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’ b) When A\, (B )=0, let o be chosen as in Lemma 4.5,
Te=—(Be o ) gk, and Pk (B) chosen by
bi) i ||r ||2A, then |
;ﬁmA) argmin {gfw+ BT Byw : |lw||=A, wel g 1)
bii) othermse

P (A)=7;, +£qg;, where ¢ and g, are selected as in Lemma 4.5

The advantage of Algorithm 5.3 is that it is fairly easy and efficient to imple-
ment, é.s we will show in Section 6, while also being a continuous step selection
strategy that is second order stationary point convergent , and that it approxi-
mates the "optimal” step selection strategy to some extent.
Algorithm 5.4 shows how a Qimpler indefinite dogleg step .can be con-
structed that satisfies the conditions of Lemmas 4. 3 and 4.4 and so also achieves

second order stationary point convergence.

Ligorithm 5.4 Simple Indefinite Dogleg Step
a) When A1(B)>0, do the same as Doglegs A and B.
b) When (5, )<0, let ¢, satisfy
01 Be e e\ (Be) [l gi |12,
whiere ¢4 is a uniform constant for all &, asin
Lemma 4.5, and glq,=<0, and let

B (B)=argmin {gfw+ B wTBiw : ||w [[=8, wel-gr.9: 1.

\ Algorithm 5.4 is not continuous as discussed above when A\ (B )=0 but if 9, is
reasonably chosen this will not be a problem, and the algorlthm has the redeem-
ing fe ature that it may be implemented so as to require no matrix factorizations
for most indefinite iterations. However, Algorithm 5.4 might require more itera-
tions than Algorithm 5.3 Lo solve the minimization problems. In Section 6 we

propose-an implementation of an algorithm that subsumes Algorithms 5.3 and



5.4

Finally, we mention a slight generalization of the "optimal” step (Sorensen

[1980]) ﬁhat still leads to a second order stationary point convergent algorithm.

‘vAlgorithmlﬁ.S Variation of “Optitﬁal"’ Step :
2) When A(B)>0, let ﬁk ) be the "optimal" step.
b) When }\1(.5’;)1:0, let &, and g, be chosen as in Lemma 4.5,
let 7 ==(B, +o<,c[)“‘g;¢, and |
bi) if |7, |24, then i (A)=argmin {gfuw+ %awT Bow : |jw || =4);

bii) otherwise p, (A)=ry +£q;, where £ is chosen so that ||p, ||=A.

"I‘his step differs from the ”opﬁimai" step in that it uses oy, not necessarily a
close estimate of th’e most negative eigenvalue, in identifying the hard case, and
that It just uses the direction of negative curvaime qr in this case, ‘not ﬁeces—
sérily an eigenvector corresponding to the most nega"cive eigenvalue. - This
makes it considérab‘ly more efficient to implement in the hard case. The second

order stationary point convergence follows obviously from Lemma 4.5.



6. Arx Implemmentaticn of the Indefinite Dogleg Algorithm -
In this section we will always use By =H(z).

Now we present one possible implementation of the step"éelection strategy

in Algoi‘ithm 5.3 , both as an example of the sort of algorithm the theory has

been aimed at, and as partial justification that such algorithms can be efficiently

implemented.

. Dur implementation differs from More and Sorensen’s [198"1],'in that it uses

explicit approximations to the most negative eigenvalue A; and corresponding
eigenvector v;. We claim that this approach may well be more efficient. The
bullc of the computational work in meét ‘optimization algdrithms, aside from
function and derivative evaluations, is made up by matrix factorizations. In our
bi”mpl.ementation t.here is the additioﬂal work involved in obtaining‘ the approxi-
mations to the largest and smallésﬁ eigen#alues and the moét negative eigenvec-
tof. Con{putétional exﬁerieﬁce shows that a good'algoritl’ﬁn‘for this, e.g. the

Lanczos method, can obtain approximations to outer eigenvalues and eigenvec-

tors of a symmetmc, matrix with guaranteed accuracy. with fewer operatmns‘

- than one matrix factorization. Accordmg to Parlett [1980], the Lanczos algo-

rithrm usually requires O(n?*®) or fewer arlthmetlc operations. Thus, calculating

the desired eigen-information explicitly may not introduce a signiﬁcant addi-

tional cost.

Figure 6.1 below contains a diagram of our proposed implementation df |

‘Algorithm 5.3, This implementation includes estimation of the extreme eigen-
’ “value's ahd"the corresponding eigenveciors of By. Thié would only be done at the

first mmor iteration of each major (k-th) iteration. If add1t1ona1 minor iterations

were requlred at this major lteratlon the necesvary elgen—xnformatlon would

already be known and so one would immediately calcuiate the step in part a) or

© b) ot Algorlthm 5.3.
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In two‘placies in Figure 6.1 there are "attempted Choiesky decompositions”,
of B, and By+al. These algorithms are given in Gill, Murray, and Wright [1981]
or Dennis and Schnabel [1083]. If the matrix is numerically positive definite, the
factorization algorithm calculates the LLT factorization of the matrix. If it is
not numerically positive definite, the factorization algorithm returns a lower
bound A; on the most negative eigenvalue of the matrix and a direction of nega-
tive curvature v for the matrix (i.e. for B or B +al, respéctiveiy)‘ The factori-

nd

8

Since the Lanczos algorithm is restarted using this direction v, the A, that

zation algorithm requires about multiplications ’a"nd additions in all cases.

results from the next use of the Lanczos algorithm at the same iteration must
be smaller than the curvature of v. T'ﬁus in particular, the A; resulting from the
Lanczos algorithm can be positive ohly if B, _; was not positive deﬁmté and one
is ‘going through the left-hand loop of?‘igure 8.1 for the first tinie in the k-th
iteration.

