MATHEMATICA AS A
PERFORMANCE ANALYSIS TOOL

David B. Wagner

CU-CS-746-94

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Mathematica as a Performance Analysis Tool

David B. Wagner

Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CU-CS-746-94 QOctober 1994

&

University of Colorado at Boulder

Technical Report CU-CS-746-94
Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309

Copyright © 1994 by
David B. Wagner

Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

Mathematica as a Performance Analysis Tool

David B. Wagner
University of Colorado — Boulder

wagner @cs.colorado.edu

1 Introduction

Mathematica [Wolfram91] is a well-known system for doing mathematics by computer. It provides built-in func-
tions for performing an enormous variety of tasks, from factoring polynomials to solving eigensystems, and most of
these functions can operate on either numerical (with arbitrary precision) or symbolic arguments. If the built-in func-
tions are not enough, Mathematica also provides its users with a very elegant and powerful interpreted programming
language. The functionality of the system can also be extended by loading packages, which are ordinary ASCII files
containing Mathematica programs that conform to certain coding conventions. A few dozen packages come with
Mathematica (of these, we shall be discussing the symbolic summation and transform packages), and hundreds more
are available via anonymous ftp from mathsource.wri.com. Finally, the results of Mathematica computations can be
rendered in a large variety of graphical formats.

This paper is a tutorial demonstration of Mathematica, with a special emphasis on applications to performance
analysis. The presentation assumes a basic familiarity with Mathematica; for readers with no Mathematica experi-
ence at all, Appendix A describes the most basic features of the system. Readers with this amount of background
should be able to understand at least the gist of the material presented here, although casual users should not expect to
understand every nuance of all the code examples contained herein.

2 Comparing the M/M/1 and M/M/2 queues

Suppose that we wish to compare the response time and waiting time of an M/M/1 queue to the corresponding
measures for an M/M/2 queue having an identical offered load. First we’ll define some functions that calculate these
quantities; then we’ll use Mathematica’s symbolic algebra features to do an analytic comparison. Finally, we’ll
graphically compare the response times to illustrate some of Mathematica’s graphics functions.

2.1 Function definitions

The mean response time and mean service time of an M/M/1 queue [Kleinrock75] having arrival rate A and ser-
vice rate [are as follows:

mmlresp[lambda_, mu_] := 1/(mu-lambda)

mmlwait[lambda_, mu_] :=
Module[{rho= lambda/mu}, rho/(mu-lambda)]

Here are the corresponding functions for the M/M/2 queue.

mm2resp[lambda , mu_] :=
Module[{rho=lambda/(2mu)}, 1/(mu(l-rho*2))]

mm2wait[lambda_, mu_] :=
Module[{rho=lambda/ (2mu)}, rho*2/(mu(l-rho’*2)) 1]

2.2 Analytic comparison

We first evaluate each of the functions just defined using arrival rate A for each queue and service rates 21 for the
M/M/1 queue and (per server) for the M/M/2 queue. The mean response times are:

-lambda + 2 mu
m2r = mm2resp[lambda,mu]

4 mu
Which is larger? It’s hard to tell, so we’ll take a ratio:
rratio = mlr/m2r

lambc'la2

-lambda + 2 mu
This isn’t much better! However, if we substitute p#2yt for A and tell Mathematica to simplify the result, the
answer becomes obvious.

Simplify[rratio /. lambda -> rho*2mu]

Since p < 1, this ratio is less than one. Hence, m1r <m2r.

The Simplify command attempts to do general algebraic simplification. More specific algebra commands
include Factor, Expand (the inverse of Factor), Cancel (for canceling common factors from a quotient),
Apart (for computing partial fractions), and Together (the inverse of Apart).

The analogous computation for average waiting times is:

mlw = mmlwait[lambda, 2mu];

m2w = mm2wait [lambda, mu];
Simplify[miw/m2w /. lambda -> rho*2mul]
1 1

2t 2 rho
Since p < 1, this expression is larger than 1. Hence m1w > m2w.

2.3 Graphical comparison

Let us graphically compare the response times of the M/M/1 queue to the M/M/2 queue. Observe what happens
as we attempt to plot response times all the way from p =0 to 1:

subs = { lambda -> rho*2mu, mu->1 };

Plot[Evaluate[{mlr, m2r} //. subs], {rho,0,1}]1;
1

Power::infy: Infinite expression -- encountered.
0.

175¢

150}

Mathematica complains, but does the best job it can. (To avoid error messages, we won’t plot the endpoints any
more.)

This graph doesn’t contain enough detail. To see more, we need to override Mathematica’s choice of y-range.
This is accomplished by specifying a rule! of the form PlotRange->{ylow, yhigh} as a trailing argument to
the Plot command.

Plot[Evaluate[{mlr, m2r} //. subs],
{rho,0.01, .99}, PlotRange->{0,10}
1;
10

0 0.2 0.2 0.8 0.8 1

This is somewhat better, but the curves ought to be distinguished somehow. Let’s make m1x red and m2r green
and dashed:

Plot [Evaluate[{mlr, m2r} /. subs],
{rho,0.01,.99}, PlotRange->{0,10},
PlotStyle->{{RGRColor[1,0,01},
{RGBColor[0,1,0], Dashing[{.05,.02}1}}

10

3 Solving a Discrete-Time Markov Chain

In this section we’ll apply two techniques from Mathematica’s arsenal of linear algebra functions to the problem
of solving for the steady-state probabilities of a discrete-time Markov chain. Just for good measure, we’ll also show
how to calculate n-step transition probabilities. In the next section we will write a program to simulate this (or any
other) DTMC.

3.1 A machine reliability model

The following problem is from [Taylor84]:
An airline reservation system has two computers, only one of which is in operation at any given time. A com-

1. Many Mathematica functions use rules to represent optional arguments.

puter may break down on any given day with probability p. It is assumed that both machines never break down in the
same day. There is a single repair facility that takes 2 days to restore a computer to normal. Only one computer can be
repaired at a time. Find the long-run probability that both computers are inoperative as a function of p.

The state space is:

+ State 0: both machines are operational

* State 1: one machine has just failed, and the other is operational.

* State 2: one machine is operational, and the other has undergone one day of repairs.

+ State 3: neither machine is operational, and one machine has undergone one day of repairs.

Note that no other states are possible because of the assumption that only one machine can break down on any
given day.

