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Assembly robots have been in operation in industry for decades, predictably repeating the

same precise motions in closed workspaces to assemble products cheaply and in mass quantities.

However, in the field, robotic assembly has seen only spurts of progress, and no short-term feasible

applications. NASA and the space industry desire robotic construction methods to remove the

upper limit on size. Space telescopes are highly desired, but require structural precision on the

order of microns. Previous approaches were ruled out because the precisely machined components

were expensive, heavy, and prone to failure. The recent advent of cheap robotic swarms has revived

interest in academia, but most research requires self-correcting, interlocking components, instead

of commodity materials.

In this thesis, I describe the Intelligent Precision Jigging paradigm, a solution to the problem

of practical robotic assembly, with application to precision truss assembly. Intelligent Precision

Jigging Robots (IPJRs) are robots that work in groups of three to incrementally assemble a struc-

ture. They set and hold distances with high precision, enabling coarse external manipulators to

weld the commodity parts together and perform other tasks.

To maximize the utility of the IPJR paradigm to the fullest extent, I present algorithms

for finding near-optimal assembly sequences and for implementing Simultaneous Localization and

Mapping (SLAM) to maintain an estimate of the assembly process through the accumulation of

local strut length measurements. I define a model of truss assembly probability and a minimizing

metric based on the covariance trace. I show that structure error grows cubically with node count.

I present a three-step approach for generating near-optimal assembly sequences; commencing as-

sembly on a central location of the structure, greedily assembling to minimize the covariance trace,

and performing a local search on the space of sequences to swap steps until a local minimum is
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found. I show that this method consistently generates more precise sequences than any process

alone.

I then simulate the SLAM method with four different estimators commonly used in for SLAM;

a least linear squares approach, the Extended Kalman Filter, the Unscented Kalman Filter, and

the Maximum Likelihood Estimator. I show that when nonlinearity in the assembly process is

dominant, the Maximum Likelihood Estimator is better than the other estimators, but for space

telescopes with precision requirements, all four are functionally equivalent. I also show that when

SLAM is used, the difference in covariance trace between sequences is reduced, reducing the need

for finding globally optimal sequences. SLAM also mitigates the growth of structure error.

Finally, I present the results of physical assembly trials on a telescope truss made of aluminum

tubes, assembled by three IPJRs using two methods: an open loop approach, and an MLE-SLAM

approach. I show that the MLE-SLAM assembly algorithm works even when the physical trials

included unmodeled processes such as deformation under gravity, outperforming the open loop

algorithm.
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Chapter 1

Introduction

Assembly robots have found practical use on assembly lines for decades, predictably perform-

ing the same routine motions in a streamlined process that has made advanced technology cheap

and widely available. However, in situations deviating from the predictable and routine, outside of

the assembly line, robotic assembly has never advanced past the prototype and toy problem phase.

In academia and industry, nearly all of the research focus has been on using mobile robots to

connect interlocking (often homogeneous) parts. These efforts have produced impressive technical

demonstrations but nothing else.

Robots that can replace humans on construction projects have long been desired, but progress

toward that goal has been limited. One notable application is construction in hazardous environ-

ments that humans cannot easily access. Making this practical requires the intersection of numerous

subfields, including sensor fusion, distributed algorithms, motion planning, error detection and cor-

rection, and sequence planning. Construction calls for the ability to handle a wide range of issues,

including cutting and shaping parts as needed, addressing assembly mistakes, distributing tasks to

specialized agents, and handling unexpected events. Accuracy requirements call for sensors and

optimal estimation algorithms, especially when an assembly does not consist of interlocking, self-

correcting linkages. Complex and expensive robots that can handle all tasks are particularly risky,

as the loss of one can be devastating. Reliance on pre-made, precisely machined parts can also lead

to failure if just one unique part breaks. Often, the attachment of a subassembly requires several

agents coordinating, for example, to hold up and maneuver large parts.
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The aim of my research is to show that space telescope optical bench trusses, with precision

requirements on the order of 10µm, can be built by teams of Intelligent Precision Jigging Robots

(IPJRs). Most structures do not require this level of precision, so I consider the problems involved

in space telescope assembly to be a superset of the problems in the assembly of other kinds of

structures. Intelligent Precision Jigging Robots are robots that can precisely hold a pose between

disconnected parts (in welding, this is known as jigging), enabling an external agent (such as a

robotic arm) to permanently bond the parts. IPJRs adjust the distances between the parts using

highly precise actuators and precise sensors for distance measurement. IPJRs free the external

agents from having a high precision requirement, reducing the complexity of the external agent. A

set of IPJRs and external agents performing assembly are individually simpler than an all-purpose

assembly robot, thus they can be made more inexpensively, enabling robustness.

IPJRs require both precise hardware and smart assembly algorithms to reach the extreme

level of precision needed for space telescope trusses. The “smart assembly algorithms” are the focus

of this thesis; both algorithms for identifying suitable assembly sequences, and formulation of the

assembly problem as a Simultaneous Localization and Mapping (SLAM) problem. This is the first

time anyone has applied SLAM concepts to the problem of assembly, in which the process and

manufacturing error on the parts needs to be considered. As such, my work is not an incremental

improvement in a saturated field, but a new branch that attempts to solve field assembly in a new

way.

1.1 The State of On-Orbit Construction

Assembling structures in space [75] has the potential to overcome payload limitations of

earth-based missions, thereby enabling the manufacturing of scalable structures. Space telescopes

that could be assembled on orbit are a high priority for NASA [66] and the space industry [26],

with proposed diameters of tens of meters up to hundreds of meters. Except for the International

Space Station (ISS), all current spacecraft are transported to orbit as an integrated unit using

a single launch. This severely constrains the mass and size of the spacecraft system because it
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Figure 1.1: Left: the James Webb Space Telescope, a 6.5m telescope that will be launched assem-
bled. Right: 20m far-infrared telescope concept [38, 44] that requires on-orbit assembly.

must be designed to the mass and volume constraints of the chosen launch vehicle and its payload

shroud, as well as the loads imposed by the launch environment. Once on orbit, various systems,

such as solar arrays, radiators and antennas are deployed to achieve an operational configuration.

The James Webb Space Telescope (JWST), shown in Figure 1.1, with a primary mirror diameter

of 6.5 meters, likely represents an upper limit to the size of aperture that can be achieved for a

single-launch telescope using deployable structures and mechanisms. This is because the spacecraft

complexity rapidly increases with increasing number of deployable mechanisms and systems, as does

the potential for deployment failure, resulting in a decrease in spacecraft and mission reliability.

Although an on-orbit servicing and repair capability would help to mitigate spacecraft mission risk

resulting from deployment and other early system failures, this capability does not currently exist.

Furthermore, current spacecraft, including the JWST, are not designed to take advantage of such

services (even if they did exist). An alternative, espoused by some, is to build a Heavy Lift Launch
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Vehicle (HLLV) that includes a larger payload shroud. The cost of designing and manufacturing

such a special-purpose launch system would be very expensive, as would the cost for each launch

(because of launch infrequency). Spacecraft designed to launch on a HLLV might be somewhat

larger but there would still be a limit on the maximum size of spacecraft that could be launched.

Also, lack of servicing and repair capability would still be inherent in the traditional design and

operation approach.

One approach that can result in larger space systems and takes advantage of multiple

launches, is to incorporate on-orbit assembly, as was used for the ISS. The ISS was assembled

from a relatively small number of very large and massive modules or components, with each com-

ponent requiring its own launch. The components were positioned and berthed robotically on

orbit, and then permanent mechanical and utility line connections completed. However, many of

the large telescope and exploration vehicle applications include large area or span trusses to pro-

vide lightweight, high stiffness and precise support and backbone structures, all of which require

assembling a much larger number of small and lightweight truss elements. Previous approaches

proposed for assembling truss and telescope structures and systems in space have been perceived

as very costly because they require high precision and custom components that rely on mechanical

connections, supporting infrastructure that is unique to each application and robust processes for

other operations such as mirror-to-truss assembly.

The desire to field large (i.e. greater than 10-meter diameter primary mirror) optical systems

in space has been a dream of space scientists for many decades. Many concepts for such telescopes

have been developed over the years, with one of the more recent examples being a 30-meter space

observatory operating at the ultra violet-optical-near infrared (Hubble-like) wavelengths [52]. This

concept is scalable (the primary aperture diameter can be varied) and relies on multiple launches to

place the telescope elements in space and in-space robotics to assemble the elements and complete

the telescope. Another recent concept for a large space telescope, with a 10-meter diameter pri-

mary mirror and operating in the ultraviolet-optical wavelengths, is also conceived to be assembled

robotically in space [18]. In the early 1990s NASA completed extensive technology development for
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Figure 1.2: Left: the 84-node 14m-diameter telescope truss, which is the motivating example in this
dissertation, was assembled by simulated EVA [66]. Right: an autonomous assembly experiment
of a 102-strut truss at Langley Research Center [15].

a 20-meter diameter far-infrared space telescope that evolved into the precision segmented reflector

[38, 44] as depicted in Figure 1.1.

The structural architectures for the large space telescopes discussed previously have many

similar features, such as: segmented primary mirrors, where the mirror size is determined by either

manufacturing or launch-vehicle shroud size constraints; large-area stiff and lightweight trusses

which support the primary mirror segments; truss beams/towers/masts to support secondary mir-

rors and/or instrument packages; and large lightweight sun shields. The rationale and benefits

for using trusses as the primary structure for many space applications (including telescopes) has

been documented [49] and their high degree of structural performance has been treated comprehen-

sively [47]. Based on this rationale, a large amount of design and technology development efforts

have focused on lightweight space trusses. Preliminary design approaches for large high precision

segmented reflectors are well established [48], forming the foundation for even more refined and de-

tailed treatment of structural concepts and mechanics issues [39]. In what might be considered the

culmination of the telescope mirror support truss development efforts, a precision truss structure

was designed, fabricated, assembled and tested, ultimately validating the high surface precision,

stiffness and strength that had been predicted [8].

As mentioned previously, one of the key impediments to achieving large space telescopes is



6

the assumption that the telescope must be launched as a complete system, subject to the inherent

payload mass and volume limitations imposed by a single launch vehicle. Launch vehicle limi-

tations and practical constraints that limit the likely size of a deployable telescope system (the

JWST configuration for example) have been reported [38]. This reference also summarizes the

rationale and benefits that accrue when a large space telescope is designed to be assembled on

orbit, outlines a concept, estimates the performance and discusses assembling a 25-meter diame-

ter space telescope. In addition to advances in telescope mirror support truss design, fabrication

and structural performance, a great deal of progress has been made in assembling these structures

both manually, by astronauts in Extra-Vehicular Activity (EVA), and robotically. EVA structural

assembly development culminated in an experiment where a 14-meter diameter, doubly curved

telescope truss, consisting of 315 individual struts, along with 7 (of the 37 total needed) mockup

reflector panels was assembled in neutral buoyancy [66] as shown in Figure 1.2. In parallel research,

methods were also developed to enable robotic telescope assembly. The robotic work culminated in

the repeated autonomous assembly (and disassembly) of an 8m diameter truss structure, composed

of 102 individual truss members along with 12 hexagonal panels [15], as shown in Figure 1.2.

1.2 Related Robotic Assembly Research

Robotic field assembly research can be categorized in two ways: research into identifying

sequences that are geometrically possible for industrial applications, and research into assembly of

structures made mostly of interlocking parts (with a few exceptions for amorphous construction).

I did not find any experiments in the literature that used modifiable, stock components, nor did I

find any that modeled assembly as a SLAM problem; instead, part errors and noises are abstracted

away by self-correcting linkages and by simply ignoring error propagation.

1.2.1 Assembly Algorithms

Algorithms for mechanical assembly planning (via disassembly sequences) for problems in

well-known environments such as assembly lines, and with few assembly robots, were explored in
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the 80s and 90s, resulting in algorithms for finding fully-ordered sequences [23, 12, 53, 69, 41, 70],

or using opportunistic assembly planning [19] when necessary. An overview of the challenges in

mechanical assembly planning can be found in [20]. All of these approaches attempted to find a

suitable order for assembly that avoids construction deadlock and assumed rigid bodies. In reality,

structural forces and minor assembly errors often lead to situations where parts of a structure must

be forced open to jam a new component in. Such algorithms do not consider these situations.

Algorithms for distributed assembly are often simple and are only applicable to the specific class

of structures under consideration, and include modeling the assembly process as a differential

equation [3], using raster scanning techniques [42], or distributing the assembly of structures layer-

by-layer through Voronoi diagrams [72]. Finding assembly sequences by reversing the disassembly

sequences is used in many approaches, since disassembly sequencing with only geometric constraints

does not require backtracking [23]. AND/OR graphs [23] assume that subassemblies can be

made independently. Complete and correct algorithms cannot escape the worst case O(n!) for

enumerating all build sequences [24], rendering these algorithms useful only for structures with

tens of parts, and making this problem NP-Hard. Partial ordering [12] may be used reduce the

search space for assemblies, but is still exponential in the worst case. A* search with pruning [70]

is shown to find optimal paths subject to identifying good heuristics. Non-directional blocking

graphs [69] can find assemblies in polynomial time where assembly steps are valid if they can be

moved into place without violating constraints. The difficulty of solving this problem made it fall

out of fashion, but interest was renewed with the popularity of distributed robotics and stochastic

methods, including genetic algorithms [40], and probabilistic roadmaps [60]. A robust distributed

algorithm based on opportunistic disassembly sequencing is described in [22], which uses teams of

robots to assemble structures while handling exceptions due to a wide range of failures, and relying

only on a human operator when failures are beyond the scope of the assembly robots. Taking into

account physical constraints such as structural stability and material properties into the build order

has been shown in [46].
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1.2.2 Robotic Assembly Experiments

More recently, collective robot assembly has seen a revival [67]. Quadrotor assembly is a

recent and popular development; cubic truss structures are assembled in [42], a quadrotor as-

sembly agent uses reinforcement learning to learn to handle unmodeled situations in [2], and [27]

demonstrates control with a manipulator arm attached. Other approaches include truss climbing

and assembling robots [13], termite-inspired swarm assembly robots [68], and a robot team that can

build IKEA furniture in cluttered environments [30]. Mobile assemblers [71] used visual feedback

to estimate and correct errors in assembly. The equal distribution and parallelization of the truss

assembly task is shown and demonstrated in [5, 74]. With some exceptions such as amorphous as-

sembly in [51], most of these methods rely on self-correcting, interlocking mechanisms, which would

add extra mass and expense due to machining requirements, and we know of no such experiment

that considers welding or cutting. Some recent, distributed large-scale assembly tasks have used

common construction materials. Three different robots are shown to successfully dock a part to an

assembly [54]. An experiment performed at NASA’s Jet Propulsion Laboratory demonstrated the

precision assembly of beams by a pair of cooperative robots using highly rigid motions to ensure

precision [59, 58]. A major hurdle to overcome is precise assembly by mobile manipulators; peg-

in-hole tasks are explored in [21, 14], but do not match a level of precision seen on the assembly

line.

Large scale assembly experiments will require robots that can climb and traverse the struc-

ture. I envision that IPJRs, welding robots and materials could be transported by climbing robots,

which has been extensively studied on trusses [64, 73, 10, 6] and unstructured terrain [7].

Many of these methods focus on the idea of swarm assembly, where practical concerns are

mostly ignored in favor of demonstrating large scale swarming behavior and the equal distribution

of tasks. The IPJR paradigm implicitly permits large scale swarms through the parallelization

approach I describe in this thesis, but this is not the principal contribution of the paradigm. I

believe that robotic construction in the field will be better served by attempting to build with typical
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construction materials, followed by implementing the high level concepts proposed elsewhere.

1.2.3 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping [61], in which a robot is both mapping the envi-

ronment and its own location within it, has been extensively researched and improved in recent

years. Extended Kalman Filter-SLAM was an early [56], and still often used, variant; its major

problems are the inaccuracy of the Extended Kalman Filter’s Gaussian assumption and the com-

putational cost of updating the estimates. Research has been motivated by reliably identifying and

swiftly estimating the poses of a large number of features which often must first be recognized in

images (especially if they were previously seen) and fed into the estimator [62, 50]. Range-only

SLAM [29, 4] is very similar to the assembly SLAM methods in this thesis; it uses only range

measurements, often between beacons in addition to range to the robot itself, but a problem is that

multiple possible localizations are possible with only distance measurements, which is also true for

truss structures.

The IPJR SLAM formulation is not a difficult problem requiring an improvement on the

state of the art. The combined state space is O(N), the landmarks have known correspondences,

and there are not thousands of measurements coming in per second. My implementation of linear

least squares and MLE-SLAM are offline SLAM problems in which all poses and measurements are

considered, like with GraphSLAM [62], whereas my EKF-SLAM and UKF-SLAM implementations

are online planners and maintain and update a covariance. Particle filters are very popular and

used in algorithms like FastSLAM and FastSLAM 2.0 [50], but the good performance and time

requirements of my other SLAM implementations did not necessitate trying the particle filter, nor

did they require tactics to reduce the state dimensionality.

1.3 Intelligent Precision Jigging

In the Intelligent Precision Jigging paradigm, first introduced in [16], the allocation of re-

sponsibility for structural precision is transferred from the structural elements to the IPJRs. This is
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achieved by allowing a group of IPJRs to precisely form individual cells within a truss, and thereby

guide the placement and welding of the permanent struts. The IPJRs must be able to:

• Connect to a node at a location known precisely relative to the node center.

• Set and hold a precise distance between two nodes.

• Set and hold a strut that is provided by an external manipulator.

• Communicate with the other IPJRs in its group to coordinate cell formation.

• Communicate with the auxiliary manipulator in order to commence welding, and to request

reconfiguration.

• Measure the distance between nodes with high precision before and after a weld.

I constructed three prototype IPJRs that each embodied the requirements for the paradigm.

The results of experiments using the first two prototypes are summarized in Chapter 2, while the

third prototype is the primary focus of this dissertation.

• Prototype 1 [36, 37], shown in the upper left of Figure 1.3, was a prebuilt triangle for

constructing 2D trusses. The lengths of the edges were changed by Firgelli L-16 actuators,

accurate to 0.5mm. Trusses were constructed of wooden dowels that were cut by the

external manipulator (for this experiment, a human) and glued to the wooden nodes.

• Prototype 2 [35], shown in the upper right of Figure 1.3, was another prebuilt triangle

for constructing 2D trusses, but this time with a focus on autonomy and high precision

materials. The edge lengths were controlled by Ultra-Motion actuators accurate to 8µm,

while the length measurements were performed by a Keyence IL-030 laser sensor, precise to

1µm. The external manipulation was performed by the Lightweight Surface Manipulation

System (LSMS) [17], which also welded the titanium struts to the titanium nodes.
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Figure 1.3: The three IPJR prototypes: (top left) assembled 2D wooden trusses, (top right) assem-
bled 2D welded titanium trusses, and (bottom) assembled 3D aluminum trusses.

• Prototype 3 [33, 34], shown in the bottom of Figure 1.3, consists of several one-edge IPJR

units, of which three are needed to construct 3D trusses. I used the same Firgelli actuators

that were on prototype 1. Trusses were made of telescoping aluminum struts. The exter-

nal manipulator (a human) attached and detached the IPJRs, and provided measurement

feedback by a ruler.

Each prototype demonstrated the complete assembly of a number of truss structures. Proto-

type 2 came the closest to the vision of space telescope truss assembly; no direct human involvement

was used in the experiment (a human did tele-operate the LSMS), the truss was made of stock ti-

tanium struts, which were welded to titanium node balls, and high precision actuation and sensing

were included.
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Neither prototype 1 nor prototype 2 used an error detection and correction loop. Prototype

2 had unmeasured and unmodeled biases which defeated the high precision actuation and sensing.

The error of the assembly experiment using prototype 2 was three orders of magnitude greater than

that of the actuators themselves. A fundamental problem was bias due to thermal expansion or

structural deformation.

Prototype 3 was designed to include a method for detecting and correcting assembly errors.

Welding, deformation under forces, and other unmodeled processes all contribute to assembly errors.

One approach is to model forces induced by gravity, thermal expansion, and vibrations by using

Finite Element Method software. However, I chose a different approach. Since assembly errors

are irreversible, the strategy I chose was detect and correct. To do so, I grouped all of these

physical processes together as a single process noise, and modeled this problem as a Simultaneous

Localization and Mapping (SLAM) problem [61]. Assembly by IPJR is a SLAM problem for a few

reasons:

• IPJRs build up a map of their environment using only local measurements (length mea-

surements) of the landmarks (the nodes).

• Additional measurements between a given node and other nodes both early and late in the

assembly process are loop closures and therefore reduce uncertainty.

• Each IPJR’s position is also unknown, and is modeled as the mean of the two nodes it is

attached to.

• The measurement update loop incorporates well known estimation functions such as the

suite of Kalman Filters and the Maximum Likelihood Estimator.

Using SLAM, error propagation can be mitigated to such an extent that the error of each

node is on the order of the process noise for a single strut, and does not grow as the assembly

grows. This leads to the thesis statement.
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1.4 Thesis Statement

A group of IPJR robots and external manipulators, using local measurements and a SLAM

estimator, can collaborate to assemble truss structures made of simple, modifiable, commodity

parts to an accuracy and precision necessary for the construction of large space telescopes.

1.5 Thesis Summary

This dissertation describes the theory and algorithms necessary for IPJRs to achieve high

levels of precision in a closed loop assembly process, and documents the results of both simulated

and physical experiments to validate the theory and algorithms.

Chapter 2 provides a full summary of the IPJR research up to, but not including, the work

presented in this dissertation. This includes all of prototypes 1 and 2, and the early research on

prototype 3.

Chapter 3 introduces the notation used in the rest of the dissertation, and defines the frame-

work on which the theory is founded.

1.5.1 Assembly Sequences

Chapter 4 covers all of the topological assembly sequence algorithms (i.e. the ones that do not

depend on the truss’s Euclidean embedding). First, I derive expressions for counting the number of

assembly sequences for a truss structure, establish upper bounds, and show that it is exponential.

Then I describe an algorithm for finding the possible seed configurations for a structure (known

as starting triangles), followed by an algorithm for identifying the nodes and struts that can be

added to a given substructure. I then describe how to parallelize an assembly sequence, allowing

multiple IPJR groups to build a structure in parallel. I then follow this up with an algorithm that

describes how to find a random sequence, either any random sequence or a sequence that runs in

parallel with the fastest time. Using all of the above, I describe an algorithm that can find central

starting triangles. Then, I introduce the concept of an adjacent sequence, a necessary component
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of local search algorithms that operate on the graph of complete sequences.

Finally, I discuss and simulate methods for estimating the number of assembly sequences for

a given topology. First, I describe how to enumerate every sequence, which only terminates in

reasonable time for the smallest structures. Then I describe a method that estimates the sequence

count based on branching factor product. Then, for several classes of trusses made of cubic and

tetrahedral-octahedral cells, I run the sequence count estimator and show that the algorithm is

asymptotically correct for structures with known numbers of assembly sequences, the sequence

counts are within the derived bounds, and the counts are exponential in node count.

1.5.2 Probability Model

Chapter 5 introduces the model of probability for truss structures. First, I define a full

structure function with only strut lengths as parameters. I derive a model of the probability of a

truss structure given that each of its struts has a Gaussian process noise, and no error correction

is used. I then linearize the model around the mean. I derive the covariance matrix of the linear

model as a function of the Jacobian matrix of the full structure function, and show how the

covariance matrix trace is a proper choice for the minimizing metric. I show that the trace has

useful properties, including node error additivity, permitting incremental algorithms. I argue that

traces are minimized when struts are orthogonal to one another.

I then analyze a simple structure made of regular tetrahedra, which I call the “triple helix”,

and show that the total trace of each node increases cubically as the node count increases, and

show that the mean derivative of a node with respect to a single strut increases quadratically as

the node count increases. I follow this with an analysis of the accuracy of the linear covariance

matrix model, and show that for precisions that may be used in on-orbit experiments, the error of

the linear model is negligible.

Finally, I discuss measurements. Using the canonical form of multivariate Gaussian distri-

butions, I derive a general measurement function and describe how the structure assembly can be

estimated near-optimally given any kind of measurement, enabling the future use of global posi-
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tioning systems such as the Vicon [1]. Then I discuss strut length measurements in more detail,

showing how the covariance trace is reduced as a function of which strut is measured.

1.5.3 Optimization of Sequences

Chapter 6 describes a joint method to find a low-trace, locally minimal assembly sequence

using a three-step approach; start from a centrally-located triangle, greedily assemble the structure

to minimize the trace, then perform a local search on the space of assembly sequences adjacent to

the greedy sequence, taking steps to the neighbor with the lowest trace repeatedly until the sequence

is minimized. I test the algorithm and its subcomponents on a 45-node subset of the underwater

telescope in Figure 1.1, and show that starting centrally is better than starting from any random

triangle, greedy assembly far outperforms random assembly, and local search can reduce the greedy

assembly further by taking several hops.

1.5.4 Assembly as SLAM with Estimation

Chapter 7 describes a general algorithm for incorporating SLAM and measurements in an

assembly process, whether by simulation or by physical trials. I describe four estimators; the

linear least squares algorithm based the canonical Gaussian form, the Extended Kalman Filter,

the Unscented Kalman Filter, and the Maximum Likelihood Estimator. I simulate each of these

on a 45-node subset of the underwater truss, an 18-node subset of the same truss, and a 20-node

triple helix. I show that every one of these filters exceptionally outperforms the open loop process,

and for small variances and small structures, they are essentially equivalent. With the triple helix

simulations, I show that the Maximum Likelihood Estimator is the best estimator. I also show that,

when SLAM is used, the covariance trace difference between two sequences is reduced substantially,

eliminating the need for a globally optimal sequence.
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1.5.5 Physical Experiments

Chapter 8 presents the results of implementing the MLE-SLAM assembly algorithm on pro-

totype 3, the 3D IPJRs. I first simulate the assembly of a 10-node subset of the underwater truss,

comparing the global optimal sequence with the median optimal sequence. I then describe the re-

sults of 3 physical trials with open loop assembly, and 3 physical trials with MLE-SLAM assembly,

showing that the physical trials match the expected results, and that MLE-SLAM can successfully

overcome unmodeled physical biases.

1.5.6 Discussion and Conclusion

Chapters 9 and 10 wraps up the key results from the previous chapters chapters. I also

present a case study, returning to the initial problem: can a space telescope truss be made of stock

components to 10µm precision using off-the-shelf hardware, and conclude that the hardware I used

in prototype 2 was nearly sufficient if SLAM had been used. I then discuss the future of the IPJR

paradigm.



Chapter 2

Early IPJR Experiments

This chapter describes my previous work with the first two prototypes, and discusses the

lessons I applied to the research presented in this dissertation.

2.1 Prototype 1

Prototype 1 consisted of a triangle of three actuators and was designed for precise assembly of

wooden trusses. Figure 8.1 shows the IPJR prototype, assembly tools, struts, and nodes. Wooden

dowels, acting as struts, were roughly cut and bound with glue by a human user. This system

permitted the construction of triangles with varying dimensions, and relied on an external agent

to handle the struts and provide mobility to the jig.

