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Recent work has shown that a self-correcting quantum memory can exist in three spatial dimensions,
provided that it is protected by a 1-form symmetry. Requiring that the dynamics of a system obey this type
of symmetry is equivalent to enforcing a macroscopic number of symmetry terms throughout the bulk. In
this paper, we show how to replace the explicit 1-form symmetry with an emergent 1-form symmetry in
the bulk and an explicit 1-form symmetry on the boundary. To do so, we use the extended excitations of a
three-dimensional (3D) toric code to confine anyons in a two-dimensional (2D) toric code on the boundary.
The boundary anyons are bound to the bulk excitations by the explicit 1-form symmetry. Although the
symmetry still has to be explicitly enforced on the boundary, this could conceivably be a more attainable
constraint due to the accessibility of the boundary qubits. Furthermore, this only requires O(L2) terms for
a system of linear size L, instead of O(L3) terms.
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I. INTRODUCTION

Systems that can store quantum information for an
extended period of time while interacting with a noisy
environment will be integral components in any scalable
implementation of quantum computation. Two important
classes of such systems are fault-tolerant quantum memo-
ries and self-correcting quantum memories. Fault-tolerant
quantum memories store quantum information indefinitely
while evolving at zero temperature in the thermodynamic
limit, even in the presence of small perturbations. The
paradigmatic example is the two-space-dimensional (2D)
toric code [1], which is topologically ordered. Topolog-
ically ordered systems [2] generically provide fault tol-
erance by storing quantum information in their space of
degenerate ground states.

On the other hand, self-correcting quantum memo-
ries store quantum information indefinitely even at some
nonzero temperatures, again in the thermodynamic limit.
While the 4D toric code [3] is self-correcting, there are
no known examples in three dimensions (3D). The 4D
toric code remains topologically ordered in the temper-
ature range in which it is self-correcting [4], suggesting
that self-correction follows from finite-temperature topo-
logical order. Although there are interesting connections
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known between the two [5], there is no general mathemat-
ical result on the connection between self-correction and
finite-temperature topological order [6]. The existence of
robust self-correction in 3D remains an open question.

The hunt for self-correction has generated interesting
physics even where it has not achieved its central goal. In
3D, a direct search over a space of models [7] did not result
in self-correction [8,9] but did kick off the study of frac-
tons [10–12]. A parallel approach couples 2D toric codes
to 2D [13] or 3D [14] bosons. In the presence of diverging
couplings (for the 2D bosons) or fine-tuned dynamics (for
both), the bosonic systems can restore self-correction to the
toric code. Generic perturbations destabilize the memory
properties [15].

A more recent model from Roberts and Bartlett [6]
achieves a similar result by coupling a toric code to a bulk
lattice qubit model. The model still requires fine-tuned
dynamics but encodes the fine tuning in a higher-form
symmetry, resulting in a higher-form symmetry-protected
topological phase (SPT). Higher-form symmetries [16–18]
are local symmetries that are not gauge symmetries, in that
states related by a symmetry transformation are not identi-
fied as physically equivalent. The locality of the symmetry
means that requiring the dynamics to respect the symmetry
is a very strong constraint. For the model in Ref. [6], the
dynamics must respect a number of constraints that scales
with the volume of the system. We will refer to the model
as the Roberts-Bartlett model.

In this paper, we show that the bulk higher-form sym-
metry need not be enforced. Instead, we only need to
enforce the symmetry on the boundary. To do this, we
consider a setup as in Fig. 1, with two copies of the 3D
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FIG. 1. The boundary-symmetry-protected memory has e(α)

and e(β) anyons and m(α) and m(β) flux in the two bulks, and
e(γ ) and m(γ ) anyons on the defect. The confinement procedure
ensures that e(γ ) anyons coincide with end points of m(β) flux and
m(γ ) anyons coincide with end points of m(α) flux.

toric code (labeled α and β) and a 2D toric code on their
shared boundary (labeled γ ). Using a 1-form symmetry,
we require that e(γ ) anyons coincide with end points of
the extended excitations from the β bulk and m(γ ) anyons
coincide with end points of the extended excitations of the
α bulk. The bulk extended excitations linearly confine the
boundary anyons. The topological order in the bulk means
that there is an emergent higher-form symmetry in the bulk
[19] that need not be enforced.

In Sec. II, we provide background material on the
physics of existing models of quantum memories. The
only new material in this section is some insight into the
role that the higher-form symmetry plays in self-correction
in the Roberts-Bartlett model. Section II A reviews the
behavior of quantum memories at nonzero temperature,
Sec. II B reviews higher-form symmetries, and Sec. II C
reviews the existing memories protected by higher-form
symmetries. Readers familiar with this material may skip
any subsection independently. Then, in Sec. III, we provide
a microscopic construction of the new model, which we
call the boundary-symmetry-protected memory, in Fig. 1.
We discuss the physical interpretation of the new model as
a topological defect in Sec. IV and ponder some possible
future directions in Sec. V.

II. BACKGROUND

Here, we will review the physics that will be useful in
motivating and understanding the model presented in the
next section. First, we will focus on quantum memories at
temperatures above zero. That material is reviewed thor-
oughly in Ref. [20]. We next define higher-form symme-
tries, leaning on the toric code for interpretation. Then, we
motivate the power of higher-form symmetries for quan-
tum memories and introduce the Roberts-Bartlett model.

FIG. 2. The terms in the 2D toric code Hamiltonian. The black
lines are the background lattice, the green lines are X operators,
and the blue lines are Z operators.

