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ABSTRACT

It is proved that each regular code is included in a maximal regular code. A

corollary of this result settles an open question from [F].



INTRODUCTION

A language C ¢ ¥ is called a code if C” is a free submonoid of ° with base
C. The theory of codes initiated by M. Schutzenberger ([Sch]) forms an
interesting fragment of formal language theory. A code C C Z¥ is called maxi-
mal if, for any z € £°— C, C|J {z} is not a code. All codes are subsets of maxi-
mal codes and the investigation of maximal codes forms an active research area
within the theory of codes (see, e.g., [BPS], [P1], [F], and [SH]). In par.ticular
one is often interested in the problem of the following kind: givén a code C of
type X (e.g. finite or regular) is it possible to find a maximal code D of type X

such that C ¢ D?

It was shown in [F] that for finite codes this guestion gets a negative
answer. Since then the following question remained open: is every finite code
ihcluded in a maximal regular code? Obviously any finite (resp. regular) prefix
code is included in a finite(resp. regular) maximal prefix code. Recently it was
shown in [PZ2] that every finite biprefiz code is included in a maximal biprefix

regular code.

In this paper we provide a positive answer to the above question. As a
matter of fact we prove a more general result (Theorem 5) : each regular code
is included in a regular rnaximal code. We would like to emphasize the following:
the new result persented in this paper is Theorem 5; most of the other results is
in one form or the other {and perhaps in a different terminalogy) retrievable
from the literature. However we have decided to make this paper rather self-
contained and to provide all the needed results with their (sometimes different

from the literature) proofs carried out in a "uniform manner”.

We assume the reader to be familiar with basic formal language theory - in

particular with rudimentary theory of regular languages (see, e.g., [S]).



PRELIMINARIES \

We use mostly-standard language theoretic notation and terminology.
For a set A, #4 denotes the cardinality of A.
For sets A, B, A—B denotes the set theoretic difference of A and F.
For a word z, |z | denotes its length and first(z) denotes the first letter of z; if
z =,y z, then ¥ is called a subword of = (also referred to as a segment or a
factor of z). The set of all subwords of z is denoted by sub(z) and for a

language K, sub{K) = | sub(z).

zekK

A nonempty word z is called bordered if x =y 2 y for a nonempty word ¥; oth-
erwise z is called unbordered.
A language C C L% is called a code if every word y € C* satisfles the following
condition:
ify = Uy U, and Y = x,...2Z, forn, m =1 and ¥y, ..., Up, Ty, ..., Ty € C then
n=m andy; =z; for 1<i<n. (In other words, ¥ has a unique representation
in C; subwords uy, ..., Y, of this representation are referred to as C—blocks of
Y)-
A code C C I+ is called maximal i, for eachz € °* — C, CUiz} is not a code.

In the sequel of this pziper we consider an arbitrary but fired alphabet %
where 0 = #¥ > 1; all languages we will consider are over L.
For a language K and a positive integer n, L,(K) ={w € K: |w| =n} and
o (K) = # Ln(K). |

We will define now and recall a number of notions concerning languages -
they will be central to our paper.
Let K ¢ L', |
(1) Kisdenseifz € sub (K') for eachz € X",

(2) K is fast if there exists a i)ositive integer n such that for each w € sub (K*)



there exist z, y € Z*such that |zy | <=n andz wy € K.
’ m
(8) K is rich if there exists a positive integer e such that am, (K°)= gé—-for

infinitely many positive integers m.



RESULTS

In this section-we investigate the problem how various properties of a code
(such as: fast, dense, rich, regular and maximal) influence each other. Once this
relationship is explored we can settle the problem of completing a regular code
to a regular maximal code.

Our first result is known (see [SH]). However for the sake of completeness
| we provide its proof {which is different from the proof in [ SH]).

Theorem 1. Fach maximal code is dense.

Fraof.

First we prove the following result.

Claim 1. Let C be a code that is not dense. There exists an unbordered
word we such that we £ sub (C*).

Proaf of Claim, 1.

Since C is not dense, there exists a word z #Z sub (C*). Let b € % be such

that b # first(z) and let wg = 2z b!#!, Clearly we is unbordered. Moreover

we £ sub (C*), because z £ sub (C°).

Thus Claim 1 holds. =

Now we prove Theorem 1 as follows.

Let € be a maximal code.
Assume to the contrary that C is not dense. Then let w, be an unbordered
word satisfying the statement of Claim 1.

