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Abstract: An important and recurring security scenario ihxes the need to carry out trusted

computations in the context of untrusted envirortmeh is shown how a tamper-resistant

interpreter for a programming language — curreritigp 1.5 — combined with the use of a secure
co-processor can address this problem. This saluéixecutes the interpreter on the secure co-
processor while the code and data of the prograsidesin the larger memory of an associated
untrusted host. This allows the co-processor tdizetithe host's memory without fear of

tampering even by a hostile host. This approachdea®ral advantages including ease of use,
and the ability to provide tamper-resistance foly @rogram that can be constructed using the
language. The language approach enabled the denedat of two novel mechanisms for

implementing tamper-resistance. These mechanismader alternatives to pure Merkle hash

trees. Simulated relative performance of the vagiomechanisms is provided and shows the
relative merits of each mechanism.



1 INTRODUCTION: COMPUTING IN A HOSTILE ENVIRONMENT

An important and recurring security scenario ineslthe need to cargut trusted computations

in the context of untrusted environments. This fEwbrecurs in a number of contexts. It is
desirable, for example, for mobile agents [13,1t@&ct as surrogates for humans and for those
agents to be able to engage in sensitive actiasts &sicredit card transactions. The mobile agent
is executing on a remote host, and the owner dfhbat, if malicious, may attempt to tamper
with the operation of that agent. Another exampllves operation of security infrastructure
such as an intrusion detection system [10,165k likely that this infrastructure executes in part
on a host that is subject to external attack. weisty infrastructure is therefore also subject to
attack, and may in fact represent a high profitgdgafor external attacks. For these and other
scenarios, executing trusted code in an untrustedament is an important capability.

One promising approach to trusted execution is tomhkine a trusted secure co-
processor [19,37,38] with an untrusted host conrpUiee secure co-processor establishes the
environment in which to perform trusted computasiomhile the insecure host provides memory
(and other) resources that may be used by theettygbcessor. There is no guarantee, however,
that the host will not tamper with the contenttsfrnemory in an attempt to corrupt the operation
of the secure co-processor. The problem to be datvéhis context is to allow the co-processor
to easily use the host’s memory while still beiddeato detect attempts by the host to tamper
with the co-processor’s utilization of that memory.

This paper demonstrates a novel solution to theust&d environment problem by combining a
programming language approach and a secure cogsact provide a convenient and general
mechanism for tamper-resistant utilization of thenmory of an untrusted host. In this approach,
an interpreter for the language executes on thpreoessor, and the interpreted program and
associated data reside on the untrusted host. &hedncept is that tamper-resistance is built
into the language interpreter’s implementation.

The language approach has several positive chastici® Programmers do not have to worry
about the problem of tampering because a solusidilt into the language implementation and
is inherited by all programs executed by the lagguaterpreter. This solution also reduces and
simplifies the code that must reside on the hostgssor. The only required code is that
necessary to allow the secure co-processor toarddvrite the host's memory and to manage
the allocation of blocks of the host's memory. Tise of a simplified and common host interface
also allows the use of multiple co-processors &eduse of multiple languages. Thus using the
language approach, it should be easier to congtrograms that can safely avail themselves of
untrusted host memory.

Two issues arise for this research: (1) can itrbplémented and (2) what is the most effective
mechanism for achieving tamper-resistance. The iBsue was addressed by doing a proof of
concept implementation [17] (Section 6). With tleadibility established, the second issue was
addressed by exploring several different mechaniants comparing their performance. This

latter work is the primary topic of this paper.

Two new tamper-resistance mechanisms were developeidition to pure crypto-paging.
These two new mechanisms were a direct result iafubke language approach. One of these
new mechanisms involves inter-twining of tamperedgon with the operation of the language:
it provides a new paradigm for amortizing signingsts that differs from that provided by



Merkle hash trees. The second new mechanism invatvadifying the crypto-pager to utilize
information about the activities of the languageplementation. This paper describes the
implementation of the language interpreter andtitvte new mechanisms. Relative performance
estimates are also obtained for those new mecharasohfor pure crypto-paging.

2 PRELIMINARIES: DEFINITIONS AND ASSUMPTIONS

2.1 Tamper-Resistance
The term “tamper-resistance” refers to two propstti

1. Detection: Any attempt to corrupt a computationriegr out by a program in the language
will be detected by the interpreter on-line beftre computation is materially affected, and
the computation will be aborted.

2. Futility: The cryptographic cost for successfulgntpering with a computation must be so
high as to make the effort essentially futile. Brétrce attacks on the signature are assumed
to be computationally infeasible. This is in linéwprior related work [12], which assumes
the adversary has limited computational power. rimfition theoretic bounds [1,4] are not
considered here.

Note that truly “tamper-proof’ computations areezgally unachievable because various denial-
of-service attacks are always possible. The hast foa example, always send random data to
the secure co-processor to trivially disrupt thenpatation.

2.2 Secure Co-Processor Capabilities

The co-processor need only have a modest amoucroputing power. Sufficient bandwidth
between the co-processor and the host’'s memoryowever, critical. A secure co-processor
such as the IBM 4758 [18], for example, can actesfiost memory at near bus speeds, and can
provide a suitable platform for implementing tampesistant languages.

