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Solution of Electromagnetic Problems Using
the Modified Residue Calculus and Function

Theoretic Technigues
Part I

Solution of Closed Region Problems

<€






. Chapter 1: Introduction (Part I)

This part of the dissertation is concerned with the
analysis of closed region waveguide‘junction problems.
This allows simplification of the technigques to be used
since no branch cuts are involved in the representaticn
of the fields. However, the analysis can be extended 1o
open region problems in a logical manner. This is the
subject of part two of this dissertation.

The problems of interest will be confined to =~
dimensional geometries for which é strictly TE or THM
solution is possible.

Direct mode matching could be employed as a method
of solution of the problems to be presented. However,
direct mode matching has several disadvantages which often
outweigh the simplicity of the method. One of the dis-
advantages is that many problems have been shown to ex-
hibit a relative convergence phenomena with regard to
the truncation of the modal repreéentations of the various
regions. For the bifurcated waveguide the solution is
known (Mittra and Lee, 1971) to converge to the correct
result for the ratioc of the number of modes being chosen
equal to the ratio of the heights of the waveguildes.

This choice ensures the satisfaction of -the edgg condition
of the problem and hence the uniqueness of the solution.
However, for more complicated structures the solution is
not generally known. Accurate solutions are still possi-

ble; however, this is often at the expense of including



an excessively large numbér of modes in the larger wave-
guide region. For the most efficilent solution one must
have some guideiines in the choice of the number of
modes of the various regions. For many problems this i
not possible without an extensive numerical convergennrs
study. Even with this disadvantage, mode matching is
often used because of its simplicity or generality. How .
ever, mode matching has another disadventage that is oftua
overlooked. Direct mode matching does not use a p. .oi
information regarding the geometry. For example, the bi-
furcated waveguide solution is known exactly; yet, a
direct mode matching solution is of the same order of
difficulty as & nonsoluble geometry.

For many problems there are two snalysf®s techniques
which appear to be superior to direct mode matching:
the generalized scattering matrix technique (GSMT) and
the modified residue calculus technique (MRCT). Both of
these techniques recognize that many proglems are compbsed
of a combination of soluble probiems. The GSMT and the
MRCT are used to solve problems by efficiently combining
these known solutions. Additionsally, these methods are
not known to exhibit a relative convergence phenomena and
uniqueness of the solution is generally assured.

The basic soluble problem used in the solution of
two dimensional waveguide discontinuity problems is the

bifurcated waveguide. It is well known that the solution



of the bifurcated waveguide can be obtained either by the
Wiener-Hopf method or the residue calculus technique
(Mittre and Lee, 1971). ©Pace and Mittra (1964) oriéine"ly
used these known solutions in conjunction with the gemn v~
alized scattering matrix technique (GSMT) to arrive =

the solution of compositebproblems. These composite prob-
lems were obtained by identifying an suxiliary problerw
such that it was clear that the solution of the problem
was a modification of the bifufcated Junction. & 2is-
tances and material parameters approached limiting values
the solution to the originsl prcblem was obtained.

The GSMT, although a numerically efficient scheme,
has one particular weakness. Since the GSMT uses truncated
matrix representations of junctions, it is d4ifficult to
show that the edge conditions of composite problemg are
either changed or added to the edge conditions of the
soluble problems. OSince the edge conditions of the com-
posite problem may not be satisfied, one may not be
assured of the unigqueness of the solution. However, it
is frequently the case that these effects are small when
calculating quantities such as dominant mode reflection
coefficients. Van Blaricum and Mittra (1969) remedied
this for a certain class of problems. They made use of
the same asuxiliary problem used in the GSMT; however,
they formulated the problem in a manner where a modified
residue calculus technique (MRCT) was used. The MRCT

sclution was obtsined by recognizing that the solution to



the problem is obtained by shifting zeroces of the original
residue calculus solution of the bifurcated waveguide.
These shifted zeroes could be found asymptotically by
using the edge condition of the problem. Iterative an.

matrix techniques were used {Mittra and Lee, 1971) tn find

i
e

a finite set of shifted zeroes or the equivalent Lagrzngian
interpolating polynomial representation. Only a small
number of these zeroes where needed to accurastely find
such quantities as the reflection coefficients < .2
dominant modes. Additionally, because the solution exe
plicitly satisfied the edge condition, the convergence of
the results was better'than the GSMT sclution.

Recently, Royer and Mittra (1972) examined a di=-
electric s£ep in a parallel plate waveguides Since
there was interest in high dielectric constants, the
solution was formulated using an extension of the MRCT,
However, the asymptotic shift ofvzeroes could not be
found. Thus an infinite form of a Lagrangian interpolsa-—
ting polynomial was used instead of a shifted zero repre-
sentation. The asymptotic form of the coefficients of
the expansion were found from an application of the edge
condition. This enabled the infinite equations to be
truncated and solved in an efficient manner.

This part of the dissertation studies a canonical
problem of a bifurcated waveguide with infinitely many
known moaes incident from all guides. The sclution of

the problem can be expressed advaentageously using an



infinite form of the Lagrangian interpolating polynomisl.
This solutiqn can then be used to solve various composite
problems. In particular, the E-plane step is solved
using this representation as opposed to a shifted zeroc
representation.

The canonical solution is then applied to Junctlions
which have not been soclved using the MRCT previously.
Solutions are given for the trifurcated waveguide as well
as the modification of the Jjunction due to dielec ..
loading. The trifurcated waveguide for arbitrary spacing
of the plates has been soived by Pace and Mittra (1966)
using the GSMT.

The solution of the trifurcated waveguide is then
generalized to the N-furcated waveguide with®arbitrary
spacing of the conducting plates. The general solution
of an arbitrary number of plates has been given formally
by Heins (1948). Heins' solution, however, has little
practical value. A more elegant solution has been given
by Igarashi (196L4). Igarashi used a diagonalization
procedure in conjunction with the simultaneous Wiener-Hopf
equations and obtained explicit expressions for the fields
in the variocus waveguides. A necessary condition for the
diagonalization of the equations was equal spacing of the
conducting plates. ©No such restriction is necessary for
the MRCT solution of the N-~furcated waveguide. The solu-
tion is also given for a particular dielectric loading of

the N-furcated waveguilde.



One interesting point of the MRCT solution of these
problems is that multiple edge conditions are explicitly
satisfied, thus énhancing the convergence of the solutin
over those which have been (or might be) obtained usin

the GSMT.

Chapter 5 serves as a forum for discussing soluticn

£

of other closed region problems. Among these are: ih-.
eigenvalve solution of ridged waveguide and the dielectric
step in a waveguide. Additionally, further nume: .«l re-
sults are presented for the N-furcated waveguide.

It should be noted that these concepts can be used
to solve.many problems which are modifications of soluble
Wiener-Hopf problems other than Jjust the bifurcated wave-

guide. N



Chapter 2: Foundation of the Modified Residue
Calculus Technique

1. Introduction

This part of the dissertation is concerned with Tr e
lems which are modifications of the bifurcated wavegui“c.
It is the purpose of this chapter to show that the mcdy-~
fied residue calculus technique can be approached in a
direct manner by considering the canonical problem of =
bifurcated waveguide with infinitely many modes iin. :ent
from all waveguides. The general solution can be con-
veniently written in the form of a perturbation expansion.
It is then shéwn that this solutiocn can be applied to

composite problems such as the E-plane waveguide step.

<

2. The Canonical Problem

The canonical problem is shown in Figure 2.2.1.
The solution to this problem has been known for .a number
¢f years. The solution can be found by either the Wieﬁer-
Hopf technique or the residue calculus technique (Mittra
and Lee, 1971 ). However, previous solutions have been
concerned with & single mode incident from one of the
three waveguides. The solution to be given here represents
a superposition of these solutions. However, the form
of this solution 1is of interest when solving composite

problems.
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Fig. 2.2.1: The Canonical Problem: The Bifurcated
Waveguide.



Let us consider the TM solution of the problem.

The

TE solution follows in the same manner and will not be

given.

The TM fields are derivable from ¢ = H
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We may use the orthogonality of the eigenfunction expan-

sions and eliminate coefficients to obtain the foli ..

F1Ng
four equations.
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and Gmn is the Kronecker delta.

Equations (2.2) and (2.4) relate the unknown modal
amplitudes A and the incident fields. Equations (2.1)
and (2.3) relate the unknown modal amplitudes An to Bn
and C_.

n

For m=0, (2.2) and (2.4} become identical in form,
allowing one to eliminate the summations and find

A - & elo) + b glo)
O a o] a G

which is ‘a unique feature of the TM solution.

In order to construct the complete solution to the

equations let us consider the following integrals

(2.
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Prow
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+
(-1)"*t $ T(w)dw 1 T(w)dw
, - § (2.6)
2mJ W=y o 2m; w-y_
where m = 0,1,2,¢* and T(w) is to be constructed unig. .y

with the residue series of these integrals identical with
equations (2.2) and (2.4). The contour of integratics

is the infinite circle in the complex ®w plane. We

assume that T{(w) behaves appropriately at infinity so
that the integrals exist and are zero.

Let us first assume that T(w) has simple poles at

Y s =Y s n = 1,2,°°¢, Then

na na
1 o) - ']
1 ¢ T(w)dw - § RES[T’Yna] - Z RES[T, Yna‘
213 0¥ 221 Yoa © Yme 2=l Yoa ¥ Yme (2.7)
+ T(Ymc) = 0, <
and
2mJ w—Ymb n=1 Yn“ - Ymb
© RES[T,-y )
+1 ’
- (-1)" ) (2.8)
n=1 Yna * Ymb
N m+1l _
£ (-0 () = 0.

wvhere m = 0,1,2,<+**. Comparing (2.7) and (2.8) with (2.k4)

and {2.2) we find

Y Z
(1) RES [T,-y__] = ~A;O) E& sin 923 e % po=1,2,00.
-y
(11) mEs(T,y_ 1 = -a_ 2L sin mrh , W& o mo= 1,2,
5 _‘Y A
(111) T(Ymc) = -CéO)Ymc ce mPO m = 1,2,°%¢



_‘Y Z
(1v) 2lyy) = (P B°)y b ™° g
-3k =

(v) T(ik ) =2ikce °° (A - cio))

122%550

We can also consider the integrals

(_l‘m+l

2]

¢ T()dw 1 ﬁ T{w)dw

WY o 2m] wEY_ Lo

e

where m = 0,1,2,°*¢+. Using the above properties we find

the following by comparing with (2.1) and (2.3)
(vi) m(=yv ) =C, Y, ce mo= . .

(vii) T(~Ymb) = (-1

jkoz

St

.. ’ _ (o),
(viit) T(—jko) = 23koc[c0 - AO ] e

. - (o) 4 K 2,
{(ix) T(-jko) = -2jkob{Bo - AT T e

<

From Appendix A it is shown that the edge condition implies
_ -1/2 . .

Mw) = 0 (w ) as !wl + ® gnd hence the sssumption re-

garding the convergence of the integrals is Justified.

Because of its importance let us also consider this in

our list of properties of T(w) {for the bifurcated case

only)

(x) T(w) =0 (™%/?)

, |w] +

Upon finding T{w) the complete solution to the prob-
lem is given by (ii), (vi), {(vii), (viii) and {ix). Hence,
let us consider the construction of T(w}.

The clue to the construction is found by considering

the solution with only & single mode incident on tihe



1k

Junction. For simplicity say the incident mode is BgO}
1. Then (i) implies that T(w) has no poles at “Ypas (1113
implies that T(w) has simple zeroces at Yo and (iv)

implies that T{w) has simple zeroes at Yop+ Hence

I(w,v,) L(w,y,)

T™(w) = H(w)

(2,10}
H(ws_‘Ya) :
vhere
o] h/
D(w,v,) = T (1 - -—‘”——] eWn/ BT
n=1 Yan '
and H(w) is an entire function with no zerces. The exXponen-

tial factor has been introduced into the infinite product
in order to insure uniform convergence. However, when the
products are grouped as in (2.10) the exponential is not
needed. From Mittre and Lee (1971) we find*that as

lw|] +

-1/2

T(w) = 0{H(w) w e

w/n[b 1n % + ¢ 1n %]\
w ¥ o]

In order for condition {(x) to be met we must have

o~w/m[b 1n(b/a) + c In(c/=a)]

H(w) = K (2.11)

where K 1s a constant. However, K can be determined from
(v)

H(jko,Yb) H(jko,Yﬂf

K H(jk ) - =
O H(JkOQYa)

i

T(3k )

ey

2Jko c e a
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Hence, the solution is

=3k =z

o be o o H{w) Flw) .
T(w) = 2Jk = e H(3% ) FlIx ) (2.12)
Llw, vy ) L{w,y ) -
where F(w) = O . The reflection coefficier:
E)
a

is given by (ix)

e Ik Z H(°Jko) F(-Jko) ‘
Bo =32 ¢ H(jko) F('jko) (2.13)

When the waveguides are single moded structures §B
& well known result (Marcuvitz, 196k).

Let us now consider how (2.12) can be modified teoc
reflect the general solution. From (i) we see that if

;o) # 0 we must introduce simple poles at Y a Similarly,

A

from (iii) and (iv) we see that we must introduce simple

%
poles at Ymb and Ymc in order to remove the zeroes of

F(w). This leads us to consider a function of the form

o gD

(
T(w) = H(w) F(w)(KO - (wfjko) { ) E:%__
n=]1 ndb )
¢) (2) (2.1%)

where
: e—w/ﬂ[b ln b/a + ¢ 1n c/al

(c)

n

H{w)

(a) (v)
KO’ gn s 8n and g

can be cbtained by using (i), (iii),

(iv), and (v).

'Jkozo(

K_E(Jk_)F(Jk ) = 20k c e a-ctoh (el
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_ ) - (a)
H( Y, a) F Y, )(Yna+ak ) g,
(2.16)
Y. 2 ’
_ —AéO) aﬂ cin nzb o na’o D o= 1,0,
- k )
(n) (Ync J o' (e)
H(Yn )F (v,.) g,
ne
(z.17)
_ (o) “YneZo _
Cn Ync c e n = 1,2,
. -3k )
, (n) Map3%,) (n)
ﬂ(an)F (v ) Yo g,
2.18)
n .{o) “Ynv?o
= (-1)"B.% vy ve n o= 1,2,
where F(n)(Ync) and F(n)(an) are to be interpreted as

omitting the nth zero at either Ync or an

This represents the complete general solution to the

9
bifurcated waveguide problem.

3. Formulation and Solution of Composite Problems
The key to the MRCT is the identification of an

auxiliary prpblem. The auxiliary problem is such that
the solution may be identified in terms of soluble prob-
lems. For example, the auxilisary problem may clearly in-
dicate that the desired solution is =& perturbation of =
bifurcated waveguide or a parallel plate in a homogeneocus
spéce. Mittra and Lee (1970) have indicated a number of
such problems.

‘ Before proceeding let us illustrate the above process
with e Qroblem which has been solved using the MRCT using

the concept of shifted zeroes (Mittra, Lee, Van Blaricum;
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1968). We will solve the E-plane step using the canonical
solution of section 2.

Figure 2.3.l.illustrates the E~plane step and the
auxiliary geometry. Notice that the guxiliary geometry
has a recessed dielectric of finite permittivity. Wnexn
§ = 0 and € = o, the auxiliary problem coincidés with the
original E-plane sfep. Notice that this recession has
identified two solublé problems: .(l) a bifurcated wave-
guide junction at 2z=0, and (2) a dielectric junctic
within a parallel plate waveguide at z=-8. This auxiliary
problem allows us to perturb the bifurcated solution
advantageoﬁsly.

For simplicity 1et'us consider the case of TEM inci-
dence from the smaller guide. Extension to h;gher order
incidence or a TE solution is straight forward. The
dielectric creates reflections of any scattered modes from
the Jjunction at z=0. This may be thought of as an inci-
dent field upon the Junction. From the canonical solufion
we recognize that if we knew these modal amplitudes, T{w)

would be given by (2.1%) with gn&) = gib) = 0 and say

(c)

8, = 8, It is still convenient to use this form even

with g, unknown. In this case g, represents a perturba-
tion of the bifurcated solution due to the dielectric
loading. From (2.1h4) we have

o g \

{
Tw) = HlwFlw |k - (w-3k ) |
? Y l © N ° ngl m"Ync} (3.1)



T VY . R

!
b
$

> 7
(a) E-Plane Step
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N

(b) Auxiliary Geometry

Fig. 2.3.1: The E-Plane Step and the Auxiliary
Problem.
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where the notation is similar to section 2. This will be
referred to as a perturbation type expansion. Using (2.17}

\

we have that

o)
g =K Cl(l ) R

where Kn is found from (2.17) and involves only simuv's cal-
culable functions. If we represent the Hy componeni

the fleld in the dielectric as

]
P
(O3]

o
(W3]
a,

where

—
it
,._ﬁ
1 .
=3
s’
N
]
m
o

we can easily find

- T -2y &
(O) - _ EYnc ne ne
Cn - RnCn - ey + T € GCn (3.4
nce ne
and
5 - anC6 <+ YnCS QEYHC C(O) )
n ey - T n (3.5)

n_c ncec
_ 1/2 e
From Mittra and Lee (1971) K = 0O(n ) as n + «, and thus
. n
we see from (3.5) and (3.2) that for § = 0

g = 0(n

n + o
o Dn),

For the 8§ = O case it is also easy to show (Mittra and Lee,
1971) that

-3/2-A . ‘
D, = 0(n 3/ )5 noe (3.6}

where

4

1, =1f (e-1
A = Fs1n (2(2"‘1)1 (3a’?
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hence

This allows us to write (3.1) in an approximate form
suitable for numerical analysis

N g o ~1-t

T(w) = Hw)F(w)|K -(w-jk ){ J —P— g 7 Bl
° © n=1 w_Ync n=N+1 m_{ncji

In this particular problem the edge condition has char rad

from T(w) = 0(w~1/2) w1/2-28)

?

s [w] > =, to T(w) = of
|w|] + ®». An examination of (3.9) reveals that t/ . mul-

Ay, jw] » =. This

tiplying term of H(w)F(w) must be 0(w~
implies that any constant terms contributed by the per-
turbation sums must cancel with Ko in order for the
higher term of the second sum to dominant. Hence, we

must have

N o
- ~1-A
Ko - L g, -e 1 = =0 (3.10}
n=1 n=N+1
This argument has assumed that
© -1-A :
-1 -1-A
I I =0(w) + 0w Y (3.11)
W=7y
n=N+1 ne
as le + ®©, This is shown in Appendix B.

In order to derive the necessary equations for &,
we consider that
T(_Ymé)v= Ymc ¢ Cm

Using (3.2) and {(3.4) we have

?(‘Ymc) = Ype C B TK T g om=1,2,cc0,N (3.12)

From (v) and (viii) of section 2 we also have an additional

equation



Kk 73k JHE(Jk ) = 2jk ES—(B(O)— o T(-3k )
o o RIS, o a \ o 2jkoc —dk,

(3.13)
Equations {3.10), (3.12), and (3.13) are the necessary

linear equations to solwve for KO, g, and E. The scat~
tered modes in the two regions can then be fpund by usiung
properties {(v) and (iv) of section 2.

‘It should be noted that the concept of shifted
zerces could have been used to solve this problem. The
interested reader is referred to Mittra and Lee {.5371).
The interesting point of this solution is that the per-
turbation expansion approach can be used to solve prob-
lems that can be solved using the shifted zero technique,

but the reverse is not always true {see Royer and Mittra,
%

WS
S
o

{1972






Chspter 3: The Trifurcated Waveguide

; 1. Introduction

This chapter is concerned with the application of
the MRCT to the trifurcated waveguide and the dielectrically
loaded trifurcated waveguide. This type of problem has
not been solved by the MRCT previously. However, this
problem has been previously solved using the GSMT by
Pace and Mittra (1966). It is shown that the saticfao-
tion of the edge condition at both edges by the MRCT
solution improves the convergence over fhat obtained
using the GSMT. The solution of the trifurcated wave-
guide then allows one to proceed to the more complicated

case of the N-furcated waveguide with minimal difficulty.
9

2. Formulation of the Equations
Figure 3.2.1 illustrates the trifurcated waveguide
geometry and the associsted auxiliary préblem.
With reference to the auxiliary problem we see that
we are perturbing two bifurcated waveguide junctions.

This leads us to construect two meromorphic functions as

follows:
- g(1)
T, (0) = Hl<w>Fl<m>(Kgl>-<w-3ko> | (e
n=1 ne-
- g(z)\
T,(w) = Hg(m)Fg(w)(Kég)«(w—Jko) ) w—_?—-— (2.2)
n=1 ne’
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(b) Auxiliary Geometry

.2.1: The Trifurcated Waveguide and the
Auxiliary Problem.



2k
where

~w/ﬂ{blln(bl/c) + bzln(bg/c)]

Hl(w) = e
-w/7{b In(b /a) + ¢ 1n{(c/a)]

Hy(w) = e ° © 4

T(w,v, ) Tlw,y, )
P, () = o1 "2
1 ka,yc)

DIlw, v, ) Elw,y,)

- O

Fe(w) - H(w,Ya)

where TEM mode incidence has been assumed. Extensicva to
higher order TM mode incidence or TE incidence is straight
forward. It may be recognized that (2.1) and (2.2) sare
Just special cases of the canonical solution. Tl(m) is
identified with the Jjunction at z = 0. The sgﬁttered
modes from z = A produce an incident modal spectrum on

the junction at z = O from the coupling region c. From

3
the canonical solution we recognize that gﬁb) = gle)

and géa) = gil).

:gn :O

Similarly for T2(w) we recognize that

the solution is obtained from the canonical solution with

(v) = (&) - (c) _ _(2)
g, = 8, = 0 and 8, =8, -
. . (1) (2)
For this particular problem KO and Ko are known

and are given by property (v) of section 2, Chapter 2.

(1) _ [ + {0) ,
K, = 2jkob2&Co - Bo’el/ﬁl(jkO)Fl\jkoﬂ‘ (2.3)
Ké2) = 2k c(AO - 021 Hz(gko)Fz(jkoﬂ {2.k4)
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where
+ (o) (o)
= +
CO 02/0 B092 bl/c BOgl
A =c/acCc + 1 /a B(O)
o o o 0,0
and Bgog (b = 0,1,2) is the amplitude of the TEM mode
3

incident from the bn region.

The perturbation coefficients may be related to t* =

M

+
modal coefficients C; in the coupling region ¢ of th:
auxiliary problem using properties (1) and (iii)} of section

2, Chapter 2f

(1) (1) .- ,
g = Kn Cn, n > 1 (2.5}
(2) _ (2) .+ .
g, Ko Cho n >3 (2.6)
where
b L)
(1) _ -nm . RB7TPq ] )
Kn = o sin / Fl(—Ync)Hl(~Ync)(YnC+JkO)Jsnil
(2.7)
k{2 = 2 (e (v sty 0y -3k ) n>1
n ne 2 nc’ 2 'nec nc o'y’ -
(2.8)
where an)(y ) indicates that the nth zero term it Y
nce ‘nc
is to be omitted.
o . (1) (2) .
e equations for g, and g, may be derived by re-

quiring that Tl(w) and Te(w) give consistent results for
the modal coefficients in the coupling region. Using
properties (ii) and (vi) of section 2, Chapter 2 and

(2.5) and (2.6) we have for A = O:

nTh -1
RES[T,,y, 1 = 2% sin L (KiZ)} gl2) > 1
| ) (2.9)
- (1))~ (1) .
‘TQ("Ync) The © (Kn ; s no> 4

(2.10)
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(2.9) and (2.1C) represent two infinite sets of equations

for the perturbation coefficients gil) and gie).
3. Asymptotices
In order to efficiently truncate egquations (2.9)
and (2.10), we shall use the asymptotic behavior of tia-
perturbation coefficients.

(1) (2)

and g for A = o
n n

i

The asymptotic behavior of g
is found by considering a double limiting procedu = We
first consider the asymptotic form for A # 0, let n + «

and then let A + 0. This yields

co = o(n~3/2) (3.1)
- nmb
c: = 0(n"3/% 5in 1y . (3.2)

where the notation for the mode coefficients in the coup-
. . . +
ling region is obvious. The oscillatory portion of Cn
is necessary in order that the field be properly singular
at x = b + b..
¢ i
This is an important point. In genersal i1f we have

N edges of various types in a large guide of dimension a,

then the asymptotic behavior as n + ® is
o{n ™ sin T X (3.3)

where X is the location of the mth edge and PL is the
power index associated with the edge condition at X-
This can be more clearly understocd if we examine the

field in region sa
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° “Yng? am
Hy = ¢A = Z A e cos —— X (3.4)
n=0
l—pm
Examine EZ which behaves as 2z as z + 0 and x = xm.

Then from Mittra and Lee (1971) we have

n A sin 2% x = O(nl_pm) ieo=h
n a m L2
If we multiply (3.3) by sin nﬂx#/a all terms will be
oscillatory except the term m = k, and we will pick the
appropriate edge condition out of the sum. With a singile

edge this oscillatory term is generally implicitly stated.
However, when multiple edges exist it is important to
give these terms explicitly.

From Mittra and Lee (1971) we can find that

1/2 nmo, .
Kél> = 0(a'/? sin —) (3.6)
2 1/2
Kr(l )= (at?) (3.7)
Hence from (3.6), (3.7), (2.5) and (2.6) we have
nTb .
gil) = 0(n”t sin - L) (3.8)
nTh
géZ) = 0(n™t sin - L (3.9)

Using (3.8) and (3.9) we can write (2.1) and (2.2) in a

form more tractable for numerical computations.

(1)

_ ' (1) ¥, &,
T, (w) = Hy(w)F () |K =~ ~(w-Jk ) E oty
n=1 nc
-1 b/ (3.10)
o n sin n7 c
+ g(l) z wt -
n=1+N Ync
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N
= (2) 2 n
Tolw) = Hy(0)Fy(0) K " =(0-0k )y [T s
n=1 ng
, (z.11}
—(2) 2 n"" sin nwb, /e
+ g z oy ’
n=1+W, ne J
where clearly
- -1
Sil) = g(l) n = sin nﬁbl/c, n > 1+Nl
(2) _ =(2) -1 .
g, = g n sin nﬂbl/c, n > 1+N2

Before using (3.10) and (3.11) in {(2.9) and (2.10. .st us

consider the mode coefficients in the regions a and b, in

order to insure that the field is properly singular with

the choice {3.8) and (3.9) for the asymptotic behavior
(2)

of gél) and g, - Using properties (ii) and (wvii) of

section 2, Chapter 2 we have that

S 1 = -a 2T 4y c
RED[Tg,Ynaj An o sin — (3.12)
and
oy m+1
wheré B is the mth reflected modal coefficient in the

m,l
waveguide with dimension bl.
This leads to an examination of the sums

oo n sin n7b. /c
1
S. = z s m -+ oo
1 _ cm
n=N_+1 n - —
1 b
1
and
-1
| © n sin nﬂbl/c
S, = 0 m + o
2 cm

= 4 7 =
. n N2 1 n a
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Thus let us examine the universal sum

_ o n = sin nd .
s = 1 ———, u > (3.1k)
n=N

In Appendix C it is shown that

-1 sin w{mw-6)
sin W

S = O(m_l) + O(w
hence from (3.13)

(v ) = 0(a™H?) + oM P ()™

and thus

B, - 0(n~3/2) + o(n~3/2(-1)m

which is in agreement with the concept of (3.3). Similarly,

-1/2 . nﬂbo( ( . nﬂool
n sin ——|0isin o

RES[T2,Yna]

a ~
nt{b +b._) %
+ O(sin _u_ﬂgw_iu}]
a )
and thus
nTb nT{b +b_ ),
A = O(n"?’/2 sin ~——9] + O(n"3/2 sin o 1
n a a
which agrees with (3.3). Hence the asyﬁptotic choices

(3.6), (3.7) allow both edge conditions to be satisfied.

