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Do opioid-activated endothelial cells communicate with 
astrocytes and microglia in the central nervous system? 
 
ABSTRACT 

Experiments in this thesis were undertaken to support the novel observation that 
endothelial cells of the brain and spinal cord are involved in the modulation and enhancement of 
opioid-induced central nervous system inflammation.  This thesis will provide evidence that 
endothelial cells isolated from the central nervous system were activated by morphine’s primary 
metabolite, morphine-3-glucoronide.  Additionally, activated endothelial cells, injected into rats 
were shown to induce a pain response in the rats.  Following these experiments involving just 
endothelial cells, primary astrocytes and microglia were added to in vitro studies.  Astrocytes 
were shown to behave differently when cultured alone, compared to when they were cultured 
with CNS endothelial cells or with CNS endothelial cells and microglia.  The difference in 
behavior and activation seen in these experiments suggests that there is important 
communication between these cell types, and further exploration of this topic is warranted 
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ABBREVIATIONS 
 
LPS  Lipopolysaccharide, TLR4 agonist 
M3G  Morphine-3-glucoronide, metabolite of morphine, TLR4 agonist 
TLR4  Toll-Like Receptor 4 
ECs  Endothelial cells 
LPS-RS Lipopolysaccharide from Rhodobacter sphaeroides, TLR4 antagonist 
aCSF  Artificial Cerebral Spinal Fluid 
CNS   Central Nervous System 
BBB  Blood Brain Barrier 
GFAP  Glial fibrillay astrocyte protein, Astrocyte activation marker 
TNFα  Tumor Necrosis Factor-Alpha 
HMGB1 High-mobility group protein-B1 
PGE2  Prostaglandin E2 
CD11b  Cluster of differentiation molecule 11B, microglial activation marker 
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INTRODUCTION 

Chronic pain affects millions of Americans, yet remains poorly controlled by currently 

available therapies. Until recently, neurons have been assumed to be the sole cell type 

responsible for the creation and maintenance of chronic pain. Yet, if neurons hold the key to 

chronic pain, why do all neuronally-targeted therapeutics fail to control chronic pain in the great 

majority of pain patients?  

Within the past decade there has been growing recognition that non-neuronal cells 

modulate neurotransmission in the central nervous system (CNS) and importantly contribute to 

pathological pain states.  The activation of non-neuronal cells in the brain and spinal cord called 

glia, including both microglia and astrocytes, has been directly linked to chronic pain. This 

project will expand beyond astrocytes and microglia to examine the potential role of CNS 

endothelial cells.  Together, these various non-neuronal cell types can actively respond to and 

modulate signals within their local environment. When activated as a consequence of neural 

damage or other stimuli, glia and endothelial cells release a variety of substances that can 

increase the excitability of nearby neurons. These include pro-inflammatory cytokines, 

chemokines, ATP, excitatory amino acids, and nitric oxide (Watkins et al., 2007; Nagyoszi et al., 

2010; Singh et al., 2007).  Glia are often exposed to excitatory neurotransmitters, but it is the 

excessive release or combination of signaling molecules that raises the alarm, thus signaling the 

release of glia-derived signaling molecules, such as pro-inflammatory cytokines including tumor 

necrosis factor α (TNFα), which is also released by activated peripheral immune cells (Owens et 

al., 2005). When released outside the CNS, these substances serve as a signal to the immune 

system, so the immune system knows where to respond to the injury (Fields, 2009). These 

substances can also cause physical changes to the injured tissue and blood vessels as well as the 
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area surrounding the injury.  When released in the CNS, this is known as neuroinflammation.  

The release of such substances can cause uninjured tissue to become hypersensitive to pain 

stimuli through dynamic modulation of pain transmission at spinal levels.  The various 

substances secreted by these activated non-neuronal cells can be helpful, unless they are present 

for prolonged periods of time.   

Microglia and Astrocytes 

Microglia make up 5-12% of all the cells in the CNS and 5-10% of all glia, while astrocytes are 

40-50% of all glia and actually outnumber neurons (Aldskogius et al., 1998; Lee et al., 2000).  