A. Quantum memories and nonzero temperature

Quantum memories store quantum information for an
extended period of time by using special protected states.
We call the states logical states and the operators that act
within the space of logical states are logical operators. In
this paper, we will focus on Hamiltonian lattice models,
where the logical states are ground states of the system.
Furthermore, we will restrict ourselves to stabilizer mod-
els, in which the Hamiltonians are sums of local terms
called stabilizers. Each stabilizer is a local product of Pauli
operators and all stabilizers commute.

The first such system that was studied as a quantum
memory was the toric code [1]. This is a 2D lattice model,
with qubits living on the edges of a square lattice. The
Hamiltonian is

HTC = −
∑

V

AV −
∑

F

BF ,

AV =
∏

E∈∂†V

XE , BF =
∏

E∈∂F

ZE ,
(1)

where ∂F is the four edges in the boundary of the face F
and ∂†V is the four edges that form a “star”: the dual bound-
ary of the vertex V. The terms are illustrated in Fig. 2.
We use X and Z to denote the Pauli matrices σ x and σ z,
respectively.

All AV and BF terms commute with each other, as each
AV and BF share zero or two edges. Since all terms in the
Hamiltonian can be simultaneously satisfied, the model is
exactly solvable. The ground states are +1 eigenstates of
all AV and BF operators. Carefully counting the degrees of
freedom and the ground-state constraints shows that, while
the constraints locally use up all the degrees of freedom,
there are some global degrees of freedom that are not con-
strained, giving degenerate ground states. The ground-state
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degeneracy depends on the topology of the manifold on
which the lattice is placed.

The spectrum of the toric code contains anyons, or
topologically charged excitations. The topological charge
means that the anyons have nontrivial Aharonov-Bohm
phases with respect to each other. Incomplete logical oper-
ators create and remove anyons at their end points or trans-
port anyons. Complete logical operators (defined on topo-
logically nontrivial closed strings) tunnel anyons across
the system in noncontractible loops. Even when perturba-
tions are introduced to Eq. (1), the tunneling amplitude is
exponentially small in system size. As a result, the system
can evolve under its own dynamics for a time τ without
losing the stored information. As long as the system is at
absolute zero temperature, the memory time τ diverges in
the thermodynamic limit, up to some critical perturbation
strength [3]. As we said before, this is the defining feature
of fault-tolerant quantum memories.

The toric code and related systems possess topological
order [2], a type of order with no local order parameter.
Instead, the different ground states can only be distin-
guished by order parameters that are topologically nontriv-
ial. In fact, the order parameters are the previously men-
tioned logical operators. Due to the absence of local order
parameters, the topological order is robust to small pertur-
bations. By this, we mean that the distinct ground states
remain degenerate, up to corrections that are exponentially
small in system size. Clearly, the fault-tolerant nature of
the quantum memory is intimately related to the existence
of topological order in the ground state or at T = 0.

At any nonzero temperature, the 2D toric code is not
topologically ordered [4]. Heuristically, this is because at
any T > 0, the anyons exist at some finite density. As the
system reaches thermodynamic equilibrium, these anyons
wander along paths than can be large compared to their
characteristic spacing, creating logical operators and con-
necting the different ground states. The result is that the
system evolves to a single equilibrium thermal state in
finite time and it does not possess topological order. This
suggests that the 2D toric code cannot store quantum
information indefinitely at T > 0 but the lack of topolog-
ical order is an equilibrium property, while any quantum
memory properties must be dynamical.

We will discuss the dynamics of quantum systems
evolving at nonzero temperatures following the conven-
tions of Ref. [6]. To model the evolution of a system with
Hamiltonian Hsys at some nonzero temperature, we evolve
with the full Hamiltonian

Hfull = Hsys + Hbath + λ
∑

α

Sα ⊗ Bα , (2)

where Hbath is the bath Hamiltonian. The index α runs over
local operators on the system Sα , with some corresponding
operators on the bath Bα .

When a thermal bath disorders a memory, it does so
by applying a logical operator. From Eqn. 2, this happens
when some product of Sα forms a logical operator. Since
the Sα are local, the bath can only apply a logical opera-
tor by decomposing it into a product of local operators and
applying the local operators one at a time. At any point
during this process, the bath has applied an incomplete log-
ical operator, which fails to commute with some terms in
the Hamiltonian. These energy penalties form an energy
barrier to the application of the logical operator.

It turns out that the 2D toric code cannot store quantum
information indefinitely at T > 0 without active correction
[3]. As with the topological order, the problem is that the
pointlike anyons exist at finite density at finite tempera-
ture and can wander across the system. In other words, the
energy barrier is finite.

The 4D toric code [3] is analogous to Eq. (1) but in four
dimensions with qubits on the faces of a hypercubic lattice.
The Hamiltonian is like the 2D Hamiltonian,

HTC4 = −
∑

E

AE −
∑

C

BC, (3)

AE =
∏

F∈∂†E

XF , BC =
∏

F∈∂C

ZF , (4)

but with AE terms on edges and BC terms on cubes. The set
∂†E is the faces that have E as one of their boundary edges
and ∂C is the faces around the cube C. Both types of terms
are six-body terms on a hypercubic lattice.

The 4D toric code evades the issues with finite densities
of anyons because the logical operators live on membranes
that stretch across the whole system. The topologically
charged excitations, which now live on the boundaries
of incomplete logical membranes, are looplike. A finite-
temperature bath can create loop excitations of any finite
size but larger loops are suppressed by having larger
energy. As the system size L increases, the time that we
have to wait for the bath to create L-sized loops increases
without bound. In fact, the system prefers to shrink any
loops that do exist in order to lower the energy. A system
that is able to correct errors generated by the bath in this
sense is self-correcting.