4. Truncation of the Equations
We are now in a position to use the knowledge of the
asymptotic behavior of the perturbation coefficients in
truncating equations (2.9) and (2.10). This section
examines two ways of truncating the equations using the

asynmptotic behavior of the perturbation coefficients.
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The first kind of truncation is what has commonly
been used (Royer and Mittra, 1972). This consists of
merely choosing extra equations by letting the free inds
of (2.9) and (2.10) take on one additional value. This
Yields the following simultaneous linear equations

(1) -1

N o .
i S~ € DI S ke EAANN COR Y

m=1 Ync+Ymc ' m=Nl+1 Ync + Ymc n n

(4,1}
K((31)
= - n = ]_’2’-. ’1 )
Ync - Jko fd
(2) SRS
)\(2) 8(1) + N2 € . E(z) z m sin mﬂblfc
n n n=1 Ync+Ymc m=N . +1 Yoe Yoo
(2
T Y.+ Ik n o= 1,2,°%¢ 1N
Ync * Jko % 1
where (4.2)
niTh
Ul sin
1
)\Ig ) . - (2) (h.3)
Hl(Ync)RES[Fl’YncJ<Ync_jko)ﬁn .
. v .
SR = (4.4)
? Ho(-vy, JF (-y_ )y _ +jk ) k(1)
2 nc 2 nc nc o n

Note that since we are not changing an edge condition but
adding an edge condition, an equation comparable to (3.10}
is not needéd:

It should be noted that with any truncation there are
an infinite number of equaticns which remain. As in other
MRCT solutions these remsaining equations can be used as =

check on accuracy of the solution.
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Of course, the above choice is not the only manner of
truncation. For example one can equate the leading asynp=-
totic terms of equations (2.9) and (2.10). This results
in two equations independent of a free index. Using ths
asymptotic expressiogs for the infinite product in Mittrs

and Lee {(1971) we find from (2.9)

N [o0]
zl gél) + g(l) ) n”t sin nﬂbl/c {&
n=1 n=1+N
1
T —(2) _ (1)
+ -c- Pl 28 - KO
N 00
22 gI(12) + g(2) ) n~t sin nwbl/c (L.6)
n=1 n=1+N
. 2
(1) _ (2)
- T P2 g = Ko
where <
. bl c &
1 b
o)
and
bo.c2
P =
2 a bl b2

The remaining equations are chosen as in the previous
truncation.

Of course, there is also enother possible choice.
This is the direct truncation of the original equations.
However, because of the arguments given in section 3, this
sclution will not explicitly satisfy both of the edge
conditionsAof the problem. However, in the calculation of
the dominant mode reflection coefficients and coupling coef-

ficients, this may not be overly important.



5. Dielectric Loading
Figure 3.5.1 illustrates a trifurcated waveguide with
dielectric loading in the largest waveguide. The sauxili=ry
problem is similar to the normal trifurcated waveguide.
With reference to the auxiliary problem we see that
we can identify a function Tl(w) with the Junction st
z = -A.

(1)

T, (0) = H (0)F. (w) K(l)—(w-Jk ) § °n (5.1)
l l 1 o] 0 fad w+-Y Ed e
n=1 ne
This equation is identical to (2.1). However, the func-

tion (2.2) for the junction at z = 0 is modified to be

( - g(2)
Tz(m) = H2(w)F2(w) Kéz)—(w—Jko){ E w_§
. n=1 €« NC

(5.2)
g(3)

o0
n
c 1)
+
n=1 w Yna

corresponds to g
n n

J

(3) (a)

where g of the canonical solution,
due to the presence of the dielectfic.

Equations (2.3) - (2.10) apply to the dielectrically
loaded case if the expression for T2(w) given in (5.2)

is used.

Similerly we still have

b
(1) (2) _ f -1 . BT%
gn o gn = 0in sin =

since for d # O we are not changed or adding an edge

condition. -
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Waveguide and the Auxiliary Problem.
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In order to account for the dielectric consider the
following. In the region between the trifurcated Junction

and the dielectric, the field is given by

o Y. 2 -Y z
¢ = Hy = X (Aﬁo)e e Ane na l cos — z (5,3}
n=0
and it is easily shown that
aled o g (5.%
n n o 'n -
where
£ Y - -2y 4
_ na na na s
R, =2 7 T e {5.5)
_ na na
and where
2
T = // (EE} - €k
na a

We will consider the case of conduction losses in the
dielectric by using the complex permittivity

_ 120 7o _
€~€r —j ko (7-6)

From property (i) of section 2, Chapter 2 we have that

63 = (30 4le) (5. 1)
where
k(3) = BT g4y nTrbo/[F (wvy_ JE (=y__)(y__+Jk )]
n 8 a 2 na’' 2 nea na o’ "
(5.8)
The asymptotic behavior of gé3) can be found using
(5.7) and (5.4) to be
gr(l3) - O(n—l e—QnTrd/a) (5,9)
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Because of the exponential behavior of gé3) the series

appearing in (5.2) can be truncated at a finite value,
say n = N3.

An equation for g

(3)

o can now be derived using provpsriy

(i1) of section 2, Chapter 2 and (5.%), (5.7) and (5.¢:

T nThb
RES[Tz,Yna] = > sin Py An (5. 20)
5.
nTh \
= =nm sin R_l(K(3)}-l g(3/
a a n n
n=1,2,%%¢« I+

Equations (5.10) together with the appropriately modified

forms of (2.9) and (2.10) represent the necessary simul-

(1) géz) (3)

taneous equations for g, 7> n

and g
Note that we are considering only the conventional

method of truncation. N

6. The Scattered Fields

The previous sections have dealt with the formulation
and solution of the MRCT equations for the perturbatidn
coefficients. Upon finding the perturbation coefficients,
we are able to evaluate the constructed meromorphic func-
tions at the appropriate points in the complex plane and
determine the scattered fields. This is done with the =aiad
of the guxiliary geometfy. Using the properties (viii)
and (ix) of section 2, Chapter 2, we find the following
TEM coefficients of the scattered fields for the unloaded

trifurcated waveguide



36

tve)
i

_Te(_Jko)/(2jkobo) : (6.1)

Bo,1 = Ty (-dk ) /(25% b)) + 1, (-3k )/(23k ) (6.2)

os}
|

Tl(-jko)/(2jkob2) + TQ(—ij)/(2Jkoc) (6.7

where B (n = 0,1,2) is the amplitude of the reflected
TEM mode in the waveguide of dimension bn

When only a single waveguide is excited with a TEM
mode with an amplitude of unity, (6.1)-(6.3) represent
either (current) reflection coefficients or (curre *°
coupling coefficients. The reader is reminded that for
TEM incidence f;om the largest guide the TEM solution is
immediate, the solution being given by properties (viii)
and (ix) of section 2, Chapter 2. Also, the TEM trans-
mission coefficient to the larger waveguide Ps found
immediately from repeated use of equation (2.5).

The complete scattered fields can be found with the
aid of the auxiliary problem and the properties given in
section 2, Chapter 2. For this dissertation, only the
TEM modal amplitudes are of immediate interest.

For the case of the dielectric loaded trifurcated
waveguide, the results are essentially the same as those
already given except that we must add in the reflected

TEM field from the dielectric. This yields

Bo,o = _Tz(-Jko)/(Ejkobo) * RA_ | (6.4)

By,1 = —Tp(=dk ) /(25K by ) + T (-3k )/ (23k _c) + RAJ
(6.5)

30'2 = Tl(~Jk0)/(2Jkob2) + T2(-Jko)/(2dkoc) * RA
(6.6)
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" where R is given by (5.5) and

A =3¢ + =23
o a o 8 6,0
and
b b
+ 2 (o) 1 (o)
= - +
Co c Bo,2 c B o1

This dissertation is only concerned with TEM incivesn.

Other incident modes may be included in a direct manner

using the properties discussed in section 2, Chapter 2.
T. Numerical Results

7.1 Introduction

This section presents the numerical solution of thse
trifurcated waveguide as well as the dielect’ric loaded
trifurcated waveguide. The computer programs were writte.
in Fortran IV for a CDC 3800 computer with a 48K word
memory. Since these programs were later extended to the
N-furcated waveguide, only the more general programs ars
listed in Appendix G. '

One interesting aspect of the numerical solution of
the problems is the method used to evaluate the infinite
product form H(w)F(w) appearing in (2.1L4) of Chapter 2.
The method is capable of giving results éccurate to an
arbitrary accuracy using only a small number of terms in
the product plus some correction terms. For the dats cowm-
puted in this report, 50 terms were used in the evaluatis-~
of the.infinite product for 5 place accuracy. The tech-

nigue used is given in Appendix D.
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The infinite cscillatory summations used in the con-
struction of the meromorphic functions (see (3.10) and
(3.11), for exahple) wvere summed numerically using a
moving average. Less than 50 terﬁs were generally

necessary to yield 5 place accuracy.

7.2 The Trifurcated Waveguilde
The practical solution of the trifurcated waveguide
using the truncated equations requires two numerical.
considerations. We must decide how to choose the ratio

of Nl/N and we must decide how large Nl and N, must be

0
for acceptable accuracy of the results.

A numerical study of the ratio, Nl/NQ’ revealed that
the final result was independent of the ratfg (as opposed
to direct mode matching where the solution does depend on
such ratios). It was thus convenient to choose Nl = N2.

The choice of how large Np = Nl = N2 must be for a
given accuracy, depends on the geometry of the problem.
Even for a given trifurcated waveguide we must decide how
bO and b2 are chosen, since switching bo-and b2 merely
turns the waveguide upside down. Table 3.7.2.1 illustrates
the TEM current reflection coéfficient of an edge wave-
guide as a function of Np = Nl = N2. This geometry was
also considered by Pace and Mittra (1966) and their data

is shown with Np corresponding to the size of the scatter-~

ing matrix used.



Table 3.7.2.1 Convergence Results for the Trifurcated
Waveguide.

* 1

e}
ﬁg Bo,o Bo,2 o,o(yac”‘m
1 0.32k24 131.91° 0.32k27 131.91° 0.326 12 °°
2 0.32k25 131,91° 0.32k24 131.93° 0.327 137 .¢°
3 0.32425 131.91° 0.324k24 131,92° 0.324 150 .5°
l 0.32425 131,91° 0.324k25 131,91° 0.324 137,59
6 0.32425 131.,91° 0.32k25 131.91° 0.32h 1,80
8 0.32425 131.91° 0.32425 131.91° -

* = = - ‘ -
kobo 1.270%46, kobl o.hlhlj, kob2 0.20033
t kb, =1.270k6, x b, = 0.41k17, k b = 0.20033

The above MRCT data was computed using the conventionsl

method of truncation. Note that 5 place accuracy is

achieved almost immediately. This is & def nite improve-

ment over the GSMI', although for many engineering applica-
tions the GSMT results are still quite acceptable. it
is interesting to note that the reflection c;efficient

without the adjacent conducting plate is found from {2,133

to be 0.326 exp(132.6°). Note that B, converges faster

]

than BO This later case corresponds to a laiger coupe

, 2
ling region dimension, c.

The reflection coefficlent of the central waveguide

of the asbove case is given in Table 3.7.2.2.

Table 3.7.2.2 Convergence Results for the

Trifurcated Waveguide.

E3
N B
£ SPE
1 0.7k24k 152.38°
2 0.7h2k4l 152.37°
3 0.7h2kl 152,37°
L C.Thokl 152,37°
¥ k¥ b = 1.,27046, k b, = 0.41417, kK b, = 0.20033
o 0 c 1 o 2



Again the convergence is extremely fast.

4o

The above dats was computed using the conventionsal

method of truncation of the equations. The same data was

computed using the asymptotic choice of the extra equa-

tions. This is shown in Table 3.7.2.3.

Effect of the Choice of Truncation
on the Convergence.

Table 3.7.2.3.

B gt *
gg 0,0 0,2 Bo,l
1 0.32418 131.93° 0.32308 132.35° 0.7L296 152.54°
2 0.32426 131.91° 0.32406 131.95° 0.7Thok1 _32.36°
3 0.32k26 131.91° 0.32436 131.90° 0.7h2k2 152.36°
L 0.32425 131.91° 0.32L438 131.90° 0.7h2k6 152,38°
6 0.324k25 131.91° 0.32426 131.91° 0.7h24k 152.37°
8 0.32k25 131.91° 0.32k24 131.91° O.7hokl 152.37°
® kobo = 1.270L46, kobl = 0.h1k17, kob2 = 0.20033
T kb, = 1.270k6, kobl = O.h;hl?e‘kobo = 0.20033

L ]

Five place accuracy is again acheived; however, this

choice of the truncated equations does not appear to be

gquite as good as the conventional truncation choice. This
is logical since we are truncating the equations.at such
small indices that tﬁe asjmptotic value of the equations
has not been reached. .

As a further comparison with the above data, Table

3.7.2.4 gives the results of using direct truncation

(i.e., no asymptotics).



Table 3.7.2.4% Convergence of Direct Truncation

% + #

ER 0,0 Bo,2 Bo,l

1 0.3233 131.4° 0.3257 135.3° 0.739hk 153 .R°
2 0.32k4k 132.0° 0.3245 132.3° 0.7Lk2g 52 *?
3 0.324k 132.0° 0.3237 131.5° 0.7428 152 _°
L 0.3241 131.8° 0.3237 131.Lk° 0.7Lk20 15z2.6°
6 0.3243 131.9° 0.3243 131.9° 0.7h2s 152.3°
8 0.3243 131.9° 0.32k4% 132.1° 0.7425 151 ,3°
# kobo = 1.270L6, kobl = 0.41k17, kob2 = 0.20033

+ kob2 = 1.270L46, kObl = 0.41k17, kobo = 0.20033

This solution does not explicitly satisfy both of
edge conditions; however, it does converge to the correct
result Just as the computatiogs made by Pace and Mittra
(1966) using the GSMT did. However, the convergence of
both of these methods is much slower than either of the
methods described which satisfy both edge conditions ex~
piicitly. It is also interesting to note that the direct
truncation appears to converge faster than the GSMT solu-
tion. This is important to no?e since the MRCT soclution
without asymptotics can be appliéd as easily as the GSMT.
The data presented thus far has been for a waveguide
Junction which propagates only the‘TEM mode in any wave-
guide region. It is instructive to solve multimoded
waveguide problems using the MRCT. Table 3.7.2.5 presents
data for a case where two of the waveguides sugport the

TMl mode in addition to the TEM mode.
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Table 3.7.2.5 Effect of Multimcding on the Convergence
Results of the Trifurcated Waveguide
(Conventional Truncation)

N B , *

P 0,2 Bo,o Bo,l

1 0.38296 ThL.68° 0.31798 75.03°, 0.85180 156.01°
2 0.38287 7L4.75° 0.37277 7Thk.79° 0.85159 155.4%g°
3 0.38287 Th.T70° 0.38013 Th.72° 0.85160 156,01°
I 0.38289 TL.67° 0.38226 TL.68° 0.8516L4 156.02°
6 0.38290 TL.66° 0.38321 ThLk.65° 0.85166 1586.02°
8 0.38289 Th.66° 0.38320 Th.,65° 0.85165 156.02°
10 0.38289 7hL.66° 0.38306 Th.65° 0.85165 156.02°
12 0.38289 T4.66° 0.38296 7TL.66° 0.85165 156.02°
* kob2 = 1.270k6, kobl = 0.b1k1T, kobo = Lk.hi1205

t kb = 1.270k46, k by = 0.41k1T, k. b, = L. k1205

The convergence is again quite fast and five place accuracy
can be acheived. The convergence of the recession with the
larger coupling dimension, ¢, is somewhat slower than in
the single moded case because of the multimoding in the
coupling region. Also the overmoded data represents more of
a perturbation to the bifurcated solution since the magnitude
of the reflection coefficient without the adjacent con-
ducting plate is 0.L4L52 (from (2.13), Chapter 2).

Teble 3.7.2.6 illustrates this same data using the

asymptotic choice of the last equations.

Table 3.7.2.6 Effect of Multimoding on the Convergence
Results of the Trifurcated Waveguide
(Asymptotic Truncation)

# . 1- B *

ﬁg Bo,2 Bo,2 __o,1

1 0.38695 T75.92° 0.43375 Th.52° 0.837Uk 156.62°
2 0.38310 7TL.83° 0.40086 T2.97° 0.8Lg25 156.15°
3 0.38327 Th.68° 0.39194 T1.82° 0.8530F 155.77°
L 0.38329 TLh.67° 0.38780 T73.65° 0.85317 155.75°
6 0.38288 TL.66° 0.38433 Th.34° 0.85172 156.02°¢
8 0.38282 7Th.62° 0.38317 Th.77° 0.8514 156.08°¢
10 0.38290 Tk.67° 0.3828k 7Th.g96° 0.8516L 156.02°
12 0.38296 TL4.68° 0.38283 Tkh.96° 0.85173 155.99°
* kob2 = 1.27046, kobl = 0.k1k17, kobo = L4.Lk1205

+ kobo = 1,27046, kobl = 0.k1k27, kob2 = 4,%1205
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From the data it is clear that for larger waveguides the
differences of the conventional and asymptotic truncation
methods are amplified with the conventional truncation
method apperently being better.
For a complete comparison of methods it is instruc-

tive to compute the multimoded data with direct truncavic

ks

This is shown in Table 3.7.2.7.

Table 3.7.2.7 Effect °of Multimoding on the Convergence
Results of the Trifurcated Waveguid- .

(Direct Truncation)

#* -f- - *®

N B B B
_P 0,2 0,0 0,1
1 0.3888 82,3° o.bhk7 79.1° 0.8k82 150.8°
P 0.3835 75.5° 0.4330 78.8° 0.851k 155.4°
3 0.3807 73.6° 0.4167 T8.3° 06.8518 157.0°
b 0.3806 73.5° 0.4ok2  T7.4° 0.8518 157.1°
6 0.3829 7L4.7° 0.3889 75.6° 00,8517 156.0°
8 06.3836 75.0° 0.3821 7L.3° 0.8516  155.7¢
10 0.3829 TL.7° 0.3797 T73.8° 0.8517 156.0°
12 0.3825 7L.s° 0.3796 73.7° 0.8517 156,2°
* k b, = 1.27046, k b, = 0.41417, kx b = L. L1205

o 2 o 1 0 0
B kb = 1.270Lk6, kb, = O.h1k17, kob2 = L,kh1205

Again the convergence of the direct truncation method is
slower than either the conventional or asymptotic trunca-
tion methods.

The choice of recession giving the larger coupling
region serves as a convenient comparison of all the ftrunca-
tion methods since the effects are magnified. Figure
3.7.2.1 illustrates graphically the convergence of the
magnitude of the reflection coefficient Bo o given in

®

Tables 3.7.2.5 - 3.7.2.7. It is clear that both of the
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methods which satisfy both of the edge conditions ex-
plicitly are superior to the direct truncation method,
particularly fgr extremely accurate results. TFor sonse
engineering applications, however, the direct truncatic
method is acceptable and will yield results more efficisnt
than many more conventional methods. Figure 3.7.2.1 ..s0
illustrates that the conventional choice of the truncat:un
method converges faster than the asymptotic choice of
truncation.

The discussion thus far has been limited to tne con-
vergence of various reflection coefficients. It is also
interesting to examine some typical perturbation coeffi-
cients. Figure 3.7.2.2 illustrates the behavior of g
for the data of Table 3.7.2.1 for Np = 8 an% the calcula-~
tion of B . It is quite clear that the asymptotic

3

behavior given in (3.8) and (3.9) is quickly acheived.

7.3 The Dielectrically LoadedrTrifurcated Wavegulde
The dielectric loading of the trifurcated waveguide

. it was

adds an additional numerical parameter, N3

=

generally convenient to choose Np = N, = = N

1 5 3 However,

since the perturbation coefficients due-to the dielectric
decay exponentially, N3 can generally be chosen smaller

than Nl and N2.
Since there is no existing data for the dielectrically

loaded trifurcated waveguide the following steps were

taken to check the programming: (1) The dielectric was
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methods which satisfy both of the edge conditions ex-
plicitly are superior to the direct truncation method,
particularly fqr extremely accurate results. For some
engineering applications, however, the direct truncatic
method 1is acceptable and will yield results more efficiont
than many more conventional methods. Figure 3.7.2.1 2 2o
illustrates that the conventional choice ¢f the truncastion
method converges faster than the asymptotic cholce of 1.
truncation.

The discussion thus far has been limited t¢ the con-
vergence of various reflection coefficients. It is salso

interesting to examine some typical perturbation coeffi-

g(l)

cients. Figure 3.7.2.2 illustrates the behavior of a

for the data of Table 3.7.2.1 for ND = 8 ang the calcula-

tion of BO o" It is quite clear that the asymptotic
3

behavior given in (3.8) and (3.9) is quickly acheived.

7.3 The Dielectrically Loaded Trifurcated Waveguide
The dielectric loading of the trifurcated waveguide

adds an additional numerical parameter, NB' It was

generally convenient to choose Np = N1 = N2 = N3. However,

since the perturbatlion coefficients due-to the dielectric

decay exponentially, N, can generally be chosen smaller

3

than Nl and N2.
Since there is no existing data for the dielectrically

loaded trifurcated waveguide the following steps were

tasken to check the programming: (1) The dielectric was
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combined with the unloaded trifurcated waveguide using
only a TEM mode intersasction. This was a particularly googd
check for large 4 or small er. The data computed agreed

with this data. (2) The results of interchanging b oan b

4]

yielded the same results. This is an independent check

2
]

the new programming.

Table 3.7.3.1 illustrates the change of the dats of
Table 3.7.2.1 and 3.7.2.2 with the dielectric parametery: .
kod = 1,256, €. = 10, and U/ko = 0.01.

Table 3.7.3.1 Convergence Results for the Dielectrically
Loaded Trifurcated Waveguide

* *

N. B

_b 0,0 0,1

1 0.52772 172.6L4° 0.80k422 158.83°
2 0.52773 172.64° 0.80k21 158.82°
3 0.52773 172.64° 0.80Lk20 158,.82°
4 0.52773 172.64° 0.80k20 158.82°
6 0.52773 172.64° 0.80Lk20 158.82°

* kobo = 1.270k46, kobl = 0.k1bk17, kob2 = 0.20033

The above data was computed using the conventional trupca—
tion method. The convergence is comparable to the trifur-
cated waveguide without dielectric loading. The recession
corresponding to the larger coupling region yielded results
comparable to the non-loaded waveguide junction.

The waveguides in the above exanple are single moded
.except for the dielectric region which supports two modes.
Table 3.7.3.2 illustrates the change of the multimoded
data of Teble 3.7.2.5 due to the addition of dielectric
materia% with the parameters k4= 1'256’_€r = 10, c/kO =

0.01.
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Table 3.T7.3.2 Effect of Multimoding on the Convergence
Results for the Dielectrically Loaded Tri-

furcated Waveguide.

{Conventional Truncation)

. B * ) ¥*
ﬁg 0,2 Bo,l
1 0.15261 168.61° 0.88923 160.27°
2 0.14271 159.59° 0.88667 160.10°
3 0.14187 159.k9° 0.88517 159.96°
h 0.14168 159.51° 0.88521 159.96°
6 0.1h4161 159.51° 0.88523 159.96°
8+ 0.1416L4 159.51° 0.88522 159.96°
10t 0.14165 159.51° 0.88521 159.96°
*kbo= 4h.41205, kb, = 0.hik1T, k b, = 1.27046
+ N3 = 6

Again the convergence was comparable to the trifurcated
waveguide without dielectric loading.
A comparison of the above data with that of section
<

T.2 illustrates the dramatic effect that dielectric load-

ing can have on the reflection coefficients.






Chapter 4: The N-Furcated Waveguide

1. Introduction
This chapter presents the extension of the resultc
of Chapter 3 to the more complicated case of the N-fur-ated
wavegﬁide and its modification due to dielectric loadl sg.
The N-fﬁrcated waveguide is a waveguide junction which hsas
received little theoretical attention. The N-furcated

wvaveguide Jjunction can be used in the synthesis

72}
=
g
[¢]
s

ratios of higher order modes in multimoded waveguides.
Also.the N-~furcated waveguide can be used as a closed
region approximation to the reflection and coupling cceffi-
cients of a finite sarray of parallel plate waveguides,

When a dissipative dielectric loading is present in the
%argest waveguide, the approximation of an open region
§blution can be even better, particularly when the di-

electric is placed at small distances from the junction.

2., TFormulation of the Equations

Figure 4.2.1 illustrates the N-furcated waveguide and
its auxiliary geometry.

The soclution to this problem is found by constructing
N-1 meromorphic functions. The function associated with
the first plate and the (N-1)th plate will only have a
single perturbation sum, while the remaining plates will
have functions with two perturbation sums. From the

cenonical solution these functions are readily written.
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N-1,R

() | KD o (w-gx ) ] 2
@]
n=1

w+y

Typ (@) = Hy (0)Fp §

n,cN_2

where it is understood that the appropriate geometricaie‘l)
factors for the (N-1)th Junction are used in the canonicas
solution. It is convenient to introduce an additional
superscript R to g, which refers to the location of the

perturbation, in this case to the right of the (N-1l)th

Junction. Similarly,
(2.2)

Tl(w) = Hl(w)Fl(g) Ki—(w—jko) nzl

where the superscript L of g, indicates the perturbation

is to the left of the 1lst Junction. For the Mth Junction

between 1 and N-1 we have )
M,R
M o gn
Ty(w) = H(w)F (o) KO'(w‘Jko){nZl e
n’CM—l
ML (2.3)
© g’
n
+ z m——'}
n=1 D Cy

Note that there are 2N-4 sets of unknown gr's.

The TEM normalization constants are given by

N-1 - _ N-2 (O)
Ko7 Hy QxR (3% ) = 29k by (UO —BO’N_ll (2.4)
K H (Jx JF_ (Jk ) = 23k _ ¢ (UO—B(O)l ‘ (2.5)
o 1 o' "1 o Y70 T1li7o To,l .

M 3 - M-1 (0)
KOHM(jko)FM(dko) - 2jko CM(Uo _BosM] (2.6)
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where U: is the amplitude of the TEM mcde incident from

the left in the mth Junction (refer to Figure L4.2.1 and the

subscript of the c's). The Uo‘s are given by the equat: s
. .
N-2 _ N _(o) "N-1 (o) .
s = oo - Bo,m t 3 Bo,n-1 2T
N-2 °° N-2 °° o
c b !
M-1 M-1 ?
and
c b
o 1.1 1 (o)
= -0 + —
Uo a Uo a Bo,l (2.9)

We have assumed TEM incidence from the waveguides to the
left of the junction. The solution for the TEM scattered
fields for TEM incidence from the largest waveguilde is
direct since no higher order modes are excited.

