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Abstract

Circulators are crucial components in quantum computers that ensure that

quantum information is coherently transported. Current commercial circula-

tors are too bulky because they use permanent magnets, so producing chip-

scale circulators is necessary to feasibly scale up the size of quantum computers

using superconducting qubits. Using a model inspired by a paper by Rudner

[2], I have designed a lattice circuit that will produce non-reciprocity, which is

the property required for proper circulation. These lattice circuits are able to

produce circulation because they have periodically time-dependent bonds that

control interactions between the sites in the lattice. In this thesis, I first theoret-

ically analyze two similar lattice circuits and show that they can both produce

non-reciprocity. Finally, I experimentally demonstrate non-reciprocity in a 2 by

2 lattice circuit at room temperature. This experimental verification of circu-

lation motivates future testing of larger lattices and building superconducting

versions of the circuit to create chip-scale circulators.
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1 Introduction

Circulators are crucial components in quantum computers that ensure qubit

coherence as the qubit’s information is transported. The quantum information

is contained in a voltage signal that is read out from the qubit, and it is impor-

tant to be able to shield this voltage signal from external influences. Circulators

are multiple port devices that directionally transmit signals such that signals

starting in port i end in port i+ 1 [1]. Consequently, the quantum information

stored in the voltage signal can be transmitted to later ports to be processed

without the electronics at those ports affecting the signal before it arrives. The

current commercial circulators are too bulky to feasibly scale up the number of

superconducting qubits in a quantum computer because the circulators rely on

large permanent magnets that are difficult to integrate with superconducting

qubits [1]. In contrast, the small size of chip-scale circulators makes them an

attractive option to overcome the scaling issue that current commercial circula-

tors present. One goal of my research is to test a circuit at room temperature

to see if it has the potential to create circulation as a chip-scale circulator.

The specific design of the circuit that will achieve non-reciprocity is inspired

by a paper written by Rudner et al [2]. This paper in the field of theoretical

condensed matter physics describes a way to create robust chiral edge modes

(i.e. non-reciprocity) in a lattice even if the Chern number is 0 for all the

bulk Floquet band gaps. This phenomenon is interesting because, for a static

Hamiltonian, the Chern number for a bulk band gap quantifies how many chiral

edge modes there are. A Chern number of 0 usually means that there are

not any chiral edge modes; however, the inclusion of time dependence in the

Hamiltonian, which is what creates bulk Floquet band gaps, produces chiral

edge modes even if the Chern number is 0 [2]. The resulting non-reciprocity

from a time-dependent lattice relates to circulators because this type of lattice

has robust chiral edge modes that do not excite the bulk of the lattice. Having

an excitation on the edge of the lattice that travels in only one direction around

the lattice and which does not decay to the bulk is how we want the voltage

signals to behave in a circulator. Since the circulation produced by a circulator

and the non-reciprocity of a lattice are such similar properties, I will use them

interchangeably hereafter.

Creating a non-reciprocal lattice requires particular types of time depen-

dence in the lattice. Figure 1a shows a modified image from Rudner’s paper

depicting what such time dependence looks like. In this lattice, there are two
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different types of sites denoted by white and black dots. There are also four

different types of bonds in the lattice, and those types of bonds are turned off

and on at the same rate but with four different phases. At any one time there

is only one type of bond on, which means that a site is either connected to only

one adjacent site or not connected to any sites.

Figure 1b depicts examples of how excitations in the lattice progress over

time. Depending on the order of the bond switching, excitations initialized on

the boundary will travel clockwise or counterclockwise and excitations initialized

in the bulk will travel in the opposite direction as those on the boundary. For

instance, the green path shown in Figure 1b begins with an excitation on a white

site on the top edge of the lattice. During the first part of the cycle, the white site

can interact with the black site to its left. During this interaction the excitation

transfers to the black site, and then the second part of the cycle begins. In

this part of the cycle, the excitation cannot interact with any sites around it,

so nothing happens. Finally, in the third part of the cycle the excitation can

transfer to the white corner site. Though not shown, this excitation will continue

to travel around the edge of the lattice counterclockwise. This model thus

produces the results that we desire for a non-reciprocal device like a circulator.

So, we will use this model laid out by Rudner as an inspiration for designing a

non-reciprocal active (i.e. time-dependent) two-dimensional lattice circuit.

4



(a)

(b)

Figure 1: (a) The lattice has two different types of sites denoted by black and

white dots, and it has four different types of bonds represented by four different

colors (red, blue, green, and yellow). The purple arrows demonstrate a bond

switching scheme for the lattice that produces circulation. During each part of

the cycle (1, 2, 3, and 4) only one color of bond is activated (i.e. interactions

between sites connected by a colored bond are allowed). (b) These are examples

of how excitations propagate through the circuit given different starting points

on the lattice. Excitations initialized on the boundary will travel counterclock-

wise and excitations initialized in the bulk will travel clockwise because of the

particular switching scheme used and shown in Figure 1a.
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2 Theory

A Circuit One: Lattice Circuit with Sites as Capacitors

(a)

(b)

Figure 2: (a) This is a circuit diagram for circuit one. Each node in the circuit

is a lattice site (A or B), and the sites are connected to each other by coupling

inductors with inductances L1, L2, L3, and L4. (b) The A and B sites are

capacitors to ground with capacitances CA and CB .

Inspired by Rudner’s bond switching model, we designed a circuit that would

implement the lattice he describes. The sites of the lattice are capacitors that

can store electrical energy when they accrue charge and thus a voltage drop

across them. The bonds of the lattice are inductors, and when two capacitors are

connected to an inductor they will interact by periodically exchanging voltage.

