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ABSTRACT 

 

 

AYDIN, Ahmet Arif (Ph.D., Computer Science)  

Incremental Data Collection & Analytics The Design of Next-Generation Crisis Informatics 

Software 

Thesis directed by Professor Kenneth M. Anderson 

 

Everyday, enormous amounts of data are generated by a wide variety of computational 

systems. This data needs to be collected, stored, and analyzed to generate insights and 

information useful to the organizations performing this work. Typical workflows include 

consumer behavior interpretation, product recommendations, predicting future trends, and even 

support for emergency management before, during, and after mass emergency events. In the 

emergency management space, a new area of study—crisis informatics—examines how 

members of the public make use of social media during times of disaster. Crisis informatics 

software aims to collect and analyze the large amount of information generated on social media 

during times of mass emergency. In general, current crisis informatics software is focused on the 

batch processing of crisis data after an event has transitioned out of the immediate response and 

recovery phases. Now, there is a need to collect and analyze crisis data in real-time as it is 

streaming in during the crisis event itself. 

This thesis offers an examination of the software architectures, techniques, frameworks, 

and middleware that are needed to augment crisis informatics software that make use of batch 
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processing techniques to perform data analysis with those that incrementally process, store, and 

analyze data as it arrives. This thesis work responds to the desires of analysts who need access to 

real-time data analytics and efficient batch data processing techniques to comprehensively 

analyze a mass emergency event. The techniques developed to achieve these goals have been 

implemented in a system called the Incremental Data Collection and Analytics Platform 

(IDCAP). This platform enables a comprehensive evaluation of the utility of these techniques. 

The system provides the following features: incremental data collection and indexing in real-time 

of social media data; support for real-time analytics at interactive speeds; highly concurrent 

batch data processing supported by a novel data model; and a front-end web client, known as the 

IDCA App, that allows an analyst to manage IDCAP resources, to monitor incoming data in real-

time, and to provide an interface that allows incremental queries to be performed on top of large 

datasets. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Each day, enormous amounts of data are generated by a wide variety of software 

systems: social media, web services, mobile apps, software simulations, sensor data, and the like. 

Between them, Google, Twitter, Facebook, and Microsoft capture, store, and process petabytes 

of data for various needs on a daily basis. This large volume of structured, semi-structured, and 

unstructured data is collectively referred to as big data. Big data is said to have five dimensions 

that need to be handled by developers creating software that operates on large datasets [Hu et al. 

2014]. These dimensions are volume (the size of the data), variety (the different types of data 

from different resources), velocity (the data processing speed), value (the derived insight from 

the data) and veracity (the trustworthiness of the data). These dimensions make it clear that 

software engineers will encounter challenges when designing software systems to collect, store, 

and analyze large data sets [Anderson et al. 2015]. These data-intensive software systems need to 

be scalable, reliable, and resilient, able to store data in the presence of hardware- and software-

related failures. 

In 1971, Richard Hamming stated that “the purpose of computing is insight,” deriving 

information on top of raw numbers [Zhu et al. 2012]. As such, the purpose of collecting and 

storing massive amounts of data is to generate insights and information useful to the 

organizations performing this work. Furthermore, Michael Minelli, the co-author of the book Big 
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Data Big Analytics, states that “real-time big data is not just storing petabytes or exabytes of data 

in a data warehouse, but it is the ability to make better decisions and take meaningful actions at 

the right time and right place” [Barlow 2013]. These quotes provide the insight that storing large 

amounts of data to enable data analysis is an important and challenging task. Moreover, in [Jarr 

2015], the author indicated that companies realized the importance of interacting with fast data 

(i.e. new data that streams in from a variety of data sources) to save their place in very 

competitive job market and stated that “data is fast before it is big.” He claims that “data in 

motion has equal or greater value than historical data,” and that companies need to adopt new 

approaches to handle fast data. Thus, providing analytics based on batch processing techniques 

and incremental real-time techniques are both very important to derive useful information out of 

large data sets. Typical workflows based on data analytics include consumer behavior 

interpretation, product recommendations, predicting needs or future trends, credit card fraud 

detection, as well as support for emergency management before, during, and after disaster 

events.  

As a result, it is important to build tools that provide batch and real-time data analytics 

for analysts to manage, investigate, and analyze these data sets quickly and efficiently without 

losing a big picture view. To do this well, requires sophisticated approaches, techniques, and 

methods with carefully integrated data processing frameworks and technologies. 
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CHAPTER 2 

 

BACKGROUND 

 

 

This thesis work is performed in the context of Project EPIC, a large NSF-funded project, 

that investigates a wide range of crisis informatics topics. In this chapter, Project EPIC data 

intensive systems are presented to provide the context surrounding the work of this thesis.   

2.1 Crisis Informatics & Project EPIC 

Project EPIC (Empowering the Public with Information in Crisis) [Palen et al. 2009] 

performs work in a relatively new area of study—crisis informatics—that examines how 

members of the public make use of information and communication technologies (ICT)—such as 

social media—during times of mass emergency, and studies how their interactions are impacting 

emergency response and the way emergency management is performed [Palen et al. 2011]. Crisis 

informatics provides an opportunity to conduct interdisciplinary research drawing on a variety of 

technical backgrounds including software engineering, natural language processing, and human 

centered computing [Palen et al. 2010]. Crisis informatics introduces two main challenges for 

software engineers working to support this type of research: a) the need to collect/store large 

amounts of social media data during disaster events in real time without losing information and 

b) the need to manage and analyze the collected data efficiently. 
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2.2 Project EPIC Data Intensive Systems  

Project EPIC has designed and developed two large-scale data intensive systems for 

collecting and analyzing Twitter data sets. These two systems are EPIC Collect [Anderson and 

Schram 2011; Schram and Anderson 2012] and EPIC Analyze [Anderson et al. 2015]. In this 

section, the capabilities of both systems and the features they provide to crisis informatics 

researchers are explained. 

2.2.1 EPIC Collect 

The primary capability needed to conduct crisis informatics research is large-scale data 

collection of social media data. The key challenge here is that social media data is ephemeral. 

Collecting Twitter data based on keywords while an event is occurring is needed because 

obtaining a complete set of data after the fact is nearly impossible for many organizations and 

cost prohibitive for large organizations.1 Twitter provides two APIs to access public Twitter data: 

the Streaming API2, and the REST API for acquiring tweets.3 The Streaming API allows tweets 

to be captured in near real-time based on a set of filters that are provided when the connection is 

first established. (They also provide a filtered stream of “all tweets”—known as the public 

stream—that are currently being submitted by Twitter users from around the world.) The main 

limitation to the Streaming API is that for high-frequency search terms, the number of tweets 

                                                
1 It is possible to purchase data sets from Twitter after the fact via the Powertrack Search tool. This 

application was originally developed by Gnip and then acquired by Twitter and is now part of their data products 
organization. Unfortunately, the cost of using such a tool to query the “Twitter firehose” is expensive and out-of-
reach for most research groups. 
 

2 https://dev.twitter.com/tags/streaming-api 
  

3 Twitter used to provide a third API---the Search API [The Search API 2016] --- but that functionality has 
since been merged into the REST API. 
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returned is filtered to be just one percent of the total amount of data available. The REST API 

provides generic access to a variety of Twitter objects including user profiles, user streams, 

twitter lists, and the like. The functionality of the old Search API was merged into the REST API 

recently and allows users to search for tweets that match a particular query on tweets that were 

generated within the last month. The same limitation discussed for the Streaming API applies to 

this functionality in that high frequency terms may only go back a few hours as opposed to the 

one month of data that is typically available for low-frequency terms. 

 

Figure 2.1: EPIC Collect 

 

To conduct crisis informatics research, Project EPIC has been collecting and analyzing 

large Twitter datasets since 2009. Project EPIC’s data collection software is known as EPIC 

Collect; it collects tweets from Twitter using the Streaming API. EPIC Collect is designed to be 

robust, reliable, and fault tolerant, and able to run 24/7 to collect data. Since 2009, approximately 

2.5 billion tweets have been collected across hundreds of crisis events while maintaining 99% 

up-time. Tweets are stored in a 4-node Cassandra cluster to provide scalability and reliability and 

to ensure that it is nearly impossible to lose a tweet once it has been collected and persisted 

[Anderson and Schram 2011]. 
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Figure 2.2: The Software Architecture of EPIC Collect and EPIC Analyze 

 

While our storage requirements are several orders of magnitude smaller than Twitter and 

Facebook, we face significant challenges storing billions of tweets collected across hundreds of 

crisis events and processing those datasets. Project EPIC currently stores hundreds of crisis 

events in Cassandra; these events consume two terabytes of disk space. Each year, Project EPIC 

collects approximately fifty new events and those events, on average, will consume another 

terabyte of disk space. Detailed design information about EPIC Collect and the design of its 

architecture is explained in [Anderson and Schram 2011; Schram and Anderson 2012]. 

The application layer consists of three applications. The EPIC Event Editor is the user-

facing application for EPIC Collect. It allows events to be created and maintained; it allows 

keywords to be associated with an event. Each time an edit is committed by the Event Editor to 

the Event_Filter column family, EPIC Collect disconnects from the Twitter Streaming API, 

reconstructs the set of active keywords from the updated status of the Event_Filter column 

EPIC Event Editor EPIC Analyze Splunk Application
Layer

Service
Layer

Storage
Layer

Twitter Redis

PostgreSQL Cassandra

SolrPig Hadoop
EPIC

Collect

DataStax Enterprise



	

7  

family, and reconnects to the Twitter Streaming API with the new set of keywords. This “reboot” 

of the connection takes on order just a few seconds and Twitter’s service is designed to 

“backfill” tweets that a Streaming API client missed while its connection was down (especially 

in the case of a few seconds worth of downtime). EPIC Analyze is a Ruby on Rails web 

application that accesses components in the service and storage layers to implement its 

functionality. Additional applications can populate this layer, such as third party data analysis 

applications. One such integration that Project EPIC performed was with the third party tool, 

Splunk, which is used to quickly get a feel for the data that is being collected for an event. Many 

data-intensive systems—like EPIC Analyze—live in an ecosystem of tools, with each tool 

providing services used for a specific purpose.  

The service layer currently consists of EPIC Collect, components of DataStax Enterprise, 

and Redis. DataStax Enterprise (DSE) provides a collection of open source technologies that 

have been integrated to work with Cassandra.4 In particular, Apache Hadoop has been modified 

to read and write to Cassandra column families instead of HDFS. Apache Solr has also been 

modified to generate indexes based on information stored in Cassandra column families. Redis is 

a key-value in-memory database that organizes data into well-known data structures such as sets, 

lists, and dictionaries. EPIC Analyze makes use of Redis as a caching mechanism to achieve 

interactive speeds when browsing and paginating large Twitter data sets that consist of millions 

of tweets. The service layer, thus, is the extension point for integrating new technology into 

EPIC Analyze that allows it to implement its features and meet its goals. 

                                                
4 https://www.datastax.com/ 
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The storage layer consists of both NoSQL and RDBMS technologies, such as Cassandra 

and PostgreSQL. As discussed above, EPIC Collect stores Twitter data sets into Cassandra while 

PostgreSQL is used by EPIC Analyze to store information that it needs to track analyst 

information, affiliations, and admin-specific information [Anderson et al. 2015]. 

2.2.1.1 Existing Cassandra Column Families 

EPIC Collect makes use of Cassandra, a widely-used NoSQL columnar database, to store 

tweets.5 Cassandra’s primary data representation is known as a column family. A column family 

is a collection of rows that are accessed by row keys [Lakshman and Malik 2010]. Each row is a 

collection of columns that consist of a key and a value. EPIC Collect stores tweets into a column 

family called Filter_Tweet (see Fig. 2.3). As discussed in [Anderson et al. 2015], Project EPIC 

stores tweets in this column family using a row key that has the following format: 

keyword:juliandate:tag. The first portion of the row key refers to the keyword that was used 

to collect a tweet that is stored in this row. The second portion of the row key refers to the date 

tweets in this row were collected. The date is stored in Julian format; for instance, 2016001 

refers to the first day of 2016. The final portion of the row key—referred to internally by Project 

EPIC as a ‘tag’—is a hexadecimal digit (0-9a-f); each tweet that is collected has an MD5 hash 

computed for it; the last digit of that hash is then used as the tag for that tweet.  

 

                                                
5 http://cassandra.apache.org/ 
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Figure 2.3: Filter_Tweet Column Family Design 

 

In this way, tweets containing a particular keyword collected on a particular day are 

distributed across at most sixteen rows in the Filter_Tweet column family. This approach is used 

to keep each individual row size down to a reasonable number of columns and also aids in the 

distribution of tweets across a cluster of machines. Once a row key has been determined for a 

particular tweet, it is stored as a column in that row. The tweet id used as the column name and 

the entire JSON representation of that tweet (as received from Twitter via the Streaming API) is 

stored as the column value. This row key design allows tweets to be written concurrently into the 

Filter_Tweet column family, provides ways to get tweets that contain certain keywords, and 

allows tweets within a certain time range to be retrieved in an efficient and scalable manner 

[Anderson and Schram 2011; Schram and Anderson 2012]. 

EPIC Collect makes use of a second column family—the Event_Filter column family 

(see Fig. 2.4)—to keep track of an event’s keywords and the data collection time range of each 

Filter_TweetFilter_TweetFilter_TweetFilter_TweetFilter_Tweet

row key tweet_id  ! JSON ... tweet_id !JSON ...

japan earthquake:2013362:9 { “created_at”: “Sat Dec 28 16:36:38 +0000 2013”..{ “created_at”: “Sat Dec 28 16:36:38 +0000 2013”..{ “created_at”: “Sat Dec 28 16:36:38 +0000 2013”..{ “created_at”: “Sat Dec 28 16:36:38 +0000 2013”..

...............

fukushima:2013356:2
{“text”: They’re now trying to get people 55 &amp; older 
to work on Fukushima reactors http://t.co/Hs4xkofwFt…
{“text”: They’re now trying to get people 55 &amp; older 
to work on Fukushima reactors http://t.co/Hs4xkofwFt…
{“text”: They’re now trying to get people 55 &amp; older 
to work on Fukushima reactors http://t.co/Hs4xkofwFt…
{“text”: They’re now trying to get people 55 &amp; older 
to work on Fukushima reactors http://t.co/Hs4xkofwFt…

fukushima:2013356:d {“created_at”: “Wed Apr 25 09:21:14 +0000 2012”, 
“favourites_count”:3, “geo”: nil,…
{“created_at”: “Wed Apr 25 09:21:14 +0000 2012”, 
“favourites_count”:3, “geo”: nil,…
{“created_at”: “Wed Apr 25 09:21:14 +0000 2012”, 
“favourites_count”:3, “geo”: nil,…
{“created_at”: “Wed Apr 25 09:21:14 +0000 2012”, 
“favourites_count”:3, “geo”: nil,…

...............
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keyword. The row key for the Event_Filter column family is a unique event name. Each row can 

contain a different numbers of columns. Again, each column is a key-value pair with the key 

being a keyword (search term) and the value being a dictionary that contains information about 

the collection of that keyword, such as the date that data collection was started for that keyword 

for that particular event. As is shown in Fig.2.4, “2013 Japan Earthquake” and “2012 Hurricane 

Sandy” are event names that are used as row keys. One keyword for the 2012 Hurricane Sandy 

event is “DNSY” and its value contains information about the data collection for that keyword 

for that event [Schram and Anderson 2012]. 

