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Abstract 

 Parasites can influence important ecosystem characteristics, such as biomass, 

biodiversity, food webs, and species interactions. Parasites of birds, in particular, offer a unique 

opportunity to test questions about parasites with complex life cycles (those that require more 

than one host for completion) and how host life history traits affect parasitic infections. For 

example, there is evidence that migratory versus non-migratory behavior in birds can affect the 

parasites present in a host, although whether migratory birds have more or fewer parasites is 

unclear. To help address these knowledge gaps, we collaborated with airports, animal 

rescue/rehabilitation centers, and hunter check stations in the Bay Area of California to collect 

57 raptors, waterfowl and herons for parasitological analysis. We performed detailed dissections 

of the gastro-intestinal tract and identified 64 taxa of parasites: 5 acanthocephala (thorny headed 

worms), 24 nematoda (roundworms), 8 cestoda (tapeworms), and 27 trematoda (flatworms). We 

then used generalized linear mixed modeling to determine how life history traits influenced 

parasite richness (number of taxa present) among bird hosts. We found associations with clutch 

size, diet and migratory status: parasite richness was greater in birds that were migratory, had 

larger clutch sizes and were carnivorous. The effect of both clutch size and diet is consistent with 

literature and has been linked to immune system function and parasite exposure respectively, 

whereas the effect of migration supports one of the two opposing hypotheses which are a topic of 

ongoing debate. These results add to the growing knowledge of how host life history can 

influence parasitic infections, especially with respect to the role of migration on parasite 

richness. 

 

 



Introduction 

There is a growing emphasis on the importance of parasites in the study of ecological 

communities and ecosystems. Historically, parasites have not been considered important because 

they are inconspicuous and collectively comprise only a small component of system biomass 

(Hudson et al. 2006). However, Kuris et al. (2008) showed that although a single individual may 

not contribute much to the biomass of a system, the combined parasite biomass within an 

estuarine marsh may be equal to that of a small herd of elephants. Not only has parasite biomass 

been underestimated, but also their biodiversity as experts estimate that between 30% and 50% 

of total biodiversity is composed of parasites (Poulin 2014). Correspondingly, growing evidence 

has illustrated the importance of parasites in food web structure (Dunne et al. 2013, Preston et al. 

2014), interspecies interactions such as competition and predation (Hatcher et al. 2006), and in 

contributing to biodiversity patterns (Hudson et al. 2006). These recent advances in our 

knowledge of the role that parasites play demonstrate the significance of studying the parasites in 

a community.  

Parasites of birds, in particular, offer a unique opportunity to ask questions about complex-

life-cycle parasites. Parasites that have indirect or “complex” life cycles use a different host for 

each life stage to complete the life cycle and often use birds as the definitive host, in which 

parasites mature into their adult forms (Schmidt and Roberts 2009). Only in their adult form do 

the parasites become sexually mature (Schmidt and Roberts 2009). There are numerous 

examples of birds as the definitive host in all of the four major taxa of helminths. A helminth is a 

general term used to indicate one of four major taxa of macroparasites: the cestoda (tapeworms), 

the trematoda (flatworms), the nematoda (roundworms), and the acanthocephala (thorny-headed 

worms) (Schmidt and Roberts 2009).  Using a bird as a definitive host is advantageous because 



they have, on average, larger geographic ranges than mammals (Gaston 2003), and visit a high 

variety of habitats providing opportunities for transmission events between sites, thus driving 

distribution patterns for infection (Hartson et al. 2011).  

  How migration affects patterns of infection and parasite richness within birds is a topic of 

ongoing debate. A migratory bird might have more parasites than a non-migratory bird because 

they are exposed to more parasites during their journey. For example, Waldenstrom et al. (2002) 

argued that increases in blood parasites are a cost of migration for songbirds because the resident 

songbirds in Africa can act as a reservoir and immediately infect the migratory songbirds when 

they arrive. However, there is a competing theory called “migratory escape” in which migration 

reduces either the exposure to parasites or their persistence within hosts because sources of 

infection, such as feces, can be washed away before the next season (Loehle 1995). Heavily 

infected hosts may not leave for migration at the same time as healthy ones, thus causing a 

temporal separation between infective animals and non-infective animals (Hoye 2011). These 

two opposing theories are still currently in debate (Altizer et al. 2011; Bauer and Hoye 2014).  

  In addition to migratory behavior, there are many ways that life history traits can 

influence infection. Because organisms have a limited amount of resources to use for growth, 

reproduction, fighting infections and ensuring survival, there are tradeoffs between different life 

history traits. For instance, amphibians that reach maturity sooner and have shorter lifespans 

(faster pace of life) exhibited a higher parasite load and more pathology (physical symptoms 

caused by the parasite) following experimental infection than frogs with longer times to maturity 

and longer lifespans (Johnson et al. 2012). More specific to birds, Lee et al. (2008) analyzed 70 

bird species and showed that antibody production is higher in slow-living species and birds with 

longer incubation periods. Furthermore, Ricklefs (1992) showed that birds that had a longer 



incubation period had fewer hematozoan parasites and speculated that the mechanism behind this 

was more differentiation of immune cells during development. Body size is another trait that has 

been shown to affect the parasite community in a host; in a meta-analytic study of parasite 

richness and life history traits, Kamiya et al. (2014) found that body size was a well-supported 

and relatively strong positive predictor of parasite richness for all host types studied which 

included arthropods, gastropods, fishes, birds, mammals, fungi and plants. A larger body 

provides more niches and space to host parasites. In addition to the above mentioned traits, diet 

could also play a role to parasitic infections since many infections are transmitted through 

trophic interactions (consuming food). Santoro et al. (2012) studied the eating habits of 6 species 

of raptors and found that the more diverse the food items, the richer the parasite community. A 

bird with a more diverse eating habit would have greater exposure to different parasites.  

 Although the intestinal parasites of wading birds, raptors and waterfowl have been 

intensively researched in North America (MacDonald 1975; 1981; 1988), comparatively few 

studies have been conducted along the Pacific flyway, which includes the San Francisco Bay 

Area of California. The literature of waterfowl and raptor helminth surveys from this region 

consists of three studies that have little overlap with each other in terms of hosts examined, 

parasite species found, and patterns of infection. In 1989, fourteen spotted owls, Strix 

occidentalis, were collected from Western Oregon and analyzed for parasite composition 

(Hoberg et al. 1989). The authors identified 6 different species of parasites with an overall 

infection prevalence of 71% (percent of total birds with a parasitic infection). The species 

composition mostly consisted of nematodes while no trematodes were recovered. Ching (1990) 

analyzed the helminth communities in the Western willet, Catoptrophorus semipalmatus 

inornatus, and the dunlin, Calidris alpine, from the Bolinas Lagoon (Northern California). She 



found 11 taxa of parasite from the Western willet and 17 in the dunlin. The species composition 

consisted mostly of trematodes, with only one species of nematode detected. The most recent 

study is of fecal samples from 18 raptor species residing in a rescue center in the San Francisco 

Bay Area which showed that 32% of birds were infected with a type of parasite (Baker et al. 