The amount of memory on the co-processor is assutbebe fixed and not very large;
specifically it is assumed to be too small to exe@rbitrary programs written in the interpretive
language, which means that some amount of host myeisimecessary in order to compute the
programs. As is shown in Section 6.1, this hasitapbns for the design of the interpreter.

Superficially, the other obvious hardware choicgtmibe some form of SmartCard such as the
Java SmartCard [32]. To date, however, the bantivbdtween the card and the host has been
severely limited because of the historical use lofver serial protocols. As commercial
SmartCard interfaces evolve, the bandwidth willéase, and should soon reach the point where
they are feasible alternatives for this researdte primary point is that usable hardware exists
now and more will appear in the future.

2.3 Attack and Trust Assumptions

The critical trust assumption is that any valueptke the memory of the secure co-processor
cannot be directly read or modified by the untrdgiest. Thus the code and data on the secure
co-processor constitute the trusted computing bas¢he programming language interpreter.
The only assumed attack mechanism by which the ¢msttamper with a computation of the
secure co-processor is through the values therbtgins in response to read requests from the



secure co-processor. This research specificallg doé address the problem of physical attacks
against the secure co-processor.

2.4 Secure Co-Processor — Host Access Protocol

The complexity of the interface between the host i@ secure co-processor is limited by using
the following simple, language independent API.

- void read(Addr a, byte[] buffer) throws Error —Ifthe buffer with bytes starting at the
specified host address.

« void write(Addr a, byte[] buffer) throws Error — i@ contents of the buffer starting at the
specified host address.

« Addr alloc(int allocbytes) throws Error — allocatesequentially located bytes of new host
memory and return the address of the start ofrtfemhory.

« void release(Addr a, int len) — let the host reunlahe block of memory starting at the
specified address.

2.5 Confidentiality

In order to limit the scope of the problem, onle tissue of integrity was addressed in this
research; the issue of confidentiality was deferritddeems reasonable, however, to assume that
adding confidentiality is a straightforward apptioa of encryption to the values stored in the
host memory, although with some additional perfarogacosts.

2.6 Covert Channels

The existence of covert channels [20] is a possihilith the system proposed here. This is only
relevant in the case where code and data confalgntis being enforced. A client watching the

code execution sequence by the interpreter mayleeta infer information about the data that
the mobile code would rather not reveal. This i&n@wn hard problem, and this research
considers the issue out-of-scope.

2.7 Program Correctness

It is important to note that just because a progmramper-resistant does not mean that it is
correct. An incorrect program may still leak infation by its actions. Thus, various kinds of
program analysis tools [22,27] must be appliechtodode to provide assurances that it will not
leak information. This kind of analysis is not aglsked here.

2.8 Space Versus Time

The amount of host memory required for a givenrprited program varies depending on the
specific anti-tamper mechanism used. A semi-spackage collector, for example, doubles the
amount of required memory. Crypto-paging (Sectignrefuires extra memory to hold the
interior nodes of a Merkle hash tree. It is assuthed host memory is cheap and co-processor
memory is expensive. Time costs such as signingassemed to be the critical performance
metric. Thus, the amount of memory used by eachhareésm is essentially ignored in the
following discussions.



3 TAMPER-RESISTANCE MECHANISMS

The basic approach to a tamper-resistant languagkeimentation involves two elements. First,
the core mechanism for achieving tamper-resistamde cryptographically sign the run-time
data structures and code of the programming largggaghat any direct attempt to change them
can be detected by the interpreter. The signatucemputed using any reasonable one-way and
hard to invert hash function such as AES [25].

The second element of tamper-resistance is to pteeplay. Replay occurs when the content of
some memory cell has been written multiple timestly co-processor, and then the co-
processor asks the host for the current contethteotell. If the host is malicious, it can return
any of the values ever written in that cell, nadtjthe most recent, and the co-processor has no
way to detect that fact. Thus, the host may be é&bldisrupt the computation without being
detected. Note that signing (or even encrypting emory content alone will not prevent
replay. The focus, then, must be on preventingaseigning will suffice to cover other forms

of tampering.

The mechanisms used here to provide a tamperaesigtnguage implementation build on a
number of well-known existing techniques: two-leyelging and Merkle hash trees. A novel
capability that derives from the use of a prograngrianguage approach, however, exploits the
semantics of the language implementation to prowitiernatives that can improve upon these
existing techniques.

This paper explores three alternative mechanismariplementing language tamper-resistance.
These three are (1) crypto-paging, (2) semantiéagagsing Epochs, and (3) a combination of
crypto-paging plus semantic-paging. The term “sdrmograging” refers to the use of the
programming language semantics to inform the tarmgmstance mechanism.

All three mechanisms build on a two-level pagingdedo This model treats the co-processor’s
memory and the host’'s memory as a traditional ®vell memory controlled by paging. That is,
whenever a cell is read from the host’'s memory,whele page in which it resides is read into
the co-processor's memory. Traditional paging cacheorking sets, and page aging
algorithms [11] can be employed to avoid alwaysea&ding the host memory.

