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Abstract

This report shows a new NP-hardness result: Let f be a continuous piecewise-
quadratic function with continuous partial first derivatives, such that all partial first
derivatives are zero at the origin. The problem of determining whether the origin is a local
minimum for fis NP-hard. The report also proposes an electronic analog machine to solve
this NP-hard problem, and suggests some experiments to determine the efficiency of the
machine.

Some update notes from June 1997 appear on page 23. Please send email if you
would like a fuller report later in 1997.

- Analog machines which solve NP-hard problems have been proposed but, as far as
I know, an actual machine has never been built. In the example that I am most familiar
with [1], the proposed machine is intriguing: The authors start with any instance of 3-
satisfyability, and from the specification of the instance they describe how to build a
contraption of gears and other mechanical parts. One of the gears in the machine has a
crank handle attached to it. The analysis in [1] shows that the handle can be turned iff the
given instance of 3-sat is satisfiable.

So, in order to solve an instance Q of 3-satisfyability, one follows these steps:

1. Start with ;
an instance 2. Apply the “machine-

O of 3-sat. building” instructions .
to Q, resulting in a 3. The machine for Q
“machine for Q.” has a crank. If the crank

can turn, then Q is satis-
fiable; otherwise Q is
not satisfiable.
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The instructions for building the “machine for 0 make it clear that the resulting machine
has only a polynomial number of parts, and a polynomial number of connections between
the parts. (1.e., The number of parts and connections in the machine is bounded by a poly-
nomial function f{n), where n is the number of clauses in the instance Q.) However a num-
ber of other questions are left unanswered: Is it really tractable to build and operate such a
machine for interesting instances? Or will practical considerations foil the plan, such as
an.unattainable accuracy in assembling the parts, or an exponential force required to
actually turn the handle? What occurs in a digital simulation of the analog machine?

This report is a first step toward answering these questions — not directly for the
mechanical crank machine, but for an electronic version of the crank machine which can
be built from off-the-shelf components. The outline of the paper is as follows:

Section 1 provides some standard background material on how electronic analog
machines solve dynamical systems.

Section 2 shows how to build a dynamical system corresponding to any instance of
a particular NP-hard problem. A proposal is made for an electronic analog machine which
solves this dynamical system, and in the process answers the instance of the corresponding
NP-hard problem— although the proof that the instance has been correctly answered
requires us to accept the Downhill Principle from [1]. The machine’s size is polynomial (in
the size of the instance of the NP-hard problem), but it is uncertain whether its running
time (or other resources) will be polynomial, and it is also uncertain whether the Downhill
Principle is valid in practice. '

Sections 3 discuss a programmable version of the machine from Section 2. The
programmable version can be digitally programmed (by setting relays) to solve any
instance of a variation of 3-sat, up to some fixed size .

1. Dynamical Systems and Analog Machines

Consider a surface in n-dimensional real space, defined by a continuous

differentiable function f:R" — R . The value of the function fat a point X € R, gives the

“height” of the surface at point X. If we place a ball on the surface with a known initial
position and velocity, and apply a constant downward force, then the ball will roll. When
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the ball is at a location X, the instantaneous acceleration in n-dimensional space is given
by the vector:

F
-VIi(x)

The function Vf is the gradient of the surface defined by f: the mass of the ball is m; and
the magnitude of the downward force is F. Normally we will choose F/m to be one so that
the acceleration at a point X is simply —Vf(X) . In terms of derivatives of f, the magnitude
of the acceleration in a fixed direction x is —9f/dx .

The function f, together with the initial position and velocity of the baH, 1s an
example of a dynamical system. For these dynamical systems, we use the notation x; (1)
to denote the position of the ball at time talong'the i™ axis (i e {1, ..., n}). Similarly,
X; (1) is the speed, and ¥; () is the acceleration (at time ¢ along the i axis). Following

the usual convention, we will omit the argument () when there is no possibility of
confusion. In general, we would like to be able to “solve the system’f — In other words,

determine the values of x,, X; and %; for each i and at any time .