Activation of microglia results in changes in morphology and function (e.g., retraction of their 

processes, migration to area of damage, and release of pro-inflammatory mediators; Watkins et 

al., 2007).  Microglial activation can be measured by the upregulation of cluster of 

differentiation molecule 11B (CD11b).  After microglia have been activated, they will either 

return to their basal state or enter a “primed” state (Perry et al., 1985).  These “primed” microglia 

over-respond to future stimulation by increasing the speed and magnitude in which they release 

pro-inflammatory signals (Perry et al., 1985).  Astrocytes under basal conditions provide neurons 

with energy sources and neurotransmitter precursors (Tsacopoulos, 2002).  Astrocytes can be 

activated by trauma such as inflammation or infection.  This activated state is indirectly reflected 

by the upregulation of glial fibrillary acidic protein (GFAP) expression (Aldskogius et al., 1998). 

Astocytes and microglia exist in close proximity to each other and therefore 

communicate.  When stimulated together, microglia release substances that induce astrocyte 

activation, and then astrocytes release substances that stimulate microglial activation and 

proliferation (Watkins et al., 2006).  Research by Ledeboer et al. suggests that in vivo, microglia 
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are activated first.  This activation causes the recruitment of astrocytes, with both cell types 

ultimately implicated in downstream effects (Ledeboer et al., 2006).   

Toll-Like Receptor 4 

One class of receptors that plays a key role in neuropathic pain and trauma is the Toll like 

receptors (TLRs).  TLRs are a highly conserved class of receptors found in the innate immune 

system, but are also expressed on glia and endothelial cells (Watkins et al., 2007; Nagyoszi et 

al., 2010).  When TLRs are activated, they induce the release of neuroexcitatory products such as 

pro-inflammatory cytokines (Watkins et al., 2009).  The specific toll-like receptor, TLR4, is of 

particular interest in regards to opioid-induced CNS inflammation.  TLR4 signaling is activated 

by signals of cellular damage, distress, and death (Watkins et al., 2009). Until recently, microglia 

were thought to be the predominant CNS cell type expressing TLR4 (Hutchinson et al., 2008), 

but current literature has begun to support TLR4 expression on other non-neuronal cells such as 

astrocytes (Gorina et al., 2011).  Experiments completed for this thesis will also provide 

evidence for expression of TLR4 on CNS endothelial cells, indicating that endothelial cells may 

play a larger role in pain amplification than is currently understood.  The prime position of these 

cell types within the CNS, allow astrocytes and microglia to enhance pain resulting from damage 

or inflammation from the peripheral nerves (Watkins et al., 2009). The experiments presented in 

this thesis will support and provide evidence for both the expression of TLR4 on astrocytes and 

CNS endothelial cells.   

TLR4 activation causes signaling through at least three parallel pathways: the PI3K/Akt 

pathway, which affects cell motility and cell survival/apoptosis; and the NFκB and MAPK 

pathways, which lead to release of pro-inflammatory products (Watkins et al., 2009).  Peripheral 

nerve injury leads to TLR4 activation on microglia and astrocytes in the spinal cord, which 
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causes the release of pro-inflammatory products leading to pain amplification.   Recently it has 

been discovered that TLR4 is activated not only by endogenous danger signals, but also by 

opioids such as morphine. TLR4 activation, whether by endogenous danger signals or opioids, 

leads to the same downstream effects of glial activation and the release of pain enhancing 

substances (Hutchinson et al., 2008). 

Opioid-induced pro-inflammatory signaling 

 Several studies completed in the last decade have shown that glia cells can become 

activated in response to opioid treatment, leading to secretion of pro-inflammatory substances 

including cytokines (Watkins et al., 2005; Hutchinson et al., 2008).  Researchers discovered an 

important link between TLR4 and opioid-induced glial activation when it was found that TLR4 

knock-out mice treated with morphine had enhanced analgesia (pain relief; Hutchinson et al., 

2009).  In in vivo studies, it was shown that treatment with “glial inhibitors” such as ibudilast 

(AV411) and minocycline prior to opioid treatment, potentiated morphine analgesia (pain relief; 

Hutchinson et al., 2008; Hutchinson et al., 2009).  It was also discovered in vivo that the same 

enhanced morphine analgesia could be produced by blocking pro-inflammatory cytokine actions 

(Hutchinson et al., 2008).  This indicates that blocking the activation of glial cells can improve 

the efficacy of opioid treatment for pain.  Morphine can bind to the classical opioid receptors 