1996). Of the helminths found, there was a high prevalence of unidentifiable trematode species, 

the nematode Capillaria sp. and ascarid nematodes.  

Although poorly studied in bird hosts, many helminths in the Bay Area have been 

extensively researched by our own research laboratory from different hosts (Johnson et al. 

2013b; Richgels et al. 2013), including amphibians, snails, insects, and fishes. Many helminths 

with interesting interactions exists in the Bay Area (Johnson et al. 2013a; Preston et al. 2014). 

To highlight the importance of understanding parasites in the bird hosts, Ribeiroia ondatrae is 

one of the dominant helminthes in the Bay Area with a complex life cycle. Ribeiroia ondatrae 

utilizes Helisoma snails as a first intermediate host, various amphibians as a second intermediate 

host, and birds or mammals for a definitive host (Johnson et al. 2004). Ribeiroia ondatrae has a 

severe effect on the amphibian host by causing malformations that include extra limbs, missing 

limbs, or grotesquely deformed limbs (Johnson et al. 2002). In the light of declining amphibian 

populations, parasites such as R. ondatrae are important to study because they are highly 

pathogenic to amphibians (Johnson et al. 2002). More information about definitive hosts in the 

Bay Area ecosystem is needed to complement previous work.  

In the current study, we aim to fill in the knowledge gaps for the bird parasite community in 

the San Francisco Bay Area by assessing the helminth diversity of waterfowl, herons, egrets, 

ducks, and raptors. The specific objectives of the current study were to survey the helminth 

community in the Bay Area and create a database of parasites species present, explore the effect 



of bird life history traits on parasite richness, and test the competing theories for how migration 

influences parasite richness. We expected to find a high overall diversity of parasites because 

birds typically host high parasite richness and there is evidence of a rich community in the Bay 

Area already. We also predict to find that body size, longevity, diet and clutch size influence the 

parasite community inside the host. In addition to the life history traits, we will examine the way 

migratory behavior affects the parasite richness in the host to see which of competing hypotheses 

our data support; whether migration causes parasite richness to increase or decrease. 

Methods 

Study system 

Birds often host a wide diversity of parasites; among the most common parasites detected 

in birds are species of helminths (Schmidt and Roberts 2009). Numerous species of helminth 

utilize complex life cycles, which use multiple hosts for different life stages (Schmidt and 

Roberts 2009). For instance, the first intermediate host of a trematode typically involves a 

mollusk, which encounters an egg in the environment (Schmidt and Roberts 2009).  Within the 

molluscan host, the parasite develops to a free-living stage emerges to locate a second 

intermediate host, which can be an amphibian, snail, fish, insect or a wide variety of hosts 

(Schmidt and Roberts 2009). The definitive host (typically bird or mammal) consumes the 

second intermediate host and the parasite develops into a sexually mature adult that produces 

eggs and spreads them back in the environment through feces (Schmidt and Roberts 2009). The 

life cycles of all four of the above taxa follow similar steps, although a wide variety of 

transmission mechanisms and hosts are used and there can be anywhere from one to four hosts in 

a lifecycle (Schmidt and Roberts 2009).  



The San Francisco Bay Area of California is located on the Pacific flyway, which is one 

of four major routes that birds take for migration (Migratory Bird Program 2012). The Pacific 

flyway is the westernmost migratory route in North America and extends from Alaska into 

Mexico (Wilson 2010). The San Francisco Bay is the largest bay along the Western coast, and is 

where the Sacramento and San Joaquin rivers enter the Pacific Ocean (Conomos et al. 1985). 

The Bay Area offers a multitude of different kinds of wetlands that characterize the environment 

(Conomos et al. 1985). The Bay Area is one of the most important parts of the Pacific flyway as 

it serves as the breeding grounds, wintering grounds, or rest stops for many species of migratory 

birds; millions of birds visit or live in this area (Cormier and Pitkin 2008; Wilson 2010). This 

combination of wetlands and bird density provides perfect opportunities for parasite infection 

because transmission often occurs through the consumption of infected aquatic organisms 

(Schmidt and Roberts 2009). Our laboratory has sampled many of the aquatic organisms that 

might serve as prey for the birds in the Bay Area including tens of thousands of snails, thousands 

of amphibians, fish and insects. Here, we sought to complement and extend this work by 

examining birds as a host. 

Specimen collection and species identification 

To obtain samples of birds for helminthological survey, we collaborated with Oakland 

International Airport, San Francisco International Airport, Sacramento International Airport, 

Sulphur Creek Nature Center, International Bird Rescue, and two hunting locations in the 

National Wildlife Refuge system (Alviso Boat Dock and Suisun Bay). Airports often have 

depredation permits that allow them to cull any birds that are a danger to airplanes during takeoff 

which allowed for a great sampling opportunity. Bird rescue centers provided birds that were 



unsuccessful rescues. At the hunting locations, a hunter removed the gastrointestinal tracts and 

froze them for later shipment. 

After collections, birds were stored in a freezer (-20 C o) and subsequently thawed to 

remove their gastrointestinal tract. Gastrointestinal tracts were then shipped to the University of 

Colorado, Boulder, where they were stored at -20 Co until dissection and parasitological 

examination. Dissection and identification techniques were similar to those described in 

Sepulveda and Kinsella (2011). The gastro-intestinal tract of each bird was examined for the four 

major taxa of helminthes by separating the esophagus, proventriculus, gizzard, stomach, 

duodenum, jejunum, and illium. In brief, each organ was examined separately, which started by 

washing the content of the gut into a petri dish for examination. The organ walls were then 

inspected for parasites still attached both on the inside and outside of the organ. The koilin lining 

of the gizzard was removed and inspected and the proventriculus was teased apart to find 

parasites inside the glands. All of the contents of the gut were washed with a 200 μm mesh sieve 

followed by a 50 μm sieve, and thoroughly examined for any parasites using a stereo-dissection 

microscope at magnifications between 6.3 X and 63 X. Any species of helminths found were 

collected and preserved for later identification. 