The IPJR triangle’s actuation consisted of three Firgelli L16-140 150:1 -P actuators with

built-in distance sensors in the form of potentiometers. This allowed each jig to change its length

from roughly 287mm to 428mm. The control hardware was an Arduino Mega 2560 with an Adafruit

motor shield, a 2× 16 character LCD, and five buttons. Each actuator potentiometer had a stated

accuracy of 0.5 mm. Potentiometer readings were converted to a 10 bit signal (1024 discrete values)

using the Arduino’s analog-digital converter. Both actuator and joints had free play of about 1

mm, which were improved by attaching compressive springs to each edge and across the triangle

span. Each joint had a 25.4 mm diameter cylindrical hole to align with a node on the structure. A

Keyence IL-030 analog laser sensor and a Keyence IL-1000 amplifier unit were used to characterize

the accuracy and repeatability of the actuators. The IL-030 has an accuracy of 1 µm. The actuators
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Figure 2.1: Prototype 1 in right triangle configuration. The controller is attached to the top-left
edge, the button interface and LCD are attached to the bottom edge. The three joints are printed
parts. Also in the picture (clockwise from top): the glue gun used to bond struts to nodes, nodes
that form the vertices of the triangular cells, struts that form the edges of the triangular cells, and
the low-precision cutting tool used to cut the struts to approximately the correct size. No other
measurement, bonding, or cutting tools were used in the construction of the structure.

were set to a specific length L, the sensor was tared, the actuator was a random distance in ±13

mm, then back to L, and the offset was using the IL-030.

2.1.1 Experiments

Struts were cut from 12.7 mm square dowels and nodes were constructed from 25.4 mm height

segments of 50.8 mm, 31.75 mm, and 25.4 mm diameter cylinders respectively, forming a 76.2 mm

stepped cone. Struts attach to the bottom step, the IPJR triangle rests on the second step, and

distance measurements are based on the center of the top step. The topmost 25.4 mm cylinders fit

in the ring-like joints on the IPJR triangle. When connecting struts to nodes, the struts are cut to

length and are glued to the tops of the bottom cylinder.

2.1.1.1 Square

The square truss experiment was designed to test the reliable assembly of a large square

subdivided into four right triangles. The design has five nodes: one at the center, and four at the
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Figure 2.2: Assembly of a cell on the ring truss. Top left: after the IPJR triangle sets its lengths,
the agent sets it down on nodes. Top right: the IPJR displays the lengths of the edges to be glued
in this step. Center left: the agent marks the location to cut the strut. Center right: the agent
cuts the strut. Bottom left and right: the agent glues the strut to both nodes.
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Figure 2.3: Left: image of a completed square truss. Right: histogram of the measured edge length
errors for five square truss assembly tests, in which the desired lengths are 295 mm and 417.2 mm.
The mean error is 0.416 mm.
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Figure 2.4: Left: Histogram of measured length errors of the physical experiment of the irregular
ring truss. The mean error is 0.508 mm. Right: Result of the ring truss assembly experiment.

corners. There are eight struts: four on the outside and four connecting the corners to the middle,

as shown in Figure 2.3. The interior node-to-node distances should be 295 mm, and the exterior

node-to-node distances should be 417.2 mm.

The measured edge length errors are shown in Figure 2.3. Measurements were recorded in

increments of 0.5 mm; therefore, each measurement is ± 0.25 mm. The tests show that the edges

are longer than the nominal length. The average error is 0.416 mm, with a standard deviation of

0.459 mm. Most cases were within 0.5 mm desired length: only 8 of the 40, including every edge

41, had a greater error than the accuracy of the actuators’ potentiometers. Edge 34 on test 5 is

longer than it should be because the cut strut was slightly larger than the gap, and exerted forces

on either end after the glue dried.

2.1.1.2 Ring Truss

Space telescope optical benches will not be composed of equilateral triangles; the geometry

will be mapped to fit the surface of a parabola. The irregular ring truss test reflects this mapping

and demonstrates the versatility of the robot.
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The average edge length error was 0.508 mm, as shown in Figure 2.4, and the standard

deviation was 0.601 mm. Prior to adding the final two triangles, the three unplaced edges (0,5),

(0,17), and (6,17) were measured, to calculate the overall error accumulation of the structure. The

resulting gap errors were 0.5 mm, 0.8 mm, and 1.4 mm. Since the largest of these is within the

range of other edge errors, no forces were required to reduce the gap to an acceptable level for

bonding. Figure 2.4 shows the completed structure.

2.1.2 Analysis of Prototype 1 Experiments

I observed a positive length bias. A positive length bias would result in the first three

right angles to be slightly less than 90 degrees, and the final angle having to be larger to close

the structure, causing the increase. On the ring truss, the wide range of errors on the other edges

indicate its large errors canceled out in the accumulation. The calibration may have been altered by

the springs exerting different forces for the right triangle, causing the error. The low precision strut

measurement device may have contributed. Errors in calculating node centers could have occurred,

which were the basis for determining strut length. Finally, the small number of tests and the free

play between nodes and struts could mean that these results are not indicative of the long term

behavior, although both the square truss and the ring truss demonstrate the positive error bias. The

size of the ring truss required that the experiment be laid out over several laboratory tables, whose

surfaces were offset by a few millimeters. The five square truss tests and the one ring truss test were

completed without having to induce stress on the trusses to close the final cells. These tests gave

valuable insights on how to improve the IPJR. The calibration, performed only on near-equaliteral

configurations represented by identical potentiometer voltages, became incorrect by up to 0.3 mm

when the IPJR was irregular. This was not due to free play in the actuators, but was due to the

potentiometers themselves being affected by internal stress. The potentiometer calibrations are not

independent in practice. Length changes on one IPJR edge might induce subtle stresses that slightly

change the readings without noticeably changing the actual edge length, leading to different offsets

on the potentiometer output as a function of the length of the other actuators. The largest such
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Figure 2.5: The IPJR prototype is shown resting on the finished titanium truss on which the
nominal distance between the tops of the node posts is 1.002 m.

error was 0.3 mm, and is likely one of the largest sources of error in the experiments. Although

this source of error was not modeled in the simulations, it might be countered by performing a

multi-variate calibration that takes the overall state of the system into account.

2.2 Prototype 2

The second prototype constructed a 2D truss made of 7 titanium nodes and 12 titanium

struts, arranged in a hexagonal lattice of six cells, representing a simplified optical bench for a

space telescope. The cells were nominally equilateral triangles with a node-to-node distance of

1.002 m.

Starting with a prebuilt cell called the “kernel”, which is used both as calibration target as

well as a reference for the IPJR to start, assembly proceeded in five stages, repeated once for each

additional cell:

• The LSMS lifted the IPJR off the truss and positioned it over a canister containing the

new struts and nodes

• The IPJR captured the required struts and nodes from the canister
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Figure 2.6: Top Left: The IPJR (A) rests on top of the kernel (B) at the start of the experiment,
which in turn rests on the turntable (C); the lifting plate (D) is used to lift the IPJR. Top Right:
The welding end effector (A), attached to the LSMS forearm (B), is preparing to weld strut 16
to node 1. Bottom: The LSMS is transporting the IPJR (A) to the strut canister (B) in the
foreground.

• The LSMS positioned the IPJR on the assembly site

• The IPJR adjusted its lengths to the desired truss dimensions, positioning the new node

appropriately

• The LSMS welded the new struts and node to the truss

To accomplish these steps, the IPJRs required the capability to capture the truss components,

the LSMS required a welding end effector and a lifting mechanism, and the canister needed to

provide the new components in such a way that the IPJR could capture them. Additionally, the

IPJR needed the ability to compensate for the discrepancy between the kernel and the nominal

1.002 m edge lengths, thus necessitating actuators to change the IPJR edge lengths. Figure 2.6
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shows the tools used to complete the experiment.

The materials for the truss and the IPJR were chosen with attention to mitigating precision

errors. Titanium was chosen for its favorable low coefficient of thermal expansion of 8.5 µm
m◦C , an

important consideration for telescopes on orbit subject to thermal expansion. Struts were 12.7 mm-

diameter hollow tubes of 961.9 mm length, which were welded to node balls 38.1 mm in diameter.

Affixed to the top of each node ball was a 12.7 mm-diameter, 107.95 mm-tall aluminum post. Each

post represented a mounting point for a segment of the reflector. The node post positions were the

metric for determining the precision of the truss.

The Lightweight Surface Manipulation System (LSMS) is a long-reach manipulator designed

to operate on planetary surfaces, intended to manipulate large objects in preparation for a manned

landing [17]. It is 4.25 m tall and has a reach of 8.5 m. By itself, the LSMS provides precision on

the order of mm, which is not sufficient to construct trusses at the precision demanded by space

telescopes. An off-the-shelf arc welding gun was integrated into an end effector attached to the

LSMS wrist. A lifting plate end effector gave the LSMS the ability to lift the IPJR by grasping

three attachment points on the IPJR.

The limited maneuverability of the LSMS requires a turntable to provide the final degree of

freedom necessary for controlled placement of the IPJR and the welding gun. In this experiment, a

human operator rotated the turntable as necessary, but future experiments will utilize a motorized

turntable that will be under control of the IPJR.

The canister presented new struts and nodes for the IPJR to capture while the LSMS posi-

tioned the IPJR over the canister. It was built and positioned in such a way that the struts and

nodes are positioned roughly in the shape of the cell they are supposed to build. This enabled the

IPJR to grab all of the required elements at once and carry them over to the assembly site. As

with the turntable, this version required a human operator, but future versions will utilize motors

controlled remotely by the IPJR.

The Intelligent Precision Jigging Robot in this paper was nominally designed (Figure 2.7) to

align the tops of the node posts (where a mirror would be attached) to within 5 µm of an adjustable
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Figure 2.7: Left: The composite tube (A) contains the Ultra Motion actuator (B) and the IL-030
(C); the IL-030 measures its distance from the target plate (D), which also captures node posts
using a stepper motor (E); another gripper (F) captures struts. Right: A top-view cutaway shows
the node post (A) being pushed by the stepper motor (B) into a right-angled surface on the target
plate (C), which is also used for distance sensing by the IL-030 (D).

length in the range of 0.987 to 1.013 meters. To meet the 5 µm requirement, the IPJR uses Ultra

Motion D-Series actuators, with a specified 7.9 µm motion per step, enabling any desired length to

be within 3.95 µm of a step, and a 50.8 mm stroke length. To test repeatability and to calibrate,

each edge had a Keyence IL-030 laser distance sensor to sense the length of the IPJR edge by

measuring the extension of the Ultra Motion actuator. The IL-030 has a repeatability of 1 µm, but

a small operational range of 20-45 mm, which limited the range of the IPJR.

The IPJR is a triangle consisting of three identical edges, with the exception of auxiliary

hardware attached to one of the three edges. Each edge is a mechanical linkage between two

components, the main body and the node gripper module. The main body of each edge is a

composite tube, a material chosen for its favorable thermal expansion properties over most metals.

An Ultra Motion actuator extends the node gripping module away from the main body. Two rails

with bearings are used to prevent bending moments on the Ultra Motion actuators, which can

cause them to fail under lateral loads of just 13 N .

The node gripping module consists of a funnel used for guiding a node post while the IPJR

is being lowered onto the canister, a target plate for capturing node posts precisely, and a stepper

motor to push the node post into the target plate. The IL-030, attached to the main body, measures

the edge’s extension by measuring its distance to the target plate. Attached to the tube are two
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Figure 2.8: Results of the laser calibration, in which the steps from full retraction were mapped to
the sensor readings. The sensors were arbitrarily zero-shifted, but only the relevant readings were
of interest. The nonlinear region is shown with green points and the quasi-linear region with red
points.

grippers for lifting and holding the struts.

To eliminate free play within the entire IPJR, springs are attached between the lifting plate

posts, imposing a compressive force on each edge. Thus, when each Ultra Motion is commanded

to go to a step, there will be no loose components to interfere with the measurement.

2.2.1 Calibration

To calibrate the IPJR on the kernel, touch sensors were applied to the node posts on the kernel

and the target plates. Each edge length had some influence on whether or not contact was made on

the others, so the edges could not be calibrated one at a time. This amounted to a 3-dimensional

search for a maximum contact-free length for all three actuators such that the slightest increment in



27

Table 2.1: Node coordinates and distance error after assembly (m).

x y z ||error||
0. 0. 0. 0.
0.998072 0. -0.00004572 0.0039282
0.497226 0.864428 -0.0000127 0.00503288
-0.501045 0.863276 -0.00078486 0.00454969
-0.998114 -0.00196461 0.00079756 0.00442672
-0.498673 -0.866141 0.00156972 0.00323913
0.499244 -0.865118 0.001143 0.00337018

one edge would result in contact on that edge only. The calibration of the linear actuators involved

finding a least squares fit on the laser measurements, with results shown in Figure 2.8. However,

at shorter lengths, as the IPJR was closing in on the maximum contact-free lengths, the mutual

effect each edge had on the other resulted in significant nonlinearity (the green points). The slope

was only calculated for lengths sufficiently distant from the nonlinear regions (the red points). The

distance per step was found to be 5.3, 6.0, and 6.0 µm respectively. Note that these values differ

from the specified Ultra Motion step distance of 7.9 µm. Reasons may include the compressive

force from the springs and the node posts when the IPJRs are overextended, thereby contracting

the parts of each edge, and the IL-030s being slightly off-axis.

2.2.2 Analysis of Prototype 2 Experiments

The assembly of the truss took place over six hours, with the full truss being completed by the

IPJR and the LSMS. The maneuvering and welding by the LSMS contributed most of the duration.

To save time, the strut canister was not used for the final 4 cells, since it was shown to work at

least once and otherwise did not affect the outcome of the experiment. Upon completion, the

experimental setup was disassembled and the truss was measured. The measurements are shown

in Table 2.1 and Figure 2.9.

The data show that, compared to the desired 1.002 m separation, all of the nodes are less

than 1 m apart. The largest deviation is on node 3, on the kernel, at 5.03 mm, and among the

nodes placed by the IPJR, the largest deviation is on node 4 at 4.55 mm. The edge lengths
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Figure 2.9: The measured distances between the nodes (m) on the final truss structure.

show a range of 2.207 mm, with a standard deviation of 593 µm. The data not only significantly

differs from the desired structure, but the kernel substructure differs as well, and the relationship

is not simply a factor of scale. Strut bowing was observed, indicating tensions and compressions

within the truss, possibly arising from post-weld thermal contraction. The processes leading to

these errors could include factors such as temperature gradients (including during and after the

welding process), internal forces in the structure induced by the cooling of the truss, an imprecise

turntable, imprecise node posts, forces induced by the IPJRs while it was gripping the nodes, a

biased calibration, and the node posts’ deviation from vertical.

Although the experiment was a successful demonstration of an IPJR working with the LSMS

to assemble and weld a truss structure, the approach needs modification to meet the precision

requirement. As intended, the experiment revealed several issues which will lead to modifications.

The use of high precision actuators is promising, but it will rely on a much more accurate measure-

ment than the IL-030 sensors provided. The sensors measured a small gap between the main body

and the node gripper body, which only gave a measurement of the length of the gap, and can only
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Figure 2.10: In reading order, the first nodes placed requires only one IPJR, the other grounded
nodes require 2 IPJRs, and the subsequent nodes require 3 IPJRs to be placed. The final frame
shows the finished assembly, prior to the removal of the IPJRs.

scale reliably to the IPJR as a whole assuming the structure components are rigid bodies, and the

laser is perfectly aligned with the strut axis. The IPJR had a great deal of compliance, was built

imperfectly, and was subject to other nonlinearities in the calibration. The calibration showed that

even if the welding process introduced no errors, the 95th percentile radius from the desired node

position is 248 µm.

2.3 Prototype 3

My initial experiment involving prototype 3 and SLAM evolved directly into what is presented

in this thesis, and is nearly identical. The differences are:

• An assembly sequence was not found a priori, but was planned at each step. It was a form

of greedy assembly, where instead of picking the node that adds the lowest trace, the choice

was to build on the base that has the lowest trace.

• The Extended Kalman Filter was the only estimator tried.
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• I allowed triangular cells in addition to the starting triangle, with the assumption that the

Z-axis was fixed, z = 0.

• Maximum Likelihood Estimation was used only to estimate the final structure.

To test the validity of the EKF algorithm on real hardware, I performed two assemblies of

the small truss with the IPJRs and the aluminum-strut, steel-node structure (Figure 2.10), using

the minimum trace heuristic. To collect measurements each step, in lieu of an on-board laser

distance sensor planned for the future, the human operator measured the distance between node

balls. The EKF algorithm corrected for the hidden biases due to the various factors affecting the

parameters of the IPJRs: imprecise connections to the aluminum tubes, bent tubes, IPJR extension

and contraction hysteresis, and deflection due to gravity.

The results of the two trials, bounded by the 95th percentile accuracy error of the maximum

likelihood estimator, are shown in Figure 2.11. The mean errors are 1.7mm and 2.7mm, with

a confidence interval of 1.2mm. Both are an improvement over open loop assembly, even when

physical biases are excluded. The second trial has the largest individual node error at 7mm.

The two physical assembly experiments with the EKF assembly algorithm performed far better

than the open-loop control cases, even with the conservative MLE confidence interval of 1.2mm.

Considering that the struts and IPJRs were not made equally, this shows that precise assembly can

be made possible by lower quality components through error detection and correction. The second

physical trial shows a trend of growing error: this is attributed to two unlocked struts not sliding

as expected, deforming the bottom layer — violating the z = 0 assumption. I believe that the error

growth would have stopped had there been more nodes to add. During the experiments, the IPJRs

occasionally rebooted, and struts broke, but the trials never failed. One IPJR suffered a voltage

error and was incapacitated. Since I had two spare IPJRs, the experiments were not hindered. The

accuracy and ability to continue despite hardware failure justifies the use of simple robots when

assembly requires precision and accuracy.
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Figure 2.11: Top left: Simulated results of open loop assembly, assuming no hidden biases. Top
right: Simulated results of EKF assembly. Bottom row: the estimated errors of the two physical
experiments, bounded by the MLE confidence interval.

2.4 Lessons Learned

Prototype 1 was a proof of concept; the purpose of the experiment was to demonstrate in-

cremental assembly of a wooden truss, and nothing more. However, I did learn a few important

lessons. One is that free play between parts is a major source of error and must be eliminated.

Another is that calibration of the Firgelli actuators’ potentiometers is unreliable, and more di-

rect measurements are necessary. While I used the Firgelli actuators again, I did not use their

potentiometers in the SLAM algorithm.

Prototype 2 was another proof of concept, this time using precise hardware and fully robotic

manipulation. I expected the structure to be precise to within well under 1mm. The results of

this experiment showed that calibration alone could not hope to achieve anywhere near the 10µm

necessary for space telescope trusses, despite the precise hardware used in the IPJR. I determined

that the most likely cause of the error was thermal stress on the structure due to the cooling of

the spot welds contracting each edge. With error detection and correction, this could have been
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noticed and the remainder of the assembly could have been adjusted to compensate for the change.

The large errors in the prototype 2 experiment were the major motivation for me to examine error

correction routines.

Prototype 3 showed that SLAM overcame hidden biases and enabled assembly to be done

more precisely, leading to me trying three additional estimators. However, allowing triangular cells

after the starting triangle led to errors when the z = 0 assumption was inaccurate. I fixed this

problem by requiring that every node after the starting triangle has 3 IPJRs attaching it to the

base.



Chapter 3

Introduction and Definitions of Incremental Truss Assembly

A truss structure is an undirected graph G = (V,E) embedded in Euclidean space. Each

vertex i ∈ V has an associated structural node Xi with a 3-dimensional position (xi, yi, zi)
T . The

number of nodes in the structure, and the size of V , is N . As nodes are spherical and struts can

be attached anywhere, the orientation of each node is not important. Each edge Eij = {i, j}, is

associated with two vertices and corresponds to a strut of the structure. The length of the strut

between two nodes i and j is ||Xi −Xj ||.

The starting triangle is the name given to the first three nodes assembled. Their positions

form the orthonormal basis of the truss structure; the first node is fixed to the origin, the second

node varies only on the X-axis, and the third node varies only on the XY-plane. This fixes the

frame of reference to the structure itself, and does not require an external frame. A starting triangle

is denoted ∆.

3.1 Placement of Nodes by Strut Length Adjustment

IPJRs assemble trusses by attaching new nodes to nodes already on the structure. The new

node is the floating node to indicate that it is not fixed until welding is performed, and the nodes

to which the floating node is attached are the base triple, in which each node is a base node. In

this paper, the floating node is indexed as f , and the base nodes (i, j, k) = Bf . In the model, one

node is attached at a time by using exactly as many IPJRs as the node has degrees of freedom: 1

IPJR for 1 dimensions (reserved only for the X-axis node) 2 IPJRs for 2 dimensions (the XY-plane
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node), and 3 IPJRs for 3 dimensions (all other nodes).

Xf is a found as a function of the base triple it is attached to, and the struts connecting the

float to the bases:

Xf = Ff (XBf , LBf ) (3.1)

In the specific case of tetrahedra, the distances between base nodes i, j, k and floating node

f are the lengths that the IPJRs must satisfy, and are found as:

Li,f = ||Xi −Xf ||

Lj,f = ||Xj −Xf ||

Lk,f = ||Xk −Xf ||

Xf = Ff (Xi, Xj , Xk, Li,f , Lj,f , Lk,f ) (3.2)

The function Ff () can be found by algebraically solving the system for Xf :

Xf = Ff (Xi, Xj , Xk, Li,f , Lj,f , Lk,f )

= Xi +
Xj,i

(
L2
i,f − L2

j,f +Xj,i.Xj,i

)
2Xj,i.Xj,i

+

(
Xj,i ×Xk,i√

Xj,i ×Xk,i.Xj,i ×Xk,i

× Xj,i√
Xj,i.Xj,i

)

(
L2
j,f − L2

i,f

)
Xj,i.Xk,i +Xj,i.Xj,i

(
L2
i,f − L2

k,f −Xj,i.Xk,i +Xk,i.Xk,i

)
2Xj,i.Xj,i

√
Xk,i.Xk,i − (Xj,i.Xk,i)2

Xj,i.Xj,i



+

Li,f

√
1− (L2

i,f−L2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

Xj,i ×Xk,i√
Xj,i ×Xk,i.Xj,i ×Xk,i



√√√√√1−

((
L2
i,f − L2

j,f

)
Xj,i.Xk,i +Xj,i.Xj,i

(
−L2

i,f + L2
k,f +Xj,i.Xk,i −Xk,i.Xk,i

))
2

((Xj,i.Xk,i) 2 −Xj,i.Xj,iXk,i.Xk,i)
(
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(
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)
+
(
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i,f

)
2 + L4

j,f

)


(3.3)
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While I present F here as-is, the full derivation of F , and the derivatives of F with respect

to both node positions and strut lengths, can be found in Appendix A.

Equation 3.3 has two solutions based on the ordering of i, j, k, each a mirror image of the

other with respect to the base. Determining which is correct is determined by the right hand rule:

the path from i to k is counterclockwise, and the position of f is in the direction of the rotation

vector defined by the path using the right hand rule. Thus, Bf is an ordered triple.

Using more IPJRs than is required results in an overdefined system, which in the physical

world would result in large stresses on the structure unless the extra struts passively adjusted their

lengths. All truss structures require 3N − 6 struts to be stable (the −6 term corresponds to the

reduced degrees of freedom of the starting triangle). When a node has more adjacent nodes than

the base nodes used for assembly, the extra struts (and the structure itself) are redundant. IPJRs

also attach to redundant struts, but passively allow the struts to adjust since their lengths are a

function of the assembly struts’ lengths.

Choosing the best base nodes for each floating node is central to the problem in this article.

The edges in E that are actively set by IPJRs are labeled EA, and the redundant struts are labeled

ER:

EA ⊆ E

‖EA‖ = 3N − 6

ER = E \ EA (3.4)

The full structure X is a vector containing all of the node positions. The length of the vector

is the same as the length of the actively assembled struts, 3N − 6, which is also the total degrees

of freedom in the structure:

X = (x2, x3, y3, x4, y4, z4 . . . xN , yN , zN ) (3.5)

The full vector of lengths LE contains the positive, real-valued lengths for the assembly struts
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EA, and is ordered in the assembly order:

LE = (L2,1 . . . Llast)

‖LE‖ = 3N − 6 (3.6)

Prior to the completion of the structure, a substructure with K nodes is denoted VK , EK .

EK also includes passive struts, where EK ⊂ (EA ∪ ER).

3.2 Assembly Sequences

An assembly sequence A is an N -tuple consisting of pairs of assembly steps; each pair is

defined as 〈f,Bf 〉. A sample assembly sequence may be:

A = [〈1, ()〉, 〈2, (1)〉, 〈3, (1, 2)〉, 〈4, (1, 2, 3)〉, 〈5, (2, 3, 4)〉 . . . 〈f, (i, j, k)〉] (3.7)

If two nodes i, j can be added to a structure independently of each other, then their relative

ordering is irrelevant. For example, if an assembly sequence produces two branches, nodes added

to one branch can be added independently from nodes on the other branch. This allows for paral-

lelization: multiple groups of IPJRs could work on separate branches of structures independently.

If one assumes all independent additions to a structure are made simultaneously, and each addition

takes one unit of time, a parallel sequence can be defined, in which each floating node f is assigned

a value tf , where tf is the earliest time at which the node f can be assembled, and is also the

minimum number of nodes that need to be assembled before it can be assembled (the ancestor

count) plus 1:

tf = 1 + max(ti : i ∈ Bf ) (3.8)

In other words, a floating node can only be assembled after the last node of its base triple

has been assembled. The starting triangle is assembled at t = 1, 2, 3; the nodes whose base is the
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starting triangle can be assembled at at t = 4, and so on. A can be partitioned into a parallel

assembly sequence P by t values, each one corresponding to an assembly layer:

P = (At=1, At=2 . . . ) (3.9)

Two assembly sequences with different but equivalent permutations can be compared by their

parallel orders:

Ai = Aj if Pi = Pj (3.10)

An assembly order Ai is faster than Aj if ‖Pi‖ < ‖Pj‖. A fastest assembly order for a

starting triangle ∆ is an Afastest such that ‖Pfastest‖ ≤ ‖Pall‖ for ∆. A central triangle is a

triangle ∆central such that ‖P∆central,fastest‖ ≤ ‖P∆i,fastest‖ for ∆i.

3.3 Measurement model

The IPJR model makes few assumptions about what kinds of measurements are available.

While global position sensors, cameras, and other sensors will likely be used in an on-orbit exper-

iment, they are not necessary, and were never available for my experiments. Instead, each IPJR

has the capability to measure the length of the strut it is currently attached to (pre- or post-weld).