A possible choice of a in Figure 8.1 is

maz (0N,)
=”-_—'23m"'"'.";\‘1 .
where g=vVmachinee, If B,+oal is positive definite and step bii) is required, v

almost certainly will satisfy the conditions on g, in Lemma 4.5, this may be
tested using —« which is a lower bound on A(B). It is theoretically possible
that additional iterations of the Lanczos prbcedure would be required to find a

satisfactory v in this case.

Figure 8.2 shows how our implementation of Algorithm 5.3 given in Figure
8.1 can be modified to sometimes substitute the simpler step b) of Algorithm 5.4
for step b) of Algorithm 5.3, when 5 is ﬁot positive d‘eﬁnite. A\tlokwer; bound 'A; on
Ai(Be) is always available, initially from the Gerschgorm\theorém. and sﬁbse-
gquently from the failed Cholesky decomposition. If the negative cﬁrvature direc-

tion v from the Lanczos algorithm satisfies the condition of Lemma 4.5 for Qi
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using chis lewer bound Ay in piace ol Ay ), then step b) of Algorithm 5.4 may be
tagen. I the constant vy in Lemioa 4.0 is chosen smali, the first v probably ﬁn
satisty the condition o Lemma 4.5. i step b) of A}gof;i,mn 5.4 is taken as soon
es it is possible, the step seleclion slrategy of 1~"igu‘feé 6.1 ahd‘ 6.2 may require
o matrix factorizations when By is not positive definite. Anéther‘ alternative is
to tak‘e this step enly i some fixed number of Cholesky decompositions havé

falled, say two.

The implementations in Figures 8.1 and 6.2 strive to m‘uﬂmize the number
of matrix factorizations. When 5, is positive definite, only one factorization will
be needed, in additiom the Lanczos work will be required only if Br.; was not
pasitive definite. When 5, is not positive c\ieﬁmte, the algorithm will perform
between zero aﬁd n factorizations, Lisuéilly between 0 and 2 or 3. When the step
in F‘ig‘ure 6.2 is taken on the first 1teréxtion, né faeiorizahions are needed. Gen-
erally the Lanczos algorithm will yield a good enough approximation to A{By)
that the first o will yield a positive definite 5, +al, and thus only one factoriza~

tion will be required in the indefinite case. In certain rather pathological cases,

the Lanczos algorithm can tend to converge not to the smallest eigenvalue but

Moure 6.2

Optional augmentation with the step selection strategy of Algorithm 5.4.

Isv a direction of If desired, take step b)
sufficient negative in Algorithm 5.4,
curvature with respect | yes |Otherwise, continue with|
to the current lower algorithm given in
bound on A (B )? Figure 6.1
no
Y

Continue with
algorithm in
Figure 8.1




Figure €.1

An implementation of the step

selection strategy of Algorithm 5.3,

1
B, positive definite? |
no

v =negalive eigenvalue
approximation from the
k —th iteration.

|Perform Lanczos algorithm

to desired accuracy,
starting with v, and
obtaining Ay, A, and v,
&

yes

A0 ?

no

N

Te combine Algorithm 6.4
with Algorithm 5.3, add
algorithm in Figure 6.2

here.

o= a real number >—A
(see explanation in texts.

yes

{at each iteration
this can only occur
the first time through

this loop(see
explanation in text}).

i
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Attempt Cholesky factorization

of By +ad
{see explanation in text).

Attempt Cholesky factorization |

) ‘of Bk‘
{see explanation intext),

= direction
of negative
curvature from

attempted Cholesky
decomposition
(see explanation
in text).

E;c +of
positive
definite?

no  yes

~
Take step b) in
Algorithm 5.3

BI:
positive
|_definite?

no  yes

Take step a) in
Algorithm 5.8
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to a larger one, in which case the Cholesky factorization will fail. Then the algo-
rithm will use the direction of negative curvature from the Cholesky failure as a
starting vector for thz Lanczos process, which guarantees thét the Lanczos algo-
rithm will converge to a smaller eigenvalue than the last one. Thus, although we
expect only one factorization to be required in the indefinite case, it is possible -

"zt several may be needed, but never more than n.

In summary, this implementation will require one factorization on all posi-
tive definite Hessian matrices, and most indefinite ones. In addition, when B, is
not positive defnite it will require the work involved in the Lanczos process,
which is likely to be considerably less than the work of one factorize{tion when n
iz large. The implementation satisfies the requirements of Lemmas 4.3 and 4.5,
and hence & computer code using this step in Lhe framework of Algorithm R.1 is
second order stationary point convergent. Of cQursé, by Theorem 2.2 it is also
localiy g-quadratically cdnvergent‘ The techniques in Figure 8.1 could also be
employed in the implementation of other step selection S'tfategias, in particular
the indefinite line search step given in Algorithm 5.1 or the modified "optimal"
step given in Algorithm 5.3, leading again te implementations that are second

order stationary point convergent.
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ABSTRACT

This paper has two aims: to exhibit ﬁery general conditions under which
members of a broad class of unconstrained minimization algo‘rithms are globally
convergent in a étr-ong sense, and to pfopose several new algorithms that use
second derivative information and aéhieve suéh c;onvergence. In the first part of
the paper we present a general trust region based algorithm schema that
includes an undefined step seléction strategy. We givquenefal conditions on this
step selection strategy under which limit points of the algorithm will satisfy first
and seconﬁ order necessary conditions for ‘un,constrained minimization. Our
algorithm schema is sufficiently broad to include line search algorithms as well.
Next, we show that a wide range of step selection étrategies satisf:j the require-
ments of our convergénce theory. This leads us to propose several new algo-
rithms that use second derivative information and achieve strong global conver-

- gence, including an indefinite line search algorithm, severél indeﬁnite dogleg
algorithms, and a modified "optimal-step’ algorithm. Finally, we propose an

implementation of one such indefinite dogleg algorithm.