Often, the system can be solved analytically by solving the system of n

simultaneous partial differential equations (using X for the vector (CTRN x,)):
X = —g—a (%)
L xi
ie {1,...,n}
%; (0) = initial velocity in directioni

I

x; (0) initial position along direction i

Lacking an analytical solution, we can sometimes build an analog machine to
solve the system of pde’s. In effect, the analog machine simulates the dynamical system of
a ball rolling on an n-dimensional surface, under the influence of a constant downward
force. This machine is not new, but is standard in textbooks such as [4]. Among other
things, the analog machine has three wires for each of the n dimensions. As the machine
runs, the voltages on the 3n wires represent the ball’s position, velocity and acceleration
for each of the n dimensions. All the values are maintained in real time, starting at some
initial time =0.

The particular construction we have in mind works for any n-dimensional surface

where the height of the surface is given by a function £ R" — R such that all the partial
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Box to compute
the values of

for each i

n feedback lines

Figure 1. Machine to track position of a ball rolling on the surface defined by f

first derivatives of f exist and are computable by an electronic analog device. Figure 1
shows the design of the machine, using notation from [4].

O

-Each of the symbols {j> is an electronic integrator. The initial output (on the

right side of the symbol) is —1 volts times the initialization value (which appears inside the
circle). After initialization, the output is maintained as —1 times the integral (over time) of

the input (with the constant of integration determined by the initialization constant).

Our plan is to start this machine at some time =0. As the machine runs, the

voltages on the x; , —x; and ; lines keep track of the position, negative velocity and

acceleration of the simulated ball rolling on the surface defined by f (with a specified
initial position and velocity). The machine works correctly because the integral of the
acceleration is the velocity, and the integral of the velocity is the position.

Example 1.

As a simple example, consider the function f:R — R defined by

f(x) = x— (x2/2) . This defines a one-dimensional surface drawn in Figure 2. A ball on
the surface with a horizontal coordinate of x and a downward force applied will undergo a

F
horizontal acceleration of —f (x) o where f (x) = 1 —x is the first derivative of the
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f(x) =x-—§ -2

2

Figure 2. The one-dimensional surface defined by f(x) = x - (xz/ 2)

surface, F is the magnitude of the downward force, and m is the mass of the ball.

Therefore, a ball placed at the origin undergoes an initial acceleration of —F/m, and begins
moving left on the surface.

To make this example concrete, suppose that F/m is unity, so that the initial
acceleration is —1. The initial position is 0, as is the initial velocity, giving the following

differential equation with initial values:
() = x() -1
x(0) =0, x(0) =0

In these equations, x (#) is the position of the ball along the x-axis at time #, whereas x ()

and X (¢) are the horizontal speed and acceleration at time . This differential equation can
be solved analytically, with the solution:

I’
x(n) =-S5+l
el et
X (1) =-—§+—2—
‘ el et
x(1) =—*2“——2—=x(t)—l

These equations gives the horizontal position, velocity and acceleration of the ball as a
function of time.
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The machine to simulate the movement of the ball on this surface is shown in
Figure 3. The two triangles on the right side of the diagram are analog adders which have
an output of —1 times the sum of all inputs. The open circle labeled —1 is a fixed input of
minus 1 units (e.g., —1 volts if we are using volts as our unit of measurement). The
feedback line on the right is maintained at —f (x) = x— 1. To run the machine, the
voltages on the outputs of the two integrators is dfopped to zero at time 7=0. As the
machine runs, the x coordinate of the simulated ball is obtained from the voltage on the
line marked x. In this example, when the machine starts, the feedback line will quickly

drop to -1, which pulls down the % line. In turn, this starts to pull up the — line, which
pulls down the x line.