They include measurements of both the assembly struts and the passive struts, as long as the IPJRs

are attached. Measurements Mi,j , between nodes i and j, are taken after welding is complete and

Xi, Xj are permanent. I assume the error to be normally distributed with mean ‖Xi − Xj‖, and

measurement variance σ2
M :

Mi,j ∼ N (‖Xi −Xj‖, σ2
M ) (3.11)

An IPJR builds up a map of its surroundings with local measurements, including its own

position (expressed as the two nodes it is connected to), making this a SLAM problem in which

the robot deploys its own landmarks.
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When redundant struts are added between a floating node and extra nodes in the structure

not in the base triple, IPJRs passively adjust. These IPJRs are assumed to be capable of measuring

the passive struts after they have been welded. Thus, the set of measurements M defines the full

set of edges E for the substructure of size K:

MK = {N (‖Xi −Xj‖, σ2
M ) : (i, j) ∈ EK} (3.12)

The extra measurements of the redundant edge set ER enhance the effect of loop closure in the

MLE-SLAM algorithm. Without these extra measurements, the MLE algorithm finds the structure

that independently maximizes the likelihood of each strut based on only its own measurements;

this is because the number of measurements is equal to the number of degrees of freedom. The

extra measurements force an overdefined system, where each strut estimate is a function of all of

the other struts noises and measurement noises.

3.4 Structure Sparsity

Truss structures commonly have an upper limit on the number of edges emanating from a

strut: for example, Pratt trusses, Warren trusses, and the tetrahedral-octahedral honeycomb truss

in [66] have nodes that connect to only a limited number of neighbors. Such structures have a

number of edges constant in the number of vertices. If DvN = E is the expression for the number

of edges, Dv is the vertex half-degree, or half the average number of struts touching a node:

Lemma 1. ‖E‖ = O(N) = DvN

Proof. Given a physical node of finite size, the surface of the node is big enough for only a finite

number of connections to struts, which does not increase as the total number of nodes and struts

increases. Thus, the number of edges is ‖E‖ = O(N), and truss structures are sparse.

Sparse graphs are better implemented as adjacency lists to conserve space and time.
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Assembly Sequences

In this chapter, I describe algorithms that operate on the topological properties of trusses

without regard to their Euclidean embedding in R3. The runtimes herein depend on Lemma 1,

which states that all truss structures are sparse graphs, and the number of struts is linear in the

number of nodes.

4.1 Number of Assembly Sequences for Non-Redundant Structures

To properly analyze the number of assembly sequences for the general case of redundant

structures, I first analyze the simpler case of non-redundant structures.

Lemma 2. A structure with 3N − 6 nodes has exactly one possible base triple for each node.

Proof. If a node in such a structure has multiple base sets, the number of struts connecting to the

node is the union of the base sets:

‖Ef‖ = number of struts adjacent to node f =

∥∥∥∥∥⋃
b∈B

b

∥∥∥∥∥ ≥ ‖b ∈ B‖ (4.1)

The extra edges are redundant; therefore this is a contradiction.

Lemma 3. A structure that has exactly 3N − 6 struts has a number of assembly sequences equal

to the number of possible starting triangles, which is O(N).
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Proof. Lemma 2 shows that each node has exactly one base configuration; therefore, for a given

starting triangle, a non-redundant structure has only one assembly sequence, and that the number

of assembly sequences is equal to the number of starting triangles.

4.2 Number of Assembly Sequences for Redundant Structures

Redundant structures — far more common than non-redundant ones — will have a number

of non-redundant substructures not exceeding the number of 3N − 6 combinations of the E edges:

‖Er‖ ≤
(
‖E‖

3N − 6

)
(4.2)

The inequality is required due to the fact that not all combinations of 3N − 6 struts are

possible to build: for example, such a set might divide a structure into two distinct structures, or

one or more nodes may not have enough struts as degrees of freedom.

Recall that Dv is half of the average vertex degree (number of struts) of a node in a truss;

Equation 4.2 becomes:

‖Er‖ ≤
(
DvN

3N − 6

)
(4.3)

The number of subsets of E satisfying ‖Er,n‖ = 3N − 6 is O((DvN)!) from the following

expression for the number of combinations:

(
n

k

)
=

n!

k!(n− k)!
(4.4)

This can be immediately reduced to O(2DvN ) when noting that:

2n =

n∑
k=0

(
n

k

)
(4.5)

However, even that is too large given that it considers all values of k, not just one. The

bounds can be tightened further with the following inequality described in [57]:
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(
(r+1)r+1

rr

)m
4mr

<

(
m(r + 1)

m

)
<

(
(r + 1)r+1

rr

)m
(4.6)

Lemma 4. The number of substructures of length 3N − 6 is O
((

1
27 (Dv − 3) 3−DvDDv

v

)N)
.

Proof. Setting m = 3N − 6 and m(r + 1) = DvN :

r =
DvN

3N − 6
− 1 (4.7)

The right side of Inequality 4.6 then becomes:

((
NDv

3N − 6

)
NDv
3N−6

(
NDv

3N − 6
− 1

)
NDv
6−3N

+1

)
3(N−2) (4.8)

As n increases, DvN
3N−6 asymptotically approaches Dv

3 and 3N − 6 approaches 3N , reducing

this to:

(
1

3
(Dv − 3) 1−Dv

3 D
Dv
3
v

)3N

=

(
1

27
(Dv − 3) 3−DvDDv

v

)N
(4.9)

The left side is then:

1

4(3N)
(
Dv
3

) ( 1

27
(Dv − 3) 3−DvDDv

v

)N
=

1

4DvN

(
1

27
(Dv − 3) 3−DvDDv

v

)N
(4.10)

Let K = 1
27 (Dv − 3) 3−DvDDv

v . Inequality 4.6 can be stated as:

Ω

(
1

N
KN

)
= ‖Er‖ = O(KN ) (4.11)

The final step is to show that, when considering all starting triangles, the time complexity is

asymptotically unchanged.

Theorem 1. The number of assembly sequences for a structure is O((K + ε)N ) where ε is an

arbitrarily small positive real number.
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Proof. With O(N) starting triangles, the number of assembly sequences for every starting triangle is

O(NKN ). However, I use the same method in the previous proof to show thatN cKN = O((K+ε)N )

for any positive c. The limit of NcKN

(K+ε)N
must approach 0 as N →∞. Taking the logarithm results

in:

c log(N) +N log(K)−N log(K + ε) (4.12)

The term c log(N) vanishes, resulting in a linear equation which goes to −∞ if ε > 0. When

converting back to the exponential form, the limit becomes 0.

I have shown that the number of assembly sequences is exponential. The remainder of this

dissertation is devoted to finding ways to search for and approximate optimal solutions, thereby

overcoming the exponential nature of assembly. The following chapter delves further into this topic.

4.3 Identifying Starting Triangles

For a structure in which a starting triangle has not been defined, the possible starting triangles

must be found. For a set of edges E, this is equivalent to solving the 3-clique problem; the best

algorithms are Ω(E3/2) in the worst case [9]. However, for sparse structures, the number of triangles

is reduced since every node has a constant number of neighbors.

Lemma 5. AllTriangles is O(N), returning O(N) triangles.

Proof. The algorithm iterates over all vertices, automatically giving it N steps. On the inside of

the loop, all pairs of neighbor nodes are considered, which is
(

2Dv
2

)
= 4D2

v − 2Dv pairs. For each

of the neighboring nodes nj , its own list is searched twice, once for each of the starting node i and

the other neighbor nk. Since this is an adjacency list, each of the four searches take O(2Dv) in the

worst case. The total number of operations is 32D3
v − 16D2

v . However, since Dv is constant in N ,

this is O(1), thus O(N)O(1) = O(N).
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Algorithm 1 An algorithm that searches for all starting triangles by looking at all of the pairs of
adjacent nodes to each node, and seeing if the other nodes are also adjacent. A brute force algorithm,
O(‖V ‖3), but for sparse graphs (such as truss structures) is O(‖V ‖). The n1 > i, n2 > n1 ensures
that duplicates are not added.

AllTriangles(V,E)

Require: V,E in adjacency list format
1: ∆← ∅
2: for i ∈ V do
3: for n1, n2 ∈ Ei : n1 > i, n2 > n1 do
4: if n2 ∈ En1 then
5: ∆← ∆ ∪ {{i, n1, n2}}
6: return ∆

Algorithm 2 The possible next nodes algorithm looks at all the nodes that are adjacent to the
set of currently made nodes.

PossibleNextNodes(Vmade, Vcandidates, E)

1: Vpossible ← {j : {i, j} ∈ E, i ∈ Vmade, j ∈ Vcandidates}
2: Snext ← ∅
3: for f ∈ Vpossible do
4: Vf,allbases = {b : {f, b} ∈ E, b ∈ Vmade}
5: Snext ← Snext ∪ {(f,B) : B ⊆ Vf,allbases, ‖B‖ = 3}
6: return Snext

4.4 Possible Next Nodes

A partially built structure has a number of possible next additions to make, but determining

which ones are valid requires finding all the possible tetrahedral apexes that can be made given the

nodes that already exist. Algorithm 2 does not permit nodes that have more or fewer than 3 base

nodes, but can be trivially modified to do so. It is important to note that a tetrahedron apex does

not need to rest on a base whose nodes are all connected to one another: both this algorithm and

Equation 3.3 do not distinguish between connected and disconnected base nodes.

Theorem 2. PossibleNextNodes takes O(N) time and returns O(N) float-base pairs.

Proof. A good implementation will use adjacency lists, in order to optimally collect the possible

edges and nodes, which is O(DvVmade) due to going through each Dv-length list for each node.

Collecting all base nodes for a given float node takes O(Dv) = O(1) time, and iterating all 3-

subsets takes O(D3
V ) = O(1) time. When multiplied for all O(Vpossible) nodes and added to the
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time for possible edges and nodes results in O(Vmade +Vpossible) time and O(Vmade) possible nodes.

On average, ‖Vmade‖ = ‖Vpossible‖ = N
2 , making this algorithm O(N) in time and in next node

count.

4.5 Parallelization

Finding the parallellized assembly sequence P is an O(N) operation made possible by casting

the problem as a topological sorting of a directed acyclic graph. Algorithm 3, ParallelizeAssem-

bly, is such an implementation.

Theorem 3. Finding the parallel ordering P of A takes O(N) time.

Proof. Partitioning an assembly sequence into P , Algorithm 3, can be performed by considering a

directed acyclic graph formed by edges such that i→ j if i is a base of j. Then, after topologically

sorting the DAG, which is O(V + E) = O(N), the longest path can be found with weights equal

to 1, which is also O(N) [55]. The longest path solves for Equation 3.8. Then, the nodes can

be iterated over and added to the t-slot in P equal to idistance, which takes O(N) time. All told,

finding a parallel partition and determining the parallel degree Dp is O(N).

Having a parallel assembly order P is important because of the equivalency of any of the

numerous permutations of A that have the same float base pairs. An algorithm to enumerate over

all assembly sequences would do better to consider such a sequence only once.

4.6 Single Random Sequence

Given a set of nodes and struts, a single random sequence can be found by determining which

float-base pairs can be added each step, and randomly choosing one. The parameter Q can be set

to find either any random sequence, or a random sequence that is as long as the fastest parallel

sequence for that starting triangle. When looking for a fastest sequence, each node’s assembly time

tf will be constant; the only random component is which base is chosen.
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Algorithm 3 An O(N) algorithm for partitioning an assembly sequence A (which is not necessarily
sorted) into an ordered list in which the order’s index is a time t that, for each assembly step in
that set, is the length of the sequence to get to step.

ParallelizeAssembly(A)

1: P ← ()
2: Osort ← ()
3: Vdag, Edag ← {(i→ f) : ∀(f,Bf ) ∈ A,∀i ∈ Bf}
4: for all i ∈ Vdag do
5: idiscovered ← False, iprocessed ← False, idistance ← 0
6: for all i ∈ Vdag do
7: DagVisit(i, Vdag, Edag, Osort)
8: for all i ∈ Osort do
9: for all j ∈ Ei do

10: if idistance + 1 > jdistance then
11: jdistance ← idistance + 1
12: Pt = {(f,B) : (f,B) ∈ A, fdistance = t}
13: return P

DagVisit(n, Vdag, Edag, Osort)

1: if ndiscovered = True then
2: Not a DAG
3: if nprocessed = False then
4: ndiscovered ← True
5: for all i ∈ En do
6: DagVisit(i, Vdag, Edag, Osort)
7: nprocessed ← True
8: ndiscovered ← False
9: Push n to head of Osort

Algorithm 4 To find a random sequence for a structure V,E, start by choosing a triangle, then,
while the structure is incomplete, select a float-base pair from the set of possible next nodes. If at
any point there are no float-base pairs for an incomplete structure, a sequence does not exist.

RandomSequence(V,E,∆start, Q)

1: Ppartial ← (∆start)
2: while

∑
t ‖Ppartial,t‖ < ‖V ‖ do

3: Vmade ← {f : f ∈ Ppartial}
4: Snext ← PossibleNextNodes(Vmade, V \ Vmade, E)
5: if Snext = ∅ then
6: return No Assembly Sequence
7: if Q =Fastest then
8: Lnext ← {(i, Brandom) : ∀i ∈ Snext, (i, Brandom) ∈ {(i, B) : i ∈ Snext}}
9: else if Q =Any then

10: Lnext ← {RandomChoice(Snext)}
11: Ppartial ← Ppartial ∪ (Lnext)
12: return Ppartial
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Theorem 4. RandomSequence terminates with a valid sequence, or determines that no sequence

exists, in O(N2) time, and can be optimized to run in O(N) time.

Proof. The RandomSequence algorithm, for a starting triangle, must take O(N) assembly steps,

each time calling PossibleNextNodes, which is O(N). Likewise, for Q =Fastest, the Lnext list of

additions to the layer is constructed from an iteration through Snext, which is O(N) in length (if

Q =Any, a single random choice is constant time). Therefore, finding a random sequence is O(N2).

A simple tweak to how PossibleNextNodes is used can reduce this to O(N) by searching

for neighboring nodes of only the latest nodes added, and adding these to Snext, which would be

maintained from step to step. Since no steps would be found more than once, Snext grows to O(N)

size over the entirety of the while loop, amortizing it to O(1) per step.

Likewise, Lnext would only iterate through the newest steps, making the iteration also O(1)

when amortized. Since creating an assembly sequence requires N steps at an absolute minimum,

the tweaked RandomSequence is optimal at O(N).

4.7 All Central Triangles

Starting centrally has an intuitive explanation. For example, assembling a truss in a zig-zag

fashion results in very large errors due to the long chain of error propagation for each node. Starting

from the center and proceeding outward in concentric circles is likely to be better. We encode this

heuristic by finding a starting triangle that minimizes the number of steps needed to assemble the

most distant node. This is analogous to finding a central vertex in a graph. The distinction

is that a node cannot be reached on the assembly trajectory unless at least three of its adjacent

nodes are in place. To find the set of central triangles, first all triangles must be enumerated, then

a fastest sequence must be generated for each triangle to determining how many time steps are

needed.

Each starting triangle will have a number of fastest sequences, but how fast they are (that

is, the length of Pfastest for that starting triangle) will vary: a centralized triangle will have a
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Algorithm 5 Central starting triangles are identified by finding out which starting triangles pro-
duce the fastest among fastest sequences, and is O(N2) with an optimal implementation of Ran-
domSequences and PossibleNextNodes

AllCentralTriangles(V,E)

1: ∆all ←3-Cliques(V,E)
2: Pfastest ← ∅,∆fastest ← ∅
3: for all ∆i ∈ ∆all do
4: Pi ← RandomSequence(V,E,∆i,Fastest)
5: if Pfastest = ∅ or ‖Pi‖ < ‖Pfastest‖ then
6: Pfastest ← Pi,∆fastest ← {∆i}
7: else if ‖Pi‖ = ‖Pfastest‖ then
8: ∆fastest ← ∆fastest ∪ {∆i}
9: return ∆fastest

shorter Pfastest. The length of Pfastest can be found by randomly generating a sequence using

RandomSequence, with the argument Q =Fastest. The algorithm AllCentralTriangles, shown

in Algorithm 5, requires RandomSequence to be called for all triangles to determine which ones

produce the shortest parallel sequences.

Theorem 5. AllCentralTriangles runs in O(N2) time, returning O(N) triangles.

Proof. The first call is to AllTriangles, which returns O(N) triangles in O(N) time for sparse

truss structures. Each of the O(N) triangles calls RandomSequence, which is O(N2). However,

using the same tweak in Theorem 4 to optimize RandomSequence, it is O(N), and AllCentral-

Triangles is O(N2).

4.8 Adjacent Sequences

The neighboring sequences for a given sequence is generated by AdjacentSequences, shown

in Algorithm 6. Two sequences are adjacent if one of the following holds:

• Ai and Aj have the same assembly edge set EA, but different starting triangles.

• Ai and Aj differ by a single assembly step 〈f, (i, j, k)〉.

The set of sequences with identical EA and different starting triangles is found first, and

saved as A∆. For the reduced set EA, or any set E with exactly 3N − 6 edges, only one assembly
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Algorithm 6 The set of adjacent sequences to A is found by looking at all the sequences generated
by the other starting triangles with the same edges, and the other orders found by changing a single
float base pair. For the latter, any choice must be checked for validity by constructing the parallel
version.
AdjacentSequences(A, V,E)

1: Aadj ← ∅
2: EA ← {(b, f) : (f,B) ∈ A, b ∈ B}
3: ∆all ← AllTriangles(V,EA)
4: A∆ ← {RandomSequence(V,EA,∆i,Fastest) : ∆i ∈ ∆all}
5: for all (f,B) ∈ A do
6: Vindependent ← {i : i does not depend on f}
7: Sf,others ← PossibleNextNodes(Vindependent, {f}, E) \ {(f,B)}
8: for all (f,Bother) ∈ Sf,others do
9: Af,other ← ((i, Bi) ∈ A : i 6= f) ∪ (f,Bother)

10: Aadj ← Aadj ∪ {Af,other}
11: Aadj ← Aadj ∪A∆

12: return Aadj

sequence exists, so RandomSequence will only return that sequence. Not all triangles will have

a sequence; when RandomSequence returns no assembly sequence, nothing is added to A∆ for

that triangle.

The set of sequences with one altered step is found next. For every step (f,Bf ) in A, all other

possible bases Bother are considered that do not violate the assembly sequence. The set Vindependent

is the set of all vertices that can be assembled when (f,B) is removed from A, and is the set from

which all base triples will be drawn. The full set of base pairs for f , Sf,others, is found by calling

PossibleNextNodes with Vindependent and {f}, and removing the current step (f,B). The set

Aadj is the full set of assembly sequences found by replacing (f,B) with each member of Sf,others.

The union of Aadj and A∆ is then returned.

Theorem 6. AdjacentSequences runs in O(N2) time and returns O(N) sequences.

Proof. AdjacentSequences can only return O(N) sequences because there are only O(N) possible

changes. The sequences with different starting triangles number only O(N), and the swapped

sequences are O(N) for a similar reason: each node is a part of only O(1) triangles, resulting in

O(1) swapped steps per node. Each call of PossibleNextNodes is only O(1) because only the

node in question is examined. However, AdjacentSequences runs in O(N2) time, since it calls
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Algorithm 7 This algorithm finds all assembly orders (parallelized to eliminate duplicates) by
keeping a queue of previously discovered partial orders, popping an order, adding each possible
node to the order, and pushing all the new partial orders onto the queue. Since multiple assembly
orders may have the same parallel order, each new order is checked against the queue to determine
if it is already there before it is added.

AllSequences(V,E)

Require: V,E in adjacency list format
1: ∆← AllTriangles(V,E)
2: Pall ← ∅
3: for ∆i ∈ ∆ do
4: Ppartial ← (∆i)
5: Qpartial ← (Ppartial)
6: while ‖Qpartial‖ > 0 do
7: Pq ← Qpartial.pop()
8: Aq ← {(f,Bf ) : Pt ∈ Pq, (f,Bf ) ∈ Pt}
9: Vmade ← {f : (f,Bf ) ∈ Pq}

10: if Vmade = V then
11: if Pq /∈ Pall then
12: Pall ← Pall ∪ {Pq}
13: Continue
14: Vnotmade ← V \ Vmade
15: Snext ← PossibleNextNodes(Vmade, Vnotmade, E)
16: if Snext = ∅ then
17: return No Assembly Sequence
18: for (f,Bf ) ∈ Snext do
19: An ← Aq‖((f,Bf ))
20: Pn ← ParallelizeAssembly(An)
21: if Pn /∈ Qpartial then
22: Qpartial.push(Pn)
23: return Pall

RandomSequence N times.

4.9 All Sequences

The algorithm for finding all sequences is described here, but is of cursory interest because

the number of assembly sequences is O(KN ), and is therefore only useful to enumerate the number

of sequences for very small structures. Still, its existence is useful in verifying that the sequence

count estimation algorithm is correct for small structures.

I have thought of two ways to enumerate all sequences, both of which produce the same results

through slightly different means. The method I present here does not require backtracking, but
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suffers in that it has to enumerate over assembly sequences that have the same parallel sequence.

Algorithm 7 works as follows: the starting triangles are found, and a set of all parallelized assemblies

is initialized. Then, for each starting triangle, a queue (i.e. breadth-first search) is started with a

single element: the partial parallelized order of the starting triangle. Then, as long as the queue

has partial orders, a partial order is popped and flattened to a normal assembly order. The nodes

in the assembly order are found. If the assembly order is finished, the parallel version is added to

the set of orders, and the while loop continues. Otherwise, the set of next nodes possible nodes is

found; if none is found, then no assembly sequence exists. For each of the next possible nodes, the

normal assembly order is appended by the next node, the parallel version of the order is found,

then added to the queue if the parallel version is not already there.

4.10 Sequence Count Estimation

To estimate the assembly sequence count, I implemented a method first described by Donald

Knuth [31] to estimate the number of terminal nodes in a search tree: take random walks, and for

each walk, count the number of branches available at each step, and at the terminal node, return

the product of the number of branches at each step. The full estimation algorithm, Estimate-

SequenceCount is shown in Algorithm 8. Each random walk is generated by BranchProduct,

shown in Algorithm 9. Over many trials, this number converges to the number of sequences. While

the simplest method to generate random sequences is to add one step at a time from the set of steps

that are available, this can result in convergence to the same structure graph from different paths,

making the search space a directed acyclic graph instead of a tree. A better algorithm proceeds by

adding to the structure a random subset from the set of possible float base pairs. To make this a

search tree, the set of nodes that can be added is limited to nodes that have at least one base in the

set of nodes that were added in the previous iteration. That is, a possible float base pair cannot

be added now if it could have been added at an earlier time. But this leads to possible dead ends:

if the algorithm does not add a node when it had the opportunity, it may not be possible to add

in future iterations. For this reason, the algorithm does not always return a sequence.
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Since some of the searches will result in dead ends, the tally of dead ends is kept. The

mean of the set of branch products, one for each trial, is then multiplied by the ratio of successful

trials to total trials to produce an estimated sequence count. Since BranchProduct starts with

a completed triangle, the estimated sequence count is per triangle: the overall total is found by

multiplying by the number of starting triangles.

BranchProduct starts with a random triangle, a parallel sequence generated from the

triangle, and initializes the branch product at 1. Then, until the random sequence is finished: it

determines the set Snext of next float base pairs for the parallel sequence. It then prunes the set

by including only float base pairs whose base contains at least one node that was added in the

previous level. If no such nodes remain, a dead end was reached, and the function is terminated.

Otherwise, the leftover set, Slatest, is further partitioned in the following way:

• Create a new set for each vertex: Si,latest.

• If there is only one float node in the full set Slatest, it must be placed.

• Otherwise, if there are multiple float nodes in Slatest, check to see if adjacent nodes to i

are not yet made, and if so, add ∅ to Si,latest. This allows the node to be skipped over this

step and attached in a later level. If all neighboring nodes have been made, the node must

be added in this level. The purpose behind this rule is to reduce the number of dead ends,

but does not fully eliminate them.

Once Slatest is modified, the number of branches is the product of the number of ways the

nodes can be added to the current level. Since at least one node is needed, the empty set (i.e.,

adding nothing) is subtracted from the product, but only if every node can be added later as

determined previously. Finally, a random selection from each Si,latest is chosen and appended to

the partial order (if an empty set is chosen for some node i, it is skipped), the running product is

multiplied by the branch number for this step, and the loop continues. When the partial order is

completed, the branch product is returned.
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Algorithm 8 This algorithm estimates the sequence count by doing a number of random assemblies
and averaging the product of the number of branches at each assembly step, following an algorithm
described in [31].

EstimateSequenceCount(V,E,Ntrials)

1: Πtrials ← ∅
2: Σfailures ← 0
3: n← 1
4: ∆← AllTriangles(V,E)
5: while n ≤ Ntrials do
6: ∆random ← random choice from ∆
7: Πn ← BranchProduct(V,E,∆random)
8: if Πn = Dead End then
9: Σfailures ← Σfailures + 1

10: else
11: Πtrials ← Πtrials ∪ {Πn}
12: n← n+ 1
13: return Ntrials

Ntrials+Σfailures
Mean(Πtrials)

Algorithm 9 This algorithm randomly assembles a structure by adding a subset of the possible
next steps. It estimates the branch product by multiplying the number of subsets of possible
additions at each step.

BranchProduct(V,E,∆random)

1: Ppartial ← (∆random)
2: Πbranches = 1
3: while

∑
t ‖Ppartial,t‖ < ‖V ‖ do

4: Snext ← all float base pairs that can be attached to the structure
5: Slatest ← prune Snext by requiring the base set includes a node made in the previous step
6: if Slatest = ∅ then
7: return Dead End
8: for Si,latest ∈ Slatest where Si,latest is the set of float base pairs with float node i do
9: if ‖Slatest‖ > 1 and i has at least one neighboring node not yet made then

10: Si,latest ← Si,latest ∪ {∅}
11: Πnext ←

∏
i ‖Si,latest‖

12: if ∀i, ∅ ∈ Si,latest then
13: Πnext ← Πnext − 1
14: Πbranches ← ΠbranchesΠnext

15: Lnext ← random selection from each Si,latest.
16: Ppartial ← Ppartial‖(Lnext)
17: return Πbranches

4.11 Numerical Estimation of Sequence Count for Various Truss Styles

I tested Algorithm 8 on a variety of truss structures resembling real-world examples, and

verified the sequence count algorithm on small structures on which it was feasible to iterate all
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sequences. I then compared these to the theoretical upper bound O(KN ). The types of trusses are:

• Cubic trusses, subdivided into towers, planes, and full 3D structures.

• Tetrahedral-octahedral honeycombs, also subdvided into towers, planes, and full 3D struc-

tures.

• Telescope trusses, a slice of the tetrahedral-octahedral honeycomb containing two layers.

Before estimating the count for large truss structures, I tested the algorithm on a few tractable

examples based on the cubic tower and telescope trusses. The single cube has 96, the double cube

has 2448, and the telescope has 12708 assembly orders when all starting triangles are considered.

Algorithm 8 was run 10000 times for each structure, and averaged to 95.15, 2459.47, and 12669

sequences, empirically validating the algorithm. A table showing the validation results is shown in

Figure 4.1.