In the thermodynamic limit, the bath never creates loops
that are as large as the system, so quantum information
can be stored indefinitely. In addition, the 4D toric code
does remain topologically ordered for nonzero tempera-
tures up to a critical temperature Tc. Above Tc, the 4D toric
code is also no longer self-correcting. Thus, self-correction
appears to be related to topological order at T > 0 in the
same sense that fault tolerance is related to topological
order at T = 0. The 4D toric code is self-correcting and
possesses topological order below Tc. Sadly, our world
only has three spatial dimensions, so we would like to
reproduce this behavior in a 3D system.
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A feature that distinguishes the 4D toric code from the
2D toric code is that it has an unbounded energy bar-
rier: applying any logical operation through a series of
local operation requires traversing a high-energy state, the
energy of which continues to increase for larger system
sizes. The energy of such a state is called the energy
barrier of the logical operator. One might be tempted to
draw the conclusion that having all energy barriers be
unbounded is sufficient for self-correction. This seems rea-
sonable because operations that cost a divergent energy
	 should only occur on time scales τ ∼ exp(β	), which
is called the Arrhenius law. Any stringlike logical oper-
ator will have a bounded energy barrier because once
the end points of the string are well separated, each end
point becomes a pointlike excitation with constant energy.
Thus, the search for models with unbounded energy bar-
riers reduces to a search for models free from stringlike
logical operators.

In fact, while it is possible to construct 3D systems
where all energy barriers are unbounded [7,21], even these
systems do not perform self-correction [8]. As in the 2D
toric code, the problem can be traced to the existence of
topologically charged pointlike excitations [9]. At nonzero
temperature, these excitations exist at finite density. Then,
on a very heuristic level, the bath only needs to transport
each topological excitation a finite distance to its nearest
neighbor. Since the time scale for these partial logical oper-
ators is finite, the bath can perform logical operations in a
finite time.

The conclusion to draw here is that unbounded energy
barriers are necessary but not sufficient for self-correction.
On the other hand, local thermal baths cannot apply
membranelike operators in any finite time, in the ther-
modynamic limit below some critical temperature [3,6],
so we expect a memory wherein all logical operators are
membranelike will be self-correcting. As an example, the
logical operators in the 4D toric code are all membranelike.

Instead of looking for a quantum memory that is self-
correcting under its own dynamics, we can imagine cou-
pling a toric code to another system in such a way that
the latter endows the former with long-range interactions,
confining the anyons. For simplicity, assume that the cou-
pled system consists of bosons. The 2D version of this
proposal is the toric-boson model [13]. The toric-boson
model requires couplings between anyons and bosons to
have a divergent energy scale. Furthermore, the dynam-
ics of the bosons must be fine tuned so that they do not
develop a gap. The 3D version [14] drops the require-
ment of divergent energy scales but still needs fine-tuned
dynamics [15]. A further complication of the general-
ized toric-boson models is that the boson parts have infi-
nite local Hilbert-space dimensions. In Sec. II C, we will
see how the Roberts-Bartlett model reproduces similar
physics in the simpler setting of finite local Hilbert-space
dimension.

B. Higher-form symmetries

Before getting to the Roberts-Bartlett model, let us
define higher-form symmetries. These generalized global
symmetries compactly encode the dynamical constraints
required for that model.

In the continuum, an ordinary global symmetry is a
group of operators that act on the entire d-dimensional
space of some theory. As a generalization of global
symmetries, p-form symmetries act on closed (d − p)-
dimensional submanifolds of space [17,18]. In this clas-
sification, ordinary global symmetries can be called 0-
form symmetries. Unlike gauge symmetries, which are just
redundancies in some description of a theory, higher-form
global symmetries are physical symmetries that transform
between distinct states. They can give rise to symmetry-
protected topological phases [17] and symmetry-broken
phases [17–19], like ordinary global symmetries.

On a lattice, the definition of the higher-form symmetry
needs to be clarified. The proper way to do this is in the lan-
guage of cellular homology [22]. We will instead proceed
by example.

It is easy to find higher-form symmetries in topological
phases. In fact, spontaneous breaking of higher-form sym-
metries leads to topological order [17,19]. As an example,
the 2D toric code with no perturbations has an X -type and a
Z-type 1-form symmetry, partially generated by the vertex
and face terms, respectively.

An arbitrary product of face terms BF = ∏
E∈∂F ZE for

some set F of faces gives a symmetry operator [23]

WC =
∏

F∈F
BF =

∏

E∈C
ZE , (5)

where C = ∂F is a (possibly disconnected) closed path on
the lattice. It is closed in the sense that it does not have
any end points. Since C is the boundary of a collection of
faces, these symmetry operators are topologically trivial,
meaning that they do not wrap around the system. We will
call these operators the local part of the symmetry, even
though the operators may be large.

There are also topologically nontrivial symmetry opera-
tors that do wrap around the system. These are the logical
operators in the toric code, which are also closed. We will
say that they are the topological part of the symmetry. Both
types of operators act on (1 = d − 1)-dimensional paths,
so they jointly generate the Z-type 1-form symmetry. A
similar story exists for the X -type 1-form symmetry, with
symmetry operators TC′ = ∏

E∈C′ XE , where C ′ is a path on
the dual lattice. In the end, we say that the 2D toric code
has a Z2 × Z2 1-form symmetry, with the two copies of Z2
corresponding to the magnetic and electric sectors.