Figure 2 shows circuit diagrams for this lattice of capacitor sites and coupling

inductor bonds. Throughout the rest of this paper, I will refer to this circuit

design as circuit one. Figure 2a shows circuit one, which consists of A and B

sites coupled by four different types of inductors. Figure 2b shows that the A

and B sites are grounded capacitors. Even if the capacitances of the A and B

site capacitors are the same, these sites can be distinguished by which type of

inductors surround them. There are four different inductor types numbered 1

through 4, and these appear in different orders around a site depending on if it
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is an A or a B site.

Though not shown in Figure 2, we know that a non-idealized version of this

circuit should account for the equivalent series resistance of the coupling induc-

tors. The effect of these resistances will be addressed in the following section

when we analyze the unit cell of circuit one. Presently, we have only discussed

passive elements in circuit one; however, achieving non-reciprocity requires in-

troducing time dependence in the circuit. One way to simulate time dependence

in circuit one is to modulate the coupling inductors between some reasonable

finite value and an infinite value. In practice, we will not be able to modulate

inductance at the high frequencies this will require; however, the simulation

can modulate inductance this quickly and I will discuss how to experimentally

modulate bonds in a future section. A reasonable finite value simulates a bond

that allows sites to interact with each other, while an infinite value simulates a

bond that does not allow sites to interact with each other. Crucially, though,

we need to know for what periods of time the bond should and should not allow

interaction. To determine these periods, we need to understand how the voltage

exchanges in the unit cell of circuit one.

i Solving the Unit Cell of the Lattice Circuit

Figure 3: This is the unit cell of circuit one in which two sites are connected

by a bond and are disconnected from any other sites. All of the A and B sites

have identical capacitors with capacitance C and the coupling inductors are all

identical with inductance L. In addition, the equivalent series resistance of each

coupling inductor is represented by a resistor with resistance R.

When voltage exchanges between two sites, the large lattice circuit simplifies
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to a unit cell shown in Figure 3 because each site can only interact with one

other site. Once the bond between two sites allows interaction, it needs to

maintain this interaction until all the charge has transferred from one site to

the next. The amount of time it takes for the charge to transfer from one site

to the next is called the bond switching time. We will solve for how the charge

changes on the site capacitors as a function of time to determine the proper

bond switching time.

A charge q0 is initialized on only one of the capacitors, and then we want to

determine when the charge transfers fully to the other capacitor. Resistance is

included in the circuit shown in Figure 3 because it will be important to see if

the inductor’s equivalent series resistance significantly affects the bond switching

period. In the circuit diagram, qA is the charge on site A, qB is the charge on

site B, R is the equivalent series resistance of the inductor, each capacitor has

capacitance C, and the coupling inductor has inductance L. Appendix A details

the derivation of the solution for the charges on the capacitors, and the equation

of motion it solves is

q̈A +
R

L
˙qA +

1

LC
qA =

q0
LC

. (1)

After solving and reparameterizing equation 1, the solution for the charge on

each capacitor is given by

qA(t) =
q0
2

(
1 + e−γt/2

(
cos(ω1t) +

γ

2ω1
sin(ω1t)

))
(2)

qB(t) =
q0
2

(
1− e−γt/2

(
cos(ω1t) +

γ

2ω1
sin(ω1t)

))
(3)

In equations 2 and 3: ω2
0 = 1

LC , γ = R
L , and ω2

1 = ω2
0 − 4γ2. In experiment

the site capacitances are about 815 pF and the coupling inductances are about

10 µH. Since the bond switching time intimately depends on ω1 (which itself

depends on R through the γ2 term), R needs to be on the order of 100 Ω to

make ω1 significantly different from ω0. The equivalent series resistance of the

coupling inductors is only on the order of 1 Ω, so we are in the limit where

ω0 � γ. Consequently, equations 2 and 3 drastically simplify to:

qA(t) =
q0
2

(1 + cos(ω0t)) (4)

qB(t) =
q0
2

(1− cos(ω0t)) (5)
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From equations 4 and 5, we can quickly find that the bond switching time

is π
√
LC. Knowing this characteristic time, we can determine exactly how to

modulate the coupling inductors.

Figure 4: This plot shows how the inverse inductance of the coupling inductors

is modulated as a square wave. The four curves plotted are vertically offset

so that the periodic behaviors and phase differences of the four types of bonds

can be easily seen. The curves are labeled according to the coupling inductor

numbering notation established in Figure 2a. On the vertical axis is the ratio of

the coupling inductance L to a reference inductance Lc. When the ratio Lc/L

is 1 the coupling inductance is Lc, but when the ratio Lc/L is 0 the coupling

inductance is infinite. This infinite inductance models a bond that does not

allow adjacent sites to interact.

Figure 4 shows how the inductance varies in time for each of the four dif-

ferent types of coupling inductors. Inverse inductance is plotted on the vertical

axis because inverse inductance is what appears in the equations of motion (Ap-

pendix B). The period of the square wave is four times the bond switching time

so that four different types of bond switching can occur within one cycle. The

duty cycle is 25% so that each type of bond only allows interaction for one

bond switching period. With this bond switching scheme in place to produce
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circulation, we can move forward to simulate the entirety of circuit one.

ii Solving the Entire Lattice Circuit

To solve the entire lattice circuit, we need set up the equations of motion that

account for how all of the sites interact with each other. Since there will be

a large number of equations to describe circuit one, it is useful to develop a

notation that encapsulates information about where sites and bonds are in the

lattice. We need to consider what the general A and B sites look like and to

which inductors they are connected. Figure 5 shows an arbitrary A and B site,

their connecting inductors, and the indexing notation that we use to identify

where the sites and inductors are. Establishing this indexing notation has great

utility in setting up the equations of motion and converting those equations of

motion into a matrix equation (Appendix B).

