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Abstract 

Just as food and water are resources for organisms, so is space. The way animals make 

efficient use of space may be based on resource availability and genetic relatedness among 

individuals and has the potential to help inform how humans could use space more efficiently. It 

is unclear if/when animals are using space randomly or according to patterns in spatial 

organization. My study characterized six prairie dog colonies in Boulder and Gunnison, 

Colorado, to model spatial dynamics with GPS (global positioning system) data complemented 

by images of full colonies collected by drones. Spatial burrow data were analyzed for non-

random distribution of burrows and clustering, and it was assessed whether there are differences 

in data collected via GPS or drones. GPS has large spatial error (5-15m), while drones have 

none, and GPS data take 2-5 times longer to collect. Five out of six colonies had burrows with 

non-random distributions and exhibited significant levels of clustering distinct from random 

distributions that display equal levels of clustering and hyper-dispersion (i.e. intentional 

grouping or dispersion). Clusters were identified with the DBSCAN (density-based spatial 

clustering of applications with noise) algorithm in R software, and the suitability of this approach 

for use in future studies on genetic relatedness was evaluated. Network models created based on 

the spatial burrow data demonstrate how networks can be used to analyze prairie-dog spatial 

dynamics. In addition, this study served to explore network analysis and develop a protocol for 

implementation in future studies based on spatial data from individual prairie dogs. Drone 

surveys are less costly than ground GPS data collection, and both methods yielded similar 

results. These results inform how prairie dogs use space and provide a foundation to study how 

spatial organization relates to genetic relatedness and resource availability.  
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Introduction 

There is a long history of studies focused on understanding the mechanisms underlying 

the spatial distribution of individuals in a population. Early studies focused on an “ideal free” 

distribution. In an ideal free distribution, individuals distribute themselves across space such that 

all individuals obtain the same amount of resources (Fretwel & Lucas 1970; Sutherland 1983). 

There are two key assumptions inherent in ideal free distributions: individuals move freely 

across space and density is proportional to the available resources. Fretwell and Lucas (1970) 

derived a simple model, 𝛽 =  𝛼𝑐1/𝑚, where 𝛽 is the fraction of individuals in a population found 

in each habitat, 𝛼 is the fraction of resources occurring in each habitat, c is a constant, and 𝑚 is 

the strength of interference competition between individuals. The ideal free distribution 

represents a null hypothesis because the underlying parameters governing the distribution of 

individuals are very general.  

The situation is more complex when individuals do not move freely because of 

territoriality, or when individuals secure a permanent residence and movement is limited to a 

home range. In this case, the ideal free distribution may still apply. If individuals behave 

according to the underlying rules governing an ideal free distribution, and if resources are 

uniformly distributed, we should expect the area of an individual’s home range to be normally 

distributed and the differences among individuals to simply reflect stochastic, ecologically-

neutral variation. Moreover, if resources are uniformly distributed, the centers of the home 

ranges of individuals are expected to be evenly distributed across space approximating a 

hexagonal array (e.g., honey combs).  

A variety of factors may influence the distribution of individuals across space. For 

instance, there may be variation in competitive ability among individuals with effects on home 
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range size. Similarly, for social organisms home range size may vary as a consequence of 

relatedness if more related individuals interact cooperatively, and the interactions of less related 

individuals may be more competitive (Rayor 1988; Verdolin et al. 2014). Additionally, resources 

may not be uniformly distributed (Travis et al. 1995). Finally, home range size may vary 

depending on how long a population has occupied a particular defined habitat patch. The packing 

of home ranges within a defined landscape is likely to increase over time depending on the 

balance between infilling and growth at the edges of the distribution.  

Given the inherent complexity of the distribution of individual home ranges, I decided to 

explore patterns of habitat occupancy. I focused on trying to estimate several parameters for a 

social organism -the prairie dog- that occupies defined habitat patches across the landscape. 

Prairie dogs are fossorial (burrowing) rodents that construct elaborate burrow system; and the 

locations of burrow systems are marked by burrow entrances (holes) distributed across a 

bounded geographic space. Prairie dogs form coteries (social groups) that “cooperatively use and 

defend a common territory” within the overall colony (Rayor 1988). Prairie dogs are essential to 

the maintenance of grassland biodiversity and ecosystem services, including groundwater 

recharge, regulation of soil erosion and of soil productive potential, soil carbon storage, and 

forage availability (Martínez-Estévez et al. 2013). 

 I focused on the burrow as the unit of measurement that is, in many ways, analogous to a 

house, which is similar to the method in Messier et al. (1990) of using muskrat dwellings to 

determine their distribution pattern among habitats. I estimated three parameters, i.e., the home 

range defined by each burrow entrance, the density of burrows across space, and the spatial 

distribution of burrows. A similar study by Rayor (1988) used observed space use to study the 

social interactions among and between coteries. Here, I will expand on the knowledge of prairie 
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dog space use with a more quantitative approach by using technology and various methods of 

spatial analysis. I was particularly interested in comparing ground estimates of the location of 

individual burrows determined via handheld GPS devices and aerial photographs obtained using 

drones. I was motivated by several hypotheses and objectives: 

H1: Processes controlling spatial organization exist that result in a non-random 

distribution of burrows. 

H2: Individuals are dependent on each other and organize burrows in clusters. 

H3: Individuals are independent of each other and organized burrows in a hyper-dispersed 

pattern.  

H4: The distribution of burrows across space in colonies is dependent on factors, such as 

age of a colony and resource availability, that result in variation in the distribution of 

burrows. 

H5: Different spatial surveying methods (GPS or drone) will produce the same, or similar, 

results.  

Objective 1: Create network analysis models based on spatial data to demonstrate how 

network data can be used to model prairie dog colonies.  

Objective 2: Identify communities within network models to demonstrate how we can 

model communities from network data. These communities can be compared with future 

genetic data testing for relatedness of individuals to assess whether more related 

individuals engage more often with each other than with less related individuals.  

I addressed these questions by first defining the ideal free distribution of competitors between 

habitat patches- if each individual freely chose a patch to maximize food intake rate, burrows 
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should be distributed at equilibrium, causing the number of individuals to be proportional to the 

patch quality and equalizing expected food intake in all occupied patches.   

The goal of this study was to use prairie dogs as a model organism to test the 

methodology used to collect and analyze data on spatial organization, and each research question 

was tested using multiple spatial statistics. In addition to testing the ideal free distribution using a 

variety of spatial statistics, this study modeled the use of network analysis to capture the 

associations of individuals as well as their use of space. A network can be defined as a set of 

nodes (points) connected by edges (Croft et al. 2004). Social network analysis aims to study the 

connections and patterns among individuals and groups (Scott 2017). Interactions among animals 

aid in survival and reproduction to pass genes down through generations (Rosenberg and Arp 

2009). Social structure, including hierarchies and disease transmission, affects individuals’ 

fitness and, in turn, evolution (Krause et al. 2007). Social network analysis can be used to study 

various aspects of animal behavior, and can inform animal conservation (Snijders et al. 2017), 

welfare and release (Kleinhappel et al. 2016), and shed light on resource management, migration 

patterns (Bastille-Rousseau et al. 2018), and disease transmission (Perkins et al. 2009) through a 

better understanding of how individuals in a population are connected. The social networks of 

prairie dogs have been studied by means of behavioral interactions (Manno et al. 2007; Verdolin 

et al. 2014), and prairie dogs have been used to model how social structures vary with varying 

environmental conditions, such as food availability (Travis et al. 1995). In addition, the physical 

arrangement of burrows within a colony may be another indicator of resource management.  

Testing methods for spatial analysis should focus on the method used for data collection. 