1. Introduction

In this paper we discuss the convergence properties of a broad class of algo-

rithms for the unconstrained minimization problem

minf (z): E"»R (1.1)

zeR™
where it is assumed that f is twice continuously differentiable. The algorithms
discussed are of the trust region type, but the algorithm schema used is

sufficiently general that our convergence results apply to many algorithms of

the line search type as well.

In the first part of the paper we give a general condition under which the
limit points of a broad class of trust region algorithms satisfy the first order.
neceséary conditions for Problem 1.1. In this paper we shall call such an algo-
rithm "first order stationary point convergent'. At the same time, we give a
general condition that shows how thr; 1irﬁt points of these algorithms may
satisty the second order necessary conditions for 1.1 by incorporating second
order infofr’nation. We shall refer to such an algorithm as "second order station-

ary point convergent".

In the second part of the paper, we show that many algorithms satisfy these
conditions for first and second order stationary point convergence, and we sug-

gest several new algorithms that use second order information.

The convergence results presented here are a generalization of those given
by Sorensen [1980]. Sorensen proves strong convergence properties for a
specific trust region algorithm, which uses second order information. Others,
including Fletcher and Freeman [1977], Goldfarb [1980}, Kaniel and Dax [1979],
McCormick [1677], More and Sorensen [1€79], Mukai and Polak [19’?8], and Vial
and Zang [1975], have discussed and proven the second order stationary point
cém*ei“gence ol algorithms that use second order information but are not of the

trust region type. Powell [1975], on the other hand, discusses the first order



stationary point éom’ergence propertiés of a class of trust region algorithms,

In Section 2 Wé define our general algorithrn schéma. state the conditions
for the types ‘of convergence mentioned above, and prove the convergenbe
i"esults. In Section 3 we take the first step toward showing'the applicability of
the class of algorithms by commenting that practically all trust radius adjusting :
strategies in use fit into our algorithm schema. In Sections 4 and 5 we turther
show the meaning of the schema by discussing a Variety of different types of
step selection strategies tha’c satisfy the conditions given in Section 2. Finally in
Section 6 we propose an implementation of cne of these, an "indefinite dogleg"
alg\orithm. '

In the remainder of the paper we use the following notation:
1+ |l is the Euchdeén noi“m,
g(z)eR™ is the gradient of { evaluated at x.

H(z)e ™™ is'theb Hessian of f evaluated at x.

{z.]is a sequence of points generated by an algorithm, and f,=f (.xk), g =9 (=),
and H, =H (zz.).

X (B) and M\, (B) are the smallest and largest ei\genvalues, respectively, of the
symmetric matrix B. |

[wq. ] is _the subspace of K™ spanned by the vectors u,...,u,,.



2. Global Convergence «” a Génereﬁ Trust Region Alggrithm

In this section we describe a class of trust region algorithms in a way that
includes most trust region algorithms as well as many other algorithms, and
that isclates the conditions they may meet in order to have various convyergeknce

properties,

The form of most existing trust region algofith‘ms ‘is bééic’all'y as follows.
The aigorithm generateé a sequence of points z; . At the k-th iteration, it forms
a quadratic model of the objective function about =z,

'%('LU) f;c'*'g)cTw'*' bwTBew

where wsR”’ and Bye KW is some symmetric matrix, and ﬁnds an initial value
for the trust rachus 8. Then a "minor iteration" is performed possibly repeat-
«ediy The minor iteration’ consxsts of using the current trust radius A, and the
ﬁnforma’cmn contained in the quadratm model to compute a step

‘ Pi(B:)=p (g1 Br By
and then comparing the actual reduction of the objective function

aredy (b )=f i —F (2 +0e (‘A]c)) |
to the reduction predicted by the quadratic model

| predy (8)=F 1~ (O (8))
If the reduction is satisfactory, then the step can be taken, or a larger trust
region tried. Otherwise the trust region is reduced and the minor iteration is

repeated.

Three aspects of this algorithm are unspemﬁed namely how to form the
matrix By for the quadratic model how the step computing function p(g.B.4) is
performed on each minor iteration, and how the trust radius A, is adjusted. In
ogi“ abstract definition of a trust reglion algorithm below, the minor iterationé
and the strategy for adjusting the trust region are replaced by a condition that

the step and trust radius must satisfy upon qtutting the major iteration. This
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allows the description to cover a wide varietj of trust regioﬁ strategies. The.
methods of computing 5, and plg.B,A) are left un’speciﬁed,r siﬁce we later want
to give conditions on these quantities that ensure the convergence properties.
For our abstract definition of a trust region algorithm it is enou,gh to know that

they are computed in such a way that the algorithm is well-defined.
We now define the general trust région algorithm:

A!gorithm 2.1
0) Given y;, 71, Mz £(0,1), z,;2R™, and
£g>0, k=1, |
1) Compute fr=f (), i =g (z:), symametric B,sR™®,
é) Find Ay and compute py =p; (A, ) satistying:
lpe =0 and

ared, (A,)
a) Wwedk(ﬁk') =7, and

 b) either A=A, _, or
for some A< ;}%—-A,c.
1

ared (A) ared;, _,(A)
i Qr ————— 7o,
predi(8) ~2 % pred, (&) ?

3) zpy = +pp, k=k+1.

4) Goto 1),

- Again, note that the computations of By, p,(4), and A, are left unspecified.
In Theorem 2.2 we give conditions on B, and p(g,B,A) that yield various conver-
~gence properties. In Section 3 we will discuss a number of trust radius adjusting

strategies that satisfy the requirements in Algorithm 2.1, step R).

Now we set forth conditions which the step computing function p(g,B,A)

may salisiy and prove that if it does meet these conditions then the conver-
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gence results follow. In Sections 4 and 5 we will discuss various step computing

algorithms that fulfill the conditions below.