3.2 Method 1: LinearSolve

We could solve this problem by a straightforward application of Solve to the state-transition equations for the
DTMC. As an alternative to explicitly writing down the state-transition equations, we will instead formulate the state
transition matrix m and solve the linear system m.x==x using LinearSolve:

?LinearSolve

LinearSolve[m, b] gives the vector x which solves the
matrix equation m.x==b.

Since LinearSolve expects vector multiplication on the right, we have to make each column of the state tran-
sition matrix be the conditional pdf of the next state. The state transition matrix is thus (MatrixForm simply prints
the matrix in columns, without the list braces; it is strictly cosmetic):

m = {cl'Ploll'plo}l {plolpll}l {oll-plolo}l {Olplolo}};

MatrixForm[m]

1 -p 0 1 -p 0
p 0 p 1
0 1 -p 0 0
0 i} 0 0

The system m.x==x is equivalent to the system (m-I) .x==0 where I is the identity matrix. Thus,
MatrixForm[m2 = m-IdentityMatrix[4]]

-p 0 1 -p 0
e} -1 P 1
0 1 -p -1 0
0 P 0 -1

To add the constraint that the state-transition probabilities must sum to 1, replace the first row of m2 with
{1,1,1,1}, and change the right-hand side of the equationto {1,0,0,0}.

MatrixForm[m3 = ReplacePart[m2,{1,1,1,1},11]

1 1 1 1

p -1 p 1

0 1 -p -1 0

0 P 0 -1

solutionl = Simplify[LinearSolve[m3, {1,0,0,0}1]
(-1 + p) p (1 -p)p p2

oo 27T T 30 TR P 5
1 +p 1 +p 1l +p 1 +p

3.3 Method 2: Eigensystem
The solution to the Markov chain is an eigenvector of m:
{vals, vecs} = Simplify[Eigensystem[m]];

Since Eigensystem returns a list of two elements, “{vals, vecs} = ...” performs a simultaneous

assignment to both vals and vecs. The eigenvalues are:

vals
b - _Sqrtl(4 - 3 p) p]l -p + Sart((4 - 3 p) p]
{ 0 ' 1 y TTTTTTTETT 5 “““““““““““ ¢ TTTTETTEETTT é ___________ }
Since the second eigenvalue is 1, let’s examine the second eigenvector:
vecs[[2]]
2
d=23-B 2 ae l 0
Y

This does not agree with the previous solution because it is not normalized—that is, the components of the vector
don’t sum to 1. This is easy to fix (the expression “Plus@@1list” sums the elements in a list):

simplify[vecs[[2]] / Plus@@vecs[[2]]]

It is easy to see that this solution is identical to the previous one.

In general, Eigensystem is impractical for large symbolic matrices because it solves the characteristic equa-
tion for the matrix (which would be a high-degree polynomial). Even if it works, it’s painfully slow. However, it is a
reasonable choice for numerical matrices.

3.4 n-step transition probabilities

Although it is possible to obtain closed-form expressions for the n-step transition probabilities [Molloy89], it
requires the inversion of a matrix z-transform, which is time-consuming and not feasible for larger matrices. For any

given n, however, m” can be computed efficiently using the built-in function MatrixPower. For example, when
p=0.9 the steady-state probabilities are

solutionl /. p->.9

{0.00552486, 0.497238, 0.0497238, 0.447514}
Observe the convergence of the n-step transition probabilities to these values:

Table[Transpose[MatrixPower[m /. p->.9, nll1[[11],
{n,100,1000,100}]

{{0.00399944, 0.332365, 0.0663635, 0.597272},
{0.00491754, 0.431596, 0.0563487, 0.507138},
{0.00528306, 0.471103, 0.0523614, 0.471252},
{0.00542859, 0.486832, 0.0507739, 0.456965},
{0.00548653, 0.493095, 0.0501419, 0.451277},
{0.0055096, 0.495588, 0.0498902, 0.44%9012},
{0.00551879, 0.496581, 0.04979, 0.44811},
{0.00552244, 0.496976, 0.0497501, 0.447751},
{0.0055239, 0.497133, 0.0497343, 0.447608},
{0.00552448, 0.497196, 0.0497279, 0.447551}}

MatrixPower can be used on symbolic matrices as well, but the symbolic expressions become unwieldy when
n is this large.

4 Simulating a DTMC

Simulating a DTMC is an excellent way to demonstrate a wealth of functional programming techniques. (For the
uninitiated, Appendix B discusses some indispensable Mathematica primitives for functional programming.) After
defining the functions necessary to simulate a DTMC, we’ll simulate the chain from the previous section, visualize
the sample path, and compare the estimated state probabilities to the analytic solution already obtained.

4.1 Function definitions

We first write a function onestep that takes the current state of a DTMC as an argument and chooses the next
state according to the transition matrix m. The general strategy of onestep will be to pick a uniformly distributed
random number k and compare it to the entries in the k-th column of m.

This would be much easier to do if the rows of m were the conditional pdf’s, since Mathematica stores matrices
in a row-major form. This is no problem; we’ll simply transpose m before we begin:

MatrixForm[mT = Transpose[m]]

1 -0p o) 0 0
0 0 1 -p o)
1 -p o) 0 0
0 1 0 0

Now when we are in state k, k=0. . 3, the transition probabilities are given by mT [[k]].

Our task would be easier still if mT [[k]] were a CDF rather than a pdf. In other words, we want to create a new
matrix whose rows are the cumulative partial sums of the rows of mT. This is easily accomplished by Map’ing the
cumulsum function from Appendix B onto mT, since each element of mT is a row of the matrix:

MatrixForm[mcdf = Map[cumulsum, mT]]

1 -p 1 1 1
0 0 1 -p 1
1 -p 1 1 1
0 1 1 1

Now we are ready to write onestep.

onestep[state_] :=
Module[{cdf, prob=Random[], index=1},
cdf=cdfMatrix[[state+1]];
While[cdf[[index]] < prob, index++]1;
Return[index-1]
1

The “state+1” at the beginning of onestep and “index-1" at the end compensate for the fact that
Mathematica list indexing is 1-based, not 0-based.

The function has been written in a general purpose manner: First, note that none of the code depends upon the
size of the matrix. Second, although it appear that the transition matrix has been hard-coded into the algorithm, this is
not the case, since the right-hand side of the function definition (and hence the symbol cdfMatrix) will not be eval-
uated until the function is invoked.