(mu, kappa, and delta) but it also activates TLR4 (Hutchinson et al., 2009).  Interestingly, it has 

also been shown that morphine-3-glucoronide (M3G), morphine’s primary metabolite in vivo, 

activates TLR4 but not the classic opioid receptors (Labella et al., 1979).  For these reasons, 

experiments done for this thesis utilized in vitro stimulation with morphine and M3G, along with 

antagonists of TLR4 or the classical opioid receptors, in order to understand the receptor types 

implicated in the observed phenomena.   
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Blood Brain Barrier 

The blood brain barrier (BBB) is 

comprised of endothelial cells within the 

capillaries (Figure 1).  The endothelial 

cells form tight junctions that act as a 

selective barrier into the CNS.  

Astrocyte end feet surround the 

endothelial cells in the BBB. The 

function of the blood brain barrier is to 

supply the brain with nutrients while also mediating the efflux of waste and keeping unwanted 

molecules out of the CNS (Abbot, 2006).  Because of their incredibly close proximity to each 

other (Figure 1), endothelial cells, astrocytes, and microglia likely communicate.  In vivo, 

microglia and astrocytes interact and their secretions synergize (Watkins et al., 2007). Astrocytic 

secretions play a role in regulating the integrity of the BBB by controlling the permeability of the 

tight junctions in the endothelium (Abbot, 2006). 

Endothelial Cells 

 The majority of opioid-induced glial activation research focuses primarily on microglia 

and astrocytes, but there are several other cell types in the central nervous system that are likely 

involved in modulating neurotransmission.  Specifically, this project will explore the role of the 

relationship between endothelial cells, astrocytes, and microglia in opioid-induced pro-

inflammatory signaling in the brain and spinal cord.  As noted above, endothelial cells (ECs) line 
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the capillaries within the CNS to form the blood-brain barrier.  

This position allows ECs to act as first-line responders to 

systemic opioids.  As a result they secrete prostaglandin E2, 

which is known to facilitate the production of inflammatory 

mediators (Ma et al., 2008).  Prostaglandin E2 (PGE2) is an 

arachidonic acid metabolite formed by PGE synthase from a 

precursor PGH2 that is synthesized by both isoforms of 

cyclooxygenase (COX-1 & COX-2). COX-2 is downstream of 

TLR4 via the NFκB pathway (see figure 2; Shih et al., 2010).  

Shih et al. documented the release of PGE2 from brain 

endothelial cells when treated with lipopolysaccharide, a known TLR4 agonist (LPS; see 

methods below).    

There are conflicting reports as to whether CNS endothelial cells express TLR4. 

Nagyoszi et al. (2010) reported that TLR4 mRNA was not detectable in primary brain 

endothelial cells; however, the cells were isolated from the brains of two-week old rats, and 

receptor expression in adults may not be predicted by expression in pups.  Singh and Jiang 

(2004) reported that TLR4 mRNA was not detected in primary endothelial cells isolated from 

adult rat brains, but their protocol utilized a 24 hour isolation procedure and the cells were 

analyzed 24 hour after plating.  This time point might not be sufficient time for the cells to 

recover normal protein expression following the isolation procedure.  In contrast, Shih and Yang 

(2010) and Verma et al. (2006) provided evidence for TLR4 expression in mouse brain 

endothelial cells by measuring TLR4 mRNA expression and cytokine secretion in response to 

LPS, respectively.  
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The overall aim of the present experiments is to gain a better understanding of the 

interaction between non-neuronal cell types across the blood brain barrier.  This project will 

investigate how activated endothelial cells affect astrocytes and microglia.  Once these molecular 

pathways are better understood, this could reveal insights into how to improve opioid efficacy 

while limiting opioid-induced CNS inflammation and the resulting side effects associated with 

chronic opioid use. 