Figure 5: Above is a general A and B site with their corresponding coupling

inductors. m and n index the rows and columns of the lattice.

I developed code that would solve the first order differential matrix equation

for any size of lattice and for square wave modulated coupling inductors. Figure

6 shows a voltage plot which demonstrates successful circulation in a 6 by 6

lattice circuit. For that specific simulation, a voltage pulse of 1 V was initiated
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on the site (1, 1). The first important thing to note is that this plot only shows

the voltages on the sites on the n = 1 column of the lattice. Though the rest of

30 voltage signals are not shown, they are all approximately 0 during this time

sample. The initialized voltage pulse travels down the left edge of the lattice,

and none of the voltage leaks to bulk sites in the lattice. The voltage pulse

travels by exchanging between two sites during a bond switching period, and

the voltage exchanges how equations 4 and 5 predict. As the pulse travels along

the edge, there are times when the voltage remains at a site for a switching

period. This is simply because there are two bond switching periods between

two opposing bonds on an edge site.

Figure 6: This plot shows the voltage as a function of time from the six sites on

the left edge of a 6 by 6 lattice where 1 V is initialized on the site (1,1). Though

not shown in this figure, a similar pattern persists for the voltage on the edge

sites as the initial voltage pulse travels around the lattice counterclockwise.

Having success with this simulation, we proceeded to implement this model

in a real circuit. Ultimately we decided that our best option to switch the bonds

in the circuit was a frequency mixer. The SRA-6+ frequency mixer we chose

does not operate properly unless its incoming and outgoing signals are above

a threshold frequency of 3 kHz (Appendix D). When implementing the bond

11



switching in circuit one with mixers, the charge initialization produces a DC

signal (i.e. 0 Hz signal) into the mixers. Since this is not above the threshold

frequency of operation, we cannot create circuit one with these mixers as the

bond switching mechanisms.

To circumnavigate this problem, we adjusted the sites of the lattice by adding

an inductor in parallel to each site capacitor. When we initialize charge on a

site capacitor, the voltage on the site will oscillate because the capacitor and

inductor in parallel act as an oscillator. Since these oscillations occur on the

order of 1 MHz, the mixers can operate as intended. This allows us to effectively

use the mixers as our bond switching mechanism at the cost of slightly modifying

the circuit one. And even though we are modifying the original circuit, we

still expect to see the same qualitative result of non-reciprocity even if the

quantitative details are different. Before, the unit cell was itself an oscillator

in which the charge would exchange between the two site capacitors. Now, the

unit cell consists of two oscillators that are coupled with an inductor. From

classical mechanics we know that coupled oscillators can exhibit the behavior

where the energy in one oscillator transfers to the other oscillator. Since we

expect to see energy transfer between sites, we can also expect circulation to

arise if the bond switching time is properly chosen.

B Circuit Two: Lattice Circuit with Sites as Capacitors

and Inductors in Parallel

The new lattice circuit, hereafter referred to as circuit two, is identical in every

respect to circuit one except that it has an inductor in parallel with the site

capacitor. Figure 7 shows what the lattice looks like and what the new A and

B sites look like. It is essential that we understand how the energy in the unit

cell of the lattice behaves so that we can implement accurate bond switching

times.

i Solving the Unit Cell of the Lattice Circuit

The unit cell of circuit two, depicted in Figure 8, consists of a capacitor and

inductor in parallel inductively coupled to another capacitor and inductor in

parallel. The site capacitors have capacitance C and charges qA and qB . The

site inductors each have inductances L. The coupling inductor has inductance

Lc and a current ic flowing through it. The initial conditions for the circuit

are that one of the capacitors is initially charged with some charge q0 while the
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(a)

(b)

Figure 7: (a) This is a circuit diagram for circuit two. Each node in the circuit

is a lattice site (A or B), and the sites are connected to each other by coupling

inductors with inductances L1, L2, L3, and L4. (b) The A and B sites are

capacitors and inductors that are connnected in parallel and to ground. The

capacitors have capacitances CA and CB , and the inductors have inductances

LA and LB .

other capacitor is initially uncharged. Appendix C details the derivation of the

solution to this circuit using Lagrangian mechanics and normal mode analysis.

In this problem, it becomes useful to define a dimensionless coupling parameter

α = Lc

L , where Lc is the coupling inductance and L is the inductance of the site

inductor. In the end, the normal frequencies and the solutions for the charge

on each capacitor as functions of time are given by:

ω1 =

√
1

LC
ω2 =

√
1 +

2

α

√
1

LC
(6)
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Figure 8: This is the circuit diagram for the unit cell of circuit two. The

site capacitors have capacitance C and respective charge qA and qB . The site

inductors each have inductance L. The coupling inductor has inductance Lc

and a current ic flowing through it.

qA(t) =
q0
2

(
cos(ω1t) + cos

(√
1 +

2

α
ω1t

))
(7)

qB(t) =
q0
2

(
cos(ω1t)− cos

(√
1 +

2

α
ω1t

))
(8)

ic(t) = − ω1q0√
α(α+ 2)

sin

(√
1 +

2

α
ω1t

)
(9)

iA(t) =
ω1q0

2

(
sin(ω1t) +

√
α

α+ 2
sin

(√
1 +

2

α
ω1t

))
(10)

iB(t) =
ω1q0

2

(
− sin(ω1t) +

√
α

α+ 2
sin

(√
1 +

2

α
ω1t

))
(11)