As a final aside, the Random function returns a Uniform[0,1] random number by default. Optional arguments
can make it return uniformly distributed real or integer numbers over any range; if the Statistics packages
[Boyland92] are loaded, it can also generate random variates from a wide selection of distributions.

The simulate function will take a transition probability matrix, transpose it, convert each row to a cdf, and
then iterate onestep for the given number of steps. This is much easier than it sounds:

simulate[matrix_, initial , steps_] :=

(
cdfMatrix = Map[cumulsum, Transpose[matrix]]:;
NestList [onestep, initial, steps]

)

4.2 A sample path
This command computes a sample path of length 1000 for our Markov reliability model with p=.1:
path = simulate[m /. p->.1, 0, 1000];

Here is a plot of the first 250 steps in the sample path. (Plotting more that this makes the individual lines in the
plot hard to discern.)

ListPlot[Take[path,250], PlotJoined->True,
PlotStyle->{Thickness[.003]}, PlotRange->All,
AspectRatio->1/3, Ticks->{Automatic,{0,1,2,3}}1;

50 100 150 200 250

To compute steady-state probabilities we merely divide the number of times the integer k, k=0 . . 3, appears in
path by the total number of elements in path. The entire steady-state probability vector can be computed with one
command:

simsolution = Table[N[Count[path, k]/Length[pathl]l, {k,0,3}]

{0.806194, 0.0969031, 0.0879121, 0.00899101}
How does this compare with the analytic solution?

analyticsolution = solutionl /. p->.1
{0.80198, 0.0990099, 0.0891089, 0.00990099}

S Solving Recurrence Relations

The package DiscreteMath'RSolve" contains functions for solving recurrence relations [Boyland92]. The
package is loaded using the following command:

Needs ["DiscreteMath‘RSolve‘"]

5.1 Example: the M/M/1 queue

RSOlVe[lambda*p[k] == u*p[k+1]' p[k], k]
k
{{plk] ->]_.§r£1]3<_i§]_{_g_[gl}}
mu

The first two arguments to RSolve are analogous to those of Solve; the third argument specifies the index
variable. You can specify initial conditions by making the first argument a list of equations:

RSolve[{lambda*p[k] == mu*pl[k+1l], p[0]l==1-lambda/mu}, plk], k]

{({plk] -> lambda® mu t ~ K (-lambda + mu)}}

5.2 Example: the M/E /1 queue

(2D

ru ru ru ru rp
M/Er/1

There are three flow balance equations for this system: one for state 0, a second for states 1. . r, and a third for
states beyond r. The constraints on the equations passed to RSolve are expressed using the syntax “equation /;
constraint™

erlangsolver[r_, lambda_ , mu_] :=
RSolve[{lambda*p[0] ==r*mu*p[1l],

(lambda+r*mu) *p[k] ==
r*mu*p[k+1] /; (k>0 && k<r),

(lambda+r*mu)pl[k] ==
lambda*p[k-r]+r*mu*p[k+1] /; k>=r

}, plkl, ki

For r=1, this should be M/M/1.

erlangsolver([l, lambda, mu]

r=2 is quite a bit more interesting. However, for reasons unknown, RSolve is unable to solve this recurrence
for symbolic A and , but is able to solve it for numeric values. We arbitrarily choose A=3 and p=4, yielding a queue
with a utilization of 3/4.

mer2soln = erlangsolver[2, 3, 4]

3 Sgrt[105] . k 3 Sgrt[105]
T A U
{pIk] => 64 (-F=---mm-TooooooooZio D2 -
3 Sq@rt{l105]
3y _ Sgrtllos], 3 Sqrt[105],k
e T TTTren D) Whet TTaeTT
3 5qrt[105] P

As expected, without an initial condition the solution contains one unknown, p[1]. We can eliminate the
unknown by setting the sum of all the probabilities to 1. Although the built-in Sum function can evaluate only finite
sums, the package Algebra® SymbolicSum® extends its capabilities to infinite sums.

Needs ["Algebra'SymbolicSum*"]
Sum[p[k] /. mer2soln[[1]], {k,0,Infinity}]

Obviously, p [1] is 3/32. The utility of rules should now be apparent as we define a function for the fully-solved
recurrence:

mer2[k_] = p[k] /. mer2soln[[1]] /. pl[l]l->3/32
3 Sqgrt[105] k 3 N Sgrt[105]

(-(3oy - Sgxtli0sl, 3, Sartll05],k
oot 6 16 6)
3 Sgrt[105]

We noted above that the utilization of this queue is 3/4; as a sanity check, mer2 [0] should be one minus the uti-
lization:
mer2[0] // Simplify
1

4
Note that the answer is exact.

5.3 The M/H,/1 queue

The M/H,/1 queue models a situation in which customers are of two types: Customers of type j appear with prob-
ability 0; and have average service times 1/1;. The state transition diagram for this queue consists of two parallel
chains. A state in the upper chain, which we will denote a [k], indicates that there are k customers at the queue and

the customer in service is of type 1. Similarly, a state in the lower chain is denoted b [k] and indicates that the cus-
tomer in service is of type 2. State 0, denoted s0, is common to both chains since there is no customer in service.

M/H2/1

Enumerating all of the state transition equations is tedious but straightforward:
h2solver[lambda_, {alphal_,mul_}, {alpha2_,mu2_}] :=

RSolvel[{
lambda*s0 == mul*a[l]+mu2*b[1l],
(lambda+mul)*a[l] ==

alphal*lambda*s0O+alphal*mul*af[2]+
alphal*mu2*b[2],

(lambda+mu2) *b[l] ==
alpha2*lambda*sO+alpha2*mul*al[2]+
alpha2*mu2*b[2],

(lambda+mul)alk] ==
lambda*al[k~1] +alphal*mul*a[k+1]+
alphal*mu2*bl[k+1] /; k>1,

(lambda+mu2)b[k] ==

lambda*b[k-1]+alpha2*mul*a[k+1]+
alpha2*mu2*b[k+1] /; k>1
3,
{alk]l, blkl}, k
1

The following queue has an average service rate equal to 8/5 and a utilization equal to 5/8.
h2soln = h2solver[l, {1/4, 1}, {3/4, 2}]

G s T s

{{alk] -> ===z + o

20 4 !