Consider D = CJfwe]. Let y be an arbitrary word in D*. Since wg is

unbordered, Yy has a u};igue representation of the form

Y = TgWe T, We ' Wp Z,, Where ;ﬁzo (that is if ¥ = wgwe u, W+ We Up,



where

m =0 then m =n and u; =z; for 1<i<n). Since C is a code and
we £ sub (C*), y has a unique representation in D. Thus D is a code.
Since € ¢ D and w¢ £ sub (C*) we get a contradiction (to the fact that C is

maximal).

Consequently € must be dense and Theorem 1 holds. ®

Theorem 2. Fach rich code is maximal.
Praof.

Let C be a rich code and let ¢ be a positive integer constant satisfying the

definition of richness for C.

Assume to the contrary that C is not maximal. Let 2z be a word such that

B = Clz}isacode; let |z]| = £.

Let £ be a positive integer. Let ny, ..., n; be a sequence of positive integers
such that
v Um
n;<ng< - <nkandani(C)2—e——— ......................................... (1)

(Since C is rich and e satisfies the definition of richness of C, such a sequence

exists).

Considerr =mn, +ng+ - -+ +m + kt. Clearly
30 LT (2)

On the other hand let us consider an arbitrary permutation i,, ..., 4 of the
set §1, ..., k. Let Yi, € [m«l(c‘)’ o Yy € L,,ik(C') and let
iy, o ) = Yi, 2 Yi, 2 ' Y, 2. Since B is a code, if (1 ...s Je) is a permuta-

tion of {1, ..., £} different from (iy, ..., %), then ¥(iy, ..., %) # ¥ .... Jx ). Con-

sequently from (1) it follows that



n k) k)
cl g?

E’;-’“-k'i Y o W (3)

e e

From (2) and‘(3) it follows that
kt<e®ot® = (e )’ e (4)

t

Since e’ is a constant {independent of k), there exists a positive integer kg

such that, for all s > kg, s! > (ec?)®. Consequently (4) yields a contradiction (k

was chosen to be an arbitrary positive integer).

Thus € must be maximal and Theorem 2 holds. =

Theorem 3. Each regular code is fast. -
Proof.

Obvious. ®

Theorem 4. Each dense and fast code is rich.

Proof.
Let C be a code that is dense and fast. Then there exists a finite set 7 of
ordered pairs of words from Z° such that for each w € %" there exists (z, y) € F

such that x wy € C*. Let ¢ = max{|zy| :(z,y) <€ F}, f =#F and d = fo9.

Claim 2. For each positive integer n there exists a positive integer

o.m

m <n + g such that ¢, {C") = =

Proof of Claim 2.

Let for each w € L°, pair{w) be a fixed element (z,y) of F such that

TwWY € c’.
Let n be a positive integer. Let
En, z,y)=twel, (Z’)y:wpair (w) = (=, y)}. Clearly for some
n
(zo. Yo) € F, #E(n, zo, yo) = T— . Let P = |zoYol. Then
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n
tnip(C) = #E(R, To, yo) = T .

Hence

n n+p D.n+p n+p
Cpip(CT) = Tz Tes =2
U S d

Thus if we choosem =n + p weget m =n + g and Claim 2 holds. =

Now Theorem 4 follows directly from Claim 2. =

Remark. Theorems 2 and 4 together are more general than Theorem 7.4
(due to Schutzenberger) from [E]. However, it is pointed out by D. Perrin in
[P3] that a proof of the general case can be retrieved from the proof of Theorem
9.3in[£]. =

Theorem. 5. ’Let C be aregular code. There exists a code D which is dense,

fast, regular and such that C C D.
Praaf.
Let C be aregular code.

We consider separately two cases.

(i) C is dense. ’
Then the theorem follows from Theorem 3 (take D = C).

(ii) C is not dense.
Then, by Claim 1, there exists an unbordered word w¢ such that we £ sub(C").
Let A =fwezwezp - WoZy we:n=1, 2,2 £ C" and we £ sub (z;)}
and let D = CUbwe] UA.

Claim 3. D is a code.

Proof of Claim 3.

Let y € D*. Since wg is unbc:rdered, 4 has a unique representation.of the
form y =z, w¢ ig we - We Z, ({that is we can uniquely distinguish all

occurrences of wg iny ).



.9

This representation provides th‘g"’kbasis for the division of ¥ into D-blocks

which is obtained as follows:

g

ek,

(1) A subword we zj we Zjy; ' WeZjy we constitutes a D-block (correspond-
ingtoA)ife=sj=n-1,j+l<n-1,2;,.,2;, £ C" and z;_;, Zj,;+; € C'; sucha
D-block is referred to as a A—block.