In the 3D toric code with qubits on edges [24], the
terms BF = ∏

E∈∂F ZE still act on the four edges around
a face, while the terms AV = ∏

E∈∂†V XE now act on the six
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edges around a vertex. The face terms still generate one-
dimensional symmetry operators. This means that they are
now part of a 2-form symmetry. The vertex terms generate
membrane-type operators, which are 2D objects and there-
fore part of the 1-form symmetry. These membranes are
closed in the sense that they do not have any boundaries.
As a result, the 3D toric code enjoys a Z2 1-form symme-
try and a Z2 2-form symmetry. Similarly, the 4D toric code
as a Z2 × Z2 2-form symmetry.

The higher-form symmetries just described are differ-
ent than the higher-form symmetries usually considered
in the high-energy literature [22,25]. To understand the
difference, recall that the toric code is a model for Z2
gauge theory. If we were really studying gauge theory,
we would identify any states related by a gauge transfor-
mation as the same physical state. In the toric code, this
means requiring that AV = 1 hold as an operator equation
for all V. Thus, the entire local part of the X -type 1-
form symmetry acts trivially on the physical Hilbert space.
Only the topological part of the X -type 1-form symmetry
acts nontrivially. Furthermore, any two operators that are
topologically equivalent (in the same homology class) are
equivalent as operators on the physical Hilbert space.

The two ways of defining higher-form symmetries are
called faithful and topological, respectively [22]. Faithful
higher-form symmetries are more natural in lattice mod-
els when we do not want to restrict the Hilbert space and
in nonrelativistic models. Topological higher-form sym-
metries are more natural in gauge theories and relativistic
theories [25]. In this paper, we will discuss faithful higher-
form symmetries in order to preserve the tensor-product
structure of the global Hilbert space.

When we say that we will enforce a symmetry, we mean
that we require that the operators Sα that appear in Eq. (2)
must commute with the generators of the symmetry. Any
local operator that fails to commute with a topological gen-
erator also fails to commute with a local generator, so it is
enough to require that all the Sα commute with the local
part of the symmetry.

C. Self-correction with a 1-form symmetry

Now that we have defined higher-form symmetries, we
can ask the following question: “Is it possible to construct
a self-correcting quantum memory if we allow ourselves
to enforce a 1-form symmetry?” At first, this might seem
like an interesting question. Ordinary (0-form) SPT phases
are not stable at finite temperature, essentially because the
thermal ensemble of the symmetry-protected system can
be approximated by a convex sum of thermal ensembles
of the system with the symmetry weakly broken [26]. On
the other hand, 1-form symmetry-protected phases are sta-
ble at nonzero temperature, because the symmetry imposes
stronger constraints [26].

We can quickly see that the answer to our question is
trivially “yes.” As an example, take the 2D toric code
and require that the dynamics respect all vertex and face
terms. In that case, the only allowed operators are products
of stabilizers or complete logical operators. If we restrict
our bath to only be able to apply operators of bounded
size, the bath cannot apply any logical operators. Previ-
ously, we could have said that the 1-form symmetries were
enforced energetically, in the sense that anyons (which
break the symmetry) were suppressed by the gap. Now,
we can say the symmetry is enforced explicitly rather than
energetically.

Similarly, we can consider the 3D toric code with the
vertex terms (which generate a 1-form symmetry) enforced
but not the face terms (which would generate a 2-form
symmetry). Once again, the stringlike logical operators
have no local symmetric decomposition. The interesting
difference is that while the membrane operators do have
a local symmetric decomposition, the memory time still
grows without bound. This is because of the previous argu-
ment that thermal baths cannot apply membrane operators
in the thermodynamic limit [3,24].

Both of these examples are trivial memories, in the sense
that we have restricted the dynamics of our system to pro-
hibit the bath from applying logical operators. In other
words, we have constructed a quantum memory where the
bath cannot apply logical operators instead of a quantum
memory where the bath does not apply logical operators.
This is in contrast with the 4D toric code, where a ther-
mal bath can apply logical operators (i.e., the dynamics are
fully ergodic for finite system sizes) but the bath does not
apply logical operators (because the time it takes to do so
diverges in the thermodynamic limit). These trivial exam-
ples are not really self-correcting memories, because there
are no errors that the system needs to correct.

To more closely mimic the nontrivial physics of the
4D toric code, we ask “Is it possible to construct a self-
correcting quantum memory the Pauli logical operators of
which have local symmetric decompositions, if we allow
ourselves to enforce a 1-form symmetry?” Neither the 2D
or 3D toric codes with 1-form symmetry enforced answer
this question. Instead, Roberts and Bartlett show that the
answer is “yes” [6], constructing a model that consists of
the 3D cluster-state Hamiltonian of Raussendorf, Bravyi,
and Harrington (RBH) [27], with 2D toric code bound-
ary conditions. When the 1-form symmetry is enforced in
the bulk, the memory time diverges in the thermodynamic
limit, even at nonzero temperature. This is despite the abil-
ity of the bath to apply logical operators in finite time for
finite system sizes.

We should note that the Roberts-Bartlett model does
not have local symmetric decompositions for arbitrary
(non-Pauli) logical operators. In fact, generic logical
operators do not have any local decomposition, regard-
less of the symmetry. That no error-correcting code can
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(a)

(c) (d)

(b)

FIG. 3. The decomposition of a logical operator. The top and
bottom of the cube are identified and the front and back of the
cube are identified. In the RBH model and in the boundary-
symmetry-protected memory introduced in this paper, anyons on
the boundary are attached to excitations in the bulk. The red
crosses represent anyons, the red lines are bulk excitations, the
blue lines are logical operators on the boundary, and the green-
shaded region is a membrane operator in the bulk. Compare with
Fig. 12 of Ref. [6] and Fig. 7 of Ref. [29].

support arbitrary transversal (locally decomposable) log-
ical operators is guaranteed by the Eastin-Knill theorem
[28].