2. -1 2 -1
3 (g) vk 0 (§) Tk 0
b [k] - - 56 —————— + - Z ~~~~~~ } }
Compute s0 by summing all state probabilities and setting the result equal to 1:

Solve[sO+Sum[al[k]+b[k]/.h2s0oln[[1]], {k,1,Infinity}] == 1]

({s0 -> 2))

Once again, we note that s0 is equal to one minus the utilization of the queue’s server.

6 The M/G/1 Queue

Mathematica has built-in functions for calculating limits, derivatives, and integrals, and for solving differential
equations. In addition, there are standard packages that implement Laplace transforms and z-transforms. Combined
with the SymbolicSum package demonstrated earlier, these features allow the straightforward calculation of
moments and convolutions of both discrete and continuous random variables.

In this section we will demonstrate most of these capabilities (except for differential equations) by solving the
Pollaczek-Khinchin transform equation [Kleinrock75] for the M/G/1 queue.

6.1 The P-K transform equation
The Pollaczek-Khinchin (P-K) transform equation gives the z-transform of the queue length pdf of an M/G/1
queue in terms of the Laplace transform of the service time pdf. We need to load a package first:
Needs ["Calculus‘'‘LaplaceTransform'"]

The following function evaluates the P-K equation for a queue with service time pdf s [t], arrival rate A, and
offered load p. (The parameter z simply specifies what the independent variable will be.)
nstar[s_, t_, lambda , rho_, z_] :=
Module[{sstar},
sstar = LaplaceTransform[s, t, lambda-lambda*z];
sstar*(l-rho) (1-z)/(sstar-z)
1
As an example, consider the M/M/1 queue with service rate [L:

nstar[mu Exp[-mu x], x, lambda, lambda/mu, z] // Simplify

-mu + lambda z
After simplification, the result is recognizable as the z-transform of a geometric distribution.

6.2 Inverting the z-transform

The package DiscreteMath'RSolve, which we have already loaded, also contains functions for finding and
inverting z-transforms. The function for inverting a z-transform goes by the unlikely name of SeriesTerm. For
example, to invert the transform found in the previous subsection:

10

SeriesTerm[(lambda-mu)/(lambda z - mu), {z,0,n}]

lambda™ mu ™t T P (<lambda + mu) Ifln >= 0, 1, 0]

The result states that the n-th term in the Laurent series expansion around z=0 of the given function is
Aru-n=1(u-2) when n is non-negative, and is O otherwise. In other words, the I £ expression is being used as an
indicator function.

This indicator function is rather annoying, but fortunately it can be eliminated. SeriesTerm calls the function
Info[n] to try to getinformation about the independent variable that might simplify the analysis. For queueing the-
ory it usually makes sense to specify that the independent variable is non-negative. We use this technique in the func-
tion npd£, which calls nstar and tries to invert the result:

npdfis_, t_, lambda , rho_, n_] :=

(Info[n] = (n>=0);
SeriesTerm[nstar([s,t,lambda,rho,z], {z,0,n}]

)

Here is the entire calculation for the M/M/1 queue. There’s an awful lot going on here: a forward Laplace trans-
form, an inverse z-transform, and a lot of algebra!

npdf [mu Exp[-mu x], %, lambda, lambda/mu, k]

].z:unbdak mu—l -k (-lambda + mu)

Now we’ll use these functions to attack some less trivial problems.

6.3 The M/H,/1 queue revisited

First we must define a pdf for the service time. The pdf below has the same parameters as the M/H,/1 queue that
was solved in Section 5.3 using RSolve.

h2[x] := 1/4 lambda Exp[-lambda x] +
3/4 (2 lambda) Exp[-2lambda x]

The average service rate of the server is given by the reciprocal of the first moment of h2:
mu2 = l/Integrate[x h2[x], {x,0,Infinity}]
8 lambda

The utilization of this queue, assuming arrival rate lambda, is equal to 5/8. The queue length distribution is
nh2[n_] = npdf[h2[x], x, lambda, lambda/mu2, n]

2. n 2. n
L L
32 32

A quick check shows that this answer is identical to the answer obtained by solving the Markov chain:
Simplify[h2a[n]+h2b[n]]

Let’s visualize this pdf by plotting it as a histogram. To make such a plot, we have to load yet another package.
Needs ["Graphics‘Graphics‘'"]
GeneralizedBarChart [
Evaluate[Table[{k,nh2[k],1}, {k,0,14}]11,
PlotRange->All, AxesOrigin->{-1/2,0}

11

12 14

6.4 The M/D/1 queue
The degenerate distribution can be defined on the entire real line by expressing it as a Dirac delta function. The
function DiracDelta was defined when we loaded the LaplaceTrans form package.
dpdf[x_,a_] := DiracDeltal[x-a]
a is the mean (in fact, the only) value of this distribution. We’1l arbitrarily choose a=1/4 and a utilization of 3/4
(which implies an arrival rate equal to three). The z-transform of queue length is easy to find:
dstar[z_] = nstar[dpdf(x,1/4]1, x, 3, 3/4, z]
E(-S + 3 z)/4

4 (B - z)
However, SeriesTerm can’t invert this transform.
npdf [dpdf[x,1/4]1, x, 3, 3/4, k]
Solve: :tdep:
The eguations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.
If(k == 0, 1, 0] - If[k ==1, 1, 0]

4
3/4 . 1
(E (SerlesTerm[-—z§—2$75———-§71——, z, -2 + k] -
-5 E
. 1
SerleSTerm[__—(§_£)_7Z——_~§71"—’ z, -1 +kl)) / 4
B E Z

Without Mathematica, we’d be stuck. However, we can have Mathematica generate a power series for the z-
transform and then read off the coefficients. The built-in function Series can symbolically expand a function in a
Taylor series about an arbitrary point:

Series[f[x], {(x,a,2}]

flal] + £'[a]l (-a + X) + ===-"--o—cm--"me + Of-a + x]3

Generating the series for dstar [z] is very cumbersome, though, due to the large symbolic expressions that are
built up as higher order derivatives are computed—it takes about 1 second to generate just the first 6 terms of the
series. Numericalizing dstar [z] before calling Series allows more simplification of intermediate results, which
speeds up the computation a great deal (and makes the results much more compact):

Series[N[dstar([z]], {z,0,5}] // Timing

{0.15 Second, 0.25 + 0.27925 z + 0.194235 22 +
0.116667 23 + 0.0676429 z4 + 0.0390206 25 + O[z]6}

12

Although the result of the Series command appears to be a sum, it is not:
InputForm[%s[[2]]]
SeriesDataz, 0, List[0.25, 0.2792500041531686671,
0.1942347603164710381, 0.1166673569112961039,
0.06764286157987146755, 0.03902055014041806159], 0, 6, 1]

The list of coefficients is the third element of this data structure. Putting it all together, we can define a function
to generate just the list of coefficients:

zprobs[f_, z_, k_] := Series[N[f], {z,0,k-1}]1[[3]]
Here are the first fifteen coefficients. Note once again that p [0] is equal to one minus the utilization.
zprobs[dstar[z], z, 15]
{0.25, 0.27925, 0.194235, 0.116667, 0.0676429, 0.0390206, 0.022506,
0.0129821, 0.0074885, 0.00431962, 0.00249171, 0.0014373, 0.000829084,

0.000478244, 0.000275867}
These fifteen probabilities account for almost all of the probability mass.