4 CRYPTO-PAGING

Crypto-paging [15,30] is a well-known and straigintfard approach to managing replay. In its
simplest form, each page in host memory has a soreling cryptographic signature stored in
the protected memory of the secure co-processoeffbtt, the co-processor stores the page
tables plus signatures for each page. Every reaa page is re-validated by computing the
signature and comparing it to the stored signat8imilarly, writing a modified page also
changes the protected signature. Note that reptaieqtion requires that the crypto-paging
system store all signatures in the secure co-psoceSince the page size may be larger than the
input block used by the hash function, chained lolbeashing may be used to compute a
signature for large pages.

This approach generally requires significant meninrthe co-processor to hold the pages and
their signatures. The memory usage can be variagsiong a Merkle hash tree [24] with varying

degrees of tree height. Minimal co-processor memsage occurs when the co-processor stores
only the root signature of the Merkle tree — plugw data pages. The most memory is used if



the tree is flattened completely, which correspotadshe simple case above where each host
page signature is kept in the co-processor mematgrmediate degrees of tree height use
intermediate amounts of memory. The cost, of cqussthat increased tree height increases the
average access time up to O(log(n)), where n isitileber of host memory pages.

Crypto-paging is non-semantic because the algordbsas not care why a given page is read or
written or in what order, nor does it track whattpaf the page are modified beyond the fact
that the page was modified at all. It is thus dentp implement and can be used for any purpose.

5 SEMANTIC PAGING USING EPOCHS

As part of this research, a new mechanism for yegédection was developed that exploited the
run-time semantics of the programming language, spetifically exploited run-time garbage-
collection.

This approach divides the whole computation inseres of periods (the epochs). The sequence
of epochs continues until the computation is cotepl€he key idea is that during an epoch, the
content of the host memory is never written moentbnce. This property is referred to as write-
once-per-epoch. During the move from one epockhé&next the host memory is garbage
collected and the next epoch begins.

The epoch approach is interesting because it aresrthe costs for preventing replay in a way
that is different than Merkle-based crypto-pagihbe crypto-paging approach pays the cost of
managing replay every time the memory is writtantHe epoch approach, all of that cost is
delayed until the end of the epoch. The epoch mddels, however, require some kind of
periodic memory reorganization to be part of thglaage runtime.

6 TAMPER-RESISTANT LISP 1.5

In order to make the semantic paging approach etaca specific language — Lisp 1.5 — was
chosen as the target. It was chosen primarily t®rsimplicity and to demonstrate proof-of-
concept. Lisp provides a simple, usable, and campssmguage. It has a small interpreter [23]
that can easily be implemented on a secure co-psocewith limited resources. Equally
important, Lisp uses lists as its only data stmetboth for programs and for data; hence tamper
detection can be applied to both code and data matextra effort. Thus Lisp provides a good
platform for exploring issues in tamper-resistamguage systems.

This paper assumes familiarity with the Lisp 1.Bgaage and its implementation. A complete
review of the language and its original implemdotatis available in the “Lisp 1.5
Programmer’s Manual” [23] by John McCarthy et al.

Briefly reviewing, Lisp provides a single data stiwre: lists. Lists are used to represent all data
structures. They are also used to represent Lisgr@ams. These lists are composed of cells
linked via pointers. A standard Lisp cell consistghree fields: (1)xar and (2)cdr, which are
pointers to other cells, and (3)flags field indicating properties of the cell. Traditalty, the
“list” is considered to be the set of cells reactwdfollowing thecdr pointers. Cells reached
through thecar pointer are often referred to as “sublists”. Cydists are allowed, as are lists
with common sublists.

The flags are used to identify specialized clas$eglls, including the following.



« Atoms — an atom cell is the head of a specializgtdstructure representing an atomic (i.e.
non-list) value.

« Number — a subclass of Atoms indicating that tkisleolds a numeric value.
« Free —this cell is unused and can be claimed &gdims operator.

To simplify the Lisp interpreter in the co-procesdbe following cell-oriented operations were
implemented on top of the host-interface operatimted in Section 2.4.

- public void readCell(Addr a, Cell ¢) throws Erroread cell at the specified address.
« public void writeCell(Addr a, Cell c¢) throws Errerwrite cell at the specified address.

6.1 Interpreter Organization

The Lisp interpreter that executes on the securpracessor is designed to use a strictly
bounded amount of co-processor memory. This reflgioe limited size and memory of the
secure co-processor. This poses problems whendbheded interpreter must execute a Lisp
function that may be recursive and may requireaaksof arbitrary depth. The solution we adopt
here is to implement the interpreter using a camiilon-based architecture [26]. Simplifying, the
interpreter consists of a loop that removes the dopon off of the continuation stack. It
decomposes that action into a bounded part andhaimeer part. It pushes the remainder part
back onto the continuation stack and executes ¢lwaded part. This cycle continues until the
continuation stack is empty. For a descriptionha practical use of continuations, refer to the
Scheme programming language [31].

As the interpreter performs its computations, ibduces intermediate results. The reverse
function for example accumulates the reverse $st walks the original list. These intermediate
results must be visible to the garbage collectahab they will not be marked as unused. This is
accomplished by forcing the interpreter code to aistack of cell pointers in host memory for
saving its intermediate results. This is simplifledproviding a macro system for Java that hides
the saved-value stack.

The page cache page size is defined to be songrahteumber of Lisp cells. The cache then
keeps some fixed number of pages. The page repéatestgorithm is essentially LRU except
when otherwise dictated by semantic informationsT$& more or less an arbitrary choice since
good algorithms for Lisp are difficult to define.