In order to derive equations for the perturbation
coefficients, we again make use of the auxiliary gecometry
and insist that the expressions for the modal coefficients
in the wvarious coupling regions be consistent.

For the Mth plate we have in general coupling
regions to the left and right of the plate truncation.

From property (i) of section 2, Chapter 2, we have

n

=
|

_ M,
g, = K Cnﬁ M1 _ {2.10)
where
nmb
- 1
g K BT 5ip—02> /1P, -y H (=Y )
o ‘M-1 “M-1 BeCya1 P CM-1
(2.11)
« (y + Jk )]
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Equations (2.10) and (2.11) are valid for M = 2,essN-1.
For the left perturbation coefficients we find from

property (iii) of section 2, Chapter 2

= MSL + “ %
€ Kn Cn,M -
where
M, L 2 (n) <
K7 = ~ e/ [F 7 JH, ( ) -3k}
n Yn,cM M M Yn,cM M Yn,cM (Yn,;M Yo
Y

Equations (2.12) and (2.13) are valid for M = 1,es+§-5,
From property (ii) of section 2, Chapter 2 . uave

for the Mth plate

nmb _
*CM-1 M-1 ‘m-1 T o
{2.1k)
where we have used {(2.12). This equation is valid for
<
M= 2,¢°¢ N-2, Similarly, we use property (vi) of sec-
tion 2, Chapter 2 and find
_ < M*¥1,R;-1 M+1,R : «
TM(“Yn,c ) = Yoo CulKy ]' g, (2.15)
M M
Where we have used (2.10). This equation is wvalid for

M= 1,2+ /N-2,

Equations (2.14) and (2.15) represent the desired
simultaneous equations for the perturbation coefficients.
Note that the end plates each contribute only one kind

tes each contribute

@

of equation, while the central pl
both kinds of equations. 1Ilence, we have 2N-4 sets of’

infinite equations for the 2N-L sets of unknown right and

left perturbation coefficients.
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3. Asymptotics

In order to effectively truncste the equations for
the N-furcated waveguide, we shall find the asymptoti
behavicor of the perturbation coefficients.

Using Mittrsa and Lee (1971), we can easily fi:" the

-
o
{0

asymptotic behavior of Kggﬁ to be
: nnwh \
KffR } O(nl/2 cin E___M.} )
M-1
We can also find that
- -3/2
Caey = 007 (3.2)
Hence
[ - nimb. -
gM’R = 0in 1 sin Ml {(3.3)
n c } :
M-1

This is in agreement with the results found for the
<
trifurcated waveguide.
The results begin to deviate from the trifurcated

waveguide at this point when finding the asymptotic

behavior of the left perturbation coefficients. In order

to illustrate this consider the case of M 1. From (ii)

of section 2, Chapter 2 we have

- nmo
n .
-4 == sin

= RES[Tl,Yna] n = 1,2,°°°

]
sy

Because of the concept of {(3.3), the summation,

o]

f Tl(w) must contribute more than one oscillatory term

asymptoticelly in order to meet all of the edge conditions.
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In particular, this sum must contribute the necessary
terms to satisfy the edge condition of the plates:
2,3,°°*°*,N-1. This result can be arrived at by considering

(2.12) and (2.13). From Mittra and Lee (1971), it :s easy

M,L 1/2)
n

to show that K = 0(n and hence we need

nmh nT(b,.+b_)
+ - : - 3
C = O|n 3/2 sin 2 + Oin 3/2 sin ____g_wiwl
n,l <, c, .

;o (3.4)
+ cee O(n_3/2 sin nn(b2+b3+o-«+bN_l)/clJ

This result is obtained if we consider a sequential col-

lapse of the recessed junctions. Figure L.3.1 illustrates
this concept. Hence %e find in general
: nmb '
. 4+ -— . +
C_ M = O(n 3/2 sin —fJifLI + ,
o M iy
<
Y A TS T L |
O0fn sin + e . {3.5)
c
M
nT{b + b + *ce + b )
- + + -
. o(n 3/2 M+1 M i N-1 I
M
Hence
. N-M-1 M+p
M,L -1 . nt
g, = ) O{n sin (g‘ ) bml} (3.6)
, p=1 M m=M+1
for M = 1,2,++¢« ,N~2,. These multi term asymptotic forms

.are necessary so that all the edge conditions are satis-
fied explicitly.

The argument presented above for the multiterm
asymptotic expansions of the left perturbation coefficienfs

is not totally rigorous. This is because we are really
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Step | Step 2

@
®esl

Step N-2 Step N-|

Fig. h,3°1: The Seguential Collapse of the
: N-Furcated Waveguide Junction.



only in a position to argue the multiterm expansion of

1,L
g .

n The remaining expansions do not necessarily follow,
1 .

although they do appeal to the intuition.

A rigorous Jjustification of the remaining multi-.rm
asymﬁtoticbexpansions can however be presented. Ir ~dex
to do this, let us assume the existence of the expansions
and then show that they are necessary to satisfy all
tﬁe edge conditions. The procedure is to examine the
leading asymptotic terms of (2.1&). However, we ust
first consider the approximate forms of (2.1)-(2.3).

Using (3.3) and (3.6) we have

N-1,R N-1,R
N-1 N g, |
TN-l(w)_“ Hy_g (@) Py (w) K] _(M_Jko’{ pzl wry_
. ' R
. ) L - n “sin nmb. /e
~N-1,R N-1""N-~2
+ gt ) - (3.7)
N-1,R WY e
n=1+y *CN-2
and
L 'Nl’L 1,L
, ) n
T, (0) = B (0)F, () KO-(w-JkO{ -
' n=1 n,c
~ \l
R n sin nﬂb2/cl
+ g ’ Z T u)-»’Y
1 n=l+Nl’“ n,cl
(3:8)
-1 )
i )
. gl,L ? n sin nﬂ(b2+b3,/cl
2 n=l+Nl’L w_yn,c
1
o -1 o9 - i 4 e e 6 4 4
1.1 n sin nﬂ(b2+b3 bN—l)/“l\
M oy |
B n=1+N""* ‘n

it



58

and for the central plates

‘ M,R M,R
rN
T (e) = 5 (6)F (0) KM o (w-gk )¢ ] n
Mt AR L o © I} w+y
n=1 n,c
M-1
-1 . ' M, L M,
o« k I'ed N b4 - no-
. —M.R n sin nTroM/bM_l . 12 g,
3 6 + m.m‘m
n=1+NM’R w Yn,cM_1 n=1 Y %SLIM
o -1 g b / 2.9)
L =ML hosin by ey 3-9)
g y . B3 e & 9
1 = ML w=-v
n=1+N 0,Cy
\j
. o0 - i 1 toeedTy Y
. =M,L n sin rW(bM+l = ij
- — |
He-M-1 n=1+NM’L w Yn,cM
where N indicates the number of bPerturbation coefficients

o
o}
£
ot
'

j
g
43}

[t

uperscript refers to the appropriate coefficient.
The notation for the asymptotic perturbation coefficients
is cobvious., However, note that since there $s more than
one .Left azymptotic perturbation coefficient in general
there is & subscript to distinguish the variocus asymptotice
terms of the same perturbation coefficient. Since there
is always only one right perturbation coefficient, no

is necessary.

When examining the asymptotic expansions we will keep

the - associated with the expansions for reasons
winich will become obvious. Using Mittra and Lee (1971)
and ts of Appendix C we may find that {(2.1L4)
dege into more than one eguation because of the

¢sciliatory terms of different arguments contributed by

s. The first equation contributed by the

ortion of the summations is of the form

O
[
oy
(=
bensk
[24
C*
<
s é
&g
T
O



oM, R
M jz M,R —M,R = -
PylK - g’ - g / m “sin mwb_ /e
M o m=] m mzl,,_NMnR M M—l
NM,L .
M, L =M, L 1
- 2 g - g Z . m “sin mub /e,
m=1 m 1 m=l+NM’L M+3 M
M,L < 1
- 0 &8 8 9 - 3 +e 2 o5 “',»
BN M1 m=1§NM5L m sin m"lT(bM+l Yoy
= ™ gM-lsL
°M-1 T
where
M
‘ P Su M-p

by

&

fl

—M,
P i

L
M Bn_om-1

Equations (3.11) prove that

are necessary for every left perturbation coefficient.

any of these ccefficients

imply that other perturbation

must be non-zero

zero. Hence, the existence

expansions of the left perturbatiocn cc

by contradiction.
Using (3.7)-(3.9)
that

Just

because of an

of

and Appendix C we can

similar in ferm angd

—M-1,1L

g2 /CM—l )
%

—M-1,L,

By_M  M-1

coefficients

edge condition)

(T)‘

as was the case for the trifurcated waveguide.

. 10)

given

(3.11)

multiterm asymptotic expansions

Ir

are set to zero we see that (3,11}
(vhich we know
must be
the multiterm asymptotic

fficients is proved

easily show

all of the edge conditions are explicitly satisfied
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L. Truncation of the Equations

The truncation of the equations for the N-furcated
vaveguide is more difficult than the trifurcated wavse
guide because of the asymptotic degeneracy of equatic s
(2.1k). Two basic choices of the truncation method -re
considered in this section.

The basic difference between methods is the choi &
of the extra equations for the asymptotic perturbatior
coefficients. Both of the methods use the foll « .g
equations, which sre obtained by using (3.7)-(3.9) in

(2.14) and (2.15). For the first plate we obtain

Nl’L gl’L m—l sin mmb./c
y m . El,L z 2° 71
m:l Ym c rY c 1 1,1 Ym c +Yn c
ST AS] m=1+N"? ’ €1
4
. -1
1.1 © m sin mﬂ(b2+b3)/cl
+ gg’ z "
1,L Ym c Yn c
m=1+N"°* U1 71 (Lh.1)
-1 . .
4+ L
L =LLL Z m sin mﬂ(b2 b3+ bN~1)/c
fu-2 Y +y
m=l+Nl’L m,cl n,cl
1,R,~1 2,R 1
* (An ) n,cy €1 8 - Ko/(Yn, +‘jko)
n o= 1,2,ee0,52°8

And for the central plates we obtain the following two

sets of equations



M,R M,R
M,Ly-1 am . 2™y w1, B
O g —sin e - 1
- M- =
M-1 M-1 m=1 m’CMul n,Cy 4
-1 ., M,L M,L
—M, R ; msin mTrbM/cM_l . Nz g,
-8 M,R Ym c +Yn c ' m=1 Ym c -yn c
m=1+N °? FTM-1 *TM-1 *TM P UM 1
M,L o m sin mﬂbM+l/cM o
+ gl z Y =y b2 )
m=1+NM’L m,cM n’CM—l
-1 . \
+
. oML ? m “sin mTT(bM+l bM+2;/cM
82 M,L Ym c _YP c
n=1+N" " UM TP TM-1
o n Tsin nt (b +b +e90e+]h \WAS
pewas ML ) § M+l OM+2 N-1'" M
gN-M_l M,L Yn c —Yn c
m=1+N"° *TM *TM-1
' M-1,L
= —KM/(Y -3k ) n = 1,2,°¢,N i
o n,Cy c
9
And
M,R M,R -1 .
N °® g . o m “sin mmb /c
L5 . Y " gg’R ) Y $ -
m=1 m,cM__l n,cM m=1+NM’R m,cM_l n,cM
NM’L gﬁ’L ML o m sin mTrbM+l/cM
- 1 - ey’ )
Ly Ygp o *Y 1 Yo o tY
m=1 M,Cp  MsCy m=1+NM’L M, Coy q,cM
oo m~lsin mr (b +b /e
M+1 M+2 M
_ ML Lo Ty (4.3)
2 p=1+nh maCy Bl
=, L e om Tsin am(By by 0t dhy ) ey
-—® § ® . g L
N-M-1 Y Y
m=1+y el MsCy Moy
M,R, -1 M+1,R M .
_(ZMoRy 2R o My k)
n n,cM M *n o n,cM o)
+
n o= 1,2,y tLR
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Similarly, for the (N-1)th plate we obtain

nmb

(Xﬁ—l’L)_l énﬂ cin - N-1 g§—2,L
N-2 N-2
N-1,R N-1,R -
\g 3 3
N z n i EN—l,R Z m “sin meN 1/kN—2
T L Y +Y _ Y +y
m=1 MyCy_n n,cN_2 m=l+NN 1,R MyCp 5 D -
N-1
Kl
) N-2,L
=_.( -jk ) n:lyg,g..,N ] (1 \4)
Yn,e o
*UN-2
where
RES[F, ,Y T (y )
WML 2 . Miinsey o MomLey :
n T Tln,e M-1 _(n) L.s5)
*TM-1 F (y JH, (Y )
M-1 n,cM_l M-1 n’CM—l
Fo(-y JH, (=Y )
WMoR _ooam By Mo nney” M nLey o
— — « O
n Cy CyM Frre Yn,cM)HM+l( Yn,cM) )

<

The asymptotic choice of the last equations can be
logically extended to the N-furcated waveguide. Proceeding
in a similer manner to the trifurcated waveguide, we find

the following asymptotic form for equation (L.1)

Nl,L . o .
z gl’L + gl’ Z m “sin mTb./c. +ese+
=1 m .21 1.1 271
m= m=1+N""*
1,1 ¢ 1
P - Fb_ 4 et
By o z . m sin mn(b2Tb3 bN—l)/c
m=1+N""°
—2,R - l . )4
+ T Ql g K (L.7)
where




63
The asymptotic form of (4.,2) has already been given in

equations (3.10) and (3.11).

The asymptotic form of (L.3) 1is

) gM’R + EM’R ) n™ % sin mmb /c
=7 - W M.R M®"M-1
n m=1+N"°
(ML .
+ ) gl o ghl o) n™t sin mmb, . /e
m=1 m 1 ML M+1° ™M
m=1+N"""
M, L 5 1
+ e + g’ Z m ~ sin m (b tecesh Yoo
N-M-1 LML M+1 o oM
—M+1,R _ _M
+ QM g = Ko (4.8)

Similarly, the asymptotic form of (L.,L4) is

(¥-1,R N
) gN—lB +EN_1’R ) n tsin mmb /c
m=1 " N-1,R §-17N-2
m=1+N i
m —N-2,L _  N-1
+ s Puoq 81 K, (L.9)

and PN—l was given in conjunction with (3.10).

The conventional choice of the truncation as mentioned
for the trifurcated waveguide is apparently not possible
in the case of the N-furcated waveguide because of the
asymptotic degeneracy of (2.1Lk). Any choice other than
the asymptotic choice for the extra equations associated
with (2.14) will apparently leéd to numerical instabilities.
Hence, we will use a hybrid choice. That is, we will use

the asymptotic equations for the extra equations assoclated



with (4.2), ©but, we will use the equations obtained by
using the next index for (h.1), (4.3) ana (L.L4). In
the case of N=3, we will have the conventional truncati n
scheme. However, for N greater than 3 we will have & ve
hybrid choice.

0f course, one other truncation is also possiblies .-
direct truncation. As in the case of the trifurcatea
waveguide, this solution will not explicitly satisfy 6
of the edge conditions. However, for many appii: -7 .ns

the solution may be adequate'and even better than many

other more conventional methods of solution.

>. Dielectric Losding
The dielectrically loaded N-furcated wgveguide 1is
shown in Figure U4.5.1. The modification of the N-furcated
solution to account for the dielectric is similar té the
modification of the trifurcated waveguide given in Chap-

ter 3. Only the results will be given. T.(w) becomes

1
1,R 1,5
v (0) = Hy (w)Fy (@) K2 (o )| [ g o =)
n=1 n,a n=1 n,c1
Again gi’R is asymptotically given by (5.1)
-1 -27nd/
gi’R = o(n”1 om2Td/a, (5.2)

Using the truncated form of (5.1), (L.1) 1is modified to be



z=0 z=d
3 ‘% 7 //
N-| o 4 s
_ Dy / s
N-2 ; /
b, e
N-3 N2 Vs //
a w7
: // /
& /
2 .
| 22 1’ /
gi / é /

Fig. 4.5.1: Dielectrically Loaded N-Furcated
Waveguide.



1.R 1,R
_Nz 3 ) ElsR § m—le—Qmﬂd/a
s Y =Y Y -Y
m=]1 m,a n,cl m=l+Nl’R m,a n,cl
1,L 1,.L 1
N—? g _ o m “sin mmwb,./c
1Ty ¥ gi’L ) Y +y —
m=1 m,c1 n,cl m=l+Nl’L m,cl n,cl
_ 0 m sin mn(b_.+b_+eee+p /e
$eood gl’L ¥ 2 -1 1
N-2 1.5 Y +Y
m=1+N" Ty TSy
1,R\-1 2,R 1,
+ e s - +
( n ) Yn,clcl €n Ko/(Yn,cl Jko) (5.3)
o)
n = l,2,°--,N“’R
1.R

Due to the introduction of g » the following equations

n

must be included in the solution

Nl gl . o -1 -2m7Td/a
2 m + E;,R 2 m e
Y v
mn=1 Ym,a Yn,a _ 1,R Ym,a+Yn,a
m=1+N «
1,L 1,L -1 .
V50 gl,R i Nz &, -1, ; m “sin mﬂbg/cl
n n = Y =Y 1 ' Y =Y
m=1 m,c, 'n,a m=l+N1’L m,c, n,a
-1 . 1
L gl’L § m “sin mﬂ(b2+ +bN_l)/cl . KO
N-2 Y -y (v _-jkx )
m=1+Nl’L m,cl n,a n,sa e}
n o= 1,2,c,80°8
vhere . {5.4)
28 = Rn Fl(—Yn,a) Hl(—YnJa) (Yn,a+jko) (5.5)
n .
RES[Fl’Yn,a] Hy (Yn,a) (Ynga_Jko)

It should be noted that the infinite sum involving the

1I,R

0 is not necessary and  'could be omitted.

asymptotic form of g
For the dielectrically loaded N-furcated waveguide
we are only considering the case of the hybrid cholce of

the'trgncation.
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6. The Scattered Fields

The previous sectioné have dealt with the formulation
and solution of the MRCT equations for the perturba*ion
coefficients. Upon finding the perturbation céefficients,
we are able to evaluate the constructed meromorphic func-
tions at the appropriate points in the complex plaae and
determine the scattered fields. This is done with the
aid of the auxiliary geometry.

Using the properties of section 2, Chapt : 2, we find
the following TEM modal coefficlents of the scattered

fields for the N-furcated waveguide,

-T_(=jk )
1' Yo
3 I (6.1)
O,l LJkobl
-7 {(=3k ) M-1 T (-3k )
m 0 n Q
B = e % _’)_'-——- M:Q,ooc’N_,l
o,M 23k by, ney 23k e, (6.2)-
and
- N-2 (-]
T S Ry 7 Tniolt) (6.3)
O;N 2JkOCN'—l n=1 Ejkocn

When only & single waveguide is excited with an amplitude
of unity, (6.1)-(6.3) represent either (current) reflec-
tion coefficients or (current) coupling cocefficients. The
reader is reminded that for TEM incidence from the largest
wvaveguide the TEM solution ié immediate,

For the purpose of this dissertation, only the TEM
modal coefficients are desired. Other higher order modal
coefficlents can be calculated using the auxiliary geometry

and the properties of section 2, Chapter 2.
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For the case of the dielectrically loaded N-furcated
waveguide, the results are essentially the same as those
given above, except we must add in the TEM reflected field

from the dielectric. This yields.

-T.(-jk_)
By T T+ Ug R, (6.4)
: 23k by
~T (-3k ) M-1 T (-jk )
M O n 0 o]
B = —— ————— 4+ U R ; M = 2, = N-1
o,M 23k b, a2 23k ¢ o "o :
{6.95)
B . = Ty (9% + Nig Tnlodko) + U° R (6.6)
o,N 2jko °N-1 n=1 2Jkocn 0 o )

vhere UZ is given by (2.9).
T. Numerical Results

7.1 Introduction
This section presents the numerical solution of the
N-furcated waveguide as well as the dielectrically loaded
N-furcated waveguide. The computer programs are listed
in Appendix G. The programs were written in Fortran IV
for a CDC 3800 computer with a 48K word memory. Only the

programs for the hybrid truncation method are given.

T.2 The N-Furcated Waveguide
Since there is no existing data for an N-furcated
waveguide, the following steps vere indicative of the

validity of the results: (1) The results agreed with the
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trifurcated waveguide for N = 3. (2) Reversing the order

of b b.°*°,b yielded the same results. (3) The bi-

1 "2 >N’
furcated wavegulde with a magnetic wall was solved similar
to the solution given in section 2, Chapter 2. This -~ .iu-
tion 1s given in Appendix E. This canonical solution was
used to solve a trifurcated waveguide with a magnetic wall
(ref. Appendix F). This solution was then combined with
the solution given in Chapter 3 to yield results for .
symmetric N-furcated waveguide with N = 5. The: = regsults
were in agreement giving a simulteneous check of the mag-
netic wall trifurcated waveguide prog}am and the N-fur-
cated waveguide program. {4) By feeding more than one
waveguide simultaneously, we can simulate a trifurcated
waveguide with a magnetic or electric wall.  These results
alsoc agreed.

Table L.7.2.1 illustrates the convergence -for a case
with N=5. In this example a convenie@t choice of the num-

R,M = NL’M

ber of perturbation coefficients was N = N .

b

Table 4,7.2.1 Convergence Results for the N-furcated
Waveguide (Hybrid Truncation)

* * r+ +

ﬁR Py, Bo Ll To-l Ty
3 0.830 155° 0.832 155° 0.101 -=-5° 0.111 7°¢
N 0.838 155° 0.832 155° 0.009 =-5° 0.105 -1°
5 0.8k2  155° 0.83% 155° 0.008  =k° 0.098 -10°
6 0.8L42 155° 0.836 155° 0.097 =4° 0.098 -10°
7 0.8k0 155° 0.835 155% 0.098 -L° 0.102 -5°
8 0.838 155° 0.834 155° 0.098 -4° 0.103 =2°
9 0.836 155° 0.834 155¢° 0.069 -5° 0.100 -=Lo
10 0.834 155° 0.835 155° 0.099 =5° 0.098 -5°
¥ ¥ b = = 1 = b, = 1 =

k by kob5 1.27046, Kobz k b, 0.h1k1iT, kob3 0.L40066.

N . (o) _ _ ) (o).

+ Tg-h—Bosh with Bo’2—1, T),_57B, with Bo,u—l.

0,2
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,27%0 808 Ty =Ty oo

However, because of the larger coupling region associated

By the symmetry of the geometry‘Bo

with the second plate, the calculations are more accurate
for the fourth plate and hence Bo,h and T2—h are more
accurate. This difference is more evident from anvexamina-
tion of the coupling coefficients. For insccuracies less
than a percent, convergence is essentially acheived for

Np greater than 5. In order to calculate all of the TEM
scattering parameters to the same accuracy, one cen choose
the number of the perturbation coefficients to have a
gradient, with the.larger coupling region having more

coefficients. As an example for Nl’L = N2’R =

2,L 3,L _ bR

10,

N = N3’R = 6, and N = 3, we calculate the

following results for the example given in Table 4.T7.2.1
4

"

B = 0.833 155°,

[e] - [}
0.2 0.835 155°, T, |, = 0.099 -5

Bo,h 2
T o = 0.099 -5°

4
The symmetry is obvious.
The above data is for the hybrid truncation method.

Table 4.7.2.2 illustrates this same data for the asymptotic

choice of the truncation.

Table L.7.2.2 Convergence Results for the N-Furcated
Waveguide (Asymptotic Truncation)

* * t +

ﬁg Bo,2 quk To_y Ty_p

3 0.838 15L° 0.831 155° 0.09L 3° 0.113 ge
L 0.835 155°¢ 0.830 155° 0.093 6° . 0.105 0°
5 0.834 156° 0.835 155° 0.100 =k° 0.098 -11°
6 0.83h 156° 0.835 155° 0.102 -7° 0.098 -11°
7 0.834 156° 0.834 155° 0.098 =3° 0.101 =-5°
8 0.834 155° 0.833 155° 0.097 -1° 0.102 -3°
9 0.835 155° 0.83L4 155° 0.098 -L° 0.100 -L°
10 0.835 155° 0.835 155° 0.100 -6° 0.098 -s5°
* k. b =k b.=1.27046, k b,=k b)=0.41417, k _b.=0.40066.

ol 05 (o) 2

3
- . _ _ ) (2)
1‘ T")._E!-BA I With BD-Q—I, Th—2_B092 with B

h=l.

3
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A comparison of the coupling coefficients with those of
Table L4.7.2.1 clearly shows that the hybrid choice is
again superior.
As a final comparison, let us compute this same sta

using direct truncation. This is shown in Table 4.7 2.3

Table L4.7.2.3 Convergence Results for the N-furce.:i
Waveguide (Direct Truncation)
Be& - * ! -
gg 0,2 J0114 TE—M animmw
3 0.836 15h° 0.832 156° 0.111 9o 0 11 50
i 0.832 155° 0.827 156° 0.102 0° ¢ E 0°
5 0.832 156° 0.831 155° 0.097 =-11° 0.0y «11°
6 0.832 156° 0.83L 155° 0.096 -11° 0.066 -11°
T 0.833 156° 0.835 155° 0.099 -5° 0.099 =5°
8 0.83h 155° 0.834 155° 0.101 =~2° 0.101 =-2°
9 0.836 155° 0.835 155° 0.100 -3° 0.100 =3°
10 0.836 155° 0.835 155° 0.099 -5° 0.099 ~5°
11 0.835 155° 0.835 155° 0.100 ~k° 0.100 =h°
¥ = h = ! = = y =
k by ko~5 1.270L6, k _b,=k by o.h1h17,_kOL3‘o Loo6s
_ . (o) _. . _ ) (o) _
+ Tgnh—BO’h with BO,2—L, Th_g-Bosg with Bo,h—l.

It is interesting to note the symmetry of the coupling
coefficients in the above table,‘ This is apparently due
to the symmetry of the equations. A comparison of the
direct truncation method with the asymptotic method of
truncation shows that the convergence of the data com-
.puted from the larger coupling region function is about
the sanme. However; a comparison of the data computed
from the smaller coupling region shows that we can appar-
ently order the methods c¢f truncation (with tﬁe best
method first) as follows: (1) hybrid, (2) asymptotic,
and (3) direct. This is the same conclusion arrived at

for the trifurcated waveguide.



It should be noted that the ébove e#ample is fhe
same as the first trifurcated example treated in Chapter 3,
except the wavgguide has been folded about é symmetry
plane. This allows us to ascertain the accuracy of th-
N-furcated results by exciting thé waveguides in a sym-
metrical manner so as to simulate an electric symmetry
wall and hence a trifurcated waveguide. Exciting the 2nd

and bth waveguide with unit amplitude we find

B, |, 0.835 exp(155°) + 0.099 exp(-5°,;
b
= i o g o
BO’h 0.743 exp(152°)
This is compared with the value 0.7h2 exp(152°) given in

Chapter 3, which is very good indeed.

Similarly, exciting the 1lst and 5th waveguides with

unit amplitude we find <
BO g = 0.168 exp(92°) + 0.223 exp(161°)
B = 0.324 132°
0.5 324 exp(132°)

This is compared with the value 0.324 exp(132°) given in
Chapter 3. Hence, three place accuracy is clearly ob-

talned.