 

METHODS 

SUBJECTS 
The subjects of the experiments were pathogen-free adult male Sprague–Dawley rats 

(325–350 g; Harlan Laboratories) for the isolation of endothelial cells. Pathogen-free female 

Sprague-Dawley rats were mated with pathogen free male Sprague-Dawley rats.  The pups were 

born in the Watkins’s lab colony room.  The male pups (1-2 days old) were used for the isolation 

of astrocytes and microglia. The endothelial cells isolated for intrathecal injection and the rats 

used for the intrathecal EC injection were adult male Lewis rats (325-250 g; Harlan 

Laboratories) The adult male rats were housed two per cage, while the females were housed one 

per cage (other than during mating, at which time a single male was housed with each individual 

female) in a temperature-controlled environment (23+/-2 °C) with a 12 h light/dark cycle (lights 

on at 7:00 AM), and with standard rat chow and water available ad libitum. All procedures 

occurred in the light phase. All adult rats were allowed 1 week of acclimation to the colony room 

before being mated. The Institutional Animal Care and Use Committee of the University of 

Colorado at Boulder approved all procedures. 
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DRUGS 
Morphine-3-glucoronide (M3G), a major naturally occurring, long-lived non-opioid (fails 

to bind classical opioid receptors) metabolite of morphine that the Watkins laboratory has shown 

to be a TLR4 agonist (Labella et al., 1979), was purchased from SigmaAldrich (St. Louis, MO, 

USA). Endotoxin-free morphine sulfate was a gift from Mallinckrodt, Inc. (St. Louis, MO, 

USA).  Endotoxin-free status was confirmed with a limulus amoebocyte lysate (LAL) assay.  

M3G and morphine (which activates both classical mu-opioid receptors and TLR4) were 

reconstituted in 0.9% endotoxin-free saline (Abbott Laboratories, North Chicago, IL), diluted to 

stock concentrations of 10 mM and stored at 4°C, prior to dilution for use as described below. 

Lyophilized lipopolysaccharide (LPS; a classical TLR4 agonist; 25 mg, Escherichia Coli, 

serotype 0111: B4, Sigma Lot No. 072k4096) was reconstituted with 0.9% endotoxin-free saline 

(25 mL) to make a 1 mg/mL stock solution that was then aliquoted and stored at –20°C. Frozen 

aliquots were thawed at the time of experimentation and diluted with 0.9% endotoxin-free saline 

(Abbott Laboratories, North Chicago, IL) yielding various final concentrations as described 

below.  Purified lipopolysaccharide from Rhodobacter sphaeroides, LPS-RS a classic TLR4 

antagonist, was purchased from InvivoGen (San Diego, CA).  The lyophilized LPS-RS was 

reconstituted in 1 mL of endotoxin-free water to make a 5-mg/mL stock solution. The stock 

solution was aliquoted and stored at -20°C.  Stock aliquots were thawed the day of the 

experiment and diluted to various concentrations.   

CELL CULTURES 

Mixed Glial Isolation 
Mixed glia and neuron primary cell cultures were isolated from the cerebral cortices of 

newborn male Sprague-Dawley rat pups.  Between 1 and 2 days old, the pups were rapidly 

decapitated and the brains were dissected and placed in cold HBSS w/ Ca2+ and Mg2+.  The 
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dissected brains were then brought into the sterile cell culture hood.  In the hood there were four 

60 mm petri dishes on ice, each with 2 mLs HBSS.  The brains were placed in one of these 

dishes.  First, the cerebellum and brainstem were gently removed and discarded.  Next the 

cortices were easily separated by gently slicing them using curved tip forceps. One at a time, the 

hippocampal hemispheres were removed, leaving just the cortex.  The meninges were gently 

pulled off the cortices and moved into the fourth and final petri dish with 2 mLs HBSS.   Once 

all the cerebral cortices were in the final petri dish, the cortices were minced, resuspended in 

HBSS, and centrifuged.  Next the tissue underwent enzymatic digestion in DNase I and Liberase 

Blendzyme III.  Prior to putting the tissue into the flasks, the tissue was centrifuged and put into 

fresh medium and passaged through a 70-micron filter and then through a 40-micron filter to 

eliminate any remaining tissue chunks. (Viviani, 2006)  

Endothelial Cell Isolation 
Primary cultures of endothelial cells were isolated from adult pathogen-free male 

Sprague-Dawley and Lewis rats using a previously reported protocol. (Perriere et al., 2005).  