7 SEMANTIC TAMPER-DETECTION FOR LISP

The semantic tamper-detection mechanism explogsémantics of Lisp and its implementation
in order to detect tampering. In this model, eaeh ltas asignaturefield in addition to itscar,
cdr, andflags fields. Thesignaturefield of a cell is a computed cryptographic haghthe
ordered concatenation of the following components:

« Cell content — thear, cdr, andflagsfields (also concatenated),
« Cell address — the address from which the cellnead,
« Secret key — a key known only to the secure coge®sar and recomputed periodically.



Whenever a cell is read from the host, the sigeaisirecomputed and if it matches the stored
signature, then it is assumed that ta, cdr, andflag fields are valid. This provides basic
protection against synthetic attacks.

Replay detection is implemented using epochs. Theevcomputation (the program execution)
is divided into epochs. The secret key used inatigre computations is associated with epochs
and is recomputed at the end of each epoch. Theeseg of epochs continues until the
computation is complete.

Replay is prevented within an epoch by enforciregwhite-once-per-epoch property. This means
that during an epoch, any given cell in the hosmawy will be written at most once. This
property is enforced by the fact that the only mgmwriting that can occur within an epoch is
through the CONS operator, which is defined to gbsstore its result in a newly allocated cell.

Within an epoch, a cell will hold at most two vatuas its content. For cells that are already
allocated at the beginning of the epoch, their eointvill never change. For cells that are initially

unallocated, their initial content is a specialueal At the time of allocation, such cells will be

written with the second value. Thus for any cedfle tonly possible replay attacks are the
following:

1. Replay the cell content from another epoch,
2. Replay the content of some other cell in the sapoele,
3. Replay the content of an allocated cell as it wasmunallocated.

Since the signature includes the cell addresslané@poch key, cases 1 and 2 can be detected by
failure to validate the signature when the celtaad from the host processor. Case 3 will be
detected by the presence of a FREE flag, which atanccur when reading a cell reachable by
any pointer. Thus the only cell value that an &gacan return is the correct value of the cell as
written (once) during the epoch.

The write-once property has some consequenceartrcular, it disallows use of traditional

extensions to Lisp such as REPLACA, REPLACD, an®BRbecause they support direct cell
modifications. Write-once does not prevent lambutaing (using an ALIST) and SETQ (using
an APVAL list) since new bindings at the front detlist will override older bindings further

down the list.

8 EPOCH TRANSITION BY GARBAGE COLLECTION

The transition from one epoch to the next is tiedyarbage collection. Garbage collection is
expected to have two specific effects upon its detign.

1. All unreachable cells have been marked as free.

2. All cell signatures (reachable and unreachableeHasen re-keyed based on a new secret
epoch key.

The garbage collection phase violates the writeeqrer-epoch assumption and so it offers
significant opportunities for tampering. Replayaaks are especially tempting because each cell
may be written several times. The next sectionsudis how to maintain replay protection during
garbage collection.



The following discussion first addresses the gdnapproach to detecting tampering during
garbage collection. Familiarity is assumed with ¢benmon approaches to garbage collection in
which the collection activity is isolated into angie phase for which special anti-tampering
mechanisms can be used. In Section 10 a generibamisn is defined for two pass collectors
that provides a simple test for tampering. Then d¢le@eric mechanism is extended to two
specific collectors: mark-and-sweep (Section 11) semi-space (Section 12).

9 TAMPER-DETECTING GARBAGE COLLECTION

The tamper-detection goals for garbage collectrertlaree-fold:

1. Immediately detect attempts to modify a cell’s emit(synthetic attacks);
2. Immediately detect replays that may cause garbaligcton to fail;

3. Detect all other replays no later than the endaobage collection.

A bounded amount of replay can be allowed to o@utong as it does not corrupt garbage
collection. In any case (goal 3) all replays muwesttected before normal computation resumes.

The first goal is easily met if cells continue te §igned every time they are written to the host
memory. Again assuming that the hash function sl @ invert, attempts to modify a cell’s
content will fail. At the start of each garbagelecdiion, a new secret epoch key is computed.
During garbage collection the signature field isorputed every time a cell is modified. The
specific epoch key, new or old, is chosen basetthestep in the marking phase.

- During the mark phase, the cell is re-written usimgnew epoch key.

« When reading a cell, it is verified using the olgoeh key if the cell appears unmarked.
Otherwise, it is verified using the new epoch key.

- During the sweep phase, each cell is read in tod) based on its content, is either ignored
or marked as unallocated. Verification of the canhtef the cell depends on the flags
associated with the cell. If the cell appears toubenarked then its signature is validated
using the old epoch key. If valid, then the cellesritten with a flag indicating that it is free.
The signature field of the free cell is computethgghe revised content and using the new
epoch key.

- If the cell appears to be marked, then its sigmatsivalidated using the new epoch key and
otherwise it is left untouched.

The claim is that at the end of garbage collectexery cell is either flagged as unallocated or
has been marked. In both cases, the cell haseegigned using the new epoch key. At this
point, the next epoch starts and computation resume

Goal 2 is garbage-collector specific. Goal 3 capiowided in a manner partially independent of
the garbage collector.