7.3 The Dielectrically Loaded N-Furcated Waveguide
Since no existing data is availaﬁle fer the dielec-
trically loaded N-furcated waveguide, checks similar to
those described for the N-furcated waveguide were performed.
Table L.7.3.1 illustrates the change of the data of
Table 4.7.2.1 with the inclusion of dielectric loading with

the pérameters: k d = 1.25hA, €. =10, O/kO = 0.01.
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Table L.7.3.1 Cdnvergence Results for the Dielectrically
Loaded N~Furcated Waveguide (Hybrid Trunca-

tion)
* | * . +

"p 50,2 B,k oo o

1 0.815 153° 0.875 1589 0.098 -23° 0.061 ~122°
2 0.839 156° 0.8B70 159° 0.066 ~p8° 0.04k3 ~1g¢©
3 0.857 158° 0.860 158° 0.061 =-27° 0.0¢C: ~-Le
N 0.866 159°¢ 0.859 158° 0.059 -27° 0.0f- ~18¢°
; .

0.870 159° 0.863 158° 0.057 =-27°  0.¢6»
6 0.870 159° 0.86L 158¢° 0.057 -27° 0.062
T+ 0.868 159° 0.863 158° 0.057 -27° 0.061 .pF
8t 0.866 159° 0.862 158° 0.058 -27° 0.061 0
9+t 0.86L4 158° 0.862 158° 0.059 -27° 0.059 269
10t 0.862 158° 0.863 158° 0.059 -27° ¢t 058 -29°

'

VLA

w2
SN
v

* = =1. ’ = =0.41 o :Og;.;’“,if‘/ .
k b =k b.=1 270Lk6, k b,y=k b)=0 hikiT, koh3 U066

1 5 2
t R o= 6,
- _ . (o) _ _ ) (o) _
+_T2—h_Bo,h with Bo’2—l, T?-Q—Bo,2 with Bo,h_l'

As with the unloaded WN-furcated waveguide, the results
for the smaller.coupling region again exhibidt better con-
vergence. In order to ascertain the accuracy of the
results, we can again simulate an electric symmetry wall
at x = a/2 by exciting the waveguides appropriately. CEx-
citing the 2nd and bth waveguides with unit amplitude we

have

H

B, |, 0.863 exp(158°) + 0.059 exp(-27°)

BOsh 0.80k exp(159°)

This compares with the value 0.804 exp(159°) obtained in
Chapter 3.

Similarly, exciting the 1lst and 5th waveguides with

unit amplitude we have

B 0.149 exp(-158°) + 0.L40ok exp(162°)

0,5

.5

0.527 exp(172°)



This compares to the value 0.528 exp(173°) obtained in

Chapter 3. Thus three place accuracy is again obtained.



Chapter 5: Other Closed Region Problems

1. Introduction

This chapter considers the application of the MRCT
to four additional problems in order to illustrate the
ease of applying the method to various kinds of problems.
For example, the problem of finding the eigenvalues of
a single ridged waveguide is outlined.

Another problem discussed is the scattering b+ =«
dielectric step. This problem has been solved by Royer
and Mittra (1972). Howevef, it is believed the solution
outlined would be easier to derive than Royer's.

Another problem considered is the variation of the
reflection coefficient of a rectangular wavefuide with a
change in the permittivity sand conductivity of the dielec-

tric loading. Numerical results are given.

2. TE Eigenvalues of Ridged Waveguide

Figure 5.2.1 illustrates a cross sectional view of a
single ridged waveguide as well as the associated auxil-
iary problem. (The dimensions have been changed from
those of Chapter 2 in order to conform with standard nota-
tion used with ridged waveguide.) The basic difference
of this problem in comparison with problems solved pre-
viously is that there are no sources. The problem is

homogeneous.
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Symmetry boundary
(a) Ridged Waveguide Geometry
? 7
€2,0'2 / C /
/ ‘ b / 53,5’3
7

] |

-q_—--s/z SN SN ¢ [

(v) Auxiliary Problem

Fig., 5.2.1: Ridged Waveguide
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Montgomery (1971) illustrates how the transverse
resonance argument is applied t; the ridged waveguide
eigenvalue problem. In ordg; t;_f§gqhthe dominant TE;)
mode eigenvalue, we must make the boundary condition at
the symmetry wall of the mégnetﬁc t?pé.” In this fermula-
tion, we must then make thé'refiécfion coefficient . the
first dielectric -1. This implieé“ﬁl + o, For the
boundaries at x = a/2 and x = s/2 to be electric con-
ductors the reflection coefficients.must be +1 ;; the
limit for the auxiliary problem'solption to approach the
desired solutions.

The solution essentially proceeds as that of the

E-plane step given in Chapter 2,.execept that T(w) must

have two additional terms. From Chapter 2, we have
{ C
T(w) = H{w)F(w) KO - (w-jkv){ z
¢ w-Y
. n=1 nc
n=1 “"Ynp  p=1 U7V (2.1)

From Chapter 2, section 3, we can easily find that

¢ _ O(n—7/6)

€n

in the limit as €5 > @. Since gg and gg decay exponen-
tially we can truncate these series without any loss of

generality. Hence we can write
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c
N g
T(w) = H(0)F(0)|K - (w-jk ){ ye _‘n
n=1 Y"ne
= -7/6 W g°
" E’c X zb +n
m=I+N ®Yne- n=1 "y
d
N g
+ Zd w_n } ( \
n=1 Ynd

Again from Chapter 2, section 3 we find that

N © N

c - -7/6 b b

kK - 196 -8° ] a0 P4

n=1 n=l+Nc n=1
N

a 4d
- gn = 0, (2.3}

n=1

In order to arrive at the additional equations, we require

that the modal coefficients be consistent in the vafious
<

region, From Chapter 2, we have the following equations,

_ (¢) nm . nmd
RES[T,—ynb} = -B_ 5 sin = (2.4a)
m . nwd
RES[T, v ,] = -B_ EF sin = (2.41b)
where n = 152,3,"‘Nb, and where Bgo) is the coefficient

of the nth mode incident on the Jjunction from the region
with dimension, b. Bn is similarly the nth modal coeffi-

cient away from the Junction in the region with dimension,

b. But from the boundary condition at x = &/2 we must have
(o)
Bn i e—2(a-s)ynb (5.5)
B : -2
n

Combining (2.4) and (2.5) we have that

"(a"S)an
RES[T,—an] = e RES[T,an] (2.6)
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Similarly for the region with dimension, d, we have

= [_1)& (o) ‘
T(y,q) = (-1)7 vy 4 @ D (2.7e)
- n+l .
T(-v, 4) = (-1) Yoq @ D (2.71)
where n = 1,2,--~Nd. But from the magnetic symmetry con-
dition at x = 0 we have that
(o)
Dn _ -SYnd N
D = =-e (2.8}
n

Hence, combining (2.7) and (2.8) we have that

_sYnd

T(Ynd) = e T(~Ynd) (2.9)

Equations (2.6) and (2.9) express the interaction of the
higher order modes with the boundaries at x = 3/2 and s/2.:

Similarly, we can easily find

T(Ync) = —cﬁo) Yoo © ~ (2.10a)

T(-v, ) = C, v, C _ (2.10b)

but from the boundary condition at the conductor we have

c, = Céo) (2.11)
Hence,
T(Ync) = —T(—Ync) (2.12)

One should note that this equation has the most pronounced
effect on the solution since this equation accounts for
the change in the edge condition. Fquations (2.6) and
(2.9) account for higher order mode interaction with the
edge conductor and the ridge symmetry plane. But since
these modes decay exponentially, the effect is nof geﬁer—

ally gieat. This can also be seen from (2.6) and (2.9).
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a b
Ags n + ®, we have that g.s & ~ 0, exponentially. How-

i

ever these coefficients 4o become important in the calcu-= .

Jatiocn of higher order mode eigenvalues.

For the first few eigenvalues, generally all the

tand

higher order modes are for the TEM t

(o]

b

cut off except

mode, Hence, let us concentrate on the TEM esquatiouns.

From Chapter 2, we have

/ Vs
_ ¢ {o) _ & (o) - ‘
BO 5 CO + N DC {Z2.13s
T(jk ) = 23k e (B_-c'°)) . 13D)
o o o o wo=20
. N (5 -
T(mjko) = 23k ¢ (COMBO ) (2.13c}
(o) .
T .3 = LD - ’ 134)
T( Jko) EUkod (Do BO ) (2.134)
Prom these equaticns, we can arrive at the following
equations
€
B = 0 o+ i»D(O} + = C(o) {(2.1ka)
o] b o b o
—-1 \ , 3
I B(O} _C__T< Jz(o/ D\O) ST( Jko) ﬁ(o) (2 lhb)
o o b Tijkos o b T{jkos "o )
{3 -3k
L B(O) . iT\ uk0> D(o} ) ‘_i_T( J o) m(O) (5.1kc)
Yo o b T(jk ) o b T(jkOS N ver s
These equations can also be written in matrix form
B i)
o { o |
= [0 i (O) ! .15)
D, (el | o, ’ (2.15)
| C { n e |
A © |8 o }



However, from the boundary conditions we have

) -Jk (&—S) {
( (o) | ( e © 0 0 B
[e] (o]
~Jjk s
plod | o | e ° 0 D
[0] O
(o) 0 0 1 C
L o \ )\ o
fB(O) fB
(o] O
(o) -
D, = [W] D {(2.16)
clo) C
L\ © ) L O )

Thus using (2.16) in (2.15)

{{I] = [Q][W]} D = [0] (2.i7)

<

wﬁere [I] is the unit diagonal matrix. For s solution to
exist, we must have

det = {[I] - [Q][W]} = 0. (2.18)
In essence, this is the equation for KO. The complete
solution to the problem is then found from equations
(2.18), (2.12), (2.9) and (2.6). \Note that all of these
equations are homogeneous. Hence, a solution exists only
if the determinant of the asscciated matrix of coeffi-
cients is zero. The eigegvalues are found by finding the
values of ko, for which this is true. The aséocjated‘
eigenvectors (arbitrarily normalized) are found by re-

course to (2.k4), (2.7), (2.10) and (2.1k4).
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This section has thus outlined the solution of an
eigenvalue problem using the MRCT. This solution should
prove to be beneficial when accurate higher order eigen-
values are desired. Additionally, the dominant eigenv uss
caen be found from the zeroes of the determinant of =

small matrix because of the efficient truncation due Lo

the use of the asymptotics of the unknowns.

3. Scattering by a Dielectric Step

Royer and Mittra (1972) have considered the solution
of the scattering b& a dielectric step using the MRCT.

A MRCT solution was used because of interest in high per=-
mittivity dielectric materials. However, the method of
obtaining the equations does not appear to hebstraight
forward. It is the purpose of this section to outline
how the extension of the MRCT can be applied to obtain
the equation in a straight forward manner.

Figure 5.3.1 1illustrates the dielectric stepr and the
associated auxiliary problem. Note that the auxiliary
problem is different from that of Royer and Mittra (1972).

With reference to the auxiliary geometry, we see
that we have three distinct Jjunctions. The first at
z = -A, is Jjust a bifurcated waveguide. The second is
the junction ét z = 0, which is Jjust & Jjunction between
air and a dielectric fillipg the waveguide. The third
is the Junction at z = Ao. This junction is Just a bi-

furcated waveguide with slab loading. This Junction can



(a) Dielectric Step Geometry

BAY] A2

.
1
i
|

7 //V//A

(b) Auxiliary Geometry

‘.‘é
.

Fig. 5.3.1: The Dielectric Step
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be solved in a manney similar to the normal bifurcated
waveguide was sclved in Chapter 2. The main difference
is that the modal propagation constants in the partial

slab loaded guide must be found numerically. whereas

are known in closed form with no dielectric loadin

%y

Hence the solution is obtained by constructing tTwo hHo -

morphic functions. Each function will be of a doubly

[ N

modified form. The four infinite sets of egquations sr«

found from the consistency of modal ccefficients the

regions 0 < x < b and b < x < a where =-4; < A

™
| A

o The

asymptotic behavior of the perturbation coefficients must
be such that when 4,, A, + O that the edge condition at

the dielectric is satisfied. Royer and Mittra solved

2 2 2 % o . .
the case of TE incidence and thus the edge condition is

A 3
E_=0(p") |
¥y P |
- ,.'_l"}.\,k
HX 0ip ,{ p + O
A
-1
H = =
o= 0{p )Jg
where
A = ~1{1 fe-2
= ‘TI:,COS &2 e+l j
where 0 is the radial distance from the dielectric edge.

4, Dielectric Loaded N-Furcaeted Waveguide
This section serves as & forum to present some numer-

ical date for the problem already considered in Chapter L,

section 5. In particular, we consider the case of N = 5,

¢



the Jjunction being symmetrical about the center. This
particular solution can be considered as an approximation
of the coupling of two waveguides above a homogeneous
earth. However, as shown in part 2 of this dissertaticn,
this is not generally very accurate. If, however, a
sample can be obtained and placed in a waveguide, this
analysis applies directly by replacing the free space
vavelength by the guide wavelength,

From this discussion, it is logical to compu.- ar-
gand disgrams for the reflection and transmission coeffi-
cients as a function of the earth's parameters. Figure
5.4.1 illustrates the change of the transmission coeffi-
cient in magnitude (dB) and phase versus the parameters
er and 0. Note that the data is normalized %0 the case
of no dielectric (a subscript w indicates the dielectric
is present, a subscript w/c indicates the dielectric is
not present). The resolution for nominal measurement
accuracies is quite acceptable. The resolution is better
for the lower permittivity and conductivity cases. How-
ever, since there is a larger range in the magnitude than
phase, the vertical resolﬁtion will not be as great as
the horizontal resolution of the figure. Note that the
constant er curves tend to be vertical lines fqr the
lower conductivities and hence the main resonluticn is in
€r' This can be somewhat remedied by considering the

reflection coefficient argand diagram in figure S5.4.2.

Notice that the range of the phase is about a third of
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that of figure 5.4.2. However, the range of the magnitude
change is greater., These disgrsms can be used simulta-
neously to obtain increased accuracy; One interesting
combination of figures 5.4.1 and 5.4.2 is shown in figur.
5.4.3. This argand diagram uses only the amplitude da“:
of the transmission and reflection coefficients. UNo ph.o=
data is used. TFor nominal accuracies of the amplitudes
the resolution is agaln acceptable and no phase data is
required. However, use of phase data will in gene: |
allow increased resolution.

This data tends to indicate that remote sensing of
the earth with waveguide horns is reasonable at frequencies
where the horns are not excessively large.

The data presented has been for dimensions rather
small compared to a wavelength. This is due‘to the limi-
tation of the closed region analysis. A broader range of
dimensions is more féasible for the associated open region
problem. This is the subject of part 2 of this disser-

tation.
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Chapter 6: Conclusions (Part I)

This part of the dissertation has presented the MRCT
solution of a new class of closed region problems. The
approach has been to solve a canonical problem of a bifur-
cated waveguide with known incident fields. The solution
of a composite problem is readily found from an asscciuted
auxiliary problem.

The particular class of problems solved are problems
associated with the N-furcated waveguide Junction. The
convergence of the MRCT solutions 1s rapid requiring
only a few perturbation terms for any particular meromor-
phic function constructed.

Data computed using the closed region inalysis tends
to indicate the usefulness of wavegulide horns in remote
sensing of the parameters of a homogensous earth.

It should be noted that the approach used 1in this
report is straight forward to apply to most problems which
can be solved using the GSMT. The advantage of the MRCT
is that the edge condition of a particular problem can be
either changed or edge conditions added explicitly. This
enhances the convergence of the solution over the GSMT.

Also, it should be noted that the principles used in

this report are equally valid for modifications of open

-

region problems. For example, & finite phased array with
or without & ground plane can be solved using 2 combination
of two canonical problems: (1) a parallel plate waveguide

in free space, and (2) the bifircated waveguide. This is

the subJect of part 2 of this dissertation.






Solution of Electromagnetic Problems Using
the Modified Residue Calculus and

Function Theoretic Technigues

Part II

Solution of Open Region Problems,






Chapter T: Introduction (Part II)

This part of the dissertation is concerned with the
analysis of open region waveguide problems. The first
part of the dissertation was confined to closed region
problems. This allowed testing of the technigques exveccted
to be employed on open fegion problems as well as solviung
some interesting closed region problems. The basic
analysis was simpler ;ince branch points were not encoun=—
tered. In addition to strictly open region problems,
this part.of the dissertation uses the results of the
first part of the dissertation in conjunction with open
region analysis to solve problems containing both open
and closed region parts.

2

Historically, semi-infinite waveguide problems like
those to be discussed have been solved using the Wiener-
Hopf technique or nodifications of the Wiencer-Hopf tech-
nigue (Mittra and Lee, 1971). However, this dissertation
has chosen to exploit the techniques developed in the
first part of this dissertation and extend the MRCT to
the open region case. Actually, one still has to solve
the same equations; however,'it is believed that the solu-
~tion is more straight forward using the modified function
theoretic technique {MFTT). The first use of this method
was reported by Kostelnicek and Mittra (1971). They
solved the problem of radiation of parallel plate wave-

guide into a dielectric slab. It is interesting to ncte
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that in Kostelnicek'’s original technical report {Kostel~-
nicek and Mittra, 1969) that the solution of this problem
was obtained by'limiting arguments applied to the associ-
ated closed region problem which was solved using the
MRCT.

This dissertation completes the derivation of the
technique suggested by Kostelnicek and Mittre (1971) an=
brings it full circle by uniting it with the MRCT. 1In
this process, the open region analogue of the G3#¥L - inp
essence used. However, all edge conditions are satisfied
explicitly in order to enhance the convergence of the
solution over that which would normally be obtained.

‘The vehicle which allows one to solve a certain class
of modified open region problems is the canoflical proble:
of a semi-infinite parallel plate waveguide. An infinite
number of known discrete modes are assumed to be incident
from the interior of the waveguide, as well as assuming
fields with known arbitrary spectra incident on the wave=-
guide Junction from the exterior. This solution (given
in Chapter 8) is Just the superposition of solutions which
are given in many texts (for example: Mittra and Lee,
1971). However, this solution has never been given and
is important in the sclution of modified semi—ipfinite
problems.

The problem of radistion from a flanged waveguide is

given as a first example of the technigue is Chapter 8.

T
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This particular problem was solved using the MFTT by Itoh
and Mittra (1971). However, the techniqgues of this dis-
sertation allow a simpler derivation of the solution.

In Chapter 9, the MFIT is applied to the problem of
radiation of a semi-infinite parallel plate waveguide into
a homogeneous half space. This problem is in many res-
pects similar to the problem solved by Kostelnicek and
Mittra (1971); however, there are important differences.
First, the problem of singularities 1is extensivu. studied
and efficient numerical schemes to solve the integral
equation are derived. Kostelnicek used the most basic
form of point matching and subsequently had to invert a
much larger matrix than necessary using the techniques of
this dissertation. Secondly, the problem ofs< radliation
into a half space is interesting in itself because of the
physical results. Thirdly, Kostelnicek used an incorrect:
form for his infinite products and hence sapparently did
not satisfy the edge condition (Montgomery, 1973).

The probliem of a finite vhased arrsay is solved in
Chapter 10. The importance of this solution is that it
is not necessary to assume an infinite ground plane in
order to obtain a solution. Also it is interesting to
note that the solution only involves the solution of
simultaneous linear equations as opposed to :n integrgl
equation. This particular solution is extremely impor-

tant to the array designer because it corresponds more
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closely to actual practice than the assumption of an
infinite ground plane. It is salso possible to solve the
problem of a firiite array with a finite ground plane
using the techniques of this dissertafion; elthough, tth
solution is not given, Comparison with the results ocbhe
tained by Lee (1967) for the case of a finite array wfth
"en infinite ground plane yields some interesting result..

Chapter 11 combines the results of Chapters 9 and
to give the solution of a finite array of waveguic:=s
radiating into & homogeneous half space (in this case con-
sidered to be a model of the earth's surface). Argand
diagrams for the variation of the reflection coefficient
and coupling coefficient of a two element array as a
function of the earth's permittivity and conductivity are
given.

Chapter 12 outlines the solution of several other
open region problems. Among these problems is the radia-
tion of a flanged waveguide into a half space. It is.
interesting to note that Kostelnicek and Mittra (1971)
indicgted that such a solution was not possible using the
MFTT, indicating that a complete understanding of the

method did not exist at that time.



Chapter 8: Foundation of the Modified Funwtlon
Theoretic Technigue

1. Introduction

This part of the dissertation is concerned with
problems which are modificaﬁions of a semi~infinite
parallel plate waveguide. It is the purpose of this
chépter to show that the modified function theoretic
techniques can be approached in a direet manner by con-
sidering the canonical problem of a semi-infinite pwrallel
plate waveguide with an infinite number of waveguide modes
incident as well as an arbitrary spectrum of plane waves
incident from the exterior. The general solution is ob-
tained from a non-homogeneous Hilbert prqblem and can be
written in a manner similar to the perturbation ;xpansion
discussed in Chapter 1. 1In order to illustrate the method,

the solution of a flanged parallel plate waveguide radiat-

ing into free space is given.
2. The Cancnical Problem

2.1 Introduction
Because of their importance, we will consider two
canonical problems: (1) a semi-infinite parallel plate
waveguide with an electric symmetry boundary (ref.
Figure 8.2.1), and (2) a semi-infinite parallel plate

waveguide with a magnetic symmetry wall (ref. Figure 8.2.2).
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Both of these problems have.been solved for the case of a
single incident waveguide mode or plane wave incidence
from the exterior. The solution to be gi#en here repre-
sents a general superposition of these solutions. The
form of the solution is of particular advantage when

~solving composite problems.

2.2 The Electric Wail Case
Let us consider the TM solution of the geometry
shown in Figure 8.2.1. The TE solution follows in &
simflar manner and will not be given.
The TM fields are derivable from ¢ = Hy and the
fields in each region are given by

® -Y .z Y .2
by = ) (B(O) nb nb 1 0 X

Oc = / (CO(A)e—YZ + c(N)e ?lcos A(x-b) dx
0

b, = (AO(X)eYZ + A(A)e—YZlcos'Xx ar

2 >0 (2.2.3)

i
O~ 8

where the superscript (o) indicates an incident field and

Yon Y/ (nw/b)? - ké

and

2 2
Y VA U ko

A time convention of eJ(Dt

has been assumed and suppressed,
The branch of Y is chosen as shown in Figure 8.2.3.
The inverse function A = Vyz+k% is defined as shown in

Figure 8.2.4,
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Matching the tangential fields at z = z, we can

arrive at the equations

YZ -Y2 )

i (A0<x)e °©+ a(N)e Oscos Ax dXx = (2.2.4;
o : 4

b o ~Yz, Y24

f (C (Me + C{(N)e ]cos AMx=b) dr; x > b,

o
1= -Y Y .2 ﬂ_r

z (B(O)e bo o, B e Icos n“x’ 0 < x < b
n n b — -
Ln=O
and

© Yz -Yz
i (AO(A)e ° - a(N)e Oly cos Ax dA = (2.2.5)
o

We may use the orthogonality of cos nTx/b and eliminate
coefficients to find the follcwing two equations in Bm’

BIEIO)’ A(N), AO(X).

Yz

Y .z % 9 . 0
mb o m+1 A(X)X sin Ab e d

Y .b e Be = (-1) i
mb m mn
C Ymb - Y

oG -YZO

. (_l)m+l f A(X)) sin Ab e ai

G Ymb Y
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Yz

v b e ple)g Ymp¥o | ymel ? A°(M)A_sin b e ° ax
mb m m
°© Ymb f Y
-Yz
N (_l)m+1,? A(MX sin b e 2 a4,
where ' (2.2.7)

e = {2, m =0
m 1, m >1
andm=0, 1, 2, ... . It should be noted that the inte-
grals are not Cauchy principal values since the ap.: ant
pole is actually a removable singularity.
The equations involving C(A), bo(k), A(X), and A°())
are more difficult to obtain because of singularities.
Consider multiplying (2.2.4) and (2.2.5) by
cos a(x-b) and integrating x from b to <. Fnom the

orthogonality of the eigenfunctions in region ¢ we have

f cos a(x—b) cos M(x-b) dx = % §{A-a) (2.2.8)
b

Using Gel'fand and Shilov (1964), we can also find

f cos a(x-b) cos Ax dx = % cos Ab 6(Xi-a)
b (2.2.9)
_ A sin Ab
)\2 - 0.2

In both (2.2.8) and (2.2.9), 8(+) is the Dirac delta

function. Using these results we may find
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» Iz , _ Iz
mcla) TTe % = ¢ I' cos ab'Ao(a)em °
o Yz | -Yz
Py ? A°(M)X sin M e © anr ? A(M)X sin Xb e ° aj
o . Y -. I 0 Yy + T
and (2.2.10}
o —Tzo -T'z
T C (a) T e =7 cos ab A(a)e °
T A°(A)A sin A Y25 - o . =Y,
+ | A ( ) sin Ab e _dr v | A(X)) sin Ab e i A
o Yy + 7T o Yy - T _
- . , L. 24110
where -
I = /a2 - k2
o

Note tﬁat the Cauchy principal value is used'in>
(2.2.10) and (2.2.11). 'This interpretation of the mesning

of the integrals may be found by considering the transform

f . B <

pair
" F(a) = | cos a(x-b) £(x) dx (2.2.122)
b
£(x) = £ [ cos a(x-d) Fla) da (2.2.12b)
(o] - ’

1
i

We may consider that f(x) is our original equation,
either (2.2;&) or (2.2.5). Then the integrations involved
in (2.2,10) and (2.2.11) must be interpreted in a manner
such that (2.2.12b) will yield the original result. In

doing this we use the folloving integral (Erdelyi; 195L4)

py [ co8 Alx-b) d&r _ 7 sin a(x-b)
- " 5o
o a® - A
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Equations (2.2.7) and {(2.2.11) relate the incident
fields and the unknown spectrum A(A). Equations (2.2.6)
and (2.2.10) relate Bn and C()) in terms of A()).

The solution of these equatiocons is found in & mar.er
similar to Itoh and Mittra (1971).

Consider a function T(w) with branch cuts L. and L

1 2
as shown in Figure 8.2.5. Then consider the integrals
+
(-1)™ L 1(w) aw L T(w) dw
3
21) I w - Ymb 273 L w -~ T

where m = 0,1,2, ... ; and L is the contour shown in

Figure 6.2.5. Then

Lgl)m+l f T(w) dw _ (-1)°71 ? T (w) - T (w) AdA

213 rw - Youb 2Ty o @ - Yoy w
/ © _+ -
L™ TN cw) T orT(ew) Add
J
2mJ e} w + Ymb w
S (-)™t oy )y =0 (2.2.13)
Ymb -2.13
h h a T ( ) = 7 ) = 7{ ) in ¢
where we hsave use Ymb = Ymb = Ymb in order

to insure that we don't have principal value integrals.
Also we have transformed variables from w to A via

Add = wdw, i.e., A = /w2+k§.