Plus@@%
0.999624

Of course, even though we were unable to invert the z-transform symbolically, we can still calculate moments of
the pdf directly from the derivatives of the z-transform. However, simply substituting z—>1 into the derivative of the
transform leads to an indeterminate form:

dstar’[z] /. z->1
Indeterminate
We need to take a limit to evaluate this expression. Fortunately, there is a built-in function for doing so:
ml = Limit[dstar’[z], z->1, Direction->1]
15
8
The second moment is
m2= Limit[dstar’’[z], z->1, Direction->1]+ml
231
32

Note that each of these results is exact. There is no numerical approximation involved, as there was in the calcu-
lation of the individual probabilities.

7 Algorithms for Closed Queueing Networks

One of the most powerful programming paradigms offered by the Mathematica programming language is rule-
based programming. In this section we will demonstrate how to implement some well-known computational algo-
rithms for closed BCMP [Baskett75] queueing networks using rule-based programming.

7.1 Convolution

The convolution recurrence [Buzen73] for computing the normalization constant for a closed BCMP queueing
network is:

gln_,k 1 := gln,k-11+d[[k]]lgn~1,k]
glo, k1 :=1
gln_,0] := 0

where d is a vector containing the service demands of the servers in the network. The definitions given above
constitute a working Mathematica program:

d={2,1,7,4};
Tablel[gln,k],{n,5}, {k,Length[d]}] // TableForm

13

2 3 10 14

4 7 77 133

8 15 554 1086
16 31 3909 8253

32 63 27426 60438

This is a simple example of rule-based programming. In Mathematica, a function definition is actually a rule def-
inition. Thus, one can have multiple definitions for the same function—these definitions are merely added to the rule
base for that function. When Mathematica sees an expression of the form g [__, _], it attempts to match that expres-
sion to the most specific rule possible. In other words, the expression g [0, 5] is matched with the rule for g [0, k_]
rather than the rule for g [n_, k_] (matching the latter would result in an infinite loop).

Rule-based programming is a very elegant paradigm because the statement of a problem often constitutes an
algorithm for solving that problem as well. Such is the case in this example. Also, rule-based algorithms obviate the
need for many, if not all, conditional expressions (e.g., if or switch statements). Instead, Mathematica’s main evalua-
tion routine decides which rule to fire based on pattern-matching. (The user can optionally attach boolean conditions
to rules.) Finally, rule-based programs are easy to modify. Quite often, the functionality of a program can be signifi-
cantly extended by adding one or more rules, without any changes to the existing rules—a consequence of the fact
that more specific rules always match before more general ones.

Unfortunately, the example program is quite inefficient:

Timing[g[10,4]]
{3.61667 Second, 1072817109}

The reason for this is that, in the course of evaluating g [n, k], g[n-1,k-1] will be evaluated twice: once
during the evaluation of g [n-1,k] and once during the evaluation of g[n, k-11. In fact, g[n-1i, k-3] will be
evaluated Binomial [1+7,1] times, and the asymptotic time complexity of this program is O(nk/k!).

This situation, called overlapping sub-problems, is characteristic of recursive solutions to a wide variety of very
important problems. Because of this, such problems are almost always solved using dynamic programming, wherein
a solution is constructed “bottom up” instead of “top down.” The main disadvantage of dynamic programming is that
it is often non-trivial to write code that evaluates the sub-problems in the optimal order.

However, there is an elegant alternative to dynamic programming: memoization. This is a technique in which the
results of all recursive calls are cached. The second and subsequent evaluations of a particular sub-problem are thus
O(1), reducing the overall running time considerably.

In Mathematica, memoization is accomplished by a very modest change to the definition of a function:

gln_,k] := gln,k] = gln,k-11+d[[k]]1g[n-1,k]
What is really going on here? When g is instantiated with particular values for the formal parameters n and k—
say, n0 and k0, respectively—Mathematica evaluates the right-hand side of this definition. This results in the assign-
ment of a value to the expression g [n0, k0]. Now, the next time the value of g [n0, k0] is required, no recursive
call is made.
Here’s a demonstration of this. Before any calls to the “new” g, this is the rule base for g:
?g
Global‘g
gl0, k_] 1
gln_, 0] 0
gln_, k.1 := gln, k] = gln, k - 1] + d[[k]l*gln - 1, k]

Let’s see what happens afteracalltog[1,1].
gll,1]1;
?g
Global‘g
gll, 1] =
gl0, k] :=1
gln_, 0] 0
gln_, k.1 := gln, k] = gln, k¥ - 1] + da[[k]ll*gn - 1, k]

Note that arule for g[1, 1] has been added to the rule base for g. Also note that this rule is listed first in the rule

N

It

14

base, because it is more specific than any of the others. Thus, it will “trap” all callsto g[1,1].
Compare the running time of the memoized function to the running time of the original:

Timing[g[10,4]1]
{0.3 Second, 1072817109}
It’s more than 10 times faster for these modest values of n and k; this factor will grow even larger as these values

are increased. Furthermore, all values of g [n, k] for n<10 and k<4 have been memoized and are available nearly
instantaneously:

Timing[Table[g[n, k], {k,4}, {n,10}]11 // TableForm
0.05 Second

2 3 10 14

4 7 77 133

8 15 554 1086

16 31 3909 8253

32 63 27426 60438

64 127 192109 433861
128 255 1345018 3080462
256 511 9415637 21737485

512 1023 65910482 152860422
1024 2047 461375421 1072817109

One drawback of the rule-based approach is that it is essentially recursive, and so stack overflow is a possibility
for large enough problems. A second, more subtle drawback is that the rule base has to be re-initialized each time the
parameters to the problem are changed. This can be dealt with easily by defining a “wrapper function” that first ini-
tializes the rule base and then makes the call to the actual problem-solving code.