The, first condition says that the step must give sufficient decrease of fhe
quadratic model. The second condition requires that’when H{z) is indefinite the
-step give as good a decrease of the quadratic model as a direction of sufficient
negative curvature. The third coﬁdition simply says that if the Héssian is posi-
tive definite and the Newton step lies within the trust region, then the Newton

step is chosen.

Before stating the conditions we define some additienal notation.

pred(g B.8)=—gTp(g.8,8)~ ¥% plg,.B.0)75 p(g.B.b).
Cur conditions that a step selection s'trategy may satisfy are:
Condition #1
There are &), 0;>0 such that for all geR™, for all symmetric Be R™*", and for all

150, pred(y B.A=E g Hmvln(A.al-iLl%Jﬁ-).

Condition #2
‘There is a €2>0 such that for all geR™, for all symmetric FeR™ ", and for all

A>Q, pred (g .B ,A)=F5(—\,(B))A?,
Condition #8
If B is positive definite and ||~B~!g ||<A, then p(g ,F.A)=—B"g.

We now state and prove the convergence theorem. The prools are similar to
those of Sorensen [1880]. Conditions #1,#2, and #3 constitute a major generali-

zation of his assumption that

(9.8 Ay=argmin{ gTw+wTBw : ||w ||<A}



Theorem 2.2

Let f R »R be twice continuously differentiable and bounded below, and let

for all ze ™. Suppose that an algomthm satxsfymg the
condmons of Algcrlthm R.1 is applied to f(z), starting from some z;eR", gen-
eratmg a sequence {3, 2, e k™, k=1,2,.... Then:

I If p(g,B.b) satisfies Condition #1 and ||By ||<f; for all k, then g, converges
| to O (first order stationary point convergence).

II. It plg.B A) satisfies Condltxons #1 and #3 B,= (x,c) for all k, H(z) is
Lipschitz continuous with conutant L, and z. is a limit point of {z;} with H(z.)
positive definite, then z;, converges g-quadratically to z.. , | ,
IH:. If '_;jé(g,B,A) satisﬁes Conditions #1 and #2, By=H(z;) for all k, H(q:) is uni-
formly continuous, and z; convergeé to z., then H{x.) is positive semi-déﬁmte

‘(second order stationary point convergence, with 1.).

Proof:

Each of the proofs of 1, II, and III use the following fact:
Lemnma If there is a positive integer M and a fun.étitmw (A) such that

1) limw(A)=0,
) limw(®)
2) for all A>0, for all k=M,

c;redk ()
Voredy ()
3) eaoh Ak satxs’les the trust radius reqmrement in step 2b) of Algomthm 2. 1

=w(A), and

then {A;] is bounded away from 0.

Proof of the lemma: By 1) and 2), there is a B>0 such that if 0<A<A and k=M .

. di (A
then %&%—anz Thus, for k=M +1, if Ak <A -, then by 3) there must be some

) _ . ared; (A) aredy, (A)
A=<=, which either has —————-<n, OF et/ o But that means that
71 prede () "2 " pred, (&) 1%

A=R, so Ay=y,h>y,A. Hence, for k=MH+1, Akamfén(A;;_;,ylA). so clearly éAk{ is



bounded away from C.
Each of the three parts also useé the following:
By Taylor's theorem, for any k and any A>0,
| {aredy, (A)—pred; (A) |
= I‘ffc ~F (% +pe (B) ~(Fic =S i =98P ()= Yo 2 (8)T Bepie () |

1
=] %o (8)T Bepy (8) "{P}c (B) H{zo +Epr (A))pi (A)(1—£)d ¢ |

1
< ||pp(4) llz[ || B —H (¢ +£pe (8)) || (1-£)d €.
So,

are dk(A)

| pred, (&)

"1|

2 ‘ ' !
H:%(A)Ha{llﬁx"ﬂ(ﬂfwépk(ﬁ.))H(l“é}dé |

=

* [predy (8)] |
All three parts proceed by using the relevant hypotheses and the above argu-

ment to hbo_und pred, (A) below by a term that is 0 (A%), and then using the lemma

above: |
Proof of I: Consider any m with ||g,, || #0. .

lgm I

Forany x, ||g(2)=gm ||=f1 ||z ~2m ||, soif ||z~zqy ||< 5, then
19) 112 1igm 11= 119 2) g 121122 1L
cmm:’—‘éﬁl ,and Bp={z : ||z -z, || <R}

Now, there are two possibilities. Either for all k=m,, x;ciaBR. or eventually

fzi} leaves the ball Br. It turns out that the gsequence can no‘t: stay in the ball.

It mkaBé for all k=m, then for all k=m, ||g, H:.»-J—l—g—g—ﬂ-,-, which we shall call &,

Thus, by Condition #1,



prod, (8120 13, llmin(s, 1211
‘aasmin‘(ﬂ, }%}

for all k=m., where 0=&,0, is used to simplify the notation. So,

ared; (A)

pred, (A) 1

|
[HBV-H o+ o (A)) || (1—€)d €

| "Be 5
- AR(B1+B2)

£y
ﬁa)

o ABi+Ba) ;

ge

=

o Emm(

gemin{A,

- and M=m., we

for all k=m and Aéé:-—. Applying the lemma with w (A)= ——— (51 52)
2

see that {Ag] is bounded away from 0. But, since
J e —Fen=ared, (b )=npred, (&)

= 0emin(A, E—-)
‘ 2
and f is bounded below, A, converges to 0, whlch is a contradiction. Hence,

eventually {z, ] must be outside By for some k>m.

