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Abstract: An important and recurring security scenario involves the need to carry out trusted 
computations in the context of untrusted environments. It is shown how a tamper-resistant 
interpreter for a programming language – currently Lisp 1.5 – combined with the use of a secure 
co-processor can address this problem. This solution executes the interpreter on the secure co-
processor while the code and data of the program reside in the larger memory of an associated 
untrusted host. This allows the co-processor to utilize the host’s memory without fear of 
tampering even by a hostile host. This approach has several advantages including ease of use, 
and the ability to provide tamper-resistance for any program that can be constructed using the 
language.  The language approach enabled the development of two novel mechanisms for 
implementing tamper-resistance. These mechanisms provide alternatives to pure Merkle hash 
trees. Simulated relative performance of the various mechanisms is provided and shows the 
relative merits of each mechanism. 
 



1 INTRODUCTION: COMPUTING IN A HOSTILE ENVIRONMENT 
An important and recurring security scenario involves the need to carry out trusted computations 
in the context of untrusted environments. This problem recurs in a number of contexts. It is 
desirable, for example, for mobile agents [13,14,28] to act as surrogates for humans and for those 
agents to be able to engage in sensitive actions such as credit card transactions. The mobile agent 
is executing on a remote host, and the owner of that host, if malicious, may attempt to tamper 
with the operation of that agent. Another example involves operation of security infrastructure 
such as an intrusion detection system [10,16]. It is likely that this infrastructure executes in part 
on a host that is subject to external attack. The security infrastructure is therefore also subject to 
attack, and may in fact represent a high profile target for external attacks. For these and other 
scenarios, executing trusted code in an untrusted environment is an important capability. 

One promising approach to trusted execution is to combine a trusted secure co-
processor [19,37,38] with an untrusted host computer. The secure co-processor establishes the 
environment in which to perform trusted computations, while the insecure host provides memory 
(and other) resources that may be used by the trusted processor. There is no guarantee, however, 
that the host will not tamper with the content of its memory in an attempt to corrupt the operation 
of the secure co-processor. The problem to be solved in this context is to allow the co-processor 
to easily use the host’s memory while still being able to detect attempts by the host to tamper 
with the co-processor’s utilization of that memory. 

This paper demonstrates a novel solution to the untrusted environment problem by combining a 
programming language approach and a secure co-processor to provide a convenient and general 
mechanism for tamper-resistant utilization of the memory of an untrusted host.  In this approach, 
an interpreter for the language executes on the co-processor, and the interpreted program and 
associated data reside on the untrusted host. The key concept is that tamper-resistance is built 
into the language interpreter’s implementation. 

The language approach has several positive characteristics. Programmers do not have to worry 
about the problem of tampering because a solution is built into the language implementation and 
is inherited by all programs executed by the language interpreter. This solution also reduces and 
simplifies the code that must reside on the host processor.  The only required code is that 
necessary to allow the secure co-processor to read and write the host’s memory and to manage 
the allocation of blocks of the host’s memory. The use of a simplified and common host interface 
also allows the use of multiple co-processors and the use of multiple languages. Thus using the 
language approach, it should be easier to construct programs that can safely avail themselves of 
untrusted host memory. 

Two issues arise for this research: (1) can it be implemented and (2) what is the most effective 
mechanism for achieving tamper-resistance. The first issue was addressed by doing a proof of 
concept implementation [17] (Section 6). With the feasibility established, the second issue was 
addressed by exploring several different mechanisms and comparing their performance. This 
latter work is the primary topic of this paper. 

Two new tamper-resistance mechanisms were developed in addition to pure crypto-paging. 
These two new mechanisms were a direct result of using the language approach. One of these 
new mechanisms involves inter-twining of tamper-detection with the operation of the language: 
it provides a new paradigm for amortizing signing costs that differs from that provided by 



Merkle hash trees. The second new mechanism involves modifying the crypto-pager to utilize 
information about the activities of the language implementation. This paper describes the 
implementation of the language interpreter and the two new mechanisms. Relative performance 
estimates are also obtained for those new mechanisms and for pure crypto-paging. 

2 PRELIMINARIES: DEFINITIONS AND ASSUMPTIONS 

2.1 Tamper-Resistance 

The term “tamper-resistance” refers to two properties. 

1. Detection: Any attempt to corrupt a computation carried out by a program in the language 
will be detected by the interpreter on-line before the computation is materially affected, and 
the computation will be aborted. 

2. Futility: The cryptographic cost for successfully tampering with a computation must be so 
high as to make the effort essentially futile. Brute force attacks on the signature are assumed 
to be computationally infeasible. This is in line with prior related work [12], which assumes 
the adversary has limited computational power. Information theoretic bounds [1,4] are not 
considered here. 

Note that truly “tamper-proof” computations are essentially unachievable because various denial-
of-service attacks are always possible. The host can, for example, always send random data to 
the secure co-processor to trivially disrupt the computation. 

2.2 Secure Co-Processor Capabilities 

The co-processor need only have a modest amount of computing power. Sufficient bandwidth 
between the co-processor and the host’s memory is, however, critical. A secure co-processor 
such as the IBM 4758 [18], for example, can access the host memory at near bus speeds, and can 
provide a suitable platform for implementing tamper-resistant languages. 

The amount of memory on the co-processor is assumed to be fixed and not very large; 
specifically it is assumed to be too small to execute arbitrary programs written in the interpretive 
language, which means that some amount of host memory is necessary in order to compute the 
programs. As is shown in Section 6.1, this has implications for the design of the interpreter. 