Equation 6 defines the normal frequencies and equations 7 - 11 show how the

charge and current in the circuit evolve in time. We want to know when all of the

energy from one site has transferred to another site. More specifically, we want

to know when qA = ic = iA = iB = 0 and |qB | = q0. We want these conditions

to be true so that we reproduce the initial conditions of the circuit (i.e. only
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charge on one capacitor and no current flowing in the circuit). Appendix D

provides a derivation for the conditions under which this can happen. A full

energy transfer can only happen for particular values of α:

α =
−2(2m+ n+ 1)2

(1 + 2m)(2m+ 2n+ 1)
(12)

In equation 12, m,n ∈ Z and are independent of each other. Since α > 0, we

also require constraints on what m and n can be. If m ≤ −1, then n > −m; if

m ≥ 0, then n < −m. Once we have selected valid options for m and n, the

time at which energy fully transfers is given by:

t =
1

ω1
((2m+ n+ 1)π + 2πk) (13)

In this equation, k is an arbitrary integer. The smallest magnitudes of m and

n that will produce a valid α are m = 0 and n = −2, which result in α = 2
3 and

the first nonnegative t = π
√
LC. Now that we know the relationship between

the site and coupling inductors and the corresponding bond switching time, we

can model a lattice circuit that will exhibit full energy transfer between its sites.

ii Solving a 2 by 2 Circuit

In the previous chapter I simulated circuit one using MATLAB scripts, but to

simulate circuit two, I used LTspice, an electronic circuit simulator. Figure 9

shows circulation in a 2 by 2 version of circuit two in which a pulse initiated

at site (1,1) travels counterclockwise around the circuit. During the first bond

switching period, which lasts about 282 ns, the voltage transfers from (1,1) to

(2,1). In the next bond switching period the voltage transfers from (2,1) to

(2,2). This pattern continues as the voltage travels counterclockwise around the

circuit.

From the plot, we can see that the voltage on a site is almost always zero

unless there is voltage transferring to it from a previous site or unless it is trans-

ferring voltage to the next site. Therefore, the voltage on a site is only nonzero

during two consecutive bond switching periods. Unlike the bond switching

technique used for circuit one, there are no prolonged periods of time when the

voltage stays at a site. Additionally, we can see that there are small fluctuations

around 0 V after 1 µs. Some reasons why these small fluctuations are present

are because the resistive switching mechanism used by LTspice cannot perfectly

switch between zero and infinite ohms, and because the bond switching may not

have quite precise enough timing.
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Figure 9: This is the voltage plot for a simulated 2 by 2 version of circuit two.

The voltage pulse here travels counterclockwise around the circuit. After 1 µs

has passed, we can see slight deviations arise because the voltage on some sites

is nonzero when it should ideally be zero.
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3 Experiment

A Testing the Unit Cell for Circuit Two

Since α = 2 cannot be written of the form given by equation 12, then there is no

time when all of the energy from one site will transfer to another. However, we

can still determine an optimal switching time by observing voltage data from

a unit cell for circuit two without any switching. We used a model for the

capacitor voltages given by equations 7 and 8 in addition to voltage data from

a circuit described in Figure 8. Figure 10 shows the simulated and measured

voltages on each capacitor in the unit cell of circuit two.

Figure 10: This plot shows simulated and measured voltages on sites A and B

of the unit cell of circuit two (α = 2). There is no bond switching either in the

simulation or in the experiment. In the simulation and in the experiment, there

is a voltage pulse initialized on site A while there is no voltage initialized on

site B.

The simulation curves are not exactly the same as equations 7 and 8, since I

added in a simple exponential decay term to model the decay that I observed in
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the data. The model agrees well with the data and we can thus use our model

to determine the optimal bond switching time. This optimal bond switching

time turns out to be about 600 ns.

B Experimental Setup for 2 by 2 Version of Circuit Two

Knowing the bond switching time allows us to attempt to produce circulation in

a lattice circuit. Figure 11 shows the circuit diagram for the 2 by 2 lattice that

I constructed. In the four quadrants of the diagram, you can see the four sites

of the lattice. Each site is a capacitor and inductor in parallel and connected

to ground. The A and B sites alternate throughout the lattice, and the bonds

connecting all of them are shown as a switch between two coupling inductors.

All of the switches are in fact connected to bias lines because these switches

actually represent mixers which require bias lines that turn the bonds on and

off.

Two important parts of this circuit that are not present in my previous

discussions of the circuit two are the voltage initialization and the presence

of only two bias lines. In the top right corner, there is a voltage source that

provides a voltage pulse across a small capacitor and across a site. The purpose

of the small capacitor is to help impart a small amount of charge to the larger

capacitor in the site without the small capacitor and voltage source affecting the

site throughout the rest of the experiment. At a given frequency, the impedance

of a small capacitor is larger than the impedance of a large capacitor, and it is

this large impedance that helps isolate the small capacitor and voltage source

from the rest of the circuit.

Next, this circuit diagram only shows two bias lines, while my model pre-

sumed that each type of inductor had a different type of switching. Even in the

2 by 2 version of circuit two there is still one of each type of inductor, so it seems

that we need four bias lines instead of the two shown. The 2 by 2 case is special,

though, because each site cannot be connected to more than two other sites. If

opposing bonds (i.e. 1 and 3, 2 and 4) receive the same switching signals but

the two signals are π out of phase, then there is no time during which a site

can be connected to two bonds. Even though the 2 by 2 version of circuit two

has four different types of inductors, the circuit only requires two bias lines to

properly switch the bonds.
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Figure 11: This is a circuit diagram for a 2 by 2 version of circuit two. There

are four sites in the four quadrants of the diagram, and they alternate between

A and B sites. Their capacitances are CA = CB ≈ 815 pF. Their inductances

are LA = LB ≈ 10µH. Between each site are two coupling inductors each one

with inductance Lc, though the value of Lc depends on the coupling parameter

α that we want to investigate. The voltage signal in the top right initializes a

voltage on the capacitor in the top right site via a small capacitor with Cs ≈ 80

pF. The voltage signals shown in the middle of the circuit each output a bias

signal to a pair of opposing mixers that are represented by switches.