The data collection approach in the present study compares manual identification of burrows 

with the use of aerial drone imagery, and assesses the utility of each technology for data 
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collection in ecology. The findings of this study are hoped to provide helpful insight for the 

cross-disciplinary approach of combining technology, photography, geography, and biology. I 

tested the advantages and disadvantages of GPS-based versus drone-based technology at a small 

scale in colonies with hundreds of burrows over a relatively small area. Land management 

entities traditionally use GPS field surveys, which are costly in terms of time, labor, and financial 

resources, delaying conservation and management, specifically of endangered species. Use of 

drones can significantly reduce these costs and increase the efficiency of wildlife surveys 

(Marvin et al. 2016). In addition, GPS has a large range of locational accuracy, which can greatly 

impact data on a small scale, e.g., in prairie dog colonies (Marvin et al. 2016). While many 

studies aim to increase the scale of spatial analysis to monitor animal movement (Chetkiewicz et 

al 2006; Mueller et al. 2014), the present study performed small-scale spatial analysis with many 

data points collected via two different methods within a defined location. Furthermore, my study 

is novel in combining multiple spatial statistics, which had previously only been done in studies 

of materials science and bioinformatics (Chen et al. 2011; Zhang 2018), to study a biological 

system.  

Methods 

Site Selection 

 Sites were selected by availability and accessibility. Three prairie dog colonies in 

Gunnison, Colorado, were selected based on size and locational availability of these colonies. 

These colonies were previously surveyed in Gunnison prairie dog (Cynomys gunnisoni) 

population genetics studies and the locations were known. Three prairie dog colonies in Boulder, 

Colorado, were selected due to accessibility and surveying permits. These colonies are 

conveniently located near the University of Colorado and offered the opportunity to extend this 
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study to a second prairie dog species, the Black-tailed prairie dog (Cynomys ludovicianus). 

Permission from land management entities was received prior to GPS and drone surveying.  

Data Collection 

All data were collected during September-October of 2018.  

GPS Data 

Locations of burrows in colonies were collected using Garmin GPSMap 64S GPS units at 

three colonies in Gunnison (KM, BLM-18, and MR) and three colonies in Boulder (Short, 

Waldorf, and Superior). All burrows were within colony extents. At each burrow, the GPS 

location was marked, and flags were placed at each burrow in small colonies to indicate that it 

had been marked. GPS units are typically accurate to 5-10 meters and 95% accurate to 15 meters.  

Drone Imagery 

 A DJI Phantom 4 pro version 2.0 drone was flown at two colonies in Gunnison (KM and 

BLM-18) and two colonies in Boulder (Short and Waldorf). Permits were received prior to drone 

flights. Drone flights were pre-programmed to the colony size that covered the entire colony by 

traversing a zig-zag pattern. Photographs of each colony were stitched together using Precision 

Mapper software and downloaded as a georeferenced image. Burrows were visually identified 

from drone imagery using QGIS version 3.4.2. 

Data Analysis  

Voronoi Tessellation 

Voronoi Tessellation creates polygons, or tiles, around each point that maximize the area 

each point can take up in space. These models were created using the deldir package in R 

version 1.1.463. Tessellation models were created for six colonies (KM, BLM-18, MR, Short, 

Waldorf, and Superior). The area of each tile can be extracted from the tess analysis. Larger tile 
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areas represent more area per point (i.e. dispersion) and smaller tile areas represent less area per 

point (i.e. clustering). Histograms of the tile area distributions were plotted for each colony.  

Cluster Analysis 

Cluster analysis was performed on all six colonies and used drone data to maximize 

spatial accuracy if available and GPS data if it was not. Coordinates were imported to R 

version 1.1.463 and were analyzed using the dbscan package. The DBSCAN (density-based 

spatial clustering of applications with noise) clustering algorithm is a density-based algorithm 

that groups points in the same cluster if they are within a certain distance (epsilon) of each other 

and considers points, noise points, if they fall outside of this distance from other points. The 

epsilon value for each colony was found by plotting 10 k nearest neighbor values for every point, 

which resulted in an exponential curve. The epsilon value is located at the knee (i.e. steep curve) 

(Fig. 1). Sensitivity analysis was used to determine that epsilon values slightly above or below 

the knee of the curve did not affect the cluster output. Cluster plots were created for each colony 

to visualize clusters identified by the DBSCAN algorithm.  
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Figure 1: Example of k nearest neighbor graph used to find epsilon. Epsilon is located at the 

knee of the curve, indicated by an arrow.  
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Kernel Density 

Kernel density analysis was used to compare the density of burrows between survey 

methods. Both drone surveys and GPS data collection were performed at Waldorf, Short, KM, 

and BLM-18. Kernel density identifies the density of points across the colony and creates a raster 

showing where density is higher and lower than average. The density search radius was set to 15 

meters to account for GPS spatial error. Raster outputs for both survey methods for each colony 

were then overlaid and subtracted. Raster layers contain cells that each have a value; each raster 

cell contains a density value. Raster subtraction takes the raster values of each cell and subtracts 

the second input raster from the first input raster to calculate the difference between the layers. 

The subtraction output is a new raster that contains the values for the difference between input 

layers. Based on the difference between layers, the similarity of methods in identifying burrows 

can be determined as well as where in the colony density varies between methods. The output 

cell size was set to one meter to visualize the density at each burrow as burrows are 

approximately 1x1 meter.  

There are two sources of error in the spatial accuracy of burrow location, which in turn 

affects the density output. GPS error ranges from 5-15 meters. This causes points to be 

disassociated with the true burrow location and can shift burrow density. The error is not in a 

specific direction, so GPS error may cause false clustering or dispersion of points. The second 

source of error is missing burrows from drone imagery. Most burrows are easily identified from 

the high-resolution drone imagery. However, Gunnison prairie dogs often burrow under rocks 

and sage brush. If a burrow is under a rock or sage brush, it may not be visible from above and 

can be missed in the burrow identification process.  
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Network Analysis 

Network analysis was performed on all six colonies to create network models. This 

analysis was conducted using spatial data of burrow locations instead of network data from 

individual prairie dogs and their connections to others. These network models were created to 

demonstrate the statistics that can be extracted from network analysis and to streamline the data 

analysis process once network data are obtained. 

The deldir package in R version 1.1.463 contains a triang function that triangulates all 

points in a colony. Triangulation data were extracted for six colonies and edited to create edge 

lists. Each focal point was listed with all of its connecting points. These edge lists were then 

loaded back into R version 1.1.463 for use in network analysis. The igraph package in R 

version 1.1.463 was used to create a model of nodes (burrows) and edges (hypothetical 

connections by proximity) to demonstrate the network that is formed by connectivity of burrows.  

In a true network model, network analysis takes individuals and their connections to each 

other to create a network of interactions amongst individuals. Degree and Eigen centrality can be 

used to analyze the how many connections individuals have and how connected individuals are 

in the overall network.  

Communities can be identified within the networks using a clustering method that takes 

into account the Eigen centrality of individuals. This algorithm identifies individuals that are 

more connected to individuals within the community than individuals outside the community. 

Models were created of community outputs using spatial data on burrow location.   

The process of learning about network theory and network analysis was extensive. 

Creating network models of prairie dog colony spatial structure was the original premise of this 

study for the majority of the study period. Learning this process required literature review on 
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network theory to learn why and how this modeling technique is used. Learning how to write and 

run network analysis code in R version 1.1.463 required dedication and patience. The first step 

was to create Voronoi tessellation models in order to extract edge lists. Edge lists were first 

created by hand from the tessellation results before it was discovered that triangulation could 

create edge lists that only required slight modification in Excel. This study has been a great 

learning experience in new concepts, finding new R packages, being patient while learning and 

writing code, and understanding sources of error for different analyses.  

Results 

Voronoi Tessellation 

 Voronoi tessellation was used to create polygons around every burrow in each prairie dog 

colony. Voronoi tessellation maximizes the amount of area each point can take up in space. 