Similarly
iy T(w) dw _ PV ? T (w) - 7 (w) Ad)
2173 L w - T 213 o w - T W
Tt (cw) - TT(w) AaA
L, 1 f ~w) = T (-w d
21§ o w + T w

i
N
[
3
——
—
S
4
+3

1
—~——
—1
o
1]
o
o~
ro
AV
[}
=
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Fig. 8.2.5: The Inte



Comparing (2.2.13) and (2.2.14) with (2.2.7) and

(2.2.11) we find

. m+l - _ {0) “YmpZo _ ,
(1) (-1) (Y ) = Yoo P OE. B T e N m= 0,1,z .,
+ -
(i1) T (~w)-T (-w) = 21§ w sin Ab A%(AN)e ©, weL,
_ + -Wz
(iii) T (w)-1"(w) = -2m) w sin Ab A(N)e °, weL,
+ _ —UJZO
(iv) T (w)+T (w) = -27w cos Ab A(N)e
o -W2
+2mw CO(N)e  ©, WeL,
We can also consider the integrals
0™ () aw 1 2w) du
v
2m] L ow + Yoo 2ny ¥ w + T

Using the above properties and comparing the results
obtained from these integrals we find upon comparing with

(2.2.6) and (2.2.10) the following properties

Y Z
4o+l _ mb _
(v) (=1) T(—Ymb) = Y., b €, B, e . , m = 0,1,2,...
(vi) T+(-w)+T"(—w) = 2Tw cos Ab AO(A)Q e
wz
- 2mw c(A)e ©°, we L

Applying the edge condition (Mittra and Lee, 1971) we can

easily show that

B (-1)" = 0(m 3%, n +

Hence from {(v) it follows that

w—l/e

A

(vii) T{w) = 0f Yy w] e
The original problem of solving the integral equation
is now reduced to that of constructing a function T(w)

satisfying the properties given above.

Using (iv) and (iii) we can easily find that
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N -wz ‘
- 273 w sin Ab eIAP o © c®(r),

(2.2.15)

T (w) = T () eI2AP

weLl

This relates the discontinuity across L, to just the known

1
incident field. We may then combine (2.2.15) and (ii) to

give
- +
T (w) =T (w) Glu) + glw) (2.2.16)
where
ejZAb, weLl
Glw) =
1, meL2
-Wz
-2mJ w sin Ab e‘j)\b e ° oMy, wely
glw) = Wz
+213 w sin Ab e ° Ao(k), m€L2
Where we recall A = /w2+k§. Equation (2.2.16) is a non-

homogeneous Hilbert problem whose solution may be found using
using the theory of singular integral equations {Musk-
helishveli, 1953). The solution is facilitated by first

considering the associated homogeneous problem

+( ejzkb, wel, 3 X—(w)b= " (w). wel (2-2-i7)

w) 1

X (w) = X 2

The solution of (2.2.17) is found from a direct applica~-

tion of the Plemel) formulas.

In X(w) _ b i dt (2.2.18)
w? + kg m L, v/ t%% kS (t-u)

The details of this integration may be found in Mittra and

Lee (1971) with the result being

T2
w - Jw+k
iIn X{w) = % 1 1n >

2 4 g2 +k -3k
w ko w o J o

Al
i
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hence
_ b/62+ki w-vw? +k? v
X(w) = H(w)exp|— 1n _2 (2.2.19)
T \ -jko

where H{w) is an unknown entire function found from (i)

. o) _
with B; ) = 0. Note that X{(w) has only a branch cut
singularity. Hence

H(w) = H, () M(w, Yy, ) (w-Jk )
where Hl(w) is an entire function which can be found frcm
condition (vii). Before proceeding with the soluti:

is worth discussing the meaning of the multivalued function

w - Ywl+k?)
Jw? 4k lni e
-dk )
appearing in (2.2.19). This function must be interpreted

so that it only has a branch cut Ll with a discoptinuity
as given by (2.2.17) as well as being continuous across L,.
Consider the phase ot the argument of the log as we

traverse L. and L, as shown in Figure 8.2.6. Figure 8.2.7

1 2
illustrates the associated variation of the phase of argu-
ment of the logarithm.

Recalling the definition of the branch cut of

given in Figure B8.2.4, we can write the following explicit

forms for X(w) on the top and bottom of Ll and L?. IFor weLl,
N | [ 2L
- b —— wW-vuw *‘r\“
X {(w) = H(w)exp —Vw +k§ | in | —— +J¢c
1 -Jkg
+ -b w+ m’+ki
X (w) = BE(w)exp { —~vVoZ+k] |In| ————— [ +Jd

ki _Jkﬂ
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w-vol+k2l -
where ¢, = arg || ————— along Ly and
. -Jko
- +
¢, = arg [w Witk ) along L,
—jko

Hence
g .l b
X+ w)l\ = eXxp J—vw!+k ) (¢C+¢’a)
(w) " ©

Similarly, for -wel

2 -
-b ‘ w-vYw?+ ,?'
X“(-~w) = H(-w) exp { —/w2+ké in oo ¢a S
. Jjk }
]
J
3
. b’ ‘ wifwz?kz }
X (~w) = H(-w) exp —VoZ+xZ fin | tJoof Iy
‘ T Jk i
o i
. i
? 7 . L.
Where ¢, and ¢ are defined similar to ¢a and ¢c
Thus . . ®
X" (o .
XLo0) o | gz (o' +0p ")
X (-w) T © T

Clearly then we must have

¢c + ¢a = 27

I
(@}

and ¢a' + ¢!

for (2.2.17) to hold. Hence we must havev
$a =jg 3 ¢c =.§£

and ¢a' = %1, ¢c{ = :%

Thus in order for X(w) to be.the solution to (2.2.17) we

must choose a branch cut along the negative imaginary axis

-

with the argument of the logarithm taking on either 3w/2 or

-1/2 along the cut depending on the direction of approach.
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We can now rewrite (2.2.16) using (2.2.17) as follows

T (w) _ T (w) , glw) (2.2.18)
X(w) X (w) 1 (w)

This can be solved using the Plemelj formulas

(w) = X(w){P(w) + [ 5___i£f___ _ t) dt}
L, X (t)(t-w) Ly X (t)(t-w)

g(2)(

1
vhere (2 2,167
-z
g (0) = —w sin ab €9 o0 oy
wz
g(2)(w) = o sin Ab e © A%(X)

where P(w) is to be found. Using condition (1)

¢ - Z
vy veno), Yrb o

mb m m

\
) P(Ymb/

)m+l

)

T(Ymb (-1

(2°2'20>,

= X(Ymb

Clearly then P(w) is just a perturbation sum® of the form

K o g
P(w) = — 9 + Z _n
w - jko n=1 w = an
where K, and g, can be related to B;o) using (2.2.20).
Hence
bvw +ké (w—/;i+ké i
T(w) = Hl(w) H(w,yb)exp{——ng——— ln\———zuu—— + s }-

[K + (w-jx { R SR LA COM
@ °© \n=1 - -, Ly X7() (t-w)
5(2)(t) dt} (5.2.21)
L, X(t)(t-w) |

2

where we have used the fact that on L2 we have
XY (w) = X (w) = X(w). Alsc note that the singularities

of the 1ntegrands are of two types: a simple pole at
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w=t and a branch cut in X(t) along Ly. This will be
important in later chapters when choosing an efficient

numerical scheme.

From condition (vii) we can easily find

2T

kD
_ wb o 5 wh )
Hl(w) = exp{Tr (l—ce—ln(———;] - ¢
where C, = 0.577... is Euler's constant.
Equation (2.2.21) is very reminiscent to the pertur-

bation expansion used in connection with modification of

the bifurcated waveguide. There are two primary diffe.ounces:

(1) the homogeneous solution has changed.form to reflect
the removal of a conductor to infinity, and {(2) the sum-
mations associated with the regions which become infinite
become integrals. (2.2.21) represents the complete

§

general solution of a8 semi-~infinite parallel plate wave-

guide,

2.3 The Magnetic Wall Case
Let us now consider the TM solution of the geometry
shown in Figure 8.2.2. Since many of the details are
similar to that of the electric wall case, only the dis-
tinctive results will be presented.
The TM fields sare derivable from ¢ = Hy and the fields

in each region are given by

o -Y z Y o5 2
6. = 1 (B(o) o '2n-1,2v° o Ten-1,20°) .
B =l n n ndb
' 2<0,0<x < p (2.3.1)
oo
0 -Yz Yz .
= ' {X)e + C(XA)e lcos A(x-b)} ax
te £ ( ’ (2.3.2)
z <%, x>0D
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o, = (AO(A)eYZ + A(N)e % sin ax an,
| n Ax (2.3.3)
z > 0
where
- (en-1)m

nb 2b

In a manner similar to the electric wall case we can
find the following integral equations:

Y 4 © 0 Yzc
2m-1,2b"0 _ (_1)m+1 { AT(X)X cos Xb e G

b Y2m-1,2‘o Bm €

° Yome1,0 = Y
PN =Yz,
+1 ACA)A Ab A
+ (-1)® f (X)X cos e d (2.3.1)
° Yome1,00 7 Y
(o) “Yop-1 2p %6 n+l oy AP{A)X cos Ab eYzOdA
B e ° = (=1) f

® Yon-1,20 Pm

° Yomo1,2p ¥ Y
(s o] —YZO ¢
+ (_l)m+l f A(X)A cos Ab e ai (2.3.5)
° Yom-1,20 = Y
where m = 1,2,... . DNote that as in the electric wall

case the Cauchy principal value is not required for (2.3.4)

and (2.3.5). Also

'z cm
T C(a)T e ° = 7T sin ab A%a) e © (2.3.6)
Yz -YZ
© 0 o e o
+ PV f A (X)X cos Ab e dr f A(X)YX cos Ab e dAi
0o Y - r e} Yy + T
A -T2 .
T ¢%(a)T e © = 1T sin ab A(a) e © (2.3.7)
© Yz, ) =Yz,
_ f AP(A)X cos Ab e di + PV f A{A)X cos Ab e ax
o vy + T o y - T

Note that the principal value jis again reguired for the

equations associated with both of the open regions.
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The solution to equations (2.3.4) - (2.3.7) is found

by considering the following integrals

(-1)8*1 [ Zlw) av 1 (o) dw

2m) L inZm—l,Qb, 2wy L

where T(w) has branch cuts Ll and L2 as shown in Figure
8.2.5, and m = 1,2,3,... . I is the same contour as thec
electric wall case. Then comparing the results of the

above integrals with (2.3.k4) (2.3.7) we can find

m+1 _ (o) “Yom-1,2v %5
(1) (-1) T(Yopo1,20) = Yom-1,20 © Bn © ]
m = 1,2,3,...
+ - o) mzo
(ii) T (-w)-T (-w) = =27 w cos Ab A°(A)e s WEL,
-0z
(111) T (w)-T" (w) = -27) & cos Ab A(A)e ©, wel,
-wz
(iv) ¥ (w)+T 7 (0) = 27 w sin Ab A(M)e  ©
o —wz,
-2m w C (AN)e . 4 weL1
Y Z
m+]1 - _ 2m-1,2b"0
(v) L)Y 1 ,00) = “Yopo1,0p P Bye ’
m= 1,2,...
+ - o wzo
(vi) T (-w)+T (-w) = -271 0 sin Ab A" (X)e
Wz .
+21 w C(A)e ©, w€L2
Also the edge'condition requires
(vii)  T(w) = O(w-l/e), la] + o.
Using (iii) and (iv) we can easily find
-wz
T (w) = —ngAbT+(w) - 21w ¢%(A)e ° ebe cos Ab,

- 2.3.8)
weLl(
This relates the discontinuity sascross Ll to the known
incident field. We may then combine (2.3.8) with (ii) to

glve
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T {w) = T () 6lw) + glw) (2.3.9)
where
—eje)\b9 wel
Glw) = 1 weLl
? 2
-wz
-27w cos Ab ej)\b c®(M)e °. we Ly
glw) = { we_
—2mJw cos Ab A°(A)e . wel,

Equation (2.3.9) is a non-homogeneous Hilbert problem
similar to the electric wall case. The primary di _ c<rence
with the electric wall case is the presence of a minus

sign in the homogenecus problem.

X (w) = X {w) , weL,

The solution to (2.3.10) clearly involves the factoriza-
tion of exp(Jj2Ab) as in the electric wall case. However,
we must alsc have a minus sign discontinuity. Such a

function is by inspection Vw—jko. Hence

X(o) = Hy(w) T (w,v,) Yo-jk, (2.3.11)
- odd
by w? +k 2 w-vw? +x? i
exp “___O ln _______E + .J_ﬂ
T kO ) 2

The general solution is now easily shecwn to be

o/ul k2 [ (w-volek?)
(2.3.12)
. § .___ufiz_____ . gfl) (t) dat _ i g}zz)(t) dt]
n=1 Y Yon_1,2p Ly X7(e)(e=0) L, X(t)(t-w)
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Hl(w) is found from (vii) to be

2k b .
H (w) = exp {%? (l—ce—ln( § 11 - i%ﬂ}

This choice of Hy(w) is the correct one in order for
condition (vii) to hold. Note that the asymptotic
behavior of the odd infinite product is quite different
from the complete infinite product. This combined wit’
the behavior of the term /E:EKE and the perturbation

sum ensures that T(w) = 0(w /2 ), | W],

(o)

Using (i) we can relate g, to Bn

m+]1
(1)l 0p) = B Yoy 3 0p

(2.3.13)
2m-1 (ln(YQm—l,2b_(2m-1>ﬂ/2b1+ il}}

-Jk
Mem-1,21 7" o exP{ 2 K

4

~Yop-1,2v%0

1 } (o)
3 8 = Y - b B e
(Y2m—1,2b m 2m-=1,2b m

Similarly using (2.3.9) we can find

~Wz
g(l)(w) = jw cos Ab ejkb c®\)e e, weL,
Wz )
g(e)(w) = -w cos Ab A%(A)e © » wel,
3. Formulation and Soclution of Composite Problems

The key to the modified function theoretic technique
is the identification of an auxiliary problem. The auxi-
liary problem 1is such that the solution may be identified

in terms of soluble problems,
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Before proceeding to other problems let us illustrate
this process with the open region analogue of an E-plane
step -- a flanged parallel plate waveguide. This problen
_has been solved by Itoh and Mittra (1971) using this ss..e
technique, but it is believed that a derivation based on
the concepts of this dissertation are perhaps clearer.
Also Kostelnicek and Mittra (1969) indicated that a solu-
tion was possible as well as sketching the equations.

Figure 8.3.1 illustrates the flanged wavegul s and
the associated geometry. Notice that the associated geo-
metry has a recessed dielectric of finite permittivity.
As § > © gand € + ®_, the auxiliary problem coincides with
the original flanged problem. This auxiliary problem
allows us to perturb the parallel plate solution effec-
tively.

Consider the case of & TEM waveguide mode incident

on the Jjunction, then from (2.2.21) we can write

K (1)
T(w) = x(w)(5:§§~ N et dtl (3.1)
o L, X (t)(t-w)
wvhere
b/m2+k§ w—/Q2+ké i
X(w) = Hl(w)(w—Jko)H(w,Yb)exp{ - 1n Ko + 5 }
where
k b '
wb 0 jwb
Hl(m) = exp{—;-[l—ce—ln( 5 Il- 15—}
Clearly the other terms are not necessary since B;O) = 0,

n > 0 and A°(X) = 0 imply that g, = 0, m >0 and 8(2)(t)

= 0.
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Fig. 8.3.1: The Flanged Parallel Plate Waveguide
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K_ is known from (i) of section 2.2 to be given by

T(Jk ) = -2yk b = Ko|Xlwl
o) o w-Jk -
o’w = Jk

(o) ©
where B = 1.

o)

From (vi) of section 2.2 we have
T(-w) = —wm C(A) (3.2}
where TT(-w) = T (-w) = T(-w) since (3.1) only has a
branch cut L;. Also from (2.2.19)
>\.

g (W) = —wsin Ab P cO(n) (3.3)
where A ='Vo®+kJ with ImA>0. However, the junction at
z = -8 can be solved to give an additional relation
between CO(Y) and C(y), namely

c%(x) = c(r) R(N) (3.4)
<
where
€w - ' -2wé
RO =T e

where

r = /a2 - ex?

o

Hence we may combine (3.2) - (3.L) to

give the following

integral equation for g(l)(w),
. K (1)
g(l>(w) = —512 >\b‘ eJXbR()\)X(—w) +‘§ + J' g~ (t) at
Yo 1 xT(t) (trw)
Consider the change of variable (3.5)
(1) -sin Ab ejkbR(A)X(—w)G(m)
g (w) = (3.6)
ﬂ(w+jko)
Then (3.5) becomes
Glw) = K+ (w+jk ) f Q(t) G(t) dt (3.7)
© © L t + w

1
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. PN
olw) = -sin Ab e R(A)X{-w) (3.8)

n(w+jko) X {w)

Equation (3.7) is identical (with a slight change

notation) to the equation derived by Kostelnicek

Mittra (1969) and later sol&ed by Itoh and Mittra {1GT71).
In order to solve (3.6) effectively we should use

the asymptotlic behavior of Glw). To this end cecnsider

the field in the dielectric.

¢D = f D(X) ePZ cos A{x-b) dA
o
Using the other field relations we can easily find
. _ (T+w)d8 _2ew .o
D(A) = e TooT ¢ (A) (3.9)

And from Mittra and Lee (1971) we can easily show for

§ =0
p(A) = o(A"3/2 By Al » = (3.10)
where
1 -1] (e-1)
b='7 s;n (2§€+151

1/6. Then from (3.3), (3.6},

For the case of € =+ «, A
(3.9) and (3.10) we have

| 6(t) = o(+™h) (3.11a)
and from (3.8)

a(t) = o(t™1) (3.11b)
This is in agreement with Itoh (1972). Using Stieltges

transforms we cean show

o Q(t) G(t) at

A
T + w )

0w t) + o(w™t"

{3.12)

b S
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as |w] » . Hence we see that the constant terms in (3.7)

must cancel as |m|+m, or

K, o+ [ q(e)e(t) at = o
by

| . ~ 1-A
or if we write Q(t)G(t) = G t 1 for t > t_ €Ly
we have
(t )
o — T -1-A
Ko+ / Qlt)a(t) dt + G [ t dt = 0 (3.13)
Ll tc

This equation is similar to (3.10) of chapter 2 derived
for the E-plane step. Equation (3.13) in conjunction
with (2.7) is the solution to the problem since all the
modal coefficients and plane wave spectra are readily
found from T(w) with G(w) determined. The mtthod of
solution of the integral equation will be discussed in

the next chapter in conjunction with another problem.
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where
I e ()% —w)
n(w+jko) X (w)

- ~sin b e

Qw) (3.8)

Equation (3.7) is identical (with a slight change of
notation) to the equation derived by Kostelnicek and
Mittra (1969) and later solved by Itoh and Mittra (1971).
In order to solve (3.6) effectively we should use
the asymptotic behavior of G(w). To this end consider

the field 1n the dilelectric.

¢D = D(X) eTz cos A{x-b) dx

o“—38

Using the other field relations we can easily find

-

D(1) = o{TFuld 2ew go(y, (3.9)

And from Mittra and Lee (1971) we can easilyfshow for

§ =0

D(A) = O(X‘3/2'A), [X] » = (3.10)

where

_. 1 ~1|_(e-1)
A = 5 sin (ETE:ITl

For the case of € » ®, A = 1/6, Then from (3.3), (3.6),
(3.9) and (3.10) we have
By

G(t) = o(t~ (3.11a)

and froh (3.8) .
a(t) = o(t™h) (3.11b)

This is in agreement with Itoh (1972). Using Stieltges

transforms we can show

Qlt) c(t) at

t o+t ow

= o(w™ L) + O(w—l—A) (3.12)

-



Chapter 9: A Parallel Plate Waveguide Radiating
Into a Homogeneous Half-Space

1. Introduction

This chapter is directed to the solution of &
parallel plate waveguide radiating into a homogeneous
half space. This problem has been solved for the case
of a dielectric slab by Kostelnicek and Mittra (1969),
(1971). The solution as given here has three signifi-
cant areas of research which warrant the inclusion of
the problem: (1) it is believed that the method of
formulation and solution is more systematic and
simpler to uﬁderstand than Kostelnicek; (2) the details
of solving the integral equation efficiently are
looked into carefully; and (3) the results are piysically

interesting and have not been obtained before this work.

2. Formulation of the Equations
Consider the TM solution of the geometry shown in
Figure 9.2.1. For simplicity we will assume TEM ineci-
denge, the general TM solution follows directly.
From Chapter 8 we see that T(w) is given by
K

(2) ‘
= 0 _ g (t) at
T(w) X(“)[ETEE; {2 () () (2.1)
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Fig. 9.2.1l: Parallel Plate Waveguide Radiating into
a Homogeneous Half Space
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where
b/w§+ké m-/w§+kg i
X(w) = Hl(w)(@'Jko)n(m’Yn)exp( ™ (ln( E_ 1+ 5 }}
and A
k b
= wb o ||_ Jjub
Hl(m) = exp{ = (l—Ce—ln( 2ﬂ}l > }
K is known from (i) of section 2.2 of Chapter § ‘¢ be
_ - X{(w)
T(Jko) = -2)k b = Ko(ZTEE" o
oty = JAO
where B(o) = 1,. :

m

From (iii) of section 2.2 of Chapter 8 we have

T (w) - T (w) = -27mJ @ sin Ab A(A), we Ly

but for &eLl and (2.2.16) of Chapter 6 we have

T (w) = T (w) I2AP

thus

JAb

T (w) = -1we A(X) (2.2)

Also from (2.2.19) of Chapter 8 we have
g(e)(w) = w sin Ab A°(A), wel, _ (2.3)

But the spectral densities A°(A) and A(A) are related by

the reflection coefficient

A%(A) = A(X) R(A) {2.4)
where
_ tw ~ T ~2wd
R(A) = cEw + T
where
I' = /A7 - €k?

o

where tle branch of I' 1s chosen such that Rel>0.



Conduction losses in the dielectric are considered by using
the complex permittivity

€ = € - 3 120ﬂ0/ko ggjg)
It should be noted than any layered media can be takewn
care of by replacing R{(A) by its appropriste value.
However, care should be taken that any new singularities
introduced (i.e. poles of R{(A)) are properly taken into
account. For example, when Kostelnicek and Mittra
(1969) solved the case of & slab they found it n ¢ ussary
to shift the path of integraetion from L, to a horizontal
path from jko to « + jko. A detailed study of the
variation of the half space solution in the first
quadrant revealed that the origiﬁal path, Ll’ was the be
best choice, since it apparently gave the smoothest

solution.

Before proceeding it will prove to be convenient to
change w to -w in the integral of (2.1) giving

K (2)(
o g

(o) = X(w) 5t3§_ _ -t) dat
(@]

x(-t) (t-w)

Ly

Now we may combine (2.2), (2.3) and (2.4) to give the
(2)

following integral equation for g (-w), welq-

g(2) (Lu) = E22AR g0y cTIND =)

(2.5)

K (2)
o _ g (-t) at  wel
w-Jk

L, X(-t)(t+w)

1

Considering the change of variable

K sin Ab R(AX) b

2) _ -
8( (-w) = == ﬂ(w—Jko) e X {(w) 6lw)
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we transform (2.5) to

aw) = 1+ (w-gx;) ale)ele) ae, weby - (2.6)
1
where
K ~I)Db
_ sin A b R(A)e X {w)
alw) = = (w-Jkg) X(~w)

This is the equation derived by Kostelnicek and Mittra
(1971) except for & slight change in notation.
The asymptotie behavior of ¢{t) is found by examining

(2.3) and (2.4). It is easily shown that

It

Qlw)

a[epzwdl L Jwlee  (2.7)

and

6lw) = 0(1) , |w|ow (2.8)
Because of the exponeﬁtial behavior of (2.7) it is not
‘necessary to include the asymptotic behavior of G(w) in
the solution and the integration limit on Ll can be
truncated at a finite wvalue.

The fields are readily dérived from T(w) upon having
found G(w); in particular the TEM reflection coefficient
ig given by

) ~1( -3k )
o 2jkob

(2.9)
3, Numerical Solution
The solution of (2.6) requires a careful examination

of the integrals which must be approximated numerically.

An examination of the kernel of (2.6) reveals the following:

| W L N
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(i) Q{w) has zeroes of second order at w = Ynb»
n = 1?2....

(i) Q(w) has a zero in the complex plane whenever
R(A) = 0. For a half space this occurs at the

quasi-Brewster angle given by:

where €

]
m

- jer' and we have assumed
Eé/sr << 1. DNote that since Re(y) must be
greater than zero on the top sheet, for E; # 0,

. this root is on the improper Riemann shee%

(though it is quite close to the branch cut)

(iii) Due to the term sin A b, (w) goes to ‘zero as
oo o-oVeJk nds e’y gk
Hence eguation (2.6) is & "Smooth" equation. However,
upon flndlng G(w) we de51re to calculate the TEM reflec-
tion coeff101ent which in- turn 1nvolves an’ evaluatlon of

the integral =

=ik, 3.1)

f “g(t)e(t)=at®
ot o Ll SRS S S DR £ A

From (iii) we see.that as w > Jk_ the integrand will be-
~have as l//E:EE;. Hepge,fcareful attention should be
gi&en.to thé.ﬁfgnchgggihéfh = 3%;

It should also be noted that the accuracy of the
régﬁifs will not be bhaggéd by the definition of the un-
knowﬁ:in‘(E.é)\éigée thé'éccuracy is détermined by the =~

order of the total integrand not Jjust the unknown.
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The integration was broken into a sequence of finite
intérvals with the end points being the waveguide pfopaga-
tion const&nts,'an. The origin was also included as ean
end point. Since the first segment included the branc
point the following Gaussian quadrature (Abromowitz‘aﬁd

Stegnn, 1965) was used:

[ e
)
o~
oY
1]

-
o
1
)

il B~
€
o}
<

vb-y j=1 L *
where
yi = a + (b—a)xi
vhere x5 = 1 - E; and Ei/is fhe ith positive zero of
Pgn(x) and Wy = 2wg2n) where ngn) are the Gaussian

weights of order 2n. (3.2) allows the square root
singularity to be taken care of quite satisfactorily
hence allowing a good approximation of (3.1). Although
this effectively‘inc?eases the o;der of the integrand
of (2.6) slightly, no degradation of convérgence waé
observed.

Between the remaining end pqints regular Gaussian
quadrature was employed.

It should be noted that Itoh and Mittra (1971) used

a pulse function basis with the exception of the vieinity

of the branch point.

b, Numerical Results
The solution of (2.6) was implemented on a CDC3800

digitel computer with a program called SINGAUS. A complete
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listing of this program is found in Appendix G. The in-
fi£ite product was evaluated in s similar manner to theA
multiple product used for closed region problems discusse
in Appendix D.

" Table 9.4.1 illustrates the convergence bf the TEM
reflection coefficient as a function of the number of

&

intervals, N, and the number of points, M

>

within the nth interval for the case of k o = 1.2566,
kod = 3.1h159, e. = 1of G/ko = 0.001.

Table 9.L4.1 Convergence of Reflection Coefficient

for a Parallel Plate Waveguide Radiating
into a Half Space.