 

Figure 2.4: Event_Filter Column Family Design 

 
These two column families form the basis for EPIC Collect’s ability to reliably store 

large amounts of Twitter data and then access that information for later analysis. Analysis 

currently consists of a large amount of batch processing applied to events that are no longer 

actively collected. Some of this work is performed by custom scripts that are invoked when the 

analysis of a particular event begins. Exploratory analysis is performed in EPIC Analyze which 

Event_FilterEvent_FilterEvent_FilterEvent_FilterEvent_Filter

row key keyword  ! value keyword  ! value ... keyword  ! value

2013 Japan Earthquake
{“EQjapan” ! {“enabled”: false, “createDate”:1382725164559, 
“type”: “track”, “modifiedDate”:1402295000575}, "fukushima" ! 
{Value} ,  “honshu japan” ! {Value }, …..}

{“EQjapan” ! {“enabled”: false, “createDate”:1382725164559, 
“type”: “track”, “modifiedDate”:1402295000575}, "fukushima" ! 
{Value} ,  “honshu japan” ! {Value }, …..}

{“EQjapan” ! {“enabled”: false, “createDate”:1382725164559, 
“type”: “track”, “modifiedDate”:1402295000575}, "fukushima" ! 
{Value} ,  “honshu japan” ! {Value }, …..}

{“EQjapan” ! {“enabled”: false, “createDate”:1382725164559, 
“type”: “track”, “modifiedDate”:1402295000575}, "fukushima" ! 
{Value} ,  “honshu japan” ! {Value }, …..}

2012 Hurricane Sandy
{ “sandy” ! { “enabled” : false, “createDate”:1351185745680, 
“type”: “track”, “modifiedDate”:1365197714404}, “DSNY” ! 
{Value} , “superstorm” ! {Value}, … }

{ “sandy” ! { “enabled” : false, “createDate”:1351185745680, 
“type”: “track”, “modifiedDate”:1365197714404}, “DSNY” ! 
{Value} , “superstorm” ! {Value}, … }

{ “sandy” ! { “enabled” : false, “createDate”:1351185745680, 
“type”: “track”, “modifiedDate”:1365197714404}, “DSNY” ! 
{Value} , “superstorm” ! {Value}, … }

{ “sandy” ! { “enabled” : false, “createDate”:1351185745680, 
“type”: “track”, “modifiedDate”:1365197714404}, “DSNY” ! 
{Value} , “superstorm” ! {Value}, … }

...............



	

11  

is discussed next; additional analysis occurs after an analyst has used EPIC Analyze to discover a 

“working set” of tweets; these tweets are typically exported outside of EPIC Analyze and further 

manipulated by 3rd party tools such as Excel and Tableau. This situation is changing, however, 

as new features are added to EPIC Analyze that allow for additional computations to be 

performed and as additional visualization capabilities are added [Anderson et al. 2015]. 

2.2.2 EPIC Analyze 

Project EPIC’s data analytics software is EPIC Analyze [Anderson et al. 2015]. Before 

the development of EPIC Analyze, Project EPIC analysts used custom in-house tools such as 

eDataViewer [Starbird et al. 2010], hand-written scripts, and third-party analysis tools. These 

tools were, in general, not designed to view/process large data sets. To make use of Excel and 

eDataViewer, Project EPIC’s datasets had to be reduced by several orders of magnitude. Before 

EPIC Analyze, analysts were performing tasks such as filtering, searching, and sampling in an ad 

hoc manner or with significant developer support. Also, analysts were performing searches on 

Twitter using third-party tools such as TweetDeck to monitor data sets as they were being 

collected, and analysts were performing searches on Twitter to investigate and visualize data sets 

during their analysis tasks [McTaggart 2012]. As a result, Project EPIC undertook the design and 

engineering challenge of producing a data analysis environment that could more directly support 

the analysis tasks of Project EPIC researchers. The first version of that environment, EPIC 

Analyze, is in active use and still under development; it adopts a batch-oriented approach to 

processing large social media datasets. Additional analysis occurs after an analyst has used EPIC 

Analyze to discover a “working set” of tweets; these tweets are typically exported outside of 

EPIC Analyze and further manipulated by tools such as Excel and Tableau. This situation is 

changing, however, as new features are added to EPIC Analyze that allow for additional 



	

12  

computations to be performed and as additional visualization capabilities are added. The design 

of EPIC Analyze and the details of its data model are explained in [Anderson et al. 2015].  

 

 

Figure 2.5: EPIC Analyze User Interface 

 
The key design goal of EPIC Analyze is to provide scalable, extensible, and efficient 

software for performing crisis informatics research. The basic approach has been to batch 

process data sets ahead of time to generate indexes that allow a wide range of analysis tasks to be 

performed at interactive speeds. EPIC Analyze is a web application (see Fig.2.5) that is built on 

top of EPIC Collect’s data persistence technology (Cassandra) and adds additional software 

frameworks (such as Hadoop, Solr, and Redis) to provide the capabilities required for ad hoc 

data analysis.  
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EPIC Analyze was developed based on a user-centered design process and its features 

were elicited based on crisis informatics researcher’s requests.  During the design process, agile-

based methods were used to co-construct the platform alongside feedback from actual analyst 

end-users [Anderson et al. 2015]. 

The primary goal of EPIC Analyze’s software architecture (see Fig. 2.2) is to achieve 

scalability and performance. This heterogeneous architecture is classified into three layers: 

applications, services, and storage.  Our experience indicates that architectural heterogeneity is 

inevitable in the design of data intensive systems.  The design of EPIC Analyze and the details of 

its data model are explained in [Anderson et al. 2015]. 

2.2.3 EPIC Collect’s Cassandra Column Family Design Issues 

Since 2009, EPIC Collect supported the creation of over 70 research publications on 

crisis informatics. Since that time EPIC Collect’s data model (column families in Cassandra) 

have been perfectly storing Twitter data sets in a scalable fashion. However, there is still room 

for improvement with respect to their design. During the development of EPIC Collect, the focus 

was not on supporting data analysis but rather on supporting scalable and reliable data storage. 

Since 2013, I have been working on the EPIC Analyze project that is built on the top of the EPIC 

Collect. During this time, I have identified issues with the current design of the infrastructure 

that hinder its use for batch data processing and real-time data analysis. In this section, I 

highlight some of these issues and why they prevent real-time data collection and analysis and 

why they compromise efficiency of batch data processing and exploratory analytics. Many of the 

issues that I discuss are related to the current structure of the column families that EPIC Collect 

uses to store tweets. The design of these column families were discussed in Section 2.2.1.1. 
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The first set of issues are related to aspects of Cassandra’s design that make it difficult to 

maintain a “big picture” view of the data stored within it. For instance, since Cassandra is able to 

create column families that contain millions of row keys, there is no operation that will return a 

list of row keys for a given column family in one operation. Instead, given that row keys are 

ordered (i.e. sorted), one has to ask Cassandra for the first “batch” of row keys and then for the 

next batch, and the next, until one has seen all of the rows that have been stored in a particular 

column family. For each batch, you save the last row key and use that as the starting point for the 

next batch. Your software thus has to have special logic to make sure it does not process one of 

these “boundary row keys” twice as it iterates through the list. While this aspect of Cassandra is 

unfortunate, it is the price of scalability. Cassandra allows you to create column families with a 

set of rows bounded only by available disk space; the price is that it does not attempt to keep a 

global view of all row keys that can be retrieved via a single API call. 

Instead, we have found that it is better to adopt a row key design where such iteration is 

not required and instead generate row keys based on elements of your application domain. This 

is what EPIC Collect currently does. It does not have to keep track of all row keys; instead you 

ask it to give you all tweets that contain a particular keyword for a given set of days. From that 

information, you can easily reconstruct the row keys that are needed to retrieve those tweets. 

Furthermore, everything discussed in this section about row keys applies to columns in a 

given row. That is, there is no way to ask Cassandra for the number of columns in a given row 

(for EPIC Collect, this corresponds to the number of tweets that have been stored in that row). 

Again, this is because Cassandra makes it possible to store millions of columns with a given row 

(bounded only by available disk space). As with row keys, column names are stored in an 

ordered fashion. As such, you once again must ask Cassandra for the first batch of columns for a 
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given row, and then the next batch, and so on until you have seen all of the columns. For each 

batch after the first, you supply the last column name from the previous batch to specify which 

batch of columns you are interested in. Once again, your software must have special logic to 

avoid processing a column twice as it iterates over all of the columns. 

As a result, if you want to know how many tweets were collected for a given keyword on 

a given day, you must retrieve all of the row keys generated for that combination (recall that 

EPIC Collect may store up to 16 row keys per keyword/date combination due to its use of tags to 

distribute tweets across the nodes of a cluster) and then iterate over all of the columns in each of 

those rows. 

A final issue with EPIC Collect’s approach to storing tweets in the Filter_Tweet column 

family is that a tweet that contains multiple event-related keywords in it will be stored multiple 

times, once for each keyword. This leads to duplication that can cause difficulties down the line 

when computing metrics over the data set. For instance, identifying the most influential tweet 

across a set of keywords requires logic to avoid processing duplicate tweets, so as not to assign 

undue influence to a tweet that contains multiple keywords. 

All of these issues will be addressed as a result of my research. In particular, I have 

developed a new design for these column families that eliminate these difficulties and lay the 

foundation for more efficient batch processing and the enabling of incremental, real-time 

analytics on Twitter data sets as tweets stream in during an event. 
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CHAPTER 3 

 

RESEARCH QUESTIONS & APPROACH 

 

 

Crisis informatics focuses on how to collect and analyze the large amount of information 

generated on social media during times of mass emergency. In general, Project EPIC’s current 

crisis informatics software is focused on the batch processing of crisis data after its associated 

crisis event has transitioned out of the immediate response and recovery phases. However, there 

is a need to be able to collect and analyze crisis data as it is streaming in during the crisis event 

itself. 

This thesis offers an examination of examines the software architectures, techniques, data 

analytics frameworks, (or tools) and middleware that are needed to augment crisis informatics 

software that make use of away from batch processing techniques to perform data analysis to 

those that incrementally process, store, and analyze data as it arrives during mass emergency 

events. Additionally, this thesis work includes understanding the needs of crisis informatics 

analysts with respect to real-time and incremental data analysis, to provide the techniques, 

middleware, and software architectural patterns needed to prototype next generation crisis 

informatics software that addresses those needs, and evaluating the capabilities of this new 

approach by comparing it with the capabilities of existing crisis informatics software. This thesis 

work is based on the following research questions.  



	

17  

RQ1: How must the software architecture of a data analytics platform be designed to 

enable highly concurrent and incremental real-time data collection & analysis on large social 

media data sets?  

RQ2: How can a software data model that is designed to support incremental real-time 

data collection and analysis also support highly concurrent batch data processing of large social 

media data sets such that the system can respond to analyst queries at interactive speeds? 

 

RQ1 drives the investigation of software architectures and software architectural styles 

that can support next-generation data analysis for crisis informatics research. To answer this 

question, I have used cutting-edge technologies that best support the modeling, processing, and 

persisting of data in an incremental and concurrent fashion in the context of Project EPIC. This 

question lead to the creation of the architectural design of the Incremental Data Collection and 

Analytics Platform (IDCAP) that provides incremental real-time data collection and analysis in a 

highly concurrent fashion.  

Even though the focus of this thesis is identifying techniques and software architectures 

that can provide real-time data analysis capabilities as mentioned in RQ1, we cannot fail to 

support the batch functionality currently supported by EPIC Collect and EPIC Analyze. Thus, 

RQ2 required me to focus on how to also support efficient batch data processing.  Both of these 

questions led me to identify the new data model, column family structures, and processing 

techniques that allow Twitter datasets to be stored such that both approaches to analysis can be 

supported in an efficient and scalable manner.  

In this thesis, a bottom-up approach was followed to answer the research questions 

above. First, I started with RQ2 to design a novel set of Cassandra column families for IDCAP; 
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this new design was designed a) to address the limitations with EPIC Collect’s original column 

family design including tweet duplication, row key generation, and wide rows; b) to provide a 

scalable way to store Twitter data sets that can be accessed efficiently; c) to provide support for 

both batch and incremental data analysis; and d) to provide a big picture view of all data sets 

stored within them. After evaluating the design of the new set of column families, I moved to 

answer RQ1 to finalize a novel and well-designed software infrastructure for the IDCAP that 

makes use of various cutting-edge technologies to provide incremental real-time data collection 

and analysis. Additionally, an example app called the Incremental Data Collection and Analytics 

App (IDCA App) was developed to provide the following functionality:  a) the ability to 

orchestrate the IDCAP to stream, persist, and monitor tweets; b) an Event Manager to create, 

initiate, update, and close events and their keywords; c) a Process Manager to manage access to 

Apache Spark’s Streaming capabilities and to invoke my persistence scripts as needed; and d) a 

Real-time Monitoring process that provides metrics about active events such as tweet distribution 

by keywords or the most recent geotagged tweets.  
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CHAPTER 4 

 

DATA-INTENSIVE SYSTEM DESIGN CHALLENGES 

 

 

In this chapter, the challenges related to the design of data intensive systems are 

discussed. The forthcoming challenges were encountered and handled during the design and 

development stages of the IDCAP.  The primary challenges are proper architectural design by 

using the right tools to handle velocity of streaming data in a 24/7, reliable, fault tolerant, and 

scalable fashion; second, incrementally indexing the data streams in real-time to provide real-

time data analysis on the fly and creating an indexing schema for later batch analytics; and 

handling the volume of data by permanently storing incrementally indexed data in a scalable 

fashion into a database to support batch data processing and analysis. 

The design of software architecture is paramount [Perry and Wolf 1992; Garlan and 

Shaw 1993] because it explicitly impacts not only non-functional operational properties such as 

performance, reliability, and the availability of a software system but also non-functional quality 

attributes of a system such as changeability, reusability, and maintainability [Mattsson et al. 