Figure 4.2 shows the K exponent based on each structure’s asymptotic Dv compared to the

observed exponent for each structure. The exponent is derived from a linear fit of the logarithmized

estimated sequence counts. The following subsections describe the results in more detail, but one

trend can be observed immediately: the number of sequences is exponential, but grows more slowly

than the number of combinations estimated by K. This is expected. In a few cases, such as with the

telescope and the full cube trusses, the exponent is significantly smaller. In all cases, the exponent

difference shows that it is impractical to randomly sample a 3N − 6 set of edges expecting to find

a valid sequence: the likelihood of finding one becomes almost 0 for even modest structures.

4.11.1 Cubic Trusses

Cubic trusses are ubiquitous. They are most recognizable as Pratt trusses and Howe trusses,

which can be found on a large number of bridges around the world. However, trusses such as these

are not necessarily composed of tetrahedra, so additional struts must be added to the cubic cells

to permit them to be built as a series of tetrahedra. This can be achieved by considering the extra

struts as temporary struts.



54

N E Δ # Sequences # Sequences

per Triangle

Est # Sequences Est # Sequences

per Triangle

8 24 96 96 1 95.15 0.991146

12 31 180 2448 13.6 2459.47 13.6637

10 26 150 12 708 84.72 12 669. 84.4602

Figure 4.1: For three small structures, Algorithm 8 is compared to the true sequence count. Each
column, from right to left, shows the structure, the number of nodes, the number of struts, the num-
ber of starting triangles, the actual number of sequences, the average actual number per triangle,
the estimated number of sequences, and the estimated number per triangle.

A cube can be subdivided into five tetrahedra as shown in Figure 4.1, in which 4 non-adjacent

corners are given diagonals. This results in a lattice in which vertices alternate between having

diagonals and not. For these experiments, each vertex is at an integer {i, j, k} ∈ Z. Each vertex has

an edge to all vertices that are at 1 unit distance, and the vertices whose coordinate sum i+ j+k is

even have an edge to all the vertices that are at
√

2 units distance. I tested three kinds of trusses:

a cube tower of various heights, which may also be thought of as a Pratt bridge, a cubic plane with

various horizontal dimensions, and full cubes, with 3D square lattices. Cube towers are lattices

with 2 vertices along the X and Y axes, with the Z-axis varying from 2 to 10 vertices. Cube planes

have 2 vertices on the Z axis, with between 2 and 10 vertices on the X and Y axes. Full cubes vary
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Cube Dv K Fit Exponent

Tower 3.25 2.41419 1.91

Plane 4.5 17.537 6.35

Full 6 64. 8.47

Tet Oct Dv K Fit Exponent

Tower 3.88889 8.08856 4.87

Plane 5. 28.9352 10.74

Full 7. 119.147 11.5

Telescope 5. 28.9352 8.78

Figure 4.2: The half-vertex degree, Dv (where ‖E‖ = DvN) for arbitrarily large structures of
various styles is shown, along with the upper bound exponent K, and the experimentally derived
exponent, which for all cases is smaller than K, showing that the number of assembly sequences is
far smaller than the number of 3N − 6 combinations.

from 2 to 10 vertices on all axes.

Figure 4.3 shows the results. The cube tower has a Dv value approaching 3.25 as height

increases, the plane 4.5, and the full cube 6. For each structure of each size , the estimated

sequence count is shown. 10 sets of 1000 trials each were performed (to show the variance in the

mean calculation) as well as its fit, along with the number of combinations
(

E
3N−6

)
in the structure,

and the plot of O(KN ). In all cases, the number of structures is O(KN ) as predicted, and is in fact

significantly better.

4.11.2 Tetrahedral-Octahedral Honeycombs, Including Telescopes

The tetrahedral-octahedral honeycomb is a space-filling tiling consisting of octahedra sur-

rounded by tetrahedra. This kind of truss is also ubiquitous, even in reduced strut count. Space

trusses, for example, consist of half-octahedra and the tetrahedra between them. Slicing the hon-

eycomb on a different plane produces the set of space telescope trusses [66].

As with the cube trusses, the honeycomb must be divided into tetrahedra to allow the IPJRs
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Figure 4.3: For cubic towers/bridges (top), planes (middle), and full cubes (bottom), the plots of
estimated sequence count (blue), number of 3N − 6 combinations (yellow points), and KN (yellow
line) are shown with respect to node count N .

to construct using tetrahedral cells. These can be considered temporary to the final structure, but

are needed to ensure a rigid placement for the floating nodes. An octahedron can be cut into four

tetrahedra by inserting a single edge creating a diagonal on one of the squares, therefore making

the honeycomb possible to build with IPJRs without adding a large number of extra struts. A
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tetrahedral-octahedral honeycomb can be defined by the set of vertices {i, j, k} ∈ Z such that

i + j + k is even. Every vertex has edges to all other vertices that have
√

2 units distance. The

octahedron-dividing diagonal adds edges to the truss in the following way: an edge exists between

V1, V2 if i1 − i2 = 2 and ‖V1 − V2‖ = 2, which says that each vertex is connected to the nearest

neighbors along the X-axis. As with the cube truss, I tested a tower, a plane based on the space

truss, and a fully 3D truss. Additionally, I tested the telescope planes. The tower has a maximum

dimension of 3 on the X and Y axes, and ranges from 2 to 7 on the Z-axis. The plane truss has 2

vertices on the Z-axis and ranches from 3 to 10 on the X and Y axes. The full truss ranges from 3

to 7 vertices along all axes.

The telescope is defined differently: each example produces a hexagon on the top surface

where each side of the hexagon has between 2 and 7 vertices. If the vertex count per side is Sv,

then the vertices are in the set Vtelescope = {{i, j, k} : i, j, k ∈ [1, 3Sv − 2], (i + j + k = 3Sv − 2 ∧

Max(i, j, k) < 2Sv − 1) ∨ (i+ j + k = 3Sv ∧Max(i, j, k) < 2Sv)}. The former condition produces

the bottom layer, the latter the top.

The half-vertex degree Dv is 3.8̄ for the tower, 5 for the plane and telescope, and 7 for the

full scope. As with the cubes, the number of assembly sequences is exponential, but less so than

the number of combinations and the upper bound O(KN ).
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Figure 4.4: For tetrahedral-octahedral honeycomb towers/bridges (top), planes (top middle), full
honeycombs (bottom middle) and telescopes (bottom), the plots of estimated sequence count (blue),
number of 3N − 6 combinations (yellow points), and KN (yellow line) are shown with respect to
N .



Chapter 5

Assembly Probability Model

The previous chapter described a method to construct triangular and tetrahedral cells in a

truss structure by adjusting the lengths of the struts between the base nodes and the floating node.

This chapter builds on the previous chapter by describing the probability model for assembly when

strut length adjustment has uncertainty. First, I describe the complete, nonlinear probability model

for an assembled structure. I follow this with a linearized model, appropriate for high precision

and for determining an optimal assembly sequence. Linearization leads to convenient methods

to determine both the overall and the node-wise marginal probabilities, enabling exact analysis

of assembly sequences. Finally, I compare the nonlinear and linear models to estimate an upper

bound on allowable uncertainty for the linear model.

The model presented in this chapter does not assume forces, internal or external. It is

representative of an on-orbit structure without internal stresses, and not subject to thermodynamic

expansion and other environmental factors.

5.1 Probability of a structure state X with respect to lengths LE

Errors in the truss structure arise from errors in extending and contracting the IPJRs. These

errors build up over the assembly; distant nodes with long chains of ancestors are far more likely to

have larger covariances. The truss probability model is based on expected positional errors of the

nodes, assuming that no on-board error detection and correction is used when assembling. This

model is referred to as the open loop model. In this section, I describe the probability model and
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the reasoning for the using the covariance trace as the error metric.

To derive an expression for the covariance, the following assumptions are made: IPJR errors

are small relative to the structure, and the length of each strut is a Gaussian noise variable Li,j ∼

N (L̄i,j , σ
2
L), where L̄i,j is the nominal length plus noise with process variance σ2

L. Recall the

definition of the node assembly function in Equation 3.2.

The recursive nature of Equation 3.2 is readily apparent; for each Xi, replace it with Fi,

and repeat down to the base cases: X1 = 0, X2 ∼ N (L̄1,2, σ
2
L). Let the function returning the full

structure state X as a function of the full set of struts in EA be FV :

X = FV (LE) (5.1)

Note that while the error model for each individual strut N (L̄i,j , σ
2
L) is independent, error

accumulates through node assembly. The probability distribution of the full structure state X is

therefore the product of the probability distributions of each of the lengths pLi,j , where each is the

aforementioned distribution and the variable is the length between nodes:

p(X) =
∏

i,j∈EA

p(‖Xi −Xj‖ − L̄i,j) (5.2)

Despite the apparent simplicity of the function definition, solving for the covariance and find-

ing marginal probabilities requires calculating integrals over large dimensional spaces. Approaches

for solving this problem have been the subject of ongoing research for centuries, and advances in

computational hardware cannot fully solve this problem. It is of particular importance in the field

of robotics, where fast methods for finding statistics such as mean and covariance of robot and en-

vironment states given noisy measurements are a research priority [61]. This dissertation explores

a few such approaches. One is the linearization of the model around a fixed point, which I describe

in the following sections.
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5.2 Linearized probability of a structure state X with respect to lengths LE

Linearizing nonlinear functions has been a popular and generally useful method for dealing

with tough control and probability problems. Let J be the Jacobian matrix of the full structure

state with respect to LE with rows Li,j , evaluated at the nominal lengths L̄E :

J =
dFV (LE)

dLE

∣∣∣∣
L̄E

(5.3)

Then the linearized version of FV , called F̄V , is defined around the desired complete node

state X̄:

F̄V (LE) = X̄ + J(LE − L̄E) (5.4)

The probability model in Equation 5.2 can be approximated as a linear model around the

nominal structure X̄ for very small noise, a valid assumption for space telescope trusses with

standard deviations on the order of 10−6m. As described in [11], the approximate covariance of

a nonlinear function of Gaussian noises can be found as follows. Because the length noises are

independent of each other (i.e. zero-mean Gaussian noise added to a nominal length), the ΣL term

is a diagonal matrix with entries σ2
L, allowing for simplification:

p(X) ≈ N (X̄,ΣX)

ΣX = JΣLJ
T = σ2

LJJ
T (5.5)

In this form, determining the overall and marginal distributions of the assembly function is

tractable, enabling an algorithm to quickly evaluate any assembly sequence.

5.2.1 Covariance Trace as the Metric

Given several assembly sequences Aa, the covariance matrices ΣXa can be calculated as

shown in Equation 5.5. But how does one compare two covariance matrices to determine which
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one is “better?” The metric I chose was the trace of the covariance matrix, which is defined as

Tr(Σ) = Tr( eigenvalues λ) = sum of the diagonals. I define the optimal assembly order as the

one that minimizes the trace:

Aoptimal = argmin
Ai

(Tr(ΣX,Ai)) (5.6)

The trace is the sum of the expected squared errors of each variable, Tr(ΣX) =
∑

iE[(Xi −

X̄i)
2], making the trace the expected squared error of the entire structure vector X.

The trace of a covariance matrix can also be expressed easily in geometrical terms. The expo-

nent in a multivariate normal distribution, (X − µ)TΣ−1(X − µ), is the square of the Mahalanobis

distance [43]:

DM (X) =
√

(X − µ)TΣ−1(X − µ) (5.7)

The Mahalanobis distance is a multivariate analogue of the standard deviation: all points

satisfying DM (X) <= 1 are said to be within one standard deviation of the mean. The set of

points at which the Mahalanobis distance is constant are hyperellipsoids for that constant. This is

obvious when the diagonalized form of the covariance matrix is used:

DM (X)2 = 1 =
(x1 − µ1)2

λ1
+ · · · (5.8)

The semi-major and semi-minor axes of the hyperellipsoid are the square roots of the eigen-

values,
√
λ1. Due to the eigenvectors being orthonormal, the eigenvectors scaled to the square

roots of the eigenvalues can be considered to be the half-lengths of a bounding box surrounding the

ellipsoid for DM (X) = 1. The half-length of the diagonal of the bounding box is the square root

of the sum of the eigenvalues, which makes it the square root of the trace, and thus the expected

squared distance of a point to the mean µ, as shown in Figure 5.1.

When expanded out using the definitions of X and LE in Equations 3.5 and 3.6, Equation

5.5 becomes:
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Figure 5.1: A covariance matrix Σ around mean µ is decomposed, where the eigenvalues are
λ1, λ2, λ3, and the eigenvectors are shown emanating from the mean µ. The Mahalanobis ellipsoid
for DM (X) = 1 is shown, along with the bounding box of the ellipsoid whose half-diagonal is equal
to the square root of the trace of Σ and the square root of the expected squared distance E[{X−µ‖].
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
dx2

dL2,1
· · · dx2

dLlast

...
. . .

...

dzN
dL2,1

· · · dzN
dLlast

 .


σ2
L 0 · · ·

0 σ2
L · · ·

...
...

. . .

 .


dx2

dL2,1
· · · dzN

dL2,1

...
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dx2
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2 · · · · · ·

· · · . . . · · ·

· · · · · ·
∑

i,j∈E σ
2
L
dzN
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2

 (5.9)

The trace of ΣX , and the expected squared error of X, is simply the length variance σ2
L
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multiplied by the sum of the derivatives of each node variable with respect to each length variable

— the sum of the squared elements of the Jacobian:

Tr(ΣX) = σ2
L

N∑
i=1

∑
j,k∈EA

dXi

dLj,k

2

(5.10)

Additionally, since the nodes are defined with respect to only the lengths, subsets of the rows

in J can be used to find the marginal covariance for that subset of variables:

Σsubset = Jsubset(σ
2
LI)JTsubset (5.11)

This leads to another important fact:

Tr(ΣX) =
N∑
i=1

Tr(ΣXi) (5.12)

Finally, a node does not change with respect to struts that are placed after the node:

dxi
dLj,k

= 0 when either or both of j, k are placed after i (5.13)

Equations 5.12 and 5.13 show that the accumulation of expected squared errors is additive

with nodes. When choosing the next step in an assembly sequence, one could find the Jacobian of

each of the possible nodes with respect to all of the lengths leading up to it. The marginals of the

nodes already placed are not affected. This enables incremental algorithms instead of calculating

the full trace after the fact. However, these rules apply only to the trace itself: the covariance, in

general, is not incrementally additive, but it can be found by adding new rows to J and recalculating

by Equation 5.3.

The trace of a subset of node variables does not describe the individual eigenvalues λ, unless

that subset is just one row of J . It is more useful to know the marginal covariances of entire nodes,

which produce 3D ellipsoids for all but the first three nodes, and give a clear idea of the variability

of each node. The trace will give the bounding box half-diagonal, but to find the semi axis lengths

and vectors themselves requires eigendecomposition of ΣX into ΩiΛiΩ
T
i , with the columns of Ωi
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being the vectors with lengths equal to the square roots of the diagonal eigenvalue matrix Λi.

Numerous methods exist for eigendecomposition and will not be reproduced here [25].

5.2.2 Numerical Calculation of Jacobian matrix J

The closed form derivative of FV (LE) is impractical to calculate due to the number of terms

and the embedded square root functions, so I chose to approximate it instead. The central difference

formula for calculating a derivative of a function approximates it with a small step size h, and has

O(h2) error [45]:

df(x)

dx
=
f(x+ h)− f(x− h)

2h
+O(h2) (5.14)

To find the derivatives of all node positions X with respect to a single length Li,j , simulate

two assemblies on a structure with all lengths unchanged except for Li,j , to which h is either added

or subtracted, then follow the formula.

dfV (LE)

dLi,j
=
fV (LE |Li,j=L̄i,j+h)− fV (LE |Li,j=L̄i,j−h)

2h
+O(h2) (5.15)

The value I used for h is h = 5×10−7, making the Jacobian approximation error O(10−13m).

5.2.3 Covariance Trace and Cell Geometry

The covariance trace of a node with respect to only the struts connecting it to its base

varies with the orthogonality of the struts. The closer to orthogonal the set of float-base struts

is, the smaller the covariance trace of the float with respect to the base. I conjecture that the

aforementioned trace is minimized when the three struts are all orthogonal to one another (that is,

the apex could be a corner of a cube).

Conjecture 1.

If (Xf −Xi).(Xf −Xj) = 0,∀i, j ∈ Bf , then

(
dFf (LBf )

dLBf

)2

is minimal. (5.16)
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Figure 5.2: Contour plots of marginal covariance traces of a triangle apex with respect to its
connecting struts (left) and a tetrahedron apex with respect to its connecting struts (right).

Figure 5.2 shows the marginal covariance traces of both the third node in the starting triangle,

and the apex of a generic tetrahedron. For tetrahedral cells, there is a unique point at which the

three struts are orthogonal to one another. The set of points with orthogonal struts is a curve for a

triangle, as there are infinitely many ways a right triangle can be formed with a fixed hypotenuse.

Strut orthogonality is an important consideration for both assembly sequencing and structure

design. For sequencing, the trace of float base pairs will increase the farther from orthogonal the

struts are. In extreme cases of nearly degenerate tetrahedra, small deviations can lead to excessive

errors, possibly violating the triangle inequality, which in the physical world would mean that one

or more IPJRs would detach from the float node or the base. The assembly algorithms presented

in this thesis avoid degenerate tetrahedra. However, when randomly choosing a sequence, such

tetrahedra blow up the trace, resulting in physically meaningless traces.

By finding the gradient of the trace with respect to the node positions, a gradient descent

algorithm (or something more advanced) can be used to modify the positions of the nodes to
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minimize the overall trace:

d

dXf

(
dFf (LBf )

dLBf

)2

(5.17)

I do not fully analyze the consequences of allowing some nodes to vary in this fashion (and is

instead future work), however, my experimentation with such a gradient descent algorithm shows

that care must be taken when deciding which nodes to allow to move and which must remain fixed:

the gradient descent will favor orthogonalizing as many struts as it can, and this may result in

nodes merging, forming degenerate cells.

5.2.4 Analysis of Triple Helix Truss

The example structure I use in this section is a tower made of regular tetrahedra in which

each new node is attached to the base made of the three previously added nodes. It is the simplest

3D structure I could come up with, uses only one length, and has 3N − 6 struts, making it non-

redundant. I call this structure, shown in Figure 5.3, the “Triple Helix”:

Ath = [〈1, ()〉, 〈2, (1)〉, 〈3, (1, 2)〉, · · · 〈i, (i− 3, i− 2, i− 1)〉]

Li,j = 1

(5.18)

In this section, I examine the growth of the covariance trace as a function of assembly step:

how much does node placement vary as it gets farther from the origin? Intuitively, distant nodes

in the triple helix should should have a higher variance with respect to a strut the closer the strut

is to the origin. Figure 5.4 shows a triple helix example with 10 nodes, including two views of

the structure and the covariance ellipsoids (shown with σ2
L = 0.0025), and the table showing the

values of J with the fixed variables on the starting triangle omitted. The individual J values for

later nodes do not appear to differ substantially from those of earlier nodes, which may seem to

suggest that the size of a node’s ellipsoid is due only to the large number of non-zero entries in
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Figure 5.3: A simple structure, the Triple Helix, used for examples in this section. This example is
shown with 30 nodes and 84 struts. It is composed of regular tetrahedra with edge length 1, each
one built on top of the most recently added nodes, and is non-redundant.

J (that is, the node’s ancestor struts). However, this is incorrect: in the long run, the average J

value per node does increase, but very slowly: the two plots in Figure 5.4 show how the covariance

trace per node increases per node number, and how the mean squared J value increases as well

(excluding lengths that the node does not depend on). When scaling the structure up to 200 nodes,

a polynomial growth rate in the covariance trace is observed. Nodal covariance trace scales with

the cube of the node number. When looking at individual elements in the J matrix, the squared

values (which sum to the trace), scale with the square of the node number.

I then tried a modified version of the triple helix: instead of each length being exactly 1,

I allowed each length to be randomly chosen from [0.8, 1.2] to see if altered geometry altered the

covariance growth trends. The results are shown in Figure 5.5: while the results no longer follow a

smooth curve, they do not deviate far from the fit functions, showing that cell geometry is not as
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L2,1 L3,1 L3,2 L4,1 L4,2 L4,3 L5,2 L5,3 L5,4 L6,3 L6,4 L6,5 L7,4 L7,5 L7,6 L8,5 L8,6 L8,7 L9,6 L9,7 L9,8 L10,7 L10,8 L10,9

x2 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
x3 0.5 1. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
y3 -0.289 0.577 0.577 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
x4 0.5 0. 0. 1. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
y4 -0.481 0.385 0.385 0.577 0.577 -1.15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
z4 -0.136 -0.136 -0.136 0.408 0.408 0.408 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
x5 0.333 0.667 -0.444 0.667 -0.444 -0.444 -0.333 0.667 0.667 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
y5 0.0642 -0.513 0.77 0.385 -0.257 -0.257 0.962 -0.77 0.385 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
z5 0.318 0.318 -0.816 -0.953 0.635 0.635 0.68 0.68 -0.953 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
x6 -0.111 1.11 -0.296 1.11 -0.296 -1.04 -1.22 0.815 0.815 0.444 0.444 -1.22 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
y6 -0.47 0.299 0.385 0.642 0.599 -1.11 0.0642 -0.0428 -0.0428 -0.128 1.03 0.0642 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
z6 0.121 0.121 0.0454 -0.363 -0.257 0.575 0.0454 -0.0302 -0.0302 1.13 -0.499 0.0454 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
x7 -0.0185 0.185 0.506 1.85 -1.16 -0.543 -1.04 -0.235 1.31 0.63 -0.42 -0.42 0.741 -0.926 0.63 0. 0. 0. 0. 0. 0. 0. 0. 0.
y7 -0.303 -0.463 0.449 1.07 0.613 -0.656 0.684 -0.478 -0.442 -1.05 0.699 0.699 0.941 -0.0214 -1.05 0. 0. 0. 0. 0. 0. 0. 0. 0.
z7 0.202 0.202 -0.605 -0.605 0.524 0.58 0.484 0.479 -0.857 0.0756 -0.0504 -0.0504 0.257 0.801 0.0756 0. 0. 0. 0. 0. 0. 0. 0. 0.
x8 -0.364 1.31 -0.156 1.42 -0.267 -1.35 -1.73 0.831 0.934 0.716 0.646 -1.23 0.0494 -0.0329 -0.0329 -0.432 1.12 0.0494 0. 0. 0. 0. 0. 0.
y8 0.00832 -0.836 0.684 0.82 0.0594 -0.195 1.14 -0.86 -0.0879 -0.784 0.102 0.803 0.756 -0.504 -0.504 0.606 -0.421 0.756 0. 0. 0. 0. 0. 0.
z8 0.563 0.563 -0.781 -1.69 0.193 0.785 0.806 0.753 -0.425 0.806 -0.291 -0.702 -0.963 0.642 0.642 0.973 0.247 -0.963 0. 0. 0. 0. 0. 0.
x9 -0.663 1.07 0.48 2.26 -0.705 -1.51 -2.33 0.274 1.37 1.19 0.447 -0.789 0.527 -0.59 -0.192 -1.03 0.686 0.686 0.835 -0.239 -1.03 0. 0. 0.
y9 -0.574 -0.154 0.242 1.3 1.1 -1.05 0.297 -0.15 -0.767 -1.31 1.22 0.623 1.13 0.405 -1.53 -0.537 0.358 0.358 -0.0166 1.16 -0.537 0. 0. 0.
z9 0.273 0.273 -0.0773 -0.818 -0.328 0.657 0.21 0.12 0.0778 1.34 -0.56 -0.225 -0.47 -0.00056 0.523 0.391 -0.261 -0.261 0.895 -0.314 0.391 0. 0. 0.
x10 -0.586 0.598 0.85 2.57 -1.13 -1.23 -2.17 -0.234 1.59 1.25 0.00457 -0.401 0.878 -1.03 0.0311 -0.974 0.177 0.964 0.989 -0.659 -0.659 0.318 -0.472 0.989
y10 -0.109 -1.27 0.532 1.49 0.586 -0.156 1.35 -0.949 -0.822 -1.96 0.319 1.35 1.88 -0.0797 -0.893 0.0459 -0.579 0.335 -0.617 0.411 0.411 1.15 -0.548 -0.617
z10 0.57 0.57 -1.02 -1.71 0.517 0.773 0.955 0.931 -0.772 0.35 -0.102 -0.697 -0.784 0.962 0.513 0.909 0.382 -1.27 -0.376 0.251 0.251 0.283 0.988 -0.376
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Figure 5.4: Upper left and right: two views of the covariance ellipsoids for the triple helix structure
with 10 nodes, scaled to σ2

L = 0.0025. Center: the Jacobian matrix J for each node with respect to
each length for the 10 node structure. Lower left: the covariance trace per node for a triple helix
with 200 nodes, with σL = 1, shown with a fit function 0.0805N3, which shows that the covariance
trace increases with the cube of the node number. Lower right: the mean squared derivative of
each node with respect to each length (that is, the trace of the node divided by the number of
nonzero elements of JN ) shown with a fit function 0.00915N2, which shows that the mean squared
derivative of node with respect to length varies with the square of the node number.
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Figure 5.5: When allowing the lengths in the triple helix to vary randomly from 0.8 to 1.2, the
covariance trace and mean squared derivative no longer smoothly follow the fit functions from
Figure 5.4, but still grow as functions of N3 and N2 respectively.

important as distance and ancestor count for determining a covariance trace.

Two lessons are learned form this example: to minimize covariance trace in a structure, in

general, one must minimize the distance from the origin to the nodes, and minimize the number of

ancestors to any given node. A structure in which the origin is close to the center, and the assembly

sequence grows out from the center, should be close to optimal. The next chapter explores this

idea more fully.

5.2.5 Numerical Determination of Divergence of Linear F̄ From Nonlinear F

The linearized assembly Equation 5.4 is only a suitable replacement for the actual, nonlinear

assembly Equation 3.2 if the results produced by the former equation are reasonably close. “Rea-

sonably close” here means an upper limit on the Euclidean distance between the structure vector or

a single node as calculated by both functions. In this section, I will analyze the variations between

the triple helix as assembled randomly by both the nonlinear and linear assembly functions for

various σL and determine when the linear function is no longer useful.

For each length in the assembly order, I randomly choose from the distribution:

LE ∼ N (L̄E , σ
2
LI) (5.19)
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Figure 5.6: Top: The 100 node triple helix. Top Middle: Sample of 500 nodes calculated both
by linear f̄ (orange) and nonlinear f (blue), with dotted lines spanning the error gap, for the
σL = 1.5mm case. Bottom Middle: Same as above, but with σL = 5cm, showing the increase in
variation as the samples move away from the mean. Bottom Left: mean error of f̄ as a function
of node number for σL = 3.95µm. Bottom Center: same, but with σL = 1.5mm. Bottom Right:
same, but with σL = 5cm.

Then I calculated the true FV and the linearized approximation F̄V and compared the results.