 Detected parasites were preserved in an alcohol-formalin-acetic acid mixture (AFA), 

70% ethanol, or 95% ethanol depending on future intended use. To facilitate morphological 

species identification, Semichon’s Carmine or Mayer’s Heamatoxylin were used to stain 

trematodes and cestodes followed by mounting in Canadian Balsam; nematodes were cleared in 

lactophenol and temporarily mounted. Available literature and dichotomous identification keys 

were used for identification: keys used for the nematoda included those by Yamaguti (1961) and 

Anderson et al. (2009), for the trematoda those Yamaguti (1958; 1971) Gibson et al. (2002; 



2005; 2008), and Schell (1985), for acanthocephala those by Yamaguti (1963), and for the 

cestoda those by Yamaguti (1959), Schmidt (1986), and Khalil et al. (1994). Wherever possible, 

identification to the species level was achieved, but owing to poor specimen quality from the 

freezing process, many higher taxonomic level identifications were used. Specimens will be 

submitted to museums. 

Statistical analysis of life history traits 

 To explore and identify factors contributing to observed differences among bird species 

in their parasite community composition and richness, we compiled a list of life history and 

demographic traits for each species using data published in literature (Table 2). Traits that were 

included in our analysis included maximum recorded longevity (years), migratory status (non-

migratory vs. migratory), body mass (g), mean clutch size, diet preferences (herbivore vs. 

carnivore). Based on previous literature, we expected to find that longer lived host species would 

have few parasites (Cooper et al. 2012), migratory birds would host either a higher or lower 

parasite diversity (Waldenstrom et al. 2002), mean clutch size would be positively associated 

due to the allocation of resources into reproduction in the host species (Agnew et al. 2000), and 

that dietary habits would influence the parasite composition such that carnivores would host a 

higher diversity of parasites (Santoro et al. 2012). For the response variable, parasite family 

richness was chosen instead of parasite species richness because the taxonomic resolution at the 

species and genus level was inconsistent. 

 To analyze the influence of selected traits on parasite richness among birds, generalized 

linear mixed effects models (GLMM) were implemented with the statistical program R® and 

package “lme4.” The hybrid duck and Clark’s grebe were eliminated from this part of the study 

due to insufficient data in the life history traits. First, the collinearity of variables was tested 



using a correlation matrix which shows the amount that any two variables correlate to each other. 

Two variables that are correlated can give disproportionately high significance to the statistical 

result and therefore must be addressed (Dormann et al. 2013). The maximum correlation 

coefficient allowed in the model was 0.70 (Dormann et al. 2013). For coefficients that 

approached this value, models were run with and without one of the predictors to see if the 

model fit changed. The distribution of parasite family richness was tested using Kolmogorov's 

goodness of fit test in JMP. Several generalized linear mixed models were fitted starting with all 

the predictor variables given in Table 2 and either bird host species or family as the random 

effects to account for bird individuals of the same species not being entirely independent from 

each other. The model was tested with and without random effects and simplest model was 

chosen. Terms of the model were eliminated one at a time from the full model until the lowest 

model AIC value was achieved. The lower the AIC value when comparing two models, the 

better the fit of the model (Burnham and Anderson 2004). Interactions were not tested because 

there were no biological bases for including an interaction. A p-value of less than 0.05 was used 

a criterion for statistical significance in the data.  

Results 

Parasite survey 

 Between May 2012 and January 2013, 57 avian hosts of 21 different species were 

examined for intestinal helminthes (see Table 1). We sampled 14 birds from Oakland 

International Airport, 10 from San Francisco International Airport, 6 from Sacramento 

International Airport, 9 from Sulphur Creek Nature Center, 11 from International Bird Rescue, 2 

from the Alviso Boat Dock and 1 from Suisun Bay. There was a total of 5 bird species from the 

family Ardeidae, 7 species from Anatidae, 2 species from Accipitridae, 2 from Podicipedidae, 1 



from Laridae, 1 from Rallidae, 1 from Scolopacidae, and 1 from Tytonidae. Birds from airports 

were collected in the spring, birds from the rescue centers were collected through the summer, 

and the birds from the hunting stations were collected during winter. The most common bird 

families sampled were the Ardeidae with 19 hosts and the Anatidae with 16 hosts. 

A diverse group of helminths was found in the course of the study. Sixty-four helminth 

taxa were identified in the 21 species of birds: 5 acanthocephala, 24 nematoda, 8 cestoda, and 27 

trematoda (summarized in Table 3). The trematodes were the most diverse with the highest 

species richness of 27. The cestodes were the most abundant with close to 20,000 total 

specimens found. The nematodes had the highest infection prevalence with 75% of birds infected 

with some species of nematode. The species richness found per host species ranged from 0 in the 

white-tailed kite to 16 in the gull. The abundance ranged from 0 to nearly 10,000 (9,900 

specimens of the cestode Diplophallus coili were detected within a single American Avocet). 

There were no helminth species that were shared among all 21 of the host species. Furthermore, 

there was large β-diversity, or large differentiation in the community composition between the 

host species analyzed. The following parasites were detected in 5 host species 

Posthodiplostomum spp., and Capillaria spp., in 4 host species Tetrameres spp, in 3 host species 

Contraceacum spp., Polymorphus spp., Southwenellina hispida, Ascocotyle spp., 

Echinoparyphium spp., Notocotylus spp., and Fimbriaria fasciolaris, in 2 host species 

Desmidocercella numidica, Diplostomum spathaceum, and Microsomacanthus spp., while the 

remaining species or genera only infected 1 host species. Due to the unavoidable freezing 

processes utilized for the collection of the specimens, many of the helminthes were difficult to 

identify to species, especially in the taxon cestoda where hook number and arrangement is often 

crucial and vulnerable to loss due to freezing. There were 13 unidentifiable infections involving 



cestodes, one unidentifiable acanthocephalan, and 6 unidentifiable nematode infections. The 

remaining parasites were identified to order, family, genera, or species (see Table 3 for 

specifics).   

Bird life history trait analysis 

The distribution of parasite family richness closely aligned with the predicted values from 

a Poisson distribution, and we therefore used a Poisson response and log-link function in all 

models. With respect to the predictor variables, all of the correlation coefficients were <0.70, 

suggesting collinearity among specific predictors was minimal; however, one variable exhibited 

a correlation close to this threshold (longevity and mass [r=0.66]). In our final models, we 

therefore explored iterations in which both variables in the pair were not included simultaneously 

to further minimize the effects of collinearity.  