Figure 2 shows tessellation models from six colonies. The distribution of tile areas were plotted 

for every colony (Fig. 3). All colonies demonstrated an approximately normal distribution with 

means slightly greater than the mode. Small areas are representative of dense clustering, while 

large areas are representative of dispersion. Normal distributions of tile areas demonstrate that 

there is both clustering and dispersion occurring across colonies. Tile areas were used to estimate 

the variation in home ranges, or ecological footprints, of burrows.  



 16 

 

Figure 2: Voronoi Tessellation plots of burrow locations in six prairie dog colonies in Colorado. 

Tiles (i.e. polygons) around each point (burrow) where any point in the polygon is closer to that 

center point than to other center points. Coordinates are based on UTM Zone 13. Spatial scale 

varies between figures. 
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Figure 3: Histograms of tile area distribution generated from Voronoi Tessellation outputs for 

each colony. Large tile areas demonstrate a greater distance to the surrounding burrows, while 

small tile areas demonstrate a smaller distance to the surrounding burrows. Dashed lines are the 

mean tile area for each colony.  

 

 

 

 

MR

log(MR_areas)

F
re

q
u

e
n
c
y

0 2 4 6 8 10

0
5
0

1
0

0
1

5
0

Superior

log(superior_areas)

F
re

q
u

e
n
c
y

0 2 4 6 8 10

0
5

1
0

1
5

KM

log(KM_areas)

F
re

q
u
e

n
c
y

0 2 4 6 8 10

0
5
0

1
0

0
2
0

0
3
0

0

BLM-18

log(BLM18_areas)

F
re

q
u
e

n
c
y

0 2 4 6 8 10

0
5
0

1
0
0

1
5

0
2

0
0

2
5

0

Short

F
re

q
u

e
n
c
y

0 2 4 6 8 10

0
2
0

4
0

6
0

8
0

Waldorf

F
re

q
u

e
n
c
y

0 2 4 6 8 10

0
2

0
0

4
0

0
6

0
0

8
0
0



 18 

Coefficient of Dispersion 

The coefficient of dispersion was used to determine if dispersion of burrows in colonies 

followed a non-random distribution. Five out of the six colonies displayed non-random 

distribution of points (Fig. 5). The assessment of non-random distribution of points was based on 

effect size plots of the coefficient of dispersion for each colony (Fig. 5). MR, Superior, KM, 

BLM-18, and Waldorf all had effect sizes greater than zero and a 95% confidence interval that 

did not cross zero, thus demonstrating a significant effect. The coefficient of dispersion for Short 

had a negative effect size and the 95% confidence interval crosses zero, demonstrating that there 

was no significant effect. Five out of the six colonies displayed significant levels of clustering 

(Fig. 4). Clustering levels were determined by histograms of the distribution of coefficient of 

dispersion. One colony, Short, displayed hyper-dispersion, but at an insignificant level indicated 

by an effect size where the 95% confidence interval crosses zero.  
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Figure 4: Distribution of distance between points in each colony for 40 randomly chosen points 

repeated 1000 times. Dashed lines are at 0. Negative values represent hyper-dispersion and 

positive values represent clumping. Coefficient of dispersion values are log transformed.  
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Figure 5: Effect size plot for coefficient of dispersion. Points indicate effect size (mean) of 

coefficient of dispersion and bars indicate 95% confidence interval. Dashed line is at zero. 

Coefficient of dispersion values are log transformed. 
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produced with GPS data and drone imagery for each colony resulted in similar-looking density 

patterns. However, the final raster layers for difference in density between sampling methods 

demonstrate that there is significant variation in point density between the sampling methods. 

(Fig. 6). 

6A 
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6B 
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6C 
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Figure 6: Raster layer outputs from kernel density analysis (blue) and raster subtraction (blue-

red). Negative values from raster subtraction are displayed in blue and positive values are 

6D 
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displayed in red. Values of zero (no difference between layers) are displayed in yellow. Raster 

outputs from GPS data were subtracted from outputs from drone data to create final difference in 

point density raster layer. Values represent burrow density per square meter.  

 

Clusters 

Clusters of burrows were identified for six colonies using the DBSCAN method (Fig. 7). 

Four of these colonies (Short, Waldorf, BLM-18, and KM) were surveyed using GPS data 

collection and drone imagery. The BLM-18 drone imagery covers a larger extent than the GPS 

survey; data from drone imagery were constrained to the extent of the GPS data in the cluster 

figure, but clustering analysis data from the full extent are contained in Table 1. Clusters were 

generated for both survey methods to compare the clusters identified based on sampling method. 

Only GPS data were collected at MR and Superior. Number of clusters, number of noise points, 

and number of burrows for each colony and survey method are listed in Table 1.  

 Number of clusters were similar across sampling methods for each colony. Short 

contained one main cluster identified in the drone imagery, while the GPS data contained two 

additional clusters. Clusters in Waldorf had a large amount of visual variation between GPS data 

and drone imagery. GPS data and drone data in the BLM-18 and KM colonies were similar. 

BLM-18 has two large clusters from GPS data that are each broken up into two clusters in drone 

imagery. KM has three main clusters that vary slightly between surveying methods.  
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Figure 7: Graphs display all points in each colony and the identified clusters using the DBSCAN 

algorithm. Clusters are represented by colored polygons. Black points are considered noise 

points. Both GPS data collection and drone surveys were conducted at Short, Waldorf, BLM-18, 
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and KM colonies, and clusters were created for each data set. Only GPS data was collected at 

MR and Short, and clusters were created. 

 

Table 1: Table of number of clusters, noise points, and number of burrows for each colony.  

Colony Number of Clusters Noise Points Number of Burrows 

Short GPS 3 10 222 

Short Drone 1 1 260 

Waldorf GPS 25 135 1148 

Waldorf Drone 33 149 2076 

BLM18 GPS 11 26 876 

BLM18 Drone 12 44 656 

BLM18 Drone Full Extent 7 27 815 

KM GPS 14 113 1872 

KM Drone 10 83 1346 

MR 7 9 610 

Superior 2 0 103 

 

Network Analysis Models 

Six colonies throughout Boulder and Gunnison county were analyzed for network 

statistics. Network graphs were created for each colony to visualize the distribution and 

connectivity of burrows within each colony (Fig. 8). The colonies varied in size ranging from 

101 to 2076 burrows (Table 2). Degree and Eigen centrality were calculated for each of the 

colonies as well as the degree and Eigen centrality of randomly simulated networks. All values 

for degree and Eigen centrality of both observed and simulated networks are listed in Table 2.  
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Figure 8: Diagrams of networks consisting of all burrows within prairie dog colonies in 

Colorado. Each point represents a burrow. The size of each point is scaled using Newman’s 

Algorithm (Newman 2006), which identifies the connectivity of each point as a measure of 

importance to the overall network. More spatially connected burrows are represented by larger 

points.  
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Table 2: Description of statistics calculated for each colony. Statistics for simulated random 

networks based on each colony’s degree statistics and number of burrows are included.  

Colony 

Name 

 

 

Location 

Number of 

Burrows 

Mean 

Degree 

Mean Eigen 

Centrality 

Random 

Network 

Degree 

Random 

Network Eigen 

Centrality 

Short Boulder 222 11.31222 0.3803462 11.67568 0.5289402 

Superior Superior 101 5.378641 0.4438805 5.326733 0.3670229 

MR Gunnison 608 5.626263 0.1246697 5.680921 0.2715417 

KM Gunnison 1867 5.687193 0.03237977 5.81789 0.2110869 

Waldorf Boulder 1139 5.467857 0.07213397 5.474978 0.2953986 

BLM-18 Gunnison 872 7.916763 0.04173993 7.947248 0.3378944 

 

Simulated Random Networks 

Random networks were simulated using the degree and number of burrows for each 

colony, and degree and Eigen centrality were calculated (Table 2). A Welch Two Sample t-test 

revealed that mean Eigen centrality of observed networks was 0.18 and mean Eigen centrality of 

random networks was 0.36. There was no significant difference between observed and simulated 

networks (p-value of 0.11). A Welch Two Sample t-test revealed that the mean degree of 

observed networks was 6.90 and the mean degree of random networks was 6.99. There was no 

significant difference between observed and simulated networks (p-value of 0.95).  