The actual hardware to build this analog machine is shown in Figure 4, using
designs from pages 103 and 106 of [4]. Each analog integrator is built from an operational
amplifier, a resistor and a capacitor, plus circuitry designed to clamp the output voltage to
zero at initialization. The adders are constructed from resistors and an op amp. A digital
simulation indicates that after 4 seconds, the voltage on line x will be around -26 volts,
although in practice the circuit will saturate before then, leveling off at some negative

value determined by the voltage supplied to the op amps. The value of x at /=4 in the
4 -4

analytical solution is (— % - % + 1) =26.3.

—x x e . T =]

Figure 3. Analog machine to simulate movement of a ball on f(x) = x- (x2/2)
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R, | R,

-1 volts T

* The relays K; (energized) and K, (de-energized) are set in the

“run mode”. Change relays to other positions for the “initialize
mode”.

* I used National Semiconductor LM741 op amps.

« The capacitances are all 10 farads, and the resistances are 10
ohms.

Figure 4. Implementation of the Analog machine from Figure 3
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Example 2: An Unstable Equilibrium

As a second example, consider the one-dimensional surface defined by the

equation f(x) = X772 , shown in Figure 5. As before, place a ball on the surface at a

location x and apply a downward force. The acceleration along the x-axis will be
F ,
' —";‘Tf (x) (where F is the downward force and m is the mass of the ball). Once

again, take F/m to be unity, so that the equations describing the motion of the ball are:

() = ~f(x) = x(1)

x(0) = initial position, % (0) = initial velocity

If the initial position and Velocity are both zero, then the analytical solution shows
that the position, velocity and acceleration stay precisely at zero for all £. This indicates
that the origin of the surface is an equilibrium point — in other words, the gradient (or first
derivative) is zero, and in a perfect world the ball stays put.

On the other hand, consider the analytical machine to solve this dynamical
system, and provide initial values of zero. The machine is the same as that shown in
Figures 3 and 4, but with the input of —1 volts changed to zero. The actual system will not
“stay put”, because noise in the system will be enough to kick it off the equilibrium point
in a “downhill” direction. We don’t know whether the noise will send the system left or

fx) = ) 0
0

2

Figure 5. The one-dimensional surface defined by f(x) = —xz/ 2
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right, but there will be acceleration. This is because the equilibrium point is unstable. A
small perturbation results in acceleration away from the equilibrium point.

For example, suppose that the actual initial x value is some small positive value
x(0)=¢. Then, according to the analytical solution, we will have the following position,
velocity and acceleration, as a function of time:

! t 8_[

€ g€ _ ' €
x(1) = %() = 5¢ +5e (1) = 5¢'—3e

2

So, even a small amount of noise results in a position which moves exponentially
far from the origin as a function of time. This is good news, because if we build the
system, then we can quickly tell that the point is unstable. It’s important to study what kind
of unstable equilibria have this kind of “quick™ unstable behavior in the presence of a
small amount of noise.

A principle related to this question is the “Downhill Principle” in Section 5 of the
paper by Vergis, et. al. [1]. In effect, the principle states that if there is a downhill direction
leading away from an equilibrium point, then an analog machine will eventually fall down
such a downhill path. But there is no explicit analysis of the amount of time or energy
required to “eventually” fall downhill.

Example 3: A Stable Equilibrium

In contrast to the last example, the surface defined by f(x) = x*/2 has a stable
equilibrium at the origin, as shown in Figure 6. In the absence of any systematic
disturbance, a ball placed near the origin will stay near the origin. For example, the
analytical solution shows that a small positive initial position of x(0)=¢ results in a
periodic back and forth motion near the origin:

x(t) = ecost X (1) = —esint X(t) = —ecost
The analog machine that solves this system is the same as that in Figures 3 and 4, but with
the inverter omitted and the —1 input voltage changed to zero.