Based on generalized linear mixed effects models, bird life history strongly influenced 

patterns of parasite richness (see Table 4 for details).  We found positive effects for migratory 

status and clutch size and negative effects of herbivory. For instance, migratory birds supported 2 

times as many parasite families, on average, relative to non-migratory birds and non-herbivorous 

birds had 30% more parasite families than herbivorous birds. The models that included host 

species or host family as a random effect yielded similar fits. Host species was used as a random 

effect for all variations of the model to account for the lack of independence of bird individuals 

from the same species. The predictor variables that were dropped from the final model included 

body mass and longevity. The effects of migratory status were particularly strong, such that 

removal of this variable led to an increase in model AIC of 8 points (compared with delta AIC 

values of 2.4 and 3.0 when clutch size or herbivore were dropped, respectively).  

 



Discussion 

Our results revealed a high diversity of parasites in the Bay Area relative to other studies 

done within this region, with 64 taxa of intestinal helminths detected among the bird hosts 

examined. Overall, trematodes were the most diverse parasite group (27 different taxa), the 

cestodes were the most abundant (on average 374 per host), and the nematodes were most 

prevalent (75% of birds had a nematode infection). In total, we analyzed 57 birds representing 21 

different species and 8 different families, including herons, ducks, raptors, and waterfowl. 

Through generalized linear mixed modelling, our analyses suggested that some of the variation 

in parasite richness within bird hosts was linked with important life history traits, especially the 

migratory status of the species, the clutch size, and its diet.  

Based on the parasitological survey, several patterns of infection were identified. The 

acanthocephala had 18% prevalence (#birds infected/total birds) and 5 parasite taxa identified, 

the cestoda had 43% prevalence and 8 different taxa identified, the nematoda had 75% 

prevalence and 24 taxa identified, and the trematoda had 52% prevalence and 27 taxa identified. 

The trematoda had the highest diversity of parasites, most likely because many trematodes have 

aquatic lifestyles, meaning the intermediate hosts are aquatic animals, and many of the host 

species studied spend significant time in aquatic systems. The cestode diversity is most likely 

underrepresented in this study because parasites of the cestoda seem particularly vulnerable to 

degradation inside of the host which led to a reduced ability to identify to the species level. 

Overall, we found high β diversity, or the difference in parasite community between each host. 

There were no parasite species that were found in every bird species. This is in contrast to 

Santoro et al. (2012), who studied 6 species of raptors in Italy and reported that several parasitic 

species were present in all 6 host species. In our study, the most common parasite species 



infected only 5 host species out of 21. This difference could be explained by the fact that the 

hosts in the Santoro et al. (2012) study were much more similar than the hosts in our study. Their 

study looked at predatory raptors from 2 different families, whereas the current study was 

expanded to 9 different families.   

 Our results have little overlap with previous studies, possibly due to the difference in host 

species examined, study locations and methods utilized. Hoberg et al. (1989) studied spotted 

owls from Oregon and their results differ from ours because not only did Hoberg et al.(1989) 

find the highest diversity in nematodes, but they didn’t find any trematodes at all. There were no 

common species, but common parasite genera found were Synhimantus sp., Capillaria sp., and 

Microtetrameres sp.. Lastly, the percentage of hosts infected with a helminth parasite (# of 

infected birds/ total # of birds) in Hoberg et al. (1989) was 71% whereas we found 92% of birds 

were infected. The species differences in the parasite community and prevalence is most likely 

from a difference in the host species studied and different sampling environments. A more 

similar study design was done by Ching (1990) and their results matched slightly closer to ours. 

The study sites in Ching (1990) were in Northern California and were closer to ours, however the 

host species studied still differed as Ching studied the Western willet and dunlin. This similarity 

is reflected in the result that Ching (1990) found highest diversity in the trematoda. Additionally, 

there were several common genera, Himasthla sp., Aploparaksis sp., and Nadejdolepisi sp., 

although no identified species matched (Ching 1990). The most similar study was done by Baker 

et al. (1996) which showed similar trends in major taxa identified. This study is from the San 

Francisco Bay Area and shares the red-tailed hawk and barn owl as host species with our study. 

However, their study had different collection methods because they use fecal samples of captive 

birds. Baker et al. (1996) found a high prevalence of the trematoda which aligns with the current 



study that the trematoda are diverse in the Bay Area. Of the nematoda, parasites of the genus 

Capillaria were reported, which may be common with the species of Capillaria found in the 

current study. One parasite genus that is consistently identified in all listed studies above 

including our own, is the nematode Capillaria spp. 

One important parasite identified was of Ribeiroia sp. because parasites of this genus are 

prevalent in the Bay area in snails, fish and amphibians; however they have not been found in the 

definitive host. Searching for the definitive host is important because the definitive host can 

determine landscape level distributions. Being able to understand factors that affect infection 

patterns is important because Ribeiroia causes severe pathology in the amphibian host (Johnson 

et al. 2002). With amphibian populations on the decline, anything such as pathogenic parasites 

needs to be monitored so appropriate conservation efforts can be applied.   

 Beyond the parasitological survey, our analysis of bird life history traits revealed strong 

associations between parasite family richness and migratory status of the bird as well as weaker 

associations with the diet and mean clutch of the bird. The effect of diet on the bird parasite 

community was analyzed by Santoro et al. (2012) using non-metric multidimensional scaling 

(NMDS; an ordination technique); they concluded that birds with more diverse feeding habits 

have a richer parasite community. We also found an effect of diet, although the methods used 

and study design differed in the way we characterized the eating habits and statistical methods. 

Santoro et al. (2012) argued that the generalist feeders were exposed to more parasites than the 

specialist feeders because they were exposed to more potential intermediate hosts. Our study 

agrees with Santoro et al. (2012) because birds that are herbivorous are consuming fewer 

potential intermediate hosts since most intermediate hosts are types of animals. The diet of the 

bird directly affects how the bird becomes infected with parasites since most of the intestinal 



parasites are trophically transmitted, whereas the clutch size of a bird can indirectly affect the 

parasite community in the host through tradeoffs with reproduction and immune system function 

(Ricklefs 1992). There have been several studies that show a faster pace of life decreases the 

ability to fight infection (Johnson et al. 2012; Lee et al. 2008) which in birds has been 

hypothesized to be linked to less differentiation of immune cells and fewer antibodies (Lee et al. 

