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The class of context-free languages (LCF) and the class of regular languages

(LREG)’ where LREG i LCF’ are important classes of languages within formal language
theory (see, e.g., (H] and [S]). In order to understand the relationship between
- "context-freeness" and "regularity" one can proceed in (at least) two different ways:
(1). Investigate conditions under which a context-free grammar will generate a
regular language; several restrictions of this kind are known, the self-embedding
property is a classical example of such a condition (see, e.g., [H] and [S]).
(2). Investigate conditions which imposed on (the interrelationship of words in) a
context-free lTanguage will guarantee that the generated language is regular.
Several conditions of this kind are known (see, e.g., [ABBL] and [ABBN]).

This paper presents several results concerning the second line of research dis-

cussed above.

1. STRONG ITERATIVE PAIRS.

A fundamental property of context-free languages is the celebrated pumping proper-
ty (see, e.g., [H] and [S]). Based on it the notion of an ijterative pair was intro-
duced in [B] (see also [ABBL]). If K is a language, K ¢ ¥ then p = (X,y,z,u,t) with
X,¥,Z,U,t € 2¥ is an iterative pair in K if, for every n'> 1, xy"zu"t ¢ K where yu

is a nonempty word. Such a synchronized pumping of subwords (y and u) in a word
(xyzut) of K gives one a possibility (using one iterative pair only) to generate
context-free but not regular languages (e.g., {anbn :n=>1}). However, if one
desynchronizes such a pumping, that is one requires that for all r,s = 0, xyrrust € K
then an iterative pair yields a regular language. This observation leads one to a
conjecture that if each iterative pair p = (X,y,z,u,t) of a context-free language K
is very degenerate (that is, for all r,s = 0, xyrzust ¢ K) then K must be regular.
This conjecture was shown in [B] to be true. An iterative pair allows only "upward
pumping" expressed by the fact that n = 1 and in this sense it does not fully forma-




Tize the idea from the pumping lemma for context-free languages. There, also the
"downward pumping" (i.e. n = 0) is allowed; it is well-known that this downward pum-
ping is a very essential part of the pumping property for context-free languages.

If in the definition of an iterative pair we require "n = 0" rather than "n = 1"
then we get a strong iterative pair. Then the "full version" of the conjecture men-

tioned above is:
Conjecture 1. If each strong iterative pair of a context-free language K is very

degenerate then K is reqular. o
~ le prove the following result.
Theorem 1. Conjecture 1 holds. o
The above result solves a problem remaining open since [B] ([B1] and [ABBL]).
Also, Theorem 1 generalizes the above mentioned result from [B] which can be obtained
directly from our theorem.

2. COMMUTATIVE LINEAR LANGUAGES.

Let for a word w, c(w) denote the commutative image of w, i.e., the set of all

words that can be obtained from w be permuting (occurrences of) letters in it. For

a language K, its commutative image is defined by c(K) = k.) c(w). We say that a
wekK
Tanguage K is commutative if K = c(K). Commutative languages form a very active

research topic within formal Tanguage theory (see, e.g., [ABBL], [L1], [L2] and [SS]).
In the Titerature there are severaT conjectures known which relate regularity and
commutativeness of a formal language (see, e.g., [ABBf} and {L11]).

Linear languages form perhaps a closest natural extension of regular languages;
the only difference being that in generating the former one can insert substrings
inside strings already generated (rather than one the edge of strings only as happens
in right-linear grammars). It seems quite feasible that requiring a linear langquage
being comnutative removes (the consequences of) the difference mentioned above. Hence
the following was conjectured ([L1] and [L3]).

Conjecture 2. If a language K is commutative and Tinear then it is regular. o

We prove that the above conjecture is true; as a matter of fact we prove a more

general result. |
Clet ¢ = {al,...,ad}, d = 1, be an arbitrary but fixed alphabet. Let p =

VooVysee s Vy be a sequence of vectors each of which has d components where every
component is a nonnegative integer. We say that p is a base if and only if Vi(j) =0
for all i,j = 1 such that i # j. The p-set, denoted 6(p), is defined by 6(p) =
(v e y(z¥) 1 v = Vg * £qVy * £yVy * ...+ £yv, for some nonnegative integers
81,...,£d},
where for a language K, ¥(K) denotes the set of Parikh vectors of K.

Let X ¢ ¥(z¥). We say that X is periodic if and only if there exists a base o




such that X = 6(p). A language K ¢ 27 s periodic if and only if K is commutative
and ¥(K) is periodic; the base of ¥(K) is also called the base of K and denoted
base(K).

Let K be a periodic language where base(K) = VosVyse oYy The size of K, denoted

size(K), is defined by sZze(K) = - max {max{u.(i), u,(i)}} where
Ak ‘ L 1 2

l1<ic<d
type(K) = (ul,uz),

We prove the following result.