The explicit construction of the Roberts-Bartlett model
is rather involved, so we leave the details to the origi-
nal literature [6]. Here, we will only review the model
at the coarse-grained level. The RBH Hamiltonian is not
topologically ordered but is SPT-ordered under a 1-form
symmetry [26]. Furthermore, this SPT order is stable at
nonzero temperatures. Ordinary (0-form) SPT order does
not survive to nonzero temperatures [26].

The logical information in the Roberts-Barlett model
resides on the boundary toric code qubits. As always,
anyons live at the ends of partial logical operators. In
the Roberts-Bartlett model, the anyons are connected to
extended excitations that extend into the bulk and have
linear energy cost. The 1-form symmetry then ensures that
these bulk excitations cannot end, except on another anyon
on the boundary [6].

Once the anyons are connected to the bulk extended
excitations, they are linearly confined and cannot traverse
the system through thermal effects. In 2D, confinement
ruins topological order because if the anyons leave ener-
getic excitations behind, then the full operator cannot be
a logical operator (because it does not commute with
the Hamiltonian). Instead, the Roberts-Bartlett model uses
the third space dimension to remove the extended excita-
tions. Although specific details of this procedure depend
on the explicit construction, Fig. 3 shows a coarse-grained
description of the removal.

Reference [6] also shows that once the anyons are con-
fined by extended excitations with linear energy cost, the
memory time of the model will grow without bound in the
thermodynamic limit. This is different from fracton mod-
els, where a diverging (but sublinear) energy barrier does
not lead to a diverging memory time [8].

The Roberts-Bartlett construction can be extended to
any Walker-Wang model [30,31]. In fact, the RBH Hamil-
tonian (the bulk of the Roberts-Bartlett model) is equiva-
lent to the Walker-Wang model with the toric code braided
fusion category as input, after moving some qubits to faces
[32]. Furthermore, the Roberts-Bartlett construction can be
modified to a model with a trivial bulk [29], at the cost of
enforcing a 1-form symmetry with an action at the bound-
ary that is not on-site as defined in Ref. [19], which is to
say that the symmetry must be decorated when acting on
the boundary.

We can gain a new perspective on the Roberts-Bartlett
model by examining the precise role of the 1-form sym-
metry in protecting the memory. As emphasized in Ref.
[6], the 1-form symmetry in the bulk prevents the extended
excitations from ending. On the boundary, the 1-form sym-
metry requires that any boundary anyons live on the end
points of bulk excitations. Both roles are essential in this
family of models. If boundary anyons did not need to be
attached to bulk excitations, they would be deconfined. If
the bulk excitations were allowed to end, then boundary
anyons could be attached to finite-length bulk excitations,
again leading to deconfinement.

Reference [6] has already pointed out that topologically
ordered models such as the 3D toric code can have an
emergent 1-form symmetry, so that there are loop excita-
tions that cannot end in the bulk. The contribution of the
current paper is to demonstrate that we can use this emer-
gent symmetry to replace the enforced symmetry in the
bulk. However, we have not found a way for the emer-
gent symmetry to attach the anyons to the bulk extended
excitations. Instead, we will need to enforce a 1-form sym-
metry on the boundary, which amounts to enforcing an
O(L2) number of stabilizers rather than an O(L3) num-
ber. Furthermore, all the terms we need to enforce will be
on the boundary of our model, meaning that they are more
accessible than bulk terms would be.

III. RESTRICTING TO A BOUNDARY
SYMMETRY

In this section, we will introduce our new model that
uses an emergent 1-form symmetry in the bulk rather than
directly enforcing a bulk symmetry. As the model con-
sists of a memory on a boundary protected by a symmetry,
we will call it the boundary-symmetry-protected memory.
We will first define the Hamiltonian and then describe the
logical operators. After defining the enforced symmetry,
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x

z

y

FIG. 4. We can view the Hilbert space of the model as living
on a cubic lattice. In the bulk, qubits live on faces and edges.
The boundary faces have no qubits. The boundary edges have
two qubits each, one of which is a bulk (α) degree of freedom
(solid line) and one of which is a boundary (γ ) degree of freedom
(dashed line). The lattice is periodic in the x and z directions
and has boundaries at y = 0 and y = L. This figure shows the
boundary at y = 0, where we will put our 2D toric code.

we will explain why a subspace of the logical code space
forms a memory that is stable at finite temperature.

A. Hamiltonian and logical operators

In the absence of the symmetry, the boundary-
symmetry-protected memory consists of two noninteract-
ing 3D toric codes with a 2D toric code on their shared
boundary, all living on a cubic lattice with boundary. We
will use an L × L × L lattice that is periodic in the z and x
directions, so that the global structure is a thickened torus,
T2 × I . To define the two bulk toric codes, we will put one
qubit on each edge and face in the bulk. The edge qubits
will define the (α) sector and the face qubits will define the
(β) sector.

There are two boundaries, one at y = 0 and one at y =
L, each a 2D torus. Figure 4 shows the y = 0 boundary,
which has extra qubits represented by dashed lines. These
qubits defined the (γ ) sector. The other boundary (at y =
L) will look similar but without the dashed lines.