2008; Ricklefs 1992). Our study supports this hypothesis because the birds with larger clutch 

size (a trait that is characteristic of fast-paced birds) also had a higher parasite richness, possibly 

indicating a tradeoff between the ability to fight infection and reproductive efforts.  

 One of the most interesting findings was the strong, positive effect migration had on the 

parasite community within the hosts. There are two competing theories where migration may 

increase the distribution and transmission of parasites or it might decrease the transmission 

because the birds are experiencing different timings than when the host can be infected (Altizer 

et al. 2011; Bauer and Hoye 2014). Some argue that the compromised immune system during 

migration (Buehler et al. 2008), a greater aggregation of hosts (Krauss et al. 2010) and other 

factors contribute to a positive relationship between migration and parasite richness. Others 

argue richness will decrease because the birds are temporally separated from infections by 

different timing of environmentally transmitted pathogens (Loehle 1995), that the lifecycles are 

disrupted by the inability to find appropriate intermediate hosts (Loehle 1995) and by the fact 

that infected hosts tend to depart later than uninfected hosts (Hoye 2011). Our data support the 

former hypotheses that migratory birds have higher parasite richness. However, we had a limited 

view of each bird’s infection status by only looking at the helminth community of the intestine. 

The mixed results imply that dynamics are more complicated and may differ based on traits of 

the disease such as the lifetime and modes of transmission.   



Some overarching themes gathered from the current study are that a diverse parasite 

community exists in the birds of San Francisco Bay Area, and that life history traits can 

influence the parasite richness found. This study adds evidence to the ongoing debate about the 

effect migration has on parasite community in the host; specifically that migration may increase 

the richness found. In the future, an expanded study that gets a higher sample size of each 

species of bird would better characterize the parasite community as well as more strongly 

support the hypothesis about clutch size, diet and migration. To further untangle the way in 

which migration affects the parasite community here, a more targeted selection of host species 

could be utilized. Overall, the current study highlights some interesting aspects of the parasite 

community in bird hosts of the San Francisco Bay Area and shows the need for further 

investigation. 
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Figure 1. Map of bird collection sites in Bay Area of California during 2012−2013. All sites are 

shown as the orange dots.  

 





 

 

Scientific Name Host Family Host Code Location(s) N (total) 

      

Herons and Egrets      

Black crowned night heron Nycticorax nycticorax Ardeidae BCNH SFO,IBR 4 

Great blue heron Ardea herodias Ardeidae GBHE SCR,OAK 3 

Great egret Ardea alba Ardeidae GREG SCR,OAK 4 

Green heron Butorides virescens Ardeidae GRHE IBR 3 

Snowy egret Egretta thula Ardeidae SNEG SCN, OAK 5 

      

Ducks, Grebes and Coots      

American coot Fulica americana Rallidae AMCO SCN 1 

Clark's grebe Aechmophorus clarkii Podicipedidae CLGR IBR 2 

Gadwall Anas strepera Anatidae GADW SCN 3 

Greater scaup Aythya marila Anatidae GRSC ALV,SUI 3 

Hybrid duck - Anatidae HYDU IBR 1 

Mallard Anas platyrhynchos Anatidae MALL SCR,SCN 4 

Pied-billed grebe Podilymbus podiceps Podicipedidae PBGR IBR 1 

Wood duck Aix sponsa Anatidae WODU IBR 2 

Bufflehead Bucephala albeola Anatidae BUFF SCN 1 

      

Raptors      

Barn Owl Tyto alba Tytonidae BANO SFO 3 

Red-tailed Hawk Buteo jamaicensis Accipitridae RTHA SFO, OAK 5 

White-Tailed kite Elanus leucurus Accipitridae WTKI SFO 2 

      

Other      

American avocet Recurvirostra americana Recurvirostridae AMAV OAK 3 

Canada goose Branta canadensis Anatidae CANG IBR, SCR 2 

Gull Larus sp. Laridae LASP SCN, OAK 1 

Marbled godwit Limosa fedoa Scolopacidae MAGO IBR 1 

      



Table 1. The list of bird hosts dissected during 2012−2013. Site acronyms are as follows: OAK – Oakland International Airport, IBR 

– International Bird Rescue, SCN – Sulphur Creek Nature Center, SFO – San Francisco International Airport, ALV – Alviso Boat 

Dock, SUI – Suisun Bay, SCR – Sacramenton International Airport. 

Host Maximum Longevity Migratory Status 

Maximum Body 

Mass (g) Mean Clutch Diet Preferences 

AMAV Bird Banding 

Laboratory 2014 

Demers et al. 2010 Ackerman et al. 

2013 

Ackerman et al. 2014 Ackerman et al. 2013 

AMCO Bird Banding 

Laboratory 2014 
Alisauskas and Arnold 

1994 

Gullion 

1952 

Crawford 1980 Jones 1940 

BANO Bird Banding 

Laboratory 2014 
Marti 1999 Colvin 1984 *Marti 1994, Otteni et al. 

1972, Reese 1972, Mikkola 

1983, Degroot 1983 

Colvin and McLean 

1986 

BCNH Bird Banding 

Laboratory 2014 
Hothem et al. 2010 Gross 1923 Henny 1972 Henny et al. 2002 

BUFF Bird Banding 

Laboratory 2014 
Gauthier 2014 Gauthier 2014 Erskine 1972 Gammonley and 

Heitmeyer 1990 

CANG Bird Banding 

Laboratory 2014 
Jarvis and Cornely 1988 Chapman 1970 *Mowbray et al. 2002 Owen 1980 

GADW Bird Banding 

Laboratory 2014 
Bellrose 1980 Bellrose 1980 Miller and Collins 1954 Gates 1957 

GBHE Bird Banding 

Laboratory 2014 
Henny 1972 Bayer 1981 Pratt and Winkler 1985 Hom 1983 

GREG Bird Banding 

Laboratory 2014 
Byrd 1978 Herring et al. 