Of course, if there is a large amount of noise, or even small systematic
disturbances, then the position might stray from the origin. This question of “too much
noise” will be further examined in a moment.
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fx) = X272 s

2
Figure 6. The one-dimensional surface defined by f(x) = /2

Equilibria in Higher Dimensions

Thus far, the example dynamical systems have been one-dimensional functions
defined by a function /2% — 9t . But the same ideas apply to a higher dimensional surface

defined by a function f::R"* — R . Under “appropriate circumstances,” an analog machine
to solve a dynamical system with an equilibrium point should (1) Stay near a stable
equilibrium point, and (2) Fall away from an unstable equilibrium point. An intuitive
understanding of “appropriate circumstances” is that there is not enough noise to kick the
machine away from a stable equilibrium, but there is sufficient noise to rapidly find a
downhill gradient leading away from an unstable equilibrium.

The next section shows how to build electronic machines which solve instances of
an NP-complete problem by determining whether an equilibrium point for a particular
function is stable. The section also discusses the practicality of such a machine — that is,
whether the “appropriate circumstances” are present to permit the machine to tell the
difference between a stable and unstable equilibrium.
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2. Analog Machines for an NP-Complete Problem

Consider the NP-complete problem Exact 1-in-3-Sat, defined here:

Let V be a set of Boolean variables. A 3-clause is any set of three of these
Boolean variables. An assignment for Vis a function A:V — {true, false} .
For an assignment A and a variable u, we say that u is a true variable if A(u)
= true; otherwise u is a false variable.

Exact 1-in-3-Sat: Given a finite set C of 3-clauses, does there exist an

assignment such that each of the 3-clauses contains exactly one true vari-
able?

This problem was shown to be NP-complete in [3]. Appendix A of this report
shows how to take an instance P of Exact 1-in-3-Sat and construct a function fP:ER” - R,

where the dimension 7 is one more than the number of variables in P. The function fp has

an equilibrium point at the origin. Moreover:

P is satisfyable < the equilibrium point is unstable

The function fp is a continuous piecewise-quadratic function, with continuous
partial first derivatives. Since fp is piecewise-quadratic, each partial first derivative af/ dx

is a piecewise linear function:

o

P n . . . .
= ‘R —> R is piecewise linear

This means that the analog machine in Figure 1 can be easily built for the function
fp - The “‘ease” comes from the fact that the “black box” labeled “Box to compute the

d . . - .
values of “Wf (x) for each i” will be computing piecewise linear functions, and such

1
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functions are easy for an electronic analog machine (easier and more precise than
quadratics or other non-linear functions).

Let’s consider the behavior of this analog machine when it is started at the
equilibrium point (i.e., all positions and velocities are zero). We will call the machine Mp,

since its construction depends on the instance P

If the Instance P is Not Satisfiable

If the instance P is not satisfiable, then the origin is a local minimum for fp , which
1s a stable equilibrium. Therefore, if we start Mp at the equilibrium point, then all values

should stay near the equilibrium. It is possible that sufficient noise would kick the machine
away from the equilibrium point, although the following property indicates that the origin
1s in fact a global minimum:

THEOREM 1: Let P be an unsatisfyable instance of 1-IN-3-SAT, and let fpbethe

polynomial defined in Appendix A. Then for any vector The value of fp is every-

where non-negative.

PROOF: Let X be a vector such that fp (X) <0. Among other things, the proof of

Theorem 1 showed how to construct a valid assignment for P from the vector X.

o

As a consequence of this result, when P is unsatisfyable and we start the analog
machine at the equilibrium point, and watch the values of X (on the appropriate lines), we
can compute fp(X) as the machine runs, and this value will never be negative.

If the Instance P is Satisfiable

If the instance P is satisfiable, then the origin is not a local minimum for fp , and

therefore the origin is an unstable equilibrium. In other words, there are points arbitrarily
close to the origin where fp has negative values (is “downhill”). In fact, an examination fp

shows that there is at least one direction leading away from the origin with a value that
falls off proportional to the square of the distance from the origin:
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THEOREM 2: Let P be a satisfiable instance of 1-IN-3-SAT, and let fp be the
polynomial defined in the proof of Appendix A. Let X be a vector determined from
a valid assignment to P as follows: (1) The w component of X is 1, and (2) for each
variable v; in the instance P, the v; component of X is 2 if v; is true in the valid

assignment, otherwise v; is -2. Then for any scalar s:

2
-

fP(SX) =75

PROOF: Each of the (a)- and (b)-terms of fp (sX) is zero, leaving only the (c)-

term which is ~w?/5 (i.e., —s2/5).
|

The consequence of this result is not entirely clear. Certainly, once the downhill
path is found, the value of fp will drop exponentially fast (as in Example 2 of the previous

section). But how long will it take for noise to kick it onto a downhill path? Each downbhill
path which corresponds to a valid assignment in P is surrounded by a small volume where
the negative gradient is quadratically steep (as in Theorem 2). But the size of this volume
(as a proportion of the total volume) is exponentially small, indicating that it may take
exponential time (or other resources) before such a downhill path is found.

Some experiments (or better theory) are needed. The plans for building a machine
to carry out such experiments are given in Appendix B. Also, some preliminary results
from digital simulations of the machine appear in Appendix C.

3. Programmable Analog Machines

Until now, we have followed the pattern introduced on page 1: Start with an
instance P of an NP-complete problem. Build an analog machine based on the specific
instance P. Then run the machine to solve P

A more general approach is worthwhile. In particular, we should be able to design
a programmable analog machine which can solve any instance of a given NP-complete
problem, up to some fixed size m. The machine will be programmable in the sense that it
has relays or other switching devices which are set according to the parameters of a
particular instance. A project: Design and build such a machine for Exact 1-IN-3-SAT,
along with an interface to your favorite PC. The PC can use the interface to prbgmm the
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machine for any instance of Exact 1-IN-3-SAT up to some fixed size, and read the resulting
answer to the programmed instance. '

Appendix A: NP-hardness Proof

Vergis, et. al. [1] discuss the following problem, which they call LOC (“Local
Optimality Checking”): Given a function f:R" — R , a set of feasibility constraints which

define a subset S ¢ SR", and an n-dimensional real vector X € S — is X a local maximal
optimum for f, within the constraints imposed by S$? In order for X to be a local maximal
optimum, there must be a ball centered at X with some positive radius, such that for every
point Y in the ball which is also in S, it follows that f(y) <f(X) . Theorem 2 in [1] shows
that LOC is NP-hard even if the function f'is linear and the constraints S are either
piecewise linear or quadratic inequalities.

In this appendix, I'll use a more convenient variation of the LOC problem (more
convenient for my applications anyway). In the variation, the question asked is whether
the origin is minimal (rather than whether an arbitrary point is maximal as in LOC). Let’s
call this problem “Local Minimum at Origin” (LoMO), formally defined here:

LoMO: Given a function f:R” — R and a set of feasibility constraints

which define a subset S ¢ R" (such that the origin is in S, and (0)=0),
is the origin a local minimal optimum for f with constraints S?

The phrase “the origin a local minimal optimum for f with constraints S means that there
is a ball B centered at the origin with some positive radius, such that the value of fis non-
negative everywhere in S N B.

Both LOC and LoMO simplified versions of the widely studied OPTIMIZATION
problem, stated here:

OPTIMIZATION: Given a function f:R" — R and a set of feasibility

constraints which define a subset S ;9?” , determine a point X € S
such that forevery y € S, f(X) <f(y) (or determine that S is empty).
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Both LoMO and OPTIMIZATION are NP-hard for a number of combinations of

simple functions and constraints, as shown in this table:

of which must be satisfied.

The function f The constraints Comments
Linear A set of quadratic inequalities, | LoMO is shown NP-hard with
all of which must be satisfied. essentially the same proof as
LOC in [1]. This version of
OPTIMIZATION was shown
NP-hard by Sahni [7].
Quadratic A set of linear inequalities, all LoMO is NP-hard. Sahni [7]

also showed that this version of
OPTIMIZATION is NP-hard.
However, if the quadratic func-
tion is convex (so that the
square matrix of coefficients is
positive semi-definite) then a
polynomial algorithms exist
for OPTIMIZATION and prob-
ably for LoMO too [8,9].