This method yields >98% pure endothelial cell cultures.  Tissue and cells isolated from the two 

rat breeds were treated and seeded separately.  The protocol for isolation was the same.  Rats 

were anesthetized using isoflurane and decapitated. The brain was dissected out of the skull and 

the spinal cord removed from the vertebral column by hydraulic extrusion using ice-cold saline 

0.9% endotoxin-free saline (Abbott Laboratories, North Chicago, IL).  The tissue underwent two 

enzymatic digestions and is then centrifuged through a density gradient to isolate microvessels.  

The isolated microvessel fragments were cultured for 48 hours in medium containing 4 µg/mL 

puromycin.  Puromycin is a translation inhibitor that selectively kills non-endothelial cell types 

present in the microvessel culture so to achieve a pure endothelial cell culture.  Four adult rats 

were used for each isolation.  The brains and spinal cords from the 4 rats were combined prior to 
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enzymatic digestion.  The collected microvessels were plated onto 10 cm culture dishes treated 

with a collagen I/collagen IV/fibronectin coating matrix.  Once the endothelial cells reached 

100% confluence (~1 week), the cells were passaged using .25% Trypsin in EDTA (Invitrogen, 

CA, USA) and seeded onto 24 (4 x 6) well microplates treated with the same collagen I/collagen 

IV/fibronectin matrix.  Cells were grown to confluence to insure the most accurate replication of 

their in vivo presence.  For each treatment condition run on these plates the n=6. 

SEEDING CELLS ONTO TRANSWELL INSERTS 
Polyester Transwell Inserts, purchased from Corning, Corning, NY, were used in the 

model of the blood brain barrier.  The inserts fit inside a typical 24-well plate.  The membrane at 

the bottom of the insert (Figure 3) is permeable.  The pores are 0.4 µm in diameter.  This is wide 

enough to let molecules through, but small enough to prevent the cells from migrating through.  

The total surface area available for cell growth is 0.33 µm.  In the co-culture experiments, 

endothelial cells are grown on these 

inserts.  It is important to note that the 

two chambers’ media do not mix.  The 

endothelial cells are grown to 100% 

confluence, so nothing can pass through 

the membrane to get to the lower 

chamber without being transferred by the 

endothelial cells themselves.  

The following steps were taken to prepare the cells and the inserts for seeding.  The 

inserts were coated in a collagen IV and fibronectin mixture.  The coating matrices were 

removed and the inserts were rinsed with PBS.  Endothelial cells were passaged from 10 cm 
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dishes using 0.25% Trypsin in EDTA to release the adherent cells while minimizing damage to 

them, in an incubator for 5 minutes.  The trypsin was inactivated by the cell culture medium 

containing FBS and the cells were spun down at 200 x g for 5 minutes.  FBS contains inhibitors 

of trypsin, and therefore halts the enzymatic action.  The cells were then resuspended in culture 

medium containing 500 nM hydrocortisone, which is the physiological level at which it is 

present in vivo (Weidenfeller et al., 2005).  Hydrocortisone helps maintain the tight junctions 

made by the endothelial cells once seeded on the transwell inserts (Hoheisel et al., 1998).  The 

well below the transwell insert contained 1 mL of medium containing hydrocortisone, so that the 

cells had medium on both sides.  In this set up, the upper chamber within the insert serves as the 

luminal side, or blood side, and the lower chamber (the 24 well plate) serves as the abluminal, or 

CNS side. Once the ECs were seeded onto the inserts, they were left to grow to 100% confluence 

(2 days).   

ELISA 

Prostaglandin-E2 
Prostaglandin-E2 (PGE2) concentrations were measured using an enzyme-linked 

immunosorbent assay (ELISA).  The assay kit was purchased from Cayman Chemical Company 

(Ann Arbor, MI, USA) and used to measure the amount of PGE2 secreted into the culture media.  

Samples of the medium were collected and frozen at -80°C prior to use.  This kit is based on the 

competition between PGE2 (from the samples) and PGE2-acetylcholinesterase (PGE2 tracer 

added by the kit) for antibody binding.  The concentration of tracer is held constant, while the 

PGE2 levels are variable within each sample.  Thus there is an inverse relationship between the 

tracer and PGE2;  the more PGE2 there is in a sample, the more displacement of PGE2 tracer will 

occur.  After the 18-hour incubation, the plate is washed and developed using Ellman’s reagent 
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(included in kit).  The Ellman’s reagent undergoes an enzymatic reaction and develops a distinct 

yellow color that absorbs strongly at 412 nm.  The more intense yellow color is inversely 

proportional to the amount of PGE2 present during incubation. Concentrations are measured at 

412 nm using a spectrophotometer. 