2008 

Pratt 1974 Baynard 1912 

GRHE Bird Banding 

Laboratory 2014 
Bent 1926 Niethammer and 

Kaiser 1983 

Dickerman and Ganzalo 

Gavino 1969 

Niethammer and Kaiser 

1983 

GRSC Bird Banding 

Laboratory 2014 
Kessel et al. 2002 Irving 1960 Fournier 2001 Kessel et al. 2002 

LASP Bird Banding 

Laboratory 2014 
Winkler 1996 Jehl 1987 **Winkler 1996 Winkler 1996 



MAGO Bird Banding 

Laboratory 2014 
Stiles and Skutch 1989 Gratto-Trevor 

2000 

Gratto-Trevor 2000 Recher 1966 

MALL Bird Banding 

Laboratory 2014 
Bellrose and Crompton 

1970 

Krapu 1981 Dzubin and Gallop 1972 Swanson et al. 1985 

PBGR Bird Banding 

Laboratory 2014 
Muller and Storer 1999 Muller and 

Storer 1999 

Muller and Storer 1999 Wetmore 1924 

RTHA Bird Banding 

Laboratory 2014 
San Fransisco Field 

Ornithologists 2003 

Craighead and 

Craighead 1956 

Preston and Beane 2009 Preston 1990 

SNEG Bird Banding 

Laboratory 2014 
Ohlendorf et al. 1988 Palmer 1962 Jenni 1969 Hom 1983 

WODU Bird Banding 

Laboratory 2014 

Hepp and Bellrose 2013 Hipes and Hepp 

1995 

Morse and Wight 1969 Swanson et al. 1974 

WTKI Bird Banding 

Laboratory 2014 

Stendell 1972 Stendell 1972 Stendell 1972 Stendell 1972 

Table 2. Host codes are given in Table 1. The body mass was the largest value available in literature, the clutch was average clutch size, the 

longevity was the obtained by using the longest living bird for that species. * The value was calculated as an average from different subspecies. 

**The clutch was calculated as a middle value of the range.  



Helminth Taxon 

AMAV 

 (n=3) 

AMCO 

(n=1) 

BANO 

(n=3) 

BCNH 

(n=4) 

BUFF 

 (n=1) 

CANG 

(n=3) 

CLGR 

 (n=2) 

GADW 

(n=3) 

GBHE 

(n=3) 

GREG 

(n=4) 

GRHE 

(n=3) 

In P In P In P In P In P In P In P In P In P In P In P 

Acanthocephala                       

Corynsoma constrictum - - - - - - - - - - - - - - - - - - - - - - 

Polymorphus sp. - - - - - - - - - - - - - - 5.0 33.3 - - - - - - 

Polymorphus brevis - - - - - - 14.5 50.0 - - - - - - - - - - - - 1.0 33.3 

Profilicollis altmani - - - - - - - - - - - - - - - - - - - - - - 

Southwenellina hispida - - - - - - 15.0 25.0 - - - - - - - - 10.0 33.3 - - - - 

Unidentified 

Acanthocephala 
- - - - - - - - - - - - - - - - - - 1.0 25.0 - - 

                       

Nematoda                       

Capillaria recurvirostrae 5.7 100.0 - - - - - - - - - - - - - - - - - - - - 

Capillaria sp. - - - - - - - - 23.0 100.0 - - - - 1.0 33.3 - - - - - - 

Contracaecum 

multipaillatum 
- - - - - - 33.0 25.0 - - - - - - - - - - - - - - 

Contraceacum sp. - - - - - - - - - - - - - - - - 4.0 33.3 - - 3.0 66.7 

Contraceacum 

microcephalum 
- - - - - - - - - - - - - - - - - - - - 1.0 33.3 

Cosmocephalus 

obvelatus 
- - - - - - - - - - - - - - - - - - - - - - 

Desmidocercella 

numidica  
- - - - - - - - - - - - - - - - 2.0 33.3 2.0 25.0 - - 

Desportesius invaginatus - - - - - - - - - - - - - - - - - - 3.0 25.0 - - 

Echinuria sp. - - - - - - - - - - - - - - - - - - - - - - 

Echinuria 

heterobrachiata 
- - - - - - - - - - - - - - - - - - - - - - 

Epomidiostomum 

uncinatum 
- - - - - - - - - - - - - - 3.0 33.3 - - - - - - 

Epomidiostomum crami - - - - - - - - - - 2.0 33.3 - - - - - - - - - - 

Eustrongylides ignotuus - - - - - - - - - - - - - - - - - - 3.0 25.0 - - 

Microtetrameres sp. - - - - - - - - - - - - - - - - - - - - - - 

Paracuaria adunca - - - - - - - - - - - - - - - - - - - - - - 

Skrjabinoclava kritscheri - - - - - - - - - - - - - - - - - - - - - - 

Streptocara 

californiensis 
- - - - - - - - 2.0 100.0 - - - - - - - - - - - - 

Strongyloides sp. - - - - - - - - - - - - - - - - - - - - - - 

Synhimantus laticeps - - - - 7.5 66.7 - - - - - - - - - - - - - - - - 

Tetrameres fissispina - - - - - - - - - - - - - - 1.0 66.7 - - - - - - 

Tetrameres spinosa - - - - - - - - - - - - - - - - - - - - - - 

Tetrameres sp. - - - - - - 1.5 50.0 - - - - - - - - - - - - - - 

Trichostrongylus tenuis - - - - - - - - - - 246.0 33.3 - - - - - - - - - - 

Viktorocara limosae - - - - - - - - - - - - - - - - - - - - - - 



                       

Unidentified 

Tetrameridae 
- - - - - - - - - - - - - - - - - - 2.0 25.0 - - 

Unidentified Spiruida - - - - - - - - - - - - - - - - - - 3.0 25.0 - - 

Unidentified Nematoda - - - - 1.0 33.3 1.0 25.0 41.0 100.0 - - - - - - - - 2.0 25.0 3.0 66.7 

                       

Cestoda                       

Fimbriaria  fasciolaris - - - - - - - - - - - - - - - - - - - - - - 

Aploparaksis sp. - - - - - - - - - - - - - - - - - - - - - - 

Dendrouterina herodiae - 

3968.0 

- - - - - - - - - - - - - - - - - - - - - 

Diplophallus coili 100.0 - - - - - - - - - - - - - - - - - - - - 

Microsomacanthus sp. - - - - - - - - - - - - - - 5.0 33.3 - - - - - - 

Nadejdolepis sp. - - - - - - - - - - - - - - - - - - - - - - 

Tetrabothrius sp. - - - - - - - - - - - - - - - - - - - - - - 

Wardium fryei - - - - - - - - - - - - - - - - - - - - - - 

Unknown Delepididae - - - - - - 1.0 25.0 - - - - - - - - - - - - - - 

Unknown 

Cyclophyllidae 
- - - - - - - - - - - - - - 8.0 33.3 - - - - - - 

Unidentified Cestoda - - - - 1.0 33.3 5.0 25.0 - - 17.0 33.3 524.5 100.0 448.5 66.7 - - 1.0 25.0 - - 