Fourth-order polynomial

No constraints

LoMO and OPTIMIZATION
are both NP-hard. See [6].

Continuous piecewise-qua-
dratic function with continuous
partial first derivatives.

No constraints

This'is the version of LoMO
used in this report. The problem
is NP-hard, as shown in this
appendix.

In each case, the coefficients of the function fand the constraints may be bounded.

This is important since it means that LoMO is strongly NP-hard (i.e., all of the numbers

used in specifying an instance of LoMO are bounded by a polynomial in the size of the

instance [2]).

This appendix demonstrates the NP-hardness of LoMO for the case described in

the fourth row of the table. In this case, the function f is a continuous piecewise-quadratic
function with continuous partial first derivatives, and there are no constraints.
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The NP-hardness proof is a transformation from a known variation of 3-

satisfyability. The variation, called “Exact 1-in-3-Sat,” was shown to be NP-complete in

[3], and is defined here:

Let V be a set of Boolean variables. A 3-clause is any set of three of these
Boolean variables. An assignment for Vis a function A:V — {true, false} .

For an assignment A and a variable u, we say that u is a true variable if A(u)
= true; otherwise u is a false variable.

Exact 1-in-3-Sat: Given a finite set C of 3-clauses, does there exist an

assignment such that each of the 3-clauses contains exactly one true vari-
able?

When an instance of Exact 1-in-3-Sat has an assignment with exactly one true

literal in each clause, then the assignment is called valid. We’ll now use Exact 1-in-3-Sat

to prove the following:

Theorem 3: LoMO is NP-hard, even if the function fis a continuous piecewise-

quadratic function with continuous partial first derivatives, and there are no con-
straints.

Proof: Let P be an instance of Exact 1-in-3-Sat, and let Vs Vgy «esv,, be the vari-
ables occurring in P (with m a positive integer). We will define a function

fpiR"— R, where n = m + 1. The function will meet the requirements of the
theorem, and have the following property:

The function fp has a local minimal optimum at the origin
if and only if (1)

The instance P has no valid assignment.

The definition of fis in terms of n real-valued variables. For the first m variables of

n . . .
R, we will just use the names Vs Vo, -V, Which are the same names as the

m’

(boolean) variables in the instance P. The m+1% (real) variable will be named w.
Now we can define fp as the sum of three sorts of terms:

Analog Solution of NP-Hard Problems January 5, 1994



(a) For each variable x € V the function fp has one term W (w, x) , where W is the

continuous piecewise-quadratic function defined by:

2 2
woox
2 4
+
— 2 —
, —x
Ww,x) = if (w—x<0)then (lz‘_)“ else 0
v +
B (w+x)2
if (w+x<0)then 5 else0

Figure 7 clarifies the definition of W(w,x). The name W is used because the shape
of the function’s graph for a fixed positive value of w resembles the letter W, as

shown in Figure 7(b). Notice that W and the partial first derivatives
. dW/dx and 0W/0ow are all continuous.

(b) For each 3-clause {x, y, z} that occurs in P, the function fp has one term:

(x+y+z+2w)2

(c) Finally, the function fp has a single term:

2
w

5

Each of the (b) and (c) terms is a quadratic term. The (a)—tefms are continuous

piecewise-quadratic terms with continuous partial first derivatives. It remains to
show that the claim (¥) is valid.

For the first half of the claim, assume that P has a valid assignment. We must show
that f(0) is not a minimal optimum. For this purpose, we define a vector X € K"
as follows: The value of the n'! component (i.e., w) may be chosen as any positive

value €. For any other component, x , assign 2¢ to this component if the corre-

sponding boolean variable x is true in the valid assignment, otherwise assign —2¢
to this component of the vector X.
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With this definition of X, consider the value of fp (X). Each of the (a)-terms in f (X)
has the form (w—x/2)” (if x = 2w) or has the form (w +x/2) > (if x = —2w). In
either case, the (a)-term is zero. Each of the (b)-terms has the form
(x+y+z+2w) 2, where exactly one of x, y and z correspond to a true variable.
Therefore exactly one of x, y and z is equal to 2w, and the other two are —2w. There-

fore each (b)-term is zero. The only remaining term is the (c)-term —w?/5, which is
negative, therefore fp (X) is negative. By making ¢ sufficiently small, we can make

X as close to 0 as we like (keeping f (X) negative) and therefore fp (0) (which is
Zero) is not a minimum.