I do this for 1000 trials of the 100-node triple helix structure, where each strut has a nominal length

L̄i,j = 1m, and σL = 3.95µm, 1.5mm, 5cm. The first σL value, 3.95µm, represents a potential linear

actuator variance for an on-orbit experiment, 1.5mm is on the order of the 3D IPJR prototype,

and 5cm is an arbitrary large standard deviation for comparison. The results are shown in Figure

5.6. For a structure as large as the 100-node triple helix, the smallest σL value results in nearly

identical assembly function outputs, with the largest mean error on the order of 50nm, which is

small enough that the nonlinear function can be safely ignored. For the medium range σL, the

mean error for the final node is about 7mm, which, for a structure with 100 nodes attached in a
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linear fashion, is roughly on the order of σL. For the 5cm example, the error is significant. For all

nodes in all cases, the linear error can be viewed as a tangent to a ball, where the ball is the set

of actual node positions given the random lengths — the farther away from the mean, the farther

the tangent is from the ball.

For the micron level of precision required on the struts for space telescopes, the linear function

F̄ is accurate to the order of nanometers, making it possible to build with precision without ever

using or knowing the nonlinear version.

5.3 Measurements

Up to now, this chapter has dealt exclusively with strut length probabilities, with no con-

sideration of measurements. While the mean of a measurement-free assembly distribution will

always be the nominal position, with measurements this will change, and covariances will shrink.

The first subsection will discuss the Gaussian canonical form, which simplifies operations such as

marginalization, reduction, the combination (product) of covariances, and linear conditionals. The

following subsections will consider measurements on both edge lengths and node positions, and

their linearizations.

5.3.1 Multivariate Normal Canonical Form

Before describing how measurements are applied and structure estimates are made, some

background material on how to combine measurements is needed. Multivariate normal distribu-

tions have a “canonical form” which makes it easy to find products of distributions, marginal

distributions, reductions (such as measurement values), and linear conditionals. Linearized filters

such as the Kalman filter are derived from these concepts. I present the canonical form as described

in [32].

Let µ,Σ be the mean and covariance of some distribution N (µ,Σ), and n is the length of µ.

The canonical form is a triple k, h, g, which are defined:
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k = Σ−1

h = kµ

g = −1

2
µTkµ− log (2π)n/2

√
Det(Σ) (5.20)

The inverse operation is:

Σ = k−1

µ = Σh (5.21)

Since g is not required to find Σ, µ, and does not factor into any calculations of k, h for the

remainder of this section, I will leave it out for the sake of brevity.

To find a product of two distributions over two sets of variables p(X1)p(X2) when X1 ∼

N (µ1,Σ1), X2 ∼ N (µ2,Σ2), convert both to canonical form, then sum them:

k1,2, h1,2 = k1 + k2, h1 + h2 (5.22)

Since the variable sets X1, X2 may have an arbitrary degree of overlap, the matrices k1, k2

and h1, h2 must be expanded with zeros, and the combined variable set must be consistent between

both matrices for the operations to be correct:

If the combined variables are (X1, X2),then k1 =

 k1 0

0 0

 , h =

 h1

0

 (5.23)

To find the marginalization p(X) when p(X,Y ) is known — that is, the integral
∫∞
−∞ p(X,Y )dy,

first, rearrange the columns of k and h to align with the variable set (X,Y ):

For variables (X,Y ), k =

 kXX kXY

kYX kYY

 , h =

 hX

hY

 (5.24)
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Then to find the marginalized km, hm, gm:

km = kXX − kXY k−1
Y Y kY X

hm = hX − kXY k−1
Y Y hY (5.25)

To find the reduction p(X,Y = y) where y is a measurement:

kr = kXX

hr = hX − kXY y (5.26)

Finally, the linear conditional form is defined, p(X|Y ) = N (µx + J(Y − µY )),ΣX), in which

the mean of Y is a linear system of X, and variable order (X,Y ):

klc =

 Σ−1
x −Σ−1

x J

−JTΣ−1
x JTΣ−1

x J



hlc =

 Σ−1
x (µX − JµY )

−JTΣ−1
x (µX − JµY )

 (5.27)

5.3.2 General Method for Linearizing Measurements and Calculating Estimates

I recall the definition of the structure covariance matrix in Equation 5.5:

ΣX = JΣLEJ
T = σ2

LJJ
T (5.28)

Let some generic measurement function M = f(X) be linearized to the following form:

M̄ ∼ N (µM +JM (X− X̄)), and let m be a known measurement of M̄ . To get the optimal estimate

X̂ of X:

• Calculate kX , hX from X,ΣX .
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• Find the linear conditional canonical form kM |X , hM |X from Equation 5.27.

• Find the product p(X,M) = p(X)p(M |X) as kM,X , hM,X from Equation 5.22.

• Marginalize kX,M , hX,M over M = m using Equation 5.25.

• Convert back to µ,Σ form to get the estimated mean and covariance X̂, Σ̂X .

5.3.3 Position Measurements

The simplest measurement is that of a single node position, Xi. Global positioning systems

like the Vicon [1] will associate a positioning error with the node measurement. Assuming the

measurement of each axis is independent, one possible measurement is:

MXi = N (Xi, σ
2
P I) (5.29)

Where σP is the per-axis standard deviation. The Jacobian can be calculated trivially as

J = I, since the measurement mean changes exactly as the position does.

Position measurements may also be nonlinear functions of the position, and may depend on

the position of the sensor, which itself may have a probability distribution. In this case, it is a

SLAM problem, and the full state X must be augmented to include the position of the sensor,

and the measurement function M = f(X) will linearize to include both the nodes and the sensor’s

position. The most obvious such sensor is a camera; while cameras will no doubt play a very large

role in future iterations of the IPJR, they are considered future work in this dissertation.

5.3.4 Length Measurements

Of chief interest in this dissertation are length measurements, which are local measurements

only, and are taken by the IPJRs that are spanning the gap between two nodes. While each

measurement only provides a scalar containing information on six variables, a there are at least as

many measurements as there are unknown variables, a structure estimate can be made.
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The length measurement function is MLi,j (Xi, Xj) = ‖Xi−Xj‖+N (0, σ2
M ). To simplify the

representation, I present the derivatives as a function of vi, vj as in Chapter A.2.4, where v stands

in for any of the set x, y, z. The derivative with respect to the six node variables is:

d

dvi
(MLi,j ) =

vi − vj
‖Xi −Xj‖

d

dvj
(MLi,j ) =

vj − vi
‖Xi −Xj‖

(5.30)

Using the notation in Equation 5.27, the J matrix is d
dXi,j

(MLi,j ) evaluated at X̄, and the

measurement mean µX = µM is X̄i − X̄j .

5.3.5 Reduction of Structure Covariance Based on Which Strut is Measured

This section examines the effects of taking strut-length measurements on a structure, and

discusses how one can maximize the utility of individual length measurements.

Let p(M |X) = N (µM + JM (X− X̄),ΣM ) be the linear conditional probability function for a

set of measurements measurement M , and let m̄ be an instance of such a measurement. Following

the steps laid out at the end of Section 5.3.1, after measurements, the mean and covariance of the

structure X after measurements are taken are:

ΣX|M = (Σ−1
X + JTMΣ−1

M JM )−1

µX|M = ΣX|M (Σ−1
X X̄− JTMΣ−1

M (µM − JMX̄)

−(−JTMΣ−1
M )m̄) (5.31)

Again, I use the triple helix as the motivating example. I look at the effects of taking just

one strut length measurement, varying which strut is measured. In particular, I wanted to know

the quantity of improvement in the covariance trace as a function of which strut was measured.

Is it better to measure in one area versus another, and why? I also considered measuring lengths

between nodes to which a strut is not attached.
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Figure 5.7 shows the results of individual strut measurements (top) and all node pair mea-

surements (bottom). Generally, measurements on the earlier-placed struts have a better overall

effect, due to the larger number of nodes that depend on such struts, which leads to a cumulative

effect. The best strut to measure is the (1, 4). As it turns out, the six best struts to measure follow

the (i, i+ 3) format.

However, if I allow length measurements between nodes that are not spanned by struts (which,

at O(N2), is the majority of them), a sizable portion of them are better than (1, 4), the best being

nearly 3 times better. I believe there are three reasons for this: there is a larger set of measurements

to choose from, measurements between non-strut node pairs are not already implicitly included in

the covariance matrix, and many of these span large gaps that are otherwise spanned by multiple,

propagated strut errors. It is therefore very beneficial to measure lengths between any pairs of

nodes possible, not just the struts, to enhance the overall result.

The methods in the following chapters do make use of some measurements that are not of

assembly struts. Recall that, for redundant structures, in many cases the base triple is not the

complete set of available struts to the new node. The remainder form the passive struts. IPJRs

passively adjust their lengths to accommodate the assembly IPJRs, not contributing to the process

noise. They do measure the post-weld lengths, however, giving the estimate additional loop closures.

The reduction in covariance trace is an example of loop closure in SLAM. Measurements

on nodes with numerous ancestors have a greater impact on the accuracy of the estimate, and

measurements on unique node pairs not found in the assembly process are better overall. However,

the measurable node pairs will be limited by which ones have struts and/or which ones are close

enough to be spanned by an IPJR, depending on the hardware implementation
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Figure 5.7: Top: the reduction in covariance trace over the 20-node triple helix given a single
measurement on the strut listed (not cumulative), showing that, in general, earlier-placed struts
have a better impact on the covariance when measured. Bottom: the reduction in covariance trace
when all node pairs are included, which amounts to 180 measurements, too many to label. Even
without labels, it is clear that many non-strut measurements result in a much larger reduction in
covariance trace than the best of the strut measurements.



Chapter 6

Optimizing Assembly Sequences

With the covariance trace established as the metric, the next step is describe an algorithm

that can find good assembly sequences. The set of assembly sequences is exponential in size,

and the problem is NP-Hard, so the optimal sequence cannot be found except through brute force

search on very small structures. However, a few heuristics may be employed to find very good

sequences:

• A centralized starting point, building incrementally outward, will lead to better results,

because a node is likely to be more precise if the chain of steps leading to it is smaller. The

algorithm AllCentralTriangles was introduced in Section 4.7.

• Choosing the assembly step that minimizes the trace leads to a near-optimal result.

• Better sequences can be found by modifying one step at a time, eventually finding a mini-

mum.

Implementing all of the above heuristics results in an algorithm that can reliably produce

assembly sequences with smaller traces than any heuristic alone. This algorithm is FindLocally-

OptimalSequence, which first picks a central starting triangle, generates an initial sequence by

greedy choice, then swaps steps until a minimum trace is found.
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Algorithm 10 This algorithm constructs an assembly sequence given a starting triangle by choos-
ing the step among all available steps that minimizes the addition to the structure’s overall trace.

GreedyAssembly(V,E,∆, σL)

1: Amade ← ∆
2: while ‖Amade‖ 6= V do
3: Vmade ← {f : (f,B) ∈ Amade}
4: Snext ← PossibleNextNodes(Vmade, V \ Vmade, E)
5: Abest ← ∅, Tbest ←∞
6: for all (f,B) ∈ Snext do
7: Acandidate ← Amade ∪ (f,B)

8: Tcandidate ← σ2
L
dfV (LE,candidate)
dLE,candidate

∣∣∣2
L̄E,candidate

9: if Tcandidate < Tbest then
10: Abest ← Acandidate, Tbest ← Tcandidate
11: Amade ← Acandidate
12: return Amade

6.1 Assembly by Greedily Minimizing Trace

The greedy choice algorithm, shown in Algorithm 10, assembles a structure incrementally by

choosing the assembly step that minimizes the overall trace. While this will not always produce

the best option, it does not require backtracking, and returns good sequences. In addition, it can

be used as a starting point for a local search to find a better sequence. It is conceptually simple:

beginning from the starting triangle, look at each possible next node, and choose the float-base

pair that minimizes structure covariance. Calling GreedyAssembly for a central starting triangle

has a better chance of finding a lower covariance than starting from other triangles, as I show in

Section 6.4.

6.2 Descent by Local Search Around Complete Sequences

Instead of starting from a starting triangle (or nothing at all) and incrementally assem-

bling a structure, one can find assembly sequences by tweaking existing sequences. Assembly-

LocalSearch, Algorithm 11, examines every single neighboring sequence of a given sequence and

moves to the sequence whose trace is the smallest. The process is repeated for the new sequence

until no neighboring sequence has a better trace. This is a local minimum in the space of assembly
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Algorithm 11 Local search is analogous to steepest descent in the graph of assembly sequences,
in which the traces of all neighbors to the current sequence are calculated. If the minimum trace
is lower than that of the current sequence, the minimum becomes the new current, and the process
repeats until the local minimum is found.

AssemblyLocalSearch(Astart, V, E, σL)

1: Abest ← Astart

2: Tbest ← σ2
L
dfV (LE,best)
dLE,best

∣∣∣2
L̄E,best

3: Min← False
4: while Min = False do
5: Min← True
6: Aadjacents ← AdjacentSequences(Abest, V, E)
7: for all Acandidate ∈ Aadjacents do

8: Tcandidate ← σ2
L
dfV (LE,candidate)
dLE,candidate

∣∣∣2
L̄E,candidate

9: if Tcandidate < Tbest then
10: Min← False
11: Abest ← Acandidate, Tbest ← Tcandidate
12: return Abest

Algorithm 12 To find a suitable assembly sequence that is locally optimal: choose a central
starting triangle, find an assembly sequence that greedily assembles to minimize trace, then perform
a local search until the sequence is optimal among its neighbors.

FindLocallyOptimalSequence(X̄, V, E, σL, σM , h)

1: ∆central ← RandomChoice(AllCentralTriangles(V,E))
2: Agreedy ← GreedyAssembly(V,E,∆greedy, σL)
3: Abest ← AssemblyLocalSearch(Agreedy, V, E, σL)
4: return Abest

sequences. The neighboring sequences for a given sequence is generated by AdjacentSequences.

6.3 Runtime

Lemma 6. GreedyAssembly is O(N3), and can be optimized to O(N2).

Proof. GreedyAssembly makes N calls to the assembly loop until assembly is finished. Using

the same tweak to optimize the runtime of RandomSequence, looking only for the next steps

attached to the node previously attached, the PossibleNextNodes step can be considered O(1),

but even when unoptimized at O(N), it does not contribute significantly to the overall runtime.

Finding the covariance trace is O(N2); for each of the 3N − 6 lengths, FV is called twice
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to generate two modified structures X±h, each an O(N) call. This can be reduced to O(N) time

using the additive properties of trace established in Equations 5.12 and 5.13. By saving X±h for

all lengths each step, and adding the new node to each, the number of calculations is reduced to

the number of saved modified lengths plus the new modified lengths, which is 2(3N − 6) + 6. All

told, GreedyAssembly is O(N3), or O(N2) when the covariance trace optimization is used.

Lemma 7. AssemblyLocalSearch is O(S(N)N3), where S(N) is the number of swaps required

to find the local minimum.

Proof. Before the while loop, the covariance trace requires O(N2) time. Inside the loop, Adja-

centSequences is called once, and is O(N2) The inner for loop in AssemblyLocalSearch runs

O(N) times for the adjacent sequences, calculating the covariance trace each time, making the

interior of the while loop O(N3).

It is possible to reduce the covariance trace calculation time by saving and reusing the traces

of unaffected nodes, as done before. However, this tactic is not as powerful for AssemblyLo-

calSearch; the entire covariance needs to be recalculated for structures with different starting

triangles, and for swapped steps, on average it will be a step in the middle of the sequence, mean-

ing that the derivatives of half the nodes need to be calculated for all 3N − 6 lengths, which is still

O(N2).

The last step is to determine how many times the while loop is executed before the local

minimum is found. The simulations in the following sections suggest that the length is roughly

linear. However, greedily choosing neighboring sequences may not take a linear path to the local

minimum, so I say that the number of swaps is S(N), and FindLocallyOptimalSequence is

O(S(N)N3). I conjecture that S(N) = O(N), but have yet to prove it.

Theorem 7. FindLocallyOptimalSequence is O(S(N)N3), where S(N) is the number of swaps

required to find the local minimum in AssemblyLocalSearch.

Proof. The first step is to call AllCentralTriangles. As shown in Theorem 5, finding all central

triangles takes O(N2) time. GreedyAssembly is O(N2) when optimized, as shown in Lemma 6.
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6.4 Assembly Sequencing Results

To estimate the σL process noise, I measured the pre- and post-fix lengths of 75 aluminum

struts, giving us a process noise of σ2
L = 3.57 × 10−7m2 = 0.357mm2. The ruler variance σ2

M was

based on visual estimation of length consistently being within 0.5mm of the actual length; if 0.5mm

is considered the two-sigma length, σ2
M = 6.25× 10−8m2 = 0.0625mm2.

The assembly sequencing simulations were performed on a 45-node subset of the 84-node

telescope, chosen for the faster simulation runtimes while showing trends. The 45-node telescope

has 1260 possible starting triangles, 72 of which are central based on the minimum parallel order

length. I used FindLocallyOptimalSequence and compared the resulting orders at each step.

Additionally, I tweaked the algorithm to allow any triangle to be chosen and compared this to the

central triangle approach. The results shown are derived from:

• Any random sequence

• Any random sequence from a central starting triangle

• Greedy assembly from the starting triangles used in any random sequence

• Greedy assembly from the central starting triangles

• Local search from greedy assembly from any starting triangle

• Local search from greedy assembly from central starting triangles

The results are shown in Figure 6.1. The top row shows the distribution of traces of 50 trials

with random sequences starting from any starting triangle (left) or from a central starting triangle

(right). Both histograms show the trace logarithms due to the very large range of trace variances.

Random sequences for the telescope almost always include nearly degenerate tetrahedra, which

contribute enormous errors to the overall trace; while human assembly planners would naturally



84

0 10 20 30 40
x: Tr = ex m20

5

10

15

20
Count

Log Histogram of Traces of

Random Sequences

45-Node Telescope

Mean = 4.23 ×1013 ± 2.99 ×1014 m2

-5 0 5 10 15
x: Tr = ex m20

5

10

15

Count

Log Histogram of Traces of

Random Fastest Sequences

45-Node Telescope

Mean = 8.42 ×104 ± 5.95 ×105 m2

0.0006 0.0008 0.0010 0.0012 0.0014
x: Tr = x m20

2

4

6

8

10

Count

Histogram of Traces of

Greedy Assembly from AnyTriangle

45-Node Telescope

Mean = 7.92 ×10-4±2.06 ×10-4 m2

0.00048 0.00050 0.00052 0.00054 0.00056 0.00058
x: Tr = x m20

5

10

15

Count

Histogram of Traces of

Greedy Assembly from Central Triangle

45-Node Telescope

Mean = 5.08 ×10-4±2.88 ×10-5 m2

0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
x: Tr = x m20

2

4

6

8

10

12

Count

Histogram of Traces of

Steepest Descent from Greedy Assembly from AnyTriangle

45-Node Telescope

Mean = 6.18 ×10-4±1.15 ×10-4 m2

0.00046 0.00048 0.00050 0.00052 0.00054 0.00056
x: Tr = x m20

2

4

6

8

10

12

14

Count

Histogram of Traces of

Steepest Descent from Greedy Assembly from Central Triangle

45-Node Telescope

Mean = 4.94 ×10-4±2.7 ×10-5 m2

Figure 6.1: Left column: random sequences starting from any starting triangle. Right column:
random sequences starting from a central starting triangle. Top row: Random assembly, shown as
a log trace histogram due to the large range of values. Middle row: Greedy assembly. Bottom row:
Steepest descent starting from greedy assembly.
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avoid the degenerate steps, the topology permits their existence as possible assembly steps. The

mean traces of these random sequences blew up as a result, making their values meaningless.

Therefore, random sequences are not suitable for precision assembly.

Using the same starting triangles as the random sequence experiment, the greedy assembly

algorithm is an enormous improvement, and avoids degenerate tetrahera. These results are shown

in the top row of Figure 6.1, starting from any starting triangle (left) or from a central starting

triangle (right). The means and standard deviations are 7.92 × 10−4 ± 2.06 × 10−4m2 for any

starting triangle, and 5.08×10−4±2.88×10−4m2 for central triangles. On average, greedy assembly

on central starting triangles is 1.56 times more precise than assembly from any triangle, further

justifying building from the center outward.

The last optimization, local search, was performed with the greedy sequences. The results

are in the bottom row of Figure 6.1, again starting from any starting triangle (left) or from a central

starting triangle (right). The trajectories taken from the greedy to the local minimum are shown

in Figure 6.2. The means and standard deviations are 6.18× 10−4±1.15×10−4m2 for any starting

triangle, and 4.94 × 10−4 ± 2.70 × 10−5m2 for central triangles. For the cases starting from any

triangle, locating a local minimum results in an average improvement of a factor of 1.25, requiring

an average of 14.28 step changes before finding the minimum. The improvement for central triangle

steepest descent is smaller: a factor of 1.03, making an average of 6.96 steps. The reduced number

of steps is due to the central triangle greedy sequence starting closer to a minimum. After steepest

descent, starting from a central triangle is on average 1.25 times more precise than starting from

anywhere. The central triangle steepest descent sequences never found a better starting triangle

than a central one, while 20% of the descents starting from any triangle changed their starting

triangles to one of the central triangles.

In all of the trace histograms, there are clusters with larger variance than the others due

to some of the assembly sequences having a skewed tetrahedral cell contributing a large variance.

While these are not so skewed as to blow up the trace calculation, the fact that such cells were

found by greedy assembly and subsequently unchanged by the local search shows that multiple
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Figure 6.2: The trajectories taken by the local search algorithm, starting a greedy assembly on
any starting triangle (orange) and a central starting triangle (blue), averaged and extended in step
count to the longest such trajectory. Descending from a greedy sequence generated from a central
starting triangle finds better local minima in fewer steps.

random restarts should be used to find sequences without this problem.



Chapter 7

Assembly with Simultaneous Localization and Mapping

The previous two chapters introduced a linear model of the assembly process and the mea-

surement process, enabling me to derive closed forms for the propagation of assembly error, and

using that information to derive algorithms for finding optimal assembly sequences. I showed that

the linear models work quite well for the hardware I present in this thesis given that assembly

lengths are decided in advance. To control assembly by adjusting the lengths as the assembly pro-

ceeds to offset the estimated structure, I chose to explore this using nonlinear estimation techniques.

This chapter describes the use of mid-assembly measurements, and compares four estimation mod-

els: a Linear Least Squares model based on the canonical form, the Extended Kalman Filter, the

Unscented Kalman Filter, and the Maximum Likelihood Estimator.

Let X̂ be the estimate of the made nodes of the truss structure, where the estimation function

is arbitrary (linear or otherwise). Continuing to build with the predetermined lengths given by X̄

would be inappropriate. My strategy is to use the estimated base nodes as the “correct” values

when calculating the lengths needed to reach the goal, so that the expected value of the base and

the expected value of the lengths combine to put the expected value of the float node at desired

spot.

The tetrahedron function in Equation 3.3 is modified to use the estimates of the base positions

X̂ijk, and choosing the lengths L̂ijk so that Xf is nominally where it should be:
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Xf = Ff (X̂i, X̂j , X̂k, L̂i,f , L̂j,f , L̂k,f )

where L̂i,f = ‖Xf − X̂i‖ (7.1)

With measurements applied at every step, the resultant estimation should be an improvement

over measurement-free case, but the adjustment of desired strut lengths at every step based on all

of the measurements before it complicates the estimation process since the measurements feed back

into the state function. No longer can the covariance matrix be represented in the convenient form

J(σ2
LI)JT .

The following sections compare the Linear Least Squares, the Extended Kalman Filter, the

Unscented Kalman Filter, and the Maximum Likelihood Estimator. In following with the capabil-

ities of the IPJRs, this chapter will only focus on length measurements, and only on struts that

were recently added, but the methods presented can accept other forms of measurement of any

nodes without modification. I also compared two variations of which measurements are chosen: the

measurements only of the assembly struts themselves, or the measurements of the assembly struts

and the passive struts.

7.1 Linear Least Squares

The linear least squares utilizes the canonical forms first described in Section 5.3.1 and is

shown in Algorithm 13. It is called ”linear least squares” due to the model being equivalent to the

least squares derivation of the Kalman Filter [11]. This filter is almost identical to the Kalman

Filter, the only distinction being that at each step in the assembly process, the complete structure

canonical form is reduced by the total set of measurements instead of an iterative succession of

measurements and actions. There is no propagation through the nonlinear model as there is in the

Extended and Unscented Kalman Filters, so I expected this filter to be the least accurate. If F was

a linear function, this would be an optimal estimate, but for the nonlinear case it is not optimal.

The inputs are LK , the length used during the assembly process, including the lengths that
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Algorithm 13 This algorithm returns a linear least squares estimate of a structure with the given
lengths LK (not necessarily the nominal lengths but the ones used during assembly), the expected
value of measurements and the measurements themselves, the variances, and a step size for finding
the assembly covariance.

LinearLeastSquaresEstimation(LK ,MK , A, σL, σM , h)

1: X̄L ← FK(LK)
2: ΣX̄L

← Apply Equation 5.5 to LK at X̄L

3: µMK
← ‖X̄i − X̄j‖∀(i, j) ∈MK

4: kΣ, hΣ ← Apply Equation 5.20 to X̄L,ΣX̄L

5: JM ← d(‖X̄i−X̄j‖)
dXi,j,predicted

∣∣∣
µMK

∀(i, j) ∈MK (Equation 5.30)

6: kM |X , hM |X ← Equation 5.27 with N (µMK
+ JM (Xall − X̄L), JM (σ2

MI)JTM )
7: kX,M , hX,M ← kΣ + kM |X , hΣ + hM |X
8: kall,M=MK

, hall,M=MK
← Equation 5.26 with measurements MK

9: X̂,ΣX̂ ← Equation 5.21

10: return X̂,ΣX̂

are modified from the desired lengths due to previous estimates. These lengths, and the assembly

sequence A and step size h, are used to generate predicted structure (called “predicted” to distin-

guish from “nominal”), which gives the mean and covariance matrix of that structure: X̄L,ΣX̄L
.

MK is the set of measured values. The process noise σL and measurement noise σM are also

required.

First, the predicted structure mean and covariance are found, as are the measurement means

µMK
. These are converted into the canonical form. Then, the Jacobian of all of the measurement

functions (norms between nodes) with respect to the nodes is found and evaluated at the mean. The

Jacobian JM is then used to calculate the measurement covariance matrix by JM (σ2
MI)JTM , and the

linear system µMK
+JM (Xall−X̄L), both of which are used to find the linear conditional canonical

forms. The structure and measurement canonical forms are multiplied using the summation in

Equation 5.22, then the canonical reduction is performed by setting the measurement variables to

MK . The result is transformed back into the estimated mean and covariance.
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7.2 Extended Kalman Filter

The Extended Kalman Filter was quickly developed after the introduction of the Kalman

filters in the 1960s to allow nonlinear systems to be modeled. While in the decades since, improve-

ments have been made (Particle Filters, Unscented Kalman Filters, GraphSLAM and FastSLAM

to name a few), EKF remains popular for use in SLAM and estimation due to its relatively simple

implementation, and its usefulness in near-linear problems. The most helpful source on the imple-

mentation of EKF is in a paper arguing for why it is obsolete [63]. Unlike Algorithm 13, the EKF

in Algorithm 14 takes as input prior estimated means and covariances and returns updated means

and covariances. Also, unlike Algorithm 13, instead of a complete structure covariance being cal-

culated as a function of only the lengths, the covariances of each added node are linear conditionals

depending on the variances of the struts attached to that node, and the covariances of the base

nodes (See Appendix B for discussion).