Figure 12 is a picture of the physical circuit that I used for the 2 by 2 lattice

with α = 2. The inductors and blue capacitors in the four corners of the circuit

are the four sites of the lattice. The four metallic, rectangular devices are the
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mixers and the inductors on either side of each mixer are the coupling inductors.

To each mixer is attached a bias line, and each pair of opposing mixers shares

a bias line. The bias lines connect to function generators which provide the

square wave switching of the bonds. In the top right corner is the small yellow

capacitor that, in combination with the voltage pulse provided by the purple

and black wire, initializes voltage on the top right site. The voltage pulse is

created by a third function generator. Located on the outside of the circuit

are four scope probes that are connected to an oscilloscope which reads off the

voltage at each site.

Figure 12: This is a picture of the 2 by 2 version of circuit two that I assembled

on a prototyping board. The site capacitors are the small blue capacitors in each

quadrant of the board, and they are connected in parallel with tan inductors.

The sites are all connected to each other with two tan inductors in between

which are frequncy mixers (silver metal boxes). The circuit shown is for the

case α = 2 since every inductor shown has the same value and there are two

coupling inductors in series for each site inductor. In the top right corner is a

small yellow capacitor connected to a purple and black twisted pair that delivers

the initializing voltage pulse. The orange/yellow and black twisted pairs connect

to the frequency mixers and provide the two unique biasing signals. There

are also four scope probes situated at each site to measure the voltage on the

capacitors in time.

20



C Testing a 2 by 2 Version of Circuit Two for Non-Reciprocity

Using the circuit shown in Figure 12, I tested it to see if I could observe non-

reciprocity for both α = 2 and α = 2
3 . The capacitors in the circuit had

capacitances CA = CB ≈ 815 pF and Cs ≈ 80 pF. The site inductors in the

circuit had inductances LA = LB ≈ 10µH. The coupling inductors were either

about 10 µH or 3.33 µH depending on if α = 2 or α = 2
3 . The bias lines

were square waves with twice the period of the bond switching period, and the

delay time between the two bias lines is one bond switching period. Figures

13 and 14 show that non-reciprocity does arise from the lattice circuit under

these conditions. From those figures, though, we can see that the circulation

appears stronger when α = 2. Stronger circulation means that the voltage at

the site is very close to 0 unless it is transferring voltage, and it means that the

voltage pulse travels several times around the lattice before decaying to 0. The

circulation in Figure 13 is clearly stronger than the circulation in 14 using this

definition.

The voltages on each site of the lattice are plotted as a function of time and

are vertically offset so that the voltage pulses can be seen more clearly. The

dashed lines on the plots show every time either of the mixers switches on or off.

Focusing on Figure 13a, we can see that during the first switching period, the

voltage transfers from (1, 2) to (2, 2). In the proceeding switching periods, we

notice the same pattern in which the voltage from one site transfers to the site

adjacent in the clockwise direction. Notably, the voltage on the sites is 0 unless

it is connected with a site that has nonzero voltage or unless it is transferring

voltage to an adjacent site. Furthermore, the voltage pulse can travel around the

lattice in the exact opposite direction just by changing the delay time between

the two bias lines (Figure 13b).

An important aspect of both plots is the decay of the voltage pulse as it

travels around the circuit. The pulse only travels around the circuit one to

three times before its amplitude is too small to discern from the noise around

0 V. The decay likely originates from a combination of the equivalent series

resistance of the coupling inductors and from the loss in the mixers. More

precisely understanding the nature of the loss is crucial to testing non-reciprocity

in larger versions of circuit two in the future.
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(a)

(b)

Figure 13: Both of these graphs plot the measured voltage on the site capacitors

of the 2 by 2 version of circuit two. In these plots, α = 2. The dashed lines show

when either of the mixers switches a bond on or off. The voltages are vertically

offset so that the voltage pulses on each site can more clearly be distinguished.

In both cases there is a voltage pulse initialized at the site (1,2). (a) In this

plot, the voltage pulse travels around the circuit clockwise. (b) In this plot, the

voltage pulse travels around the circuit counterclockwise.
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(a)

(b)

Figure 14: Both of these graphs plot the measured voltage on the site capacitors

of the 2 by 2 version of circuit two. In these plots, α = 2
3 . The dashed lines show

when either of the mixers switches a bond on or off. The voltages are vertically

offset so that the voltage pulses on each site can more clearly be distinguished.

In both cases there is a voltage pulse initialized at the site (1,2). (a) In this

plot, the voltage pulse travels around the circuit clockwise. (b) In this plot, the

voltage pulse travels around the circuit counterclockwise.
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I also executed simulations of the two 2 by 2 versions of circuit two with

different values of α. Figures 15 and 16 show the simulated and measured

data on each site in the circuit. The simulated data have been modified by

simple decaying exponentials to model the measured decay. The simulations

and measurements agree well in the shapes of the voltage curves that they

produce; however, the simulations do not model the amplitude of the voltage

signal as well. This is likely the case because a simple exponential decay does

not accurately model dissipation in the circuit, but instead a more complicated

decay model is needed.