For the second half of the proof, assume that fp (0) is not a minimal optimum. We

must show that P has a valid assignment. For this purpose, let X be a nonzero vec-
tor such that f}, (X) <0. Such a vector exists since fp(0) (which is zero) is not
minimal, therefore there are non-zero points where fp is non-positive. We note

these facts:

(1) The w-component of X is positive. For if it is zero, then all the terms of fpX)
are non-negative, and at least one (a)-term (with a non-zero x) is positive, so that
J/p(¥)>0. And if w is negative, then each of the (a)-terms is at least w2, which is

larger than the only possible negative term (the (c)-term), so once again Jp(Xx)>0.

(2) Each component x of X satisfies:

w < |x] <3w

To prove the first inequality, suppose to the contrary that some x has a magnitude
IxI < w, and examine the (a)-term W(w,x). Since w is positive, we lie in the
unshaded portion of Figure 7(a) so that: |

‘w2 2 2 2 2
274 7

W(w,x) =

s
A

_ v
4

Hence, W(w,x) is larger than the magnitude of the only possible negative term (the
(¢)-term) and fp(x) > 0. By this contradiction, w < Ixl.
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To prove the second inequality, suppose to the contrary that some x has a magnitude Ix|
2 3w. We’ll look at the case where x is non-negative (the non-positive case is symmetric).
In this case, examine the (a)-term W(w,x):

Ve = (o525 - (3 -7

Hence, W(w,x) is larger than the magnitude of the only possible negative term (the (c)-
term) and fp(x) > 0.

Now, facts (1) and (2) indicate that none of the components of X are zero, so we may
unambiguously define an assignment for P as follows: if a component x in X is positive

then assign true to the boolean variable x. Otherwise assign false to the boolean variable x.

It remains to show that this assignment is valid, i.e., that each 3-clause of P has exactly
one true literal. We do this in the next two paragraphs.

First note that a clause {x,y,z} must have at least one true variable. Otherwise, if all the

variables are false, then in the (b)-term (x +y +z +2w) 2, each of x, y and z is negative
and moreover (from fact 2) each of x, y and z is smaller than —w. Therefore:

(x+y+z+2w)2> (—w—w—w+2w)2 = w

Hence, this (b)-term is larger than the magnitude of the only possible negative term (the
(c)-term) and fp(X) > 0.

Next, note that a clause {x,y,z} may not have two or three true variables. Otherwise, if two

or three variables are true, then in the (b)-term (x +y +z + 2w) g , two of x, y and z must
be positive, and the third might possibly be negative. Without loss of generality, we may
assume that it is x which might be negative, so that y and z are both positive. Then (by fact
2) we know that x > -3w, and (by fact 2) we know that both y and z are greater than w.
Therefore: | ' ‘

(X+y+2+2w)°> (“3wtw+w+2w)” = w

Hence, this (b)-term is larger than the magnitude of the only possible negative term (the
(¢c)-term) and fp(X) > 0.

Therefore, each 3-clause has exactly one true variable, and the assignment is valid. ([
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Appendix B: Nuts and Bolts for the fp Machines

This appendix provides the details of the “black box” in Figure 1 for computing
the partial first derivatives of the function fp which was derived from an instance P of

Exact 1-in-3-Sat in Appendix A of this report. Throughout this appendix, P will be a fixed
instance of Exact 1-in-3-Sat.