When ExtendedKalmanFilter is called for the first time, the prior mean and covariance

can be initialized to 0, otherwise it is called with the results of the previous call. The parameter

X̄f is the desired node position for the current added node f , Lf,B are the lengths to its base,

Mf,neighbors are the measurements between f and any or all of its neighbors, including nodes not

part of the base but which share a redundant strut with f . The process and measurement noises

σL, σM are passed in as well. The notation f, neighbors indicates that the set may include not only

the assembly struts, but also the passive struts.

The first step calculates the predicted structure X̂t,t−1 when the previous estimate is passed

through the strut/triangle/tetrahedron functions without added noise (and since X̂t,t−1 is the full

structure vector, the other nodes remain unchanged and are set to what they were before). The

derivative of nodes with respect to nodes F is then calculated as 1 on the diagonal for fixed nodes

to reflect their unchanging values, and Ff is the derivative of the node function Ff from Equation

3.2. Matrix G is calculated as 0 for fixed nodes, and the derivative of the node function with respect

to strut lengths for f . These two matrices are then used to predict the next covariance matrix,
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Algorithm 14 The Extended Kalman Filter, applied to structures. This makes heavy use of the
functions described in Appendix A and not the complete node function as a function of lengths
FV (LE). Because the addition of a new node affects only itself and not the other nodes, the fixed
nodes remain unchanged, and vary only with respect to themselves.

ExtendedKalmanFilter(X̂t−1,t−1,ΣX̂t−1,t−1
, X̄f , Lf,B,Mf,neighbors, σL, σM )

1: Xf,t,t−1 ← Ff (XB,t−1,t−1, Lf,B), using Equation 3.2
2: Xi,t,t−1 ← Xi,t−1,t−1∀i 6= f

3: X̂t,t−1 ← Xi,t,t−1∀i
4: F ← I, square matrix of dimension ‖X‖
5: Ff ←

dXf
dXB

∣∣∣
X̂t−1,t−1,Lf,B

using Equations A.36-A.40

6: G← 0
7: Gf ←

dXf
dLf,B

∣∣∣
X̂t−1,t−1,Lf,B

using Equations A.28-A.33

8: ΣX̂t,t−1
← FΣX̂t−1,t−1

F T +G(σ2
LI)GT

9: Mt,t−1 ← ‖Xf −Xi‖|X̂t,t−1
∀i ∈ neighbors

10: H ← d‖Xf−Xi‖
dXf,i

∣∣∣
X̂t,t−1

∀i ∈ neighbors

11: U ← d(‖Xf−Xi‖+v)
dv

∣∣∣
X̂t,t−1

∀i ∈ neighbors, where v is a measurement noise variable

12: K ← ΣX̂t,t−1
HT (HΣX̂t,t−1

HT + U(σ2
MI)UT )−1

13: X̂t,t ← X̂t,t−1 +K(Mf,neighbors −Mt,t−1)
14: ΣX̂t,t

← (I −KH)ΣX̂t,t−1

15: return X̂t,t,ΣX̂t,t

ΣX̂t,t−1
. Then the measurements are accounted for. The predicted measurement Mt,t−1 is made

on the predicted structure with no noises. Matrix H is the derivative of the length measurement

function with respect to node positions evaluated at the predicted structure, and U is the derivative

of the length measurement function with respect to added noise on the measurement functions, also

evaluated at the predicted structure. These can be used to find the Kalman gain K, which then

provides a corrected structure and covariance, X̂t,t,ΣX̂t,t
when used on the actual measurements

Mf,neighbors.

7.3 Unscented Kalman Filter

The Unscented Kalman Filter [65, 28] is a recent development, improving EKF’s first order

approximation to a second order approximation. This made it appealing to implement, since the
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EKF can perform poorly when nonlinearities add up. The implementation shares some core funda-

mentals with the EKF, such as the updating of the state estimate and covariance matrices. Instead

of relying on Jacobians, the covariance is approximated by a set of “sigma points” surrounding

the mean, which are propagated through the state and measurement functions to provide a better

covariance estimate. In this regard, the UKF is similar to the particle filter, but uses only O(N)

sigma points, discards the sigma points after use, and only predicts unimodal distributions. As

with the EKF, the UKF predicts the state, covariance, and measurements, and corrects these with

the actual measurements.

The UKF takes as inputs the prior structure estimate and covariance matrices, the set lengths

for the recent addition (f,Bf ), the measurements for f and its neighbors, the length and measure-

ment variances. The parameters α, β, κ, λ are tuning factors set to the values recommended in

[65].

Each time the function is run, the prior state and covariance matrices are augmented with

zeros and diagonal covariances representing the total number of assembly struts and the total set

of measurements measurements. L is the total length of the augmented state. The square root of

the augmented prior covariance, Σ√, scaled by (L + λ), forms the basis for calculating the sigma

points. Each row of the square root represents a vector that is added to the mean to produce a

sigma point. 1 .

The list of sigma points is Xaugmented,t−1,t−1, indexed by i. The sigma point set is initialized

with the mean itself. Then each row of Σ√ is both added to and subtraced from the mean, resulting

in 2L + 1 points in Xaugmented,t−1,t−1. Associated with each sigma point is a mean weight and a

covariance weight, which are grouped under Wx and Wσ.

The sigma points are then propagated through the node function Equation 3.2 if the node

is the just-added floating node, or are left unchanged from the prior if it is a fixed node; the

1 While there are multiple ways to do this ([65] suggests Cholesky decomposition), the way I chose was to use
Mathematica’s MatrixPower function, which returns matrices A such that ATA = B. Because the covariance values
for unplaced nodes is 0, the covariance is not positive definite (only semi-definite) and Cholesky decomposition fails.
Additionally, when this problem was fixed by adding dummy variance values, Cholesky would still occasionally fail,
prompting me to switch to MatrixPower.
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Algorithm 15 The Unscented Kalman Filter predicts and corrects the structure state and covari-
ance by propagating a set of sigma points (which combine node variances and length variances)
through the node function, and then taking measurements (using measurement variances) to estab-
lish a predicted state and covariance, which is then corrected by using the actual measurements.

UnscentedKalmanFilter(X̂t−1,t−1,ΣX̂t−1,t−1
, X̄f , Lf,B,Mf,neighbors, σL, σM )

1: α← 0.001, β ← 2, κ← 0
2: L← ‖X̂t−1,t−1‖+ 3N − 6 + ‖ME‖, for the total number assembly struts and measurements
3: λ← α2(L+ κ)− L
4: Xaugmented,t−1,t−1 ← (X̂t−1,t−1, 03N−6, 0‖ME‖)

5: ΣXaugmented,t−1,t−1
←

 ΣX̂t−1,t−1
0 0

0 σ2
LI3N−6 0

0 0 σ2
MI‖ME‖


6: Σ√ ←

√
(L+ λ)ΣXaugmented,t−1,t−1

, where the matrix square root of B is ATA = B

7: Xaugmented,t−1,t−1 ← {Xaugmented,t−1,t−1}
8: Wx ← { λ

L+λ}
9: WΣ ← { λ

L+λ + (1− α2 + β)}
10: for all rows Xi,Σ√ ∈ Σ√ do
11: Xaugmented,t−1,t−1 ← Xaugmented,t−1,t−1 ∪ {Xaugmented,t−1,t−1 + Xi,Σ√ ,Xaugmented,t−1,t−1 −

Xi,Σ√}
12: Wx ←Wx ∪ { 1

2(L+λ) ,
1

2(L+λ)},WΣ ←WΣ ∪ { 1
2(L+λ) ,

1
2(L+λ)}

13: Xt,t−1 ← ∅
14: for all Sigma points i ∈ Xaugmented,t−1,t−1 do
15: (Xi

nodes,t−1,t−1,X
i
lengths,t−1,t−1)← X iaugmented,t−1,t−1

16: Xi
nodes,t,t−1 ← Ff (Xi

B,t−1,t−1, Lf,B) for f , and Xi
j,t−1,t−1 if j 6= f , using Equation 3.2

17: Xt,t−1 ← Xt,t−1 ∪ {Xi
nodes,t,t−1}

18: X̂t,t−1 ←
∑

iW
i
xX it,t−1

19: ΣX̂t,t−1
←
∑

iW
i
Σ(X it,t−1 − X̂t,t−1)(X it,t−1 − X̂t,t−1)T

20: Mt,t−1 ← ∅
21: for all Sigma points i, Xi

nodes,t,t−1 ∈ Xt,t−1, X
i
M,t−1,t−1 ∈ Xaugmented,t−1,t−1 do

22: M i
t,t−1 ← ‖Xi

f,t,t−1 −Xi
b,t,t−1‖+Xi

Mf,b,t−1,t−1∀b ∈ neighbors
23: Mt,t−1 ←Mt,t−1 ∪ {M i

t,t−1}
24: Mt,t−1 ←

∑
iW

i
xMi

t,t−1

25: ΣMM ←
∑

iW
i
Σ(Mi

t,t−1 −Mt,t−1)(Mi
t,t−1 −Mt,t−1)T

26: ΣXM ←
∑

iW
i
Σ(X it,t−1 − X̂t,t−1)(Mi

t,t−1 −Mt,t−1)T

27: K ← ΣXMΣ−1
MM

28: X̂t,t ← X̂t,t−1 +K(Mf,neighbors −Mt,t−1)
29: ΣX̂t,t

← ΣX̂t,t−1
−KΣMMK

T

30: return X̂t,t,ΣX̂t,t

propagated sigma points are Xt,t−1. Then the predicted state X̂t,t−1 can be found by multiplying
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each propagated sigma point by its weight. Likewise, the predicted covariance ΣX̂t,t−1
can be found

by calculating the sample covariance, with each sample weighted.

A similar process occurs for measurements: the predicted sigma points Xt,t−1 and the mea-

surement offsets Xi
M,t−1,t−1 are combined to find predicted sigma point measurementsMt,t−1. The

mean of the measurements is found in the same way as for the state mean, along with the covariance

of the measurements ΣMM and the covariance of the measurements and the state ΣXM . From here,

the calculations are analogous to the EKF; the Kalman gain K is calculated, which then is used to

modify the predicted state based on the actual set of measurements, and the updated X̂t,t,ΣX̂t,t

are returned.

7.4 Maximum Likelihood Estimator

The Maximum Likelihood Estimator is conceptually simple, but depends on a gradient ascent

of a joint probability distribution function (also called the likelihood function), which typically is

in a large dimensional space, and is approximately 0 nearly everywhere except near the mean. The

standard method to mitigate this problem is to find maximum of the logarithm of the likelihood

function. Since the number of variables in the joint PDF is 3N − 6 + M (in these experiments,

on the order of hundreds of variables), the state space is not too large to rule out log likelihood

gradient ascent. The log likelihood of a normal distribution function is:

log

(
1√

2πσ2
e−

(x−µ)2

2σ2

)
=

1√
2πσ2

− (x− µ)2

2σ2
(7.2)

Since the first term on the right does not vary with X, this can be ignored. Recall Equation

5.2:

p(X) =
∏

i,j∈EA

p(‖Xi −Xj‖ − L̄i,j) (7.3)

The process noises on each edge are independent, as are the measurements. For a substructure

K, this becomes:
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Algorithm 16 The maximum likelihood estimation function calculates the log likelihood func-
tion, that is, the logarithm of the joint probability distribution of the length functions and the
measurement functions over the node variables. Then, using a gradient ascent algorithm (I used
Mathematica’s FindMaximum), and starting at the predicted structure, find the local maximum,
and return it.
MaximumLikelihoodEstimation(LK ,MK , AK , σL, σM )

1: X̄ ← FVK (LK,A)

2: plog =
∑

f,b∈B,(f,B)∈AK −
(‖Xf−Xb‖−Lf,b)2

2σ2
L

+
∑

i,j∈MK
− (‖Xi−Xj‖−Mi,j)

2

2σ2
M

3: X̂ ← GradientAscent(plog) starting at X̄

4: return X̂

plog =
∑

f,b∈B,(f,B)∈AK

−
(‖Xf −Xb‖ − Lf,b)2

2σ2
L

+
∑

i,j∈MK

−(‖Xi −Xj‖ −Mi,j)
2

2σ2
M

(7.4)

And the most likely state X̂ is

X̂K = argmax
XK

(plog) (7.5)

With this form, MaximumLikelihoodEstimation, Algorithm 16, can be described. The

mean lengths LK and collected measurements MK are passed in, along with the assembly sequence,

the variances, and the step size. One obvious method to solve for the maximum likelihood is to solve

the derivative
dplog
dX = 0, but this results in an unwieldy system of equations due to the derivative

of each term having the form − (vi−vj)(‖Xi−Xj‖−Vi,j)
σ2‖Xi−Xj‖ , where v stands in for x, y,, or z, and V stands

in for L or M .

It is computationally simpler to find the maximum numerically. Mirror solutions are a prob-

lem, as previously discussed for F . There exists a local maximum for every combination of mirrored

cells, so it is important to start in the neighborhood of the correct solution. The solution is to

start the search at the length-wise nominal structure XL
2 . The expression for plog is then found

with all node positions xi, yi, zi. Finally, a gradient ascent function can be used to find the local

maximum of plog with respect to the node positions.

2 Since the lengths LK may include lengths that were altered from the nominal starting lengths, this is not equal
to X̄.
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7.5 Comparison of Estimators

I compared the four estimators by simulation using AssemblyWithEstimation, Algorithm

17, which performs closed loop assembly. After each new node is added, measurements are taken,

the state estimate is updated, and the process continues. The random adjustments to length

and measurements are taken from the distributions defined by σL, σM . In a physical trial, these

processes are physical, and the hidden state X is unseen.

To perform the comparisons, I ran Algorithm 17 for 100 trials using all four estimators on

three structure types: the inner 18 nodes of the space telescope truss defined in [66], the inner 45

nodes of the same telescope, and the 20-node triple helix. For the telescopes, I varied the definition

of neighbors to be either only the set of base nodes, or the entire set of adjacent nodes to the

node currently being added (for example, if the added node has 5 neighbors, all 5 are used for

measurements). The redundant struts are attached by passive IPJRs that can extend and contract

when the node is moved by the active IPJRs, and are only there to measure the lengths. For the

triple helix and the small telescope, with strut lengths nominally 1m, I set σL = 0.1m,σM = 0.01m,

very large numbers to test how well the estimators can handle nonlinearity. For the large telescope,

I used the values of σL = 0.0015m,σM = 0.00025m, on the order of the 3D IPJR variances, to

predict how well a physical assembly experiment could be expected to work using the hardware I

built.

7.5.1 Telescope Truss Assembly with Estimation

The results of the 18-node simulations are shown in Figures 7.1 and 7.2. The open loop

covariance trace of the random sequence is 4.9m2; the minimized sequence 2.8m2. In both sequences,

all of the estimators have similar outcomes with and without measuring passive struts; all estimators

vastly improve the results. For the random sequence, the linear least squares estimator performs

more poorly, as expected, due to the large nonlinearity of these tests. For the minimized sequence,

this trend is not as visible. In any case, the standard deviation of node errors is large enough that
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Algorithm 17 A stochastic algorithm for generating structures, generalized and agnostic to which
estimator is used. It sets the IPJR lengths based on the estimate of the structure, adds length noise
to the node function, then takes measurements of the struts attached to the newest node (including
redundant struts if desired), adds measurement noise, then estimates the structure state.

AssemblyWithEstimation(X̄, A,MA, σL, σM )

1: X← 0 is hidden from the estimator
2: X̂← 0
3: for all (f,B) ∈ A, (f, neighbors) ∈MA do
4: Lf,B ← ‖X̄f −Xb,estimate‖∀b ∈ B
5: Xf ← Ff (XB, Lf,B +N (0, σ2

LI)), simulation or IPJR command and welding
6: Mf,neighbors ← ‖Xf −Xn‖+N (0, σ2

M ))∀n ∈ neighbors, simulation or IPJR length measure-
ments

7: X̂← Estimation function, parameter list varies based on which estimator used
8: return X̂
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Figure 7.1: For the open loop assembly sequence (upper right) of the 18-node truss with a random
sequence, the traces per node of the open loop assembly sequence are compared to the four estima-
tors, which vary by whether passive struts are measured or not (left). Means and sample standard
deviations of the node errors are shown (lower right).
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Figure 7.2: For the open loop assembly sequence (upper right) of the 18-node truss with a locally
optimal sequence, the traces per node of the open loop assembly sequence are compared to the four
estimators, which vary by whether passive struts are measured or not (left). Means and sample
standard deviations of the node errors are shown (lower right).

the distinction between linear least squares and the other estimators is only visible in the long run.

The estimators also overcome the large difference in open loop trace between the randomized and

the minimized sequences. While the random sequence is 1.74 times more imprecise when using open

loop, this gap is much smaller when using estimation. For example, when using MLE estimation

using all measurements, the local minimum mean squared error is 0.82m2, while the random mean

squared error is 0.87m2.

The results of the 45-node simulations are shown in Figures 7.3 and 7.4. The open loop

covariance trace of the random sequence is 3.6 × 10−3m2; the minimized sequence 5.6 × 10−3m2.
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Figure 7.3: For the open loop assembly sequence (upper right) of the 45-node truss with a random
sequence, the traces per node of the open loop assembly sequence are compared to the four estima-
tors, which vary by whether passive struts are measured or not (left). Means and sample standard
deviations of the node errors are shown (lower right).

Unlike the smaller structure, the benefits of measuring passive strut lengths are clearly visible,

especially with the randomized sequence. Also, unlike the 18-node truss, the linear least squares

estimator is not noticeably worse; with the small sample size, it appears better. This is due to

the smaller variances used in the 45-node tests, and the resultant improvement in the accuracy of

linearization. Again, the use of an estimator closes the uncertainty gap between the randomized

and the locally minimum sequences. The random sequence is 1.56 times more imprecise when using

open loop. But when using MLE and all strut measurements, the local minimum mean squared

error is 5.3× 10−4m2, while the random mean squared error is 5.7× 10−4m2.

These tests were designed to show a distinction not only between open loop and estimation
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Figure 7.4: For the open loop assembly sequence (upper right) of the 45-node truss with a locally
optimal sequence, the traces per node of the open loop assembly sequence are compared to the four
estimators, which vary by whether passive struts are measured or not (left). Means and sample
standard deviations of the node errors are shown (lower right).

assembly, which is obviously visible, but also between the four estimators and the selection of struts

that are measured. While the linear least squares estimator was somewhat worse in the average for

the highly nonlinear 18-node tests, the estimators were essentially equivalent when the variances

were lower, as in the 45-node tests. The effect of measuring more struts is more visible with larger

structures, which is to be expected since larger structures will have more such measurements, and

the effects of those measurements are propagated down longer chains of nodes.
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7.5.2 Triple Helix Assembly with Estimation

I devised the triple helix assembly test to attempt to force apart the results of the four esti-

mators, since, for the telescope cases, they are mostly equivalent. With a large standard deviation

of 0.1m for the setting of strut lengths, the node function is very nonlinear, resembling a more

extreme version of errors than in the bottom middle image on Figure 5.6. Results are in Figure

7.5. The linear least squares function (blue) proved to be the worst: not only did the results have a

large variance, but there is a bias toward shorter structures, increasing the overall mean error. The

bias is visible for the Extended Kalman Filter results too (green), but the covariance is reduced.

The Uncented Kalman Filter (red) places the nodes closer to the expected mean. The Maximum

Likelihood Estimator (orange) shows a smaller covariance and is closest to the mean. Since the

least squares and the EKF tend to bias toward a shorter structure, the linearization in both esti-

mators appears to be overestimating the length of the structure, creating shorter lengths than it

should. A good way to picture this is to refer to the bottom middle image in Figure 5.6 again: these

estimators predict the structure to be at the orange points, but it is actually at the blue points,

so the estimators compensate by shrinking the structure. The capable handling of nonlinearities

of the UKF seems to overcome the bias, but does not improve on the structure covariance, and

instead trends quite closely to the EKF in the node error plot in the lower right of Figure 5.6.

Given that the EKF is noticeably biased while the UKF appears not to be, the UKF spreads out

the structure points further, which is visible by the slightly larger covariance ellipsoids.

The maximum likelihood estimator is the clear best in every case: it performs the most

accurate and precise assemblies. The reason is that, unlike the other estimators, MLE operates on

the actual, non-Gaussian probability distribution function. While it does not return an estimated

mean and only finds the point that maximizes the PDF, it proves to be a better estimation than

the linearization schemes. Additionally, during simulation, the MLE ran the fastest as well, giving

MLE every advantage.
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Figure 7.5: Comparisons of the closed loop assembly algorithm using the linear least squares
estimator (blue), maximum likelihood estimator (orange), Extended Kalman Filter (green), and
Unscented Kalman Filter (red), for σL = 0.1m,σM = 0.01m. The marginal covariance ellipsoids of
the sample covariance matrices for each trial are shown with the marginal covariance ellipsoid of
the structure assembled without measurements. Bottom: the mean error per node for each of the
estimators.

7.6 Discussion

The results in this chapter establish that the maximum likelihood estimator, used with mea-

surements of the active and passive struts, result in the best outcomes. However, the smaller the
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process and measurement variances, the more applicable the Kalman filters and the linear least

squares estimators become. For space telescopes with a precision requirement on the order of

millimeters or smaller, these methods are essentially equivalent.

Additionally, the use of measurements can almost completely overcome a poor choice in

assembly sequence. The difference between two assembly traces is reduced considerably. However,

a good assembly sequence should still be chosen using a AssemblyLocalSearch on a random

fastest assembly sequence to reduce the covariance as much as possible.



Chapter 8

Physical Assembly of Telescope Truss by Intelligent Precision Jigging Robots

This chapter presents the results of the physical assembly trials using the MLE algorithm.

I first predicted what the outcomes would be compared to open loop assembly, then physically

assembled 3 structures using the open loop algorithm and 3 structures using the MLE algorithm.

8.1 IPJR Hardware Design

In order to forgo premade accurate building materials, I chose commodity telescoping alu-

minum rods (30” long, 1/4” and 7/32” diameter) that can be locked in place with a shaft collar

and that connect to the node balls via neodymium magnets. These design choices make assemblies

temporary and allow us to reuse materials in different experiments. Each IPJR is designed to adjust

the lengths of the telescoping struts by attaching to them during the assembly of a new part of the

structure.

Since these components are reusable, permanent welding is not performed, and fixed struts

can be easily adjusted. Thus, to simulate the expected on-orbit application with welding, the strut

is measured after it is fixed to the structure, and is considered permanent until the trial is complete.

I built five IPJRs for use in this experiment, but only used 3 at a time. Each IPJR, shown

in Figure 8.1, is an autonomous robot, consisting of a Raspberry Pi Model B for high level al-

gorithmic control and communications, an Arduino for actuation and sensing, a custom motor

driver board, and an Edimax WiFi dongle. The principal actuator is a Firgelli L-16 linear actuator

with 140mm extension and potentiometer length feedback discretized to actuator steps of length
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Figure 8.1: The Intelligent Precision Jigging Robot model, for use with telescoping aluminum
struts and 3D trusses, is shown attached to a strut, with a node ball at either end attached to the
strut by neodymium magnets. The control hardware consists of a Raspberry Pi Model B for high
level control, an Arduino for low level control and sensing, and a custom motor driver board. The
hardware design permits future expansions, such as motor-mounted cameras and automated strut
attachment and detachment mechanisms.

δstep = 0.138mm. To attach to both tubes of a strut, each IPJR has two shaft collars, enabling the

actuator to extend and contract the strut. All components are fixed to a frame consisting of laser

cut, 1/4” acrylic sheets. Each IPJR was powered by a power supply that provided 5V and 12V

output for the electronics and motors.

While each IPJR is fully capable of running my implementation of the MLE assembly algo-

rithm as-is, I chose to run the algorithm from a central PC to avoid communication challenges. The

Raspberry Pis instead run an HTTP server, which receives commands in the form of GET requests,

and returns the data in response. Commands used in this experiment include checking the length

potentiometer voltage, commanding the IPJR to move until it stops near a commanded location

(without further control), and checking to see if the IPJR has finished moving. The control PC

executes the experiment using a Mathematica implementation of the algorithms presented here,

which controls and monitors the IPJRs through GET requests.

While I have previously demonstrated fully robotic external manipulation and on-board pre-

cise distance measurements [35], for this experiment, a human external manipulator is required

to attach the IPJRs to struts and to place each new cell in a coarse configuration. Once placed,

the IPJRs refine the cell by taking measurements of the distances between node balls. The MLE
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Algorithm 18 The IPJR command algorithm is a simple feedback controller that attempts to
adjust the node-node distance to a desired length plus a tolerance ε.

CommandIPJRToLength(L,∆step, ε)

1: ML ← node-node length measurement
2: while ‖ML − L‖ ≥ ε do
3: Command IPJR to move ∆step(L−ML) steps
4: ML ← node-node length measurement

algorithm requires direct measurements of the structure, but the IPJRs lacked that capability for

these experiments. Instead, a ruler was used in order to obtain an unbiased measurement, not

subject to bending due to the weight of the IPJR or play in the shaft collar attachment mechanism.

The ruler was also used for verification of the physical experiments.

The setting of an IPJR’s length is performed by a simple feedback controller, shown in

Algorithm 18, in which the linear actuator adjusts its length based on the difference in measured

length vs. desired length. When the measured length is within a specified tolerance of the desired

length L, the shaft collars are fixed and the IPJR is removed. The range of the IPJR’s linear

actuator is 140mm, so to handle a larger range of strut lengths, the IPJR should be attached to

the strut such that the final length is within the range. This length is the initial length, which is

measured as ML. Then a loop occurs: Command IPJR to move δstep(L −ML) steps, take a new

measurement ML, until ML is within a tolerance ε = 0.5mm. While this controller will diverge if

the δstep is underestimated, in my experience the actuators converged almost always within 3 steps,

and the simple controller was sufficient.

8.2 Simulation Experiment Results

For very small structures, such as the 10-node telescope, all assembly sequences can be

enumerated. The 10-node telescope truss in Figure 8.2 has 12708 distinct assembly sequences. The

traces of the assembly sequences are clumped into several distinct groups as shown in the top of

Figure 8.2. The cause in distinction is due to nearly degenerate assembly steps contributing large

errors, the same phenomenon was observed in the 84-node telescope.

I simulated MLE assembly on both the global optimal sequence and the median sequence
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to observe what benefits MLE may provide to suboptimal sequences. The median is found in the

lowest cluster. The results are shown in Figure 8.2. We ran 1000 trials of the MLE algorithm to

generate the MLE covariance matrix and marginal ellipsoids shown in the bottom row.