N %l M, %i Bo

3 2 2 2 0.5397 63.22°
3 i L i 0.43066 6H5.51°
3 8 L L 0.4385 65.46°
3 8 8 8 0.4k379 66.11°
3 16 8 8 0.4385 66.14°
3 16 16 16 0.4386 66.16°
with no dielectric C.2846 88.42°

Note that the reflection ccoefficient converges quite
fast and four place accuracy is achieved with as few as
32 matching points. However, quite acceptable accuracy
is achieved with és few as 16 points. This appears to be
a considerable savings cver Kostelnicek and Mittra {(1969),
although they used an alternate path of integration on
which the solution varied greater than on the psath Ll’
though. they did avoid the poles of R(A).

Figure 9.4.1 illustrates the behavior of G(w) for

the example whose results are given in Table 9.0L.1.
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Fig. 9.4.1: Variation of the Perturbatiop'Spectrum
along Lj
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Note that the asymptotic behavior given by (2.8) is
quickly éch;eved beyond w=0.6. The most rédical be~
havior occurs-near the origin; however, even this
change islless than 10%. Notice that G{w) is quite
well behaved a£ m;O.B wh&chbis the location of the
pseudo-Brewster angle. Note also that G(w) is well
behaved near w=Y;,. -The phase of G(w) was a maximum
of 8° ﬁear tne origin, witn a’hominal value of less
thap é degree. | |

Because of the distance of the Half space was
0.5 wavelength from the wavéguide the exponential -decay
along Ll'was.sufficiegt:to not warrant any more matéhing
intervals fhan three.

Another case is given in Table 9.4.2 where the wave-
guide width has been increased to kb =.h.712h and the
distanée from ngeguide~to‘half space has been decreased
to kod'= 0.5 (4 . 0.0SA). The.parameters of the di-
electric are still e = 10 and 0/ko = 0.001.

Table 9.4.2 Convergence of Reflection Coefficient

for a Parallel Plate Waveguide Radiating
into a-Half Space.

NoMy My Mg My M M Yy %o ~
6 2 2 2 2 2. 2 --— 0.4333 -kL5.68°

6 N L in N n Yy -- 0.4hk10o -50.16°

6 8 8 8 N i Y —-- 0.4408 '-50.13°

6 8 8 8 8 8 8 —-- 0.4k08 -50.13°

6 16 8 8 L b 4 -- 0.4408 -50.13°

7 8 8 8 8 8 8 8 0.4408 -50.12°

———— with no dielectric =—m~-=- 0.0616 Bo.,62°
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More matching intervals are necessary because the
waveguide width is greater as well as the distance, 4,
being smaller. - Four place accuracy is again achieved :
with excellent results being achieved with as few as 2k
matching points.

The solution of a related problem of the radiation
of a parallel plate waveguide into a perfectly conducting
sheet has been solved using wedge diffraction techniques
(Ruddack, Tsai, and Burnside, 1969). Figure 9.4.2
illustrates good agreewment between this theory (with R
(3) = -2Yd

= e ) and the wedg~ diffraction results. How-

ever, 1t should be expacted that the difference would

1 q

be greater when d/)X is less than U.15% X, (It should be

noted that Ruddack's data is subject to the grror of

%

Figure 9.4.3 shows ithe varliatis- O>f the reflection
coeffidient of & 0.4 A waveguide as u function of distance
to the half space for three sets of permittivity and con-

ductivity. Note that gquite significsnt deviations from

'

the free space case are observed, with the deviations be-
N k]

cecming larger as the distance, d, is decreased.

I

Figure 9,4,k i1llustrates the variation of the reflec-

tion coefficiant of a 0.4 A waveguides as a function of the
half space parameters sl a constant 4istance, d, of 0.1 A,

fote that quite signiiicant chang=u in the reflection

tt

[

joee

coefficient as the permn vity and conductivity vary.

fnt

oy

In order to more fully understand F:ouare 9.L4.h, Figure
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into a Dielectric Half Space as & Function
of Distance and Dielectric Parameters
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9.4.5 illustrates the variation of the Fresnel reflection
coefficient at the helf space interface for normsal inci-
dence. Figure 9.L4.6 shows the data of Figure 9.k4.k,

matched to the impedance of a single isclated wavegr .de

radiating into free space. The similarity of the na of
Figure 9.4,6 with the Fresnel reflection coefficien. 3
gquite clear. This similarity suggests that the fre: space
admittence appears in parallel with an admittance wh.:h

depends on 4, €, and 0. Figure 9.4.7 suggests

approximate equivalent circuit for a waveguide radisting

into & half space. The transformer allows for the scale
change and is dependent on the waveguide width 2b and the
distance 4 primarily. The line length, £l, is just the
physical electrical distance 2k d. The secend line
length, 12, is a rather complicated function of &, 0, and
d. For a given height it 1is po;sible to arrive at
empirical formulas for the circuit parameters. This
would suggest that the more complicated structures such
as rectangular and circular waveguides radiating into a
half space can be modeled with approximate equivalent
circuits, with the parameters of the circuits being

determined experimentally.
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. Introduction

n
¢4
j>5

Wavegulde pha arrays have received much sattention

in the last few years because of properties such as fast
scan capabilities, multimode operation, and reliability.

-

Perhaps the easiest analysis of planar phased arrays has

been the application of Floguet's theorem to an infinitely

periodic array {Amitay, Galindo, and Wu; 1972). However,
many arrays are smalil enough that such an analysis is not
valid. For finite arrays, one common method of analysis
has been the moment method. One common approximation in
these studies has been the assumpition of an infinitely
large perfectly conducting ground plane {or some approxi-
mation to it). It is the purpose of this chapter to use
the modified function thecretic technigue to study a

finite phased array with nc ground plane. It should be

7]

a3l

Io¥

C

noted that this analysis coul 0 be easily applied to
a finite array with a ground plane of finite or infinite
extent.

+

Formulation of the g

N
oo
o
o
.
'—.l ]
O
]

ion

[
4
=1
o
=
o
=
=
o
or

For simplicity in the soluticon we will assume that
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lel to the waveguide

walls. This 18 not & limiteticon of the theory but is only



a convenience. The solution of & completely aperiodic

array can be found in & straightforward manner.
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Thus we will consider the solution of the two prob’a=ns

illustrated in Figures 10.2.1 and 10.2.2, the only d4if.

ference béing the symmetry wall boundary condition.

2.2 The Electric Symmetry Wall
Figure 10.2.1 also illustrates the auxiliary prcocb.

Note that the problem can be further separated ix " WO

kinds of problems: (1) the interior problem, and .2) the

exterior problem. The interior problem is the one &asso-

ciated with the first N-1 plates, and is solved using the

theory of Chapter 2 for modifications of the bifurcated

waveguide. The exterior problem 1s the one agsociated

with the Nth plate. This is seen to be Just semi-infinite

waveguide with an internal modification. With these

thoughts in mind we can write the following N holomorphic

functions:

) " 1R
(1 n
T,(w) = F (w) K, ) (w-3x ) ) W,Yh Is
L n=1 n,cy)
[ © cM’R ) gM"L
’ ,(M & L
Tylw) = Fy(w) X, ) (w“Jko){ T M = }
: L n=1 Dy Cyy n=1 0, Cy
where M = 2,3,...,8N-1, and
. s L
T () = X(w) &K' + (w-jk ) ) - x
N (‘c “Tol Ly wev, . 5’
n *TN~1

R R -

{(2.2.1)

(2.2.3)
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(b) Auxiliary Geometry

Fig. 10.2.1: The Finite Array with an Electric Symmetry
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In equations (2.2.1) anad (2.2.2), F(w) is given by

1

F () = 5_(w) 2
1 H1 . \
l\w,YC ]
1
where
, _ -w .
Hl\w) = exp{ - bllnbl/cl + 021nb2/cl]}
and
T{w,y JM{w,y )
“M-1 Puia
Flw) = 5 (w) —
M M : H(w )
where '
{ \
(w) = expﬂzﬁ-[c lnc /o + b in /e }
Hy SR S Rt VNS WA ue1 TP Pyer/Cyl |

In equation (2.2.3), X(w) is the homogeneous solution

given in Chapter 8 for & semi-infinite waveguide with a

. |
half height of Choy®

From Chapter 2, we see that we can write the following

equations:

n+l_ M-1,R M-1,R
(-1)" " (-v b=y c, 41K ] ,
N IR
M n,cMul M1 M l. n n
L(2.2.4)
where M = 2,3,..., N=1, and
nmToc,.
-nT . M3 .
gMsR _ -nT ain __:_L_i/:pw( Y, o )(yn o Ik )1
n CM \,M H 1, M 3 M
Also for M = 2,3,..., N-2, we have
nt o
; -0 M-1 , M+1,L, M+1,L
RES[T,,v,_ ] = S' sin : [k ]
I\ ¥ SCM \.M CM n n
(2.2.5)
vhere
M,L 9! {n} \ / .
Koo = =00y, 2oy (/F, ’tYn S T LIl
nsu\‘i*‘"l 1~ { h ,\,M_l N M-1
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1) . , ;
ér ( - ) implies that the zero at Yoo is
et umal 2TM-1

onitted from the infinite product. TFor the case M=1 we

where F

have only & single equation:

nwb
] - -n’!T sin l {Kg’L}-l gg,L
Cl Cl Cl n n (2'2.6)

-

RES{il,Yn’

(2.2.6) is similar to (2.2.5) with the only difference
being that Tl{w) has only a single perturbation sum. For

the case M = N-1, {2.2.5) becomes

nw ¢
RES[T, v, . ] - ;ny cin N-2 [KM,L(O)]—I g1 L

RS 5] N-1 N1 n n
(2.2.7)

where -

\ "~ n
S S L AP P IO
: B | *YN~1
& 2
\VﬁsCN_l-dkO}j
{n}, . . s )
where X {v ) implies that the zero at v is
BaCy_y BsCy_1

omitted from the infinite product. (2.2.7) is found by
using property (i} of Chapter 8 in conjunction with the
results of Chapter 2. From property (v) of Chapter 8 and
the resul®s of Chapiter 2, we also have that

[KN—l,R]-l gN—l,R

- Y C
i, C, n,e.. , N«1'"'n n
N-1 N-1 (2.2.8)

Eguations {(2.2.4Y-{2.2.8) represent an infinite set of

simulteneous eguations for the perturbaticn ccefficients,
M,L ., - . _M,R -
gn’ (M = 2,3,...,N) and g * (M = 1,2,...,N-1). JNote

1 o

that the recession of plates ir the solution of the closed
region cese is opposite to the recession chosen in Chapters
3 and 4. However, this is only 8 minor change as will be

discussed later in this chapter.
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For this particular problem, KgM) (M = 1,2,..., N)
are known and can be related to the incident TEM modsl

coefflcients as follows (ref. Chapter 2):

(1) _ (o) ;4 :
Ko ' = 23k b, [0 =B " 1/F, (5k ) (2.2.9)
where
b 7 \ b
v, = 23ple) 4 1 glo)
1 cl 0,2 1 Gy

(o)

and where Bo is the incident TEM modal coefficient from

3

the nth waveguide above the symmetry boundary. Also

(2) _ (o)
L9 = ZJkObBIUg—BO’ ]
vhere
b c
v, = = Béoé + Ly,
“2 : P

and in general for M up to N-1, we have

(M) _ (o)
Ko o = 20k Dy, 1 [Uy-B ",y ] (2.2.10)
wheré
b c
UM = .._I\_/Ii_]:_ 3(01314-1 + _M.:}_ UM 1
CM O, i CI\'I -

And for the case M=N, we have

(§) _
Koo' = 23k ep o Uy /X(Jk ) (2.2.11)
where
b P c
UN_l : N B;oi . CN—2 UN,Q
. CN-1 » N-1

In order to solve (2.2.4)-(2.2.8) efficiently we are
motivated to:investigate the asymptotic behavior of the

various perturbation coefficlents. This procedure is
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essentially identical to that discussed in Chapters 3 and
4 and thus only the results will be presented.

As in Chapters 3 and L, we can find that only a
single asymptotic perturbation term is necessary for the

right pérturbation terms, that is, we will replace gg’R

by the following for n > NM’R.
nmw ¢
M,R -=M,R n -1 N-1 o
g, =g (-1)'n sin—0—= (2.2.12)
M
where M = 1,2,..,.,8-1. Notice that since CMa1 T CM+bM+l’
(2.2.12) can alsc be written
M,R _ =M,R -1 _, 2T DPyiy
g = ~g n sin ——————
n M

which is in agreement with equation (3.3) of Chapter L.

We again find that multi-termn asymptotic expansions
for the left perturbation terms are necessar} to satisfy
ell of the edge conditions explicitly, namely for n > NM’L

ve will replace gf’L by the following:
i

M,L o ML, jyno-l L BT by
= g ~11"n sin w———
gn g.L -1
(b,+v,)
-M,L s oo=1 . 1 2
g2’ («l)rn sin nm B + eee ¢ (2.2.13)
M-1
5 + e o0
-, L LV B (b1+b2 bM—l)
Epoy 2T SR c

M-1
vhere M = 2,3,...N.
Upon the substitution of (2.2.12) and (2.2.13) into
equations (2.2.1)-{2.2.3) and the subsequent substitution

into (2.2.4)-{(2.2.8) we arrive at an efficiently truncated
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linear system of equations for the perturbation coefficients.

However, we must still decide how to choose the addi-
tional equations for the asymptotic perturbation coeffi-
cients. We may, however, use the results of the truncation
study of Chapters 3 and 4, and use what we call the hybrid
truncation method. Essentially this chcice of truncatiqh
chooses the "q+l equation" of equations (2.2.4), (2.2.6),
and (2.2.7). However, (2.2.5) is asymptotically degenerate
~for reasons outlined in Chapter L. Hence, the true asymp=-
totic form of (2.2.5) is used, yielding M+1 equations.

For brevity, we will not give the explicit form of
the equations. The interested reader is instead referred
to Chapter k.

Upon finding the perturbation coefficidnts, the wave=
guide fields as well as the fields in free space are
readily found using the properties of the functicns as
given in Chapters 2 ;nd 8. In particular, the reflected

TEM modal coefficients are given by:

T (-3k ) T (-3k ) N-1 T (-3k )
M-1 0 N o} n. ‘o
Bom = * -1 (2.2.14)
3 =
2jko bM 23k CN_l n=M 2]}k Cn—l
for M = 2,3,...,N. The summation is ornly used for M < N-1.
However, for the case¢ M=1 we have
-7, (-3x ) T (-3k ) -1 T (-jk )
1 N "¢ n 0
55,1 7 - — —— -} ———(2.2.15)
i 2 ! - .
2k by 23k, cy_, mT2 23k _c

In both (2.2.14) and (2.2.15), B, o is the reflected
3
TEM modal coefficient in the nth waveguide above the sym-

metry plane.
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Other waveguide modal quantities can be easily found
t recourse to the properties of the canonicel function
g-ven in Chapters 2 and 8 sand the use of the auxilliary
g -ometry.

Thé far field radiation pattern is also of interest
for a finite array. From equation {(2.2.16) of Chapter 8,
g1d property {iii) of the same chapter, we can easily

find that the spectral density for z > 0 is given by

—T&(w) -ddey
3 B er——— .
AL p_ & , wel, (2.2.16)
Hence,
oo To{w) -ihey
 (x,2) = T2 [ Fe— e H-1e-9Z cos ax ar(2.2.17)
% -iG Lo .

This intesgral can essily be evaluated asymptotically in

tle far field using the method of steepest descents (Mittrs

gid Lee, 19071) to give

——  ~3{k r-m1/k)
9y xs2) f/k r © kew]
(2.2.18)
-3 1
_ ”kocN—l sin 6

=3

N(Jko cos Ble

where 6 is the polar angle measured from the z axis. It

sg

vat the factor cos 6, which is

is interesting to note t

fo

present for an infinite array prcblem, is not present in

(2.2.18).
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2.3 The Magnetic Symmetry Wall

Figure 10.2.2 illustrates the geometry of interest
in this sectioﬁ as well as the guxiliary problem., The two
basic components of the solution are: {1) the bifurcated
waveguide with a magnetic symmetry boundary, and (2) a
semi-infinite parallel plate waveguide with a magnetic
symmetry wall. The first problem's solution has been
given in Appendix E, while the second problem's solution
has been given in Chapter 8.

From Appendix E, we can e&sily.find that for the

first plate we have

( o gl,R
(1), n
T (w) = F ()| +(w-3k ) } (2.3.1)
! R ° n=1 “Yon-1,2¢,§
L}
where
» (1-0/Y, '1’2b1)(1_w/an2)
F.(w) = H . {w) I -
1 1 n=1 -zl—w/y2n—l,2ci3
where
w| b1 b2
Hl(w) = exp{—ELbl 1n EI + b2 1n E; - 2b21n21}

And in general we have for the Mth plate (M = 2,3,...,N=1)

M, R
[ {M) co gI’l
R = Nl R £
Tylw) = Fylw) ik = (u jko){ Z “"Ven-1,2¢
L n=1 M
M,L
= &n
+ Z m..'\{' } (2.3~2)
n=1 2n-1,2c ’



where

{1_'{5}’,’«: 7Y/
L ”Qn—lg2cm_1)(l &/YEn—192bM+l)

.n 1 (l—m/YZn-l,QcM)

where

\ “M-1 Sy M+1 Cy

¢ ' b 3
- M-l M+1
= —iec + I
HM(w) exp{ ﬂ( 1n b 1n 2bM+lln2}}
For the Nth semi-infinite plate, we use the results of

Chapter 8 and easily find thsat

gN,L

n

Ty (w) = x(w) qz (2.3.3)

as1 YVon-1,2¢p 4
where X(w) is the homogeneous csolution of the semi-infinite
parallel plate waveguide with 2 magnetic symmetry wall.

We may arrive at gimultaneous equationi for the per-
turbation coefficients Dy 28 similar manner used in the

previous section and in Chapter 2. That is, We require

that the expressions foy the same modal coefficient in 8

ol

given region of the auxiliary problem be consistent,

whichever holomorphic function 1is used.

Hence we may £ipd for M = 1,2,...,0-2
M+1,L-1 M+1i,L0
[T Y = k. 358 k [ K d *
PFS{TM"En-lﬁZCW] N,y ¢ n,c, M—l[ n ] €.
s . 1L
A
where (2.3.4)
2
{ ‘x\p e
e Y [
orol -
ML L 2n L,ZCM_I M-1
*n = Tayy
7 { ‘ 1k
w Ven-l,c,, )(“52na132<:Mul k)
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M~-1,R
R - M1, R.-1 g ?
(1T C=vop 4 oo ) Yone1,20.,  Cmapl¥y 7] n
M-1 M-1
(2.3.5)
where
cos Kk e
KMsR ~ n,cM n,cM M-1
0 = T Y (2.3.6)
M ~Y2n—l,2cM Y2n—-l,2cM+Jko

And from the open region part of the auxiliary geometry

we find
RES{T Y i =k cos k c
N-1° - =
2n I,QCN_1 n’chl n,cN_l N-2
[KN,L(O)]—l gN,L(2.3.7)
n n
"where
N,L{0) (-1)°*t T,
Kn19 LUy 2 -1) Yen-1,2¢y_ 1l ey_q
{n) y e
X (Yon-1i. o )
21 ,ch_l

f
Note that for this particular problem thst th)

known and given by

(M) (o) : '
= =21} .
e 23R Py B mer/Fiyldk) (2.3.8)
where M = 2,...,0-1 and where B'‘°) _ is the incident TEM
o,M+1
modal coefficient from the M+1lth waveguide. For M = i,
we have
A1) L a0}, .
K, =23k b, ‘0,2/F1<jﬁo) (2.3.9)

Note that the equations for these gquentities are siightly
different from equaticns (2.2.9) and (2.2.10) for the
electric symmetry boundary case. This is due to the faect
that the coupling regions of the auxiliary problem can not

support a TEM mode.



157

Equations (2.3.4)-(2.3.7) constitute an infinite set
of linear equations for the perturbation coefficients. 1In

order to solve these equations efficiently, we investigate
the asymptotic behavior of the perturbation coefficients.
Again the procedure is identical to that discussed in

Chapters 3 and L,

For n > NM’R we will use

M,R _ -M,R -1, _\n
g n (-1)" cos ko M1 (2.3.10)

c
"M

for M = 1,2,...,N-1, Similerly, for n > NM’L we will use

gM’L = é?’L n T (-1)" cos kn . b,
- PTM-1
+ g2bl ) cos & (b_+b,) (2.3.11)
2 n,c,, 1 2
M-1
e 0 s _%BL -l[ n(‘\ s & 8
+ + gylyn {-1)"cos kn’cM—l(bltb2+ +bM_l)

With these asymptotic expresslons, it is not hard to show
that all of the edge conditions are satisfied explicitly.
Upon the substitution of (2.3.10) and (2.3.11) into
.equation (2.3.1)-(2.3.3) and with the subsequent substi-
tution into (2.3.L4)-(2.3.7) we arrive at an efficiently

truncated linear system of equations for the perturbstion

]

3

coefficients. Phe choice ©f the extra equations for the

p

asymptotic perturbstion coefficients is the hybrid trunca-
tion method discussed in the previous section.-

For brevity, we will not give the explicit form of
the equations. The ianterested reader is referred to Chap-

1,
ter 4,
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Upon finding the perturbation coefficients, the

waveguide fields as well as the fields in free space agre
readily found using the propertiss of the functions as
given in Chapters 2 snad 8. 1Ip particular, the reflectegd

ma

TEM modal coefficientn sre given by:

Bomel T T (2.3.12)

for M = 1,2,...,8-1, and where B is the reflected TEM
oy M+1 .
modal coefficient in the M+1th waveguide,

Other waveguide modal quantities can easily be found

fas)

3
3
i
o
o
-

1T

m

@ to the properties of the canonical function
given in Chapters 2 and 8 end the use of the auxiliary

geonetry.

The far field radistion pattern is alsos of interest
for a finite array. From equsation (2.3.4) of Chapter 8
an& property (iii) of the same chapter we can eagily find

that the spectral density for z > 0 1isg given by

*3ACN~1

A()) = ' (2.3.13)

{wie " Te " sin Ax dA(2.3.1hL)

This integral casn easilv be a2valuated asymptotically in the

far field using the methnd staepest descents (Mittra and

hY
¢ 20 O H -
2) w S e ! X
by lx,z) K v l?n} Tyldk, cos 8)
(2.3.15)
~3k ¢, . sin B
[
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3. Numerical Results

3.1 Introduction
The equations derived in sections 2.2 and 2.3 are
implemented in two computer programs written for the
‘¢DC3800. Program OPEN1l solves the electric wall case
while program OPEN2 solves the magnetic wall case. The

listings of these computer programs are given in Appendix G.

3.2 The Electric Wall Case

This section presents the results of two studies. The
Afirst study is an examination of how the closed region re-
sults of Chapters 3 and 4 converge to the open region
results. The second study considers the conYergence of
the open region results as a function of the number of
perturbation coefficients.

Figures 10.3.2.1-10.3.2.3 illustrate the variation
of the dominant mode parameters for a trifurcated wave-
guide with k b, = 1.270k46, k by = 0.41417, and with k b
variable from 0.2 to 20. (Note that the indices of the
trifurcated waveguide dimensions must have 1 added to
them to correspond to the current notation.) The data
calculated using the open region analysis is shown for
comparison. Note that of all the parameters that the

reflection coefficient of the waveguide with dimension

Kb

1 = 0,h1417 converges the fastest. The phase is not
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shown but converged even faster with a maximum deviation
of only L4® from the open region solution.) However,
the reflection coefficient of the wavegulde with kob2 =
1.27046 converges much slower. The same is true for the
coupliné coefficient. All of the data is obseryed to
cscillate about the wvalues computed using the open

region analysis.

waveguide with kob2 = 1.27046 converges nuch sicwer. The
same is true for the coupling coefficient. All cof the
data is observed to oscillate about the values computed
using the open region analysis.

This data reaffirms the conclusions reached by Mittra
and Richardson {1970} that the closed region problemn
generally converges slowly to the open regigh problem

Tgble 10.3.2.1 illustrates the convergence of some

dominant mode parasmeters as a function of the number of

R _ M,L
perturbation coefficients {Np = g1 R o= by using the
open region analysis for the case of k b, = 1.270k46,

k b, = 0.kik17.
0" 2

Table 10.3.2.1 Convergence of Open Region Solution

" % % mF
h=} ' 1
Ng Bosl ~0,2
5 0.25609 90.222° 0.84558 155.26° G.53407 -28.770°
7 0.25909 90.226° 0.84557 155.26° 0.53503 -28.771
/ 3y
- / \ ol
+ t ol " L O 3 '
T o= with B = ] i4h L = with B . 0= 1.,
i BG,Q with uO,i L wWitTan BO’_L Lo w LU0 :32

. L
few perturbaticn zoefficients for this csse. However, tne2
second waveguide naz a width of only 0.066x. Table 16.3.2.2
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Table 10.3.2.2 Convergence of COpen Region Soluticn

N B ¥ B B . ot | T

D 0,1 ) 0,2 ¥  To,3% | 1 2 .

5 0.2193 73.6° 0.3148 73.6° 0.2766 80.6°' 0.1663 -107.8° 0.0918 7Tk4.5°
7 0.2181 73.4° 0.3085 Th.1° 0.2656 82.9° 0.164k9 ~107.35° 0.089%1 76.5°%
9 0.2195 T73.7° 0.3126 173.8° 0.2720 81.6° 0.1665 -107.8° 0.0923 TL.8°
11 0.2198 73.7° 0.3122 73.8° 0.2702 81.9° 0.1668 ~107.8° 6.0932 TL.6°
13 0.2197 73.7° 0.3120 173.8° 0.2700 82.,0° 0.1667 ~107.8° 0.0929 Thk.7°
15 0.2195 T3.7° 0.3122 173.8° 0.2711 81.8° 0.1665 =-10T7.8° 0.092h 7h,.8°

Lee's
Data 0.2160 7ThL.3° 0.3032 T75.,1° 0.2503 86.2° 0.1625 -106.8° 0.086kLk TT.T®

+ au = wo 5 with
- 3

# 7 E i
hm wouw with

= 1

—r o e

1

L

glo
0
A0
O,

[

# Current reflection coefficients
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illustrates the convergence of the dominant mode parameters

for the case kobl = 1.4137, kob2 = 2.827L1, k b, = 2.827k2,

w

o]
This particular array was examined by Lee (1967). His data
is also shown in the table. Note that the con?ergence is
slower than the previous case where the waveguides were
smaller. However, excellent results are still obtained.
Also note that the data is in ciéser agreement to Lee for
the central Waveguides, which is to be expected since Lee
used an approximation to an infinite ground plane while
in our analysis nc ground plane is assumed.

Figure 10.3.2.4 illustrates the far field radiation
patterns of this same array. Note that the ratiterns have
nulls near the angles expected from separable array theory.
However, note that the null at 58° has notickably filled

due to the differences in aperture illumination because of

mutual coupling.

