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Abstract 

The streaming instability is a mechanism that produces regions of particle overdensity in 

protoplanetary disks. These over-densities gravitationally collapse to form planetesimals. 

Although it is well known that the extent of particle clumping is dependent on the radial gas 

pressure gradient, the relationship between pressure gradient and planetesimal properties is not 

known. We carry out very high resolution local, shearing box simulations (i.e., a small 

co-rotating patch) of a protoplanetary disk to study the effect of the radial pressure gradient on 

the streaming instability and resulting planetesimal properties. We find that the pre-collapse 

structure of particles grows increasingly axisymmetric with increasing pressure gradient, and for 

relatively small radial pressure gradients, smaller filaments form with a non-axisymmetric 

web-like structure. The initial mass distribution can be fit to a single power-law, where we 

measure a power-law index of p = 1.6 for every non-zero pressure gradient. An exponentially 

truncated power law provides a better fit; here, we find a power-law index of p’ = 1.3. We also 

find that the largest planetesimal masses have a weak, and possibly negligible, dependence on 

pressure gradient. This result rules out a cubic scaling of planetesimal mass with the pressure 

gradient, as suggested by linear theory.  A simulation initialized with zero pressure gradient, 

which is not subject to the streaming instability, also yields a top-heavy mass function but with a 

noticeably different shape.  These results point towards a initial planetesimal mass distribution 

that is at best very weakly dependent on the properties of the disk. 

 



 

Chapter 1 

Introduction 

Over the past two decades, technological developments in observation and computation 

have contributed immensely to the knowledge of planetary formation processes. High resolution 

images and numerical simulations of protoplanetary disks offer an opportunity to directly study 

various stages of planetary formation. A common problem in planet formation theory is a variety 

of “barriers” that prevent the growth of dust particles into planetesimals. The bouncing barrier 

and fragmentation barrier are two primary obstacles that inhibit mass growth past the mm-cm 

size scale (Blum 2018). The bouncing barrier describes how mm-cm sized objects will bounce 

off each other when they collide at low enough speeds. Additionally, the fragmentation barrier 

describes how cm-m sized objects will break apart when they collide at speeds greater than 

approximately 1 m/s (Blum, 2018). Theorists work to construct explanations for why there is a 

large populations of meter and kilometer sized asteroids in the solar system. 

In recent decades, a physical mechanism called the streaming instability has provided 

planetary formation theorists with a way to overcome these barriers. The streaming instability 

adds to planetesimal formation models by factoring in the dynamics between gas and dust in a 

protoplanetary disk (Youdin, 2005). Gas orbits a protostar with a sub-Keplerian velocity due to 

an outward, radial pressure force which counters the inward, radial gravitational force. The 

outward, radial pressure force is proportional to the radial gas pressure gradient (Armitage 2017). 

Solid objects orbit a protostar with a Keplerian velocity, which results in these objects 



 

experiencing drag from the slowly orbiting gas. This drag causes dust particles to lose angular 

momentum and drift radially inward. This inward drift concentrates dust particles into azimuthal 

regions of overdensity. Within these structures of overdensity, the roche limit is reached and 

direct gravitational collapse is able to form m-km size planetesimals. 

Figure 1.1​: This diagram of a protoplanetary disk around a protostar helps visually describe the physics that govern 
the streaming instability. We imagine a two-object momentum exchange between a gas particle and a dust particle. 
Both particles are orbiting around the protostar at the center of the diagram, however, due to the radial gas pressure 
gradient, the gas particle is orbiting slower than the dust particle. This velocity difference causes the dust particle to 
experience a drag force, and drift inward due to a loss of angular momentum. 
 

The streaming instability is only studied theoretically and computationally. Currently, 

protoplanetary disk simulations produce planetesimals with initial mass distributions that follow 

a power law of dN/dM​p​ ∝ M​p​-p​ where M​p​ is planetesimal mass, dN/dM​p​ is the frequency that 

planetesimals of mass near M​p​ are formed, and p is measured to be ≅ 1.6 (Simon 2016). The 



 

power law index, p, is consistently calculated to be approximately 1.6 through many parameters 

like resolution, gas to particle ratio, and more (Simon 2017). 

