A Comparison of PASCAL and FORTRAN
As Introductory Programming Languages

Gary J. Nutt

CU-CS-101-77 January 1977

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ABSTRACT

Many colleges and universitites offer introductory programming
classes based on the FORTRAN Tanguage. Several of these schools
are contemplating a change to a more modern programming language in
this first course. The Department of Computer Science at the
University of Colorado has recently made the transition from FORTRAN
to PASCAL, and this paper offers an informal discussion of the ex-
periences of one instructor during that change. It is hoped that
others who may be considering a similar change will benefit from
our experiences.

INTRODUCTION

A popular conjecture among computer science educators is that
PASCAL or PL/C should be the first programming Tanguage taught in
introductory classes. This theory is implemented at a number of
schools, but the majority of introductory programming courses use
FORTRAN. Recently the Department of Computer Science at the Univer-
sity of Colorado reorganized its introductory courses to eliminate
FORTRAN 1in the first course in favor of PASCAL. In this paper, we
discuss our experiences with this transition so that others may bene-
fit from it.

Proponents of PASCAL (or PL/C) arque that it is a more modern
programming language containing better control structures to en-
courage good programming techniques. The student is 1likely to develop
a better appreciation for algorithm design and can more easily argue
for the correctness of such algorithms if he tends to think of them
in terms of PASCAL implementations. PASCAL is also alleged to be as
easy to teach to the neophyte as FORTRAN, yet still be more elegant.
PASCAL provides more general data types and an extensible data struc-
ture feature that clarifies the computations on data. Finally, FORTRAN
can be easily learned once the student is comfortable with PASCAL al-
though the converse is not true.

The FORTRAN camp offers the following arguments in favor of
their language. FORTRAN is easier to teach (and learn) than PASCAL
or PL/C, (a direct contradiction to the PASCAL camp). The number of
implementations of FORTRAN far exceeds the number of implementations
of any other language (with the possible exception of COBOL), thus
FORTRAN 1is a more valuable tool to the novice programmer. PASCAL is
not tried and tested by the real world of applications; it exists
primarily in an academic atmosphere. There is a shortage of good
textbooks for teaching PASCAL, while there is a plethora of FORTRAN-
oriented texts available. FORTRAN can be written with style (as
indicated by Kernighan and Plauger [6]).

In the following sections of this paper, the educational environ-
ment at this University is described, a subjective comparison of similar
FORTRAN-based and PASCAL-based introductory courses is given with re-
spect to the pros and cons mentioned above, and finally, our opinion
of the two Tanguages as introductory programming languages is given.

THE ENVIRONMENT

The Department of Computer Science is associated with the
College of Arts and Sciences at the University of Colorado and of-
fers the M.S. and Ph.D. degrees. A number of undergraduate classes
are offered to support other programs such as the engineering cur-
riculum and the undergraduate math curriculum. Prior to the Fall
semester of 1976, three undergraduate introductory courses were
offered to support various programs: C.S. 201 was an introduction
to FORTRAN programming for scientists and engineers; C.S. 202 used
COBOL to introduce programming to business majors; C.S. 203 was an
introductory FORTRAN course for liberal arts majors. Each class
used examples and assignments intended to appeal to students
from the given discipline. During the 1975-76 academic year,
the size of each section of each class was limited to 68 students
with the idea of increasing the quality of lectures. Three sections
of C.S. 201, one section each of C.S. 202 and C.S. 203 were taught.
In Fall of 1976 all three courses were replaced by a PASCAL-based
class entitled Fundamentals of Computing I. Students are expected
to take a one year sequence starting with C.S. 210, followed by an
additional semester dealing with larger programs and also introduc-
ing FORTRAN and COBOL. The philosophy for this reorganization was
that programming is a sufficiently difficult intellectual activity
that a full year is required to provide an adequate introduction.
Furthermore, each student who learns programming, regardless of their
background, can best appreciate the task by first learning a modern
language 1ike PASCAL before specializing in a particular application
area. C.S. 210 was again limited to 68 students per section and five
sections were offered during the Fall semester.