Superficially, the other obvious hardware choice might be some form of SmartCard such as the 
Java SmartCard [32]. To date, however, the bandwidth between the card and the host has been 
severely limited because of the historical use of slower serial protocols. As commercial 
SmartCard interfaces evolve, the bandwidth will increase, and should soon reach the point where 
they are feasible alternatives for this research. The primary point is that usable hardware exists 
now and more will appear in the future. 

2.3 Attack and Trust Assumptions 

The critical trust assumption is that any values kept in the memory of the secure co-processor 
cannot be directly read or modified by the untrusted host. Thus the code and data on the secure 
co-processor constitute the trusted computing base for the programming language interpreter. 
The only assumed attack mechanism by which the host can tamper with a computation of the 
secure co-processor is through the values the host returns in response to read requests from the 



secure co-processor. This research specifically does not address the problem of physical attacks 
against the secure co-processor. 

2.4 Secure Co-Processor – Host Access Protocol 

The complexity of the interface between the host and the secure co-processor is limited by using 
the following simple, language independent API. 

• void read(Addr a, byte[] buffer) throws Error – fill the buffer with bytes starting at the 
specified host address. 

• void write(Addr a, byte[] buffer) throws Error – write contents of the buffer starting at the 
specified host address. 

• Addr alloc(int allocbytes) throws Error – allocate n sequentially located bytes of new host 
memory and return the address of the start of that memory. 

• void release(Addr a, int len) – let the host reclaim the block of memory starting at the 
specified address. 

2.5 Confidentiality 

In order to limit the scope of the problem, only the issue of integrity was addressed in this 
research; the issue of confidentiality was deferred.  It seems reasonable, however, to assume that 
adding confidentiality is a straightforward application of encryption to the values stored in the 
host memory, although with some additional performance costs. 

2.6  Covert Channels 

The existence of covert channels [20] is a possibility with the system proposed here. This is only 
relevant in the case where code and data confidentiality is being enforced. A client watching the 
code execution sequence by the interpreter may be able to infer information about the data that 
the mobile code would rather not reveal. This is a known hard problem, and this research 
considers the issue out-of-scope. 

2.7 Program Correctness 

It is important to note that just because a program is tamper-resistant does not mean that it is 
correct. An incorrect program may still leak information by its actions. Thus, various kinds of 
program analysis tools [22,27] must be applied to the code to provide assurances that it will not 
leak information. This kind of analysis is not addressed here. 

2.8 Space Versus Time 

The amount of host memory required for a given interpreted program varies depending on the 
specific anti-tamper mechanism used. A semi-space garbage collector, for example, doubles the 
amount of required memory. Crypto-paging (Section 4) requires extra memory to hold the 
interior nodes of a Merkle hash tree. It is assumed that host memory is cheap and co-processor 
memory is expensive. Time costs such as signing are assumed to be the critical performance 
metric. Thus, the amount of memory used by each mechanism is essentially ignored in the 
following discussions. 



3 TAMPER-RESISTANCE MECHANISMS 
The basic approach to a tamper-resistant language implementation involves two elements. First, 
the core mechanism for achieving tamper-resistance is to cryptographically sign the run-time 
data structures and code of the programming language so that any direct attempt to change them 
can be detected by the interpreter. The signature is computed using any reasonable one-way and 
hard to invert hash function such as AES [25]. 

The second element of tamper-resistance is to prevent replay. Replay occurs when the content of 
some memory cell has been written multiple times by the co-processor, and then the co-
processor asks the host for the current content of the cell. If the host is malicious, it can return 
any of the values ever written in that cell, not just the most recent, and the co-processor has no 
way to detect that fact.  Thus, the host may be able to disrupt the computation without being 
detected. Note that signing (or even encrypting) the memory content alone will not prevent 
replay. The focus, then, must be on preventing replay; signing will suffice to cover other forms 
of tampering. 

The mechanisms used here to provide a tamper-resistant language implementation build on a 
number of well-known existing techniques: two-level paging and Merkle hash trees. A novel 
capability that derives from the use of a programming language approach, however, exploits the 
semantics of the language implementation to provide alternatives that can improve upon these 
existing techniques. 

This paper explores three alternative mechanisms for implementing language tamper-resistance. 
These three are (1) crypto-paging, (2) semantic-paging using Epochs, and (3) a combination of 
crypto-paging plus semantic-paging. The term “semantic-paging” refers to the use of the 
programming language semantics to inform the tamper-resistance mechanism. 

All three mechanisms build on a two-level paging model. This model treats the co-processor’s 
memory and the host’s memory as a traditional two level memory controlled by paging.  That is, 
whenever a cell is read from the host’s memory, the whole page in which it resides is read into 
the co-processor’s memory. Traditional paging caches, working sets, and page aging 
algorithms [11] can be employed to avoid always re-reading the host memory. 

4 CRYPTO-PAGING 
Crypto-paging [15,30] is a well-known and straightforward approach to managing replay. In its 
simplest form, each page in host memory has a corresponding cryptographic signature stored in 
the protected memory of the secure co-processor. In effect, the co-processor stores the page 
tables plus signatures for each page. Every read of a page is re-validated by computing the 
signature and comparing it to the stored signature. Similarly, writing a modified page also 
changes the protected signature. Note that replay protection requires that the crypto-paging 
system store all signatures in the secure co-processor. Since the page size may be larger than the 
input block used by the hash function, chained block hashing may be used to compute a 
signature for large pages. 