2006; Garlan 2000]. The result of rapid data growth has triggered the demand for a scalable data 

analytics platform architecture and a flexible data processing infrastructure to handle diverse and 

various analysis requests in real-time and later in batch processing on large amount of data. The 

design of a big data analytics platform’s software architecture can vary based on different 

domains, needs, and requirements while keeping with core architectural design principles. The 
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desired characteristics of a real-time data collection infrastructure are reliability, scalability, 

accessibility, and the ability to store data in a concurrent and distributed fashion. Engaging with 

the proper architectural style and making the right technology trade-offs are important and 

challenging tasks in the development of data intensive systems. The software architecture of a 

system provides a big picture view of a system’s components, the way those components 

interact, and their responsibilities [Bosch 2004; Hinsman et al. 2009]. Therefore, using the right 

set of technologies allows one to meet the design goals of the system and provides efficient 

generation of metrics and statistics and fast exploratory analysis on large datasets [Anderson 

2015].  

Capturing data in real-time in a scalable and highly concurrent fashion without losing any 

information is a challenging task. The challenges include handling velocity of the streaming data 

by a data collection service that strives to capture data in a 24/7, reliable and robust fashion, 

incrementally indexing streaming data in real-time in a reliable and fault tolerant fashion, and 

storing the indexed data in a scalable fashion to a permanent database. There are two difficult 

challenges related to indexing data streams in real-time. The first is what data structure can be 

used to store the tweets such that a global index is created across one or more data sets that is 

capable of answering the types of questions that crisis informatics researchers ask. This structure 

must be one that allows for efficient queries but also efficient inserts of new information into the 

index to allow for real-time data analysis.  The second challenge is how can such an index be 

generated in an incremental fashion? Most techniques that operate in real-time divide the 

streaming data into short windows of time (e.g. 30 seconds). The challenge is to generate a mini-

index of all tweets received in the last window, update all active metrics/queries, and then merge 

this mini-index into the global index before the next window of time has to be processed. 
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Data modeling is an important and challenging task. It is important since it involves 

decisions about how data is going to be structured and that, in turn, determines what you can do 

with it afterwards. In the context of Project EPIC, data modeling work is particularly performed 

with respect to the storage of Twitter datasets. In [Anderson et al. 2013], challenges related to 

modeling and analyzing Twitter data are discussed. Typically, in batch processing, analysts have 

a predetermined set of questions that they want answered for a given data set. Batch processing 

techniques examine every item in the data set and calculate the answers to those questions. With 

Project EPIC, those questions include basic metrics–such as the number of retweets in the data 

set, the most retweeted tweet, the most active contributor to the data set–and more complex 

questions, such as which user in the data set had the most influence, did users collaborate during 

the event, and so on.  

Indexing is a core aspect of data management. For instance, an index can indicate how 

many unique tweets are in a data set in constant time simply by reporting how many entries exist 

in the index. Furthermore, the number of tweets that contain a particular keyword can be 

calculated in constant time by counting the number of tweets that are associated with that 

keyword in the index. Therefore, indexing plays an important role in data modeling because it 

can provide a big picture view of a dataset by computing metrics based on the index [Aydin and 

Anderson 2015]. Also, proper indexing provides a basis for parallel data computation; allows 

queries to be performed efficiently; and impacts how batch data processing and analytics are 

performed. There are two difficult challenges related to properly indexing datasets in order to 

accomplish these goals. First, what attribute (or attributes) of a data set should be used to create 

an index? Second, how can such an index be generated in an incremental fashion? These 

questions need to be handled to enable fast and efficient data analytics.  
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With respect to batch processing, a software engineer should design their data model to 

allow for processing to happen in a highly concurrent fashion. One approach that supports this in 

Cassandra is distributing data across multiple rows in the same way that MapReduce [Dean and 

Ghemawat 2008] splits large files of data into lots of small ones that are distributed across a 

cluster of machines. Cassandra is configured to spread data across a cluster by row key; 

therefore, if we consciously adopt this approach to ensure that our data is distributed across as 

many rows as possible, we set up the ability to access that data in parallel by multiple threads or 

multiple clients making requests on our Cassandra cluster at once. To address the lack of a big 

picture view in Cassandra with respect to row keys and column names, we can design additional 

column families to explicitly keep track of this information for us. That approach requires one 

column family to keep track of the row keys and column names of a second column family. The 

first column family can then act as an index allowing the information in the second column 

family to be accessed much more quickly. We will demonstrate this technique below in Chapter 

5. 

Creating abstractions on the top of large datasets is another important aspect of data 

modeling [Fekete 2013]. Proper abstractions facilitate exploratory analytics by creating maps of 

datasets based on the most requested domain attributes. For instance, to sort a large dataset of 

tweets based on tweet attributes—such as tweet id, username, or language—requires a significant 

amount of time if done on demand; however, if you create a “sorted” abstraction on top of the 

underlying storage of the tweets—as accomplished in our work with the incremental sorting 

method [Aydin and Anderson 2015]—then it is possible to allow the sorting of large data sets to 

occur instantly (since the sort order is pre-computed) in response to the requests of analysts 

while they study the data set. Furthermore, this abstraction can be maintained in an incremental 
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fashion as new tweets are collected for the data set being analyzed. Our work on the incremental 

sorting method makes use of the technique mentioned above in which some column families are 

used to simply store data while others are used to index the data stored in the former.  

Additionally, beyond the mentioned challenges, data intensive systems require well-

designed user interfaces to facilitate access to large data sets and to allow users to search, filter, 

sort, query, and analyze that data [Anderson 2015]. All of these challenges are addressed in the 

design and development stages of IDCAP which is discussed in the next chapter.  
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CHAPTER 5 

 

INCREMENTAL DATA COLLECTION & ANALYTICS PLATFORM’S 

DESIGN AND ARCHITECTURE 

 

 

  In this chapter, we present the design and implementation of the Incremental Data 

Collection and Analytics Platform (IDCAP), including the techniques and technologies that were 

combined to achieve its functional and nonfunctional goals.   

As discussed in Chapter 2, Project EPIC’s existing data collection software—EPIC 

Collect—was not designed to provide rich support for data analytics. The goal of my work is to 

address this concern via the creation of a new data model, discussed below, and a new set of 

software services that implement the IDCAP. The IDCAP will not only be able to handle the 

scalable and reliable storage of streaming Twitter data (as EPIC Collect does now) but also 

provide the ability to perform real-time data analysis on incoming tweets as well as greatly 

improved and significantly faster batch data analysis on previously collected Twitter data set. 

While I focus exclusively on Twitter data due to the historical focus of Project EPIC’s work, my 

techniques are easily generalizable to other problem domains and other types of data. The 

IDCAP is an example of a data-intensive software system; as a result, my work also provides 

insight into the types of techniques and technologies that must be combined to implement such 

systems and ensure that they are scalable, reliable, and efficient. 
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Figure 5.1: The Software Architecture of IDCAP 

 

The software architecture of the IDCAP is presented in Figure 5.1. We adopt the layered 

architectural style to illustrate the high-level interactions of the components that comprise the 

IDCAP. The layered architecture style allows me to group technologies based on the role they 

play in the overall design. The architecture consists of four layers: application, service, index, 

and storage. Each layer is discussed next in a bottom-up fashion, starting with the storage layer. 
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5.1 Storage Layer 

The storage layer consists of both NoSQL and RDBMS technologies; in the prototype 

implementation of the IDCAP, I specifically make use of Cassandra and Sqlite. Cassandra is 

used to store the Twitter data sets while Sqlite is used to store information by IDCAP’s front-end 

web app to track user-specific information.  

One of the key requirements of conducting research in crisis informatics research is to 

make use of the right database to achieve reliable, scalable, and accessible data storage without 

losing any data. Generic frameworks can be applied to solve problems across various domains. 

However, when a framework is not properly applied, an environment may not be able to meet its 

desired functionalities. Therefore, choosing the right technology is key to providing a desired set 

of features. To find the right database to meet Project EPIC’s needs, various relational and 

NoSQL database technologies were explored including, MySQL [MySQL 2016], MongoDB 

[MongoDB 2016], HBase [HBase 2016], Solr/Lucene [Apache Solr 2016], and Cassandra 

[Apache Cassandra 2016]. Each of these persistence technologies has their own specialties. 

Cassandra was selected because of the following reasons. (1) Cassandra replaces the need for 

vertical scaling and sharding with its support for horizontal scaling, (2) Cassandra automatically 

partitions data across a cluster, eliminating the sharding issues encountered when trying to scale 

relational databases, (3) and Cassandra provides increased reliability due to its automatic support 

for replication [Anderson 2015]. It was for these reasons that the IDCAP also makes use of 

Cassandra to store Twitter data sets.  

The IDCAP makes use of Cassandra’s default partitioning strategy—the 

Murmur3Partitioner—to uniformly distribute data across a cluster based on MurmurHash hash 



	

27  

values.6 This strategy was chosen to uniformly distribute data across our Cassandra cluster and to 

avoid any performance problems that can be introduced by the use of Cassandra’s random 

partitioning strategy. Moreover, to provide availability and accessibility, the replication factor for 

IDCAP for our three node Cassandra cluster was set to 3. This setting tells Cassandra to ensure 

that each of our cluster’s nodes has a complete copy of the data stored in our data sets; this also 

ensures that our cluster can continue to respond to client requests even if two of the three nodes 

are down. 

Finding the right data model for a given problem domain is critical to achieve fast and 

efficient queries. One way of achieving this goal is to carefully design the structures used by a 

given persistence technology; for relational databases, this refers to table design; for document-

oriented NoSQL data stores, this refers to the structure of the documents, and for columnar 

NoSQL data stores, this refers to the design of the column families used to store and analyze data 

[Anderson 2015; Aydin and Anderson 2015].  

5.1.1 NoSQL (Cassandra) Column Family Design 

In this section, the design details of my new Cassandra column families are presented. As 

explained above, the new design avoids the limitations of the original EPIC Collect design that 

was focused on data collection not data analysis. The new design makes use of the techniques 

discussed above to work around some of the challenges associated with performing data analysis 

using Cassandra. The new design also eliminates the need to store tweets more than once; a 

given tweet is instead stored just once per event, and then indexes are created that allow that 

tweet to be discovered by any of its associated keywords. Since different events may have 

                                                
6 https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architecturePartitionerAbout_c.html 
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overlapping keywords, the same tweet may be collected for multiple events, if so, the tweet is 

stored more than once to allow the indexes for each event to be able to find that tweet without 

worrying about tweets that were collected for a different event. While duplication can still occur 

across events, such tweets are rare in our more than five years of performing this type of work, 

while the savings from not duplicating a tweet within an event because it contains multiple 

keywords is significant. 

The new design consists of three new column families: Event_Tweets, 

Event_Information, and Event_Abstractions. During the design, development, and deployment 

of these column families, many decisions were made: to achieve scalability; to provide more 

compact storage of tweets; to create evenly distributed partitions of our data sets across a 

Cassandra cluster; to ensure that all tweets are stored sorted by the time they were created; and to 

simplify access to the tweets in a data set. All of these goals were achieved while ensuring that 

batch processing of tweets by EPIC Analyze occurs more quickly while carefully using storage 

and computing resources. Since Event_Abstractions stores indexes of data sets, it is discussed in 

the section on the index layer below (see Section 5.2). The Event_Tweets and Event_Information 

column families are explained next. 

5.1.1.1 Event_Tweets 

The Event_Tweets column family is designed to store tweets (specifically the JSON 

object that represents a tweet that Twitter provides via its Search, REST, and Streaming APIs) in 

a scalable and incremental fashion. Following our recommendation above, the row key and 

column names of this column family draw on elements of our application domain. In particular, 

the row keys of this table reference the name of a crisis event and are then tagged with a 

numerical suffix that starts at 1 and increases until all tweets for an event have been stored (more 
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details on this decision are presented below). The column names for this table are simply the 

tweet id of the stored tweet. Twitter already ensures that this id is globally unique and since we 

sort the columns by this id, our tweets come pre-sorted by the creation time of the tweet. In 

addition, if data collection ever goes down and we need to perform work to locate the tweets that 

we missed (by, e.g., making use of Twitter’s PowerTrack service to search back in time for 

tweets that were created while our system was down), when we have those missing tweets, we 

are guaranteed to be able to insert them into this table in sorted order without impacting any of 

the previously stored tweets. The Event_Tweets table is used to replace EPIC Collect’s 

Filter_Tweet table and avoids its need to store a tweet more than once due to matching multiple 

keywords as discussed above. 

 

Figure 5.2: The structure of the Event_Tweets Column Family 

 

In Figure 5.2, the design of Event_Tweets is shown. The row keys of Event_Tweets 

make use of an “event_name:k” pattern where event_name is the unique name of a data 

collection event. “k” is an integer that starts at 1 and increases incrementally. Each row contains 
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key value pairs where the “key” is the unique tweet id and the “value” is the tweet JSON object 

returned by Twitter’s various APIs. One design decision that we made concerns the number of 

tweets that are stored in a row. We decided to limit the maximum number of tweets in one row to 

twenty thousand. Thus, the first twenty thousand tweets are stored in event_name:1, the second 

twenty thousand in event_name:2, and so on. The only row that can have less than twenty 

thousand tweets is the last row, event_name:k.  

This decision was driven by the maximum size recommended by DataStax—the 

company that drives the development of Cassandra—for a wide row. (In this context, a “wide 

row” simply means a row in Cassandra that has lots of columns.) DataStax recommends that 

wide rows be no larger than 100MB [DataStax 2016]. The reason for this is that when Cassandra 

stores and replicates data it does so at the level of row. If you store lots of data in a single row, 

then when Cassandra has to rebalance rows across a cluster (as happens when nodes are added or 

removed from an existing cluster), it has to spend a lot of time copying those large rows around 

and this work can have a negative impact on the performance of the cluster as a whole. Keeping 

the amount of data to be around 100MB, provides a nice trade-off between storing a good 

amount of data in a row and Cassandra’s ability to store and replicate rows while providing good 

performance.  

To ensure that each row has, on average, only 100MB of data stored within it, we 

evaluated the average size of the JSON tweet objects that we have stored for several, previously 

collected events. We empirically determined the average byte size of a Tweet JSON object 

across three events containing millions of tweets; that size was ~4KB. We then used that number 

to determine how many tweet objects were needed to produce a row whose size equaled 100MB 

and that number was ~21.5K tweets. We then decided to pick twenty thousand as the maximum 
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number of tweets per row, ensuring that each row is less than the maximum size and therefore of 

a size which can easily be stored, replicated, and processed by Cassandra. 

5.1.1.2 Event_Information 

The Event_Information column family is designed to maintain summary information 

about the events. The row key for Event_Information is the name of an event. The columns of 

each row consist of standard set of columns that are present on each row and a set of columns 

that are unique to that row (see Fig. 5.3).  