Figure 9 displays observed, random, and small-world networks for the Short colony. The 

random network uses the degree of the observed network and the number of burrows to model 

what the network may look like by chance. The small-world network uses the number of burrows 

to model what the network would look like based on the small world phenomenon. The size of 

points in all graphs were calculated using Newman’s Algorithm, which scales point size based 

on the relative importance of each point in the overall network (Newman 2006).  
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Figure 9: All graphs are from data on the Short colony in Boulder. The observed network is 

based on the actual distribution of burrows and the random network and small world network are 

two simulated models. All graphs contain the same number of points. The simulated models 

represent what may happen by chance and by chance with small world constraints with the same 

number of burrows and the same degree per burrows (mean observed degree/number of 

burrows).  

 

Communities 

Communities were identified in network analysis models using Newman’s Algorithm 

(Newman 2006) (Fig. 10). On average, 8 communities were detected across the different 

colonies. These community models simulate how network data can be used to identify 

communities within prairie dog colonies based on connectivity of individuals. However, this 

model uses burrows as nodes instead of individual prairie dogs.  
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Figure 10: Network graphs of six colonies with points colored by communities. Communities 

were identified using Newman’s Algorithm (Newman 2006). The size of each point is scaled 

using Newman’s Algorithm, which identifies the connectivity of each point as a measure of 

importance to the overall network. 

 

Discussion 

This exploratory study aimed to improve the understanding of how animals use space in 

their environment and set the stage for further analysis based on tagging of individual prairie 

dogs with GPS units and collection of network data. This study provided insight into how 

burrows are arranged, how clustering varies throughout each colony, how survey methods affect 
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data, and how network analysis can be used to study prairie dog networks. Furthermore, the goal 

of this study was to test methodology for studying how animals use space.  

Spatial Organization 

The results of the coefficient of dispersion analysis indicate that there may be processes 

controlling the spatial organization of burrows and support hypothesis one that there is a non-

random distribution of burrows in five out of six colonies. The results of the coefficient of 

dispersion analysis also indicate that there are significant levels of clustering in five out of six 

colonies, supporting hypothesis two. These results show that prairie dogs intentionally organize 

burrows into clusters. Future studies on genetic relatedness of individuals would be helpful to 

assess whether or not organization is driven by family groups within colonies. It is likely that the 

Short colony, which exhibited neither a non-random distribution nor a significant level of 

clustering or dispersion, may be influenced by other factors. The Short colony is a small colony 

in Boulder and may not experience a significant spatial organization pattern due to size, which 

may be influenced by the age of the colony. It is likely that younger colonies are smaller, and 

that colonies develop stricter spatial organization as they age and grow. If Short is indeed a 

young colony, it may not have had enough time to develop a distinct spatial organization pattern. 

Otherwise, it is possible that Short has established an optimal distribution of space and resources 

indicated by its Voronoi tessellation plot that resembles a honeycomb. In contrast, four of the 

five colonies that did exhibit significant spatial organization patterns are larger colonies, which 

may be older and may have had time to develop strict spatial organization. Prairie dogs are very 

territorial (Rayor 1988) and as the number of prairie dogs in a colony increases, more territories, 

or clusters, are likely to develop. The other colony, Superior, that exhibited a significant spatial 

organization pattern happened to be small, but was a satellite colony of a larger, older colony. 
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This satellite colony had recently emerged and was surveyed to monitor its development over 

time. It is possible that this satellite colony exhibited a significant spatial organization pattern 

despite its small size because it retained the spatial organization of the main colony from which it 

was directly derived.  

 Clusters of burrows identified via the DBSCAN algorithm are based on the proximity of 

burrows to each other and can be used to hypothesize where territories may be located. In the 

future, clusters of burrows can be compared to the genetic relatedness of individuals that inhabit 

these burrows to determine whether or not the clusters of burrows are representative of prairie 

dog family groups.  

 The results obtained from Voronoi tessellation analysis and tile area distributions from 

tessellation analysis support hypothesis four that there is variation in the distribution of burrows 

across space in colonies. Additionally, Voronoi tessellation allowed for identification of home 

ranges of burrows based on the amount of space each burrow can take up. Burrows with varying 

sizes have access to varying amounts of resources based on the area of land each burrow has 

command over. In future studies, tessellation plots can be overlaid onto drone imagery to 

compare tile areas with the quality and amount of vegetation. We would expect to see that 

burrows with larger tile areas would have less desirable vegetation than burrows with small tile 

areas.  

 Voronoi tessellation suggests that burrow size may vary depending on the number of 

resources, such that each burrow has the same amount of resources. This would support the ideal 

free distribution null hypothesis that animals organize such that each individual in a population 

receives equal resources. However, we know that this does not truly occur in nature due to 

behavioral dynamics. A similar study by Messier et al. (1990) used muskrat dwellings to test the 
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ideal free distribution hypothesis and found muskrats to have unequal access to resources due to 

territoriality. Since prairie dogs are biologically similar to muskrats and also exhibit territoriality, 

we would expect that certain prairie dog coteries (social groups) would have command over 

more desirable locations than other coteries. While the results of my study reject the ideal free 

distribution hypothesis, they agree with Sutherland (1983) that animal distribution is independent 

of population size based on the fact that five out of six colonies exhibited the same colony 

structure independent of number of burrows (Table 2). 

Comparison of Methods 

 The finding obtained via kernel density analysis that there are differences in point density 

between surveying methods refutes hypothesis five that it does not matter which surveying 

method is used. Difference in density is due to error in both surveying methods. The GPS units 

used for data collection range in error from 5-15 meters, which can drastically affect how spatial 

data are displayed (Fig. 11).  
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Figure 11: The left panel shows a close-up of a section of the KM colony. Buffers were created 

at 5, 10, and 15 meters around all GPS points to demonstrate the spatial uncertainty of where that 

point may actually be located due to GPS error. Blue points are burrows identified from drone 

imagery. This figure demonstrates how it is not possible to identify which GPS points should be 

associated with which drone points due to overlap of spatial uncertainty. The right panel is a 

depiction of GPS error. Blue points are the GPS data points and red dashed lines indicate which 

burrows the points are supposed to belong to.  
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Burrows can be missed by surveyors and also in drone images if they are covered by rock or sage 

brush. Additional, presumably inactive burrows may be marked in drone imagery but not with 

GPS. In contrast, the spatial accuracy of the drone is much greater than that of the GPS units.  

My study aimed to assess the validity of using drones in wildlife biology, and the 

differences between data from GPS and drones suggest that the surveying method used should be 

selected depending on the study system. As suggested by Marvin et al. (2016), a combination of 

data collection technologies can be used to improve accuracy. GPS data have large spatial error, 

but may provide a more representative count of the number of active burrows. In contrast, drones 

have very low spatial error, but burrows may be missed or misidentified. An additional 

consideration is that drone surveys are 2-5 times faster than manual GPS surveys, which can save 

land management entities time and money.  

The finding that the number of burrows identified by GPS versus drone imagery varied 

for each colony is likely due to sections of colonies being missed during GPS data collection and 

burrows not being visible in drone imagery due to being located under a rock or sage brush. GPS 

thus only tells part of the story. We can obtain additional vegetation and environmental data from 

drones and, by combining technologies, gain a more representative depiction of the world in 

order to address critical conservation and management issues (Stark et al. 2017). 

Network Models 

The use of network analysis in biology is growing, as it is a robust tool. Network theory 

has been used to study migration and landscape connectivity (Prima 2018), protected area design 

(Lea et al. 2016), social structure (Godfrey et al. 2014; Spiegel et al. 2017), conservation 

(Snijders et al. 2017), and disease transmission (Perkins et al. 2009). The use of spatial 

technology and network analysis in the present study is much more efficient and objective than 
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behavioral observations used in previous studies on prairie dogs (Manno et al. 2007; Verdolin et 

al. 2014). 