                       

Trematoda                       

Apatemon gracilis - - - - - - - - - - - - - - - - - - - - - - 

Ascocotyle sp. - - - - - - 3.0 25.0 - - - - - - - - 125.5 66.7 - - - - 

Ascocotyle felippei - - - - - - 7.0 25.0 - - - - - - - - - - - - - - 

Clinostomum sp. - - - - - - - - - - - - - - - - - - 7.0 25.0 - - 

Cotylurus hebraicus - - - - - - - - - - - - - - - - - - - - - - 

Diplostomum 

spathaceum 
- - - - - - - - - - - - - - - - - - - - - - 

Echinochasmus sp. - - - - - - - - - - - - - - - - - - - - - - 

Echinoparyphium sp. - - - - - - - - - - - - - - - - - - - - - - 

Echinoparyphium spp. - - - - - - - - 14.0 100.0 - - - - - - - - - - - - 

Echinostoma sp. - - - - - - - - - - - - - - - - - - - - - - 

Echinostoma trivolvus - - - - - - - - - - - - - - - - - - - - - - 

Galactosomum 

humbargari  
- - - - - - - - - - - - - - - - - - - - - - 

Himasthla alincia - - - - - - - - - - - - - - - - - - - - - - 

Maritrema sp. - - - - - - - - - - - - - - 6.0 33.3 - - - - - - 

Microphallus sp. - - - - - - - - - - - - - - - - - - - - - - 

Neodiplostomum sp. - - - - - - - - - - - - - - - - - - - - - - 

Notocotylus pacifier - - 23.0 100.0 - - - - - - - - - - - - - - - - - - 

Notocotylus sp. - - - - - - - - 2.0 100.0 - - - - - - - - - - - - 

Odhneria odhneria - - - - - - - - 20.0 100.0 - - - - - - - - - - - - 

Plagiorchis elegans - - - - - - - - - - - - - - - - - - - - - - 

Posthodiplostomum 

minimum 
- - - - - - - - - - - - - - - - 21.0 33.3 - - - - 



                       

Posthodiplostomum sp. - - - - - - 23.0 25.0 - - - - - - - - - - 10.0 75.0 8.0 33.3 

Psilochasmus oxyura - - - - - - - - - - - - - - - - - - - - - - 

Strigea elegans - - - - - - - - - - - - - - - - - - - - - - 

Typhlocoelum sp. - - - - - - - - - - - - - - - - - - - - - - 

Zygocotyle lunata - - - - - - - - - - - - - - - - - - - - - - 

Ribeiroia sp. - - - - - - - - - - - - - - - - - - - - - - 

Unidentified 

Diplostomatidae 
- - - - - - - - - - - - - - - - - - - - - - 

Unidentified 

Echinostomatidae 
- - - - - - 10.0 25.0 - - - - 11.0 50.0 - - - - - - - - 

Unidentified 

Gymnophallidae 
- - - - - - - - - - - - - - - - - - - - - - 

Unidentified 

Heterophyidae 
- - - - - - - - 32.0 100.0 - - - - - - - - - - - - 

Unidentified 

Schistosomatidae 
- - - - - - - - - - - - - - - - - - - - - - 

Unidentified Strigeidae - - - - - - 1.0 25.0 26.0 100.0 - - - - - - - - - - 2.0 33.3 

Table 3 See following pages for Table 3 continued.



Helminth Taxon 

GRSC 

(n=3) 

HYDU 

(n=1) 

LASP 

(n=3) 

MAGO 

(n=1) 

MALL 

(n=4) 

PBGR 

(n=1) 

RTHA 

(n=5) 

SNEG 

(n=5) 

WODU 

(n=1) 

WTKI 

(n=2) 

In P In P In P In P In P In P In P In P In P In P 

Acanthocephala                     

Corynsoma constrictum - - - - - - - - 7.0 25.0 - - - - - - - - - - 

Polymorphus sp. - - - - - - - - - - - - - - - - - - - - 

Polymorphus brevis - - - - - - - - - - - - - - - - - - - - 

Profilicollis altmani - - - - 44.0 33.3 - - - - - - - - - - - - - - 

Southwenellina hispida - - - - - - - - - - - - 3.0 20.0 - - - - - - 

Unidentified 

Acanthocephala 
- - - - - - - - - - - - - - - - - - - - 

                     

Nematoda                     

Capillaria 

recurvirostrae 
- - - - - - - - - - - - - - - - - - - - 

Capillaria sp. 15.0 33.3 - - - - - - 2.0 25.0 - - - - - - - - - - 

Contracaecum 

multipaillatum 
- - - - - - - - - - - - - - - - - - - - 

Contraceacum sp. - - - - - - - - - - - - - - - - - - - - 

Contraceacum 

microcephalum 
- - - - - - - - - - - - - - - - - - - - 

Cosmocephalus 

obvelatus 
- - - - 22.0 33.3 - - - - - - - - - - - - - - 

Desmidocercella 

numidica  
- - - - - - - - - - - - - - - - - - - - 

Desportesius 

invaginatus 
- - - - - - - - - - - - - - - - - - - - 

Echinuria sp. - - - - - - - - 1.0 50.0 - - - - - - - - - - 

Echinuria 

heterobrachiata 
- - - - 11.0 33.3 - - - - - - - - - - - - - - 

Epomidiostomum 

uncinatum 
- - - - - - - - 7.0 50.0 - - - - - - - - - - 

Epomidiostomum crami - - - - - - - - - - - - - - - - - - - - 

Eustrongylides 

ignotuus 
- - - - - - - - - - - - - - - - - - - - 

Microtetrameres sp. - - - - - - - - - - - - 5.0 20.0 - - - - - - 

Paracuaria adunca - - - - 11.0 33.3 - - - - - - - - - - - - - - 

Skrjabinoclava 

kritscheri 
- - - - - - 8.0 100.0 - - - - - - - - - - - - 

Streptocara 

californiensis 
- - - - - - - - - - - - - - - - - - - - 

Strongyloides sp. - - - - - - - - - - - - - - 5.0 20.0 - - - - 

Synhimantus laticeps - - - - - - - - - - - - - - - - - - - - 

Tetrameres fissispina 3.0 33.3 - - - - - - 1.0 25.0 - - - - - - - - - - 

Tetrameres spinosa 15.0 33.3 - - - - - - - - - - - - - - - - - - 



Tetrameres sp. - - - - - - - - - - - - - - - - - - - - 

Trichostrongylus tenuis - - - - - - - - - - - - - - - - - - - - 

Viktorocara limosae - - - - - - 2.0 100.0 - - - - - - - - - - - - 

Unidentified 

Tetrameridae 
- - - - 1.0 33.3 - - 6.0 25.0 - - - - 11.0 40.0 - - - - 

Unidentified Spiruida - - - - - - - - - - - - - - 2.3 80.0 - - - - 

Unidentified Nematoda - - - - - - - - - - - - - - - - - - - - 

                     