One last thing to note about the simulated and measured data shown in

Figures 15 and 16 is that the data for α = 2 produce better circulation than the

data for α = 2
3 . This is perhaps unexpected since we showed in the section on

solving the unit cell of circuit two that we obtain full energy transfer for α = 2
3

but not for α = 2. One possible resolution is that the full energy transfer at

α = 2
3 is unstable to small variations in the values of the circuit components. It

could be the case that small variations in capacitance and inductance (which are

impossible to fully eliminate) produce large variations in how voltage transfers

when α = 2
3 , but the α = 2 case is more resilient to variations in component

values. Even though α = 2
3 may theoretically be an optimal coupling strength,

in practice more stable circulation may be achieved using different values of α

that still have significant, if not full, energy transfer.
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Figure 15: The above four plots show the simulated and measured voltages on

each site in the 2 by 2 version of circuit two with α = 2.
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Figure 16: The above four plots show the simulated and measured voltages on

each site in the 2 by 2 version of circuit two with α = 2
3 .
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4 Conclusion

One of my main research goals was to design and perform tests on a circuit to

see if it could exhibit non-reciprocity like a chip-scale circulator should. Rud-

ner’s discussion of a time-dependent lattice circuit that exhibits non-reciprocity

inspired us to design a two-dimensional lattice circuit which produces circula-

tion. My experimental data shown in Figures 13 and 14 demonstrate that I

have successfully created a non-reciprocal circuit. My simulated data shown in

Figures 15 and 16 demonstrate that I have a successful model to describe how

a lattice circuit with bond switching evolves in time.

In my future work, I want to deeper analyze how the coupling parameter

α affects energy transfer and the stability of that energy transfer. The data

suggest that there may be stability issues in energy transfer between sites when

α has a value that produces optimal energy transfer. I also want to acquire

a better understanding of the voltage decay in the 2 by 2 version of circuit

two. Understanding what causes the rapid voltage decay is imperative before I

can proceed to test larger versions of circuit two because I need to be able to

detect signals after many bond switching periods. After addressing the decay

problem, I can proceed to test if larger versions of circuit two experience bulk

excitations during circulation. The results of this will be interesting to compare

to the claims made in Rudner’s paper about large lattices with defects on the

boundary. Finally, if further tests of circuit two confirm that it is a viable option

to use as a circulator, then I will work to create a superconducting version of

the circuit. There are many future directions I can go with this project now

that I have successfully produced non-reciprocity in a 2 by 2 lattice circuit.
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5 Appendix

A Circuit One: Solution to Unit Cell

This simple circuit shown in Figure 3 is the unit cell of the lattice circuit.

Given capacitors with capacitances C and an inductor with inductance L and

equivalent series resistance R, the corresponding equation of motion given by

Kirchoff’s voltage law is:

1

C
qA +R ˙qA + Lq̈A −

1

C
qB = 0

Now in the lattice circuit, the initial conditions are qA(0) = q0 and qB(0) = 0,

where q0 is some charge initialized on the capacitor. Implicit in the above

equation is the fact that ˙qA = − ˙qB , which must hold by conservation of charge.

Integrating both sides yields qA+ qB = c0, where c0 is a constant. This relation

holds for all time, and thus holds for t = 0, which implies that qA + qB = q0.

Now the differential equation can be written in terms of only one variable:

q̈A +
R

L
˙qA +

1

LC
qA =

q0
LC

(1)

The solutions to this differential equation are well understood. After making

the appropriate substitutions, the solutions for qA(t) and qB(t) are given by:

ω2
0 =

1

LC
γ =

R

L
ω2
1 = ω2

0 − 4γ2

qA(t) =
q0
2

(
1 + e−γt/2

(
cos(ω1t) +

γ

2ω1
sin(ω1t)

))
(2)

qB(t) =
q0
2

(
1− e−γt/2

(
cos(ω1t) +

γ

2ω1
sin(ω1t)

))
(3)

Using the approximations γ � ω0 and γt� 1, the solutions simplify to:

qA(t) =
q0
2

(1 + cos(ω0t)) (4)

qB(t) =
q0
2

(1− cos(ω0t)) (5)
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B Circuit One: Equations of Motion

Using the index notation shown in Figure 5, I first set up equations for Kir-

choff’s current and voltage laws that apply for a general site. The first two

equations ensure that Kirchoff’s current laws are satisfied, and the last four

equations ensure that Kirchoff’s voltage laws are satisfied. Importantly, I use

the convention where positive current flow is defined to be in the direction of

increasing m and n. In the equations below, v refers to the voltage on a site

with respect to ground and its subscript identifies the site as an A site or a

B site. Their superscripts denote the position of the site on the indexed grid

(Figure 5). The i refers to the current flowing in the coupling inductor between

two sites and its subscript identifies it as one of the four types of inductors in

the lattice. Their superscripts denote into which site the current is flowing. The

constants C and L are the capacitance and inductance of the circuit elements,

and their subscripts denote the site type (A, B) or inductor type (1, 2, 3, 4).

d

dt
vm,nA =

1

CA

(
im,n2 + im,n3 − im,n+1

1 − im+1,n
4

)
d

dt
vm,n+1
B =

1

CB

(
im,n+1
1 + im,n+1

4 − im+1,n+1
2 − im,n+2

3

)
d

dt
im,n+1
1 =

1

L1

(
vm,nA − vm,n+1

B

)
d

dt
im,n2 =

1

L2

(
vm−1,n
B − vm,nA

)
d

dt
im,n3 =

1

L3

(
vm,n−1
B − vm,nA

)
d

dt
im+1,n
4 =

1

L4

(
vm,nA − vm+1,n

B

)
Now this system of differential equations can be rewritten as a matrix equa-

tion. To write consolidate the system of equations into one matrix equation, I

utilized the following vectors: ~v, ~i, and ~ν.