3.3 The Magnetic Wall Case
This section presents results similar to section 3.2

for the magnetic wall case.

h

Figure 10.3.3.1 illustrates the variation of the TEM

reflection coefficient of a trifurcated waveguide with a

magnetic symmetry wall {ref. Appendix F) with kb = 1.270k6,
k b, = §.41bk17, and kqbg variable. The data using the

[
open regiocn snelysis is shown for comparison. Since the

®

center region does not support a TEM mcde only the reflec-

tion coefficient of the guide with kK by = 0.4

Lod

417 is shown.
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Z

Fote that the convergence is slower than *he electric wall

e

case for the same geometry (ref. Figure 10.3.2.3). The

data also oscillates sbout the value Predicted using open

region analysis.

by

Table 10.3.3.1 illustrates the convergence of this

same data az 5 function of the number of prerturbation co-

CM,R M

ttf

efficients (Nﬂ

g

Table 10.3.3.1 Convergence of Open Region Results

B0,2

0.81226 1bhL, 70°
0.81227 1hbh.7p°

NY\
-
o

9

The datea 1llustrates that five place accuracy is acheived
ith only a few perturbation coefficients.

Table 10.3.3.2 illustrates the convergance of the

2
goocd. Also, the comparison with Lee's (1967) data is
agein quite good considering the difference in the
bPresence of a ground plane.

U.3.32.2 shows the far field radiamtion pattern

[

Figure

c

of this same array.

Little data exists fTor the coupling of paralls
plates without a ground plane. However, Dybdal, Ruiduck,

1966) solved the problem of ccupling between two

m
5
v
[N
+3
¥ 4]
43
Py
e
o
4

rarailel plates using wedge diffrasction tschnicues.

M,L R ;
N using the open region analysis
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e ==— — Dybda! , Rudduck, ond
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Pig. 10.3.L4.1: Mutual Coupling Between Two Parallel
Plate Waveguides
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Table 10.3.3.2 Convergence of Open Region Results

N B, % B4 o f
0,2 G, 3

bes

I

13

5 0.1304 7s5.,7° oaym@w T2.1° 0.11hk7 <111,
0.1304 75.7° D.L970  T3.L° 0.11k31  -110.

[

G -3

0.130k 75.7° 0.1972 73.0° 0.11hk7 -131.2
0.1304 75.9°  0.1972 72.9° 0.11k6 ~111.)

00,1304 75.,0° 0.1971 73.1° 0.11h4  ~110.6°

o
o

Lee's . .
Dats ©.1299 76.8° 0.2877T T7.5° U.11h6  ~107.6°

T T = B with B = ]
0,

A
o

@
"

¥ Current reflection coefficients
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comparison of their data with that calculated using ihis
theory is shown in Figure 10.3.4.1, ©Note that the modi-
fied function theoretic technique predicts resonant effects
whenever the separation is a multiple of 0.5 A. At these
separations, the wedge diffraction techniques used by
Dybdal, et al. is inadequate because of the modeé at cutoff
in the inner region with dimension 4. Figure 10.3.k4.2
shows the phase of the coupling coefficient for this
same case. Note that the phase behaves according to
the geometrical distance except near the resonances,
where the phase progression is slower than free space.
the coupling coefficilent for this same case;‘vNote ﬁhat £he
phase behaves saccording to the geometricsl distance except
near the resonsances, where the phase progression is slower
than free space.

In section 3.2 and 3.3, we presented data for an
array examined by Lee {1967). We shall now consider the
superposition of that date to obtain the characteristics
of the complete five element array. Table 10.3.4.1 shows
the complete comparison of all the scattering coefficients
with Lee's data. The wavegulde's are numbered 1-5 from
the edge. Note that good correlation is obtained with
Lee's data even though his data is including the effect of
a simulsted ground plane. However, there is a trend for
the coupling coefficients to decay slower without the
presen%e of the ground plane,

Figure 10.3.54.3 1llustrates the variation of the sc-
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Scattering coefficients of Lee's array.

Reflected
Mode
‘Waveguilde in Guide This
Excited No. Theory Lee (1967)

3 1 0.092%4 Th.81° 0©.0864 77.7° .
3 2 0.1665 -107.8° 0.1625 -106.8°
3 3 0.2195 73.67° 0.2160 T4.3°
3 L 0.1665 -107.8° 0.1625 -106.8°
3 5 0.092k TL.81° 0.086k TT7.7°
2 1 0.1712 -105.2° 0.1630 ~102.3°
2 2 0.2212 Th.37° 0.2165 75.6°
2 3 0.1713 -105.3° 0.1625 =-106.8°
2 4 0.0909 T2.4° 0.0867 73.8°
2 5 0.0583 -93.93° 0.0501 -90°

1 1 0.2333 78.1° 0.218M8 82.5°
1 2 0.1712 =-105.2° 0.1630 =-102.3°
1 3 0.0924 Th.9° 0.086L T7.7°
1 4 0.0583 -93.9° 0.0502 ~-90°

1 5 0.0k11 103.5° 0.0354 10L4.8°
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tive reflection coefficient of each element as the array is’
scanned. Note that the refiection coefficient varies from
element to element, with the edge element reflection co-
efficients being asymmetrical.

Fiéure 10.3.4.4 illustrates the element patterns of
each element of this array as well as the isolated element
pattern. Note that the edge element patterns are asymetri-
cal. Note that the element patterns have & finite value
at 6 = #90°, in contrast to Lee (1967) who predicts zero
values. This metﬁqd of analysis would be particularly
powerful in predicting wide angle scan performance of an
array in the H plane, where the assumption of an infinite
ground plane would produce nulls at 6 = +90°, ©Note that
the element gains are greater for angles away from the
center elements. Also note that for these values that the
behavior resembles closely that of an isolated element with
no ground plane. Alsoc observe that for angles toward the
center of the array that the element patterns tend to be

more uniform particularly for large angles of observation.



Chapter 11

511

ote SBensing of the Earth

2
Using Parallel Plate Waveguides

jmd

1. Introduction
The remote sensing of the earth's sub surface proper-
ties is commonly done at low frequencies in order to get
the desired penetration. At these frequehcies loocps and
dipoles are comnmonly used. Ward (1967) discusses the
application of elementary source theory to this problem.
For the remote sensing of the earth's properties

nearer the surface, modsrate freguencies are used. Loops

do

d

b

still commonly used; however, the antenna

Lo

an poles ar

dimensicns are no longer smell compared to & wavelength.

Chang {1971} has analyzed many of these problems using

#

the numerical sclution of integral equstions.

At higher freguencies, waveguides can often be used

Q

instead of the more conventional loops and dipoles. Wave-~
guides have been commonly employed at higher frequencies;
however, they have been confined to measuring the Fresnel
reflection coefficients. Greater sensitivity should be
possible if the near fields of the antenna are allowed to
interact with the z2arth. This will cause the character-
istics of the antennas ifthemselves to changs zs a function
of the environment. From a theoretical viewpoint, such

than

o]
i
[¢]
ot
O
©
=
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»
]
(¢
o
‘.-l °
s

m
A
]
o
!_.é

L]
1))
I,J
m

waveguides are more
dipoles and loops, because wavegulides 4o not have g=up

corractiong and other fszed modeling problems. Additionally,
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one might obtain increased sensitivity by using two wave-

guides instead of one. The coupling betwesn the waveguides

would provide this increased sensitivity.

The analysis presented in the firs+t part of this dis
sertatién was confined to closed region problems. If =
sample of the earth can be obtained conveniently, then
the analysis of part 1 applies directly. In this case if

one replaces the free space wavelength by the guide wave-

length, the analysis applies to rectangular wsveguide.

[=h

However, generally the determination of the earth's prop-

erties must be done remotely.

iy
[ N
o}
"
(=2
o

This chapter considers the problem of a

array illuminating a homogenecus half space.

1
]
m
0
@
0}
o}
o
m
¥

this chapter combines the solutions of a waweguide radi-

.

1

&g

©
i«

ating into a half space (Chapter 9) and a finite

b(ﬁ

array {(Chapter 10). The solution is new and gives

Y v

physically interesting results for such problems as the

coupling of two waveguides above a half space.

2. ¥ormulation of the Egquations

2.1 Introduction
As in Chapter 10, we will assume a symmeitry boundary

parallel to the waveguides. This 1s not necessary, bus

is convenient. Hence, we will consider the superpocsition

w

the results from two problems: (1) the electric

1)

o}

symmetry case and {2} the magnetic symmetry case.
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2.2 The Eleectric Synnetry Case

Figure 11.2.2.1 illustrates the auxiliary problem.
Ais 1in the case of the finite bhased array the problenm can
he further separated into two kinds of problems: (1) the
interior problem, and (2} the exterior problem, The inw
Lerlor problem is identicsal to that of Chavpter 10 while
Lthe exterior problem is a modification of the results of
4 single waveguide radiating into g homogeneous half
f“pace given in Chapter 9.

Clearly then, the N nolomorphic functions are identical
to (2.2.1)-(2.2.3) of Chapter 10, with the exception of
the Tunction associated with the Nth plate on the open
region. This function is appropriately modified to ac-
count for the higher order modes incident irternally on

the Junction as well as the scattered field from the half

space. From Chapter 8, we can find:

Tylw) = X(w)!w_jk + | Z~ ooy —
L o n=1. nch“l
(2y,
¢ g}g}gt) dtij
! Xh)(t@ﬁk (2.2.1)

2

fdo
-
£

where X{w) is the homogeneous solution sas given

o
oy
4]
ot
3
¢t
[17]
]
[
o
s

Chapter 8, section 3. Changing + to -t in

we have
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- N L
T (w) =X(w>!__o~_.+ ———~—£...___._._
N w=-3k W=y
1 ol n=1 n,cw_l
5
- g2 () at (2.2.2)
7 X(~t) (t+w§] :
1

From Chapter 9, we can easily derive the integrel
equation for g(z)(t) by considering the exterior problem.

From Chapter 9,

_ JAey_q,
T (w) = -mwe A(X),  weL, (2.2.3)
and

© sin Aey ;. A%(X), wel, (2.2.%)

» :
g( )(w)
But from the boundary condition at the dielectric we can

relate A(X) ang Ao(k).
%

A%(2) = R(A) A(A) (2.2.5)

where
cw=-I -2wd
R()\) = m e
where

r = /A2 _ ekg

with the branch of T chosen such that Re(T') > 0

Using (2.2.2)-(2.2.5), Wwe may arrive at the following

. sin e sddey
g‘g)(uw} = — N-1 R(A) e F-1 4 {w)
f g ¥ . oL
st L e (2.2.6)
Yo n=1 n,Cp_q
) (4) at .
x(-t) (w+t) wesy

° L

q
ER
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egquations 81l remain valid even in %

43

e

e
v
=
¢

h+1f space.

In order to solve the integral and albe:

the presence of the half space does not ch

duce any edge condition, all the asymptotic
in Chapter 10 ((2.2.12)-(2,2.13)) are still welid,

All remeining details of the analyticsl solution are
the same as in Chapter 10 when using the nsw exprzssion

for TN(m).

2.3 The Magnetic Symmetry Caze

Flgure 11.2.3.1 illustrates the auxilis

)

magnetic symmetry wall case. As in the case of the cleg -

-y

tric wall, only the exterior problem result:

changed from the results of Chapter 10. GHence. we need

to change only the Nth holomorphic funectiocn (i.e. {2.3.3)}

of Chapter 10). From Chapter 8, (2.3.12) ve have *that
3
- N,L
«© g
. . v n ®
Ty (w) = X(w)} ) g -
in=1 Z2n-1,2¢c . Lin ,
- -1 < 2]
(2.3,
vhare X(w) is the homogeneous solution Yor wia WE e
wall case. Changing t to -t in
; N,L
|3 By
Ayl i -
Telw) = X(0)] } = -
“ \n=1 “Yonoy,20 . i_
i PTTH-1 Z
{2939

bahavior

", because
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Again a change of variable is made.
' i cos Ac, . -JAc
[ N ] - -
g2 (u) = L g e N x7T(w) olw)
it

. o ¥,L ‘
Glw) = 7 én _ o ale) ole) ae
n=1 w_YEn—l,QcN . 1 ttow
) (2.3.9)
where
_jAcr -
= 1 \ N-1 _X (w)
Qlw) = } cos ACN_l R(X) ¢ TR

Equation (2.3.9) is the desired integral equation

or &{w). All other equations given in section 2.3 of

bty

Chapter 10 are valid.

3. Numerical Results

3.1 Introduction

The eguations derived in sections 2.2 and 2.3 are
implemented in the programs OPEN1l and OPEN2 given in
Appendix G. These programs also solve the multiplate

problem without the half space. The numerical solution

2.2 The Blectric Wall Case

The first s%tudv iz an examinstion of how the closed region
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results of Chapters 3 snd 4 converge to the open region
results. The second study considers the convergence of

the open region results as a function of the number of

y

£

podn

perturbation cos cients and truncation of the integral

equatiod.
The evolution of closed region problems into open

FEETAY

nteresting due to two reasons: {1) It

5o

(]

region preoblems is
is interesting to examine & problem which can be solved

both in the open and closed region cases to see which

§1 it

easier” to solve, and (2) It provides a

problem is

feto

check 6n the opren region sclution ageinst previous closed
region results.

Figures 11.3.2.1 (a}-{c) illustrate the variation of
the dominsnt mode parameters for a dielectrigally loaded

trifurcated waveguide with k b, = 1.27046, kx b, = 0.41b17,
19

2 o 1

)

and with k bo variable, Also, € = 10, 6/k_ = 0.01, and

r
open reglion data is shown for comparison.

P

o
1.256.

i
-
et
s
[

k 4
o
As in Chapter 10, the reflection coefficient for the smalle
est waveguide {k b, = 0.43417) converges fastest to the

iJoooL
cpen region result. However, the reflection coefficient
of the waveguide with k¥ b, = 1.27046 snd the coupling

coefficient between the two guides both converge much

slowey to the open regicn solution. However, all of the

et

deta computed is observed to oscillate sbout the values

computed using the open region analysis, It should b

[¢]

O

noted that the convergence to the open region solution is

0 where the

| =]

#bout the same ss thst shown in Chanter
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dielectric half space iz not present, The dielectric is
guite lossy and GGZRO eway from the horn aperture. Hence
in order for the edge wasll distance to become secondary,
the distance to the half space must be an even smaller

fraction of a wavelength than 0.2) .

Table 11.3.2.1 iliustretes the cenvergence of sone

ry

dominant mode parameters as & function of the number o

intervals N, along L and the nunber of oints M
9 g ] 2 v 5

L4

within the nth interval for the case €. = 10, G/ko = 0.01,

k d = 1.256, k b, = 1.270L§, k b, = 0.41k317, and witn

2,1 _ y1,R _ o

i

ssentially five place accuracy is achieved with asg
fev as three matching intervals and 32 mateh points,

tl

{D
o
]
o

Lad

same geometry consid

]
¢
M
o
'.Jt
3
K3
»
o
P...J
)
}_-\
l,...l
n
[V}
o
]
>
[#]
o
s
o+
o
n
0

function of the number of perturbation coefficients,

and with N = 2, M, = 16, M, = 8,

Tavle 11.3.2.2 <(Convergence of Open Region Solution

# *
i B_ . B, T#
B eres O N
5 ¢.1939% 177.458¢° 0.87189 159,440 0.50981 ~37.44°
7 ¢.19k00 177.68° 0.87188 159 u5° 0.50896 ~57.k3°
g ¢.ig9bkos 177.88¢ ¢.57186 159.h8° £0.50993 -57.43°
¥Same as Table 11,3.2.1
This clearly iilustrates that the convergaence of the
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A

11.3.2.1 Convergence of Open Region Solution
5

+ ¥ o'E
5 loal v %0,2 —
- 0.19399 177.68° 0.87189 159.Le° 0.50981 .57.,hh°
- 0.1938% 177.66° 0.87150 159.39° 5.50993  .57,.51°7

- 0.19385 177.66° 0.87149 159,39° 0.50993 ~57.51°

8 0.19385 177.66° 0.871h9 159.39° 0.50993 ~57.51°
—_— 0.19412 177.66° 0.871k7 159.39° 0.51002 -57.52°
- 0.19413 177.67° 0.87148 159.39° 0.51002 ~57.52°

(o)
wo,m = 0,

o) _
wo,w = 0.

- (o) _
= 1, woum = 0,
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3. ¢ Magnetic Wall Case

This section presents results similar to sesctica 3.2,

with one exception. No closed region data is presente

cu

since the problem of an N-furcated waveguide with dielec-

tric loading and a magnetic symmetry wall was not

[N

mplemented on the computer. However, an alternate check
of the solutiorn is aveilable. Figure 11.3.3.1 illustrates
the variastion of the reflection coefficient of a trun-
cated parallel plate waveguide paralleil to a magnetiec

symmetry wall as a functicn of the distance from the

waveguide aperture toc a conducting half space. The
refilection coefficient for the case of no dilectric is

case, symmetrically and with
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Table 11.3.3.1 shows the convergence of the dominant

mnode reflectlion coefficient for the following parsmeters:

-

s 7 ~ {3 - P e~ 3 — sy
€ = 10, ¢/k = 0,01, Xk = 1,250, kK b, = 1.290a40,
T o C o 1
I T
% 3 P N R e L 29-‘-’ - W o
K b, = O0.51L%17 and % = N = % , § is number of
o 2 o]
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Table 11.3.3.1

Convergence of Open Region Solution

A
7 3 i i Y- 0.7L4k20 1k7.98°
7 3 6 6 6 —-- 0.75396 1hk7.91°
7 3 8 8 8 -= 0.75322 1k7.8¢0°
7 3 10 10 10 -~ 0.75304 1k7.81°
7 3 12 12 12 == 0.74313 1k47.81°
7 4 12 12 12 12 0.75313 1k7.80°
7 3 16 8 16 -- 0.75317 1hk7.81°
5 3 16 8§ 16 -- 0.75316 1k47.80°
9 3 16 8§ 16 -- 0.75317 147.80°
Agein, excellent convergence is observed, both with

respect to approximation of the continuous as well as dis=-

crete parts of the problemn.

3.4 Superposition of the Results

use of vave-

The title of this chapter suggests the

guides to rvemotely sense the parameters of t%e eérth. In
this case, we are suggesting a locally plane approximation
as well as & homogeneous half space.
Figure 11.3.4.1 illustrates reflection coefficient
of one of two O;hko waveguides spaced O.SRO apart with
respect to their centers, at a distance of O.lko awvay

from a half space. The variation of the permittivity sand
to change

conductivity cause the reflection cocefficient

quite noticeably. In fact, the variation is quite similar

to that of a single O.hko waveguide given in Chapter G,

in figure 9.L4.3, as indeed it should be. Figure 11.3.L4.2

.

this same date matched to the impedance of a

oo

bt

1

strates

£

single wavegulde

'.,m!
IS

looking into free spece. Agein, this is

gquite similar to the data ocf Chapter 9, and resembles
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quite c¢losely the normally incident Fresnel reflection
coefficient. Figure 11.3.4.3 illustrates the coupling
ccefficient between the two waveguides as a function of
veriation of the half space parameters. One should ob-
serve tﬁat the phase of the coupling coefficient varies
over about 20° while the magnitude varies between about
0.15 to 0.3. This is to be compared with about 40° of
change in the phase of the matched reflection coefficient
and an amplitude of the matched reflection coefficient
varying from gbout 0.15 to 0.6.

his particular case it appears as if the

i
(
3
]
[}
“
e
3
ct

pair of antennas is of little further help in solving the
inverse problem of determining Er and O, as conpared with
s single antenna. However, this is not to say that the
coupling coefficient may not be useful in this determina-
tion. Additionally, the coupling coefficient might prove
to be more seﬁsitive to varistion for such problems‘as

layered sarth models or buried dielectric anomalies.
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Another problem of interest is the radiastion from a
slot in a waveguide wall. This problem is a simple ex-
tension of the problem of a waveguide radiating into a

half space given in Chapter 9.

2, Flanged Waveguide Radiating ipto g Half Space
The geomeitry of this problem and its auxiliary prob-
lem are shown in Figure 12.2.1. From Chapter 8 we can
clearly write the holomorphic function T(w) as

fo f e ar o g0e) a
w-Jk L, X7 (1) (t-w) L, X(t){t-w)

{w) = X(w)(

where

w2+k ( (m—/w2+ké

b¥
X(0) = Ky (8) (035 ) w, v, exp{—s

where

kK b 3
Hl(w) = exp{%E (l_cﬁ_ln{2$ }]— 1%2}

From Chapter 8 we have that

/
g\l)(w) = -w sin Ab ej)\b CO(X), wELl {(2.3a)
2)(4) = w sin Ab A°(A), weL, (2.3b)
Alsc we have
T (w)-T (w) = -2T§ w sin Ab A(A), wel, - (2.%)
and
+t Y bl | - 4 Ol'\\ by -
T {w-w)+T (-w) = 2mwlcos Xb A {(A) - C{i)], wei, (2.5)

However, the spectra are related at z=d4d and at z=-§ by

the following
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c(r) = R(A) c() (2.6)
where
RC(X) =‘€‘w - I e~2w6
€lw + 1"'
and
A%(2) = R, (}) A(X) | (2.7)
where
_ ew =T -2wd
R,(A) =

Using the property of X{w) that

X (w) = X (m)ejgkb, wel,
we can immediately write (2.4) as
. K (1) (2)
X_(w)Zje-'jko sin )\b “31( + PV f g— (t) at - g (t) dt
e L, X (£){t-w)q L, X(t)(t-w)
+ 27 e 1) ()™M cos b = -2m3 w sin Ab A(A), wel

1
Then using (2.7) and (2.3b) we arrive at the following

integral equation

K (1) (2)
X (w)e I Psin v Ok +pv [ Al B_(t) de
w-Jk L, X (t)(t-w) L, X(t)(t-w)
+ o g(l)(w)e—jlbcos Ab = w R;l(A) 8(2)(w)a wel, (2.8)

(2.8)is just the extension of equation (2.5) of Chapter 9.
Similarly for meL2 we know that

X {w) = X+(w) = X{w)

hence we can write (2.5} explicitly as
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where
\ sin Ab R (\)ed?? x(_w)
Q(l’(w) = ¢ , Wel
v(m+jko) X (w) 1
and
(2) sin Ab RA(X)e'jAb X (-w)
Q (w) = , WeL,

T(wtjk ) X{w)
Similarly, using (2.10) and {(2.11), (2.9) becomes
(2)

1 AP e () as A2 068 (Le) et
w-Jk * j t - w v Ry f t
\ o I, L, - ¢
, { (1), (2.13)
= 1 cot a0 A2 (w)e'?) (~w) %ﬁ;—‘*’l weL,

Now from Chaepters 8 and 9 we have already found that

: ~20dy
(B (u) = ofE—} ful > e, wer,
and
¢y = o), lw] » =, wel

Y
(2’(w) can be

and we know that integrals involving G
truncated because of the exponential decay of 1(2)(w).

lso we have previously found that

l s AY ; “—l
e wy = o™y, o] + =, wel,
and
{ -
G‘l)(w} = o(w™ ), lw] »~ =, wel,
where
( )
- L. i
A = % sin li e -1 |
. g l2(e+1)}



f' K {l)( Voo (2)/ )
X(w)|—2— & [ B8 &b _ 5y ¢ g %) dt
Ik, Ly X (t)(-w) L, X{(t){t-w)
- {2.9)
( « )
-7 o {2), =INb -1y (1), ]
e s Y - R ) — 1
TR %cos o g " (w) e o (Mg 7l m)i, weLy
kS J

(2.9) is Just the extension of equation (3.5) of Chapter 8.

Equations {(2.8) and (2.9) are simultaneous integral

N . (1), . (2},
equations for the unknown functions g (w) and g "' {w).
Note that in each eguation we have a Cauchy principle
value integral in contrast to the previous.cases where
the integrals existed in the usual Riemann sense. We will
not give any numericsl results here but we are in s posi=-
tion to discuss the asymptotic behavier of the unknowns.
However, before doing this it is convenient to make a
) - e E3 ‘ )

transformation of variables similar to those used for the
flanged guide snd the radiastion into a hslf space. Thus

consider

(23 o A ED L T
g‘~21(=-“} = J X (u)G( )(m}, wel
\ 1
T{w-3k )
- (2.10)
and
{2y ~K sin Ab 1 ) (1
g ) e e b R.{Xj%{-w)GC 4>(W},w€Lﬁ
ryweik C 1
o
{2.11}
Using (2.10) ard (2.11), (2.8} becomes i
{ (1Y, (1 {2} {5
|t ey @0 ey aee, a0 k) e
jw-Jk : i
{ E, L, T~ w L, Tt - w 3
B U (2.12)
{1}, {1)¢ - G\gﬁiﬂ} -
+.7 cob Ab @ " {w) ¢V {w) = T thl
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value integrals. As unoted by Kostelnicek and Mittra (1969,

1971) one possible alternative is to change the paths of
integration. However, when doing this the new path of
integration is rather arbitrary and may introduce more

numerical difficulty than the original path.

3. Scattering by & Thick Semi-Infinite Plane
Figure 12.3.1 illustrates the geometry of the thick
semi-infinite plane as well as the auxiliary problem. For
simplicity we are only solving the electric boundary case.
In general, incidence at an arbitrary engie requires that
the magnetic symmetry problem be solved in sddition to
the electric case. However, the method is clearly illus-
trated from Jjust the electric solution. .

From Chapter 8 we see that the solution of the prob-

lem may be found from the holomoerphic function

© g (2)(
t) dt
T(w) = X(w)| | —— - [ &y (3.1)
n=0 “"Yno L, X{e) {t-0) j

where X(w) is the homogeneous solution. Since the inci-

dent field is & plane wave we have

O ‘. — { b
AC(w) = Aoa(waégocoseo)a Wwely

where 8(.) is the Dirac delta function and hence

g(2)(—w) = ~w sin Ab Aoﬁ(w—jkocosao) ’ weLl
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For the edge condition to be explicitly satisfied at
z = 0, x = b we can write
'Qil)(w)e(l)(w) - emith, wug (2.14)
: wel
Ir order to insure that the edgelcondition is ex-
plicitly satisfied we must insure that

..3/2-A), ’}\i - o

sin A A{XA) = 0(A

Then from (2.40 or equivalently (2.12) we see that the

{ -
following term must vanish in order that G‘Q)(w) = 0(w A

).

1+ | Q(l}(t)G(l)(t) at + f Q(z)(-t)Giz)(t} at = 0

Ly Ly
or
-4

(s ) . . t

1+ f° a6y at + T i%m
Ly ) (2.15)

+ Q(g)(-t)G(g)(t) at = 0

L

1
Eguation (2.15) is merely the extension of equation {3.13)
of Chepter 8.
Before concluding this section, it is in order to
briefly diseussithe methed of nuﬁerical solution thsat one

ight

-

sed in solving {2.12) and (2.13). ©Note that in con-
foa)

2]
6]

3

c—{v
=
jard
ot

st to the egquations obtained in the solution of flanged

waveguide and the solution of a waveguide radisting into

hoot h £ o i {2.12) d {2.13
s homogeneocus half space that equations {(2.17) an {2.13
require the evsluation of Cauchy principle wvsalue integrals.