Figure 5.3: The structure of the Event_Information column family 

 
The four standardized column names that appear in each row are keywords, status, 

julian_dates, and et_rowkeys (which is short for “event tweet row keys”). Each keyword that 

is added to the event is stored in an array that serves as the value for the keywords column. The 

status column has as its value a map that tracks: the current state of the data collection; whether 

it is under active collection; when collection started or ended; and how many row keys have been 

created for that event. The julian_dates column tracks in an array all of the days that 

collection was active for the event. Finally, the value for et_rowkeys is an array of all row keys 

created for this event so far. These four columns provide a “big picture” view of an event and 

allow certain questions about the event (such as the total number of row keys or keywords) to be 
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looked up in constant time. Finally, for each keyword, there is a column that stores a map that 

tracks the current state of the data collection for that particular keyword: when was the keyword 

added; when was it removed; and is it currently under active collection. 

5.2 Index Layer  

Creating a proper mechanism to incrementally index large data sets while collecting data 

in real-time is an important and challenging task. Therefore, a well-designed indexing 

mechanism plays a key role in enabling fast data processing and analytics in real-time and 

provides benefits to the analysis of large data sets via batch processing as well.  

The index layer provides an indexing schema on top of Project EPIC’s large datasets via 

a novel design of the Event_Abstractions Cassandra column family. The Event_Abstractions 

column family provides indexes and high level abstractions for Twitter datasets that are stored in 

the Event_Tweets column family and it was designed based on the domain attributes that are 

most requested by Project EPIC analysts including unique event name, data collection date, 

tweet collection keywords, and unique tweet ids. Due to this new design, Project EPIC analysts 

will be able to filter, search, sample, sort, and perform exploratory analytics on large Twitter 

datasets. This analysis is currently supported in the IDCAP’s front-end web app, IDCA App, and 

will eventually be integrated into a future version of EPIC Analyze. The IDCA App is discussed 

in Chapter 6. 

5.2.1 Event_Abstractions 

The Event_Abstractions column family is designed to create useful abstractions on top of 

the data sets stored in the Event_Tweets column family. These abstractions are metrics and other 

information that represent the most commonly requested attributes and/or questions about a data 
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set by Project EPIC analysts. These abstractions include an index to all tweets containing a 

particular keyword, an index of all geotagged tweets, and an index of all tweets collected on a 

given day. These indexes work by making reference to row keys and column names that exist 

inside of the Event_Tweets column family. That is, when performing analytics, our software will 

first consult the index in the Event_Abstractions column family and then retrieve the tweets that 

it references from the Event_Tweets column family. This is an example of the indexing 

technique discussed in Chapter 4 and it represents a way to bring more flexibility to Cassandra in 

terms of its ability to support data analysis. 

The structure of the Event_Abstractions column family is shown in Figure 5.4. For each 

event stored in Event_Tweets, three row keys are created:  “event_name:jd_keywords,” 

“event_name:jd_geotagged,” and “event_name:jd_index.”  

 

Figure 5.4: The structure of the Event_Abstractions column family 

 

Event_AbstractionsEvent_AbstractionsEvent_AbstractionsEvent_AbstractionsEvent_AbstractionsEvent_Abstractions

row key key 1 ! value 1 (JSON)  |  key 2 ! value 2 | ... | key n ! value n key 1 ! value 1 (JSON)  |  key 2 ! value 2 | ... | key n ! value n key 1 ! value 1 (JSON)  |  key 2 ! value 2 | ... | key n ! value n key 1 ! value 1 (JSON)  |  key 2 ! value 2 | ... | key n ! value n key 1 ! value 1 (JSON)  |  key 2 ! value 2 | ... | key n ! value n 

event_name:jd_keywords

event_name:1 event_name:2 event_name:3 ... event_name:n

event_name:jd_keywords
{ jd1 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }, 
   jd2 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] },

   ...,
   jdn ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }}

{ jd1 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }, 
   jd2 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] },

   ...,
   jdn ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }}

{ jd1 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }, 
   jd2 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] },

   ...,
   jdn ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }}

{ jd1 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }, 
   jd2 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] },

   ...,
   jdn ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }}

{ jd1 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }, 
   jd2 ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] },

   ...,
   jdn ! { kw 1![tid’s],  kw 2![tid’s] ,…., kw n ! [tid’s] }}

event_name:jd_geotagged
event_name:1 event_name:2 event_name:3 ... event_name:n

event_name:jd_geotagged
{“ jd1” ![ tid’s], “jd2” ![ tid’s], …., “jdn”![ tid’s]}{“ jd1” ![ tid’s], “jd2” ![ tid’s], …., “jdn”![ tid’s]}{“ jd1” ![ tid’s], “jd2” ![ tid’s], …., “jdn”![ tid’s]}{“ jd1” ![ tid’s], “jd2” ![ tid’s], …., “jdn”![ tid’s]}{“ jd1” ![ tid’s], “jd2” ![ tid’s], …., “jdn”![ tid’s]}

event_name:jd_index
event_name:1 event_name:2 event_name:3 ... event_name:n

event_name:jd_index
{“ jd1”![ tid’s], “jd2”![ tid’s], …., “jdn”![ tid’s]}{“ jd1”![ tid’s], “jd2”![ tid’s], …., “jdn”![ tid’s]}{“ jd1”![ tid’s], “jd2”![ tid’s], …., “jdn”![ tid’s]}{“ jd1”![ tid’s], “jd2”![ tid’s], …., “jdn”![ tid’s]}{“ jd1”![ tid’s], “jd2”![ tid’s], …., “jdn”![ tid’s]}

*Column keys are Event_Tweets table row keys  *Column keys are Event_Tweets table row keys  *Column keys are Event_Tweets table row keys  *Column keys are Event_Tweets table row keys  *Column keys are Event_Tweets table row keys  *Column keys are Event_Tweets table row keys  
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The column names for each of these rows are the row keys generated for the given event 

in the Event_Tweets column family. If an event “wildfire” had 150K tweets collected for it, then 

those tweets would be stored in the Event_Tweets column family across eight rows—

wildfire:1, wildfire:2, … wildfire:8—the first seven rows would have 20K tweets each 

and the last 10K tweets would be stored in the wildfire:8 row. The three rows in the 

Event_Abstractions column family for this event—wildfire:jd_keywords, 

wildfire:jd_geotagged, and wildfire:jd_index—would each contain eight columns with 

the names of the eight row keys from Event_Tweets.  

The values for these columns across all three rows are hash tables. The keys for these 

hash tables are julian dates in the form YYYYDDD where the first day of 2016 is represented as 

2016001 and the last day of 2016 is represented as 2016366 (since 2016 is a leap year). For the 

index of geotagged tweets and the index of tweets by day, the values of this hash table are simply 

arrays of tweet ids. The values for the index of tweets by keywords is different however. In that 

case, the value is another hash table in which the keys are keywords used in the data collection of 

that event and the values are arrays of tweet ids that contain those keywords. 

With this structure, it then becomes straightforward to answer a range of questions about 

an event. If one wants to know how many tweets included the keyword tornado, then one iterates 

across all columns of the jd_keywords row for that event, then iterates across all days for each 

of the hash tables, and retrieves the array of tweet ids for that keyword and computes their size. 

This operation is significantly faster than what could be accomplished with EPIC Collect’s 

previous column family design. To do the same operation using just the Filter_Tweet column 

family would require long scans of multiple row keys and columns looking for tweets that 

contained the desired keyword and maintaining a global count while that scan was performed. In 
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actuality, we never answered questions like that using the old column family design. Instead, in 

EPIC Analyze, we would migrate tweets out of Cassandra and into Solr and then ask Solr to 

answer that question using its computed index. Now, with this new column family design, the 

need to use Solr to answer basic questions about an event is no longer needed and can be 

answered directly and efficiently by Cassandra itself. We still need Solr to generate an index to 

perform full-text search on the tweets that we collect but, that makes sense, that is what Solr was 

designed to do and there is no reason for us to attempt to duplicate that functionality. 

5.3 Service Layer  

The service layer consists of DataStax Enterprise [DataStax Enterprise 2016], RabbitMQ 

[RabbitMQ 2016], and Redis [Redis 2016]. Each technology and the purpose of use is explained 

next. Moreover, this layer is the extension point for integrating new technologies into IDCAP to 

implement new requests and to meet its future goals. 

5.3.1 DataStax Enterprise 

The IDCAP make use of DataStax Enterprise (DSE) since it provides a collection of open 

source Apache technologies that have been integrated to work with Cassandra; for instance, 

Spark [Apache Spark 2016] and Pig [Apache Pig 2016] have been modified to read from and 

write to Cassandra column families instead of the Hadoop Distributed File System (HDFS) 

[HDFS 2016]. Moreover, DSE’s integrations allow multiple technologies to work together 

including Pig, Spark, and Solr.  

For the prototype implementation of the IDCAP, a three node DSE Cluster was 

configured and deployed in an OpenStack environment (see Fig.5.5).7  Each DSE node is 

                                                
7 https://stack.cs.colorado.edu/ 
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configured as an OpenStack virtual machine that makes use of the CentOS operating system.8 

Each OpenStack instance was configured to have its own extended volume to store data; each 

such volume was created to avoid data loss in the case of operating system crashes, problems 

with the openstack software, or hardware-related crashes.  

 

Figure 5.5: DSE Cluster 

In the IDCAP’s DSE cluster, DSE 4.7.3 is used; this version is deployed  with Cassandra 

2.1 and Spark 1.2.2. 

Spark is a fast and general purpose cluster computing platform. Spark provides a simple 

way to parallelize applications across the clusters, and its API hides the complexity of distributed 

systems programming, network communication, and fault tolerance. Spark extends the 

MapReduce model in order to support more types of computations including interactive queries 

and stream processing. The Spark technology stack consists of Spark Core, Spark Streaming, 

Spark SQL, MLlib, and GraphX. Spark’s philosophy of tight integration facilitates the use of 

                                                
8 https://www.centos.org/ 
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libraries and higher level components that combines different processing models for complex 

projects. Spark Core provides the functionalities of task scheduling, memory management, fault 

recovery, and interacting with storage systems. Spark core is the home for the RDD concept 

(Resilient Distributed Datasets) that represents a collection of items distributed across many 

server nodes that can be manipulated in parallel.9 Spark Streaming allows RDDs to be created 

from streaming data sources, such as Kafka, Flume, Twitter, ZeroMQ, Kinesis, or TCP sockets. 

5.3.1.1 Spark Streaming  

As mentioned above, Spark can ingest live data from multiple sources; it internally 

creates DStreams that consist of a series of RDDs and provides an API to transform/process each 

RDD that consists of data received from the source.10 

Figure 5.6: DSE Spark Streaming 

 
In our case, the Spark streaming component is used to stream public tweets from Twitter 

(see Fig.5.6). To stream tweets using Twitter’s Streaming API, the first required step is to have 

credentials for authentication that are auto generated by Twitter’s developer tools after a Twitter 

app is created. After connecting to the Streaming API via those credentials, tweets can be 

streamed based on multiple parameters, such as keywords, users, language, or bounding boxes. 11 

                                                
9 http://spark.apache.org/docs/latest/programming-guide.html 

 
10 https://spark.apache.org/docs/0.7.2/api/streaming/spark/streaming/DStream.html 

 
11 https://dev.twitter.com/streaming/overview/request-parameters 
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Figure 5.7: DSE Spark Cluster 

 
Our spark streaming script is written in Python and makes use of the Pyspark module.12 

The streaming script performs its task via the following steps: 1) create a unique set of event 

keywords (limit is up to 400 keywords) by getting active event keywords stored in Redis (see 

Fig. 5.1); 2) creating a spark streaming context; 3) submitting keywords to the Twitter Streaming 

API via a POST HTTP request; 4) collecting RDDs that contain multiple Tweet JSON objects to 

the Spark master; 5) filtering out any responses that are not tweets; 6) classifying each of the 

remaining tweets based on the event keywords to place a particular tweet with an event(s) by 

checking the following tweet attributes: text, entities, hashtags, urls, quoted_status text, and 

retweeted_status text fields via the Python regular expression library; 7) creating RabbitMQ 

                                                
 
12 http://spark.apache.org/docs/latest/api/python/pyspark.streaming.html 
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messages for each classified tweet; 8) inserting the messages created in step 7 into RabbitMQ 

queues; 9) and repeating steps 3 through 8 until a stop request is received. 

I carefully configured my DSE Spark cluster and extensively tested the implementation 

of my streaming script to provide reliable, robust, efficient, and 24/7 Twitter data collection (see 

Fig.5.7). In particular, I configured some of the following parameters to help achieve the 

performance exhibited by the IDCAP prototype: 1) setting the batch interval time to 2 seconds; 

2) setting the  Spark.streaming.unpersist13 property to automatically delete a persisted 

stream from memory when they are not used anymore; this setting is needed since Spark 

DStreams are persisted in memory by default; and 3) setting Spark.cleaner.ttl property to 300 

seconds to periodically clean memory since the default is “infinite”  which is not conducive to 

24/7 data collection.  

5.3.2 RabbitMQ 

RabbitMQ [RabbitMQ 2016] is an open source message queuing service that runs on all 

major operating systems and supports multiple programming languages to create reliable, 

durable, and persistent message queues. It provides an API that allows multiple clients 

concurrently to insert messages into queues and retrieve messages from queues.  

                                                
13 https://spark.apache.org/docs/1.2.0/streaming-programming-guide.html#memory-tuning 
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Figure 5.8: RabbitMQ Admin Interface 

 
The IDCAP makes use of RabbitMQ to provide a set of durable and persistent queues 

(see Fig. 5.8) that are used to receive tweets from the Twitter Streaming API via the work of the 

spark streaming script discussed above. For each event collected, the spark streaming script will 

create one queue in RabbitMQ; note, events are created/edited by the IDCA web app that will be 

discussed below in Chapter 6. These queues are used to temporarily store incoming tweets before 

they are permanently stored in Cassandra by the IDCAP persistence script. These queues thus 

serve as a buffer in a producer-consumer relationship between the streaming script and the 

persistence script allowing the two to work independently of each other and to shield each other 

from errors that might occur in the other.  

5.3.3 Redis   

Redis [Redis 2016] is a key-value in-memory database; it provides a rich API over a 

well-known set of data structures such as sets, lists, and dictionaries. Redis stores data in 

memory by default; on the other hand, Redis can also persist data permanently into disk as well 
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as memory by configuring its appendonly attribute from no to yes and specifying a location to 

store data on disk.  

The IDCAP makes use of Redis to enable a wide range of its analytics capabilities 

including the ability to answer “big picture” questions about data sets under active collection, to 

allow it to incrementally index data as it arrives, and to support customizable queries on that 

indexed data in real-time. To provide reliable, accessible, and efficient real-time analytics and 

incremental analytics at interactive speeds, two set of Redis data structures are created.   