Overall, my study provided a protocol for data processing, analysis, and visualization for 

future studies. The network communities identified here can be used to estimate the number of 

coteries in a colony. Network models similar to those produced in this study can be used to study 

space use, resource availability, reproductive dynamics, and disease transmission in prairie dogs 

and many other organisms. The results of this study can be used to test how the spatial 

distribution of prairie dogs relates to relatedness. Rayor (1988) used space use to study social 

organization. However, relatedness was based on use of the same burrows, not genetic testing, 

and would not have been able to discern mingling of unmarked litters with members of 

neighboring litters. Further studies may provide evidence of common space use based on genetic 

relatedness by comparing the clusters and communities defined in my study to genetic family 

groups. Additionally, Rayor (1988) only used two colonies, while my study used six colonies.  

Conclusions 

 The goal of this study was to evaluate the methods used to study how animals use space. 

In addition to doing so, the key results from this study show that prairie dog burrows are non-

randomly organized in cluster, that burrows have varying ecological footprints, that GPS and 

drone data collection produce different data, and that networks and clusters can be used to 

hypothesize the number and locations of coteries in a colony. The results of this study can thus 

inform future studies on how prairie dog spatial organization relates to genetic relatedness of 

individuals and environmental resource availability. How animals use space can be study across 

a wide range of taxa, including humans. While prairie dogs and humans alike are social 

organisms, we can use animal spatial organization to inspire novel human design of space use. 
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Especially as percent of developed land cover is increasing, it is essential for humans to make 

efficient use of space. Studying space use as a part of biological processes that have developed 

through evolution may help humans determine how to efficiently use space in our environment. 

“We are moving into a ‘golden age’ of animal tracking science and are beginning to use animals 

to inform us about crucial changes to the planet and to make predictions of future change, 

moving from simply studying animals, to using animals to study the planet” (Kays et al. 2015; 

Marvin et al. 2016).  
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Code  

##########TESSELLATION########## 

 

library(deldir) 

quartz() 

par(mfrow=c(2,3), mar=c(2,2,2,1), oma=c(1,1,1,1)) 

 

#MR 

MR <- read.csv("Gunnison_mapping_9-18_MR.csv") 

MR_tess <- deldir(MR$X, MR$Y) 

plot(MR$X, MR$Y, cex=.0001) 

tiles <- plot(MR_tess, wlines="tess", wpoints = "none", number=FALSE, add=TRUE, lty=1) 

title("MR") 

 

#Superior 

superior <- read.csv("Superior_utms.csv") 

superior_tess <- deldir(superior$X, superior$Y) 

plot(superior$X, superior$Y, cex=.0001) 

tiles <- plot(superior_tess, wlines="tess", wpoints = "none", number=FALSE, add=TRUE, lty=1) 

title("Superior") 

 

#KM 

KM <- read.csv("KM_burrows_qgis.csv") 

KM_tess <- deldir(KM$X, KM$Y) 

plot(KM$X, KM$Y, cex=.0001) 

tiles <- plot(KM_tess, wlines="tess", wpoints = "none", number=FALSE, add=TRUE, lty=1) 

title("KM") 

 

#BLM-18 

BLM18 <- read.csv("BLM18_qgis_fullextent.csv") 

BLM18_tess <- deldir(BLM18$X, BLM18$Y) 

plot(BLM18$X, BLM18$Y, cex=.0001) 

tiles <- plot(BLM18_tess, wlines="tess", wpoints = "none", number=FALSE, add=TRUE, lty=1) 

title("BLM-18") 

 

#Short 

short <- read.csv("short_drone_qgis.csv") 

short_tess <- deldir(short$X, short$Y) 

plot(short$X, short$Y, cex=0.0001) 

plot(short_tess, wlines="tess", wpoints="none", number=FALSE, add=TRUE, lty=1) 

title("Short") 

 

#Waldorf 

waldorf <- read.csv("Waldorf_qgis_burrows.csv") 

waldorf_tess <- deldir(waldorf$X, waldorf$Y) 

plot(waldorf$X, waldorf$Y, cex=.0001) 

tiles <- plot(waldorf_tess, wlines="tess", wpoints = "none", number=FALSE, add=TRUE, lty=1) 

title("Waldorf") 

 

######################################################### 

 

#tile area distribution 

quartz() 

par(mfrow=c(3,2), mar=c(2,2,2,1), oma=c(1,1,1,1)) 
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#MR 

MR_areas <- tileInfo(MR_tess)$Areas 

hist(log(MR_areas), main="MR", xlim=c(0,10)) 

abline(v= log(mean(MR_areas)), lty=3, lwd=3) 

 

#Superior 

superior_areas <- tileInfo(superior_tess)$Areas 

hist(log(superior_areas), main="Superior", xlim=c(0,10)) 

abline(v= log(mean(superior_areas)), lty=3, lwd=3) 

 

#KM 

KM_areas <- tileInfo(KM_tess)$Areas 

hist(log(KM_areas), main="KM", xlim=c(0,10)) 

abline(v= log(mean(KM_areas)), lty=3, lwd=3) 

 

#BLM-18 

BLM18_areas <- tileInfo(BLM18_tess)$Areas 

hist(log(BLM18_areas), main="BLM-18", xlim=c(0,10)) 

abline(v= log(mean(BLM18_areas)), lty=3, lwd=3) 

 

#Short 

short_areas <- tileInfo(short_tess)$Areas 

hist(log(short_areas), main="Short", xlim=c(0,10)) 

abline(v= log(mean(short_areas)), lty=3, lwd=3) 

 

#Waldorf 

waldorf_areas <- tileInfo(waldorf_tess)$Areas 

hist(log(waldorf_areas), main="Waldorf", xlim=c(0,10)) 

abline(v= log(mean(waldorf_areas)), lty=3, lwd=3) 

 

######################################################### 

 

##########TRIANGULATION LISTS########## 

 

#MR triangulated points 

triangulation_MR <- triMat(MR_tess) 

#writes values to  a csv 

write.csv(triangulation_MR, file = "MR_triangulation.csv") 

 

#in excel paste V3 under V2 along with V1. Add IDs to pasted values. Sort V1 ascending. Remove duplicates in V2. 

Rename columns.  

 

#Superior triangulated points 

triangulation_superior <- triMat(superior_tess) 

#writes values to  a csv 

write.csv(triangulation_superior, file = "superior_triangulation.csv") 

 

#in excel paste V3 under V2 along with V1. Add IDs to pasted values. Sort V1 ascending. Remove duplicates in V2. 

Rename columns.  

 

#KM triangulated points 

triangulation_KM <- triMat(KM_tess) 

#writes values to a csv 

write.csv(triangulation_KM, file = "KM_triangulation.csv") 
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#in excel paste V3 under V2 along with V1. Add IDs to pasted values. Sort V1 ascending. Remove duplicates in V2. 

Rename columns.  

 

#BLM-18 triangulated points 

triangulation_BLM18 <- triMat(BLM18_tess) 

#writes values to  a csv 

write.csv(triangulation_BLM18, file = "BLM18_triangulation.csv") 

 

#in excel paste V3 under V2 along with V1. Add IDs to pasted values. Sort V1 ascending. Remove duplicates in V2. 

Rename columns. 

 

#Waldorf triangulated points 

triangulation <- triMat(waldorf_tess ) 

#writes values to  a csv 

write.csv(triangulation, file = "waldorf_triangulation.csv") 

 

#in excel paste V3 under V2 along with V1. Add IDs to pasted values. Sort V1 ascending. Remove duplicates in V2. 

Rename columns.  