Let I +1 be the first index after m with z;,, not in Fp. Then
) L
Sz —F (xm)=k§l T (Zea)—f (=)
=

> i nypredy (& )= i 710 min (b, £
k=m k=m . 52

=noemin( Y] A, (1
' k=m

/ :

£
...m);g_;)

k=m

=moemin( ) ||z ) 1], @ ~m>-§;>
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=y cemin(R, (I -m) "f‘“’)
2

I ||
2

|gm || . (L-m) | gm ||

P

min( 26,

=mo 1

= | 1gm 117, Smin( 3= 2.
| Y >
Now, since. f is bounded below and {f (x;)} is monotonically decreasing, {f (z)}

converges to some limit, say f+ . Then by the above, for any k

llge 112=(ny Lomin (=297 (F (@) -7+,

B1' Be
Thus Since}f(xk)géfp, llgx [1-0.

Proof of II. By assumption, z. is a limit point, say T, converges to x+ We
will show first that in fact, if H(z.) is positive definite, then é:k converges to z.,
Ey I, g(z.)=0. Since H(z.) is positive definite and H isy continuous, we can find
- 0,>0 such that if ||z —-z.||<6;, then H{z) is positive deﬁnite,‘ and if xz#x. then

g (z)#0. Call By={z : ||z~ ||<6,].
: . ) 6
Since g(z«)=0, we can find &3>0, with ]lH(x)“‘g(m)H(-—é— for all

) 4,
xeBy={x : |[|z—z.||<6s]. Also, take 5g<~:lj-.

Find 74 such that f (xkjo)dnf §f(z): maBl—Eg !, and x,%aBg, Consider any
zp, with I=k; o Tig8z We claim that z4,eB, which implies that the entire
sequence beyond (m,% isin By, If 2;41 is not m Hy, then since le(f%. Zp4+1 IS not
in Bl', either, so

: ‘ 0 3
&=z 2= o=z || =]z —z. || = 61_'4}': —0;

6 .
>o-= || Blm) g (=) |
But, since the Newton step from z; is within the trust region, by Condition #3,

o {&)=—H (%) g (x). But then since ||p(4;)]] <6, %4185, which is a contrad-
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iction.

Thus for all k=k; xkaﬁg, and so since f(x;c)b is a strictly decreasing
sequence and z. is the unique minimizer of f in B, we hzﬁe that o coriverg,es
to z.. |

Now, to show"‘thé\t the convergence rate is »quznidfati‘c,' we show that (A} is
bounded awéy from 0, which gives the result, since [H(z) g (zx) || converges
te 0, so eifentually, by Condition #3, the Newton »st‘ep WﬂI'valways be taken. Then
by a usual theorem the Lipschitz continuity of H implies the quadratic conver-

gence rate,

To show that {Ak} is bounded away from 0, we will again use the lemma. In

order to do so, we need the appropriate lower bound on pred, (4).
[y Condition #1,

prec(8)20 |5 | min(o, 1122 g | min 720 1,12 L

and for all k& large enough, B, =H(x;) is positive definite, so either the Newton

slep is longer than the trust radius, or p, (4) is the Newton step. In either case,

Pe(®)= 1| -8, 1= 11867 1| 15 11, 50 [1gs [j= L2 o
Bt
o | ‘ e[
prede (9120 2 0 i 17e(8) | 75
_ 2 1 \
= e T,
Now call co= ¥ min (1, THE)T ﬁ THGEST , and note that by continuity there

is an M  such that for k=M, B5, is positive  definite and-
1 \

¢ il

min (1

= Co,

1B

Finally, note that by the argument given earlier and Lipschitz continuity,
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: L
|ared (A)—pred; (8) |= || (8) 1° 55
thus for any A>0 and k=, .

ared, (8) i (8) |12
e, ® UEF TR

_Lpe (AL LA
T 2oc. ~ 20c.’

LA

so by applying the lemma with w(A)z.B.E&_._'

we have that {4} is bounded away
from 0 and we are done,

Proof of III: Suppose to the contrary that A (H (:z:‘.w))<0. By the uniform con-
tinuity of H, for any A>0, and any &,

| ared; (A)
predy, (A)

llpe ) (e

= pred; ({5)

- where

1 : ; o
fw(A)=[ || H (zp, + €0 (A))—H () || (1-€)dE,

and thus limw(A)=0,
, et

Find M such that if k=M, A(B.)< -—-(~———(—-—-)2—<0 By Condmon #R, for all

k=M, and for all A>Q,

, pred; (A)>Cz(—?\1(Bzc))A2202(~?\1(H (zo))/ 3)152
so since |26 (6) || <6, the lemma applies with

)
Y S @) D)

Thus, ‘éAk } is bounded away from 0.

But,

aredy (A )z2n pred, (A )=4(~N\ (H(z.))/ 2)AE,
and since f is bounded below aredy (A;) converges to 0, 50 A conirerges to 0,

which is a.contradiction. Hence, A\(H(z.))=0. This concludes the proof of
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Theorermn 2.2,

The results of this theorem also apply to diﬁereht shapes of trust region,

Speciﬁcaﬂy ﬁre may Wish to ﬁse a trust region defihed by | | ]‘Dkvp ||=A for some
non-singular square matrix Dp such that HD;; || and HDk Y| are. umformly:
bounded in k. 'I‘lns satisfles the conditions of Algorlthm R.1 and Theorem 2.2
since if we make a change of veriables replacing A by A times the upper bound
on [[D71 ]| then ||pe ||=A, and the conditions otherwise do not involve e 1.

‘12e conditions are also not restricted to Fuclidean norm and Theorem 2.2

- applies as well to rectangular trust regions.
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3. Some Permissible Trust Region Updating Strategies

The conditions on the trust region radiué A, that we gave in step 2 of Algo-
rithm 2.1 were chosen to be near mimmal conditions thét allow us to prove the
results of Theorem 2.2. Obviously in implementing an algorithm involving trust
regions, there are many detailed considerations in choosing and adjusting the
trust region radius that we have not considered so far in this paper. Our pur;
pose in Algorithm 2.1 was to set forth conditions that apply to alniost any réa—
sonable strategy. Here we indicate more specifically ;wha.t types of strategies

are covered.

