

Average Running Time in Seconds

Number of Processes

7.2.1.1. Matrix Size: 100 x 100

KEY: [

-33-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

Optimal Size of Submatrix for PGESL (cont.)

3.0:
% 2.5:
j
Q
Q
[¢b]
@ o0
£
[¢H]
E
= s
o
ol
‘=
jon)
-
o 1.0:
[eb]
[@)]
©
2 os
z 5:
0.0:

Number of Processes

7.2.1.2. Matrix Size: 150 x 150

-34-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.2.2. DGESL vs. PGESL, With No Pivoting

04 it eiieeaeeesasissearscemnseasesNsse N maaaanan. s

w
o)
s
S 03 C e MeesaaesaNseEesssesssssaxssssreasaseananan.n o
D
»
£
[
£
= o2 |
(@)
o
c
o
=
c
&
s Ot 4
T
4
<
0.0:

Number of Processes

7.2.2.1. Matrix Size: 50 x 50

Version1({Ax=y) Version2(Ax=y)

Version1(ATx=y) : Version2(ATx=y)

-35.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGESL vs. PGESL, With No Pivoting (cont.)

1.2: L I T T T T T T T T T

Seconds

0.8:

ime in

0.6:

b
f,"#

0.4:

0.2:

Average Running T

0.0:

o R

7.2.2.2. Matrix Size: 100 x 100

2 e eeaaamacacemeasamaaemasseeanceneaceeenn et

2.0:

BE B SRS AESER e R SRR B ED R RS NN WS R EREE SRR AW N REwEE o W N

1.5

1.0:

0.5:

Average Running Time in Seconds

0.0:

Number of Processes

7.2.2.3. Matrix Size: 150 x 150

-36-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.2.3. DGESL vs. PGESL, With Pivoting on Every Element

0.4, LuieieunsensmassaserEasssEssasEsessanmassesamenm s nnnna

(%2]
ke
5 .
g o3 feMsesessssemesmsaesssesesemssesemsmmscemssennnann o
[b]
wn
£
®
&
= o2
o
o
=
ol
3
o
S
& 0.1 “aw
e
o)
>
<
0.0:

Number of Processes
7.2.3.1. Matrix Size: 50 x 50

KEY: IR DcesL(Ax-y)

d Version1(Ax=y) Version2(Ax=y)

DGESL(ATx=y)

Version1(ATx=y) ‘ Version2(ATx=y)

-37-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DGESL vs. PGESL, With Pivoting on Every Element (cont.)

1.2

Seconds

L R R R N N N R R L R .

imein

0.6:

0.4:

0.2:

Average Running T

0.0:

Number of Processes
7.2.3.2. Matrix Size: 100 x 100

B0 i i eieecsimamaamasamessmasmassasssamasssaasosnnnnn

I
a

o
@

-
a

1.0:

Average Running Time in Seconds
o
o

Number of Processes

7.2.3.3. Matrix Size: 150 x 150

-38-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.3. PQRDC

7.3.1. DQRDC Compared against Algorithm with One and Two Barriers

S

Average Running Time in Seconds

Number of Processes

7.3.1.1. Matrix Size: 50 x 50

KEY: S ooroc

Two Barriers

-39.

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRDC Compared against Algorithm with One and Two Barriers (cont.)

10 e it imeseecaascnsnassccaanueaaasnanananensasanenaneonen.nn
9: -
3
& 8: - 4
Q
3 .
b 7 - d
£
[} 6: - o
£
— 5:
o - o
£
E 4 ..
3
o
D 3: -
o
o
q>.> 2: -
<
1: -
0:

Number of Processes
7.3.1.2. Matrix Size: 100 x 50

MWD S D E MR RN EDNEE NN EDE®EE NS EEEE N EEN OSSR NN AN S ® u o

Seconds

20:

® R E s E SN e R E R NS NN RN EENEE®E® N R EN®EREE N ENEwEwEw o=

imein

10:

Average Running T

Number of Processes
7.3.1.3. Matrix Size: 100 x 100

-40-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRDC Compared against Algorithm with One and Two Barriers (cont.)

16:

Average Running Time in Seconds

55:
50:
B a5
o
3 .
g 4o
(%]
= 35:
(]
£ 30
*._
8’ 25:
£
> 20:
o’
g 15
©
£ 1o
<
5:
0:

Number of Processes
7.3.1.5. Matrix Size: 150 x 100

-41-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRDC Compared against Algorithm with One and Two Barriers (cont.)

Seconds

me in
o)
154

40:

30:

20:

Average Running Ti

10:

7.3.1.6. Matrix Size: 150
B0 e i e eaeeemasaeaeaeaeaeaaaeaeaaaeaea e neaaeaaannana
70:
60:
50:
40:

30:

Average Running Time in Seconds

20: PR -4
10: e .