 

###################################################### 

 

##########CLUSTERS (DBSCAN)########## 

 

#install factoextra to visualize plots 

install.packages("factoextra") 

#install dbscan 

install.packages("dbscan") 

 

library(dbscan) 

library(factoextra) 

 

#WALDORF############################################################################### 

#waldorf data to matrix  

waldorf <- read.csv("Waldorf_oct-18.csv") 

waldorf_waypoints <- cbind(waldorf$X, waldorf$Y) 

waldorf_waypoints <- as.matrix(waldorf_waypoints) 

length(waldorf_waypoints[,1]) 

#determine epsilon by plotting k nearest neighbor then looking for the knee in the curve- I used 6 neighbors (really 

just changes y axis scale) 

kNNdistplot(waldorf_waypoints, 6) 

#knee at ~10 

 

#run dbscan 

waldorf_dbscan <- dbscan(waldorf_waypoints, eps = 10, borderPoints = TRUE) 

 

#do same steps for waldorf digital (drone imagery) 

waldorf_digital <- read.csv("Waldorf_qgis_burrows.csv") 

waldorf_dig_waypoints <- cbind(waldorf_digital$X, waldorf_digital$Y) 

waldorf_dig_waypoints <- as.matrix(waldorf_dig_waypoints) 

length(waldorf_dig_waypoints[,1]) 

kNNdistplot(waldorf_dig_waypoints,1) 

waldorf_dig_dbscan <- dbscan(waldorf_dig_waypoints, eps=10, borderPoints = TRUE) 

 

quartz() 

#visualize waldorf dbscan clusters 

fviz_cluster(waldorf_dbscan, as.data.frame(waldorf_waypoints), geom = "point", main = "Waldorf GPS") 
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quartz() 

#visualize waldorf digital clusters 

fviz_cluster(waldorf_dig_dbscan, as.data.frame(waldorf_dig_waypoints), geom = "point", main = "Waldorf Drone") 

 

#k means with number of points from dbscan 

waldorf_kmeans <- kmeans(waldorf_waypoints, 25) 

quartz() 

fviz_cluster(waldorf_kmeans, as.data.frame(waldorf_waypoints), geom="point", main="Waldorf GPS Kmeans") 

#SHORT##################################################################################### 

short <- read.csv("Short_7_24_18_burrows (1).csv") 

short_waypoints <- cbind(short$X, short$Y) 

short_waypoints <- as.matrix(short_waypoints) 

length(short_waypoints) 

#find epsilon 

quartz() 

kNNdistplot(short_waypoints,6) 

#epsilon=10 

#run dbscan 

short_dbscan <- dbscan(short_waypoints, eps=10, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(short_dbscan, as.data.frame(short_waypoints), geom="point", main="Short GPS") 

 

#short drone image points 

short_drone <- read.csv("short_drone_qgis.csv") 

short_drone_waypoints <- cbind(short_drone$X, short_drone$Y) 

short_drone_waypoints <- as.matrix(short_drone_waypoints) 

length(short_drone_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(short_drone_waypoints, 6) 

#epsilon=11 

#run dbscan 

short_drone_dbscan <- dbscan(short_drone_waypoints, eps=11, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(short_drone_dbscan, as.data.frame(short_drone_waypoints), geom="point", main="Short Drone") 

 

#BLM18################################################################################### 

BLM18 <- read.csv("Gunnison_mapping_9-18_BLM18.csv") 

BLM18_waypoints <- cbind(BLM18$X, BLM18$Y) 

BLM18_waypoints <- as.matrix(BLM18_waypoints) 

length(BLM18_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(BLM18_waypoints, 6) 

#epsilon=20 

#run dbscan 

BLM18_dbscan <- dbscan(BLM18_waypoints, eps=20, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(BLM18_dbscan, as.data.frame(BLM18_waypoints), geom="point", main="BLM-18 GPS") 

 

#BLM-18 drone image points (GPS extent) 

BLM18_drone <- read.csv("BLM18_qgis_GPSextent.csv") 

BLM18_drone_waypoints <- cbind(BLM18_drone$X, BLM18_drone$Y) 

BLM18_drone_waypoints <- as.matrix(BLM18_drone_waypoints) 

length(BLM18_drone_waypoints[,1]) 

#find epsilon 
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quartz() 

kNNdistplot(BLM18_drone_waypoints,6) 

#epsilon=20 

#run dbscan 

BLM18_drone_dbscan <- dbscan(BLM18_drone_waypoints, eps=20, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(BLM18_drone_dbscan, as.data.frame(BLM18_drone_waypoints), geom="point", main="BLM-18 

Drone") 

 

#BLM-18 drone full extent  

BLM18_drone_full <- read.csv("BLM18_qgis_fullextent.csv") 

BLM18_drone_full_waypoints <- cbind(BLM18_drone_full$X,BLM18_drone_full$Y) 

BLM18_drone_full_waypoints <- as.matrix(BLM18_drone_full_waypoints) 

length(BLM18_drone_full_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(BLM18_drone_full_waypoints,6) 

#epsilon=28 

#run dbscan 

BLM18_drone_full_dbscan <- dbscan(BLM18_drone_full_waypoints, eps=28, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(BLM18_drone_full_dbscan, as.data.frame(BLM18_drone_full_waypoints), geom="point", 

main="BLM-18 Drone Full Extent") 

 

#KM###################################################################################### 

KM <- read.csv("Gunnison_mapping_9-18_KM.csv") 

KM_waypoints <- cbind(KM$X, KM$Y) 

KM_waypoints <- as.matrix(KM_waypoints) 

length(KM_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(KM_waypoints,6) 

#epsilon=15 

#run dbscan 

KM_dbscan <- dbscan(KM_waypoints, eps=15, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(KM_dbscan, as.data.frame(KM_waypoints), geom="point", main="KM GPS") 

 

#KM drone image points 

KM_drone <- read.csv("KM_burrows_qgis.csv") 

KM_drone_waypoints <- cbind(KM_drone$X, KM_drone$Y) 

KM_drone_waypoints <- as.matrix(KM_drone_waypoints) 

length(KM_drone_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(KM_drone_waypoints, 6) 

#epsilon=18 

KM_drone_dbscan <- dbscan(KM_drone_waypoints, eps=18, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(KM_drone_dbscan, as.data.frame(KM_drone_waypoints), geom="point", main="KM Drone") 

 

#MR##################################################################################### 

MR <- read.csv("Gunnison_mapping_9-18_MR.csv") 

MR_waypoints <- cbind(MR$X, MR$Y) 

MR_waypoints <- as.matrix(MR_waypoints) 

length(MR_waypoints[,1]) 
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#find epsilon 

quartz() 

kNNdistplot(MR_waypoints,6) 

#epsilon=15 

#run dbscan  

MR_dbscan <- dbscan(MR_waypoints, eps=15, borderPoints = TRUE) 

#visualize clusters 

fviz_cluster(MR_dbscan, as.data.frame(MR_waypoints), geom="point", main="MR GPS") 

 

#Superior################################################################################# 

superior <- read.csv("Superior_utms.csv") 

superior_waypoints <- cbind(superior$X, superior$Y) 

superior_waypoints <- as.matrix(superior_waypoints) 

length(superior_waypoints[,1]) 

#find epsilon 

quartz() 

kNNdistplot(superior_waypoints,6) 

#epsilon=22 

#run dbscan 

superior_dbscan <- dbscan(superior_waypoints, eps=22, borderPoints = TRUE) 

#visualize clusters  

fviz_cluster(superior_dbscan, as.data.frame(superior_waypoints), geom="point", main="Superior GPS") 

 

######################################################## 

 

##########COEFFICIENT OF DISPERSION########## 

 

#MR################################################################# 

MR_cd <- read.csv("Gunnison_mapping_9-18_MR.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(MR_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 

 

#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- MR_cd$X[r_hole] 

    temp_y <- MR_cd$Y[r_hole] 
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    #remove the randomly selected hole 

    x <- MR_cd$X[-r_hole] 

    y <- MR_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 

 