The convolution algorithm is simple enough to program in a procedural language. However, there is still a big
advantage to using Mathematica: one need not worry about numerical underflow or overflow. If the coefficients are
all rational, all results have infinite precision. For example, the throughput of the example network with 100 custom-
ers in it is

g[99,41/g[100,4]

569900571634711044861156462174998500585332302730525916570974797\
0879886276615029350 /

3989304001442977314028096622010788217357542336556695301832305\
4109270934090957269289
Or, for those of us who aren’t so good at long division,
N[%]
0.142857

If the coefficients are not rational, simply approximate them with rational numbers or real numbers having any
desired precision.

7.2 Mean-Value Analysis

7.2.1 The single-class case

A rule-based program for performing single-class Mean-Value Analysis of a closed BCMP queueing network
[Reiser80] is shown below:

r[n_] := r[n] = d(1l+gln-1]);

x[n_] := x[n] = n/(z+Plus@@rn]);

qin_]1 := gqln] = x[n] r[n];

gql[0] := Table[0, {Length[d]}] (* Length[d] == number of queues *)

This code again assumes that a vector of service demands d and also a scalar think time z have been pre-defined
by the user. We’ll use the same demands that we used for the convolution problem, and assume a think time of 0.
Then, for example, to find the vector of per-device response times when there are 3 customers in the network,

15

z=0;

r[3]

(330 148 280 820

1337 133" 19 * 133

The throughput is

x[3]

133_

1086
Note that this is equal to g [2, 4] /g [3, 41, as calculated by the convolution algorithm.
Here are some noteworthy features of this code:

e r[{_] and g[_] are lists, and x[_] is a scalar. Most of the arithmetic operations in this algorithm are per-
formed on entire lists, eliminating the need for any looping constructs.

* How do r[_] and g[_] “know” how big they should be? The answer is that the length of the lists is
unknown until the rule for g[0] fires—in fact, Mathematica does not even know that r[_] and g[_] are
lists until the base case is reached! Lists of the proper length are returned as the recursion “unwinds.”

* Although perhaps not immediately obvious, without the memoization this algorithm would have exponential
time complexity. This is because there are two recursive calls to r [n]: once in the expression for x [n], and
again in the expression for g[n].

7.2.2 The multi-class case

Multi-class MVA is the quintessential dynamic programming problem, and in this case rule-based programming
really shines. The code for the multi-class case is not much more complicated than the code for the single class case!

Our basic strategy will be to use almost the exact same rule definitions as before, except that the arguments to the
functions (the network population) will now be vectors instead of scalars. Let ¢ be the number of customer classes
and let k be the number of queueing centers. Then the values returned by x [__1 will be lists of length ¢, and the val-
ues returned by ¥ [__] and g[_] will be two-dimensional lists of size c*k. (As pointed out in the previous subsec-
tion, the only place in the code where this will be apparent is in the base case for g[_].)

The only tricky part of the algorithm is the recursive calling of g[_]. If the given population vector is
{nl,n2, ...} then calls must be made to g[{nl-1,n2,...}],gl{nl,n2-1,...}], and so on. Therefore
we need the following utility function that subtracts one from the c’th component of a list:

subtractone[n_, ¢_] := ReplacePart[n, n[lcll-1, c¢l;
Here is a snippet of code that subtracts one from each component of a list in turn:
Table[subtractone[{x,v,z}, ¢l, {c,3}]

{{-1 + x, v, 2z}, {x, -1 +vy, 2z}, {x, vy, -1 + z}}
Next, in order to compute response times we need to be able to sum g[_] [[¢, k]] over the index c (i.e., by
columns) and in order to compute throughputs, we need to able to sum r[_] [[c, k] 1 over the index k (i.e., by
rows). So we need two more utility functions:

colsums[m] := Plus@Em
rowsums[m] := Map[colsums, m]
Now we’re ready to write down the main rules:
rin_] := r[n] =
Table[d[[c]] (1+colsums [g[subtractone[n,cll]), {c,Length[nl]}]
x[n_] := x[n] = n/(z+rowsums[r[nl]])
aln_ /; VectorQin,NonNegative] && Plus@@n > 0] := gln] = x[n] r[n]
gq[n_] := Table[0, {Length[n]}, {Length[d[[1]]1]}]
Here we see an example of a condition attached to a rule using the “/ ;" construct. The first rule for g[n_]1 will
fire only if (a) n is a vector whose elements are all non-negative, and (b) at least one element of n is greater than 0.
The second rule for g[n_] is a catch-all case. Note that the dimensions of the result vectors are manifested here.
Also note that since the first rule is more specific, it will be checked before the second rule.
Here is an example involving two customer classes and three queueing centers. Note that z is now a vector and d

16

is now two-dimensional.

z = {5,10};
4 = {{1,3,5},{2,4,6}};
r[{3,3}]

438866 2051667 17372020 603177 2886335 724353
1335861 335861’ 1007583 '’ ‘236264’ 354356 ' 33752)

Discounting the three trivial utility functions, our code for multi-class MVA consists of four “one-liners”. In
addition, this code is completely general: it works for any number of customer classes and any number of queueing
centers. The reader is invited to compare this code to a procedural-language implementation of multi-class MVA.
Usually, the number of customer classes is fixed by the programmer; otherwise, the programmer has to calculate
multi-dimensional loop indices manually. For an example of the latter approach to solving this problem, also using

Mathematica, refer to [Allen91].

8 Summary

We have taken a whirlwind tour of some features of Mathematica that are useful to performance analysts. This is
only a limited sample—we haven’t even touched the statistical packages or the built-in functions for numerical oper-
ations on data, for example. However, it should be quite clear by now that Mathematica makes it possible to do sym-
bolic calculations that few human beings could ever hope to perform correctly, if at all, and that the Mathematica
programming language facilitates elegant solutions to non-trivial problems. In addition, the interpreted environment
is ideal for fast prototyping and experimental “poking around” on problems lacking an obvious mode of attack.