Now, we have enough qubits to define two copies of the
3D toric code and one copy of the 2D toric code. The full
Hamiltonian will be

H = H (α) + H (β) + H (γ ), (6)

with each term defined below.
The first term in H ,

H (α) = −
∑

V

A(α)
V −

∑

F

B(α)
F , (7)

FIG. 5. The stabilizers for the 3D toric code on edges. The
green edges are X (α) operators and the blue edges are Z(α)

operators.

is a bulk 3D toric code Hamiltonian acting on edge degrees
of freedom. The sums run over all vertices and faces in the
lattice. The individual stabilizers,

A(α)
V =

∏

E∈∂†V

X (α)
E , B(α)

F =
∏

E∈∂F

Z(α)
E (8)

are shown in Fig. 5. The logical operators in this sector are
direct strings of Z(α) operators and dual membranes [33]
of X (α) operators. At end points of Z(α) strings, we have
e(α) anyons and on the boundaries of X (α) membranes, we
have m(α) flux. The boundary conditions at y = 0, L are
“smooth,” meaning that we include qubits on the bound-
ary edges. The result of these boundary conditions is that
the m(α) flux is condensed (meaning that the flux can
be removed at the boundary) and e(α) anyons cannot be
removed. Equivalently, X (α) membranes can terminate on
the boundaries but Z(α) strings cannot.

The other bulk Hamiltonian is

H (β) = −
∑

C

A(β)

C −
∑

E

B(β)
E , (9)

which acts on face qubits. The terms are

A(β)

C =
∏

F∈∂C

X (β)
F , B(β)

E =
∏

F∈∂†E

Z(β)
F , (10)

as shown in Fig. 6. They are equivalent to the edge terms
after swapping edges with faces and swapping cubes with
vertices. The logical operators in this sector are dual strings
of Z(β) operators and direct membranes of X (β) operators.
Here, the excitations are pointlike e(β) anyons on the ends
of Z(β) dual strings and extended m(β) flux at the bound-
aries of X (β) membranes. The boundary conditions are
such that the m(β) flux is condensed and the e(β) anyons
cannot be removed. To achieve these boundary conditions,
which are dual to the “smooth” boundary conditions of the
(α) sector, we must not put any qubits on boundary faces.
We then call this the “rough” boundary condition for the
(β) sector.
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FIG. 6. The stabilizers for the 3D toric code on faces. The
green faces are X (β) operators and the blue faces are Z(β)

operators.

On the extra set of boundary qubits, we define a 2D toric
code,

H (γ ) = −
∑

V

A(γ )

V −
∑

F

B(γ )

F ,

A(γ )

V =
∏

E∈∂†V

X (γ )

E , B(γ )

F =
∏

E∈∂F

Z(γ )

E ,
(11)

where the sums and products are only taken over boundary
faces, edges, and vertices. These terms are shown in Fig. 7.
Here, the logical operators are direct strings of Z(γ ) and
dual strings of X (γ ). The excitations are e(γ ) anyons and
m(γ ) anyons.

For simplicity, let us only describe a subset of the log-
ical qubits and therefore a subset of the logical operators.
The logical operators of interest are shown in Fig. 8. Let
Z̄(α) correspond to a vertical string of Z(α) operators in the
bulk and X̄ (α) to a horizontal dual membrane of X (α) oper-
ators. For the face code, let X̄ (β) be a vertical membrane of
X (β) operators and let Z̄(β) a horizontal dual string of Z(β)

operators in the bulk. Note that both membrane operators
X̄ (α) and X̄ (β) must intersect both boundaries. On the y = 0
boundary, we have Z̄(γ ), a vertical string of Z(γ ) opera-
tors and X̄ (γ ), a horizontal dual string of X (γ ) operators.
There are another three logical qubits the logical operators
of which are related by a spatial rotation but we can safely
ignore these as their description is the same.

FIG. 7. The stabilizers for the 2D toric code on the boundary.
The green dashed lines are X (γ ) operators and the blue dashed
lines are Z(γ ) operators.

FIG. 8. The logical operators that we discuss in the text. On the
left, we have the “vertical” operators Z̄(α) (solid blue line), X̄ (β)

(green shaded region), and Z̄(γ ) (blue dashed line). On the right,
we have the “horizontal” operators X̄ (α) (green shaded region),
Z̄(β) (blue solid line), and X̄ (γ ) (green dashed line). Each vertical
logical operator anticommutes with exactly one horizontal logi-
cal operator. Note that this figure does not distinguish between
direct and dual strings and membranes for ease of illustration.

All three of these qubits are fault tolerant. This corre-
sponds to the existence of topological order at T = 0 [1].
At nonzero temperature, a local thermal bath can apply
the stringlike logical operators Z̄(α), Z̄(β), Z̄(γ ), and X̄ (γ ),
essentially because they have a constant energy barrier.
Thus the edge and face logical qubits can serve as clas-
sical, but not quantum, memories [24], while the boundary
logical qubit can store no information.

B. Enforcing the symmetry

The last ingredient in the boundary-symmetry-protected
memory is the 1-form symmetry that we will choose to
enforce. The symmetry acts on the boundary, in the sense
that it acts only on (γ ) qubits and those (α) and (β) qubits
that are adjacent to the boundary. For V a boundary vertex
and F a boundary face, the generators of the local part of
the symmetry,

AV = A(γ )

V A(β)

E(V) , BF = B(γ )

F B(α)
F , (12)

are products of stabilizers in Hamiltonians. The edge E(V)

is the unique nonboundary edge such that V ∈ ∂E(V). The
terms are illustrated in Fig. 9. The generators of the topo-
logical part of the symmetry are products of logical opera-
tors, such as Z̄(α)Z̄(γ ). The local and topological generators
locally look the same.