TNFα 
TNFα secretions were measured using the R&D immunoassay kit ( R&D, MN, USA).  This 

assay uses a monoclonal antibody specific for rat TNFα that has been pre-coated onto the bottom 

of a microplate.  Samples from cell supernatants were frozen at -80°C prior to use.  Cell 

supernatants were pipetted into the pre-coated wells, any TNFα present in the sample binds the 

immobile antibody already present in the well.  After washing off any unbound substances, an 

enzyme-linked polyclonal antibody specific to rat TNFα was added.  Following a wash to 

remove any unbound enzyme-antibody, a substrate solution was added to the wells.  The ensuing 

enzymatic reaction creates a blue product that turns yellow upon addition of the Stop Solution                                                                                                                                                                                                                                                                                     

.  The intensity of the color is proportional to the amount of TNFα present in the sample. 

IN-CELL WESTERN BLOTS 
Cells (ECs, astrocytes and microglia) were grown in 24 well microplates and stimulated 

as explained in each experimental design, below.  After stimulation, In-cell Western blots were 

performed.  Culture media was removed and 1 mL fresh 4% paraformaldehyde was added to 

each well and incubated at room temperature for 5 minutes.  The paraformaldehyde was removed 

and the cells underwent five washes in PBS + 0.1% Triton X-100 at room temperature to 

permeabilize the cells. The cells then were incubated in Odyssey blocking buffer (LI-COR, 

Lincoln, NE) for 1 hour on a shaker at room temperature.  The blocking buffer was removed and 

a solution containing primary antibody diluted in fresh Odyssey blocking buffer was put on to 
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the cells and incubated overnight on a shaker at 4°C.  Each plate had 1 well that did not have 

primary antibody, to serve as a negative control for the plate.  Primary antibodies used were 

raised against glial fibrillary acidic protein (GFAP; astrocyte activation marker; Mouse IgG (Cell 

Signaling) and CD11b (detected with monoclonal OX42 antibodies; a complement receptor 

subunit that is a microglial activation marker; Mouse IgG).  After the overnight incubation, the 

microplates were washed 4 times with PBS + 0.1% Tween-20 at room temperature on a shaker.  

The plates were then incubated with an Odyssey blocking buffer solution containing secondary 

antibody, 0.2% Tween-20, and the cell stains DRAQ5 (Biostatus Limited, Leicestershire, United 

Kingdom) and Sapphire700 (LI-COR).  DRAQ5 is a cell permeable DNA-interactive agent that 

can be used for stoichiometric staining of DNA in live or fixed cells.  Sapphire700 is a non-

specific cell stain that accumulates in both the nucleus and cytoplasm of fixed or dead cells, but 

not live cells.  Staining cells with Sapphire700 and DRAQ5 expands the linear range, which 

allows more accurate normalization of cell number across various cell densities.  The control 

well solution did not contain the cell stains.  Secondary antibodies used were IRDye 800CW 

conjugates of goat-anti-mouse-IgG (LI-COR).  The plate incubated in the secondary antibody 

solutions for 1 hour on a shaker at room temperature protected from light.  Then the plates were 

washed 4 times with PBS + 0.1% Tween-20 in the dark, on a shaker at room temperature.  After 

the last wash the wash buffer was removed and the excess was tapped against paper towels to 

remove excess moisture.  The plates were scanned and analyzed with an Odyssey IR scanner 

with Odyssey imaging software (LI-COR).  The antibody signals were analyzed as the 800-

channel integrated intensities normalized to the 700-channel signal integrated intensity to correct 

for well-to-well variations in cell number. Results are expressed as percent relative responses 

compared to vehicle-treated control wells. 
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vON FREY TEST FOR TACTILE ALLODYNIA 
  Rats were habituated to the wire grill testing apparatus for 1 h per day on 4 consecutive 

days. The von Frey test (Chaplan et al., 1994) was performed within the sciatic innervation area 

of the plantar hindpaw as described previously (Milligan et al., 2000), using calibrated Semmes-