The basic topics covered in C.S. 210 are Tisted in Table I,
and a summary of homework assignments used in the five sections is
provided in the Appendix. The textbooks used for C.S. 201 were the
Forsythe, Keenan, Organick and Stenberg book [3] and a FORTRAN text
by Dimitry and Mott [2]. Conway, Gries, and Zimmerman wrote the
text used in C.S. 210, [1].

SOME OBSERVATIONS

Is PASCAL more difficult to teach (and to learn) than FORTAN?
It is not easy to answer this.question conclusively based on the ex-
periences, but it would appear that FORTRAN is slightly easier to
learn than PASCAL primarily because there is less to learn. PASCAL
introduces a number of programming concepts that are not possible in
FORTRAN. For example, recursion was taught in C.S. 210 but not in
C.S. 207; extensible data structures are introduced in PASCAL courses
in order to discuss string manipulations, whereas FORTRAN strings are
handled with integer arrays. (In the PASCAL case, the student Tearns
to correctly type variables while in FORTRAN he is taught to bypass
the typing mechanism.) PASCAL records are introduced in C.S. 210 but
they have no counterpart in FORTRAN. A discussion of parameter pass-
ing mechanisms is necessary for PASCAL, since value and name calls are
both permissible*. Additional constructs for controlling program flow
are introduced in PASCAL. It was somewhat surprising to observe that the
additional control constructs were not difficult for students to grasp,
and most of them were as comfortable with the WHILE-DO, REPEAT-UNTIL,
and FPR-DP statements as the FORTRAN students were with the DO-
statement. In certain cases, there is Tess material to Tearn about
PASCAL then about FORTRAN. For example, the input/output operations
have a decided edge in PASCAL since the need for FORMAT statements
does not exist. Another area where less material is required in
PASCAL 1is that of forming syntactically legal array subscripts and
loop expressions; the generality of PASCAL is more easily learned.

Although the excess material contributes to the difficulty,
the amount of extra material does not appear to be so significant
that it makes PASCAL substantially more difficult to learn. Each
course started with 68 students, and 44 students finished C.S. 201
(FORTRAN) while 46 students finished C.S. 210. 22 C.S. 210 students
earned a grade of A or B, while only 16 C.S. 201 students earned a
grade of B or better. This difference partially reflects the home-
work grades assigned by different Teaching Assistants in the two
courses. The best measure of the comparative difficulties of the
two Tanguages is the amount of money each student spent over the
semester on programming assignments. For the Control Data FORTRAN

* A corresponding difficulty arises in FORTRAN when the issue of pass-
ing literals via parameters that are redefined within the subprogram

is discussed.

and PASCAL compilers, the cost of compiling and executing a simple
job is about the same; C.S. 201 students used an average of $37.94
for the semester and C.S. 210 students spent an average of $32.41
for the semester.

Does PASCAL encourage better programming techniques through
the use of better control structures? The intuitive observation here
is that the C.S. 210 students were writing much better programs after
a semester than the C.S. 201 students. Most of the PASCAL programs
included loops that terminated normally witout resorting to an escape.
When a student wrote a working PASCAL program, it was much easier to
read than the FORTRAN programs from C.S. 201. Although the average
amount of money spent on programming assignments was about the same
for the two classes, it seemed as though the C.S. 210 students were
spending less time programming than the C.S. 201 students. Most PASCAL
debugging runs were made to correct missing semicolons and to balance
BEGIN-END statements. It was also apparent that the programs produced
by the C.S. 210 students were easier to show correct (or incorrect)
than those written in FORTRAN.