This approach generally requires significant memory in the co-processor to hold the pages and 
their signatures. The memory usage can be varied by using a Merkle hash tree [24] with varying 
degrees of tree height. Minimal co-processor memory usage occurs when the co-processor stores 
only the root signature of the Merkle tree – plus a few data pages. The most memory is used if 



the tree is flattened completely, which corresponds to the simple case above where each host 
page signature is kept in the co-processor memory. Intermediate degrees of tree height use 
intermediate amounts of memory. The cost, of course, is that increased tree height increases the 
average access time up to O(log(n)), where n is the number of host memory pages. 

Crypto-paging is non-semantic because the algorithm does not care why a given page is read or 
written or in what order, nor does it track what parts of the page are modified beyond the fact 
that the page was modified at all.  It is thus simple to implement and can be used for any purpose. 

5 SEMANTIC PAGING USING EPOCHS 
As part of this research, a new mechanism for replay-detection was developed that exploited the 
run-time semantics of the programming language, and specifically exploited run-time garbage-
collection. 

This approach divides the whole computation into a series of periods (the epochs). The sequence 
of epochs continues until the computation is complete. The key idea is that during an epoch, the 
content of the host memory is never written more than once. This property is referred to as write-
once-per-epoch.  During the move from one epoch to the next the host memory is garbage 
collected and the next epoch begins.  

The epoch approach is interesting because it amortizes the costs for preventing replay in a way 
that is different than Merkle-based crypto-paging. The crypto-paging approach pays the cost of 
managing replay every time the memory is written. In the epoch approach, all of that cost is 
delayed until the end of the epoch. The epoch model does, however, require some kind of 
periodic memory reorganization to be part of the language runtime. 

6 TAMPER-RESISTANT LISP 1.5 
In order to make the semantic paging approach concrete, a specific language – Lisp 1.5 – was 
chosen as the target. It was chosen primarily for its simplicity and to demonstrate proof-of-
concept. Lisp provides a simple, usable, and complete language.  It has a small interpreter [23] 
that can easily be implemented on a secure co-processor with limited resources.  Equally 
important, Lisp uses lists as its only data structure, both for programs and for data; hence tamper 
detection can be applied to both code and data with no extra effort. Thus Lisp provides a good 
platform for exploring issues in tamper-resistant language systems. 

This paper assumes familiarity with the Lisp 1.5 language and its implementation. A complete 
review of the language and its original implementation is available in the “Lisp 1.5 
Programmer’s Manual” [23] by John McCarthy et al. 

Briefly reviewing, Lisp provides a single data structure: lists. Lists are used to represent all data 
structures. They are also used to represent Lisp programs. These lists are composed of cells 
linked via pointers. A standard Lisp cell consists of three fields: (1) car and (2) cdr, which are 
pointers to other cells, and (3) a flags field indicating properties of the cell. Traditionally, the 
“list” is considered to be the set of cells reached by following the cdr pointers. Cells reached 
through the car pointer are often referred to as “sublists”. Cyclic lists are allowed, as are lists 
with common sublists. 

The flags are used to identify specialized classes of cells, including the following. 



• Atoms – an atom cell is the head of a specialized list structure representing an atomic (i.e. 
non-list) value. 

• Number – a subclass of Atoms indicating that this cell holds a numeric value. 

• Free – this cell is unused and can be claimed by the cons operator. 

To simplify the Lisp interpreter in the co-processor, the following cell-oriented operations were 
implemented on top of the host-interface operations listed in Section 2.4. 

• public void readCell(Addr a, Cell c) throws Error – read cell at the specified address. 

• public void writeCell(Addr a, Cell c) throws Error – write cell at the specified address. 

6.1 Interpreter Organization 

The Lisp interpreter that executes on the secure co-processor is designed to use a strictly 
bounded amount of co-processor memory. This reflects the limited size and memory of the 
secure co-processor. This poses problems when the bounded interpreter must execute a Lisp 
function that may be recursive and may require a stack of arbitrary depth. The solution we adopt 
here is to implement the interpreter using a continuation-based architecture [26]. Simplifying, the 
interpreter consists of a loop that removes the top action off of the continuation stack. It 
decomposes that action into a bounded part and a remainder part. It pushes the remainder part 
back onto the continuation stack and executes the bounded part. This cycle continues until the 
continuation stack is empty. For a description of the practical use of continuations, refer to the 
Scheme programming language [31]. 

As the interpreter performs its computations, it produces intermediate results. The reverse 
function for example accumulates the reverse list as it walks the original list. These intermediate 
results must be visible to the garbage collector so that they will not be marked as unused. This is 
accomplished by forcing the interpreter code to use a stack of cell pointers in host memory for 
saving its intermediate results. This is simplified by providing a macro system for Java that hides 
the saved-value stack. 

The page cache page size is defined to be some integral number of Lisp cells. The cache then 
keeps some fixed number of pages. The page replacement algorithm is essentially LRU except 
when otherwise dictated by semantic information. This is more or less an arbitrary choice since 
good algorithms for Lisp are difficult to define. 