The first set of Redis data structures is used to keep track of the current state of all data 

collection events as well as the status of the streaming and persistence scripts. The names of each 

data structure is listed in Table 5.1 along with a brief description of what information is stored in 

each one. These values are updated by actions performed in the IDCA App. For instance, 

app_status_hset is used by the IDCA App to orchestrate the streaming and persisting 

processes. Creating a new event by IDCA App triggers event_name:summary_hset to be 

created and active_collection_set to be updated. Adding new keyword(s) to an event by 

IDCA App triggers an update in event_name:active_keywords_hset or closing an event’s 

keyword(s) triggers update in both event_name:active_keywords_hset and 

event_name:closed_keywords_hset. Closing an active event triggers the event name to be 

deleted from active_collection_set and added into closed_events_set. Moreover, 

streaming_pid_set contains the active running process id of the spark streaming script in DSE 

Spark Cluster while persisting_pid_set contains the process id of the running persisting 

script and both structures are used with the purpose of eliminating zombie processes.  
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Table 5.1: First set of Redis data structures 

Redis Data Structure Purpose of Use 

app_status_hset Tracks the status of the streaming and persisting 
scripts  

active_collection_set Provides a unique set of active event names 

closed_events_set Provides a unique set of closed event names 

streaming_pid_set Stores the process id of the active spark streaming 
script 

persisting_pid_set Stores the process id of the active  persisting script 

event_name:summary_hset Tracks the  global state of an event  

event_name:active_keywords_hset Provides a map of active keywords and creation date 

event_name:closed_keywords_hset Provides a map of closed keywords and closing date 

twitter_other_messages_set Stores Twitter compliance messages received while 
streaming  

 

Additionally, event_name:summary_hset provides the following information for a data 

collection  event: status (active or closed), creation date, current active row in the Event_Tweets 

column family for this event, total tweet count, and current row tweet count.  

The second set of Redis data structures listed in Table 5.2 are created for each active 

event to keep track of each event’s information such as keywords, collection dates, indexes, and 

the JSON objects of collected tweets. These data structures and event_name:summary_hset are 

incrementally updated by our persisting script that is written in the Ruby programming language. 

This script concurrently consumes messages from the multiple queues created by the spark 

streaming script. 
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Table 5.2: Second set of Redis data structures 

Redis Data Structure Purpose of Use 

event_name:tids_set:JD Keeps a unique set of tweet ids  

event_name:current_row_julian_date_set Provides a unique set of julian dates for the 
current window (active row)  

event_name:current_row_kw_set Stores a unique set of keywords for the 
current window  

event_name:analytics_tweets_hset Provides a map of tweet id and tweet JSON 
for current window 

event_name:ei:kw_set Provides a unique set of event keywords for 
Event_Information 

event_name:ei:jd_set Provides a unique set of tweet collection 
dates in Julian date format for 
Event_Information 

event_name:ei:et_rowkeys_set Provides a unique set of Event_Tweets row 
keys for Event_Information  

event_name:ea:geo_set:JD Stores indexes of geo-tagged tweets for 
Event_Abstractions 

event_name:ea:index_set:JD stores indexes of all tweets by day for 
Event_Abstractions 

event_name:ea:KW_set:JD Provides keyword day indexes for 
Event_Abstractions 

 

 

For example, the event_name:tids_set:JD tracks the unique ids of tweets seen in the 

current collection window for the given event name. The event_name:ea:KW_set:JD data 

structure represents multiple sets based on multiple event’s keywords (KW) and tweet collection 

dates (JD). For example, assume a Test event collects on two keywords—colorado and boulder 

on two days—2016001 and 2016002—for the current collection window. Then, the following 
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four sets are created to keep track of the tweets that were collected on that day for that keyword 

for that event: Test:ea:colorado_set:2016001, Test:ea:colorado_set:2016002, 

Test:ea:boulder_set:2016001,and Test:ea:boulder_set:2016002. As new tweets come 

in 2016002, they will be assigned to the correct set by the persistence script. 

To efficiently make use of my Redis data structures, defining the right “window size” is 

critical. This value determines the amount of data that will be stored in Redis (and therefore in 

memory) for each event.  The window size has a direct impact on my goal of providing analytics 

in near real-time at interactive speeds for the analysts working with it. The window size I 

selected was the last 20 thousand tweets received from Twitter, which corresponds to the length 

that was selected for the size of rows in the Event_Tweets column family. This decision means 

that I’m never asking the persistence script to insert more tweets into Cassandra than its 

maximum recommended row size and this allows my system to remain responsive, efficiently 

making use of memory, disk, and network bandwidth. The persistence script first pulls tweets 

from RabbitMQ and places them in Redis and then when the window size is reached, flushes the 

tweets captured for the current window into the Event_Tweets, Event_Abstractions, and 

Event_Information column families.  

Given the above information, the high-level responsibilities of the persistence script are 

now clear. For each active event, it subscribes to the corresponding queue in RabbitMQ; it gets 

notified by RabbitMQ when a tweet has arrived in the queue; it dequeues the tweet, checks to see 

if the tweet is unique (by consulting with the event_name:tids_set of the current julian day in 

Redis); it stores all unique tweets into a batch until 256 tweets are in the batch and then stores 

them into the current row of Event_Tweets for that event; it then updates the Redis data 

structures related to the Event_Information and Event_Abstractions column families, so they are 
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ready to respond to queries; it then loops and performs these steps again until the window size of 

20 thousands tweets total has been reached, it then flushes the Event_Information and 

Event_Abstractions information to Cassandra. It continues to do this until it is told to shutdown 

by the IDCA App. 

When an active event is closed, first, the IDCA App updates the event’s data structures 

listed in Table 5.1; then the persistence script consumes all possible tweets of the event stored in 

RabbitMQ, updates all event related data structures listed in Table 5.2, performs a final update of 

the Event_Information and Event_Abstractions indexes of the event in Cassandra to permanently 

store the event’s indexes, and the final steps is to delete the event’s Redis-related data structures 

to release resources (i.e. memory) for future events.  

5.4 Application Layer  

The application layer contains the IDCA App that is the user-facing web application that 

provides analysts with access to the components of the IDCAP. The IDCA App provides a user-

friendly UI that allows analysts to focus on their analysis tasks without having to worry about the 

complex orchestration of IDCAP components going on in the background. 
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CHAPTER 6 

 

IDCA APP 

 

 

The IDCA App, a Ruby on Rails web application, was developed to orchestrate the 

IDCAP and its resources.  The IDCA App sits on top of the IDCAP architecture and provides the 

following features: a) allows analysts to efficiently create/update/close events and their 

keywords, b) orchestrates the spark streaming and persisting processes, c) allows analysts to 

monitor streaming tweets in real-time, and d) displays event metrics to analysts by providing 

customizable queries on the streaming data at interactive speeds. The IDCA App provides this 

functionality via a tabbed interface; the three primary tabs are called Process & Event Manager, 

Real-Time Monitoring, and Incremental Analytics. These tabs are discussed next. 

6.1 Process & Event Manager  

The Process & Event Manager (see Fig. 6.1) allows analysts to manage events with a 

primary focus of specifying their keywords. Creating a new event triggers the creation of the 

event_name:summary_hset data structure in Redis. Adding keywords to an event updates the 

related Redis data structures listed in Table 5.1. Furthermore, the IDCA App provides a process 

manager to manage the Spark Streaming and Persisting processes discussed in Chapter 5.  
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Figure 6.1: IDCA App Process & Event Manager view 

 

When an analyst makes a change to an event, the Spark streaming process needs to be 

stopped and then restarted. Currently, this is done manually via the “Stop Streaming” button 

shown in Fig. 6.1. When this button is clicked, the spark streaming process is gracefully 

disconnected from Twitter and then stopped after all existing Twitter data has been deposited 

into the relevant RabbitMQ message queues. The user can then click on the “Resume Streaming” 

button to have the spark streaming process started again; it will then reconnect to Twitter using 

the updated event information and resume collecting data once again. This process is currently 

handled automatically by EPIC Collect and I intend to update the IDCAP to remove the need for 

manually starting/stopping the spark streaming process in response to event updates. 
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6.2 Real-Time Monitoring 

The Real-Time Monitoring tab allows active events to be monitored in near real-time. 

The values presented in this tab’s charts (see Fig.6.2) are calculated by indexes stored in Redis 

for the current window of each event. As shown in Fig. 6.2, three columns of information are 

provided for each active event.  

 

Figure 6.2: IDCA App Real-Time Monitoring tab view 

 

The first column shows the tweet count of the event and the day distribution of the active 

row (a row of 20K tweets can easily contain tweets from multiple days) and it provides tweet 

distribution percentage by days that exist in the active row. Also, this column provides the 

number of columns left in the active row (i.e. the space for tweets before this row is full). As 

shown in Fig. 6.3, the active row of the 2016 Test Earthquake event is 2016 Test 

Earthquake:6 and it contains 14,856 tweets. This row contains tweets that were collected on the 
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following days: 2016120, 2016121 and 2016122. Also, 25.7 percent of columns are left before 

this row is considered full and a new active row is created.  

The second column shows keyword distribution of tweets that are collected on the last 

day of the event in real-time. As shown in Fig. 6.3, 2,424 tweets have been collected on the last 

current day (2016122) of the 2016 Test Earthquake event and the tweet distribution chart is 

based on the seven keywords shown in that chart’s legend.  

The last column displays maps of the geo-tagged tweets that exist in the event’s active row. 

As shown in Fig. 6.3, the 2016 Test Earthquake event contains 33 geo-tagged tweets that are 

stored in the 2016 Test Earthquake:6 row of the Event_Tweets column family. To create this 

map, all the geo-tagged tweets that exist in the current row are processed by making use of 

following Redis data structures:  

• “2016 Test Earthquake:ea:geo_set:2016120”,  

• “2016 Test Earthquake:ea:geo_set:2016121”,  

• “2016 Test Earthquake:ea:geo_set:2016122”,  

• “2016 Test Earthquake:analytics_tweets_hset. 

All of the columns in this tab are updated whenever the persistence script consumes tweets 

from RabbitMQ; this update occurs roughly at 15 second intervals which provides a near real-

time feel for the monitoring.  

6.3 Incremental Analytics 

The Incremental Analytics tab provides analysts with a user interface to incrementally 

process queries on the entire set of tweets for an event including all tweets stored for the event in 

Cassandra as well as all tweets stored in Redis for the current window of data collection. The 

logic of IDCAP’s support for incremental analytics applies a query on both the tweets in the 
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current window (via real-time calculations) and the previously collected tweets of an event (via 

batch processing). After completing a query request, the results of both the real-time analysis and 

the batch processing are shown in a unified view. 

In the Incremental Analytics tab, the first step is to choose an event from a list of all 

active events; this list is populated by the IDCA App interactively on demand. As shown in Fig. 

6.3.1, the 2016 Zika Virus event was chosen and that selection triggered the display of a list of 

tweet distribution options. Those options are keyword, geo, and all tweets (see Fig. 6.3.2). 

For illustration purposes, each of these options were respectively selected and their results are 

shown below. 

 

Figure 6.3.1 

 

 

Figure 6.3.2 

 
When the keyword option is selected (see Fig. 6.3.3), the IDCA App interactively 

displayed a list of event keywords to select. After the #ZikaVirus keyword was selected, the 

IDCA App performed an incremental analytics query on the 2016 Zika Virus event and 

provided the number of tweets that contain the  #ZikaVirus keyword based on tweet collection 

days (in this case 17 days).  
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Figure 6.3.3 

 

 
 

Figure 6.3.4 

 

As shown in Fig. 6.3.4, both batch and real-time query execution times are provided. The 

batch results are shown on the left size with blue column bars and its results were calculated by 

making use of indexes stored in Event_Abstractions Cassandra column family within 0.178 

seconds. On the right side, the real-time results are shown with red column bars. For example, 

299 tweets were tweeted on the day of 2016127 contain #ZikaVirus keyword. The real-time 

result are processed in 0.002 seconds by making use of Redis data structures that stores the 2016 

Zika Virus event’s current collection window. In this case, multiple days are shown in the 

results because the current window contains tweets from multiple days. Note: the batch 

processing speed is so fast due to the work I performed in designing the Event_Abstractions 

column family. Even if this event had millions of tweets, I would still expect similar 
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performance since the indexes in that column family are designed to answer this type of question 

directly.   

When geo option was selected (see fig. 6.3.5),  the IDCA App performed an incremental 

analytics query on the 2016 Zika Virus event and provided the number of tweets that contain 

geo-location information over the 17 days of data collection.  

 

 

Figure 6.3.5 

 
 

 
 

Figure 6.3.6 

As shown in Fig. 6.3.6, the batch results were processed in 0.02 seconds and during the 

first day of data collection (2016113) 9 geotagged tweets were collected. Also, on the days of 

2016119 and 2016124 no geotagged tweets were collected. The real-time results were processed 

in 0.002 seconds.  
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When the all tweets option was selected (see fig. 6.3.7), the IDCA App performed an 

incremental analytics query on the 2016 Zika Virus event (which contained 55,514 tweets at 

the time this query was performed) and displayed the total tweet count for each day of the data 

collection.  

 

Figure 6.3.7 

 

 
 

Figure 6.3.8 

Figure 6.3: IDCA App Incremental Analytics tab view 

As shown in Fig. 6.3.8, the batch results were processed in 0.084 seconds and on the day 

of 2016120, 5,079 tweets were collected. The real-time results were processed in 0.001 seconds. 

6.4 Discussion 

The IDCA App is not meant to be a general purpose application for an analyst’s day-to-

day work. Instead, it is meant to demonstrate that my work on the new data model for EPIC 

Collect has allowed me to achieve the goals set out for my dissertation by my research questions. 
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That is, it is possible to answer queries on large data sets at interactive speeds and to apply those 

queries both via real-time computations on streaming, in-memory data as well as via the batch 

processing of large data sets stored on disk. The IDCA App was developed in the context of the 

existence of EPIC Analyze; for instance, there is no need to implement the ability to browse or 

annotate tweets in the IDCA App since that feature is already present in EPIC Analyze. Instead, 

now that the new data model for EPIC Collect has been shown to be reliable and efficient (see 

Chapter 7), it is time to migrate the existing EPIC Analyze software to use that new data model 

and to integrate the new features of the IDCA App into EPIC Analyze. I now turn to presenting 

the formal evaluation of my new data model and the IDCAP.   
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CHAPTER 7 

 

EVALUATION 

 

 

In this chapter, the results of IDCAP’s evaluation are presented. To evaluate the IDCAP, 

a variety of evaluation tasks were performed that primarily focused on quantitative aspects of the 

IDCAP that can be compared with the existing versions of EPIC Collect and EPIC Analyze (and, 

in particular, Apache Solr which EPIC Analyze relies on for the majority of its functionality). 