When the symmetry is enforced, e(γ ) anyons are
required to coincide with end points of m(β) flux and m(γ )

anyons are required to coincide with end points of m(α)

flux, all of which occur only on the lattice boundary. This
means that the operators Z̄(γ ), X̄ (β), X̄ (γ ), and X̄ (α) all
no longer have local symmetric decompositions. For the
boundary operators, this is because the boundary anyons
cannot exist on their own. This is demonstrated for Z̄(γ )

in Fig. 10. For the two membrane operators, open mem-
branes (incomplete logical operators) are permitted in the
bulk but are not allowed to intersect the boundary. The bulk
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FIG. 9. The terms that we enforce are AV = A(γ )

V A(β)

E(V) (left)

and BF = B(α)
F B(γ )

F (right). The blue operators are Z type and
the green operators are X type. Since the symmetry operators
are products of stabilizers, the ground space is not affected.
Instead, some excitations are forbidden, so that boundary logi-
cal operators can only be applied in tandem with bulk membrane
operators.

stringlike logical operators Z̄(α) and Z̄(β) still have local
symmetric decompositions, because they need not intersect
the boundary.

The only logical operators that act on the boundary log-
ical qubit and have local symmetric decompositions are
the composite logical operators X = X̄ (α)X̄ (γ ) and Z =
X̄ (β)Z̄(γ ). Figure 11 demonstrates the partial application
of X̄ (β)Z̄(γ ). The operators X̄ (γ ) and Z̄(γ ) anticommute,
defining the logical-qubit subspace. The two membrane
operators X̄ (α) and X̄ (β) do not act within the logical-
qubit subspace but, rather, provide the divergent energy
barrier. Since both composite operators X and Z include
a membrane part, the composite operators are linearly
confined. The upshot is that all logical operators that act

 

V

FIG. 10. The blue dashed lines represent Z(γ ) operators, a par-
tial application of the logical operator Z̄(γ ). At the highlighted
vertex, the partial logical operator anticommutes with A(γ )

V and
AV. Anticommutation with A(γ )

V only leads to an energy penalty
but anticommutation with AV means that this operator is forbid-
den by the 1-form symmetry. A similar argument applies to any
partial Z̄(γ ) operator.

V

FIG. 11. The blue dashed lines represent Z(γ ) operators and
the green faces are X (β) operators. This operator anticommutes
with A(γ )

V at the highlighted vertex and B(β)
E at every highlighted

edge, which leads to a large energy penalty. The addition of the
X (β) operators means that it now commutes with AV, so it is a
permitted operator. We should view this as a partial application
of the composite logical operator X̄ (β)Z̄(γ ).

on the boundary logical qubit and have local symmetric
decompositions are linearly confined.

We should emphasize that while we need the bulk topo-
logical order to supply the energy barrier, we do not store
any information in the bulk. In the language of subsystem
codes, the bulk logical qubits are actually “gauge qubits,”
the state of which is irrelevant. The only true logical qubit
is the boundary qubit. Then, X and Z are dressed logical
operators, acting on the logical qubit and on gauge qubits.
The bare logical operators X̄ (γ ) and Z̄(γ ) do not possess
symmetric decompositions but X and Z do.

Since both boundary logical operators are linearly con-
fined, a local bath cannot apply them in finite time in the
thermodyamic limit [6]. This means that the boundary-
symmetry-protected memory achieves the same memory
properties as the Roberts-Bartlett model, while only requir-
ing that a symmetry be enforced at the boundary. No
symmetry terms need to be enforced in the bulk.

IV. INTERPRETATION AND GENERALIZATION

We can gain some insight into the behavior of this
model by analyzing it at the coarse-grained level, instead
of focusing on the specific lattice realization. There, the
simplest language to use is that of defects in 3D topo-
logical orders. So far, we have been orienting the model
so that the 2D toric code sits on the boundary of the sys-
tem. Since the edge and face bulk degrees of freedom are
noninteracting, we can alternatively unfold [34] the two
bulks and view the 2D toric code as a boundary or defect
between two spatially separated 3D toric codes. Reference
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[35] explains defects in depth, furthermore using networks
of defects (and defects of defects, etc.) to construct fracton
phases. Here, we will only need to discuss 2D defects in
3D topological orders.

We will describe defects as the result of a process in
which we confine and condense composite objects at a
2D surface in a 3D topological order. Condensation of
composite objects can be useful in constructing many mod-
els, including Michnicki’s welded code [8,21] and fractons
[22,36,37]. In 2D topological orders, when a condensed
composite a1 . . . an has nontrivial mutual statistics with
another anyon a′, the anyon a′ becomes confined.

For 3D systems, let us say that a flux tube is decon-
fined on a certain boundary if it can end on that boundary
and confined if it cannot. Similarly, we will say that a
bulk anyon is condensed at a boundary if it is removable
and confined otherwise. Under this definition, in the 3D
toric code (defined on edges), flux tubes are confined at
the rough boundary and deconfined at the smooth bound-
ary. Furthermore, the e anyons are confined at the smooth
boundary and condensed on the rough boundary. If we take
a smooth boundary and condense e anyons, the flux tubes
become confined and we end up with a rough boundary.
If we start with a rough boundary and condense m flux
near the boundary, the e anyons become confined on that
boundary.

Now recall from Sec. II C that a 2D toric code with both
1-form symmetries enforced is trivially self-correcting
because it has no dynamics. We can view enforcing the
1-form symmetry as confining the m and e anyons “by
hand,” or without any condensation procedure. This means
that dynamics of the anyons are explicitly forbidden, rather
than just energetically penalized.