The Partial First Derivative df p/dw

The function ofp/ow:R"—>NR is a piecewise linear function defined as the sum of
the following terms:

(a) For each variable x € V the function dfp/ow has one term oW/ 0w (w, x) ,

where W is the continuous piecewise-quadratic function defined in Figure 7 of Appendix
A. The value of this term is:

w
+

oW/ ow (w, x) = [if (w-x<0)then w—x else 0]
‘ +

[if (w+x<0)then w + x else 0]

The electronic circuit which computes —9W/dw, as shown in Figure 8. The config-
uration of the two middle op amps is based on Figure 10-5 from [4]. The other
three op amps are functioning as voltage adders.

(b) For each 3-clause {x,yz} the function dfp/dw has the linear term
4(x+y+z+2w), which can be computed with a voltage adder.

(¢) The function dfp/dw also contains the linear term —2w/5, which can be

computed with a constant multiplier.
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—(w+x)

If w+x >0 then this
line is essentially
ground; otherwise
itis at w+x.

/

If w—x >0 then this
line is essentially
ground; otherwise
it is at w—x.

—(w—x)

All resistors have equal resistance.

ow
Figure 8. Analog machine to compute S (w, x)

The Partial First Derivatives fp/0x for each x-w

For any x#w, the function dfp/dx:R"—R is a piecewise linear function defined as
the sum of the following terms:

(a) The function dfp/dx has one term 0W/9x (w, x) , where W is the continuous

piecewise-quadratic function defined in Figure 7 of Appendix A. The value of this term is:

-x/2
. +
oW/ dx (w, x) = [if (w—x<0)then x—w else 0]
+
[if (w+x<0)then w+ x else 0]
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The circuit to compute this function is similar to Figure 8.

((b) For each 3-clause {x,y,z} which contains x, the function dfp/dx contains the

linear term:

2(x+y+z+2w)

Appendix C: Preliminary Digital Simulations

I have performed a few digital simulations of the analog machine which solves
Exact 1-in-3-Sat. I actually ran two different versions of the machine: The first version is
as shown in Figure 1, keeping track of the position, speed and acceleration of the ball in all
n dimensions. The second version simply maintained the velocity of the particle to always
be in the direction of steepest descent (i.e., in the direction of the negative gradient).

I ran both simulated machines on fifty randomly-generated satisfyable instances of
Exact 1-in-3-Sat, with ten variables and twenty clauses each. Each simulation ran for 100
seconds of simulated time, with an initial position so that each coordinate was randomly

selected with a maximum magnitude of 107, Time was simulated in discrete slices of 1074
seconds. The results are summarized in this table:

% of Instances Average time spent  Maximum time
50 Simulated Solved within 100 on a solved spent on a solved
Instances simulated seconds instance instance
First Version 82% 29.2 sec 99.6 sec
| Second Version 30% ' 0.0029 sec 0.0122 sec

The second version certainly works quickly — when it works, that is. When the
second version failed, the state space of the machine moved close enough to the origin that
the gradient was too flat to make continued progress. Perhaps the second method could
solve a higher percentage of instances if it were allowed to restart at a new random starting
position whenever it approaches the origin too closely.

And, of course, I am uncertain how closely the digital simulations models the real
thing.

Notes Added June 1997

I have built a small version of the machine to solve the case of Exact 1-in-3-Sat
with three Boolean variables and one clause that contains these three variables. The
machine correctly solves the problem, moving away from the origin in a direction that
pulls one of the variables positive (true) and the other two negative (false). There are three
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such directions and the machine seems to choose between the directions
nondeterministically (although not equally likely). I don’t know what causes one direction
to be more likely than the others, but it’s probably small differences in the capacitors or
other components..

I’m building a programmable version of the machine this summer, capable of
handling any instance with up to 16 variables and up to 20 clauses. The programming is
done with patch cords and I hope to report on the results later this year. The dynamical
system that I'm using has one change from the idea in this report: I am starting with the

function fp described in Appendix A, but I am using -V Jp(X) as the instantaneous

velocity of the dynamical system (rather than the instantaneous acceleration). This cuts the
number of itegrators in half.
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