7 SEMANTIC TAMPER-DETECTION FOR LISP 
The semantic tamper-detection mechanism exploits the semantics of Lisp and its implementation 
in order to detect tampering. In this model, each cell has a signature field in addition to its car, 
cdr, and flags fields. The signature field of a cell is a computed cryptographic hash of the 
ordered concatenation of the following components: 

• Cell content – the car, cdr, and flags fields (also concatenated), 

• Cell address – the address from which the cell was read, 

• Secret key – a key known only to the secure co-processor and recomputed periodically. 



Whenever a cell is read from the host, the signature is recomputed and if it matches the stored 
signature, then it is assumed that the car, cdr, and flag fields are valid. This provides basic 
protection against synthetic attacks. 

Replay detection is implemented using epochs. The whole computation (the program execution) 
is divided into epochs. The secret key used in signature computations is associated with epochs 
and is recomputed at the end of each epoch. The sequence of epochs continues until the 
computation is complete. 

Replay is prevented within an epoch by enforcing the write-once-per-epoch property. This means 
that during an epoch, any given cell in the host memory will be written at most once. This 
property is enforced by the fact that the only memory writing that can occur within an epoch is 
through the CONS operator, which is defined to always store its result in a newly allocated cell. 

Within an epoch, a cell will hold at most two values as its content. For cells that are already 
allocated at the beginning of the epoch, their content will never change. For cells that are initially 
unallocated, their initial content is a special value. At the time of allocation, such cells will be 
written with the second value. Thus for any cell, the only possible replay attacks are the 
following: 

1. Replay the cell content from another epoch, 

2. Replay the content of some other cell in the same epoch, 

3. Replay the content of an allocated cell as it was when unallocated. 

Since the signature includes the cell address and the epoch key, cases 1 and 2 can be detected by 
failure to validate the signature when the cell is read from the host processor. Case 3 will be 
detected by the presence of a FREE flag, which cannot occur when reading a cell reachable by 
any pointer. Thus the only cell value that an attacker can return is the correct value of the cell as 
written (once) during the epoch. 

The write-once property has some consequences.  In particular, it disallows use of traditional 
extensions to Lisp such as REPLACA, REPLACD, and PROG because they support direct cell 
modifications. Write-once does not prevent lambda binding (using an ALIST) and SETQ (using 
an APVAL list) since new bindings at the front of the list will override older bindings further 
down the list. 

8 EPOCH TRANSITION BY GARBAGE COLLECTION 
The transition from one epoch to the next is tied to garbage collection. Garbage collection is 
expected to have two specific effects upon its completion. 

1. All unreachable cells have been marked as free. 

2. All cell signatures (reachable and unreachable) have been re-keyed based on a new secret 
epoch key. 

The garbage collection phase violates the write-once-per-epoch assumption and so it offers 
significant opportunities for tampering. Replay attacks are especially tempting because each cell 
may be written several times. The next sections discuss how to maintain replay protection during 
garbage collection. 



The following discussion first addresses the general approach to detecting tampering during 
garbage collection. Familiarity is assumed with the common approaches to garbage collection in 
which the collection activity is isolated into a single phase for which special anti-tampering 
mechanisms can be used. In Section 10 a generic mechanism is defined for two pass collectors 
that provides a simple test for tampering. Then the generic mechanism is extended to two 
specific collectors: mark-and-sweep (Section 11) and semi-space (Section 12). 

9 TAMPER-DETECTING GARBAGE COLLECTION 
The tamper-detection goals for garbage collection are three-fold: 

1. Immediately detect attempts to modify a cell’s content (synthetic attacks); 

2. Immediately detect replays that may cause garbage collection to fail; 

3. Detect all other replays no later than the end of garbage collection. 

A bounded amount of replay can be allowed to occur as long as it does not corrupt garbage 
collection. In any case (goal 3) all replays must be detected before normal computation resumes. 

The first goal is easily met if cells continue to be signed every time they are written to the host 
memory. Again assuming that the hash function is hard to invert, attempts to modify a cell’s 
content will fail. At the start of each garbage collection, a new secret epoch key is computed. 
During garbage collection the signature field is recomputed every time a cell is modified. The 
specific epoch key, new or old, is chosen based on the step in the marking phase. 

• During the mark phase, the cell is re-written using the new epoch key. 

• When reading a cell, it is verified using the old epoch key if the cell appears unmarked. 
Otherwise, it is verified using the new epoch key. 

• During the sweep phase, each cell is read in turn and, based on its content, is either ignored 
or marked as unallocated. Verification of the content of the cell depends on the flags 
associated with the cell. If the cell appears to be unmarked then its signature is validated 
using the old epoch key. If valid, then the cell is rewritten with a flag indicating that it is free. 
The signature field of the free cell is computed using the revised content and using the new 
epoch key. 

• If the cell appears to be marked, then its signature is validated using the new epoch key and 
otherwise it is left untouched. 

The claim is that at the end of garbage collection, every cell is either flagged as unallocated or 
has been marked.  In both cases, the cell has been re-signed using the new epoch key. At this 
point, the next epoch starts and computation resumes. 

Goal 2 is garbage-collector specific. Goal 3 can be provided in a manner partially independent of 
the garbage collector. 

10 COLLECTOR INDEPENDENT SEMANTIC REPLAY DETECTION 
Many collectors have two phases: (1) a mark phase (i.e. walk and mark all allocated cells) and 
(2) a sweep phase (for cleanup). For such collectors, it is possible to collect information that will 
reveal the occurrence of replay. 



During the mark phase, a malicious host has the ability to return two classes of values when any 
cell is read. It may return the original, unmarked value, or it may return some marked value 
stored during the mark phase. 