10 COLLECTOR INDEPENDENT SEMANTIC REPLAY DETECTION

Many collectors have two phases: (1) a mark phiesewalk and mark all allocated cells) and
(2) a sweep phase (for cleanup). For such collecibis possible to collect information that will
reveal the occurrence of replay.



During the mark phase, a malicious host has théyatm return two classes of values when any
cell is read. It may return the original, unmarkedue, or it may return some marked value
stored during the mark phase.

Suppose our collector counts the following inforimiat

* M, — the number of cells marked during the mark phase
* Mg — the number of marked cells read during the svpbage.
If no malicious actions occur, then,M Ms.

If during the mark phase, a malicious host retuhesunmarked value for a cell that has already
been marked, then the effect is to increase thebeuwf apparently marked cells {Mbecause
the mark phase will attempt to mark every celedds that is unmarked. Note that the malicious
host can not increase the actual number of marle#ld because this would require that it
synthesize a cell with the mark flag set. So dutlmgmark phase, the number of cells marked
(Mm) can be greater than the actual number, but Hesgr

Analogously during the sweep phase, the malicionst kban also replay the initial unmarked
value of a cell. In this case, however, the effedb decrease the number of apparently marked
cells (My) seen by the sweep phase. The host cannot indlfeasember of marked cells because
it cannot synthesize a cell with the mark flag set.

The net effect is that if replay occurs, then thieofving must true:
My > Mpand My < Mg=>Ms < M’

where M, and M represent the number of marked cells detectezgplfy did not occur, and M
and M/ represent the number of marked cells detecteehpifay occurred.

It should be the case thats® M. This means that it is possible to detect almbseplays by
counting M, and M, and if they differ, then replay must have occuraed the computation can
be aborted. This solves goal 3 above.

The following two sections describe the detail@dfiressing goals 2 and 3 for mark-and-sweep
and semi-space garbage collectors.

11 MARK-AND-SWEEP GARBAGE COLLECTION

The mark phase is assumed to use the Schorr-Wagdathm [29]. This algorithm is used here
because it avoids the need for a separate statlaviirses the graph of cells reachable from a
defined set of root pointers kept in the securg@mmessor. As it performs its depth-first walk,
this algorithm temporarily reverses the list stametof the lists on the current path of the walk.
As each cell is first reached, it is marked angigged using the new epoch key. At the end of
the traversal all reachable cells have been toueamedre-written. Since they have been re-
signed using the new epoch key, they have effdgtiveen moved into the new epoch. A given
path ends when it encounters an atom or encouategsdl that has already been marked. This
latter case can occur either because some cellsomagachable by more than one path during
the walk or because the list is cyclic.

During the marking process, a cell can be in onewf states.



(1) Unmarked — any cell not yet reached during mmarkvill be in the just completed epoch and
no garbage collector related flags will have besrirsthe cell.

(2,3) Car or Cdr Chaining — some cells on the current depth-fighpwill have theircar or cdr
fields reversed and will have a flag set to indiécidiat fact. In addition, such a cell will have its
MARK flag set.

(4) Complete — any cell for whiatar andcdr chaining is completed; the MARK flag is set.

After marking is completed, the sweep phase exasranery cell in the sequential order defined
by its memory address. If the cell is unmarkednthes unused, and it is marked as a free cell
and is linked to a freelist. In order to avoid am®l sweep to reset the mark bits, the secure co-
processor just inverts the sense of the mark hibabin the next garbage collection, all cells wil
be considered unmarked.

11.1 Replay Attacks Against Mark-and-Sweep

Whenever a cell is read from the host memory dueitber the mark or sweep phases, a
malicious host has the option of providing a repddyany of the four values stored in that cell
during garbage collection.

1. It can replay the correct content of the cell.
2. It can replay the content of the cell as it was mvimvolved incdr chaining orcar chaining.
3. It can replay the content of the cell as it waobefarbage collection began.

Obviously Case 1 causes no problem. Case 3 is sg#tteby the generic tamper-detection
described in Section 10. Note that the garbageeciolt will happily re-mark a cell if it comes
from replaying an old, unmarked cell. This will ¢mie as long as the host replays unmarked
cell values, possibly forever. This re-marking bself causes no harm because marking is an
idempotent operation and hence satisfies our gé@n2 Section 9.

In order for case 3 to cause infinite looping,asho continue to feed unmarked cells, which can
only occur if there is a cyclic list structure. $hdase can be detected by simply keeping a count
of the number of cells that are marked. If thisrdoreaches the total size of allocated memory,
then marking stops and replay is signaled.

Case 2 can only usefully occur during the mark phsecause the sweep phase does not use the
car andcdr chaining flags. Even during the marking phaseseheases can only occur when it
possible to reach a cell by more than one pathnincase, if the host provides case 2 replay then
this can cause no difficulties because the marl flall be set and will cause the garbage
collector to properly stop its marking and backaa new depth-first path

12 SEMI-SPACE GARBAGE COLLECTION

In order to demonstrate the generality of the seémapproach, it was applied to a second form
of garbage collector, namely the semi-space garbatiector. A semi-space collector divides
the available memory into two equal (sub-)memoriés.any point in time, new cells are
allocated from one of the two memories. When themaory is exhausted, all active cells are
copied and compacted into the other — target — mgnide part of that memory not used by
active cells is then available for allocating neslis



The compaction algorithm is based on using a brefadt walk of the active cells. The target

memory is used as a queue for holding intermediedalts during the walk. As each cell is
moved to the target memory, its old location igeexitten to provide a forward pointer to its

new location. During the walk, any reference entergd that points to a forwarding value is
replaced by the forward address. Forwarding iscaieéid by using the mark bit and storing the
forward pointer in thear field.