~v =


v1

v2
...

vMN

 ~i =


iA

iB
...

i2MN−M−N

 ~ν =

(
~v

~i

)
~µ =

d

dt

(
~v

~i

)

At this point, it is important to note that I am defining the lattice size to

be M xN . Given a lattice of that size, there will be MN sites and there will
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be 2MN −M − N coupling inductors. Next, I need to define the dynamical

matrix which will control how the components of ~ν interact with each other. The

dynamical matrix D can be compartmentalized into four submatrices called D1,

D2, D3, and D4.

D =

(
D1 D2

D3 D4

)
It makes sense to consider these submatrices independently because each one

controls a different relationship between v, dv
dt , i, and di

dt . D1 controls how dv
dt

and v relate, and terms in this submatrix arise from time dependent capacitors

or resistors in parallel with the capacitors. D2 controls how dv
dt and i relate,

and terms in this submatrix arise from current flowing through the coupling

inductors. D3 controls how di
dt and v relate, and terms in this submatrix arise

from the presence of capacitors connecting to the coupling inductors. Finally,

D4 controls how di
dt and i relate, and terms in this submatrix arise from time

dependent inductors or resistors in series with the coupling inductors. Now we

can write down a first-order differential matrix equation that MATLAB can

more easily solve than systems of higher-order differential equations.

d

dt
~ν = D~ν

C Circuit Two: Solution to Unit Cell

The circuit is shown in Figure 8 and is the unit cell of the lattice circuit with

sites that are a capacitor and an inductor in parallel. The inductors on the

sites have inductance L, the capacitors on the sites have capacitance C, and

the coupling inductor has inductance Lc. Positive current flows through the

circuit clockwise, and the currents through the sites’ inductors and the coupling

inductor are iA, iB , and ic respectively. The solution to this circuit can be found

by constructing the appropriate Lagrangian:

L =
1

2
Li2A +

1

2
Li2B +

1

2
Lci

2
c −

1

2C
q2A −

1

2C
q2B

This Lagrangian can be written in terms of only three coordinates by using

the constraints that iA = ic − ˙qA and iB = ic + ˙qB . Now we have a final

Lagrangian and its three corresponding Euler-Lagrange equations.
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L =
1

2
l (ic − ˙qA)

2
+

1

2
l (ic + ˙qB)

2
+

1

2
Lci

2
c −

1

2C
q2A −

1

2C
q2B

d

dt

(
∂L
∂i̇c

)
=
∂L
∂ic

d

dt

(
∂L
∂ ˙qA

)
=

∂L
∂qA

d

dt

(
∂L
∂ ˙qB

)
=

∂L
∂qB

(
2 +

Lc
L

)
ic = ˙qA − ˙qB L

(
i̇c − q̈A

)
=

1

C
qA L

(
i̇c + q̈B

)
= − 1

C
qB

Defining α = Lc

L , and eliminating ic, we obtain a system of equations for qA

and qB .

(
1− 1

α+ 2

)
q̈A +

1

α+ 2
q̈B = − 1

LC
qA(

1− 1

α+ 2

)
q̈B +

1

α+ 2
q̈A = − 1

LC
qB

Rewriting this equation as a matrix equation, we obtain:(
1− 1

α+2
1

α+2
1

α+2 1− 1
α+2

)(
q̈A

q̈B

)
= −

(
1
LC 0

0 1
LC

)(
qA

qB

)
Solving this as a normal modes problem, the resulting normal frequencies

are:

ω1 =

√
1

LC
ω2 =

√
1 +

2

α

√
1

LC
(6)

Finally, we need to apply the initial conditions: qA(0) = q0, qB(0) = 0,

˙qA(0) = 0, and ˙qB(0) = 0. This results in the solution for the charges and

currents in the circuit:
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qA(t) =
q0
2

(
cos(ω1t) + cos

(√
1 +

2

α
ω1t

))
(7)

qB(t) =
q0
2

(
cos(ω1t)− cos

(√
1 +

2

α
ω1t

))
(8)

ic(t) = − ω1q0√
α(α+ 2)

sin

(√
1 +

2

α
ω1t

)
(9)

iA(t) =
ω1q0

2

(
sin(ω1t) +

√
α

α+ 2
sin

(√
1 +

2

α
ω1t

))
(10)

iB(t) =
ω1q0

2

(
− sin(ω1t) +

√
α

α+ 2
sin

(√
1 +

2

α
ω1t

))
(11)

D Optimization of Coupling Parameter

In Appendix C, equations 7 - 11 demonstrate the solution to the unit cell of

circuit two. However, it is important for us to know if there exist times when

all of the energy from one site has transferred to the other site. Specifically, we

want to know the time when all of the energy from the first site is solely in the

capacitor of the next site. This ensures that the initial conditions are exactly

reproduced, but the initial charge is on the opposite site. So, we require that

qA = ic = iA = iB = 0 and |qB | = q0 at some time. Using the substitution

θ = ω1t, the following four equations are what need to be solved to determine

what α and θ can be:

cos θ + cos

(√
α+ 2

α
θ

)
= 0

sin

(√
α+ 2

α
θ

)
= 0

sin θ +

√
α

α+ 2
sin

(√
α+ 2

α
θ

)
= 0

− sin θ +

√
α

α+ 2
sin

(√
α+ 2

α
θ

)
= 0

From these equations, we can derive two equations that constrain α and θ.
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(
1−

√
α+ 2

α

)
θ = (2m+ 1)π

√
α+ 2

α
θ = nπ

In these equations, m,n ∈ Z. After solving these equations for α and θ, we

get the following results:

α =
−2(2m+ n+ 1)2

(1 + 2m)(2m+ 2n+ 1)
(12)

θ = (2m+ n+ 1)π + 2πk (13)

To ensure that α ≥ 0, we require two conditions on m and n. If m ≤ −1, then

n > −m; if m ≥ 0, then n < −m. Since θ is only determined up to 2π, there is

a 2πk term (k ∈ Z) to account for this ambiguity. Something very important to

note is that there are strict conditions on what α and its corresponding θ can

be. We have shown that for this system the coupling parameter must be written

in the form given by equation 12. This means that for an arbitrary value of α

there will not be a moment in time when all of the energy has transferred from

one site to the next site.