Suppose our collector counts the following information. 

• Mm – the number of cells marked during the mark phase. 

• Ms – the number of marked cells read during the sweep phase. 

If no malicious actions occur, then Mm = Ms. 

If during the mark phase, a malicious host returns the unmarked value for a cell that has already 
been marked, then the effect is to increase the number of apparently marked cells (Mm) because 
the mark phase will attempt to mark every cell it reads that is unmarked. Note that the malicious 
host can not increase the actual number of marked cells because this would require that it 
synthesize a cell with the mark flag set. So during the mark phase, the number of cells marked 
(Mm) can be greater than the actual number, but never less. 

Analogously during the sweep phase, the malicious host can also replay the initial unmarked 
value of a cell. In this case, however, the effect is to decrease the number of apparently marked 
cells (Ms) seen by the sweep phase. The host cannot increase the number of marked cells because 
it cannot synthesize a cell with the mark flag set. 

The net effect is that if replay occurs, then the following must true: 

 Mm’ > Mm and Ms’ < Ms => Ms’ < Mm’ 

where Mm and Ms represent the number of marked cells detected if replay did not occur, and Mm’ 
and Ms’ represent the number of marked cells detected if replay occurred. 

It should be the case that Ms = Mm. This means that it is possible to detect almost all replays by 
counting Mm and Ms and if they differ, then replay must have occurred and the computation can 
be aborted. This solves goal 3 above. 

The following two sections describe the details of addressing goals 2 and 3 for mark-and-sweep 
and semi-space garbage collectors. 

11 MARK-AND-SWEEP GARBAGE COLLECTION 
The mark phase is assumed to use the Schorr-Waite algorithm [29]. This algorithm is used here 
because it avoids the need for a separate stack. It traverses the graph of cells reachable from a 
defined set of root pointers kept in the secure co-processor. As it performs its depth-first walk, 
this algorithm temporarily reverses the list structure of the lists on the current path of the walk. 
As each cell is first reached, it is marked and re-signed using the new epoch key. At the end of 
the traversal all reachable cells have been touched and re-written.  Since they have been re-
signed using the new epoch key, they have effectively been moved into the new epoch. A given 
path ends when it encounters an atom or encounters a cell that has already been marked. This 
latter case can occur either because some cells may be reachable by more than one path during 
the walk or because the list is cyclic. 

During the marking process, a cell can be in one of four states. 



(1) Unmarked – any cell not yet reached during marking will be in the just completed epoch and 
no garbage collector related flags will have been set in the cell. 

(2,3) Car or Cdr Chaining – some cells on the current depth-first path will have their car or cdr 
fields reversed and will have a flag set to indicate that fact. In addition, such a cell will have its 
MARK flag set. 

(4) Complete – any cell for which car and cdr chaining is completed; the MARK flag is set. 

After marking is completed, the sweep phase examines every cell in the sequential order defined 
by its memory address. If the cell is unmarked, then it is unused, and it is marked as a free cell 
and is linked to a freelist. In order to avoid a second sweep to reset the mark bits, the secure co-
processor just inverts the sense of the mark bit so that in the next garbage collection, all cells will 
be considered unmarked. 

11.1 Replay Attacks Against Mark-and-Sweep 

Whenever a cell is read from the host memory during either the mark or sweep phases, a 
malicious host has the option of providing a replay of any of the four values stored in that cell 
during garbage collection. 

1. It can replay the correct content of the cell. 

2. It can replay the content of the cell as it was when involved in cdr chaining or car chaining. 

3. It can replay the content of the cell as it was before garbage collection began. 

Obviously Case 1 causes no problem. Case 3 is addressed by the generic tamper-detection 
described in Section 10. Note that the garbage collector will happily re-mark a cell if it comes 
from replaying an old, unmarked cell. This will continue as long as the host replays unmarked 
cell values, possibly forever. This re-marking by itself causes no harm because marking is an 
idempotent operation and hence satisfies our goal 2 from Section 9. 

In order for case 3 to cause infinite looping, it has to continue to feed unmarked cells, which can 
only occur if there is a cyclic list structure. This case can be detected by simply keeping a count 
of the number of cells that are marked. If this count reaches the total size of allocated memory, 
then marking stops and replay is signaled. 

Case 2 can only usefully occur during the mark phase because the sweep phase does not use the 
car and cdr chaining flags. Even during the marking phase, these cases can only occur when it 
possible to reach a cell by more than one path. In any case, if the host provides case 2 replay then 
this can cause no difficulties because the mark flag will be set and will cause the garbage 
collector to properly stop its marking and back up to a new depth-first path 

12 SEMI-SPACE GARBAGE COLLECTION 
In order to demonstrate the generality of the semantic approach, it was applied to a second form 
of garbage collector, namely the semi-space garbage collector. A semi-space collector divides 
the available memory into two equal (sub-)memories. At any point in time, new cells are 
allocated from one of the two memories. When that memory is exhausted, all active cells are 
copied and compacted into the other – target – memory. The part of that memory not used by 
active cells is then available for allocating new cells. 



The compaction algorithm is based on using a breadth-first walk of the active cells. The target 
memory is used as a queue for holding intermediate results during the walk. As each cell is 
moved to the target memory, its old location is re-rewritten to provide a forward pointer to its 
new location. During the walk, any reference encountered that points to a forwarding value is 
replaced by the forward address. Forwarding is indicated by using the mark bit and storing the 
forward pointer in the car field. 