Normally, semi-space collection does not requirsweeep phase. In order to detect replay,
however, it is necessary to walk the abandonedespaget a count of the actual number of
marked cells. This allows the application of theepgc tamper-detection rule of Section 10. It
thus represents an overhead stemming purely fremeled to avoid replay.

12.1 Replay Attacks Against Semi-Space Collection

Whenever a cell is read from the host memory dueitger the mark or sweep phases, a
malicious host has the option of providing a reptdyany of three values during garbage
collection.

1. It can return the correct contents of the cell.

2. It can return an enqueued cell from the target migmagth its originalcar andcdr values
instead of the forwarded values.

3. It can return the unforwarded contents from theentrmemory instead of the forwarded
contents.

Case 1 is not a problem. Case 2 cannot actuallyrdmmcause an enqueued cell will be read only
once when it is at the front of the queue henceetiell be no replay opportunity. It will be
written once immediately after.

If case 3 occurs, then the collector will enqudue dell two (or more) times. There is a limit to
this process since it will eventually fill all ohe target space, at which point replay can be
signaled. The most difficult situation occurs ietreplay is carried out some small finite number
of times. It means that each copy may have celistipg to it. Again, this will not cause the
collector to fail (goal 2), but it will obviouslyatise an inconsistency in the target memory.

The following steps will detect this inconsisteratythe end of collection.
1. During mark phase, the number of forwarded celtisnted.

2. After enqueuing is completed, a second pass is meelethe just abandoned space to obtain
a separate count of the number of forwarded cHElihe two counts differ, then we have
tampering because of case 2.

This works because we are applying our generic éardetection rule (Section 10).

Tampering during the mark phase can increase tharapt number of forwarded (i.e..})icells,

but can never decrease it. The second sweep ftreegmmpering host to decide what value to
report for each cell. If it reports a truly forwad cell as not forwarded then this decreases the
count of forwarded cells (M1 but can never increase it. If the two countsadifiMs < Mp,) then
tampering has occurred.



13 SEMANTIC CRYPTO-PAGING

The second new mechanism for implementing tampesteence combines crypto-paging with
the semantic approach. This approach informs tlgpt@ipager that the language system is
performing various operations that can help th@toypager to avoid unnecessary cryptographic
operations and can cause the pager to performi@ualiactions as it operates.

For this research, two optimizations were used.

- Re-keying: Re-keying is essential to tamper dataedbecause it reduces the period of time in
which an attacker can attempt to break the crypfolgc signature. This is especially
important when using short signatures to save mgmohe pure semantic approach
naturally incorporates re-keying as part of theobpimansition process. Re-keying with pure
crypto-paging requires a separate periodic pass meeory. The semantic crypto-paging
approach modifies the crypto-pager to so that itaisare of when the language
implementation is about to perform a garbage cttlac This tells the pager that a sweep of
memory is about to occur and that it can carryretkeying as the sweep occurs. Thus, the
extra sweep is avoided.

- Abandonment: This optimization is specific to comripay collectors. The pager is informed
that some portion of memory no longer contains rimfation of interest. During the next
collection cycle, the pager can use a form of “zemeread” to avoid computing a signature
for a page from the abandoned space.

An additional look-ahead optimization is possiblbe pager can be informed that the garbage
collector is about to perform a linear sweep of s@action of memory. The pager can utilize
parallelism to reduce the page loading time. Tladigular optimization was not implemented
because the simulator does not support parallelismvould, however, be a high payoff
optimization when using a real secure co-processor.

14 PERFORMANCE MEASUREMENTS

Access to a real secure co-processor turned oubra practical for cost reasons, so processor-
based timing measurements were not possible. @mative taken was to run the interpreter

and capture the count of three operations undeageemption that the time for any real system
would be dominated by these operations.

« The number of pages read from host memory,
- The number of pages written to host memory, and

« The number of hash functions computed; for blocauuimg, the total number of hash
computations was counted.

Converting these number to real time values isiatiff because it depends on at least the
assumed times for signing, the bandwidth betweertst and the co-processor and the speed of
the co-processor.

The goal for the performance experiments was terdehe the relative performance of the three
tamper-resistance mechanisms. To test this, a tarapistant Lisp implementation was written
in Java 1.5 and a number of experiments were wselthain performance information.

A number of variables can affect performance fog flystem.



« Pager + Page cache size « Total memory size

« Test algorithm « Signature cache size Page size

« Available cells + Cells/page « Number of garbage collections
- Garbage Collector. Cell size « Compact

In order to compare the pager algorithms, it wasessary to fix various values in a way that
allowed meaningful comparison. It was decided #ihtpagers should operate with the same
number of cells per page and the same number dableacells, where available cells refers to
the space of free cells. This meant that the ttadunt of memory and/or cell sizes would differ
between pagers. Semantic paging, for example, waoadda larger cell size, while crypto-paging
would have additional space for the Merkle hash.t&emispace collection would actually have
twice the total space of marksweep. However ircales, the cells per page and the available
cells would be constant for all pagers. This iine with the assumption (Section 2.8) that space
on the host processor is not a primary cost. Ieiota further simplify the state space, two other
variables were held constant; the page cache simefiwed at eight pages, and the signature
cache size was fixed at two pages. Of course,dtterlonly was relevant when crypto-paging
was being used.