However, planetesimal mass distribution and range have not been thoroughly explored in 

relation to the strength of the streaming instability. A recent paper suggested that 

M​p​ ∝ (radial-gas-pressure-gradient)​3​ (Taki, et. al. 2016). This suggests that the strength of the 

streaming instability has a direct relationship with how mass is distributed into planetesimals. 

This claim was made through a linear analysis of the particle surface density. However, there is 

no other observational or computational evidence for this claim. 

This paper numerically tests the validity of this claim to explore the general relationship 

of a protoplanetary system’s initial mass distribution with its gas pressure gradient. We run 

multiple numerical simulations of small regions in a protoplanetary disk with a range of pressure 

gradient values and all other parameters fixed. This paper shows that there is little to no relation 

between gas pressure gradient and planetesimal mass range. We also find that when fit to a 

single power law function, the mass distribution has a power-law index of p ≅ 1.6. However, 

when looking at the cumulative distribution, we find that a better fit to the distribution is a 

truncated power-law function with a new index of: p’ ≅ 1.3. We also make qualitative 

observations about the particle density structure of the disk under different pressure gradients. 

 

 

 

 



 

Chapter 2 

Methods 

To simulate the formation of planetesimals in a protoplanetary disk we use the 

magnetohydrodynamical (MHD) Athena code to couple the motion of gas and dust in a small 

region of the disk. We model this space of the disk to be a co-rotating shearing cube. We also 

approximate this cube to be small relative to the the size of a protoplanetary disk, and exist far 

from the center of the disk. These approximations allow us to model the box in cartesian 

coordinates rather than spherical. More specifically, we interpret the radial coordinate to x, the 

azimuthal coordinate t y, and the altitude to z. The x-axis has periodic-shear boundary 

conditions, the y-axis has periodic boundary conditions, and the z-axis has outflow boundary 

conditions. 

Figure 2.1​: This diagram displays what our co-rotating shearing box actually simulates with respect to a global 
simulation of a protoplanetary disk. The term “co-rotating” refers to how the box that we simulate orbits with 
respect to the protoplanetary disk. By simulating just a small portion of a protoplanetary disk, we are able to 
compute much higher resolution systems. 



 

Within this modified coordinate system, Athena solves the continuity (1) and momentum 

(2) equations for gas dynamics: 

 

(1) 

 

(2) 

 

where ​ρ​ is gas density, ​ρ​u​ is momentum density, ​P​ is gas pressure. ​q​sh ​= 3/2 and is the shear 

parameter. ​ρ​p​ is the mass density of particles, ​v​ is particle velocity, and t​stop​ is the stopping time 

parameter that influences the speed a particle will lose momentum. Also, pressure, ​P​, can be 

expressed as ​ρ  where c​s​ is isothermal sound speed. The final governing equation is thecs
3  

equation of motion for a given particle, ​i​: 

 

 

(3) 

 

 

Where η​v​K​ accounts for inward radial drift of particles. This inward radial drift is caused from 

the radial gas pressure gradient. We will represent radial gas pressure gradient with the 

dimensionless value Π = η​v​K​/c​s​.  

All of the simulations used in this paper were run on the ​Stampede2​ supercomputer at the 

University of Texas, Austin. Each simulation also ran with the following parameters: Z = 0.1, τ = 



 

0.05, and G = 0.02. Z is the ratio between particle and gas mass, τ is the dimensionless stopping 

time of particles through gas, and G is the strength of gravitational tidal forces between particles. 

G is not purely changing the gravitational force, but is meant to model particle self gravity with 

respect to inward radial gravitational force from the protostar. We ran six simulations with 

varying pressure gradients values and particle self-gravity on the entire simulation time. In the 

Athena code, pressure gradient is modeled purely by applying an inward radial velocity to 

particles in the simulation. The six Π values that we used were: 0.0, 0.0375, 0.05, 0.0625, 0.075, 

0.0875, and 0.1. Also, the Π = 0.1 case became so turbulent that we needed to increase the height 

of the z boundaries so mass would not escape the simulation. We ran three additional simulations 

with particle self-gravity turned on after the streaming instability had fully created overdense 

structures. For these late particle self-gravity simulations, we used Π = 0.0375, 0.05, 0.075. 