Mathematica’s programming language and its infinite-precision calculation often make it the tool of choice for
numerical as well as symbolic computations. Certainly, the same algorithm coded in C or Fortran will run faster than
it will in Mathematica—a consequence of Mathematica’s dynamic typing, pattern matching, and interpreted execu-
tion. But if the programmer’s time is factored into the equation, Mathematica will often emerge as the fastest path to
a solution. Debugging in Mathematica is significantly easier than debugging in C or Fortran, for the simple reason
that calling a function with symbolic (as opposed to numerical) arguments makes it immediately apparent if the func-
tion is doing the right thing.

Finally, Mathematica allows users to visualize the results of their computations in a variety of sophisticated ways
without any additional programming. In addition to the simple graphics demonstrated here, users can choose from
two- and three-dimensional line/surface, parametric, polar/spherical, density, contour, and vector field plots.

17

References

[Allen91]
A.O. Allen and G. Hynes. Solving a Queueing Model with Mathematica. The Mathematica Journal 1(3):108~
112.

[Baskett75]
F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, Closed, and Mixed Networks of Queues with
Different Classes of Customers. JACM 22(2):248-260.

[Boyland92]
P. Boyland, J. Keiper, E. Martin, et al. Guide to Standard Mathematica Packages, 2e. Wolfram Research, Inc.,
Champaign, IL, 1992.

[Buzen73]
I.P. Buzen. Computational Algorithms for Closed Queueing Networks with Exponential Servers. CACM
16(9): 527-531.

[Kleinrock75]
L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley & Sons, New York, 1975.

[Molloy89]
M.K. Molloy. Fundamentals of Performance Modeling. Macmillan, New York, 1989.

[Reiser80]
M. Reiser and S.S. Lavenberg. Mean-Value Analysis of Closed Multichain Queueing Networks. JACM
27(1):72-79.

[Schweitzer79]

P. Schweitzer. Approximate Analysis of Multiclass Closed Networks of Queues. In Proc. International Conf.
on Stochastic Control and Optimization. Amsterdam, 1979.

[Taylor84]
H.M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, Orlando, FL, 1984.

[Wolfram91]
S. Wolfram. Mathematica: A System for Doing Mathematics by Computer, 2e. Addison-Wesley, Reading,
MA, 1991.

18

A Mathematica Basics

A.1 Notational conventions

This is input to Mathematica.

This i1s output from Mathematica

A.2 Basic syntax

2(3+4)

14

ArcSin[1]

Pi

57

Sin[%]

1

(-b + Sqrtib*2-4a c])/(2a)

Note the following:

Ordinary parentheses are used for grouping; this is the only thing that parentheses are used for in Mathematica.

The asterisk is optional in multiplicative expressions. However, if the asterisk is omitted, a space is necessary
in expressions such as “4a c¢”. The reason is that Mathematica would interpret “4ac” as the product of two
quantities: the integer 4 and the symbol ac. And finally, “adc” is a single symbol.

Square brackets denote a function call. Thus “f [x+y]” is a function call, but “f (x+y)” is a multiplication.
Note that an alternative function call syntax (for functions of a single argument) is “expression // £
This form is usually used at the end of a line to apply formatting functions to a result.

Expressions can contain symbolic as well as numeric quantities. All system-defined symbols (e.g., ArcSin)

begin with capital letters, so it’s a good idea to begin user-defined symbols with lower-case letters to avoid
name conflicts.

The “%” character stands for the result of the previous evaluation. In general, n percent-signs in a row refer to
the n-th previous resuit.

A.3 Lists

Aside from parentheses and square brackets, there are two other sets of delimiters that one encounters frequently.
Curly braces denote a list:

{1,2,8qrt[3]}
{1, 2, Sgrt[3]}

To extract a particular element from a list, use double-square brackets:

%[[311]
Sart[3]

Note that lists always use 1-based indexing.
Lists are pervasive in Mathematica, and there are many built-in functions for operating on them efficiently. In
fact, virtually all of the built-in operators can take lists are arguments. Here are some examples:

1+{a,b,c}

{1l +a, 1 +Db, 1 + c}
{a,b,c}+{d, e, £}

{a +d, b+e, ¢+ f}

19

{a,b,c}{d,e, f}
{a d, be, ¢ £}
This last result might be surprising—one might have expected a dot-product. This would not be consistent with
the way the other arithmetic operators work on lists, however, so there is a special dot-product operator:
{a,b,c}.{d,e, £}
ad+be+cf
More sophisticated operations on lists will be presented in Appendix B.
Lists can be nested, for example:
{{a,b}, {c,d}}
%[[1,2]1]
{{a, b}, {c, d}}
b
Nested lists are used to represent matrices and the dot-product operator is used for matrix multiplication.

A.4 Exact vs. approximate values

The reader may have wondered why the expression Sqrt[3] used above was not evaluated, whereas the
expression ArcSin [Pi/2] was evaluated. The reason is that ArcSin [P1/2] is exactly equal to 1, whereas there
is no representation of the square root of 3 as a finite string of decimal digits.

Mathematica considers expressions such as 1 (an integer), Pi (a built-in constant), 2 /3 (a rational number), and
Sqgrt [3] (an irrational number) to have infinite precision:

Precision[{1,Pi,2/3,8qrt[3]}]
Infinity

No exact (infinite-precision) quantity will ever be converted to an approximate (finite precision) quantity unless

the user specifically requests it. The numericalization operator is N:
N[{1,Pi,2/3,8qrt[3]1}]
{1., 3.14159, 0.666667, 1.73205}

The default number of digits of precision (which are not all shown in the output unless specifically requested) is
determined by the floating-point hardware of the computer that is being used; on the computer used to prepare this
report (which is based on the Motorola 68040 chip), the default precision is

$MachinePrecision
19
However, Mathematica will gladly approximate exact quantities to any degree of precision requested:
N[sqrt[3], 90]
1.73205080756887729352744634150587236694280525381038062805580697\
9451933016908800037081146187
If we square the previous result, we get back an approximation to the exact number 3:
%A2
3.
(Note the decimal point.) It’s a pretty darned good approximation, though.
FullForm[%]

3.000\
0000000000000000000000000000
Note that an input containing a decimal point is always considered to be an approximate number; for
Mathematica to assume otherwise would be incorrect. For example,

3/4-0.75

0.
If the user really means “exactly three-fourths”, then that is what should be entered.

20

A.5 Assignments
There are two assignment operators, “=" (which is called Set) and “:=" (which is called SetDelayed). For
example, to define n to be the number 24,
n = 24
24

Note that Mathematica has printed out the return value of the expression “n=24", which is simply the number
24. In Mathematica, every expression returns a value. Even expressions that have nothing useful to return will return
a value, namely the special symbol Null (which is never printed unless it is part of a larger expression). The output
of an expression can be suppressed (actually, made Null) by appending a semicolon to it:

X = 2;

Now that we have defined n and x we can used these symbols in other calculations.
r = n/x
12

Note that changing the value of n or x will not affect the value of r. Had we instead defined r using SetDe-
layed, things would be different:

Clear(r]
r := n/x
The first thing we notice is that SetDelayed does not return a value. This is because the expression on the
right-hand side has not been evaluated. The right-hand side is evaluated each time the left-hand side is evaluated:
r
12
Thus, subsequent changes to the variables in the right-hand side of r’s definition will change the value of r:
n = 20;
r
10

The example just given is a sort of “poor-man’s function definition”; a better way to do this would be to declare
r as a function of two parameters, n and x. We’ll see how to do this next.