14.1 Experiment 1

The goal of this experiment was to test the garbagkector performance on large random
graphs. A special program was constructed thatdcoahdomly synthesize graphs of varying
depth, width and total number of cells. In all cgdbe graph was constructed to consume 80%
of available cells. The random graph could eithercbnstructed as “compact” or “scattered”.
Compact means that the nodes of the graph areatdldin consecutive memory cells. Scattered
means that the graph cell locations are choseromalyd so that nodes linked together are not
necessarily close together physically.

Figures 1a and 1b demonstrate the performance désmwaep versus semispace collection on
the random graph when compact is true. The x-axisbbth graphs is the number of cells
divided by 1024, so the graph runs from 4096 to6823vailable cells. The y-axis is the number
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of signatures divided by 1000, so it ran from G@®,000 signings. In Figure 1a, it can be seen
that both crypto-paging and semantic crypto-pagiagformed better than semantic paging by
almost a factor of three. When semispace was usgdré 1b), the cost of semantic paging was
only slightly more than in Figure la. The performanof the crypto-pagers deteriorated

significantly and was worse than semantic paging bgctor of 1.5.

In order to test the effect of cells per page,tdst used in Figure 1a was also run with double the
cells-per-page and using a compact graph. Thisass in Figure 1c. The two graphs are more
or less identical, which indicated that cells-page was not a major factor for this experiment.

A fourth test (Figure 1d) demonstrated the effdctampact versus scattered. It repeated the
experiment in Figure 1a but using a scattered gedlplsation. Again, semantic paging changed

slightly, but crypto-paging deteriorated substdhtiarhis is because of the random allocation.

When the semantic pager reads a page, it will sigg those cells in the page that it touches.
Crypto-paging must re-sign the whole page. If teecpntage of cells of interest is small, as it

should be using scatter, then crypto-paging requsignificantly more signing overhead.

14.2 Experiment 2

The goal of experiment 2 was to test the three mr@sms against the two garbage collection
algorithms on an actual Lisp program. The prograwsen was the Wang theorem prover from
the Lisp 1.5 manual [23]. Executing the prover odimknot exercise the collectors sufficiently.

So the program was executed multiple times ungtexdefined number of garbage collections
had occurred.

Figure 2a shows the cost using marksweep. Crypgoigaout-performed semantic paging by a
factor of two and semantic crypto-paging out-perfed pure crypto-paging by about 10%.
Figure 2b shows the cost using semispace. Noten dgat semantic paging costs changed the
least, while the two crypto-pagers generally penied worse than semantic paging. Note that the
semantic crypto-paging line is almost flat and ubstantially better than pure crypto-paging,
especially compared to Figure 2a. This is a cleamahstration of the effects of the
optimizations described in Section 13. Pure crygaging is forced to sign pages read from the
abandoned space. In addition, it must re-key thed space, which is more than twice the size of
available memory. The second interesting measuremséghat semantic paging performs well.
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The reason is that the average number of cells peaghage varies by nearly a factor of two
between Figure 2a and Figure 2b. For example ediagt data point the number of cells read is 6
for crypto-paging in Figure 2a and is 2 for crypiaging in Figure 2b. Crypto-paging is sensitive
to this value because the lower the number, theem@sted signings are performed by crypto-

paging. Semantic paging is much less affected isynthmber, hence the difference between the
graphs.

14.3 Experiment 3

The goal of experiment 3 was to test the effectvafying the number of cells per page.
Experiment 1 indicated that it had little effect timle compact random graph case. Here the
theorem prover was used as the test program, anhainksweep collector was used. Figures 2a,
3a, and 3b show this test when the cells-per-ped®,i 32, or 64 respectively. The effect seems
clear: semantic paging costs are essentially constaflecting the fact that it only touches
interesting cells. The cost for the crypto-pagarseases as the cells per page increases. This is
because they must pay the price of signing the evhatje independent of how much of the page
is of interest. Again, as with the other experilsesemantic crypto-paging always out-performs
pure crypto-paging.
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14.4 Performance Summary

The experiments indicate that the when the datagb&tcessed has a high locality of reference,
then the crypto-pagers will probably out-perforre #emantic pager. But when the data is more
randomly distributed across memory, then semardiging may be better than either of the
crypto-pagers. Perhaps not surprisingly, combinsegnantic knowledge with crypto-paging
produced a mechanism that performed better tham gypto-paging in all cases.

15 RELATED WORK

Currently, there are two primary approaches to eawthg trusted computing in an untrusted
environment: software-only approaches based onschfion and approaches based on hardware.

The software-only solutions to tamper-resistanechased on obfuscation [6-9,28,36]. The idea
is to modify the code of an application in suchaywas to prevent an untrusted software program
from analyzing the actions of the trusted softw@e@ecent theoretical result [3] casts doubt on
the generality of this approach, and indicates tdmahpletely general software-only solutions
may be impossible. This should not be read as imglthat obfuscation is not useful. Rather it
means that such approaches must address themtiong with respect to, for example, the time
it would take to break the obfuscation. A suffidlgniong period may be good enough for
practical purposes.