Figure 2.2​: This table displays where in parameter space we ran all of our simulations, as well as the numerical 
results that we calculated from them. Under the “Run” column the first letter “P” refers to Π and the “SG” refers to 
start gravity time. The one time where “Lz” is placed refers to the length of the shearing box along the z-axis. 
 

For all of these simulations we qualitatively chose a time to run a mass finding algorithm 

by looking at the particle structures in each system to determine whether planetesimals had fully 



 

collapsed. The time at which we chose to extract our planetesimal data is called the fiducial time. 

For the six simulations that have gravity turned on from the start, we also have data points taken 

at certain times before the fiducial time (as seen in Sec. 3.1). Also, our mass finding algorithm, 

PLanetesimal ANalyzer (PLAN), creates a list of masses, Hill sphere’s, and x/y/z coordinates for 

each planetesimal identified from the particle information files. We convert our planetesimal 

mass values to units of M​G​, the gravitational mass to remain consistent. To normalize as such, we 

use the standard Toomre dispersion relation by balancing tidal and self-gravitational forces to 

obtain a critical unstable wavelength of 

.λG =
Ω2

4π GΣ2
p (4) 

Gravity will overpower tidal shear for planetesimals with a diameter smaller than . Thus, we λG  

can define a gravitational mass as a patch of the particle disk with surface density  andΣp  

diameter . λG  

,( )  Σ π π Z G MM G ≡ π 2
λG 2

p = 4 5
Ω4

G Σ2
p

3

= 2
√2 9/2 3 2

H (5) 

where  is a dimensional reference mass.HM H = ρ0
3  

 

 

 

 

 

 



 

Chapter 3 

Results 

3.1 Pressure Gradient Influence on Particle Structure 

By looking at the time evolution of different pressure gradient runs, we were able to 

make qualitative observations about the structure of particles in the shearing box. We found that 

lower pressure gradient runs produced asymmetric, web-like precollapse structure of the 

particles. On the other hand, higher pressure gradient values result in axisymmetric precollapse 

structure. This formation of particles in the disk is strongly associated with the streaming 

instability. The elongated particle structure in the high pressure gradient runs is exemplary of the 

regions of overdensity that induce planetesimal formation. As seen in figure 3.1, most of the 

planetesimals forming in the high pressure gradient runs lie in the elongated regions of high 

particle density. 



 

 

Figure 3.1​: Surface density plots for three of the pressure gradient values that we simulated. Each row is a different 
pressure gradient simulation with the Π value to the right. This figure also shows the time evolution of each 
simulation in the top right hand corner of each snapshot. Recall that Ω​-1​ refers to the time of one orbit. Thus, each 
run in this figure evolves from left to right over time. 
 

 

 



 

3.2 The Direct Relation Between Maximum Planetesimal Mass 

and Radial Pressure Gradient 

These results for maximum planetesimal size (M​p​) were the first results that opposed the 

claim that maximum M​p​ scales with Π​3​. In Figure 3.2, we overplot a dotted line representing Π​3 

to show the trend that we would expect. However, we clearly see a relatively scattered 

distribution of maximum M​p​ values with relation to Π. Another interesting observation is the 

trend between time and maximum M​p​. For all applicable Π values, the M​p​ value for 

fiducial time - 10 Ω​-1​ is lower than the M​p​ value for fiducial time - 5 Ω​-1​. Both of the earlier 

values are also always lower than the maximum M​p​ value at the fiducial time. Although this 

initial observation seems to provide substantial evidence against the Taki claim, there are very 

few maximum planetesimal mass values per Π value. And given the chaotic nature of these 

systems, we cannot fully trust these points without error bars. We will produce a statistically 

stronger measure for a system’s most massive planetesimals in Sec. 3.4. 