The trace of the open loop optimal sequence is 2.84 × 10−5m2, and the open loop median

sequence trace is 5.98×10−5m2, an increase of a factor of 2.1. However, as the middle row of Figure

8.2 shows, using MLE is much more effective on the median sequence. The traces of the optimal

and median assembly sequences using MLE are 1.56×10−5m2 and 1.86×10−5m2, the median trace

being only 1.19 times worse.

These results show that an optimal assembly sequence will perform better overall with the

MLE estimator, but the distinction between the optimal and other sequences is not as severe as in

the open loop cases. Therefore, algorithms that can find near-optimal sequences quickly, such as

FindLocallyOptimalSequence, are sufficient for all but the most strict precision demands.

8.3 Physical Experiment Results

I chose to use MLE due to its favorable performance. To test the validity of the MLE

algorithm on real hardware, I performed assembly trials of the optimal 10-node telescope sequence;

3 open loop trials, and 3 MLE trials. Assembly experiments were performed with the calibrated

variances σ2
L = 3.57 × 10−7m2 and σ2

M = 6.25 × 10−8m2. I did not model physical phenomena

such as gravity, strut deflection under the weight of the IPJRs, and free play in the fixed struts; I

predicted that the MLE algorithm would be able to overcome the biases those phenomena would

add to the system. Each trial took one or more hours to run, mostly due to issues attaching and

detaching the IPJRs. Occasionally, the magnets on the struts would attract to each other instead

of the node balls, requiring careful detachment. A few restarts were necessary.

To measure the final result of the structure after the experiment is completed, I used a

modified version of the MLE filter with the following differences: the process probability terms are

removed, and every pair of nodes with a distance of under 0.7m was measured three times. The

extra measurements, including several edges never spanned by IPJRs, provided a more accurate
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result. To estimate the error of the modified MLE filter, I simulated 1000 sets of measurements

and compared the estimated result with the hidden structure and found this to be very accurate,

a maximum mean squared error of just 0.25mm2 — these are the error bars in the individual trial

plots in the middle row of Figure 8.3.

The results are shown in Figure 8.3. The physical trials followed the predicted patterns in

simulation. On average, the open loop mean squared error is 4.33× 10−5m2, while the MLE mean

squared error is 1.09×10−5m2. The open loop trials averaged 1.6 times worse than predicted, while

the MLE trials averaged 1.4 times better than predicted. Due to the small number of trials, and

therefore the large error on the means, this is not surprising. The low error on node 7 in one of

the open loop trials, for example, skewed the average to be better than the MLE average for that

node. Given that node 7 depends on nodes 1 through 5, the almost-perfect positioning of node 7

in that single trial is coincidental.

The aforementioned physical biases were not an obstacle for MLE, as predicted, but the

length offsets do show a small bias, which can be seen in the lower right of Figure 8.3. Most edges

ended up slightly shorter on average; when all edges are considered, the mean error is −0.13mm.

This may be due to a combination of free play in the joints of each strut, and the large mass of the

38.1mm-diameter steel balls compressing the struts. I did expect to see a lengthening of struts due

to the bowing caused by the weight of the IPJRs, and the subsequent restoration of linearity when

the IPJRs were removed, but I did not observe this independently of the other biases. The variance

of the edge length errors is σ2
L = 3.54× 10−7m2, almost equal to the previously estimated value of

σ2
L. The fact that MLE performed very well on the physical trials despite the length bias shows

that, while modeling various forces would certainly improve the result, they are not necessary for

precise assembly when MLE-SLAM is used.
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Figure 8.2: The10-node space telescope has 12708 assembly sequences, whose traces are distributed
as shown in the top for σ2

L = 3.57 × 10−7m2 and σ2
M = 6.25 × 10−8m2. The optimal and median

sequences, shown in the bottom row, are simulated with open loop and MLE. While the median
trace is over 2 times worse, using MLE reduces this factor to just over 1. The ellipsoids are
exaggerated to be visible.
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Figure 8.3: The results of 3 open loop and 3 MLE physical assembly trials are shown. Top row: the
final two assembly steps. Middle row: node squared errors (mm2) for the open loop trials (left) and
the MLE trials (right). Bottom left: the means of the open loop and MLE cases plotted together.
Bottom right: the mean errors of the estimated final strut lengths vs. the nominal lengths.
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Figure 8.4: The 10-node telescope truss after assembly by IPJRs.



Chapter 9

Discussion

I have shown that a smart choice of the build sequence and error correction using SLAM

can lead to assemblies with predictable accuracy using commodity parts. I validated this with

simulations and physical trials, and showed that the SLAM algorithm could mitigate both the

choice of a suboptimal sequence and the unmodeled, non-Gaussian physical processes that occur

during physical trials. What remains to be seen, however, is whether this approach is suitable to

achieve accuracies in the order of microns, such as required for telescope optical benches.

9.1 Case Study: Feasibility of Constructing 84-Node Truss with MLE As-

sembly

Without using MLE-SLAM, assembling the 84-node space telescope optical bench to the

required precision would require actuators that are technically not feasible. To achieve a tolerance

of 10µm on this particular structure requires that the worst case node have an average mean squared

error of under (0.00001m)2 = 10−10m2. The locally optimal sequence shown in Figure 9.1 requires

that the process noise needs to be σ2
L = 6.6×10−13m2. To put into context, the standard deviation

of the length actuation must be, at most, 812 nanometers. When processes such as thermal

deformation under welding and sunlight are considered, even thermally favorable materials such

as titanium, with its coefficient of thermal expansion of 8.6 microns per meter per Kelvin, cannot

match that precision no matter which actuator is used1 .

1 Composite struts can be designed so that the coefficient of thermal expansion is 0 under certain conditions, but
these would not be commodity materials.
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Using MLE-based SLAM, however, drastically changes this picture as it mitigates build-up

of error. This enables commodity sensors and actuators to reach the required precision, such as

the actuator and laser distance sensor that I used in [35]. The Ultra-Motion linear actuator I

incorporated into the IPJR prototype has an estimated process standard deviation of σL = 2µm

based on the observation that at least 95% of the time, any desired length is within, at most,

4µm from an actuator step length — two standard deviations. Using the same reasoning, the

Keyence laser distance sensor is a measurement standard deviation of σM = 0.5µm. However, to

be conservative in how I interpreted the precisions of the actuator and the laser sensor, and to allow

room for the aforementioned physical processes, I inflated the noises to σL = 8µm and σM = 1µm,

and simulated MLE assembly trials on the sequence in Figure 9.1. It is obvious that each individual

strut length can only be within 16µm 95% of the time, meaning that the tolerance of 10µm cannot

be guaranteed with the hardware I used in [35]. That said, with MLE in the assembly process, the

average trace is 3.13×10−10m2, making the mean error 17.7µm as shown in Figure 9.1, only slightly

worse than the 16µm per strut error. More importantly, error grows very slowly, meaning that if

I used a better actuator, I could realistically expect to match the overall precision requirement. In

a realistic deployment, however, local sensing would be complemented by an absolute laser-based

measurement system. Such systems, albeit expensive, are able to provide measurements in the

order of micrometers over ranges of tens of meters, which would allow to provide lower bounds on

assembly error across the structure.

9.2 Discussion

I showed that truss structures made of commodity, imprecise components can be assembled

by Intelligent Precision Jigging Robots to a high degree of precision. I first derived a probability

model and an error metric based on the covariance trace for open loop assembly. I showed that the

linearization approximation of the node function F is valid on the order of < 1mm for structures

with strut lengths of O(1m). Next, I described algorithms for identifying and traversing the space

of assembly sequences, and enumerating the number of sequences. Then I presented a combined
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Figure 9.1: Top: A locally optimal assembly sequence for the 84-node telescope truss from [66].
Bottom: the results of 200 simulations of the full 84-node telescope truss as built by the MLE
assembly algorithm using the actuators and sensors from [35] shows that the mean error does not
visibly increase as node count increases, and that the mean node error is 17.7µm, just over twice
the standard deviation of a single strut.

algorithm for generating a near-optimal assembly sequence, which starts by choosing a central

starting location, assembling a sequence by greedily choosing assembly steps with the minimum

trace, and swapping steps of the resultant sequence until a minimum is found. I then described
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an SLAM assembly algorithm, which builds a map of the structure and the IPJRs’ positions while

assembly is performed. I showed that Maximum Likelihood Estimation is preferable to a linear

least squares method, the Extended Kalman Filter, and the Unscented Kalman Filter when process

noise is large. Finally, I demonstrated that IPJRs can use the MLE assembly algorithm to produce

precise truss structures made of steel node balls and aluminum telescoping tubes in spite of physical

phenomena such as bending struts, which were not taken into account into the noise model.

An empirical method for estimating assembly sequence count has a number of benefits. For

example, a method for estimating the extreme values of a metric (ie. nodal covariance) based

on the distribution of a random sample of structures may be more accurate when the sequence

count is known; this is future work. Additionally, empirical estimates may reveal a certain class

of structure to have sub-exponential numbers of assembly sequences, which may lead to tractable

algorithms to explore the full space of assembly sequences. While my truss sequence model is shown

to be exponential, our model has very few constraints, and no geometrical constraints. The use

of constraints, and the difference between empirical and theoretical estimates, may lead in turn to

better theoretical estimates.

The exponential number of assembly sequences poses a challenge that is unlikely to be to

overcome for larger structures. While starting from the center and performing a local search around

a greedy sequence returned consistent results, the true global minimum trace may be significantly

lower than any result found by the algorithm presented here. At first glance, given that trace

is additive, one may think that finding a shortest path through the graph V,E using Dijkstra’s

algorithm would solve the problem quickly; but this approach does not work since a node’s error

depends on every strut leading up to it, and not just the previous node added. Likewise, an optimal

configuration for a single node is not a requirement for the optimality of its descendants, ruling out

a basic dynamic programming approach.

The O(S(N)N3) runtime of FindLocallyOptimalSequence may be polynomial, but still

results in impractical runtimes. The algorithms presented here are not optimized; the first task is

to reduce the number of times the covariance is calculated, taking advantage of shared assembly
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steps between sequences and saved trace values. Another method, the implementation of which is

future work, is to divide the structure into smaller substructures that are assembled independently

of one another and combined later, in which each substructure is considered a single element to be

constructed. Doing so would constrain the set of assembly sequences that can be identified, almost

certainly removing the true optimum from the set, but the speed gains may be worth it.

IPJRs are simple: they only need to be able to grasp the nodes and to control their lengths

with precision, a minimum of one degree of freedom if the graspers only have an on and off state.

They should be less expensive and easier to make than robots with extra degrees of freedom.

And given the parallelization definition presented in this paper, several groups consisting of three

IPJRs can work in parallel on different branches of the structure. This also gives robustness to the

assembly process; should any IPJR fail, the others will rearrange their groups to account for the

reduced number. Only three are needed to assemble a structure. Since the precision is built in, the

external manipulators and welders have a reduced need for precision of their own — only enough

to grasp an IPJR, a strut, and weld — enabling them to be less expensive as well.



Chapter 10

Conclusion and Future Work

Numerous problems remain. Do better algorithms for generating optimal sequences exist?

When real time measurements are too numerous for the MLE algorithm to function properly, are

other SLAM algorithms developed for large-scale robotic problems more suitable? Does modeling

the additional physical phenomena provide enough of a boost to precision to make it worthwhile?

How does assembling several substructures independently and combining them at a later stage

affect the overall precision? Answers to these questions are the subject of future research.

A dedicated on-orbit experiment to assemble a space telescope optical bench will require

hardware that is even more precise than the sensors and actuators that I used in [35]. It will

also make use of external measurement systems, such as precise cameras, to further improve the

estimates. Yet, the value of the IPJR paradigm is that it can proceed in the absence of such

precision measurements, e.g., when parts of the structure are occluded from the absolute position

sensor or when individual IPJRs fail.

While I showed that SLAM can overcome unmodeled physical biases, the truss model can

still benefit from including them. Consider that my physical trials showed a negative length bias;

even with MLE-SLAM, every strut will be slightly shorter than intended even when SLAM is used.

Instead of the error propagating, it will be reset at each node, but it will remain. Finite element

analysis software has long been used to model physical processes, and my work in [46] demonstrates

truss assembly with gravity under consideration.

I am not completely satisfied by the performance of FindLocallyOptimalSequence. While
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a near-optimal sequence combined with the MLE assembly algorithm is likely to be nearly identical

in performance to the global optimum combined with the MLE assembly algorithm, the fact that

a global optimum exists and is not easily identifiable lends itself to numerous search algorithms.

In addition to what I documented here, I tried simulated annealing; the results were poor, and I

was unable to determine if it was due to poorly chosen temperature parameters or an inconvenient

search space. More research is needed.

I also wanted to give the 3D IPJRs greater autonomy. I designed them to run on batteries.

I wanted to install strut grippers, but could not due to excessive mass causing struts to detach. I

installed and later removed cameras mounted on servos, and intended to use those to do monocular

SLAM on the node balls. I designed parts that would make it easy for an external manipulator

like the Baxter robot to move the IPJRs around. My original vision was a completely autonomous

experiment, but time constraints and the fact that I worked alone on these robots hindered me.

The parallelization method described in this paper allows IPJRs to work in independent

groups, each with an external manipulator to feed struts and to reposition the IPJRs, enabling

swift and robust assembly. I therefore envision the IPJR paradigm being used not only to assemble

the 84-node telescope, but much larger trusses, using materials and robots launched in multiple

launches, not only in space but possibly also on earth.

I believe that the IPJR paradigm — and in particular the formulation as a SLAM problem

to reduce the overall error — holds for a larger class of incrementally assembled structures. The

IPJR concept is not limited to long struts and node balls; it can extend to robots that can precisely

position any components that need to be cut, welded, and measured. The key contributions of the

IPJR paradigm are that robotic structure assembly can be precise, can use commodity materials,

can be robust to failure, and can use teams of robots with distributed resources. When commodity

components are used instead of self-interlocking components, and are cut and shaped as needed,

care must be taken to keep track of the structure error to enable structures to be built reliably.

Minimizing the covariance trace is the natural metric for choosing assembly sequences, adding it

to the list of other metrics found in the literature. Modeling robotic assembly as a SLAM problem
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with added environmental manipulation has the potential to enable the construction of very large

structures by teams of robots in open and uncertain environments, far from humans that can take

over at a moment’s notice.

Long-term visions of robotic construction will require concepts from a large intersection of

disciplines to become reality. The most important of these is the ability for the robots to reason

about their environment; to learn from sensory clues and to make adjustments as the need arises.

The IPJR paradigm addresses a small aspect of this problem: how to adjust assembly plans based

on sensed errors. Whatever form the algorithms and robots take, I am certain that large-scale

robotic construction projects of the future will use some form of SLAM and some form of sequence

optimization, and the IPJR paradigm is the first step.
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Appendix A

Derivation of Node Placement Functions

This appendix presents the full derivation of the node functions F and their derivatives with

respect to node positions and lengths.

A.1 Node Placement Functions

Xf is a found as a function of the base triple it is attached to, and the struts connecting the

float to the bases, of the following form:

Xf = Ff (XBf , LBf ) (A.1)

A.1.1 Forming a Triangle from a Strut Base

In the truss assembly model, a triangle is formed on the XY-plane. Finding the position of

a node given two bases and two lengths is equivalent to solving the following system of equations

for Xf with base nodes i and j and floating node f :

Li,f = ||Xi −Xf ||

Lj,f = ||Xj −Xf || (A.2)

To solve this cleanly while minimizing the number of terms, the following derivation begins

by calculating the float on the XY-plane given nodes at the origin and the x-axis, then transforming
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{α1,0,0}

X2

θ1

L1 L2

{L1, 0, 0}x

y

z

Figure A.1: Finding the position of X̄2 requires rotation of an L1-length vector until it has a length
of L2 from the point α1, 0, 0.

the result to the truss reference frame. A visual reference for the untransformed triangle is shown

in Figure A.1, and the full result is shown in Figure A.2.

Begin by defining a vector {L1 > 0, 0, 0} and an angle θ1. Let X̄2 be the vector resulting by

rotating {L1, 0, 0} by θ1 around {0, 0, 1}. This represents a vector whose distance from the origin

is L1 The result is:

X̄2 =


cos (θ1) − sin (θ1) 0

sin (θ1) cos (θ1) 0

0 0 1

 .


L1

0

0

 =


L1 cos (θ1)

L1 sin (θ1)

0

 (A.3)
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Let {α1 > 0, 0, 0} T be a vector that has a distance of L2 from X̄2. Determining X̄2 as a

function only of L1, L2, and α1 requires solving for θ1:

∥∥∥∥∥∥∥∥∥∥∥


L1 cos (θ1)

L1 sin (θ1)

0

−


α1

0

0



∥∥∥∥∥∥∥∥∥∥∥
=
√

(L1 cos (θ1)− α1) 2 + L2
1 sin2 (θ1) = L2 (A.4)

Solving for θ1 and using the identity A2 = A2 cos θ + A2 sin θ, there are two values for θ1,

corresponding to the two possible positions for X̄2, each one a reflection of the other over {α1, 0, 0} T :

θ1 = ± cos−1

(
α2

1 + L2
1 − L2

2

2α1L1

)
(A.5)

(A.6)

The positive solution corresponds to X̄2 having a positive Y-value. Inserting this value of θ1

into Equation A.3 gives:

X̄2 =


L2
1−L2

2+α2
1

2α1

L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

0

 (A.7)

Equation A.7 gives the solution to the triangle apex when the base nodes are located at the

origin and on the positive X-axis. The triangle inequality must be observed:

α1 ≤ L1 + L2 (A.8)

Failure to keep this inequality will result in a complex value for X̄2.

For the general case, where the base nodes are arbitrary points on the XY-plane, substitutions

must be made. The following identities are used for the base nodes and float node:
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Xi = {xi, yi, 0}T

Xj = {xj , yj , 0}T

Xf = {xf , yf , 0}T

Xj,i = Xj −Xi

Xf,i = Xf −Xi

Xf,j = Xf −Xj

||Xj,i|| =
√
Xj,i.Xj,i = α1

Li,f = L1

Lj,f = L2 (A.9)

The untransformed location of X̄2 found in Equation A.7 becomes:

X̄2 =


L2
1−L2

2+Xj,i.Xj,i

2
√
Xj,i.Xj,i

L1

√
1− (L2

1−L2
2+Xj,i.Xj,i)2

4Xj,i.Xj,iL2
1

0

 (A.10)

To transform this to the correct frame of reference — that is, to find Xf — this needs to be

rotated such that the X-axis in the untransformed space becomes parallel to Xj,i, then translated

such that the origin of the untransformed space becomes Xi. Using the fact that the column vectors

of any rotation matrix are the new basis vectors, the transformed X-axis is simply the normalized

vector between the base node j and base node i,
Xj,i√
Xj,i.Xj,i

. Since the new triangle remains in the

XY-plane, the transformed Z-axis is unchanged, and is ẑ. Finally, the transformed Y-axis is the

cross product of the transformed Z and X axes. Thus, let Ri,j,f be the rotation matrix defined by:

Ri,j,f =

(
Xj,i√
Xj,i.Xj,i

, ẑ × Xj,i√
Xj,i.Xj,i

, ẑ

)
(A.11)

Then, Ff can be found:



129

Xj

Xf

θ1

Li ,f

L j ,f

X j ,i

X j ,i .Xj ,i

z⨯
Xj ,i

X j ,i .Xj ,i

Xi

x

y

z

Figure A.2: The position of Xf as a function of Xi, Xj , Li,f , Lj,f for a triangle example.

Ff (Xi, Xj , Li,f , Lj,f ) = Xi +Ri,j,f .X̄2

= Xi +
Xj,i

(
L2
i,f − L2

j,f +Xj,i.Xj,i

)
2Xj,i.Xj,i

+

Li,f

√
1− (L2

i,f−L
2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

(ẑ ×Xj,i)√
Xj,i.Xj,i

(A.12)

Due to choosing the positive value for θ1 in Equation A.6, the cross product of Xj,i and Xf,i

will be ẑ. Swapping the nodes i and j in the function has the same effect as choosing the negative

value for θ1, and the result will be the reflection over Xj,i of Xf .
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Figure A.3: Finding the position of X̄3 requires rotation of an L1-length vector until it has a length
of L2 from the point α1, 0, 0, forming the intermediate point X̄2, then rotating it around the X-axis
until it has a length of L3 from the point α2, β2, 0.

A.1.2 Forming a Tetrahedron from a Triangle Base

A similar method can be used to the node position Xf when there are three bases; however,

the resulting function is no longer confined to a plane, and an extra transformation must take place,

resulting in a formula with a much larger number of terms. A visual reference for the untransformed

tetrahedron is shown in Figure A.3, and the full result is shown in Figure A.4. As before, I define

the position Xf as the solution to the positions of the nodes i, j, k and the lengths Li, Lj , Lk:

Li,f = ||Xi −Xf ||

Lj,f = ||Xj −Xf ||

Lk,f = ||Xk −Xf || (A.13)

The solution to this problem follows the same steps leading up to the definition of X̄2 in
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Equation A.7, with the two edges L1, L2 corresponding to Li,j , Lj,f . However, an additional step

takes place: the resultant vector X̄2 must be rotated around the X-axis such that it has a distance

of L3 = Lk,f from a vector α2, β2 > 0, 0, which corresponds to the relative position of Xk to Xi

and Xj . Let X̄3 be that vector, and θ2 be the rotation angle about the X-axis:

X̄3 =


1 0 0

0 cos (θ2) − sin (θ2)

0 sin (θ2) cos (θ2)

 .X̄2

=


1 0 0

0 cos (θ2) − sin (θ2)

0 sin (θ2) cos (θ2)

 .


α2
1+L2

1−L2
2

2α1

L1

√
1− (α2

1+L2
1−L2

2)2

4α2
1L

2
1

0



=


L2
1−L2

2+α2
1

2α1

cos (θ2)L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

sin (θ2)L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

 (A.14)

L3 is the norm of X̄3 and α2, β2 > 0, 0:

L3 =

∥∥∥∥∥∥∥∥∥∥∥∥


L2
1−L2

2+α2
1

2α1

cos (θ2)L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

sin (θ2)L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

−


α2

β2

0



∥∥∥∥∥∥∥∥∥∥∥∥
(A.15)

To simplify the representation of the solution to θ2, let:

t1 =
α2

1 + L2
1 − L2

2

2α1

t2 = L1

√
1−

(
α2

1 + L2
1 − L2

2

)
2

4α2
1L

2
1

(A.16)

Then:
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L3 =

∥∥∥∥∥∥∥∥∥∥∥


1 0 0

0 cos (θ2) − sin (θ2)

0 sin (θ2) cos (θ2)

 .


t1

t2

0

−


α2

β2

0



∥∥∥∥∥∥∥∥∥∥∥
=

√
(t1 − α2) 2 + (t2 cos (θ2)− β2) 2 + t22 sin2 (θ2) (A.17)

Solving for θ2, again using the identity A2 = A2 cos θ +A2 sin θ, gives the following:

θ2 = ± cos−1

(
α2

2 + β2
2 − L2

3 − 2α2t1 + t21 + t22
2β2t2

)
(A.18)

= ± cos−1

α1β
2
2 + α1α

2
2 − α2

1α2 + (α1 − α2)L2
1 − α1L

2
3 + α2L

2
2

α1β2L1

√
−−2L2

1(α2
1+L2

2)+(L2
2−α2

1)2+L4
1

α2
1L

2
1

 (A.19)

Inserting the positive result in Equation A.19 into Equation A.14 gives:

X̄3 =


L2
1−L2

2+α2
1

2α1

(α1−α2)L2
1+α1α2

2+α1β2
2−L2

3α1+L2
2α2−α2

1α2

2α1β2

L1

√
1− (L2

1−L2
2+α2

1)2

4L2
1α

2
1

√
((α1−α2)L2

1+α1α2
2+α1β2

2−L2
3α1+L2

2α2−α2
1α2)2

(L4
1−2(L2

2+α2
1)L2

1+(L2
2−α2

1)2)β2
2

+ 1

 (A.20)

Equation A.20 gives the solution to the tetrahedron apex when the base nodes are the origin,

on the X-axis, and on the XY-plane. The result has a positive z-axis value. The principle behind

the triangle inequality holds for tetrahedra as well, with the requirements for L1 and L2 the same,

and the added requirement that the distance between X̄2 and {α2, β2, 0}T has to be at most L3:

α1 ≤ L1 + L2∥∥X̄2 − {α2, β2, 0}T
∥∥ ≤ L3 (A.21)

As with the triangle case, X̄3 must be transformed such that it gives the correct result for

any arbitrary Xi, Xj , Xk. The following identities are used for the base nodes and float node:
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Xi = {xi, yi, zi}T

Xj = {xj , yj , zj}T

Xk = {xk, yk, zk}T

Xf = {xf , yf , zf}T

Xj,i = Xj −Xi

Xk,i = Xk −Xi

Xf,i = Xf −Xi

Xf,j = Xf −Xj

Xf,k = Xk −Xj

‖Xj,i‖ =
√
Xj,i.Xj,i = α1

Xi,f .Xj,f

‖Xi,f‖
=

Xi,f .Xj,f√
Xi,f .Xi,f

= α2√
1−

(Xi,f .Xj,f ) 2

||Xi,f‖2
=

√
1−

(Xi,f .Xj,f ) 2

Xi,f .Xi,f
= β2

Li,f = L1

Lj,f = L2

Lk,f = L3 (A.22)

The expressions for α2, β2 are derived from the definition of the dot product: A.B =

‖A‖‖B‖ cos θ, the identities Ax = ‖A‖ cos θ and Ay = ‖A‖ sin θ, and the identity A2 = A2 cos θ +

A2 sin θ, which lead to the following reductions:

α2 = ‖Xi,f‖ cos θ1 =
Xi,f .Xj,f

‖Xi,f‖

β2 = ‖Xi,f‖ sin θ1 =

√
1−

(Xi,f .Xj,f ) 2

||Xi,f‖2
(A.23)

Inserting the above identities into Equation A.20 and simplifying gives the following untrans-
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formed X̄3:

X̄3 =



L2
1−L2

2+Xj,i.Xj,i

2
√

Xj,i.Xj,i

Xj,i.Xk,i(L2
2−L2

1)+Xj,i.Xj,i(L2
1−L2

3−Xj,i.Xk,i+Xk,i.Xk,i)

2Xj,i.Xj,i

√
Xk,i.Xk,i−

(Xj,i.Xk,i)2

Xj,i.Xj,i

L1

√
1− (L2

1−L2
2+Xj,i.Xj,i)2

4Xj,i.Xj,iL2
1

√
1− (Xj,i.Xk,i(L2

1−L2
2)+Xj,i.Xj,i(−L2

1+L2
3+Xj,i.Xk,i−Xk,i.Xk,i))2

((Xj,i.Xk,i)2−Xj,i.Xj,iXk,i.Xk,i)(L4
2−2(L2

1+Xj,i.Xj,i)L2
2+(Xj,i.Xj,i−L2

1)2)


(A.24)

X̄3 must then be transformed to the correct frame of reference by rotating to the basis

formed by the triangle base, then translating it by Xi. As with the triangle case, the transformed

X-axis basis and the first column of the rotation matrix is the same as with the triangle case.