If both Tanguages are to be learned, what is the order in which
they should be learned? It seems clear to us that it is much easier
to learn FORTRAN if one is already familiar with PASCAL. The last
week of C.S. 210 was spent on an introduction to FORTRAN. Although a
few of these students had Tearned some FORTRAN or BASIC in high school,
the majority were unfamiliar with the material. After the one week
introduction, over 95% of the C.S. 210 students were able to write a
FORTRAN program to compute the root of a predefined function using
the bisection method. (The same assignment had been given in PASCAL
earlier in the semester.) Previous experience with a second course
in computer programming showed that C.S. 201 students needed to spend
two or three weeks on an introduction to ALGOL before they could even
begin to write equivalent programs.

CONCLUSIONS

From a computer scientist's point of view, replacing FORTRAN
with PASCAL is a pedagogically sound improvement in the introductory
programming class. However, the introductory class at the University
of Colorado is a support class for other disciplines and is not part
of an undergraduate computer science curriculum. This has led to
some discontent among the faculty of the College of Engineering for
the following reasons: The undergraduate engineering curriculum has
so many required courses that a student may only be able to take one
semester of programming. In that one semester, the student will only
Tearn PASCAL. Most of the arguments in favor of FORTRAN apply to the
engineering student, i.e., if only one language is Tearned it should
be FORTRAN since it is implemented on most computers and it finds
heavy use in the non-academic world. Some of the engineering faculty
believe that only the most popular tool should be used even if it may
be outdated by a more modern, but less available tool. Our experience
with C.S. 210 seems to negate this argument to a large degree. The
PASCAL students easily picked up a good deal of FORTRAN in only one
week, and could apparently be comfortable with the language with little
extra study. However, to become proficient in PASCAL or FORTRAN, the
student will have to spend more than one semester writing algorithms
and implementing them in a programming language. Programming is a
difficult enough intellectual pursuft that it cannot be learned in a
one semester class.

Kernighan and Plauger have indeed shown that it is possible to
write FORTRAN programs "with style", [6]. Nevertheless, they too
apparently believe that FORTRAN should be updated to improve the pro-
grams since they use RATFOR in their subsequent book on software
tools, [7].

There are problems with using PASCAL in an introductory class,
and these problems reflect both the environment in which PASCAL was
developed and the relative youth of the implementation. The first
problem is that the number of PASCAL oriented text books is severely
Timited. We know of only three books that could have been used in
the Fall of 1976, (and one of them was not published until Tlate in
the summer of 1976), [1,5,8]. It is, of course, possible to use a

"Tanguage independent" book for most of the course, (e.g. references
[3,4]), but a PASCAL manual of some type is still necessary. Hope-
fully, this situation will improve in the immediate future. A second
problem has to do with PASCAL input operations. As long as only numbers
are being read into the program, the READ (READLN) statements are
adequate. Whenever character data is to be read, the students en-
countered nontrivial problems, primarily due the Control Data imple-
mentation. Once a character string has been read into a packed array
of characters, it is cumbersome to determine the length of a left-
Jjustified substring stored in the variable. It would also be nice if
the PASCAL implementation performed more run time type checking. The
Control Data 6400 system has been primarily used for FORTRAN program-
ming, thus most keypunches are 026 models. This caused PASCAL students
to have to multi punch many characters such as colon, semicolon,
brackets, etc.

In spite of some shortcomings, PASCAL provides an excellent
medium for discussing several important features of programming lan-
guages and algorithm development techniques. Sorted binary trees were
discussed in both C.S. 201 and C.S. 210; the FORTRAN coding of inser-
tion and traversal algorithms required the student to use arrays to
impTement nodes and a stack. In PASCAL, the students were able to
define node types and binary tree types (as records) and then to
write recursive insertion and traversal procedures without worrying
about a stack. Many C.S. 210 students were comfortable enough with
recursive procedures that they were using them to produce Fibonacci
sequences, etc. without being forced to do so. As one who learned
FORTRAN as a first high Tevel language, we were especially gratified
at the ease with which recursion was Tearned in the introductory class.