Cestoda                     

Fimbriaria  fasciolaris - - 31.0 100.0 - - - - 28.0 25.0 - - - - - - 4.0 100.0 - - 

Aploparaksis sp. - - - - 88.0 33.3 - - - - - - - - - - - - - - 

Dendrouterina 

herodiae 
- - - - - - - - - - - - - - 86.0 20.0 - - - - 

Diplophallus coili - - - - - - - - - - - - - - - - - - - - 

Microsomacanthus sp. 48.0 33.3 - - - - - - - - - - - - - - - - - - 

Nadejdolepis sp. 71.5 66.7 - - - - - - - - - - - - - - - - - - 

Tetrabothrius sp. - - - - 13.0 33.3 - - - - - - - - - - - - - - 

Wardium fryei - - - - 324.0 33.3 - - - - - - - - - - - - - - 

Unknown Delepididae - - - - - - 2.0 100.0 - - - - - - - - - - - - 

Unknown 

Cyclophyllidae 
- - - - - - - - - - - - - - - - - - - - 

Unidentified Cestoda 5353.

0 
33.3 10.0 100.0 - - - - 3.0 25.0 830.0 100.0 - - - - 5.0 100.0 - - 

                     

Trematoda                     

Apatemon gracilis - - 1.0 100.0 - - - - - - - - - - - - - - - - 

Ascocotyle sp. - - - - - - - - - - - - - - 21.0 20.0 - - - - 

Ascocotyle felippei - - - - - - - - - - - - - - - - - - - - 

Clinostomum sp. - - - - - - - - - - - - - - - - - - - - 

Cotylurus hebraicus 9.0 33.3 - - - - - - - - - - - - - - - - - - 

Diplostomum 

spathaceum 
- - - - 2.0 33.3 - - - - - - 1.0 20.0 - - - - - - 

Echinochasmus sp. 3.0 33.3 - - - - - - - - - - - - - - - - - - 

Echinoparyphium sp - - - - - - - - 18.0 25.0 - - - - - - - - - - 

Echinoparyphium spp. - - 444.0 100.0 - - - - - - - - 590.0 20.0 - - - - - - 

Echinostoma sp. 227.0 33.3 - - - - - - - - - - - - - - - - - - 

Echinostoma trivolvus - - 11.0 100.0 - - - - - - - - - - - - - - - - 

Galactosomum 

humbargari  
- - - - 4.0 66.7 - - - - - - - - - - - - - - 

Himasthla alincia - - - - 1.5 66.7 - - - - - - - - - - - - - - 

Maritrema sp. - - - - - - - - - - - - - - - - - - - - 

Microphallus sp. - - - - 145.0 33.3 - - - - - - - - - - - - - - 

Neodiplostomum sp. - - - - - - - - - - - - 2.0 20.0 - - - - - - 

Notocotylus pacifier - - - - - - - - - - - - - - - - - - - - 

Notocotylus sp. 1.0 33.3 - - - - - - - - - - - - - - - - - - 



Table 3 cont. Intensity (total # of individuals of parasite species Y in bird species X / # of infected birds of species X) and prevalence (# of birds 

of a species X infected with parasite Y / total # of  birds of species X) of identified parasite taxa. Sample size = n. Bird species codes are given in 

Table 1. 

 

 

 

 

 

Odhneria odhneria - - - - - - - - - - - - - - - - - - - - 

Plagiorchis elegans - - - - - - 3.0 100.0 - - - - - - - - - - - - 

Posthodiplostomum 

minimum 
- - - - - - - - - - - - - - - - - - - - 

Posthodiplostomum sp. - - - - 4.0 66.7 - - - - - - - - - - - - - - 

Psilochasmus oxyura 19.0 33.3 - - - - - - - - - - - - - - - - - - 

Strigea elegans - - - - - - - - - - - - 8.0 20.0 - - - - - - 

Typhlocoelum sp. - - 5.0 100.0 - - - - - - - - - - - - - - - - 

Zygocotyle lunata 1.0 33.3 - - - - - - - - - - - - - - - - - - 

Ribeiroia sp. - - - - - - - - 4.0 25.0 - - - - - - - - - - 

Unidentified 

Diplostomatidae 
- - - - - - - - 2.0 25.0 - - 1.0 20.0 - - - - - - 

Unidentified 

Echinostomatidae 
- - - - 1.0 33.3 1.0 100.0 - - - - - - - - - - - - 

Unidentified 

Gymnophallidae 
- - - - - - - - - - - - - - - - 12.0 100.0 - - 

Unidentified 

Heterophyidae 
- - - - 39.5 66.7 - - - - - - - - - - - - - - 

Unidentified 

Schistosomatidae 
- - - - 1.0 33.3 - - - - - - - - 1.0 20.0 - - - - 

Unidentified Strigeidae 1.0 33.3 - - - - - - - - - - - - - - - - - - 



 Estimate 

Standard 

Error z-value p-value 

Intercept 0.04734 0.26882 0.176 0.860 

Migration (0 = non-migrant; 1 = 

migratory) 

0.77906 0.2384 3.269 0.001* 

Herbivore (0 = non-herbivore, 1 = 

herbivore) 

-0.72156 0.33009 -2.186 0.029* 

Mean clutch 0.07802 0.03613 2.159 0.031* 

Table 4. The generalized linear mixed effects model p-values. The values are based off of non-scaled 

data. The model was a better fit with host species as a random effect. *significant values 

  



 

 

Figure 2. A box plot of parasite richness in migratory and non-migratory birds. On average, migratory 

birds had 2 times more parasites than non-migratory birds 



 

Figure 3. A bivariate scatterplot of parasite family richness as a function clutch size. Migratory birds are 

represented by the gray dots and line, whereas non-migratory birds are shown in black squares and dashed 

line. The lines of best fit were drawn using a simple linear model for the use of visual aid.  



 

Figure 4. A box plot of the parasite richness in herbivorous and non-herbivorous birds. On average, the 

non-herbivorous birds had 30% higher parasite richness than herbivorous birds.   

 