Hence any fiumerical approximation technique used for the

sclution of the

o

tions must saccount for the principle

]

e equ
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Thus

20 (0) at _ f 22 (1) at
L, X(t)(t-w) Ly X(-t)(t+w)

(3.2)

-3k cos 8 A sin{k b sin 6 )
o o "o o 0

X(—jko cos 60)(m+jko cos 80)

Note that in the limiting case as 60 + 0°, that the elec-
tric solution furnishes the complete solution to the
problem.
In order to find an equation for gn we use
the knowledge that at z = -8 that
o) = 5 g (3.3)

m m m

where

gy . T -28T
m . m

where

Then using (v) of Chapter 8, section 2 we have

L+l _
(-1) T(_Ymb} - —Ymb b €m Bm - ,(3.h)
.. -1 o
= Ty b €2 “n Bm

but from (i) of Chapter 8, section 2, we have

)m+l

(-1 T(Ymb) = ¥y b & B
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One should note that as 60 -+ 0 that the term involving

A, becomes singular and it would appear that we do not have a

proper solution. However, for the case of 60 = (3, the

waveguide walls are orthogonal to the incident electric

-

field and the equations given in Chapter 8 are incomplete.

In this case there will be an additional term
JkoZo
8

-3k b A e
o 0 o] mo

on the left hand side of (2.2.6) of Chapter 8 and an addi-
tional term will be present in (2.2.10) of Chapter 8.

Thus we have thsat

\m Ymb %o jkozo
(-1) $(—Ymb) - Y'mb b Em Bme - jkob Ao € smo )
(3.10)
In this case (3.7) must be modified to be
(-1)"x( )rof "o | *
-1) X(-v - —
mb tn=0 Ymb+an
_ -1 (o) i (3.11)
- Ymb b Em Rm Bm - JkoD Ao 6mo
4., Radiation from a Slot in a Waveguide Wall

This section serves as a forum for presenting some
results using the theory of Chapter 9. In particular,
if one considers the case of a waveguide rsadiating into a
haelf space, a slot in the waveguide wall can be simulated
by superposition of the case where the half space is
allowed to become either a perfect electric or magnetic
conductor.

Por TEM excitation this type of slot is known as a
series'siot, because the eguivalent circuit is Just a

series admittance.
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{
where X\m)(ymb} indicates that the mth zero at Ypp 1S to

be omitted. Hence we can write in genersgl

g, = A, B.O) (3.6)

where Am is defined by (3.5). Using (3.6) in {3.4) we nave

[

m+i - ) |
(-1) x(—xmb)L—E —_

n=0 Ymb+an

Jk cos 8 A sin {(k b sin & ))
s O o "o o o ! = (37)
X(—jko cos 90)(Jko cos go"yﬁgjj
-1 -1 _
- Y P €, R Am g, » m=0,1,2,...

(3.7) is an infinite matrix equation for g,
In order to truncate (3.7) efficiently let us investi-
gate the.asymptotic behavior of gm. We may follow a pro-

cedure similar to that used for the E-plene step in Chapter

2 and find that N
‘ _ -1-A ‘
g, = 0(n )
where
1 ~1{_(e-1))
A= sin (mg
. = =1lA .
Also if g, = & m for m > N, then we can easily show
that
N = Jk cos 6 A sin (k b sin 8 )
Z g, + 2 Z n-l-A + e} ¢ o 0 ° . - 5
=0 = n=N+1 ¥(=3k  cos 8 )
n=_ L j Oncho (3.8}

From Chepter 10 we know that the far field for z > O is

determined by

kg y ‘
T{jkc cos Ble {(3.9)
and thus *upon solving for g, and g we can easily find the
i
far field scattering pattern.
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Figure 12.4.1 shows the series conductance and sus-
ceptance as a function of slot width for the case of
(2b/X) = 0.278. For this particular case the slot is

resonant at a slot width of about 0.2 wavelengths.
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reflection coefficient to the normally incident Fresnel
reflection coefficient. The primary difference is that
the argand diagram is rotated. This same problem was also
solved for the case of two waveguides. For the case of a
homogenéoﬁs earth, no particular advantage of measuring
the coupling coefficient in addition to the reflection
ccefficient was observed. However, this may not hold true
for such problems as the remote sensing of dielectric
gnomalies or in layvered medisa.

Another problem of physical interest, was the problem
of a finite phased array without a ground plane. The
analysis to date has assumed an infinite ground plane (or
some approximation to it) in order to simplify the analysis.
This is a good approximation if one is only sinterested in
the array patterns near broadside. However, for wide angle
scanning arrays the correlation is increasingly bad because
of ground plane effects. It should also be noted that this
analysis can be easily extended to the cﬁse of g finite
ground plane,

Solutions are also indicated for more complicated
problems such as s flanged waveguide radiating intc a

layered medis.
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However, efficient techniques for this factorization may
be found in Weinstein (1969) as well as Mittrs and Leé
(1971). This canonical problem admits the possibility of
solving such problems as a flanged circular waveguide
radiatiﬁg into a homogenecus half space. Also the problem
of a flanged (or un—flanged) coaxial waveguide radiating
into free space or & layered half space can be solved
using the technigues.

Other canonical problems vwhich offer interesting
possibilities are the oéen and closed region problenms ofA
a grounded dielectric slabd with a semi-infinite metallic
plate mounted on the dielectriec. This problem cannot be
solved in closed form, but Bates and Mittra (1968) have
given efficient numericel schemes for the fattorization.
This canonical problem allows one to solve two interesting
problems. The first is the diffraction gnd scattering of
waves from a dielectric step in a waveguide. This problem
was solved by Royer and Mittra {1971) and is also discussed
in Chapter 5 of this dissertation. The open region canon-
ical problem allows one to solve the open region analogue
of the dielectric gtep, the semi-infinite dielectric wave-
guide. This problem has not yet received a satisfactory
analytical solution. One cannot, however, solve the co-
axial and circglar analogue of these parasllel plate probleus
because the hybrid nature of the mode structure does not

permit a solution of this form.

.



Chepter 1k: Comments and Final Summary

This dissertation has endeavored to f£ill the gaps
that existed in the modifiead residue calculus and modi-

fied function theoretic technigues. The key to th

ot

s
realization has been the identification of certain canon-
ical problems. In the case of part I of the dissertation,
the canonical problem was the bifurcated waveguide filled
with homogeneous media. For part II, the canonical prob-
lem was the semi-infinite parallel plate waveguide. These
choices of canonical problems were made because of the
cartesian nature of problems were to be soclved. This
choice of canonical problems is by no means an implied
limitation of the MRCT and MFTT. For example, s wide

4
range of problems dealing with the modification of semi-
infinite circular or coaxial waveguide can be sclved in
the same.manner. For example, one can solve the problenm
of a non-contacting coaxial short by recognizing that it
is a modification of the coaxial bifurcated Junection.
Such & solution Wouid involve the construction of two
holomorphic functions, one with a singlie modificstion and
the other with & double modification.

One cen s8lso solve a wide class of modified semi-
infinite circular and coaxisl open region waveguide prob-
lems. The primary difficulty in this case compared to the
closed r;gicn is that the solution of the assccisted

homogeneous Hilbert problem must be obtaine aumericslly.
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numerical technigues such as the method of moments to
solve the canonical procblem.

Both the MRCT and the MFTT have their foundation in
the generalized scattering matrix technique (GSMT). As
an alteénative to the development of the MRCT and the
MFTT one might also consider extending the GSMT to include
asymptotic terms. Such terms would compensate for the
major weakness of the GSMT: the failure to change the
edge condition to conform with the known asymptotic solu-
tion. In fact, this particular techgique might prove to
be more powerful than either the MRCT or the MFTT since
it is not limited to problems which are basically two
dimensional in nature.

It is hoped that these comments will B'e useful to
.the researcher interested in the extension of these

techniques.
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One area which was not explored in this dissertation
was the ultimate use of the asymptoties. Most of the
numerical solutions given displayed several place accuracy
with only a few perturbational terms or only s few samnple
peints 6f a continuous perturbational spectrum. The logi-
cal course cne can follow from this is to solve Problems
using the MRCT and the MFTIT ﬁsing only the asymptotic
terms. OSuch solutions should easily have two place
accuracy and be quite sufficient for many engineering
tasks. This techniqué might be comparible to say the
geometrical theory of diffraction where nominelly two
place accurecy is obtained (Yee, Felson, and Keller, 1968).
In fact, an investigation into the connection between
these two techniques might prove very fruitful.

Yet another area of investigation inspired by this
dissertation is the very nature of the solutions them-
selves. In essence, both the MRCT and the MFTT seek
solutions by expanding the spectral representations of
the fields using theilr singularities. In this case the

singularities are either simple poles or branch points.
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o the singulsarity expansion method
(SEM) expounded by Carl Baum (1973) for sclving electro-
magnetic transient problems. This leads oue to ask the
guestion if more complicated problems which do not have
Wiener-Hopf type canonicsl problems can be solved uging

the same*basic technigue., One would then depend on 8



BIBLIOGRAPHY

I.A. Stegun (1965), Handbook of Mathe-
ns, Dover Publications, New York,
1-233

s

Amiteay, N., V. sl
Analysis of
New York.

and C.P. Wu (1972), Theory and
rray Antennas, Wilesy-Inter

Bates, C.P. and R. Mittra {1968}, "Waveguide Excitation
of Dielectric and Plasma Siabs,” Radic Science, 3,
pPp. 251266,

Baum, C. (1973}, "Introduction to SEM," 1973 G-AP Inter-
nationel Symposium Digest, Boulder, Co., pp. 459-

L,

Chang., D.C. {1971}, "Characteristics of a Horizontal Lodp
Antenna over sz Dissipative Half Space,” Tech. Report
' S T Colorado a4

A 7
1§bb;? Mutual
i Plate Wave-

pPp. 574~580.

.

ental Functions,

Erdelyi, A. et al.

5

Pt feend
1
\O
1

T
ot
)—J
0Q
joy
[
Lo
+3
=
oV
i}
P
9]
]
Cu

MeGraw~Hill

), Asymptotic Estimat
don and Breach, Ne

ov {196L), Genersliz
New York, vol,

Igarashi, Q. | 4%, “"Simpultaneous Wizner-Hopf Equations
and Their Applicaticon to Diffraction Problems in
Electromagnetic Theory," 7. Phvs. Soc¢., Japan, 19,
¥o, T, pp. 12 1221,




225

Itoh, T. and R. Mittra (1971}, "A New Method of Solution
for Radiation from a Flanged Waveguide,” Proc. IEEE,
58, pp. 1131-1133.

Kostelnicek, R.J. and R. Mittra (1969), "Radiation fronm
an Open Ended Waveguide into an Inhomogeneously
Filled Space,” Scientific Report No. 12, University
of Illincis, Urbana

Kostelnicek, R.J. and R. Mittra {(1971), "Radiation from =&
Parallel Plate Waveguide into & Dielectric or Plasnma
Layer,'" Radio Science, &, No. 11, pp. 981-990.

.

Lee, S5.W. (1967), "Radiation from the Infinite Aperiodic
Array of Parallel Plate Waveguides," IEEE Trans.,
AP-i5, pp. 598-606

Lee, S.W. and R. Mittra (1968), "Diffraction by Thick
Conducting Half-Plane and a Dielectric-Loaded Wave-
guide,”" IEEE Trans., AP-16, pp. 45L-461

Marcuvitz, N. (196L), Waveguide Handbook, Dover Publica-
tions, New York, New York.

Mittrs, R. and S. Lee (1970), "On the Solution of a
Generaliz ed Mlereruﬁopf Equation," J. of Math.
Fhys., 2, No. 3, p»p. 775-783. N

Mittrae, R. and S5.W. Lee {1971}, Analytical Techniques in
the Theory of Guided Waves, The MacMillan Company,
New York, New York.

Mittra, R. and J.L. Richardson (1970), "A Numerical Tech-
nigue for Bolving a Class of Open Region Radiation
and Scattering Problems," Proc. IEEE, 38, No. 2,
vp. 276-278.

rrj

Mittra, R., S.W. Lee and G.F. VanBlaricum, Jr. (1968),
"A Modified Residue Calculus Technigque,” Intern. J.
Eng. Sci., 6, No. 7, pp. 395-408.

Mentgomery, J.F. (1971}, "On the Complete Eigenvalue Solu-
tion of Ridged Waveguide," IEEE Trans., MIT-1h,
pp. 547-555.

Montgomery, J.P. (1973), "Comments on Radiation from a
Parallel Plate Waveguide intoc a Dielectric or
Plasma Layer,"” Radio Science, tc be published in
Dectober.

Muskhelishviii, ¥.I. {1953, Singul&r Integral Equations,
P. Hoordhoff H.V.,, Groningerr, Holland.



w4
A3 et
40
[@ /]
~ Q@ F
& v
Fog ol
[T )
et e
© O 4ot
toxd s O
Tl G
[N
o ) 42 b
T e b
B
® O
z Dy

42

i}
=
©

8]
[&S;
R

an

Y

—
i

el

o,







Appendix A: The Edge Condition and the

Asymptotic Behavior of T{w)

From Mittra and Lee {(1971) it is easy to show +hat

-1
E_, must behave as ix—x,f *as x > x, with z = z_. Simi-
X . i 1 o
-3
larly, E_ must behave as %z—zol % a5 z > z and x = Xx..
It is then easv to show thsat
"‘{' Z n .- 2 7
‘abZo, = o[(-1)® a”3/2] {(£.1)
e B
n
Yz
nec e -3/2
e ¢ = o0[a"3/?) (4.2)
.,..Y Z,
na o© -3/2 _,_ a7 A 2t
e & A= ofln 3/ sin ;b} {A.3)

7 Y
i
5§

vii} of section 2 and {(A.1

st
t
g
P
V2
g3
w
f"f“
ben
o
o

T{w) = 0{w %) (A. %)
<
for w = -y ., m > ®. Using property {vi} of section 2,
Chapter 2 and {4.2), (A.4) is true for w = “Yoee B2
[ &
Similarly using property {(ii} of section 2 and {A4.3),
wve have
- - ~-1/2 .. 2 nmb,
RESIT,y 1 = 0(n / sin —=3
‘na . a

for n + «®, This is equivaleant to saying (4.4} holds as

/ -

W >y , n = ® {see Royer and Mittra, 1972)}. Hence we

o

el

2
&
&

-

‘:.n
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~ Fig. B-1: Contour of Integration for Asymptotic
Evaluation of Sum.



Appendix B: Asymptotic Behavior of the Perturbstion

Sum for the E~Plane Step

Consider
g n—l-A
= ) = (B.1)
n=N+1 w - n
In order to exsmine this sum for Im! + o we follow

Evgrafov (1961) and examine the contour integral

a—l”A cot am da

W -0

"

st = (B.2)

N

,’

1 i
where the contour is shown in Pigure B-1.

Following Evgrafov (1961) we first evaluate the

integreal by residues

o -1=A
gl = z L+ g w—l_A cot W1 {B.3)

n=N+1 @ - n
for R+ @ and Re w > §, But let us now seek an alternate
representation of (B.2). ©Note that

+ =3 gi . i+w
cot aT J sign (dlmag) [

and hence let usg examine

1. =1 ¢ cot am+3)do S da
S - i }.é
23 CG w - d 2 C6 Bo- O
1= - -1w=f
L 4 [ 2 (cot am-jlda . 1 ¢ g dg
Sl B > ).
23 C_8 0 - o Ce W o= &
+ . . , . s A s
where Cei is the contour (&, 8+iR, «+iR} and Co is {8,
8-iR, @-iR} as R -+ =
° g “2" 4
cot ¥ £ 0§ = (e "R)

and thus
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+ %_ } o (cot am=-1)da
J 8 W-9,
= PV ? a4, —e+}m o184,
8 W-0a B (w«a)(l;ekgjaﬁ)
8- jo0 ~1-A .
+ f o do (B.L)

5 (w-a)(ed2¥_q)

as W > ® we use the residue term at o = ®w and the principle
value integral as the leading terms.

S = o(m"l) + o(w‘l'A) (Bls)

For arg w = 7, we have

. E n—l—A
s! = —
n=n+1®
- ? a_l-Ada STJw o 1 Ada
= 222 S .
8 W0 8 {w-a)(1-e gj&ﬁ)
3o ~1-4
+ o do (B.6)

j2am_

) (w-a)(e 1)

as w * ©, we use the first integral as the leading term.
By changing variables we recognize the integral to be

a hypergeometric function (Gradshteyn and Ryzhik, 1965).
From the hypergeometric function, it is easy to show
that again we have (B.5).

Hence (3.11) is justifiead.
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+ joo L7 . — - -
gl = =1 043 ot A(cot ar+jlda 1 B-Je ot A(cot ar-3)da
23 6 w - o 23 e W - o
L L i a 1844 L L f o 1784y
2 ot w=-0 2 o W=
) b
Now consider deforming the contours Cg, C, to (8 % ie,
© + jg) as € » 0. If Im w > O then
1 R U A e T -1-4
5/ =5 - Ty w
2 ‘+ 2
C w=-0, 0 w-0
6
1 o 1240 1% ot lag
2[_ —'é"f
C W -0 8 W-0o
6
If Imw < O
—1A -1
i f ot do _ 1 ? o . Ada
e Cg w-0 2 8 W=
A 3
‘ -7 - T A
1, ot Pae 1% o84, ~1-4
7/ =51 vl w
Ce W-o 8 w-o
and if Im w = 0
l’f o T %40 L L o184, = py ? o 1044
2 o+ 2 4~ *
Ce w-0 Ce w=-0 5] w-0o

For our purposes it is sufficient to consider two

cases: (1) Re w > 8, and {(2) Be w < 8. For Re w > B

st = Z L M ww_l—A cot WT (B.4)

1 4 -1-
_ T a Ada 1 B+ ot A(cot an+3)da
=PV [ - 55 ]
. 8 w-q 0 o= O



Appendix C: Asymptotic Behavior of the Perturbation

Sum for the Trifurcated Waveguide

Consider

o -1 6
a .. n sin n
5 = ] < (c.1)
n=N n - o
In order to examine this sum for Iw! +> = ye follow
Evgrafov {1961} and examine the contour integral
1L L sin a8 cot om dao \
st =3+ | (c.2)

2d % o(a - w)

where L is shown in Figure B-1 (replace & by 60 to elimi-~

nate confusion). Evaluating the integral by residues
T sin n# in wh cot
s sin n T sin wb cot ww
st = ]} + (c.3)
n=N n{n-w) o

for R + ® and Re w > 60. In a similar manngr %o Appendix

B we can find the following alternate representation of

(c.2}.
oo . 8+3 Gemjoo
gl = py f sin a8 do [Teee 4 . (C.14)
6 ala - w) G C]

i

for arg 0 and where the second and third integrals

Ry

are similar to those given in Appendix B and are not given
since only the leading terms of the asymptotic expansion
0f S are desired.

Let us exanine the integral and the residue term as

the lesding terms

fee] [ee] )
. sin a8 4 -1 ¢ 8in d i . sin af 4
?‘{j’ f w,;’?“_._..ga 2 e Js w..._a_u w2 "‘! jf 8 g
g .a{a - w w B o w 5 o o= W
o) 0 o
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The term is order @ The second integral can be
evaluated asymptotically by changing variables and using

; This vields

l e

asymptotic expansions of the sine and cosine integrals

given in Abramowitz and Stegun (1965

! [oe]
Py | sin ab da T cos whd
8 a - o
o)
Thus

-1 1 sin w{m-0))
g8 = 0(w ") + O(w S ’% {c.5)

sin ww -

as w =+ ®,



Appendix D: Evaluation of the Infinite Product

for the Electriec Wall Case

Congider the product

‘(l-w/‘fnb)(l—w/‘(nc}

oo
Plw) = 1

n=1 (l—w/Yna)
This can be written as

N

'...l

(1-w/v_, ) (1-w/y__)

Plw) = R _{w)

)

o=

n=1 (1—M/Yna)

wvhere RN(w} is the remainder. Following a prccedure

similar to Kostelnicek andg Mittra (1969) we have

R {w) = exp{ ) (1n{1—79—l + 13(1“ W l

‘n=N L nb L Yoo

el

H ’,y/,i 7 .
for |w/y 1, EJ,\ncg, Iw,yna} < 1 we can expand the

logarithmic terms

oo

s OO m - - '
" 7 _ LG{_L 1 _;_)§
EN§w> - EXP{-Z g ——{ m i m  _m lf
n=l m=1mn by, Yac Yna'

Now consider the expansion

|

o
( + E(L " . lm/erl)n/z fb )
T 21 %nﬂg

(m/2+2) (m/2+1)n/2 {Q__6 b oees
31 T

IQP-E

(p.1)

(p.2)

(D.4)

{D.5)
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Thus
(
[+ I’ m 0 2?—2“’1!1
) n=N m=1 p=1 ‘nm
\ {(D.6)
2p-2+m 2p-2+m
4= =
nmw nm i)

lising Davis {1962) we find that we can evaluate sums of
reciprocal powers of integers using polygamma functions.

m
o= ) (D.7)

.
m

-1 8

-1)
)

(
(m=-1)1

N

[=]

i1

is chosen large enough that an asymptotic expansion of
is used. Only two or three terms of this series are
~nerally needed to find the polygamma function. Reversing

- rders of summation of {D.6) we have

o \ -2+ 24
sy fr wm @ (m) b}ep 2+m C]ZP 2+nm
nwgw) = expﬁ—z — X c F} + ?

‘ w=2 m p=1 ¥ ‘ ) (5.8)
f y2p-2+m] @ w | N
=% i ) 1 ) { i, 1 1 }

i ST ) -
R 1 n=N n2p 2%m n=N an Ync : Yna'

i'ote that the linear term of w is isolsted. Let us

rsonsider this last term for a finlte upper 1imit and use

£5.5)
i ( . :
}Tq§1+1_1}1:?1{3};6{1){5)2?2
H;vanb Ync Yna n=N\=\nTY p;1 v hp’.}
(e ] - y )1 ~2)
L] T )T (=] 5 Cxl.a(g__z@ |
‘ inﬁjp;l p \am nﬂjp;l o a7 |



® . ) w o, 2p-2 -2
o (e
H;N%‘*\’ﬁb Ync_ {na} p=2S\p i TT}
ra}qug} T 1
w2 } (D.9)
The summation over p and n are fastly convergent. In

,order to determine

remainder term {(of

cedure similar to Kostelnicek {(1969).

how many powers of w are necessary the
@) can be approximated by using a pro-

Using the sapproxima-

ion * > nu/h in the
tion Ynh nT/h in the sum
[ 3
il o
. A = i
Sy = -1 2] Ly L {p.10)
T =M T n;N\Ym vE v
- ndb nc na’
we find
I I'e N 5 l\.
y fwb mc§ jwal |
Sy ¥ =< e R = - [ == .
= = Syl gM{ ) gmmwh (D.11)
where
fe.o]
o
; t
g lt) =
* m=M m(m-1)
This enables the remsaining sum to be truncated accurately.
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Appendix

The Canonical Problem with =

Masgnetic Symmetry Boundary

Consider Figure 3.2.1, except let the boundary st
x=xo be a magnetic wall. We can. find the TM fields from
¢ = Hy where
o0 LA s >
© (o) Y2n-—l,2a“ Yon-1,2a%, | \
= + bd -
¢, nil [An e Ae Isin kna(x x,)
(E.1)
o - z Y z
- (o) " '2n-1,2b 2n-1,2b", .
= ] e +B 1 {x=
¢q 121L N € Isin k. (x xo)
’ (E.2)
0 ( y - Z
o} 'ne ne nm
= o\ o +C e — (x-x_}
9 pZO[ o e c e Jeos = (x-x,} (E.3)
where
o _ (en-31)m - (2n-1)m
hna B 28 ° knb 2D
2
Note that regions A and B cannot support a TEM mode.

We proceed in an

identical manner as section 2 and

find that the solution may be found from a meromorphic

function T{w} which has the properties:

2n-1.,28 o©
i ST,y = k cos k b A e ?
(1) RES [ s".:‘tn_nga] nea na n
no= 1,2,¢%
LY Z
I Y i ~
; L) ‘2n=-1.28 o
11) s{7, - 1 =k cos kb 4' %7 >
(1 RESLT, y2n~132a‘ na nsa An
n = 1-‘;2955‘3
y "Yne?o
i11) B ey c C<o’e n o= i.,2,°%¢
(1i11) T(Ync} Y no n i
y =Jk_z
Ly Pk ) = -21k o olO) o
\*ﬁ) ;\jk@, Euﬂa [+ n e



5 ; n+l
(v {-1) b B
Yop1,20) Yon-1,2b n
no= 1,2,
“YneZo
{ 4 m Yoo P .
{vi T{ =~y o= C e n = 1 e
(vi) ( "ne Yne € p A 22
Jk =z
(vii) "(-jk } = 2Jk c C e °
o o o
-
fvd33Y | IRERE .
viii) (=1 Tl-v. -y b B
: s ( Y¢n~1,2b) "2n-1,2% n
n o= 1,2,
3 4 "‘l 2
{ix} T{w) = o{w /2) [w] > =
T{w) can be constructed as follows:
o
. o g"\./ll
/ v “n
Tw) = 83{w)Flw) K +(w-3k 3{ ¥
" Yot s WY
‘n=1 nc
(v) {a)
® g 0 g v
+ ) = + ¥ -
w-y , Lowy,
n=1 2n-1,2b n=1 Zn-l¢2a
where
{
.y ) b o
E{w) = exp i*: (b In =+ ¢ 1In Pl 2c
il 11 . 2 <.
and
o (1 - w/y I w/v )
Flw) = T 2n-1,2b ne
n=1 1 - w/v,. . )
( Z2n-1,2%
{ ~ 3 fwY {a) .
K g “', g %, g% are related to the incident
o’ ®Pn  * ©p S
by {(iv), (111}, ‘v) and (1i).

in 2
{B.
(E.

fields



Appendix F: The Trifurcated Waveguide with

a Magnetic Wall

™

Figure F-1 illustrates the magnetic wall trifurcated

wavegulde and the suxiliisry problem.

The socintion is obtained by constructing two mer-

morphic functions.

'

[ (1) = &)
1 n
‘) - . - A — Y
T, (w) H1<m)F1(“)\Ko + (w-3k_) Z oty (F.1)
n=1 ne’
f o (23,
T {(w}) = 5. (0)F_ {w) K(z) + {(w=-3k ) } ° {(r.2}
- DD ol sy WY T

where Tliw) is identified with the Junction at z = 0 and

Tz(w} is identified with the junction z = A. H_ (w),
(1) {2) j )
Hy(w), Flw), Fplu), Ko7/, end K 5 are given by (E.4)--
4
(E.6) with only a change of geomeitrical factors necessary.
. s . (1) ;
We can derive two infinite equations for g_ and
(2) - e . . -
gn ‘ by requiring that the expressions for the modal
coefficiasnts in the coupling region be consistent.
(2); (2} -1
RES{T, ,v ] = K k cos kx_ _ b. {F.3)
[ 1"2nu1,2cj €n : n ] ne ac (F.3)
PN \
(o130 %in o 3 (1):,(1)4=2
-1} (- . b= - .. C (K .
bl ol=Yon.o1,2¢” 2n-1,2¢c &n thn (F.4)
where
{\l} - —Cl) N 5
A N (F.5)
{2} - K.(Z} C+ T A0
gﬁ - “n n LEL.QO G
[y {0
w\-l-) ] E ~ g FEERERY EEEEEER)
and K_ and X are found from properties {(1i; and (113
id -l

[

of Appendix E.
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In order to truncate equations {F.3) and

(1} {2)

find the asymptotic behavior of gi and g;"
(F.5) and (F.6) we can find

(l) (2} - ! -1 IR o 3 .

g, 18, = Gkn (-1)" cos {n,ub

This choice allows the efficient solution of egquations.
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