7.1 Evaluation of the Underlying Cassandra Column Families 

To evaluate the effectiveness of IDCAP’s new column family design, we migrated five 

existing Project EPIC datasets to the new format. The size of each event and the time of the 

migration is shown in Table 7.1. We selected these events to demonstrate the ability of the new 

column family design to handle Twitter data sets across three orders of magnitude: hundreds of 

thousands of tweets, millions of tweets, and tens of millions of tweets. The migration time is, 

unfortunately, not linear in terms of the size of the dataset. The reason for this is due to the 

variance in row size that can be found in the old column family design of Filter_Tweet. Some 

rows in Filter_Tweet contain just one tweet (meaning that only one tweet with a given keyword 

was generated that day) while others contain tens of thousands of tweets. If one million tweets 

with a given keyword was generated in a given day, then the use of the tag in our row key design 

for the Filter_Tweet column family discussed in Chapter 2, would divide those tweets across 16 

separate row keys containing roughly 62.5K tweets each. The “wide rows” that contain tens of 

thousands of tweets take more time to process since you must issue multiple API calls to 
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Cassandra to retrieve them in batches of 100 tweets each. The increased API calls for these rows 

also increases the chances for networking errors that then require retries for each failed call. All 

of this combines to increase the migration time in a way that is nonlinear with respect to the 

overall size of the data set. However, having migrated these tables, we can now perform an 

evaluation and comparison of the two column family designs along several dimensions: tweet 

duplication, tweet distribution by row keys, and the ability to support data analytics via batch 

processing. Each of these evaluations is presented next. 

Table 7.1: EPIC Collect events and indexing times 

Event name Epic Collect  
tweet count 

Indexing time  
(seconds) 

2012 Casa Grande Explosion 183,738 157 

2013 Japan Earthquake 1,938,385 2,772 

2013 Winter Storm Nemo 4,467,517 9,656 

2013 Typhoon Philippines 14,260,178 78,565 

2012 Hurricane Sandy 26,792,545 300,865 

 

7.1.1 Tweet Duplication 

As discussed above, EPIC Collect stores the same tweet multiple times in the 

Filter_Tweet column family if a tweet contains multiple keywords. The purpose of that design 

was to make it easy to retrieve tweets that contained a particular keyword that appeared on a 

particular date or date range. However, this approach makes it more difficult to compute metrics 

across an entire dataset since one has to perform extra processing to account for duplicate tweets. 

On one hand, tweet duplication is not a major concern with respect to storage since disk space is 
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cheap and plentiful. On the other hand, the time that is spent processing datasets that contain 

millions of duplicate tweets cannot be underestimated. 

As shown in Table 7.2, the amount of disk space consumed by duplicate tweets in large 

datasets can approach tens of (wasted) gigabytes. The new design of the Event_Tweets column 

family eliminates tweet duplication within an event as a tweet is guaranteed to only be stored 

once per event. The amount of disk space consumed by duplicate tweets across events using the 

new column family design is negligible, since such duplication is rare. In the six years that 

Project EPIC has been collecting data, we collect an average of 10-20 events at once and since 

the keywords for each event are specific to the event (place names, event-specific hashtags, etc.) 

the number of duplicate tweets generated by the new schema will be vanishingly small when 

compared to the previous approach. Thus, using the new column family, duplicate tweets within 

an event goes to zero, all space previously wasted is reduced to zero, and when computing 

dataset-wide metrics, no extra time is spent avoiding duplicate tweets.  

Table 7.2: Tweet duplication count and size 

Event name EPIC Collect 
Tweet Count 

Event_Tweets 
Tweet Count 

Tweet Duplication  
Count / Size in MB 

2012 Casa Grande Explosion 183,738 183,649 89 0.44 

2013 Japan Earthquake 1,938,385 1,930,168 8,217 41 

2013 Winter Storm Nemo 4,467,517 4,252,790 214,727 1,074 

2013 Typhoon Philippines 14,260,178 11,876,836 2,383,342 11,916  

2012 Hurricane Sandy 26,792,545 22,150,275 4,642,270 23,211 
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7.1.2 Tweet Distribution by Row keys 

As discussed in Chapter 2, EPIC Collect stores tweets in the Filter_Tweet column family 

that contain a given keyword and were collected on a given day across sixteen rows using the 

keyword:juliandate:tag format. It does this to ensure an even distribution of tweets across a 

cluster of machines. Without the tag, there is a danger of every tweet collected on a given day 

with a given keyword being stored on just a single node in the cluster and replicated to just one 

additional node in that cluster. With the tag, sixteen rows are generated with tweets being evenly 

distributed across them; those rows are then evenly distributed across the nodes of the cluster. 

This row key design is thus an attempt to allow Cassandra to keep its entire cluster of machines 

fully utilized rather than directing all work to just a few nodes [Anderson et al. 2015]. While that 

was the intent, Table 7.3 shows that the nature of Filter_Tweet design with respect to the use of 

wide rows leads to an uneven distribution of tweets across row keys. Many rows in a data set 

have just a few tweets and are thus causing Cassandra to do too much work to process the tweets 

after they are stored; this work comes from the fact that sixteen API requests may be needed to 

retrieve 16 tweets (in the case where each row stores just a single tweet) when all of them could 

have been stored together and retrieved in just a single API call. On the other side of the 

distribution, a few rows are being created with hundreds of thousands of tweets requiring many 

API calls to process and going way over the recommended maximum size of 100MB for a given 

row. Anytime these rows need to be processed to answer a query, performance suffers; indeed, it 

is these wide rows that led to the nonlinear increase in indexing times that we discussed. 
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Table 7.3: Tweet Distribution by row keys 

 
2012  

Casa Grande 
Explosion 

2013  
Japan 

Earthquake 

2013  
Winter 

Storm Nemo 

2013 
Typhoon 

Philippines 

2012 
Hurricane 

Sandy 

Tweet Count Number of Filter_Tweet column family row keys that contains tweet count 

1-10 66 7,270 8,493 11,809 6,106 

11-100 160 322 1,696 12,499 6,171 

101-1000 103 3,471 1,852 5,442 3,701 

1001-5000 89 193 1,167 3,871 3,432 

5001-10000 - - 32 167 281 

10001-20000 - - 65 115 123 

20001-50000 - - 31 62 109 

50001-100000 - - - - 112 

100001-150000 - - - - 16 

150001-173000 - - - - 16 

total rowkey 
count  418 11,256 13,336 33,965 20,067 

  

7.1.3 Row key Generation  

Table 7.4 demonstrates another advantage to the new column family design. With the 

design of the Filter_Tweet column family, there is no way to know how many rows are 

associated with a given data collection event. If you need to determine, for instance, how many 

tweets have been collected for a given dataset, you must first generate all possible row keys for 

that event and then ask Cassandra which of these possible rows actually exist and then count the 

tweets that are in that row by iterating over all of its columns. The data in Table 7.4 shows that 
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this process takes a non-trivial amount of time for large data sets. For example, the row key 

generation process takes more than seven minutes for our Hurricane Sandy dataset with ~22M 

tweets.  

Table 7.4: EPIC Collect row key generation time 

Event name 

Filter_Tweet Event_Tweets 

Row key 
count 

Row key 
generation 

time (seconds) 

Row key 
count 

Row key 
generation 

time 

2012 Casa Grande Explosion 418 5.9 10 Constant 

2013 Japan Earthquake 11,256 103 97 Constant 

2013 Winter Storm Nemo  13,336 175 213 Constant 

2013 Typhoon Philippines 33,965 233 594 Constant 

2012 Hurricane Sandy 20,067 421 1,108 Constant 

 

The other aspect of the new design that becomes clear from the data in Table 7.4 is that 

the new design results in significantly less rows per dataset. Rather than having a haphazard 

distribution of tweets by keywords and collection days (as shown in Table 7.3 for Filter_Tweet), 

each row of an event in the Event_Tweets column family has 20K tweets in it, thus the 2012 

Casa Grande Explosion event with ~183K tweets can be stored in just 10 rows compared to the 

418 rows that were generated for the Filter_Tweet column family. Furthermore, each row key 

generated for an event is stored in the Event_Information column family in the et_rowkeys 

column as shown above in Figure 5.3. Using the new column family design, determining the 

number of row keys for a data collection is a constant time operation requiring one API call to 

retrieve the value of the et_rowkeys column for a given event and then determining the length 
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of the array that is returned. Therefore, the new column family design leads to better tweet 

distribution, significantly fewer row keys overall, and the elimination of the row key generation 

step required by the previous design. 

7.2 Batch Data Processing 

The second aspect of our evaluation is to compare how the two column family designs 

perform when supporting data analytics via batch processing. In this evaluation, we carefully 

prepared a set of queries that can be executed using batch processing for both of the column 

family designs, the original model used by EPIC Collect and the new model presented in this 

thesis. Given the structure of these column families, it is possible to describe the steps that are 

required to compute each of the queries. We do this next and then move on to discussing the 

results of our evaluation.  

The original EPIC Collect column families are Event_Filter and Filter_Tweet; for these 

column families, the following steps are performed for all data analysis tasks that take place via 

batch processing: (1) generate all possible Filter_Tweet row keys that might contain tweets for a 

particular event based on the keyword and date information stored in Event_Filter column 

family; (2) check if each generated row key exists in the Filter_Tweet column family; (3) for 

each existing row key, retrieve all of its associated columns; (4) perform the required analysis 

task on the tweet objects that are stored in those columns; (5) store the results of the analysis in a 

global data structure that keeps track of accumulated results as the iteration over row keys and 

columns is performed.  

The new column families are Event_Tweets, Event_Abstractions, and 

Event_Information; for these column families, the following steps are performed for all data 

analysis tasks that take place via batch processing: (1) retrieve the array that contains all  row 
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keys generated for the event of interest from  the Event_Information column family; (2) based on 

the query, access the relevant index in the Event_Abstractions column family—

event_name:jd_keywords, event_name:jd_geotagged, and event_name:jd_index—and 

use elements of the query to access the relevant tweet references in that index; (3) at this point, 

many queries that do not require tweet metadata can be readily answered (such as “how many 

tweets contain the keyword “tornado”) and processing can stop since the answer can be 

computed directly from the index; otherwise, take the tweet references returned in step 2 and use 

them to retrieve the tweet metadata of each reference which is stored in the Event_Tweets 

column family; (4) perform the required data analysis on the returned tweets and return the 

result; there is no need for a global data structure that stores accumulated results since the index 

has taken us directly to the tweets that contain the answer we seek. 

While the total number of steps differs by just one between the two column family 

designs, the difference in execution time is significant. Our evaluation made use of the nine 

queries shown in Table 7.5. The first eight queries perform a variety of common counting and 

filtering tasks. The last query is one which asks the column family design to deliver ALL tweets 

related to event so that some exploratory data analysis task can then be performed on those 

tweets, such as searching, sorting, clustering, sampling, and so on. Each query was performed on 

the two column family designs using the steps enumerated above. The time used to perform a 

query is recorded; each query was performed ten times using the same set of test machines and 

the average time across all ten runs are provided in the results below. Each query was applied to 

the five Project EPIC datasets listed in Table 7.2. This means that nine queries were applied ten 

times each to five different datasets stored using two different column family designs; our 

evaluation thus consisted of executing a total of 900 queries to generate our results. 
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Table 7.5: The Queries used in the Evaluation 

Q1 Count unique tweets  

Q2 Count unique geo-tagged tweets  

Q3 Count unique tweets that were tweeted in a specified date range  

Q4 Count unique tweets that contain a specified event collection  keyword 

Q5 Retrieve unique geo-tagged tweets 

Q6 Retrieve tweets that were created in a specified date range 

Q7 Retrieve tweets that contain a specified event collection keyword 

Q8 Retrieve tweets that were created in a specified date range and contain a specified 
keyword  

Q9 Retrieve all unique tweets of a specified data set for exploratory analytics 

 
 

In Table 7.6, the results of the evaluation queries are shown when applied to the 2012 

Casa Grande Explosion dataset. This dataset was collected in twelve days starting from 2012362 

to 2013007. The table shows how many seconds it takes to perform a particular query in seconds 

for the original and new column family designs, the number of tweets that were involved with 

that query (rounded to the nearest thousand) and the number of times faster the new column 

family design is over the original column family design. While each of our queries remains the 

same across each dataset, the constants associated with the queries may be different across 

datasets; typically, the date range corresponds to the most active portion of the event while the 

selected keyword was the most commonly used keyword for the event. Thus, for this dataset Q3, 

Q6, and Q8 used as the date range the first four days of the event. In Q4 and Q7, the keyword 

that was used was “Arizona.”  Finally, Q9, shows the time it takes to retrieve all unique tweets of 

the dataset. These tweets can then be used to perform some other data analysis task. Based on the 



	

64  

results, the new column families provide fast batch data processing with respect to counting 

cardinality of tweets at least 97 at most 891 times, with respect to filtering at least 11 at most 14 

times, and in exploratory analytics 10 times faster than EPIC Collect column families. It is clear 

from the results that the new column family design is significantly faster than the original 

column family. Counting-related tasks are essentially performed in constant time and can be up 

to 891 times faster than the same operation performed on the original column family design and 

up to 500 times faster on average. With respect to tweet retrieval (either retrieving all tweets or 

performing filtering and then retrieval), the new column family design is, on average, twelve 

times faster than the original column family for this dataset. 

Table 7.6: 2012 Casa Grande Explosion query results 

2012 Casa 
Grande Explosion 

Counting Filtering Exploratory 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

Original Column 
Families (seconds)  312 126 71 33 174 130 354 126 427 

New Column 
Families (seconds) 0.35 0.16 0.32 0.34 12.4 11.7 30 10.5 39.85 

Query Result  
Tweet count  183K 56K 66K 179K 56K 66K 179K 65K 183K 

Times Faster  891.4 787.5 221.9 97 14 11.1 11.8 12 10.7 
 

 

In Table 7.7, the evaluation results for the 2013 Japan Earthquake dataset are presented. 

This dataset contains 1.9M tweets collected across 228 days starting from 2013298 to 2014160. 

The date range used in Q3, Q6, and Q8 was the first five days of the event and the selected 

keyword for Q4 and Q7 was “tsunami.”  With this dataset, it was no longer possible for the new 
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design to perform counting in constant time, the arrays of tweet ids were significantly larger and 

so costs were incurred in pulling those arrays out of Cassandra and into the main memory of the 

program performing the query. Nevertheless, the new design was on average 882 times faster at 

counting than the original design and nearly 2000 times faster in the case of Q2. With respect to 

tweet filtering and retrieval, the new column family design was on average 9.2 times faster than 

the original design. 

Table 7.7: 2013 Japan Earthquake query results 

2013 Japan 
Earthquake 

Counting Filtering Exploratory 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

Original Column 
Families (seconds)  3242 1345 499 3.4 1748 923 28 29.4 4,487 

New Column 
Families(seconds) 2.4 0.69 2.17 2.3 112 93 5.21 5.2 438 

Query Result  
Tweet count  1.9M 446K 465K 15K 446K 465K 15K 15K 1,930,168 

Times Faster 1,350 1,949 229 1.4 15 9.9 5.3 5.6 10.24 
 

 

  In Table 7.8, the results of the evaluation for the “2013 Winter Storm Nemo” dataset are 

shown. This dataset contains 4.25M tweets and was collected across 58 days from 2013038 to 

2013095. The date range used in Q3 was the last 16 days of the event; whereas in Q6 and Q8, the 

date range used was the first 15 days of the event. The reason for this was to capture the most 

active collection times for this event. The keyword used in Q4 and Q7 was “winter storm nemo.” 