Normally, semi-space collection does not require a sweep phase.  In order to detect replay, 
however, it is necessary to walk the abandoned space to get a count of the actual number of 
marked cells. This allows the application of the generic tamper-detection rule of Section 10. It 
thus represents an overhead stemming purely from the need to avoid replay. 

12.1 Replay Attacks Against Semi-Space Collection 

Whenever a cell is read from the host memory during either the mark or sweep phases, a 
malicious host has the option of providing a replay of any of three values during garbage 
collection. 

1. It can return the correct contents of the cell. 

2. It can return an enqueued cell from the target memory with its original car and cdr values 
instead of the forwarded values. 

3. It can return the unforwarded contents from the current memory instead of the forwarded 
contents. 

Case 1 is not a problem. Case 2 cannot actually occur because an enqueued cell will be read only 
once when it is at the front of the queue hence there will be no replay opportunity. It will be 
written once immediately after. 

If case 3 occurs, then the collector will enqueue the cell two (or more) times. There is a limit to 
this process since it will eventually fill all of the target space, at which point replay can be 
signaled. The most difficult situation occurs if the replay is carried out some small finite number 
of times. It means that each copy may have cells pointing to it. Again, this will not cause the 
collector to fail (goal 2), but it will obviously cause an inconsistency in the target memory. 

The following steps will detect this inconsistency at the end of collection. 

1. During mark phase, the number of forwarded cells is counted. 

2. After enqueuing is completed, a second pass is made over the just abandoned space to obtain 
a separate count of the number of forwarded cells. If the two counts differ, then we have 
tampering because of case 2. 

This works because we are applying our generic tamper detection rule (Section 10). 

Tampering during the mark phase can increase the apparent number of forwarded (i.e. Mm) cells, 
but can never decrease it. The second sweep forces the tampering host to decide what value to 
report for each cell. If it reports a truly forwarded cell as not forwarded then this decreases the 
count of forwarded cells (Ms) but can never increase it. If the two counts differ (Ms < Mm) then 
tampering has occurred. 



13 SEMANTIC CRYPTO-PAGING 
The second new mechanism for implementing tamper-resistance combines crypto-paging with 
the semantic approach. This approach informs the crypto-pager that the language system is 
performing various operations that can help the crypto-pager to avoid unnecessary cryptographic 
operations and can cause the pager to perform additional actions as it operates. 

For this research, two optimizations were used. 

• Re-keying: Re-keying is essential to tamper detection because it reduces the period of time in 
which an attacker can attempt to break the cryptographic signature. This is especially 
important when using short signatures to save memory. The pure semantic approach 
naturally incorporates re-keying as part of the epoch transition process. Re-keying with pure 
crypto-paging requires a separate periodic pass over memory. The semantic crypto-paging 
approach modifies the crypto-pager to so that it is aware of when the language 
implementation is about to perform a garbage collection. This tells the pager that a sweep of 
memory is about to occur and that it can carry out re-keying as the sweep occurs. Thus, the 
extra sweep is avoided. 

• Abandonment: This optimization is specific to compacting collectors. The pager is informed 
that some portion of memory no longer contains information of interest. During the next 
collection cycle, the pager can use a form of “zero-on-read” to avoid computing a signature 
for a page from the abandoned space. 

An additional look-ahead optimization is possible. The pager can be informed that the garbage 
collector is about to perform a linear sweep of some section of memory. The pager can utilize 
parallelism to reduce the page loading time. This particular optimization was not implemented 
because the simulator does not support parallelism. It would, however, be a high payoff 
optimization when using a real secure co-processor. 

14 PERFORMANCE MEASUREMENTS 
Access to a real secure co-processor turned out not to be practical for cost reasons, so processor-
based timing measurements were not possible.  The alternative taken was to run the interpreter 
and capture the count of three operations under the assumption that the time for any real system 
would be dominated by these operations. 

• The number of pages read from host memory, 

• The number of pages written to host memory, and 

• The number of hash functions computed; for block-chaining, the total number of hash 
computations was counted. 

Converting these number to real time values is difficult because it depends on at least the 
assumed times for signing, the bandwidth between the host and the co-processor and the speed of 
the co-processor.  

The goal for the performance experiments was to determine the relative performance of the three 
tamper-resistance mechanisms. To test this, a tamper-resistant Lisp implementation was written 
in Java 1.5 and a number of experiments were used to obtain performance information. 

A number of variables can affect performance for this system. 



• Pager • Page cache size • Total memory size 

• Test algorithm •  Signature cache size • Page size 

• Available cells • Cells/page • Number of garbage collections 

• Garbage Collector • Cell size • Compact 

 
In order to compare the pager algorithms, it was necessary to fix various values in a way that 
allowed meaningful comparison. It was decided that all pagers should operate with the same 
number of cells per page and the same number of available cells, where available cells refers to 
the space of free cells. This meant that the total amount of memory and/or cell sizes would differ 
between pagers. Semantic paging, for example, would use a larger cell size, while crypto-paging 
would have additional space for the Merkle hash tree. Semispace collection would actually have 
twice the total space of marksweep. However in all cases, the cells per page and the available 
cells would be constant for all pagers. This is in line with the assumption (Section 2.8) that space 
on the host processor is not a primary cost. In order to further simplify the state space, two other 
variables were held constant; the page cache size was fixed at eight pages, and the signature 
cache size was fixed at two pages. Of course, the latter only was relevant when crypto-paging 
was being used. 