Our overall opinion, after teaching C.S. 201 several times and
C.S. 210 once, is that the C.S. 210 students did learn substantially
better programming technique than the C.S. 201 students. Their ability
to develop algorithms was improved somewhat, but the coding techniques
showed the most significant improvement. We believe that the transi-
tion from FORTRAN to PASCAL has resulted in an improved introductory
programming class.

* For example, PASCAL should not allow arbitrary integer values to be
read into variables that have been typed with an integer subrange.

REFERENCES
[11 Conway, R., Gries, D., and Zimmerman, E. C., A Primer on PASCAL,
Winthrop Publishers, Inc., Cambridge, Massachusetts, 1976.

[2] Dimitry, D., and Mott, T., Jr., Introduction to FORTRAN IV Pro-
gramming, Holt, Rinehart, and Winston, Inc., New York, 1966.

[3] Forsythe, A. 1., Keenan, T.A., Organick, E. I., and Stenberg, W.,
Computer Science: A First Course, John Wiley and Sons, Inc.
New York, 1975, Second Edition.

[4] Gear, C. W., Introduction to Computer Science, Science Research
Associates, Inc., Chicago, 1973.

[5] Jensen, K. and Wirth, N., PASCAL User Manual and Report,
Springer-Verlag, Berlin, 1974.

[6] Kernighan, B. W., and Plauger, P. J., The Elements of Programming

Style, McGraw-Hi11 Book Company, New York, 1974.

[7] Kernighan, B. W., and Plauger, P. J., Software Tools, Addison-

Wesley Publishing Company, Reading, Massachusetts, 1976.

[8] Wirth, N., Systematic Programming: An Introduction, Prentice-

Hall, Inc., Englewood Cl1iffs, New Jersey, 1973.

C.S. 210: Fundamentals of Computing I
Course Outline

Introduction
The concept of an algorithm
Refinement
Flowcharting

Computer realization of algorithms
Representation of data
Computer hardware characteristics
Assembly Tlanguage

Procedure-oriented language
Computations
Control structures
Structured data
Procedures

Algorithms for non-numeric problems
Sorting
Searching

Algorithms for numeric problems
Finding a root
Finding an extreme

Table 1

APPENDIX: C.S. 210 Homework Summary

The semester extends over approximately 14 weeks. Of the five
sections of C.S. 210, the number of homework assignments varied from
8 to 13. The following is a combination of typical assignments given
in the various sections.

1. Obtain a listing of a permanent file containing lecture notes
supplementary to the text book.

2. MWrite and test a simple PASCAL program. These programs varied
from finding the volume of a house through finding the third side
of a triangle using the Law of Cosines.

3. MWrite and test a PASCAL program that uses one or more of the con-
trol structures (i.e. IF-THEN-ELSE, CASE statement, WHILE-DO,
REPEAT-UNTIL, F@R-DO).

4. Another assignment to apply control structures, e.g. sine
approximation.

5. An exercise to introduce structured data (arrays), e.g. matrix
multiplication.

6. A non-numeric processing assignment, e.g. print one month of a
calendar given the number of the month, the day of the week of
the first day in the month, and a leap year designation; recog-
nizing palindromes; message decoding using a shift code; pattern
matching.

7. Using procedures, e.g. rewrite the matrix multiplication program
using procedures for input, output, multiplication; rewrite
pattern matching program with procedures to determine string length,
input a string; compute the root of a function, where the function
is "externally" defined.

8. Write larger programs using procedures and functions, e.g. compute
the biorhythm for a person given his birthdate; find the shortest
route between any two of a set of cities; perform a bubble sort on
an array of data.

9. Recursive programs, e.g. build and print a sorted binary tree;
evaluate a given recursive function at multiple points.

10. A variety of assignments for various purposes, e.g. least squares
fitting; FORTRAN coding; student grading program.