‘Most approaches for choosing and adjusting the “radius‘ Ay tollow the follow-
ing general pattern. Iteration k of the algorithm begins with an initial trust
radius which defines é step p. If this step is unéatisfar’:tory‘a sesquence Gf‘ smmaller
radii are tried until a sa‘tisf'actory ohe vi.:; found. If the step p is satisfactory it
meay be used or a larger trial trust region radius tried. At the next iterate

Tp+17%, +P; and a new initial trust radius is generated.

To choose the initial trial radius at the k-th iteration, Algorithm 2.1 only
requires that two conditions be met. Tirst, the initial trial radius can be smaller
than the final radius used for the previous step only if the prévious step failed

tlie sufficient decrease condition, i.e.

oredy (B ) <
predi_y(N_;)

Second, in this case the ratio between the‘pre‘vicus A -1 and the new trial radius

must be bounded by some constant that is fixed for the entire algorithm. These
possibilities are covered by the condition b) in step ) of Algorithm 2.1. A}gof
rithm 2.1 allows the possibility of makirig the irﬁtial trial radius larger than A,
by any method chbsen, if that seems advantageous. Clearly some methods for
deing this coﬁld be very inefficient, but from the point of view of global conver-

gence any increase is allowable,
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One method for choosing the initial trial trust ryegion' at the k-th iteration
which Algorithm 2.1 does not cover is basing the radius on tha length of the pre-
© vious step Pp—, even 'v;he;ip;c_l falls in the interior of the trust regioﬁ By We
see little justification for this strategy, and including it in our theorfy} if possible,

would mai{e the analysis more cumbersome.

'Given the initial trial radius at the k-th iteration, a sequence of trial radii
méy be-tried until a satisfactory one is found. Algorithm 2.1 only requires that‘
the trial radius be reduced when the previous trial step fails to satisfy the condi-
tion a) in step 2) of Algorithm 2.1 and dnly in this case, and that the reduction
be bounded below by a constant that is fixed for the entire algorithm. This case
is covered by the condition

A< —LA,,;
71

end

aredy, (A) <
pred (4) 1 |
in Algorithm <.1. Of course, the trust region ultimately used must satisfy this

condition.

The conditions of Algorithm 2.1 also allow successively larger trial trust
regions to be tried within the k-th iteration whenever this seems advantageous.
There is no restriction on the method used to increase the trial radius, nor on
the amount of the increase, as long as the final one used satisfies condition a) of
step 2) in Algorithm 2.1. Notice that it is not necessary to increase the trust
region at ény point. Never increasing the trust region may cause great

inefficiency, but convergence is still assured.
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4. Some Permissible Step Selection Strategies

In thlS section we present three lemmas describiﬁg useful conditions under
which the step pe(A) in Algorithm 2.1 will satisfy conditions #1 and #2. Using
these lemmas we will see that a number of different methods for computing
steps vield ﬁrst and second order stationary point convergent trust region tybe

algorithms. V

First let us mention two types of step selection strategies that have been

used in trust region algorithims to which we will refer.
The "optimal" trust region step selection strategy is to take
pe (B )=argmin{f+glw+ fpwl Bow: [w ||, | (4.1)

This strategy has been discussed and used by many authors, see e.g. Hebden
[1973], More [1878], Sorensen [1980], ’an.ri Gay [1981]. By is positive definite and
=B ge ||=M,, then p, =—B, Y, is the solution to (4.1). Otherwise, p; satisfies
(Bi+oy)pr=—g, ., for some non-negative o, such that (B +zx;cf‘) is at least posi-
tive semi—deﬁmt‘e ;and || Dk Il:Ak. If By is positive definite, then so is (B 4—0%1)‘
and
pk=“(ﬁfcfﬁf:1)_1glc : (4.8) ‘

where o is uniquely determined by ||p, ||=A;. If B, has a negative eigenvalue,
then py is still of the form (4.2) unless g, is orthogonal to the null space of
By —=Ad) and | [(Be=AS) g ]|</.\}c,; here the superscript + denotes the general-
‘ized inverse and A, denotes the most negative eigenvalue of B,. In this case,
which More and Sorensen [1981] refer to as the "hard case”,
B =~(Be—AI) g +€ vk, Where v, is any eigenvector of 5, corresponding to the
eigenvalue A;, and &, is chosen so that | 2% H=A,C. The lemmas of this section
will lead to algorithms that are similar to this "optvimal" algorithm and have the

same convergence properties but are considerably easier to implement.
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The second'type‘ of trust region step selection strategy includes the dogleg
type algorithms of Powell [1970] and Dennis and Mei [1979]. These algorithms
are defined in the case when B is positive definite and always choose

PrEl e, ~B g ] When A= || =B g ||, pp is the Newton step —B;lg,; when

. |18 ‘ ‘ B : ‘
Aké-—l—];.‘%—‘—'——s || ~Bg 9, ||, 2k is the steepest descent step of length A,; when
U e Bege , ' ,
eI — . e
v A e(—r=—— 1| =B gk 1), e is the step of length A, on a specified piecewise
T 9eBege ‘ ‘ ‘
linear curve connecting v:——l,j-!-gf—l—i——gk and —FB; 'g; (see Dennis and Schnabel
& B 9k ,

[1983] for further explanation). The lemmas of this section will lead to natural
and efiicient extensions of these algorithms to the indefinite case which satisfy

the conditions of Theorem 2.2 for second order stationary point convérgence. »

The first lemma gives a very general condition on ‘the step at each iteration
that ensures saﬁsfaction of Condition #1, and hence first order stationary point
convergence. By way of motivation we note that if an'algorithm simply took the

"best gradient step”, i.e. the solution to |
minf gfw+ %wBow : ||w ||<hwel-g, )3,
then it would satisfy Condition #1. Lerﬁ:ﬁa 4.3 is é slight generalization of this

fact,

Here we slightly ohab,ge our earlier notation and let

pred(s)=—gTs—%s7Bs,
lemma 4.3
Sﬁppose there is a constant ¢;¢(0,1] such that at each iteration k,

pred(p, (4)) = - minfglw+ hwTBow : ||w ||<bwe[d, 3,
for some dj, satisfying

: dige==c|lde || lge l].
Then g (A) satisfies Condition #1, and hence a trust region algorithm using it is
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first order stationary point convergent.