14.1 Experiment 1 

The goal of this experiment was to test the garbage collector performance on large random 
graphs. A special program was constructed that could randomly synthesize graphs of varying 
depth, width and total number of cells. In all cases, the graph was constructed to consume 80% 
of available cells. The random graph could either be constructed as “compact” or “scattered”.  
Compact means that the nodes of the graph are allocated in consecutive memory cells. Scattered 
means that the graph cell locations are chosen randomly, so that nodes linked together are not 
necessarily close together physically.  

Figures 1a and 1b demonstrate the performance of marksweep versus semispace collection on 
the random graph when compact is true. The x-axis for both graphs is the number of cells 
divided by 1024, so the graph runs from 4096 to 32768 available cells. The y-axis is the number 

 

Figure 1a. Compact, Marksweep, 
                 Cells/Page=16 

Figure 1b. Compact, Semispace, 
                 Cells/Page=16 
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of signatures divided by 1000, so it ran from 0 to 600,000 signings. In Figure 1a, it can be seen 
that both crypto-paging and semantic crypto-paging performed better than semantic paging by 
almost a factor of three. When semispace was used (Figure 1b), the cost of semantic paging was 
only slightly more than in Figure 1a. The performance of the crypto-pagers deteriorated 
significantly and was worse than semantic paging by a factor of 1.5.  

In order to test the effect of cells per page, the test used in Figure 1a was also run with double the 
cells-per-page and using a compact graph. This is shown in Figure 1c. The two graphs are more 
or less identical, which indicated that cells-per-page was not a major factor for this experiment. 

A fourth test (Figure 1d) demonstrated the effect of compact versus scattered. It repeated the 
experiment in Figure 1a but using a scattered graph allocation. Again, semantic paging changed 
slightly, but crypto-paging deteriorated substantially. This is because of the random allocation. 
When the semantic pager reads a page, it will only sign those cells in the page that it touches. 
Crypto-paging must re-sign the whole page. If the percentage of cells of interest is small, as it 
should be using scatter, then crypto-paging requires significantly more signing overhead.  

14.2 Experiment 2 

The goal of experiment 2 was to test the three mechanisms against the two garbage collection 
algorithms on an actual Lisp program. The program chosen was the Wang theorem prover from 
the Lisp 1.5 manual [23]. Executing the prover once did not exercise the collectors sufficiently. 
So the program was executed multiple times until a pre-defined number of garbage collections 
had occurred.   

Figure 2a shows the cost using marksweep. Crypto-paging out-performed semantic paging by a 
factor of two and semantic crypto-paging out-performed pure crypto-paging by about 10%. 
Figure 2b shows the cost using semispace. Note again that semantic paging costs changed the 
least, while the two crypto-pagers generally performed worse than semantic paging. Note that the 
semantic crypto-paging line is almost flat and is substantially better than pure crypto-paging, 
especially compared to Figure 2a. This is a clear demonstration of the effects of the 
optimizations described in Section 13. Pure crypto-paging is forced to sign pages read from the 
abandoned space. In addition, it must re-key the total space, which is more than twice the size of 
available memory. The second interesting measurement is that semantic paging performs well. 
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Figure 1c. Compact, Marksweep, 
                 Cells/Page=32 

Figure 1d. Scattered, Marksweep, 
                 Cells/Page=16 



The reason is that the average number of cells read per-page varies by nearly a factor of two 
between Figure 2a and Figure 2b. For example, at the last data point the number of cells read is 6 
for crypto-paging in Figure 2a and is 2 for crypto-paging in Figure 2b. Crypto-paging is sensitive 
to this value because the lower the number, the more wasted signings are performed by crypto-
paging. Semantic paging is much less affected by this number, hence the difference between the 
graphs.  

14.3 Experiment 3 

The goal of experiment 3 was to test the effect of varying the number of cells per page. 
Experiment 1 indicated that it had little effect in the compact random graph case. Here the 
theorem prover was used as the test program, and the marksweep collector was used. Figures 2a, 
3a, and 3b show this test when the cells-per-page is 16, 32, or 64 respectively. The effect seems 
clear: semantic paging costs are essentially constant, reflecting the fact that it only touches 
interesting cells. The cost for the crypto-pagers increases as the cells per page increases. This is 
because they must pay the price of signing the whole page independent of how much of the page 
is of interest. Again, as with the other experiments, semantic crypto-paging always out-performs 
pure crypto-paging.  
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14.4 Performance Summary  

The experiments indicate that the when the data being accessed has a high locality of reference, 
then the crypto-pagers will probably out-perform the semantic pager. But when the data is more 
randomly distributed across memory, then semantic paging may be better than either of the 
crypto-pagers. Perhaps not surprisingly, combining semantic knowledge with crypto-paging 
produced a mechanism that performed better than pure crypto-paging in all cases.  

15 RELATED WORK 
Currently, there are two primary approaches to achieving trusted computing in an untrusted 
environment: software-only approaches based on obfuscation and approaches based on hardware. 

The software-only solutions to tamper-resistance are based on obfuscation [6-9,28,36]. The idea 
is to modify the code of an application in such a way as to prevent an untrusted software program 
from analyzing the actions of the trusted software. A recent theoretical result [3] casts doubt on 
the generality of this approach, and indicates that completely general software-only solutions 
may be impossible. This should not be read as implying that obfuscation is not useful. Rather it 
means that such approaches must address their limitations with respect to, for example, the time 
it would take to break the obfuscation. A sufficiently long period may be good enough for 
practical purposes.  