(2) All occurrences of wg not involved in A-blocks are also D-blocks.

(3) All z;'s which are not involved in A-blocks must be in C* and so they are

uniquely divisible in D-blocks (really C-blocks).

The definition of 4 and the fact that wg £ sub (C') and wg is unbordered

guarantee that such a division is unique.

Hence D is a code and Claim 3 holds. =

Claim 4. D is dense.
Proof of Claim 4.
Letu €X’.

Consider ¥ = w¢ u we. Reasoning as in the proof of Claim 3 we get a

(unique) representation of ¥ in D*.

Thus D is dense and Claim 4 holds. =

Claim 5. D is regular.
Proof.

Obvious. =

Claim 8. D is fast.
P’"OOf. Bt

This follows from Claim 5 and Theorem 3. *
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Now Theorem 5 follows from Claims 3 through 5. =

Our results yield two interesti}ig corollaries. The first one solves an open
problem from the theory of codes (see, e.g.,[| F] and [ P2]). As a matter of fact it
provides a more general result: Restivo has asked ([F]) whether an arbitrary
Jinite code can be completed to a maximal regular code - we show that even an

arbitrary regular code can be completed to a maximal regular code.

Corollary 1. Let C be a code. If C is regular, then there exists a code D

such that C € D, D is maximal and D is regular.
Proof.
Let C be a regular code.

By Theorem 5 there exists a regular code D such that € € D, D is fast and

dense.

Thus, by Theorem 4, D is rich and so, by Theorem 2, D is maximal.

Hence Corollary 1 holds. =

Secondly, we notice that Theorems 1 through 4 provide an alternative proof

of the theorem by Schutzenberger (see [£] p. 94).

Corollary 2. Let C be a regular code. Then C is maximal if and only if C is

dense.
Proaf.

It follows directly from Theorems 1 through 4. =
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DISCUSSION

We have established-a number of relationships between dense, fast, rich,
maximal and regular codes. Using these relationships we were able to demon-

strate that each regular code is included in a maximal regular code.

In particular we have demonstrated that each rich code is maximal and
each maximal code is dense. Hence each rich code is dense. We provide now a
"direct” proof of this result - we believe it sheds a different light on this relation-
ship.

Corollary 3. Each rich code is dense.

Proof.

‘Let C be arich code.

Assume that C is not dense. Hence there exists a word z £ sub{C’); let
|z] =t. Let n be an arbitrary positive integer; n can be represented in the
formn =k, t + k, for some k =0 and ky; <t. An arbitrary word from L,{(C")
can be (starting from the left end) divided into k,; consecutive subwords of
length £ leaving a suffix of length k5. Thus
0, (CF) < (ot — 1)*15%,

Consequently

an(C+) < (at _1)k10.k2 - ((Tt_l)klaka - (1 _ 1_)]01
o™ g™ o_t}clo_kg O't °

o, {C*
Hence lim L&—L=
7L > o0 O‘

0
which cvontradicts the fact that C is rich.

Consequently € must be dense and the result holds. =

S

To put some of the dependencies we have démonstrated in a better per-

spective we provide now the following result.
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Theorem B, There::exists a maximal code which is not rich.

Froof.

T

Consider the family of all full binary trees in which leafs are labelled by a
and all inner nodes are labelled by b. Consider now all postfix notations for
these trees - in this way we get the language P C {a, bi*. It is well known that P
is a code (every forest of full binary trees has a unique representation in the

postfix notation).

Consider an arbitrary word z € {a, b}* —P. Clearly a!*!*12 € P* (we parse
a!?1*1 2z from right to left assigning +1 to @ and —1 to b; then each subword
yielding by summation weight +1 is a tree corresponding to an element of P).
Hence PJ{z} is not a code, because a!?1*! 2 would have two different represen-

tations in P*. Thus P is a maximal code.

On the other hand it is known (see, e.g., [F], Ch. III, Sect.3) that

o, (P*
lim -—%——)——= 0. (Here one considers random walks on the line of positive
L > o

integers where a represents a "step up " and b represents a "step down". It
turns out that the probability of starting in 0 and not returning to 1 in up ton

steps equals 1 in the limit).

Hence P is not rich and the theorem holds. =

Perhaps the most significant open question in the area of "extending codes
to their maximal counterparts” is (see [PZ]): can every biprefix regular code be
extended to a maximal biprefix regular code?. An answer to this question will

certainly make the picture of the whole area clearer.
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