Proof: We will drop the subscripts k& throughout and will show that

pred(s.)a?lfg | lmin(A, ——ﬂ—]}g-]-i—l—% where s. solves the above minimization

problem This will clearly 1mp1y satisfaction of Condition #1 by p(A) since
pred(p(A))=pred(s.), by assumption.
. o, v
Define h(a%bﬁwedUmﬂzag7d+%rdTEﬁ. Then h'(a)=ad?Bd+g7d, and
h'(e)=dTBd.

Let s.=a.d, ie. a. is the multiple of d which minimizes the guadratic

gTw +wT Bw along that direction, subject to the constraint ||w ||=A. Now, if -

g7d e T
dTBd >0, then either a.= d}Ed' if dgg’g’:_ﬁ\’ or else @.= “2 T In the first case
~ we have
pred(ss)
: Tq
=ored (a.d)= Tg—14 24T Bd
pred(ad)= Jrpg9 ziTBd) s
(gTCQZ
dTEd
HglngIF
> 2
2
B
.In the second case, we have
pred(s.)
A
pred(ed) =y Te K e 5
A
Ty
“ATaT l‘g

A g7d |
Hd]] T dTBd’

(W‘lth the inequality above true since
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=24 llg 1]

Finally, if ¢7Bd=0, c.= T and so we have

Td
| pred(s.) |

ce A ra oy A

RIS TR

A ,
= 3K Ta=cAllg |].
Thus, s. and hence p(A) satisfy Condition #1, with constants & 1=92‘L and

Ulzc 1.

We may summarize the lemma by saying that as iong as an algorithm takes
steps which do as well on the quadratic model as directions with "sufficient” des-
cent, then Condition #1 is satisfied, and hence the algorithm is first order sta-

tiohary point convergent.

Using Lemma 4.3, we can inimédiate‘ly note first order stationary point con-
vergence for a number of algorithms. The lemma c‘an be used to prove the first
oréer s%:aticnary point convergence of most line search algorithms which keep -
the angle between the steps and the gradient bounded away from 90 degre’es.
because the step length adjusting Stf&tegy and step‘ acceptance strategy iny'the
line search can be shown to cérrespon.d to a trust radius adjusting strategy and
step acceptance strategy allowed by Algorithm 21 in addition, it applies to any
dogleg type algorithm, e.g. Powell [1970] and Dennis-Mei [1879], since these
algorithms always do at least as well as the "best gradient step”. Finally, we
note that the lemma applies immediately to the ;’optimal" algorithm described

above, for the same reason.

The next lemma says, roughly, that if each step taken by the algorithm
gives as much descent as a direction of sufficient negative curvature, when

there is one, then Condition #R is satisfied.



lemma 4.4

_Suppose there is a constant cp£(0,1] such that at each iteration k where
A (H (z,))<0, we have B, =H (z;) and

pred (o, (A))=pred (1),
where

' ty=argmin {gfw+ bwTBow : ||w ll=bhwelg )},
for some g, satisfying ‘

Q’IcTBk e=cah(H(z)) |lge |1*
Then py (A) satisfles Condition #2.
Proof: We have just to show that for some &,>0, pred (£, )=t (- \(H (z, ) A%, for all

iterations with A;(H(z:))<0. Again, we will drop the subsc'ripts k.

Define w=-sgn(g7q) Tl—?ﬂ——q. Then

rod(w)= L q LAy B
predw)= A= g e B

e
2"‘2“"92)\1(H(m))v
since g7 Bg=c N\ (H(z)) || ||% So, since pred(w)spred(t, )<pred(p, (A)), p.(A)

' ‘ C
satisfies Condition #2 with ¢,= -ég-

So, if the steps taken by an algorithm satisfy the hypotheses of both Lem-
mas 4.37and 4.4, then the algorithm is second order stationary point convergent.
For example, if an algorithm uses any steps giving as much descent as

s =argmin {gfw+ %' Bew : |[w ||<bws(dy.ge ]l
where d; satisfies the requirement in Lemma 4.3, and g satisfles the require-
ment in Lemma 4.4 when \(H (x.))<0 and is 0 otherwise, then it satisfies both

Conditions #1 and #2. One such algorithm is mentioned in Section 5.

Fmally, we note that Lemma 4.4 applies to the "optimal" algorithm (Soren-

sen [1980]), since this algorithm always achieves at least as much descent ag is
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possible in the elgenvector direction c’orrespondin,gvto the mdst negative eigen-
value of H(z;). Taken together with Theorem 2.2, the two léi’nmas prove that
the "optimal” algorithm is second order stationary poirﬁ: convergent.
L’émmas 4.3 and 4.4 can also be used to show convergence of algorithms i '
using scaled trust regions of the form { £ : || Dt ||=A3, wh‘ere»'D,c is a pdsitive _
diagonal scaling matrix that may change at évery iteration. If we are using such
& scaléd region to determine a step otherwise satisfyiﬁglthe conditions of
Lemma 4.3, then we are requiring |
Se=argmin {spgp+ %sTBes 1 || Des HsA s&[dk]g

Thvs satisfles the conditions of Lemma 4.3 as stated but Wlth A replaced by

Tf“}?"}"]—. Then by the Lemma, Condition #1 is satisfied with & 1 replaced by
i , '

4—~c—1——-—— and sumlarl for o,. The same argument with Lemma 4.4 shows that
DTl e

Condltmn f#f€ remains satisfied with a modified trusi, region. Thus 1f we requu‘e
that ||D, || and HD;c Y|l be bounded for all k, then the convergence results
from Lemmas 4.8 and‘é,‘é also apply when using such a scale\d trust region. They

also apply to steps using trust regions based on other norms, such as l,orl,.