The transformed Z-axis basis is normal to the triangle base, and can be found by taking the cross

product of Xj.i and Xk,i in that order and normalizing it:

Xj,i ×Xk,i√
Xj,i ×Xk,i.Xj,i ×Xk,i

(A.25)

The transformed Y-axis basis is the cross product of the transformed Z-axis basis and the

transformed X-axis basis, and when combined with the other bases, the full rotation matrix Ri,j,k,f

is:

Ri,j,k,f =

{
Xj,i√
Xj,i.Xj,i

,
Xj,i ×Xk,i√

Xj,i ×Xk,i.Xj,i ×Xk,i

× Xj,i√
Xj,i.Xj,i

,
Xj,i ×Xk,i√

Xj,i ×Xk,i.Xj,i ×Xk,i

}
(A.26)

With the rotation matrix known, Ff is shown below, with products broken up over multiple

lines for readability:
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Figure A.4: The position ofXf as a function ofXi, Xj , Xk, Li,f , Lj,f , Lk,f for a tetrahedron example.

Xf = Ff (Xi, Xj , Xk, Li,f , Lj,f , Lk,f )

= Xi +Ri,j,k,f .X̄3

= Xi +
Xj,i

(
L2
i,f − L2

j,f +Xj,i.Xj,i

)
2Xj,i.Xj,i

+

(
Xj,i ×Xk,i√

Xj,i ×Xk,i.Xj,i ×Xk,i

× Xj,i√
Xj,i.Xj,i

)

(
L2
j,f − L2

i,f

)
Xj,i.Xk,i +Xj,i.Xj,i

(
L2
i,f − L2

k,f −Xj,i.Xk,i +Xk,i.Xk,i

)
2Xj,i.Xj,i

√
Xk,i.Xk,i − (Xj,i.Xk,i)2

Xj,i.Xj,i



+

Li,f

√
1− (L2

i,f−L2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

Xj,i ×Xk,i√
Xj,i ×Xk,i.Xj,i ×Xk,i



√√√√√1−

((
L2
i,f − L2

j,f

)
Xj,i.Xk,i +Xj,i.Xj,i

(
−L2

i,f + L2
k,f +Xj,i.Xk,i −Xk,i.Xk,i

))
2

((Xj,i.Xk,i) 2 −Xj,i.Xj,iXk,i.Xk,i)
(
−2L2

j,f

(
L2
i,f +Xj,i.Xj,i

)
+
(
Xj,i.Xj,i − L2

i,f

)
2 + L4

j,f

)


(A.27)
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A.2 Derivatives of Node Placement Functions

The derivative of the node placement functions is a foundation to all of the algorithms con-

tained in this dissertation. However, the representation of the derivative functions is considerably

long compared to the node placement functions themselves. I have made every effort to reduce the

size of the representation.

Since each node placement function is a function of the positions of the base nodes and

the lengths between the base nodes and the float node, there will be two Jacobian matrices: the

derivative of the float node XYZ with respect to the base node XYZ variables, and with respect to

the lengths.

A.2.1 Derivative of Single Strut With Respect to Length

By definition, the X-axis node is the second node placed, and is connected to the origin node:

δX2

δL1,2
= {1, 0, 0}T (A.28)

A.2.2 Derivative of Triangle Function With Respect to Lengths

The triangle function returns two node position variables along with a fixed Z-axis position

— the derivative of the triangle function with respect to lengths is a Jacobian matrix with two

node position rows and two length columns. Using the notation described in Equation A.9, the

derivatives of Xf with respect to Li,f and Lj,f are:
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δXf

δLi,f
=

Li,fXj,i

Xj,i.Xj,i

+

√
1− (L2

i,f−L
2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

ẑ ×Xj,i√
Xj,i.Xj,i

+

Li,f

(
(L2

i,f−L
2
j,f+Xj,i.Xj,i)2

2L3
i,fXj,i.Xj,i

− L2
i,f−L

2
j,f+Xj,i.Xj,i

Li,fXj,i.Xj,i

)
ẑ ×Xj,i

2
√
Xj,i.Xj,i

√
1− (L2

i,f−L
2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

(A.29)

δXf

δLj,f
= −

Lj,fXj,i

Xj,i.Xj,i

+
Lj,f

(
L2
i,f − L2

j,f +Xj,i.Xj,i

)
ẑ ×Xj,i

2Li,f (Xj,i.Xj,i) 3/2

√
1− (L2

i,f−L
2
j,f+Xj,i.Xj,i)2

4L2
i,fXj,i.Xj,i

(A.30)

A.2.3 Derivative of Tetrahedron Function With Respect to Lengths

Like the triangle case, the derivative of the tetrahedron function with respect to lengths is

a Jacobian matrix: three node position rows and three length columns. Also like the triangle

case, the length variables do not appear within any vector in Equation 3.3, allowing a single

expression for each length. Using the notation in Equation A.22, the derivatives of Xf with respect

to Li,f , Lj,f , Lk,f are:
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δXf

δLi,f
=

Li,fXj,i

Xj,i.Xj,i
+
Li,f (Xj,i.Xj,i −Xj,i.Xk,i)

Xj,i×Xk,i√
Xj,i×Xk,i.Xj,i×Xk,i

× Xj,i√
Xj,i.Xj,i

Xj,i.Xj,i

√
Xk,i.Xk,i −

(Xj,i.Xk,i)2
Xj,i.Xj,i

+
(
Xj,i ×Xk,i

(
Xk,i.Xk,i

(
L2
j,f − L2

i,f

)
− 2 (Xj,i.Xk,i)

2 +

Xj,i.Xk,i

(
2L2

i,f − L2
j,f − L2

k,f +Xk,i.Xk,i

)
+Xj,i.Xj,i

(
−L2

i,f + L2
k,f +Xj,i.Xk,i

)))(
1

(Xj,i.Xj,iXk,i.Xk,i − (Xj,i.Xk,i) 2)
√
Xj,i ×Xk,i.Xj,i ×Xk,i

)
 1√
−−2L2

j,f(L
2
i,f+Xj,i.Xj,i)+(Xj,i.Xj,i−L2

i,f)2+L4
j,f

L2
i,fXj,i.Xj,i


 1√

1− ((L2
i,f−L

2
j,f)Xj,i.Xk,i+Xj,i.Xj,i(−L

2
i,f+L2

k,f+Xj,i.Xk,i−Xk,i.Xk,i))2

((Xj,i.Xk,i)2−Xj,i.Xj,iXk,i.Xk,i)(−2L2
j,f(L

2
i,f+Xj,i.Xj,i)+(Xj,i.Xj,i−L2

i,f)2+L4
j,f)


(A.31)

δXf

δLj,f
= −

Lj,fXj,i

Xj,i.Xj,i
+
Lj,fXj,i.Xk,i

Xj,i×Xk,i√
Xj,i×Xk,i.Xj,i×Xk,i

× Xj,i√
Xj,i.Xj,i

Xj,i.Xj,i

√
Xk,i.Xk,i −

(Xj,i.Xk,i)2
Xj,i.Xj,i

+Lj,fXj,i ×Xk,i

(
Xk,i.Xk,i

(
L2
i,f − L2

j,f

)
−Xj,i.Xk,i

(
L2
i,f − L2

k,f +Xk,i.Xk,i

)
+Xj,i.Xj,iXk,i.Xk,i

)(
1

(Xj,i.Xj,iXk,i.Xk,i − (Xj,i.Xk,i) 2)
√
Xj,i ×Xk,i.Xj,i ×Xk,i

)
 1

Li,f

√
−−2L2

j,f(L
2
i,f+Xj,i.Xj,i)+(Xj,i.Xj,i−L2

i,f)2+L4
j,f

L2
i,fXj,i.Xj,i


 1√

1− ((L2
i,f−L

2
j,f)Xj,i.Xk,i+Xj,i.Xj,i(−L

2
i,f+L2

k,f+Xj,i.Xk,i−Xk,i.Xk,i))2

((Xj,i.Xk,i)2−Xj,i.Xj,iXk,i.Xk,i)(−2L2
j,f(L

2
i,f+Xj,i.Xj,i)+(Xj,i.Xj,i−L2

i,f)2+L4
j,f)


(A.32)
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δXf

δLk,f
= −

Lk,f
Xj,i×Xk,i√

Xj,i×Xk,i.Xj,i×Xk,i
× Xj,i√

Xj,i.Xj,i√
Xk,i.Xk,i −

(Xj,i.Xk,i)2
Xj,i.Xj,i

−

2Li,fLk,fXj,i.Xj,i

√√√√
1−

(
L2
i,f − L2

j,f +Xj,i.Xj,i

)
2

4L2
i,fXj,i.Xj,i

Xj,i ×Xk,i


((
L2
i,f − L2

j,f

)
Xj,i.Xk,i +Xj,i.Xj,i

(
−L2

i,f + L2
k,f +Xj,i.Xk,i −Xk,i.Xk,i

))(
1

((Xj,i.Xk,i) 2 −Xj,i.Xj,iXk,i.Xk,i)
√
Xj,i ×Xk,i.Xj,i ×Xk,i

)
 1

−2L2
j,f

(
L2
i,f +Xj,i.Xj,i

)
+
(
Xj,i.Xj,i − L2

i,f

)
2 + L4

j,f


 1√

1− ((L2
i,f−L

2
j,f)Xj,i.Xk,i+Xj,i.Xj,i(−L

2
i,f+L2

k,f+Xj,i.Xk,i−Xk,i.Xk,i))2

((Xj,i.Xk,i)2−Xj,i.Xj,iXk,i.Xk,i)(−2L2
j,f(L

2
i,f+Xj,i.Xj,i)+(Xj,i.Xj,i−L2

i,f)2+L4
j,f)


(A.33)

A.2.4 Derivative of Node Placement Functions With Respect to Node Positions

The derivatives with respect to node positions require differentiating by the components of

the node position vectors, such as xi. This leads to node vectors such as Xi being represented as

functions of the component variables, i.e. Xi(xi). This, in turn, leads to the use of the derivative

chain rule, which leads to an explosion in terms given the already-large number of terms in the

functions:

δf(g(x))

δx
=
δf(g(x))

δg(x)

δg(x)

δx
(A.34)

The chain rule will result in derivatives of the position vectors with respect to their individual

constituent variables. Conveniently, each of the simplifying definitions found in Equations A.9 and

A.22 have simple derivatives with respect to their constituent variables (definitions for Xk,i are

defined like the definitions for Xj,i):
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δXi

δxi
=

δ{xi, yi, zi}T

δxi
= {1, 0, 0}T = x̂

δXi

δyi
=

δ{xi, yi, zi}T

δyi
= {0, 1, 0}T = ŷ

δXi

δzi
=

δ{xi, yi, zi}T

δzi
= {0, 0, 1}T = ẑ

δXj,i

δxi
=

δ({xj , yj , zj} − {xi, yi, zi})T

δxi
= {−1, 0, 0}T = −x̂

δXj,i

δyi
=

δ({xj , yj , zj} − {xi, yi, zi})T

δyi
= {0,−1, 0}T = −ŷ

δXj,i

δzi
=

δ({xj , yj , zj} − {xi, yi, zi})T

δzi
= {0, 0,−1}T = −ẑ

δXj,i

δxj
=

δ({xj , yj , zj} − {xi, yi, zi})T

δxj
= {1, 0, 0}T = x̂

δXj,i

δyj
=

δ({xj , yj , zj} − {xi, yi, zi})T

δyj
= {0, 1, 0}T = ŷ

δXj,i

δzj
=

δ({xj , yj , zj} − {xi, yi, zi})T

δzj
= {0, 0, 1}T = ẑ

(A.35)

The derivitaves of each of the node position vectors is a (possibly negated) basis normal

vector, allowing for reduced expression count and interchangeability. For example, the derivative of

a function f with respect to xi is δf(Xi)
xi

= f ′(Xi)x̂, and can be transformed into the derivative for

yi by swapping x̂ for ŷ, resulting in δf(Xi)
yi

= f ′(Xi)ŷ. To generalize, I use the term vi to represent a

node position variable, and its generic basis vector v̂ to represent the derivative of the node position

vector. To find the derivative with respect to a specific variable, simply swap vi and v̂ with the

proper values from Equation A.35.

The following two subsections present the full forms of the derivatives. The output was

generated by Mathematica and imported as PDFs into this document. Each equation uses v and

v̂, allowing it to represent each of the three axis variables for the node in question being derived by

swapping x, y, or z in for v. Equations A.36 and A.37 show the derivatives of the triangle function

with respect to changes in the Xi and Xj nodes, respectively. Likewise, Equations A.38, A.39, and

A.40 show the derivatives of the tetrahedron function with respect to changes in the Xi, Xj , and
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Xk functions. The subsections that follow will display only the equations with no additional text,

to minimize the footprints of the equations.

A.2.5 Derivative of Triangle Function With Respect to Xi

δ X f

δ vi
=

z

⨯(-v


) Li , f 1 -

L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i

X j ,i .X j ,i

+

Li , f z

⨯X j ,i

-v

.X j ,i +X j ,i .-v


 L

i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2 X j ,i .X j ,i 

2
-

-v

.X j ,i +X j ,i .-v


 L

i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2 L
i , f
2

X j ,i .X j ,i

2 X j ,i .X j ,i 1 -
L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i

-

Li , f ((-v

).X j ,i + X j ,i .(-v


)) 1 -

L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i
z

⨯X j ,i

2 (X j ,i .X j ,i )
3/2

-
v

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 X j ,i .X j ,i
-

X j ,i ((-v

).X j ,i + X j ,i .(-v


)) L

i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 (X j ,i .X j ,i )
2

+
X j ,i ((-v


).X j ,i + X j ,i .(-v


))

2 X j ,i .X j ,i
+ v



(A.36)
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A.2.6 Derivative of Triangle Function With Respect to Xj

δ X f

δ v j
=

Li , f z

⨯X j ,i

v

.X j ,i +X j ,i .v


 L

i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2 X j ,i .X j ,i 

2
-

v

.X j ,i +X j ,i .v


 L

i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2 L
i , f
2

X j ,i .X j ,i

2 X j ,i .X j ,i 1 -
L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i

+

z

⨯v

Li , f 1 -

L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i

X j ,i .X j ,i

-

Li , f (v

.X j ,i + X j ,i .v


) 1 -

L
i , f
2 -L

j , f
2 +X j ,i .X j ,i 

2

4 L
i , f
2

X j ,i .X j ,i
z

⨯X j ,i

2 (X j ,i .X j ,i )
3/2

+

v

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 X j ,i .X j ,i
-
X j ,i (v


.X j ,i + X j ,i .v


) L

i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 (X j ,i .X j ,i )
2

+
X j ,i (v


.X j ,i + X j ,i .v


)

2 X j ,i .X j ,i

(A.37)
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A.2.7 Derivative of Tetrahedron Function With Respect to Xi

δ X f

δ vi
=

X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
X j ,i

X j ,i .X j ,i

(Xk,i .(-v

) - X j ,i .(-v


)) X j ,i .X j ,i + ((-v


).X j ,i + X j ,i .(-v


)) L

i , f
2

- L
k, f
2

- X j ,i .Xk,i + Xk,i .Xk,i  +

((-v

).Xk,i + X j ,i .(-v


)) L

j , f
2

- L
i , f
2

  2 X j ,i .X j ,i Xk,i .Xk,i -
(X j ,i .Xk,i )

2

X j ,i .X j ,i
+ v


+

X j ,i ⨯Xk,i Li , f

((-v

).X j ,i + X j ,i .(-v


)) L

i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 (X j ,i .X j ,i )
2
L
i , f
2

-
((-v


).X j ,i + X j ,i .(-v


)) L

i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 X j ,i .X j ,i Li , f
2

1 -
X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f

2 - L
j , f
2 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i ) L j , f

4 - 2 L
i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2




2 X j ,i ⨯Xk,i .X j ,i ⨯Xk,i 1 -
L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 X j ,i .X j ,i Li , f
2

+
1

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

((-v

)⨯Xk,i + X j ,i ⨯(-v


)) Li , f 1 -

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 X j ,i .X j ,i Li , f
2

1 -
X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f

2 - L
j , f
2 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i ) L j , f

4 - 2 L
i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2


-
1

2 (X j ,i ⨯Xk,i .X j ,i ⨯Xk,i )
3/2

X j ,i ⨯Xk,i (((-v

)⨯Xk,i + X j ,i ⨯(-v


)).X j ,i ⨯Xk,i + X j ,i ⨯Xk,i .((-v


)⨯Xk,i + X j ,i ⨯(-v


))) Li , f 1 -

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 X j ,i .X j ,i Li , f
2

1 -
X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f

2 - L
j , f
2 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i ) L j , f

4 - 2 L
i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2


-

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i  v



2 X j ,i .X j ,i
+ X j ,i ⨯Xk,i Li , f 1 -

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 X j ,i .X j ,i Li , f
2

- 2 X j ,i .X j ,i (X j ,i .(-v

) - Xk,i .(-v


)) + ((-v


).X j ,i + X j ,i .(-v


)) - L

i , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i  +

((-v

).Xk,i + X j ,i .(-v


)) L

i , f
2

- L
j , f
2

 X j ,i .X j ,i - Li , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f
2

- L
j , f
2

 

(X j ,i .Xk,i )
2
- X j ,i .X j ,i Xk,i .Xk,i  L j , f

4
- 2 L

i , f
2

+ X j ,i .X j ,i  L j , f
2

+ X j ,i .X j ,i - Li , f
2


2
 +

(2 ((-v

).Xk,i + X j ,i .(-v


)) X j ,i .Xk,i - X j ,i .X j ,i ((-v


).Xk,i + Xk,i .(-v


)) - ((-v


).X j ,i + X j ,i .(-v


)) Xk,i .Xk,i )

X j ,i .X j ,i - Li , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f
2

- L
j , f
2


2
 

(X j ,i .Xk,i )
2
- X j ,i .X j ,i Xk,i .Xk,i 

2
L

j , f
4

- 2 L
i , f
2

+ X j ,i .X j ,i  L j , f
2

+ X j ,i .X j ,i - Li , f
2


2
 +

2 ((-v

).X j ,i + X j ,i .(-v


)) X j ,i .X j ,i - Li , f

2
 - 2 ((-v


).X j ,i + X j ,i .(-v


)) L

j , f
2



X j ,i .X j ,i - Li , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f
2

- L
j , f
2


2
 

(X j ,i .Xk,i )
2
- X j ,i .X j ,i Xk,i .Xk,i  L j , f

4
- 2 L

i , f
2

+ X j ,i .X j ,i  L j , f
2

+ X j ,i .X j ,i - Li , f
2


2

2
 

2 X j ,i ⨯Xk,i .X j ,i ⨯Xk,i 1 -
X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i  + X j ,i .Xk,i Li , f

2 - L
j , f
2 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i ) L j , f

4 - 2 L
i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2

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+
X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯ -
v


X j ,i .X j ,i

-
((-v


).X j ,i + X j ,i .(-v


)) X j ,i

2 (X j ,i .X j ,i )
3/2

+
(-v


)⨯Xk,i + X j ,i ⨯(-v


)

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

-

X j ,i ⨯Xk,i (((-v

)⨯Xk,i + X j ,i ⨯(-v


)).X j ,i ⨯Xk,i + X j ,i ⨯Xk,i .((-v


)⨯Xk,i + X j ,i ⨯(-v


)))

2 (X j ,i ⨯Xk,i .X j ,i ⨯Xk,i )
3/2

⨯
X j ,i

X j ,i .X j ,i

X j ,i .X j ,i Li , f
2

- L
k, f
2

- X j ,i .Xk,i + Xk,i .Xk,i  + X j ,i .Xk,i L j , f
2

- L
i , f
2

  2 X j ,i .X j ,i Xk,i .Xk,i -
(X j ,i .Xk,i )

2

X j ,i .X j ,i
+

+
X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
X j ,i

X j ,i .X j ,i

(Xk,i .(-v

) - X j ,i .(-v


)) X j ,i .X j ,i +

((-v

).X j ,i + X j ,i .(-v


)) L

i , f
2

- L
k, f
2

- X j ,i .Xk,i + Xk,i .Xk,i  + ((-v

).Xk,i + X j ,i .(-v


)) L

j , f
2

- L
i , f
2

 

2 X j ,i .X j ,i Xk,i .Xk,i -
(X j ,i .Xk,i )

2

X j ,i .X j ,i
+

((-v

).X j ,i + X j ,i .(-v


)) X j ,i

2 X j ,i .X j ,i
-

X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
X j ,i

X j ,i .X j ,i
((-v


).X j ,i + X j ,i .(-v


)) X j ,i .X j ,i Li , f

2 - L
k, f
2 - X j ,i .Xk,i + Xk,i .Xk,i  + X j ,i .Xk,i L j , f

2 - L
i , f
2 

2 (X j ,i .X j ,i )
2

Xk,i .Xk,i -
X j ,i .Xk,i 

2

X j ,i .X j ,i

-

X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
X j ,i

X j ,i .X j ,i

((-v

).X j ,i + X j ,i .(-v


)) (X j ,i .Xk,i )

2

(X j ,i .X j ,i )
2

-
2 ((-v


).Xk,i + X j ,i .(-v


)) X j ,i .Xk,i

X j ,i .X j ,i
+ (-v


).Xk,i + Xk,i .(-v


)

X j ,i .X j ,i Li , f
2

- L
k, f
2

- X j ,i .Xk,i + Xk,i .Xk,i  + X j ,i .Xk,i L j , f
2

- L
i , f
2

 

4 X j ,i .X j ,i Xk,i .Xk,i -
(X j ,i .Xk,i )

2

X j ,i .X j ,i

3/2

-
((-v


).X j ,i + X j ,i .(-v


)) L

i , f
2 - L

j , f
2 + X j ,i .X j ,i  X j ,i

2 (X j ,i .X j ,i )
2

(A.38)
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A.2.8 Derivative of Tetrahedron Function With Respect to Xj

δ X f

δ v j
=
v

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2 X j ,i .X j ,i
+ X j ,i ⨯Xk,i Li , f 1 -

L
i , f
2 - L

j , f
2 + X j ,i .X j ,i 

2

4 X j ,i .X j ,i Li , f
2

(2 v

.Xk,i X j ,i .Xk,i - (v


.X j ,i + X j ,i .v


) Xk,i .Xk,i ) X j ,i .Xk,i Li , f

2 - L
j , f
2  + X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i )

2 L
j , f
4 - 2 L

i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2


+

2 (v

.X j ,i + X j ,i .v


) X j ,i .X j ,i - Li , f

2
 - 2 (v


.X j ,i + X j ,i .v


) L

j , f
2



X j ,i .Xk,i Li , f
2

- L
j , f
2

 + X j ,i .X j ,i - Li , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i 
2
 

(X j ,i .Xk,i )
2
- X j ,i .X j ,i Xk,i .Xk,i  L j , f

4
- 2 L

i , f
2

+ X j ,i .X j ,i  L j , f
2

+ X j ,i .X j ,i - Li , f
2


2

2
 -

2 v

.Xk,i X j ,i .X j ,i + v


.Xk,i Li , f

2
- L

j , f
2

 + (v

.X j ,i + X j ,i .v


) - L

i , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i 

X j ,i .Xk,i Li , f
2

- L
j , f
2

 + X j ,i .X j ,i - Li , f
2

+ L
k, f
2

+ X j ,i .Xk,i - Xk,i .Xk,i  

(X j ,i .Xk,i )
2
- X j ,i .X j ,i Xk,i .Xk,i  L j , f

4
- 2 L

i , f
2

+ X j ,i .X j ,i  L j , f
2

+ X j ,i .X j ,i - Li , f
2


2
 

2 X j ,i ⨯Xk,i .X j ,i ⨯Xk,i 1 -
X j ,i .Xk,i Li , f

2 - L
j , f
2  + X j ,i .X j ,i - Li , f

2 + L
k, f
2 + X j ,i .Xk,i - Xk,i .Xk,i 

2

((X j ,i .Xk,i )
2 - X j ,i .X j ,i Xk,i .Xk,i ) L j , f

4 - 2 L
i , f
2 + X j ,i .X j ,i  L j , f

2 + X j ,i .X j ,i - Li , f
2 

2


+

X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
X j ,i

X j ,i .X j ,i
-v


.Xk,i X j ,i .X j ,i + v


.Xk,i L j , f

2 - L
i , f
2  + (v


.X j ,i + X j ,i .v


) L

i , f
2 - L

k, f
2 - X j ,i .Xk,i + Xk,i .Xk,i 

2 X j ,i .X j ,i Xk,i .Xk,i -
X j ,i .Xk,i 

2

X j ,i .X j ,i

+

v

⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

-
X j ,i ⨯Xk,i (v


⨯Xk,i .X j ,i ⨯Xk,i + X j ,i ⨯Xk,i .v


⨯Xk,i )

2 (X j ,i ⨯Xk,i .X j ,i ⨯Xk,i )
3/2

⨯
X j ,i

X j ,i .X j ,i

+

X j ,i ⨯Xk,i

X j ,i ⨯Xk,i .X j ,i ⨯Xk,i

⨯
v


X j ,i .X j ,i

-
(v

.X j ,i + X j ,i .v


) X j ,i

2 (X j ,i .X j ,i )
3/2

X j ,i .Xk,i L j , f
2
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A.2.9 Derivative of Tetrahedron Function With Respect to Xk
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Appendix B

Calculation of Truss Covariance Conditioned on Node Positions

The simple covariance matrix derivation in Equation 5.5 is not the only way to derive it. I

discovered the following form prior to the one in Equation 5.5, and I record it here for completeness.

The multivariate canonical form, described in Section 5.3.1, can be used instead with the

general form for the propagation of covariance through a function [11], reiterated here:

Σf(x) =
df(x)

dx
Σx

df(x)

dx

T

(B.1)

The probability of a float node f can be expressed as a function of the probabilities of the

base nodes and the struts connecting to base instead of every length going back to the beginning.

The result is a linear system whose mean is the sum of the desired position and the Jacobian delta

(with respect to the base positions), and whose covariance is the length covariance transformed by

the node function:

Jf,base =
dXf (Xi, Xj , Xk, Li,f , Lj,f , Lk,f )

dXi,j,k

Jf,lengths =
dXf (Xi, Xj , Xk, Li,f , Lj,f , Lk,f )

dLi,j,k,f

p(Xf ) = N (Xf,desired + Jf,base(Xi,j,k −Xi,j,k,desired)J
T
f,base

, Jf,lengths(σ
2
LI)JTf,lengths) (B.2)

When no measurements are used, this method can be used to produce an identical covariance

matrix to the one found by Equation 5.5 through the following steps:



149

• Find the canonical form of the initial strut X1, which depends only on one length, and call

the result krunning, hrunning.

• For each step, find the linear conditional kf,base, hf,base using Equations B.2 and 5.27, and

find the canonical product of it and krunning, hrunning and set krunning, hrunning to the result.

• Marginalize the completed krunning, hrunning over all of the strut lengths to get the covari-

ance in Equation 5.5.