Nevertheless, the new design was on average 1033 times faster at counting than the original 
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design. With respect to tweet filtering and retrieval, the new column family design was on 

average 10.6 times faster than the original design. 

Table 7.8: 2013 Winter Storm Nemo query results 

2013 Winter  
Storm Nemo 

Counting Filtering Exploratory 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

Original Column 
Families (seconds)  7086 3432 4963 6.2 4689 3467 57 50 9747 

New Column 
Families (seconds) 5.1 2.2 4.2 5.3 285 246 11 10 805 

Query Result  
Tweet count  4.2M 1.4M 1.1M 26K 1.4M 1.6M 26K 24K 4,252,790 

Times Faster 1389 1560 1181 1.1 16.45 14.09 5.18 5 12.10 
 

In Table 7.9, the results for the “2013 Typhoon Philippines” dataset are shown and the 

results for the “2012 Hurricane Sandy” dataset are shown in Table 7.10. Despite these events 

being significantly larger than the previous datasets (11.8M and 22.1M respectively), the speed-

ups of the new design over the original design remain approximately the same: ~1000 times 

faster with respect to counting and ~10 times faster with respect to filtering and retrieval. These 

results will translate into a “night and day” difference when using EPIC Analyze to work with 

datasets stored using the new column family design. These differences turn queries that can take 

7 hours to execute on the original column family design and transform them into queries that 

return a result in 14 seconds (as seen in Table 7.10 for Q1). It is the difference between a data 

analysis session that seems laborious and one that is interactive (in comparison). It is a 

significant achievement that will positively impact the lives of Project EPIC analysts. 
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These results are even more significant, in that these times do not include the row-key 

generation time that was discussed above for the original table design. We chose to exclude that 

time from the results to allow for a closer “apples to apples” comparison between the two 

designs. If we add in this time, the differences between the two designs are even more 

significant. 

Table 7.9: 2013 Typhoon Philippines query results 

2013 
Typhoon 

Philippines 

Counting Filtering Explorator
y 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

Original 
Column 
Families 
(seconds)  

25619 12697 3759 247 17005 5815 2093 15.67 31175 

New Column 
Families 
(seconds) 

14.82 6.3 12.9 14.34 1016 441 242 14.3 2369 

Query Result 
Tweet count  11M 4.7M 2.4M 1M 4.7M 2.4M 1M 7K 11,876,836 

Times Faster 1728 2015 291 17.22 16.73 13.18 8.6 1.09 13.15 
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Table 7.10: 2012 Hurricane Sandy query results 

2012 
Hurricane 

Sandy 

Counting Filtering Exploratory 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

Original 
Column 
Families 
(seconds)  

58123 25144 9300 3310 31529 15305 38012 10339 57779 

New Column 
Families 
(seconds) 

32 11.2 27 38 1587 1048 2889 709 4278 

Query Result 
Tweet count  22.1M 7M 5.7M 15M 7M 5.7M 15.3M 3.7M 22,150,275 

Times Faster 1816 2245 344 87 19.8 14.6 13.15 14.58 13.5 
 
 

The price for this significant speed-up is, of course, the time it takes to index the tweets 

when storing a dataset in the new column family format. We are able to provide significantly 

faster batch processing times over the original design because a lot of the work is done up front 

rather than per query. To show this, in Table 7.11, we show how long it takes to index each of 

our five datasets for the new column family design and compare that with the time it takes to 

retrieve all tweets for a data set using the old column family design. The former shows the 

upfront costs that must be paid to have efficient queries while the latter shows the costs (per 

query) for not performing the work associated with creating indexes. As can be seen in Table 

7.11, the total time to create the indexes for data sets consisting of millions of tweets is less (in 

some cases significantly less) than the time it takes to perform a retrieval of an entire data set. 

For datasets in the tens of millions of tweets, the indexing time is significantly higher but this 

cost only needs to be paid once. Fortunately, with both of these datasets, an analyst has only to 
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perform a handful of analysis tasks that require the entire data set (three such queries for 2013 

Typhoon Philippines and six queries for 2012 Hurricane Sandy) for this indexing cost to be 

repaid. 

Table 7.11: EPIC Collect Q9 vs Indexing in seconds 

Event name 
New Column Family 

Indexing Times 
(seconds) 

Original Column Family 
Q9 processing times 

(seconds) 

2012 Casa Grande Explosion (183K) 157 427 

2013 Japan Earthquake (1.9M) 2,772 4,487 

2013 Winter Storm Nemo (4.2M) 9,656 9,747 

2013 Typhoon Philippines (11.8M) 78,565 31,175 

2012 Hurricane Sandy (22.1M) 300,865 57,779 
 
 
 
 

Figure 7.1: Query 9 Execution Results in seconds 
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As a final means of comparison, Figure 7.1 shows graphically the significant difference 

between the execution times in performing Q9 for the original and new column family designs. 

The new design avoids the exponential growth that was present in the original design with 

respect to performing queries that need to process the entire dataset. These results demonstrate 

the benefits that can arise with careful data modeling in the context of data-intensive software 

systems.  

7.3 Application (System) Level Batch Processing 

The final aspect of our batch-oriented data processing evaluation is to compare the 

exploratory batch processing capability of the IDCAP with EPIC Analyze (Apache Solr) and 

EPIC Collect. The IDCAP and EPIC Collect provide their own indexing mechanism, and their 

batch data processing steps are enumerated above. On the other hand, EPIC Analyze makes use 

of Apache Solr which creates a Lucene full-text index for these datasets. My evaluation will 

allow me to compare my work with Apache Solr, a well known and widely used framework. 

Apache Solr can be used  to perform batch processing via the following steps: (1) 

generate/update a Solr query that is constructed using parameters such as the event name of 

interest, tweet id, text, user screen name, as well as the number of documents that should be 

returned, and Solr’s CursorMark parameter; (2) submit this query to Solr; (3) check if all 

possible Solr documents (i.e. matching tweet objects) were  received using nextCursorMark 

parameter; (4) perform the required analysis task on the tweet objects that were received; (5) 

store the query results in a global data structure that keeps track of accumulated results as the 

iteration over solr documents is performed and (6) perform all steps between 1 and 5 until all 

documents are received and processed. This procedure is necessary because a Solr query can 

match millions of documents and it is inefficient to return all of them at once; instead, Solr 
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returns just a subset of documents with each query (10 by default) and the CursorMark parameter 

is used to keep track of which results have been seen for a given query. 

To evaluate the three systems, three Project EPIC datasets (see Table 7.12) were selected; 

each dataset was indexed in the three systems with their own indexing mechanism. To evaluate 

these systems, the following query (Q10) was used: “calculate the user tweet count distribution 

of all tweets for a particular event”. That is, for a given event, find all unique users in the event 

and then calculate how many tweets each user contributed to the event. These distributions 

follow a power law since there are a few users for any event that generate a huge number of 

tweets and then many users that generate just a single tweet. This query was selected because it 

can not be directly answered by any of these systems using their indexes. Therefore, to answer 

this question, each system must perform more work than simply looking up answers in pre-

computed indexes.  

This query was performed on each system by using the enumerated steps above. The time 

spent to perform the query was recorded. Each query was performed five times using the same 

set of test machines and the average time across five runs are provided in Table 7.12. 

Table 7.12: Query 10 Execution Results in seconds 

Event Name IDCAP EPIC Collect Apache Solr 

2012 Casa Grande Explosion 106 386 1,553 

2013 Winter Storm Nemo 3,934 21,966 41,492 

2013 Typhoon Philippines 10,975 32,166 196,061 

   
 

As mentioned above, EPIC Analyze makes use of Apache Solr to answer analyst queries 

at interactive speeds since EPIC Analyze only ever displays 50 query results at any one time due 
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to a carefully-designed pagination mechanism. Therefore, retrieving small chunks of query 

results by Apache Solr does not compromise analysis tasks. However, when it comes time to 

read all of the tweets of one of Project EPIC’s large datasets to create a hash map of users that 

tracks their contribution to that dataset, the IDCAP performs significantly faster than EPIC 

Collect and Apache Solr (see Fig 7.2). According to the results shown in that figure, the IDCAP 

is at least 2.93 times and at most 5.58 times faster than EPIC Collect; and at least 10.54 times 

and at most 17.86 times faster than Apache Solr. 

 

Figure 7.2: Query 10 Execution Results in seconds 

7.4 Discussion 

The results of IDCAP’s evaluation demonstrate the significant benefits of carefully 

designing the data model for an application domain. The new column family design significantly 

outperforms what is achievable when working with the existing EPIC Collect and EPIC Analyze 

systems. My new data model was built with full knowledge of the existing limitations of the 
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original column family design. While those systems provided significant benefits of their own, 

their limitations would show with the long running times of batch processing queries and, 

furthermore, real-time analytics on tweets streaming in for an active data collection event was 

not even possible. 

Of course, my new data model is not a panacea; it was designed with a particular 

application domain and with full knowledge of the types of queries that are common for that 

domain. While the IDCAP can compute the number of geolocated tweets contained in a large 

Twitter dataset in less than a second, it cannot compute the answer to a full-text search query. 

However, a rudimentary full-text search could be built on top of the new data model by first 

using other attributes to narrow a result set from millions of tweets to hundreds and then using 

string-based search methods on the remaining tweets. Although, a better approach would be to 

just use Apache Solr to handle full-text search as is already implemented in EPIC Analyze. There 

is little point in trying to design a data model that attempts to optimize for all possible queries, 

since that is impossible. 

However, it is important to note that the techniques used to generate the new data model 

are generalizable. The avoidance of duplicate data; the use of one column family to serve as an 

index for a second column family; the self-imposed limits on row size; and the use of domain-

informed row keys are all techniques that can be used to generate column family designs for 

other application domains. Furthermore, the design of the Event_Abstractions column family is 

generic enough that many different indexes can be built and stored within it. In previous work 

[Aydin and Anderson 2015], I designed an approach to incrementally sort large Twitter data sets 

via batch processing such that millions of tweets could then be displayed in sorted order along a 

number of sort dimensions within EPIC Analyze at interactive speeds. The indexes created by 
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ISM could easily be added to the Event_Abstractions column family as could an index that pre-

computes the answer to Q10 above for any data set collected by the IDCAP. Therefore, I believe 

my data modeling techniques are generic enough to be of use by other designers of data intensive 

software systems.  
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CHAPTER 8 

 

RELATED WORK  

 

 

In this chapter, related work is presented under two categories: data-intensive system 

design, and data modeling for NoSQL databases. 

8.1 Data Intensive Systems Design 

This thesis work builds on the work that has been invested in the original work to design, 

develop, and deploy EPIC Collect [Anderson and Schram 2011; Schram and Anderson 2012; 

Anderson et al. 2013] and EPIC Analyze [Anderson et al. 2015] as discussed above. This work 

was a significant achievement at the time, providing new insights into the software architectures 

required to make data-intensive software systems reliable and scalable and tackling the initial 

thorny work that was required to identify a data model that supports those characteristics for the 

reliable collection of large Twitter datasets. With the benefit of hindsight, our work developing 

the new data model addresses the issues that prevented the original data model from directly 

supporting efficient data analysis. The sections above have already outlined our contributions in 

this regard (elimination of tweet duplication, elimination of row key generation, elimination of 

inefficient wide rows that went beyond recommended limits and took too many API calls to 

process efficiently, the addition of a “big picture” view of collected data sets, the support for 

efficient data analysis for the most commonly requested metrics, the ability to incrementally add 
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missing tweets at any time, and the automatic ordering of tweets by creation date). We now 

discuss additional related work.  

In [McTaggart 2012], McTaggart designed and implemented a web application for 

Twitter analytics and then conducted a usability study to elicit the questions that social media 

analysts ask with respect to Twitter data collected for disaster events. McTaggart mentions that 

the single largest issue with her prototype implementation is performance at scale. Preliminary 

numbers from her working prototype showed that queries performed against forty thousand 

tweets could take anywhere from 10 seconds to several minutes. This slow performance was 

problematic when computing queries on datasets consisting of 20 million tweets. In McTaggart’s 

research, Project EPIC analysts were interviewed to identify different research interests, figure 

out each analyst’s requirements and desires for an analysis tool, and then generate a general set 

of requirements for a data analytics platform in support of crisis informatics research. Moreover, 

McTaggart provides different types of techniques that are used in data analytics. In thesis work, 

her findings are very useful to understand the needs of Project EPIC analysts. Indeed, the big 

picture view provided by the Event_Information column family and the queries that are 

supported by the Event_Abstractions table were all influenced by McTaggart’s findings.  

In [Anderson et al. 2015], design, development and data modeling details of EPIC 

Analyze is provided. EPIC Analyze—Project EPIC’s batch data analytics software—is a flexible 

data analysis environment accessed via a web application for viewing, searching, filtering, 

annotating, and visualizing Project EPIC’s Twitter data sets at interactive speeds. EPIC Analyze 

is designed to address issues indicated in [McTaggart 2012] and identified open source 

frameworks such as Hadoop, Cassandra, Solr, Pig, Redis, and PostgreSQL that could be used 

together to meet scalability and performance goals for a general purpose data analysis 
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environment. EPIC Analyze indexes the datasets stored in EPIC Collect in Apache Solr and then 

relies on Solr to perform full-text search and filtering operations. Our goal in designing the new 

data model for EPIC Collect was to help reduce EPIC Analyze’s reliance on Solr for all of its 

data analysis needs [Barrenechea et al. 2015]. Now, the new support for data analysis provided 

by the Event_Information and Event_Abstractions column families can be used directly to 

answer a wide range of queries more efficiently than Solr and now Solr is used just for its 

primary purpose of providing efficient full-text search.  

In [Andreolini et al. 2011], a software architecture for the analysis of cloud-based data 

streams is proposed. The proposed architecture’s aim is to support system management of large 

enterprise data centers for cloud based infrastructures and to analyze the data collected to glean 

useful information about the state of the system in an efficient manner. The technologies used in 

the architecture aim to achieve scalability by increasing the number of software and hardware 

components and the reliability of the processes for collection and analysis. Our work shares the 

same goal of storing, processing, and analyzing large amounts of information but the type of 

information is different. In [Andreolini et al. 2011], the work focuses on system monitoring---

resource utilization, system response times, and throughput---by keeping system related 

information stored in HDFS and HBase clusters and analyzing them using MapReduce jobs 

generated by programs written using Apache Pig. We focus instead on crisis data sets consisting 

of large amounts of Twitter data. We do, however, make use of similar techniques; for instance, 

our work on ISM [Aydin and Anderson 2015] sorts tweets using MapReduce jobs generated by 

the DataStax Enterprise version of Apache Pig which can read/write data stored in Cassandra. 