#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-0.25, 1, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="MR") 

abline(v=0, lwd=3, lty=3) 

text(0.4, 220, "Clumped", cex = 0.7) 

text(-0.15, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 

plot(NA, NA, xlim=c(-0.2, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="MR", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

######################################################## 

 

#Superior############################################### 

superior_cd <- read.csv("Superior_utms.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(superior_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 
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#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- superior_cd$X[r_hole] 

    temp_y <- superior_cd$Y[r_hole] 

     

    #remove the randomly selected hole 

    x <- superior_cd$X[-r_hole] 

    y <- superior_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 

 

#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-0.25, 1, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="Superior") 

abline(v=0, lwd=3, lty=3) 

text(0.4, 220, "Clumped", cex = 0.7) 

text(-0.15, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 
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plot(NA, NA, xlim=c(-0.2, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="Superior", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

################################################################ 

 

#KM############################################################# 

KM_cd <- read.csv("KM_burrows_qgis.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(KM_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 

 

#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- KM_cd$X[r_hole] 

    temp_y <- KM_cd$Y[r_hole] 

     

    #remove the randomly selected hole 

    x <- KM_cd$X[-r_hole] 

    y <- KM_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 
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#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-0.25, 1, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="KM") 

abline(v=0, lwd=3, lty=3) 

text(0.4, 220, "Clumped", cex = 0.7) 

text(-0.15, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 

plot(NA, NA, xlim=c(-0.2, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="KM", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

####################################################################### 

 

#BLM18################################################################# 

BLM18_cd <- read.csv("BLM18_qgis_fullextent.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(BLM18_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 

 

#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- BLM18_cd$X[r_hole] 

    temp_y <- BLM18_cd$Y[r_hole] 

     

    #remove the randomly selected hole 
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    x <- BLM18_cd$X[-r_hole] 

    y <- BLM18_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 

 

#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-0.25, 1.5, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="BLM-18") 

abline(v=0, lwd=3, lty=3) 

text(0.6, 220, "Clumped", cex = 0.7) 

text(-0.15, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 

plot(NA, NA, xlim=c(-0.2, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="BLM-18", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

############################################################## 

 

#SHORT###################################################### 

#get the data 

#pdog <- read.csv("5-30_waypoints.csv") 

short_cd <- read.csv("short_drone_qgis.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(short_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 
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#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- short_cd$X[r_hole] 

    temp_y <- short_cd$Y[r_hole] 

     

    #remove the randomly selected hole 

    x <- short_cd$X[-r_hole] 

    y <- short_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 

 

#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-1, 1, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="Short") 

abline(v=0, lwd=3, lty=3) 

text(0.4, 220, "Clumped", cex = 0.7) 

text(-0.5, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 
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plot(NA, NA, xlim=c(-0.4, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="Short", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

##################################################################### 

 

#Waldorf###################################################### 

waldorf_cd <- read.csv("Waldorf_qgis_burrows.csv") 

 

#estimate whether distribution of holes is clustered, random, or hyper-dispersed 

 

#get the number of holes 

n_holes <- length(waldorf_cd$X) 

 

#choose the number of holes to randomly sample for measuring the distance to the nearest hole 

n_samples <- 40 

 

#make a vector to store a lot of cd values...we will estimate the mean cd from 1000 replicate samples of 40 

randomly selected holes 

cd <- rep(NA, 1000) 

 

#run the simulation to generate cd values 

for (k in 1:1000){ 

   

  #make a vector to store minimum distances 

  min_dist <- rep(NA, n_samples) 

   

  for (j in 1:n_samples){ 

     

    #choose a random hole 

    r_hole <- sample(seq(1,n_holes),1) 

     

    #get the coordinates of random hole 

    temp_x <- waldorf_cd$X[r_hole] 

    temp_y <- waldorf_cd$Y[r_hole] 

     

    #remove the randomly selected hole 

    x <- waldorf_cd$X[-r_hole] 

    y <- waldorf_cd$Y[-r_hole] 

     

    #calculate the distance to all other holes 

    distances <- rep(NA, n_holes) 

     

    for (i in 1:n_holes){ 

      distances[i] <- sqrt((temp_x - x[i])^2 + (temp_y - y[i])^2) 

    } 

     

    #select the minimum distance 

    min_dist[j] <- min(distances, na.rm=T) 

  } 

   

  #calculate coefficient of dispersion for each of the 1000 replicates 

  cd[k] <- var(min_dist)/mean(min_dist) 

} 
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#calculate the statistic 

mean_cd <- mean(log10(cd)) 

 

#calculate the standard error for mean_cd 

con_limit_lower <- quantile(log10(cd),0.025) 

con_limit_upper <- quantile(log10(cd),0.975) 

 

#calculate the p value 

p <- sum(log10(cd) <= 0)/1000 

 

#make a histogram of the data 

freq_cd <- hist(log10(cd),  breaks=seq(-0.25, 1, 0.05),col="light blue", las =1, ylim=c(0,250), xlab="Coefficient of 

dispersion", main="Waldorf") 

abline(v=0, lwd=3, lty=3) 

text(0.4, 220, "Clumped", cex = 0.7) 

text(-0.15, 220, "Hyper \n dispersed", cex = 0.7) 

 

#draw an effect size graph 

plot(NA, NA, xlim=c(-0.2, 1), ylim=c(0,1), xlab="Coefficient of dispersion", yaxt="n", ylab=NA, main="Waldorf", 

pch=19) 

segments(con_limit_lower, 0.5, con_limit_upper, 0.5) 

abline(v=0, lty=3, lwd=2) 

points(mean_cd, 0.5) 

########################################################## 

 

##########NETWORK ANALYSIS########## 

 

install.packages("igraph") 

#load igraph library 

library(igraph) 

 

#MR 

#import edgelist data 

MR_edges <- read.csv("MR_triangulation.csv") 

 

#make a matrix from the data 

MR_matrix <- as.matrix(MR_edges) # coerces the data set as a matrix 

 

#make data character data 

MR_matrix[,1] <- as.character(MR_matrix[,1]) 

MR_matrix[,2] <- as.character(MR_matrix[,2]) 

 

#make an edgelist 

m <- graph.edgelist(MR_matrix,directed=F) # turns the edgelist into a 'graph object' 

 

#newman's algorithm for point sizes 

community.newman <- function(m) { 

  deg <- degree(m) 

  ec <- ecount(m) 

  B <- get.adjacency(m) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

bem <- community.newman(m) 
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scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(m)$size <- scale(abs(bem), 5, 15) 

 

quartz() 

#plot the graph 

#vertex.size changes the size if each node 

plot(m, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(m)$size, vertex.color = "paleturquoise1", edge.color="gray") 

 

#Superior 

#import edgelist data 

superior_edges <- read.csv("superior_triangulation.csv") 

 

#make a matrix from the data 

superior_matrix <- as.matrix(superior_edges) # coerces the data set as a matrix 

 

#make data character data 

superior_matrix[,1] <- as.character(superior_matrix[,1]) 

superior_matrix[,2] <- as.character(superior_matrix[,2]) 

 

#make an edgelist 

d <- graph.edgelist(superior_matrix,directed=F) # turns the edgelist into a 'graph object' 

 

#newman's algorithm for point sizes 

community.newman <- function(d) { 

  deg <- degree(d) 

  ec <- ecount(d) 

  B <- get.adjacency(d) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

nem <- community.newman(d) 

 

scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(d)$size <- scale(abs(nem), 5, 15) 

 

quartz() 

#plot the graph 

#vertex.size changes the size if each node 

plot(d, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(d)$size, vertex.color = "lavender", edge.color="gray") 

 

#KM 

#import edgelist data 

KM_edges <- read.csv("KM_triangulation.csv") 

 

#make a matrix from the data 



 61 

KM_matrix <- as.matrix(KM_edges) # coerces the data set as a matrix 

 

#make data character data 

KM_matrix[,1] <- as.character(KM_matrix[,1]) 

KM_matrix[,2] <- as.character(KM_matrix[,2]) 