The final lemma contains a different set of sﬁﬁicient conditions for a step
compﬁting method to satisfy both Conditions #1 and #2. 'i‘hese conditions are
related toﬁ the step (4.2) of the "optimal" algorithm: however Lemma 4.5 is
broad enough to prove the second order stationary point convergence of a

variety of algorithms, including several discussed in Sections 5 and 8.

Lemma 4.5 :
Suppose B, =H(z,) and p,(A) satisfies Condition #1 whenever A, (H(z,))=0. Sup-
pose further that there exist constants cg>1 and ¢,£(0,1] such that whenever
A (H{zy))<0, for some B(—=M{H () camax({ |\ | A\ ], pi () satisﬁés:

) if A< || =(Be+a )7 lge ||, then pg(2) is any step satisfying Conditions #1 and
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i) if A= || ~(Bp+a ) gie |, ﬁhenpk(A)z—(Bk 4‘%1)"1915;
i) if A> || —(Be+ow ) g ||, then D (8)=~(By+oy 1) gp +Eqk, for some g satis-
fying ofBeqe=c M (BL) ||ge || where £6R is chosen so that Hoe(A) ||=4A and
sgn(§)=—sgn(ad(By +oe. 1) g, o
Then pk(A)k elso satisfies Conditions #1 and #2 whenever A, (H (z))<0, and thus an
algorithm using p (A) is second order stationafy point convergent. k
Proof: We will drop the subscripts k, and cali M=M(H(z)). We will first show
that the step in iii) satisfies Conditions #1 and #2, and then see from the same
calculation that the step in ii) satisfies these conditions. |

If p(ﬁ)z—(B%‘a!);lg +£g, then by simple aigebraié manipulation we have
' Afhat

pred(p(a)=

==g"(¢g~(B+al)™'g)~ % (¢g ~(B+al) g )T B¢y ~(B +al)™'g)

=gT(B+al) lg~£gTq —% "By +éqTB(B+al) g~ Y g T(B~+M)"‘B(B+af)“‘é
=" (Bran) g ~4g g ~taq (B et} g + & (8+ar) g |
=T (Fal) g - g [[=ag (B 4ar) g+ &l (rar) g |
= %7 (Bral) g -2 g ~(B+al) g ||?

Hgeh—a)gT(Bral) g +( S+ SN || (B rar) g |2

. N - c o
=Y gT(Bral) g+ 2H-\) [|p(8) |]?
since the last two terms in the next to last expression above are positive due to

e>=A>=c 4\ and g T (B +al)"1g <0.

S0, we see that



pred(p(A)= Y% gT(B+al) g N 54(—;\32—&\‘3

and since the first quantity is positive, Condition #2 is clearly satisfied. Also,

pred(p(A))=% 97(5+“1)"19‘Z%'§‘]"§iain B

o1 gl
Bostl) (1511

~ with the last ihequality due to
[|B+ad || =h, +esh, +egmax( || An)=(cs+1) || B |].
' So, Condition #2 is also satisfied,
Finally, note that in case ii), we can take £€=0, and the same calculations

yield satisfaction of Conditions #1 and #2 by the step in ii).

The value of Lernma 4.5 is that it suggests many algorithms that are secohd
order stationary point convergent but are relatively efficient to implement. The
reader may have recognized that conditions ii) and iii) of Lemma 4.5 just give an
easy-to-implement way to identify the "hard case" in a second order algorithm,

~and to choose a step in thls case. The inequality goncermng g, in iii) says that
g, must be a direction of sufficient negatiére cur‘;(a:ture. The inequality concern-
ing oy, says that we can overestimate the magnitude of A (H (x,;)) by an amount
proportional to || H(x;) || and still achieve global convergence. When we are not
in this "hard case" Lemma 4.5 says that we ha\?e great leeway in choosing the

step p.. . The algorithms of Section & are mainly based on Lemma 4.5,



- 5. New Algorithms That Use Negative Curvature

In this sectlon we present several idealized step selectxon strategies for
Problem 1. 1 which use second order mfcrmatmn The step selectlon strategies
are all based on the lemmas of Section 4 and so any algerithm that uses one of
them within the framework of Algorithm 2.1 achieves second order stationary
point co‘nﬁfergence. They are idéalizéd only in the sense that they may use the
largest and smallest eigenvalues of the Hessian matrix and a direction‘ of
sufficient negative curvature g, without specifying how these quantities are to
be éomputed. In Section 6 we will suggest a possibie implementation of one of
these algorithms, including the computation of the extreme eigenvalues and |

negative curvature direction when required.

Before describing the step selettion strategies we turn briefly to the ques-
tlon of judnmg these strategles So far we have been concerned with conver-
gence properties. We now consider two other facv:tors, the computational work
involvéd in cain;uiating the step and the continuity of the step selection strate‘gy,
We define a continuous’ step selection strategy to be one where the function
»(g.B.A) is a continuous function of g.B, and A We note that the "optimal" stra-
tegy in Sorensen [1980] has this property excepg m the highly unusual case that
the algorithm is at a point x with P\I(H (z))=0, g orthogonal to the null space of

H(z) ,and ||H (:c)*g || <A. All of the strategies to follow Wlu have the same pro-
perty, except as otherwise noted. As for the computatmnal work, the algorithm
we present in Section 6 should be quite efficient in terms of amthmetm opera-

tions reqmred-per step.

The first step selection strategy shows how a line search using second order
information can be extended to the indefinite case in a natural way that satisfles
the conditions of Lemma 4.5 and so assures second order statlonary point con-

vergence. The strategy is related to an algorithm by Gill and Murray [1972].