Obfuscation techniques have so far focused solely on protecting the code and making hard for an 
attacker to reverse engineer it. With one exception [8], however, it does not appear as if 
obfuscation has been applied to data structures. It is true that obfuscating the code, by re-
ordering for example, may affect the order in which the data structure is constructed, but it will 
not affect the final shape of the data structure. This leaves such structures open to attack. The 
programming language approach addresses this problem because all of the anti-tamper 
mechanisms can be applied to data as well as code.  

A variety of hardware solutions have been proposed (and in some cases implemented) that are at 
least tangentially related to this proposal. Encryption of bus traffic [19,21,34] or encryption of 
memory contents [35] has been proposed to prevent some kinds of tampering. Its advantage is, of 
course, that it is implemented in hardware and so has a performance advantage. Its disadvantages 
are (1) it invokes encryption all the time rather than only when needed, and (2) by itself it does 
not address the replay problem, although it may in practice make effective replay difficult. 

An alternative [15] has been proposed that implements a Merkle hash tree [24] in hardware. The 
leaves are the available pages of the host memory. Except for the root, the nodes of the Merkle 
tree are also kept in host memory, which represents an unavoidable memory overhead. Merkle 
memory can be implemented with specialized hardware for signing and memory retrieval, which 
could provide a significant speed advantage over other approaches. This approach addresses 
replay, but again uses encryption or signing even when not required. Further, the language-
specific semantic optimizations used in this paper cannot be implemented. 

Another solution involves executing the trusted code wholly within the secure co-processor’s 
memory. This is the typical solution used with smart cards. JavaCard [32], for example, provides 
a version of Java in which code and data reside entirely on the smart card. The obvious problem 
is that the resources of the smart card are limited compared to those of the host. Over time, this 
limitation will become less important. Another issue is complexity. Executing multiple pieces of 



trusted code requires some form of operating system, and requires isolation of the various pieces 
of code from each other. This introduces significant complexity into the smart card and in effect 
repeats the untrusted environment problem at a different level. 

The approach proposed in this paper and in prior work [17], was directly inspired by the prior 
work in tamper-resistant data structures. These structures and implementing code are stored in 
the host’s memory and have the property that any attempt by the host to tamper with the data 
structure will be detected.  Examples of such data structures include random-access memory [4], 
simple linear lists [1,4], and stacks and queues [4,12]. 

The language approach has several advantages compared to the data structure approach. 

• It is more general since any data structure that can be implemented in the language can be 
used. 

• It hides the complexity of tamper-detection. 

• It reduces and simplifies the code that must reside on the host processor; the only required 
code is that necessary to allow the secure co-processor to read and write the host’s memory 
and to request the allocation of blocks of the host’s memory. 

Using the language approach makes it easier to construct programs that can safely avail 
themselves of untrustworthy host memory. 

16 FUTURE WORK 
The most important next step is to re-implement this system using a real secure co-processor. 
This will provide additional information about performance which should lead to additional 
research into improving that performance. 

Further research into combinations of mechanisms is also clearly warranted. One interesting 
target is to utilize the different access patterns of code and data. Most interpreters produce 
separate code segments containing byte-codes. The Lisp 1.5 interpreter used here did not do that. 
Since code is generally read-only, it may be desirable to apply simpler anti-tamper mechanisms 
to the code and reserve the more comprehensive mechanisms for modifiable data.  

This research is part of a larger program to find novel uses for secure hardware. The clear cost 
with the solution proposed here is that it requires clients to have a secure co-processor attached 
to the client host.  But less costly alternatives to secure co-processors are possible. 

New multi-core versions of processor chips will soon be available. Dedicating one of these cores 
to security will become an option, especially when the Trusted Computing 
Association (TCP) [2,5] standard also becomes ubiquitous. It appears feasible to use these new 
chips to achieve the equivalent of a co-processor/host combination by using one processor in a 
multi-core processor configuration as a surrogate for the secure co-processor. 

SmartCard technology continues to progress. Eventually it will reach a point where it can also 
serve as an alternative to secure co-processors for the basis for this research. 

Finally, a new version of the tamper-resistant language system is being designed that supports a 
more traditional programming language such as Javascript [33]. This will introduce new 
opportunities to explore additional semantic optimizations for tamper-resistance. 



17 SUMMARY 
This paper demonstrates a novel approach to achieve trusted computing in an untrusted 
environment using a tamper-detection programming language implementation plus a secure co-
processor. This solution is simple to use and requires only a limited set of primitives to define the 
interface between the host and the co-processor. 

Three mechanisms were used to support the tamper-resistance. One is crypto-paging (based on 
Merkle hash trees). The second and third approaches were developed directly as a result of using 
the programming language approach. The first, the semantic approach, utilized the semantics of 
the programming language implementation. The second new approach extended crypto-paging to 
utilize knowledge of the language system to avoid unnecessary operations. 

All three mechanisms were implemented for an interpreter for the Lisp 1.5 programming 
language. Simulated performance experiments demonstrated that the pure semantic approach 
performs best when data is randomly distributed over the host memory. The crypto-pagers were 
better when there was significant locality of reference. In all cases, the semantic crypto-pager 
out-performed the pure crypto-pager. 
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