We can also construct the boundary-symmetry-protected
memory using by-hand confinement. As in Fig. 1, we have
a 3D toric code labeled by (α), a 2D toric code in the cen-
ter labeled by (γ ), and another 3D toric code on the left
labeled by (β). The labels are chosen to match the labels
in Sec. III but the (α) and (β) sectors are spatially separate.
On the boundary, we confine the e(γ ) and m(γ ) anyons and
the m(α) and m(β) fluxes, in such a way that the composite
objects m(α)m(γ ) and e(γ )m(β) are deconfined. When we say
that a composite of a boundary anyon and a bulk flux are
deconfined, we mean that the flux may end on the boundary
but only if its end point coincides with the corresponding
anyon. Similarly, the boundary anyons may move freely
only when attached to bulk flux.

The bulk fluxes give the boundary anyons dynamics, so
the anyons are (linearly) energetically confined, instead of
exactly confined as in the trivial 2D toric code example. As
in Sec. III, the boundary-anyon confinement means that the
bath does apply logical operators, even though the oper-
ators have local symmetric decompositions. Just like in
Sec. III, though, these boundary conditions are only sta-
ble to perturbations that obey the 1-form symmetry. We

can view this as saying that by-hand confinement without
condensation is fine tuned.

Note that, for example, the confinement of m(α) and
m(γ ) but not m(α)m(γ ) is the confinement pattern that would
result from condensing the composite e(α)e(γ ). In fact, we
can follow that condensation procedure on the microsopic
lattice by considering the Hamiltonian in Eq. (6) as a
perturbation to the condensing Hamiltonian

Hcond = −Jx

∑

E

X (α)
E X (γ )

E , (13)

where the sum is taken over boundary edges, in the large-
Jx limit [36]. Then we obtain the symmetry term BF
in Eq. (12) at some order in perturbation theory, which
confines m(α) and m(γ ) but not m(α)m(γ ). Unfortunately,
fully building the boundary-symmetry-protected memory
from condensation would also require condensing m(γ )e(β),
which is not possible because condensed composites can-
not have mutual statistics.

V. CONCLUSIONS AND EXTENSIONS

The boundary-symmetry-protected memory is useful in
two ways. First, it improves upon the Roberts-Bartlett
model by only requiring that O(L2) symmetry generators
be enforced, rather than O(L3). The enforced terms are
only on the boundary, rather than throughout the bulk. In
both senses, this is a continuation of the work in Ref. [29],
which has shown that self-correction is possible with a
number of enforced terms that is asymptotically smaller
than L3 but greater than L2 and that must lie in the bulk but
close to the boundary.

The second contribution of the present model is to
emphasize that in the Roberts-Bartlett model, the 1-form
symmetry serves two distinct purposes. Namely, it ensures
that the flux tubes do not end in the bulk and requires that
boundary anyons and flux-tube end points coincide. Here,
we show that the first contribution can be supplied by bulk
topological order. Even at nonzero temperature, the flux
tubes of the 3D toric code cannot end. This is connected
to the fact that discrete 1-form symmetries can be sponta-
neously broken (and therefore emergent [19]) at nonzero
temperature in 3D.

On the other hand, we have not yet found a way to
require that boundary anyons and flux-tube end points
coincide without explicitly enforcing the 1-form symmetry
at the boundary. Finding a way to make this requirement
emergent, rather than explicit, would certainly be exciting.

There are several ways to consider extending the
boundary-symmetry-protected memory. First, let us just
consider the theory living on the boundary, which contains
confined anyons and deconfined anyons. We can inter-
pret the confined anyons as confined symmetry defects in
a Z2 × Z2 SPT, where the Z2 × Z2 0-form symmetry is
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the restriction of a bulk membrane operator to the bound-
ary. If the bulk undergoes a phase transition to a phase
where the bulk extended excitations no longer have a lin-
ear energy cost, then the defects in the boundary theory
become deconfined. We can view this as a gauging pro-
cess in the 2D theory, resulting in the original Z2 toric
code. This language evokes the classification of symmetry-
enriched topological phases using G-crossed braided ten-
sor categories [38], which consist of deconfined anyons
and confined symmetry fluxes. It might be the case that
generalized versions of the boundary-symmetry-protected
memory are natural realizations of more general G-crossed
braided tensor categories, with the additional structure that
the symmetry fluxes exist in the Hilbert space but are still
confined.

Perhaps the simplest way to change the model is to
enforce the vertex and cube terms in the bulk of H (α) and
H (β), respectively, as gauge constraints. Unlike a symme-
try constraint, where we impose a gauge constraint, we are
saying that states that violate the constraint do not exist
in the physical Hilbert space. This is not as useful of a
concept in the context of error correction but it might be
interesting in the study of the phase of matter. Under the
gauge constraint, the bulks are both effectively Z2 gauge
theories and the confining flux tubes are regions of non-
trivial curvature in the gauge fields. This simplifies the
discussion, because we no longer have to worry about the
e(α) and e(β) anyons (unless we couple the gauge fields to
matter), but at the cost of losing the tensor-product Hilbert
space.

We could keep the tensor-product Hilbert-space struc-
ture while extending the model to higher-form symmetry
groups larger than Z2 × Z2. Continuous groups result in
gapless models with no energy barrier, so let us first con-
sider ZN . To do this, we define a single copy of the 2D
ZN toric code on the boundary and two copies of the 3D
ZN toric code in the bulk. Then, on the boundary, we
require that any anyon with charge p coincides with the
end points of a bulk flux loop with charge p . This require-
ment is equivalent to a ZN × ZN 1-form symmetry on the
boundary. We could even further generalize the 2D topo-
logical order by considering twists. This should not affect
the binding procedure of the bulk topological order used.
Although it may seem possible to then replace ZN with any
discrete group G, this cannot be done in the most straight-
forward way, because higher-form symmetries must be
Abelian [17]. It would be interesting to determine whether
there is any way to generalize this construction to arbitrary
discrete G.
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