 

 

Figure 3.2​: Maximum planetesimal mass vs. Π. The black circles, blue triangles, and red asterisks all represent 
simulations with particle self-gravity on from the start, while the green squares represent simulations with particle 
self-gravity turned on later. Recall that the inverse omega symbol represents the unitless time value that the 
simulation uses. The blue triangle and red asterisk are data points taken a time earlier than the fiducial time. 
 

 

 

 



 

3.3 The Differential Mass Function and Single Power Law 

Indices 

The differential mass function of initial planetesimals formed is a valuable quantitative 

measure. In the differential mass function, each data point is a planetesimal that has been 

identified by PLAN. Figure 3.3 displays the maximum planetesimal mass as the rightmost point 

in each simulation. The colored lines also represent the power-law fit for each mass distribution. 

Each fit function is simply C*(M​p​-p​) where -p represents the slope of the line in log-log space, 

and C represents an arbitrary constant that changes the height of the function. 

 

Figure 3.3​: Differential mass distribution taken from three different pressure gradient simulations run with particle 
self-gravity on from the start. The three Pi values are: 0.0375 (blue pluses), 0.075 (black asterisks), and 0.1 (red 
squares). 



 

 

The p values were found using the maximum likelihood estimate. We find that the power 

law index is approximately 1.6 over a wide range of Π values as seen in figure 3.3. 

 

Figure 3.4: Power-law index values (p) plotted with respect to the Pi values from each simulation. In this specific 
plot, the values are only from SG0 simulations. A dotted line is also overplotted at p=1.6. 
 

Every SG0 simulation except for Pi=0.0 lies within 2 sigma of p=1.6. The streaming 

instability does not occur for a system with no pressure gradient, so this is not much of a 

concern. Also, a reason for such a low p value for the Pi=0.1 run might be the significantly 

smaller number of planetesimals produced in that system. 

 



 

3.4 The Cumulative Mass Function and Exponentially 

Truncated Power-Law Fit 

When plotting the cumulative mass function of our simulation data we find that a single 

power-law is not the best descriptor of the mass distribution. We find that an exponentially 

truncated mass function of the form N(>M​p​) ∝ exp[-M​p​/M​0​] best fit the cumulative data.M p
p −1′  

 

Figure 3.5: Cumulative mass function of simulations fit to: N(>M​p​) ∝ exp[-M​p​/M​0​]M p
p −1′  

 



 

This new fit introduces two new parameters, p’ and M​0​. p’ represents the power-law 

slope for the low mass regime of planetesimals, while M​0​ is the characteristic mass value that 

represents the exponential drop off at the high mass regime of planetesimals. 

We use M​0​ as an analog to the largest planetesimals produced in a simulation. M​0​ is a 

more powerful measure of largest characteristic mass for a set of planetesimals because it takes 

the entire regime of largest planetesimals into account rather than only one. 

 

Fig. 3.6: M​0 ​/M​G​ vs. Π with a constant, linear, and cubic function overplotted. 
 

Even when using M​0​ as a measure of characteristic mass, the value does not increase 

proportional to Π​3​. Overall, we find M​0​ to have a weak linear dependence on Π. There is even a 



 

possibility that the Π parameter plays no role in determining this characteristic of the 

planetesimal distribution. 

 

Chapter 4 

Conclusion 

Our initial observations of the particle structure of shearing box simulations with 

different pressure gradients supported our understanding of the streaming instability. Specifically 

we found that precollapse structure was asymmetric for low pressure gradient runs, but produced 

an azimuthal shape for high pressure gradient runs. We find that when planetesimal formation 

simulations with varying radial gas pressure gradients are fit to a single power-law, dN/dMp = 

Mp​-p​, p  1.6. We also find that the mass function is better fit to an exponentially truncated≃  

power-law, N(>M​p​) ∝ exp[-M​p​/M​0​], where we find a low mass power-law index of p’ =M p
p −1′  

1.3 and a characteristic planetesimal mass, M​0​, that has a weak, and possibly negligible, 

dependance on pressure gradient. Along with direct mass measurements, we rule out the concept 

that planetesimal mass is proportional to pressure gradient cubed, which was suggested by linear 

theory (Taki, et. al. 2016). 
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