In [Cameron et al. 2012] an Emergency Situation Awareness-Automated Web Text 

Mining (ESA-AWTM) platform was presented and it is designed for crisis coordinators in the 
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Australian Government’s Crisis Coordination Centre (CCC). The goal of this system is to 

identify situational awareness information from tweets generated during the response phase of 

crisis events. The ESA-AWTM platform’s interface allows users to monitor and refresh alerts 

related to queries of interest. The Burst Detector/Alert Monitor interface provides stylized words 

in order to visualize incident status based on statistical models. The Cluster visualizer 

summarizes situational awareness information from streamed tweets (tweeted in Australia and 

New Zealand) by using the Carrot Clustering engine and Solr for watch officers. Support Vector 

Machines are trained to detect high-value messages such as “infrastructure damage”. We share 

the same goals of designing systems for emergencies. In our system, we would like to provide 

these types of queries provided by ESA-AWTM in our future work. 

In [Oussalah et al. 2013], a software architecture for collecting and analyzing geospatial 

and semantic information from Twitter data was described. The tweets were consumed by a 

Twitter4j Java application and then transferred into a PostgreSQL database using the PostGIS 

spatial extension. Wordnet and Solr were used to relate tweets together if those tweets share the 

same meaning. The tweets are then made available by a Django web application, using 

GeoDjango for geospatial queries and the Haystack API for semantic queries. The goal of this 

infrastructure was to search for tweets via semantic keywords and coordinates, and export the 

results via a map or CSV file. The focus of [Oussalah et al. 2013] is on a particular domain-

independent analysis technique and not with supporting the entire analysis life cycle for crisis 

informatics research. In contrast to their work, we store the entire JSON object of collected 

tweets in a scalable and incremental fashion in Cassandra in a way that allows us to answer all 

deep queries related to the entire tweet object. Furthermore, the type of analysis performed in 

[Oussalah et al. 2013] is one that could be incorporated into our environment in a straightforward 
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manner; Project EPIC’s NLP-related work has focused instead on the creation of machine 

learning classifiers to identify tweets that contain situation awareness information [Verma et al. 

2011]. 

For a number of years, Purohit et al. has been maintaining Twitris [Purohit and Sheth 

2013], a citizen sensing platform for collecting and applying NLP techniques to millions of 

tweets to glean important information about a variety of events, from entertainment to disaster 

events, Unfortunately, the developers of Twitris do not reveal the technologies and systems they 

use to achieve their analysis at this level of scale. They do serve as an example of the types of 

analysis that we could apply to Project EPIC data sets in the future. 

8.2 Data Modeling for NoSQL Databases 

In [Aydin and Anderson 2015], I, along with my advisor, explored how support for 

incremental sorting could be added to EPIC Analyze. One challenge with data-intensive software 

systems is that “easy” operations (such as sorting) become hard at scale [Anderson 2015; Aydin 

and Alaghband 2013]. It is difficult to provide an environment that allows a user to browse data 

sets consisting of millions of tweets; it is even more difficult to then allow those data sets to be 

sorted on demand. Instead, our approach was to batch sort a large data set along multiple 

dimensions and then store the order of tweets in a separate column family that could then be used 

to display the tweets in ascending and descending orders along a wide range of sort dimensions 

(by Tweet id, screen name, hashtag, etc.) [Aydin and Anderson 2015]. In addition, our sorting 

method was designed to support the sorting of data sets that are under active collection; it could 

sort an initial data set all at once and then incrementally sort new tweets into the various sort 

orders without having to process any of the previously sorted tweets again. 
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Hence, our approach was called the incremental sorting method (ISM). ISM first uses 

Hadoop to sort tweets in parallel along a number of dimensions using scripts that were written in 

Apache Pig. Once the tweets have been sorted by Hadoop, ISM generates an index that can then 

respond to queries, filtering requests, sort requests, etc. on the data set and respond in near 

constant time. This index makes use of a similar technique described above for the 

Event_Abstractions column family. Indeed, moving forward, we will be able to add the indexes 

created by ISM as additional rows into the Event_Abstractions column family that will allow our 

new data model to also support sorting alongside its new support for data analysis. In this case, 

however, these rows cannot be added as tweets are streaming in. Instead, the incremental sorting 

method currently assumes that it will operate on at least one day’s worth of tweets before sorting 

begins. It would then sort any newly arrived tweets on each subsequent day. This time boundary 

allows ISM to keep track of “where it left off” so that when it performs a sorting operation it 

knows which tweets have been sorted and which need to be sorted. The time interval of a day 

was selected to ensure that there was plenty of time for Hadoop to batch sort large data sets along 

multiple sort dimensions. This interval can be reduced if EPIC Collect, EPIC Analyze, and the 

software that implements ISM are deployed on a larger, more powerful cluster than can perform 

all the sort operations in a shorter period of time. In this way, our work on the new data model 

nicely complements our previous work on incremental sorting of large data sets. The 

Event_Abstractions column family serves as a nice home for any functionality that wants to 

build an index on the tweets that are efficiently stored by the Event_Tweets column family.  

In [Jia et al. 2015], a search-efficient hybrid storage system (LuBase) for large-scale text 

data analytics is proposed. The system integrates Lucene into HBase to take advantage of 

Lucene's full-text search capability and HBase’s high scalability and reliability. Lucene index is 
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created on immutable part of data and updated parts are stored in HBase and row key component 

provides mapping. The pre-built full text index allows to provide fast interactive queries on text 

data. Although we share the goal of providing fast queries, unlike them we don’t mainly provide 

full-text search with our underlying data model since that’s provided by EPIC Analyze(Solr). 

In [Li et al. 2014], a query-oriented data modeling (QODM) approach for NoSQL 

databases is proposed that provides a data model and a data schema for an application based on 

the following inputs: the data query requirements of the application and the stored structure of its 

data. Furthermore, the authors also provide a platform independent meta-model of a data schema 

for NoSQL databases. Our work shares common goals with the QODM approach such as 

considering data modeling not only to store data in a scalable fashion but also to provide fast and 

efficient query processing, to improve the querying ability of an existing data model by reducing 

the number of database visits, and to design a data model to reduce data redundancy. On the 

other hand, unlike the QODM approach, we deliberately designed a new data model to eliminate 

the issues of an existing one; however, the QODM approach cannot fix issues of an existing data 

model and those issues may be inherited in a data model generated based on it. As the authors 

mentioned, a query-oriented data model must reduce the number of visits to the  database when 

querying to increase query performance but they did not provide any results in their evaluation 

for the querying times of a QODM-generated data model over other approaches. Furthermore, 

the QODM approach is built on the aggregation of data and indexes to reduce data redundancy in 

support of fast querying but they did not mention how much data is aggregated and how much 

space is gained in a QODM generated data schema. Moreover, a data model that works well in 

one NoSQL database may not perform well with another. For instance, Cassandra is the best 

match for our needs but HBase, Solr/Lucene, or MongoDB do not meet our requirements 
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[Anderson 2015] even though we would have the same application-related requirements and data 

model. There are, thus, many issues that must be reconciled to find the data model and NoSQL 

database that together provide the best match for a particular application’s needs. 

In [Mior 2014], a cost-driven automated schema design approach for NoSQL databases is 

proposed. Although the author’s ultimate goal is to develop a tool to automate the process of 

designing database schema, we share common goals such as optimizing query performance, 

minimizing storage space, and decreasing the number of steps while answering queries. In this 

thesis work, we deliberately designed a new data model by considering Project EPIC analysts 

needs and evaluated our design based on querying time, storage space, and tweet distribution by 

row key. In our work, we addressed some of the same issues such as handling the side-effect of 

wide rows, minimizing storage space, and decreasing the number of steps while answering 

queries. In [Mior 2014], the author mentions that "it is impractical to maintain all views for all 

possible queries" in term of storage. While that is true, it is possible to design column families 

that can directly answer all of the most common queries in a particular application domain as we 

did in our work. Our Event_Abstractions table was carefully designed to allow support for all 

queries related to a data collection’s keywords, a tweet’s collection date, and all geotagged 

tweets but, does not, for example, support full-text search on the content of our tweets. For that, 

we make use of Solr, a tool designed exactly for that task.  

In [Gao and Qiu 2014], a general and customizable indexing framework (IndexedHBase) 

over distributed NoSQL database (HBase) is presented to achieve efficient queries. We share the 

same goals of efficiently extracting a requested subset of a larger data set, limiting pre-

computations before actual analysis, and providing fast queries on historical and streaming 

datasets. We both collect, store, and analyze Twitter data sets and create indexes on them but 
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instead of using HBase we make use of Cassandra. Our Event_Abstractions column family 

provides three indexes to enable efficient extractions of subsets of datasets such as retrieving 

geotagged tweets without touching the rest of the data set and by gathering metrics in constant 

time such as tweet count per day, tweet count by keywords, and geo-tagged tweets per day. We 

also support range scans based by tweet collection date in parallel. On the other hand, in contrast 

to their work, we do not provide the ability to create customizable indexing, instead in our 

approach developers must design and add new rows to the Event_Abstractions column family to 

provide new indexes that can then be used to support queries made in EPIC Analyze.  
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CHAPTER 9 

 

FUTURE WORK 

 

Moving forward, our work will focus on adding features to the IDCA App that continue 

to demonstrate the benefits of the new data model. In particular, we would like to add additional 

features that allow analysts to issue a wider range of customizable queries including the ability to 

have a single query access more than one index stored in the Event_Abstractions column family. 

In addition, we plan to add the capability to view the tweets that match the query (as opposed to 

just seeing summary statistics) and to specify a time range for the query. In addition, we will add 

the ability to export the results of a query to an external data format such as CSV or JSON. 

Indeed, many of these features are already present in EPIC Analyze, so a more important piece 

of future work will involve migrating that system to make use of the new data model while still 

making use of Apache Solr for full-text search and PostgreSQL for storing annotations on 

tweets. 

Furthermore, we would like to develop algorithms that incrementally process streaming 

tweets since the IDCAP provides a feasible infrastructure to perform such algorithms. For 

example, we are interested in developing a real-time version of the incremental sorting method 

(which currently relies on batch processing techniques to sort large amounts of data) and to 

explore the creation of real-time visualization of metrics important to crisis informatics 

researchers. 
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CHAPTER 10 

 

CONCLUSIONS 

 

 

  In this thesis, a novel and well-designed software infrastructure called the Incremental 

Data Collection and Analytics Platform (IDCAP) was designed. We have shown how various 

data analytics frameworks such as Cassandra, Spark, Redis, and RabbitMQ can be efficiently 

deployed together in support of real-time data collection and analytics. The IDCAP shows that 

heterogeneity is inevitable in such data collection and analytics platforms. 

The IDCAP can index streaming data in real-time and perform real-time data analytics on 

the current window at interactive speeds.  Its underlying data model successfully addressed the 

limitations of the original data model for EPIC Collect, eliminated tweet duplication, and 

supports a wide range of common queries in an efficient manner. This data model is composed 

of three new Cassandra column families—Event_Tweets, Event_Information, and 

Event_Abstractions.  

The Event_Tweets column family stores tweets compactly and without duplication within 

an event in a scalable fashion. In the original data model, tweet ids were stored as strings; in the 

new data model, tweet ids are stored as 64-bit integers taking much less space and automatically 

sorting tweets in terms of creation date. The rows and columns of this column family are 

designed to support reads in a highly parallel fashion and the limit of 20K tweets per row ensures 
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that no row goes above the recommended maximum size for a given row. All of these features 

combine to make the new design highly scalable and able to support efficient data analysis.  

The Event_Information column family is designed to keep track of metrics that would 

otherwise take a long time to compute. Furthermore, the design of this table supports this goal 

while also making it easy to update its various columns while data collection is occurring. For 

instance, the et_rowkeys column can easily be updated each time a new row key is created by 

simply appending the new row key to the end of its array. The same thing can be done for the 

keywords column whenever a new keyword is added to the data collection and likewise each day 

that a collection is active will cause a new Julian date to be added to the julian_dates column. 

Furthermore, these columns provide a big picture view of the dataset allowing keywords, all 

generated row keys, and the days the collection was active to be retrieved with a single API call. 

In the EPIC Collect original data model, all of this information, except for an event’s keywords, 

had to be computed by iterating over the rows of the Filter_Tweet column family; keywords 

could be looked up directly in the Event_Filter column family of the original design. Now, this 

information can be retrieved in constant time and the process of row key generation described 

above in Chapter 7 has been eliminated. These benefits serve to speed up data analysis by 

avoiding unnecessary calculations and row/column traversal. 

The Event_Abstractions column family plays a key role in being able to provide efficient 

batch data analytics. For each collected event, it creates three indexes that allow the most 

commonly requested queries of Project EPIC analysts to be answered quickly with just a few 

API calls: retrieve all tweets that contain a particular keyword; retrieve all tweets that are 

geotagged; and retrieve all tweets that were generated on a particular day or set of days. In 

addition, date ranges can be applied to the keyword and geotagged queries to allow for fine 
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grained queries that also complete quickly. As mentioned above, this column family can easily 

be extended with additional abstractions by simply adding new rows that index the tweets in the 

Event_Tweets column family in some new way, such as the indexes that our incremental sorting 

method creates to allow large datasets to be sorted along a number of dimensions [Aydin and 

Anderson 2015]. All of these indexes increase Cassandra’s ability to support a wider range of 

data analysis tasks while minimizing the number of external tools (such as Solr) that need to be 

used alongside Cassandra to support arbitrary queries over the collected datasets. 

Furthermore, the IDCA App was developed to efficiently make use of the IDCAP.  The 

IDCA App provides a well-designed user interface for analysts to orchestrate the IDCAP to 

stream, persist, and monitor tweets in real-time. The IDCA App provides incremental analytics 

that allows analysts to perform their queries in real-time at interactive speeds without worrying 

about big data collection and analytics related challenges.  

To conclude, developing the IDCAP requires software engineering skills to trade one 

class of technology for another, and it involves determining the proper architectural style that 

supports data analytics using both real-time and batch processing techniques. In particular, this 

thesis identified ways for Project EPIC’s data intensive systems—EPIC Collect and EPIC 

Analyze—to significantly improve existing features and offer new capabilities to Project EPIC 

analysts, primarily by shifting their orientation from a batch-oriented approach to one that 

enables real-time data analysis of active crisis events. Although the IDCAP’s new data modeling 

and column family design was applied to Twitter datasets and the domain of crisis informatics, 

our design techniques can be applied to other application domains and datasets to provide 

scalable and incremental storage and analytics more broadly. Therefore, this thesis represents a 

contribution to software engineering with respect to 
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• software architecture design and technology trade-offs, 

• a prototype infrastructure for transitioning from batch data processing to real-time data 

collection and analytics 

• techniques and methods for proper data modeling of large data sets and column family 

design techniques that other software engineering researchers can use in their own work 

when making use of columnar NoSQL data stores. 
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