Number of Processes

7.3.1.7. Matrix Size: 200 x 100

-42-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.3.2. DQRDC vs. PQRDC, With and Without Pivoting

8
& 4: FeeeesessmemENEEssssEssEsssassssesssEEEmana. =
Q
o
o]
(73]
k=
® 3: Ce s o EmesssEBEEmsmEEmEEasksssEsemssmmssnsaassenmeand
=
=
o
£
= 2: . .
]
o
S
©
g.s 1: I -4
<€
0:

Number of Processes
7.3.2.1. Matrix Size: 50 x 50

DQRDC Pivot

KEY: S ooroc Nopiv

PQRDC NoPiv PQRDC Pivot

-43-

Fosdick, Schauble, Dedolph & Schlaman

DQRDC vs.

Average Running Time in Seconds

7.3.2.2. Matrix Size: 100

Average Running Time in Seconds

7.3.2.3. Matrix Size: 100 x 100

35:

20:

15:

o
St

PQRDC, With and Without Pivoting (cont

S

ORI
R
SRR

o
S

August, 1988

Number of Processes

-44-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRDC vs. PQRDC, With and Without Pivoting (cont.)

16:

14: .
»
gl
s
g 1z .
O
(93]
£ 10
o) .
E
o 8: N
£)
5 6: i -
o
S
E 4: .
®
>
< 2 .

0: &

55:

50:

45:

e EE e e e aEEE®EEEWEE W EEE EEWE®® N R R R EW N SEw S wE

40:

35: f M esemsmmmascamssesmmemaEevsmamenn e e
30:
25:

20:

R

15:

o

=

3
3

R
R
R
St

RIS

10:

Average Running Time in Seconds

)

e ,:Q},
S

SRR

5

e

2

Number of Processes
7.3.2.5. Matrix Size: 150 x 100

-45-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRDC vs. PQRDC, With and Without Pivoting (cont.)

110:

Seconds

imein

50:

40:

30:

20:

Average Running Ti

10: - [-
o:

7.3.2.6. Matrix Size:
B0 it iciammamsasmsememmesasssssamsmmscsmraceasseeeeaaceen.nn

70:

60:

50:

40:

30:

20:

Average Running Time in Seconds

10:

Number of Processes
7.3.2.7. Matrix Size: 200 x 100

-46-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.4. PQRSL

74.1. DQRSL and PQRSL Average Running Times under All Experiments

1.2 I T T T U
8 1.0: N e e e s mER R e s s EEEEEasE A mE e
o
Q
Q
[eh]
2 o8
c R
(6]
S
= o6
(@)
£
o
fond
o}
o 0.4: R -
[
(@)
©
$ 0.2:
z .2 .-

0.0:

Number of Processes

7.4.1.1. Matrix Size: 50 x 50

PQRSL

Noparcomp Noparinit

-47-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRSL and PQRSL Average Running Times under All Experiments (cont.)

300 e,

2.5:

Seconds

2.0

ime in

1.5:

1.0:

0.5:

Average Running T

0.0:

7.4.1.2. Matrix Size: 100 x 50

A8 it esuassmresEsmemcmsasmsEmsemmrammsEassssmssesssmEues ...

4.0:
3.5:

3.0:

2.0:

1.5:

Average Running Time in Seconds

Number of Processes

7.4.1.3. Matrix Size: 100 x 100

-48-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

DQRSL and PQRSL Average Running Times under All Experiments (cont.)

9:

Seconds

imein

Average Running Ti

Average Running Time in Seconds

Number of Processes

7.4.1.7. Matrix Size: 200 x 100

-50-

Fosdick, Schauble, Dedolph & Schlaman August, 1988

7.4.2. Gain Shown by PQRSL Versions for All Matrix Sizes

Average Running Time in Seconds

TSH00 I
0SX0S

0SX001

i eeemenssecmssscanscacoannan.

5
5

1SHOd

001X001

% BN NS e mAEREE e NEE R HEONE D EeE R ETREDS®EOSOOC eeO DD W

XUIe\ Jo ozig
0SX0S 1

001X0S1

® M m SN NS e RS eE e RO SER DN NS EE NN SAREGORDDWERRRENESEMKNEUOSREDEEE R

G
. T

o
R

0S1Xx0st

WE SRS EEEEEERE AR SRS e e DD EDEEE S S EE R MR DWE®EREMEEEERERNNESESSEEODEDDDO GG S

s

S

s
SRR

SRR o
e S
303 opo:

001x002

Juuedopn

-51-