Obfuscation techniques have so far focused solelyrotecting the code and making hard for an
attacker to reverse engineer it. With one excepf®ln however, it does not appear as if
obfuscation has been applied to data structures ftue that obfuscating the code, by re-
ordering for example, may affect the order in whilsh data structure is constructed, but it will
not affect the final shape of the data structuit@is Teaves such structures open to attack. The
programming language approach addresses this pmoliecause all of the anti-tamper
mechanisms can be applied to data as well as code.

A variety of hardware solutions have been propdaed in some cases implemented) that are at
least tangentially related to this proposal. Entoypof bus traffic [19,21,34] or encryption of
memory contents [35] has been proposed to preweme &inds of tampering. Its advantage is, of
course, that it is implemented in hardware andasoahperformance advantage. Its disadvantages
are (1) it invokes encryption all the time ratheart only when needed, and (2) by itself it does
not address the replay problem, although it mgyactice make effective replay difficult.

An alternative [15] has been proposed that implémarMerkle hash tree [24] in hardware. The
leaves are the available pages of the host merimgept for the root, the nodes of the Merkle
tree are also kept in host memory, which represantanavoidable memory overhead. Merkle
memory can be implemented with specialized hardfarsigning and memory retrieval, which
could provide a significant speed advantage oveeroapproaches. This approach addresses
replay, but again uses encryption or signing evéerwnot required. Further, the language-
specific semantic optimizations used in this paj@emot be implemented.

Another solution involves executing the trusted eadholly within the secure co-processor’s
memory. This is the typical solution used with shtards. JavaCard [32], for example, provides
a version of Java in which code and data resideegnbn the smart card. The obvious problem
is that the resources of the smart card are lingtedpared to those of the host. Over time, this
limitation will become less important. Another issis complexity. Executing multiple pieces of



trusted code requires some form of operating sysée requires isolation of the various pieces
of code from each other. This introduces significamplexity into the smart card and in effect
repeats the untrusted environment problem at aréift level.

The approach proposed in this paper and in priak\b7], was directly inspired by the prior
work in tamper-resistant data structures. Thesetstres and implementing code are stored in
the host's memory and have the property that atgmgat by the host to tamper with the data
structure will be detected. Examples of such datactures include random-access memory [4],
simple linear lists [1,4], and stacks and queue24

The language approach has several advantages ahtpahe data structure approach.

« It is more general since any data structure thatbmimplemented in the language can be
used.

« It hides the complexity of tamper-detection.

« It reduces and simplifies the code that must resid¢he host processor; the only required
code is that necessary to allow the secure co-psocdo read and write the host's memory
and to request the allocation of blocks of the 'sasemory.

Using the language approach makes it easier totromhsprograms that can safely avail
themselves of untrustworthy host memory.

16 FUTURE WORK

The most important next step is to re-implemens #ystem using a real secure co-processor.
This will provide additional information about perfmance which should lead to additional
research into improving that performance.

Further research into combinations of mechanismalde clearly warranted. One interesting
target is to utilize the different access patteohscode and data. Most interpreters produce
separate code segments containing byte-codes. i§hell5 interpreter used here did not do that.
Since code is generally read-only, it may be db&réo apply simpler anti-tamper mechanisms
to the code and reserve the more comprehensiveamisohs for modifiable data.

This research is part of a larger program to fiogeh uses for secure hardware. The clear cost
with the solution proposed here is that it requiksnts to have a secure co-processor attached
to the client host. But less costly alternativiesécure co-processors are possible.

New multi-core versions of processor chips will sd@ available. Dedicating one of these cores
to security will become an option, especially whethe Trusted Computing
Association (TCP) [2,5] standard also becomes utugs. It appears feasible to use these new
chips to achieve the equivalent of a co-procesest/bombination by using one processor in a
multi-core processor configuration as a surrogateife secure co-processor.

SmartCard technology continues to progress. Evéntitawill reach a point where it can also
serve as an alternative to secure co-processotiBddrasis for this research.

Finally, a new version of the tamper-resistant laage system is being designed that supports a
more traditional programming language such as &apas[33]. This will introduce new
opportunities to explore additional semantic optiaions for tamper-resistance.



17 SUMMARY

This paper demonstrates a novel approach to achiested computing in an untrusted

environment using a tamper-detection programminguage implementation plus a secure co-
processor. This solution is simple to use and regwnly a limited set of primitives to define the
interface between the host and the co-processor.

Three mechanisms were used to support the tamgistaiece. One is crypto-paging (based on
Merkle hash trees). The second and third approagkes developed directly as a result of using
the programming language approach. The first, émeasitic approach, utilized the semantics of
the programming language implementation. The seaemdapproach extended crypto-paging to
utilize knowledge of the language system to aveidacessary operations.

All three mechanisms were implemented for an imttgy for the Lisp 1.5 programming
language. Simulated performance experiments demabedtthat the pure semantic approach
performs best when data is randomly distributed tlve host memory. The crypto-pagers were
better when there was significant locality of refeze. In all cases, the semantic crypto-pager
out-performed the pure crypto-pager.
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