E Datasheet for SRA-6+ Frequency Mixer
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Level 7  (LO Power +7 dBm)    0.003 to 100 MHz

Frequency Mixer
Plug-In

Outline Dimensions  (      )inch
mm

Maximum Ratings

Pin Connections
LO	 8

RF	 1

IF	 3,4^

GROUND	 2,5,6,7

Outline Drawing

Electrical Specifications

REV. B
M151107
SRA-6+
DJ/TD/CP/AM
151005

1 dB COMP.:  +1 dBm typ.

FREQUENCY 
(MHz)

CONVERSION LOSS
(dB)

LO-RF ISOLATION
(dB)

LO-IF ISOLATION
(dB)

LO/RF IF
Mid-Band

m Total 
Range
Max.

L M U L M U

fL-fU
—
X σ Max. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min.

.003-100 DC-100 4.58 .05 7.5 8.5 60 50 45 30 35 25 60 45 40 25 30 20

Frequency
(MHz)

Conversion 
Loss 
(dB)

VSWR 
RF Port

(:1)

Frequency
(MHz)

Isolation
L-R
(dB)

Isolation
L-I

(dB)

VSWR 
LO Port

(:1)

RF LO
LO

+7dBm
LO

+7dBm LO
LO

+7dBm
LO

+7dBm
LO

+7dBm

Typical Performance Data

Electrical Schematic

SRA-6+

L = low range [fL to 10 fL]      	     M = mid range [10 fL to fU/2]      U = upper range [fU/2 to fU]
m= mid band [2fL to fU/2]

Features
• excellent conversion loss, 4.58 dB typ.
• high L-R isolation, 45 dB typ. L-I isolation, 40 dB typ.
• rugged welded construction
• hermetic

Applications
• VHF TV
• defense & federal communications
• radio astronomy

Operating Temperature 	 -55°C to 100°C

Storage Temperature 	 -55°C to 100°C

RF Power 	 50mW

IF Current	 40mA

^ pins must be connected together externally

A B C D E F
.770 .800 .385 .400 .370 .400

19.56 20.32 9.78 10.16 9.40 10.16
G H J K wt

.200 .20 .14 .031 grams
5.08 5.08 3.56 0.79 5.2

	
	 0.25	 30.25	 4.69	 1.18	 0.25	 87.94	 69.25	 2.72
	 0.50	 30.50	 4.70	 1.21	 2.20	 88.51	 67.15	 2.60
	 1.00	 31.00	 4.72	 1.23	 5.13	 80.05	 62.74	 2.56
	 2.00	 32.00	 4.71	 1.23	 10.00	 74.49	 58.28	 2.48
	 4.00	 34.00	 4.72	 1.25	 30.00	 65.04	 46.76	 2.43	
	 6.00	 36.00	 4.75	 1.26	 35.00	 61.86	 45.54	 2.42
	 8.00	 38.00	 4.77	 1.25	 40.00	 58.66	 43.62	 2.43
	 10.00	 40.00	 4.77	 1.24	 45.00	 62.82	 41.15	 2.44
	 15.00	 45.00	 4.75	 1.24	 49.00	 62.74	 40.69	 2.45
	 19.00	 49.00	 4.72	 1.23	 53.00	 59.34	 40.12	 2.47	
	 23.00	 53.00	 4.69	 1.20	 57.00	 55.11	 40.91	 2.50
	 31.00	 61.00	 5.04	 1.19	 61.00	 51.93	 41.11	 2.55
	 39.00	 69.00	 5.21	 1.17	 65.00	 50.11	 39.64	 2.58
	 51.00	 81.00	 5.29	 1.22	 69.00	 48.56	 38.35	 2.62
	 61.00	 91.00	 5.51	 1.37	 73.00	 47.39	 36.57	 2.65	
	 67.00	 97.00	 5.71	 1.44	 81.00	 45.06	 33.06	 2.70
	 70.00	 100.00	 5.80	 1.46	 85.00	 44.27	 31.87	 2.74
	 85.00	 115.00	 5.84	 1.41	 92.50	 43.42	 30.32	 2.89
	 92.50	 122.50	 5.90	 1.24	 96.25	 43.22	 30.02	 2.98
	 100.00	 130.00	 5.93	 1.12	 100.00	 42.87	 30.05	 3.06

Permanent damage may occur if any of these limits are exceeded. 

CASE STYLE: A01

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site 
for RoHS Compliance methodologies and qualifications

34



References

[1] Benjamin J. Chapman, Eric I. Rosenthal, Joseph Kerckhoff, Bradley A.

Moores, Leila R. Vale, J.A.B. Mates, Gene C. Hilton, Kevin Lalumière,

Alexandre Blais, and K.W. Lehnert Phys. Rev. X 7, 041043 (2017)

[2] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and Michael Levin Phys.

Rev. X 3, 031005 (2013)

35