Theorem 2. Let K ¢ 2¥. If there exists a positive integer g such that for each
w € K there exists a periodic language Lw ¢ K where w ¢ Lw and size (Lw) = q then K
is a finite union of periodic languages. o

Using this result we prove

Theorem 3. A language K is a commutative linear language if and only if K is a
finite union of periodic languages. o

Since it is easily seen that each periodic language is regular the above result
yields. '

Theorem 4. Conjecture 2 holds. o

3. INCLUDING SQUARES.

A very fundamental structure of a string (or a language) is a repetition of its
substrings. For example, a string x is said to be a pure-square if x = yy where y is
a nonempty string, x is a square if x contains a pure square as a subword and Xx is
square-free if it is not a square. Such structures were for the first time systemati-
cally investigated by Thue ([T]) and later on in very many papers concerning various
branches of mathematics (see, e.g., [Bel, [BEM], [S] and references therein). These
structures turned out to be of fundamental importance in formal language theory (see,
e.g., [ABBL], [B2], [S]). It was proved recently (see [ER] and [RW]) that the set of
all squares (over an alphabet containing at Teast three letters) is not a context-free
language. This result (and its proofs) support the rahter old and very powerful con-
jecture (see, e.g., [ABBL]).

Conjecture 3. If a context-free language K ¢ A contains all squares over A¥ then

K is regular. o

The intuition behind this conjecture is that if a context-free grammar generates
all squares over A then it generates "almost all words" over A. We are not able to
either prove or disprove this conjecture, however, we can prove that a somewhat
weaker form of this conjecture is false.

Theorem 5. There exists a context-free language K ¢ {a,b}” such that K contains

all pure squares over {a,b} and K is not regular. n




4. INSERTION SYSTEMS.

Insertion systems formalize a very special type of semi-Thue systems. An inser-

tion system is a triple G = (4,1,w) where 4 is a finite nonempty alphabet. 1 is a

finite nonempty subset of 2" and w € 2¥; 1 is called the insertion set of G and w

is called the axiom of G. If w = A then we say that G is pure. For u € 4%, v ¢ At

we say that u directly derives v (in G) if u = Up Uy for some UpsUy €8 and v = U zu,

where z ¢ 1; we write then u = v. Then = denotes the transitive and the reflexive

G s G . .
closure of the E relation; if u ¢V then we say that u derives v (in G). The language
of G, denoted L(G), is defined by L(G) = {v € 2% : w é v ; it is referred to as an

insertion language or a pure insertion language if G is pure.

 The insertion languages form a very natural generalization of restricted Dyck
languages. Clearly the class of insertion languages strictly contains the class of
restricted Dyck languages and it is strictly contained in the class of context-free
languages.

In order to establish conditions under which an insertion language becomes regular ~
we have to prove two results first. These results are of independent interest: the
first of them generalizes the celebrated theorem by Higman (see [Hi]) on ordering
of words by the sparse subword relationship, the second one provides a new algebraic
characterization of regular languages. In order to state those results we need some
additional terminology.

Let us recall (see, e.g., [Hi] and [N]) that a relation that is reflexive and
transitive is called a quasi-order (qo). If = is a quasi-order defined on a set S,
then < is called a well-quasi-order (wqo) if and only if any of the following holds.

(1). = is well founded on S, i.e., there exist no infinite strictly descending
sequences of elements in S and each set of pairwise incomparable elements is finite.
(2). For each infinite sequence {Xi} of elements in S there exist i < Jj such that
X, = X..

1 J

(3). Each infinite sequence of elements in S contains an ascending infinite sub-
sequence.

Given a finite nonempty set of words I ¢ A we say that I is subword complete

if and only if there exists a positive integer m such that for each word z in I
Tonger than m there exist u,v € 2¥ and w ¢ I such that z = uwv. }
Let T be a finite nonempty subset of 2T For X,y € A¥ we write X 1Y if x‘é y where
G is the insertion system (a,I,x).

Theorem 6. Let I be a finite nonempty subset of 2t. Then = is a well-quasi-order
if and only if I is subword complete. o

A quasi-order = on 4" is called monotone if and only if for all x{,X,.yysy, € 07
the following holds: if X; =Y and Xo = Yo then XqX5 = Y1Yp. A set S c a” is
upwards closed under < if and only if whenever x € S and x =y then y € S.

A

Theorem 7. Let K ¢ 4¥. K is regular if and only if there exists a monotone wqo =




on A¥ such that K is upwards closed under <. o

Using the above two results we can provide the following characterization of
regular insertion languages.

Theorem 8. Let K be the insertion language generated by an insertion system
G = (,1,w). Then K is regular if and only if I is subword complete. o
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