A.6 Defining Functions

A.6.1 A simple function definition

A function for the mean response time of an M/M/1 queue [Kleinrock75] having arrival rate A and service rate
can be defined as follows:

mmlresp[lambda_, mu_] := 1/ (mu-lambda)

Note the use of SetDelayed to prevent existing definitions of [and A from being substituted into the right-
hand side of the definition.

The underscore character “_” following each name in the declaration indicates that that name is a formal param-
eter rather than a literal value. If the underscore had been omitted, as in

Clear([foo]
foo[x] := x+2

then foo would evaluate to x~2 only when the literal parameter “x” was passed in:
foo[x]

2
x

but not for any other parameter:
foo[3]
foo[3]

21

A.6.2 Local variables
Here is the definition of a function for the mean waiting time of an M/M/1 queue:
Clear [mmlwait]
mmlwait[lambda_, mu_] := (
rho = lambda/mu;
Return[rho/(mu-lambda)]
)
mmlwait[a, b]

The parentheses are required to delimit the body of a multi-line function; the semicolon separates the individual
calculations. The use of Return is unnecessary in this case, since by default a function returns the last result it cal-
culates.

This definition of mmlwait has the unfortunate side-effect of defining p as a global variable and/or clobbering
any previous value of p:
?rho

Global‘rho

rho = a/b

This is probably undesirable. A better way of defining the function is to declare p to be a local variable. The
Module command is used to create a local scope:
Clear[rho, mmlwait]
mmlwait[lambda_, mu_] :=
Mcdule[{rho},
rho = lambda/mu;
rho/ (mu-lambda)
]
Now, the value of any global variable named p will be unchanged by mmlwait:
rho = Sqrt[19];
mmlwait([1, 2]
rho
1

2
Sqgrt[19]

A.7 Rules

An expression of the form “a->b” is called a rule. A rule is used to substitute one expression for another using
the ReplaceAll operator “/ .”. For example:
rho/(1l-rho) /. rho->lambda/mu
lambda

Rules are encountered frequently because they are returned by functions that solve equations. For example, here
is the solution to a very simple set of equations (the “=="means boolean equivalence, as opposed to assignment):

Clear[x,y]
sol = Solvel[{x*2+y*2==a*2, x-y==b}, {x,v}]

22

-2 b - Sgrt(4 b2 - 8 (—a2 + b2)]
y -> “£.2. T 2352222 g---omemEeT2-is b,
(x> bt Sare2 a® - b7
2 r
-2 b + Sqgrt[4 b2 - 8 (—a2 + bz)}
y > —£. 21235222 e 1)

The first parameter is a list of equations to be solved, and the second parameter is a list of the variables to solve
for. (Note that it is not necessary to specify the variables to solve for when there are only as many unknowns as there
are equations.)

Each of the sub-lists in the result is a solution to the given system of equations. Note that Solve always returns
a two-dimensional list, even when there is only one solution.

We have named the solution sol so that it is easy to use these rules in future computations. For example,

x42+y*2 /. sol[[1]] // Simplify

2
a

A.8 Getting help
Information on any symbol can be obtained with the expression ?name:
?8qgrt
Sqgrtlz] gives the square root of z.
This even works for user-defined symbols, to the extent possible:

?r
Global‘r
r := n/x

This concludes our discussion of Mathematica preliminaries. The interested reader should now understand the
syntax and semantics of Mathematica statements well enough to follow nearly all of the examples contained in this

paper.

B Some functional programming primitives

For those who are unfamiliar with functional programming techniques, the material in this appendix is a prereq-
uisite for Section 4 (simulating a DTMC) and Section 7 (closed queueing network algorithms).

B.1 Map and Apply

Anyone with experience using a functional programming language such as Lisp is familiar with the concept of
mapping and applying functions to lists. In Mathematica, these operations are called Map and Apply.
Map simply wraps a given function around each element of a list:
Map[Sqrt, {a,b,c}]
{sgrtlal, Sgrtibl, Sqrtlcl}
This example is not particularly useful because the same result could have been obtained by using
Sgrtl{a,b,c}]. More commonly, Map is used to achieve this effect with user-defined functions.
Apply takes a function and a list as arguments and passes all of the elements of the list as parameters to that
function. For example,
Apply[Plus, {a,b,c}]
a+ b+ c
A shorthand notation for Apply [£f, list] is f@@list.

23

B.2 NestList and FoldList

Mathematica contains several functions for composing a given function repeatedly.

NestList composes a function of a single argument a given number of times, starting with a given initial
value:

NestList[f, a, 4]
{a, flal, flflall, £If[f{all]l, £lE£[f[f[alll]l}

The function FixedPointList is analogous to NestList, except that it continues to compose the given
function until the generated sequence converges or the iteration limit is reached. (An optional argument can specify
the function to be used to test for convergence.) This is useful for performing fixed-point calculations such as approx-
imate Mean-Value Analysis [Schweitzer79].

The function FoldList is somewhat like NestList, except that £ is a function of two arguments:

FoldList[£f, a, {(b,c,d}]
{a, fla, bl, flfla, b], <], flflfla, b], cl, 41}

In particular, if £ is the Plus function, FoldList will compute cumulative partial sums of a list. Here is a
function that takes a list as an argument and returns a list of the cumulative partial sums of its elements:

cumulsum([l_] := FoldList[Plus, First[l], Rest[l]]
cumulsum[{a,b,c,d}]
{a, a+b, a+b+c, a+b+c+ d}

24