 

#make an edgelist 

k <- graph.edgelist(KM_matrix,directed=F) # turns the edgelist into a 'graph object' 

 

#newman's algorithm for point sizes 

community.newman <- function(k) { 

  deg <- degree(k) 

  ec <- ecount(k) 

  B <- get.adjacency(k) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

dem <- community.newman(k) 

 

scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(k)$size <- scale(abs(dem), 5, 15) 

 

quartz() 

#plot the graph 

#vertex.size changes the size if each node 

plot(k, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(k)$size, vertex.color = "plum1", edge.color="gray") 

 

#BLM-18 

#import edgelist data 

BLM18_edges <- read.csv("BLM18_triangulation.csv") 

 

#make a matrix from the data 

BLM18_matrix <- as.matrix(BLM18_edges) # coerces the data set as a matrix 

 

#make data character data 

BLM18_matrix[,1] <- as.character(BLM18_matrix[,1]) 

BLM18_matrix[,2] <- as.character(BLM18_matrix[,2]) 

 

#make an edgelist 

b <- graph.edgelist(BLM18_matrix,directed=F) # turns the edgelist into a 'graph object' 

 

#newman's algorithm for point sizes 

community.newman <- function(b) { 

  deg <- degree(b) 

  ec <- ecount(b) 

  B <- get.adjacency(b) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 
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#store newman's community algorith 

fem <- community.newman(b) 

 

scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(b)$size <- scale(abs(fem), 5, 15) 

 

quartz() 

#plot the graph 

#vertex.size changes the size if each node 

plot(b, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(b)$size, vertex.color = "tan1", edge.color="gray") 

 

#Short 

el <- read.csv("Short_edge_list - Sheet1.csv") 

 

#make a matrix from the data 

meep <- as.matrix(el) # coerces the data set as a matrix 

 

#make data character data 

meep[,1] <- as.character(meep[,1]) 

meep[,2] <- as.character(meep[,2]) 

 

#make an edgelist 

g <- graph.edgelist(meep,directed=F) # turns the edgelist into a 'graph object' 

 

#trying to run a function that should identify communities in the network 

community.newman <- function(g) { 

  deg <- degree(g) 

  ec <- ecount(g) 

  B <- get.adjacency(g) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

mem <- community.newman(g) 

 

#color code communities... only two communities in the example so I don't know how it would work for this 

without knowing how many communities to look for 

V(g)$color <- ifelse(mem < 0, "grey", "green") 

 

scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(g)$size <- scale(abs(mem), 5, 15) 

E(g)$color <- "grey" 

E(g)[ V(g)[color=="grey"] %--% V(g)[color=="green"] ]$color <- "red" 

plot(g, layout=layout.kamada.kawai, vertex.color="a:color", 

     vertex.size="a:size") 

 

quartz() 

#plot the graph 
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#vertex.size changes the size if each node 

plot(g, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(g)$size, vertex.color = "darkseagreen2") 

 

#Short random and small world networks  

 

#small world graph 

quartz() 

small_world <- sample_smallworld(1,222,5, .05) 

plot(small_world, vertex.label.cex=0.25, edge.arrow.size=0.1, vertex.size=5, edge.color="black", 

vertex.color="yellow") 

 

#plot histograms of degree for small world and short 

quartz() 

par(mfrow=c(2,1)) 

hist(deg_short, breaks=seq(0,30)) 

 

#calculate variance of random network 1000 times 

sd_degree_small <- rep(NA, 1000) 

 

for (i in 1:1000) { 

  mean_small <- sample_smallworld(1,222, 5,0.05) 

  deg_small <- degree(mean_small) 

  sd_degree_small[i] <- sd(deg_small) 

} 

 

sd_observed <- sd(deg_short) 

hist(sd_degree_small, breaks = seq(0,30)) 

abline(v=sd_observed) 

 

#run Newman's algorithm for both random networks 

community.newman <- function(small_world) { 

  deg <- degree(small_world) 

  ec <- ecount(small_world) 

  B <- get.adjacency(small_world) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

sem <- community.newman(small_world) 

 

community.newman <- function(rand_prob) { 

  deg <- degree(rand_prob) 

  ec <- ecount(rand_prob) 

  B <- get.adjacency(rand_prob) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

rem <- community.newman(rand_prob) 

#color code communities... only two communities in the example so I don't know how it would work for this 

without knowing how many communities to look for 

V(g)$color <- ifelse(mem < 0, "grey", "green") 
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scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality... I think? 

V(g)$size <- scale(abs(mem), 5, 15) 

V(small_world)$size <- scale(abs(sem), 5, 15) 

V(rand_prob)$size <- scale(abs(rem),5,15) 

#plot observed network, random network, and small world network on same page 

quartz() 

par(mar=c(0,0.2,0.2,0),mfrow=c(1,3)) 

#observed 

plot(g, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(g)$size, vertex.color = "darkseagreen2", edge.color="grey") 

title("Observed Network", line=-5) 

#random 

plot(rand_prob, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size=V(rand_prob)$size, edge.color="grey", 

vertex.color="light blue") 

title("Random Network", line=-5) 

#small world 

plot(small_world, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size=V(small_world)$size, 

edge.color="grey", vertex.color="yellow") 

title("Small World Network", line=-5, cex=2) 

 

#Waldorf 

#import edgelist data 

waldorf_edges <- read.csv("waldorf_triangulation.csv") 

 

#make a matrix from the data 

waldorf_matrix <- as.matrix(waldorf_edges) # coerces the data set as a matrix 

 

#make data character data 

waldorf_matrix[,1] <- as.character(waldorf_matrix[,1]) 

waldorf_matrix[,2] <- as.character(waldorf_matrix[,2]) 

 

#make an edgelist 

f <- graph.edgelist(waldorf_matrix,directed=F) # turns the edgelist into a 'graph object' 

 

#newman's algorithm for point sizes 

community.newman <- function(f) { 

  deg <- degree(f) 

  ec <- ecount(f) 

  B <- get.adjacency(f) - outer(deg, deg, function(x,y) x*y/2/ec) 

  diag(B) <- 0 

  eigen(B)$vectors[,1] 

} 

 

#store newman's community algorith 

vem <- community.newman(f) 

 

scale <- function(v, a, b) { 

  v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a 

} 

#scales size of vertices based on degree of centrality 

V(f)$size <- scale(abs(vem), 5, 15) 

 

quartz() 
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#plot the graph 

#vertex.size changes the size if each node 

plot(f, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(f)$size, vertex.color = "coral1", edge.color="gray") 

 

############################################################# 

 

##########COMMUNITIES########## 

 

cluster_MR <- cluster_leading_eigen(m) 

quartz() 

plot(m, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(m)$size, vertex.color = cluster_MR$membership, edge.color="gray") 

 

cluster_superior <- cluster_leading_eigen(d) 

quartz() 

plot(d, vertex.label.cex=0.5, edge.arrow.size=0.1, vertex.size = 

       V(d)$size, vertex.color = cluster_superior$membership, edge.color="gray") 

 

cluster_KM <- cluster_leading_eigen(k) 

quartz() 

plot(k, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(k)$size, vertex.color = cluster_KM$membership, edge.color="gray", main="KM Communities Using 

cluster_leading_eigen()") 

cluster_BLM18 <- cluster_leading_eigen(b) 

quartz() 

plot(b, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(b)$size, vertex.color = cluster_BLM18$membership, edge.color="gray") 

cluster_short <- cluster_leading_eigen(g) 

quartz() 

plot(g, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(g)$size, vertex.color = cluster_short$membership, edge.color="gray") 

cluster_waldorf <- cluster_leading_eigen(f) 

quartz() 

plot(f, vertex.label.cex=0.001, edge.arrow.size=0.1, vertex.size = 

       V(f)$size, vertex.color = cluster_waldorf$membership, edge.color="gray", main="Manual Burrow ID") 