Weinstein monofilaments (Stoelting, Wood Dale, IL). The von Frey hairs used range from 0.407 

– 15.136 g, with log stiffness = log10 (milligrams x 10). This range of stimuli produces a 

logarithmically graded slope (Chaplan et al., 1994). The von Frey hairs were applied randomly 

to the left and right hindpaws to determine the stimulus intensity required to elicit a paw 

withdrawal response. For all experiments, von Frey testing was performed blind with respect to 

treatment group. The raw behavior data were used to calculate the absolute thresholds by fitting a 

Gaussian integral psychometric function using a maximum-likelihood fitting method, which 

allows for parametric statistical analyses (Harvey, 1986; Treutwein and Strasburger, 1999; 

Milligan et al., 2000). Data are presented as the left and right paw responses averaged together 

for each rat. 

mRNA EXTRACTIONS and cDNA SYNTHESIS 
Total RNA was extracted from the isolated and stimulated cells using the standard 

phenol/chloroform extraction with TRIzol Reagent (Invitrogen, CA, USA) according to the 

guidelines set out by the manufacturer.  Total RNA was reverse transcribed into cDNA using 

Superscript II First-Strand Synthesis System (Invitrogen).  cDNA was synthesized using random 

primers (5ng/µl) and 1mM dNTP mix (Invitrogen) and incubated at 65°C for 5 min.  The 

samples were placed on ice for 2 minutes.  Next, cDNA synthesis buffer (Invitrogen,) and 

dithiothreitol (DTT- 10 mM) was added to the total RNA mixture and incubated at 25°C for 2 

min.  Finally reverse transcriptase (Superscript II; 200 U; Invitrogen) was added and incubated 
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for 10 min at 25°C, 50 min at 42°C, and deactivating the enzyme at 70°C for 15 min. cDNA was 

diluted twofold in nuclease-free water and stored at –80°C. 

RT-PCR  
Primers were designed to span an intron to eliminate genomic interference because the 

samples did not undergo DNase treatment given the small cell numbers analyzed.  Amplification 

of the cDNA was performed using QuantiTect SYBR Green PCR kit (QIAGEN) in an iCycler iQ 

96-well PCR plate (Bio-Rad) on a MyiQ single Color Real-Time PCR Detection System (Bio-

rad).  The reaction mixture was composed of QuantiTect SYBR Green, 10 nM flourescein, 500 

nM of each forward and reverse primer (Invitrogen, CA, USA), nuclease-free water, and 1 µl of 

cDNA from each sample.  Each sample was measured in triplicate.  The incubation times were as 

follows: hot start at 95°C for 25 min, followed by 40 cycles of 15 seconds at 94°C (denaturation), 

30 sec at 55–60°C (annealing), and 30 sec at 72°C (extension).  The PCR products were 

measured using SYBR Green I fluorescence in MyiQ Single-Color Real-Time PCR Detection 

System (Bio-Rad). 

STATISTICS 
Data were analyzed using One Way ANOVA tests, with Dunnett’s Post-hoc test.  A p-value of 

.05 was used as criteria for significance.  The data for Experiments 1 and 2 were analyzed using 

a Two Way ANOVA. 
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EXPERIMENTAL DESIGN and RESULTS:  

EXPERIMENT 1:   

The effects of endothelial cells stimulated with M3G and TLR4 antagonist, LPS-RS, on gene 
expression. 
The aim of this experiment was to provide support for the hypothesis that endothelial cells in the 

CNS express TLR4.  Endothelial cells were isolated (as seen above), trypsinized and passaged 

onto 24 well microplates and allowed to grow to confluence (~2 days).  Then cells were 

stimulated with either the control (saline) or LPS-RS (10 ng/mL) for 1 hour and then treated with 

M3G (0.001µM, 0.01 µM, 0.1 µM, 1 µM) for 4 hours.  After 4 hours incubation, plates were 

prepared for mRNA extractions and ultimately underwent PCR to examine TNFα gene 

expression.  LPS-RS is a classic TLR4 antagonist and M3G selective binds TLR4.  If ECs 

express TLR4, it would be reasonable to expect a downregulation of TNFα mRNA in cells 

treated with LPS-RS prior to M3G treatment.  Additionally, the cells treated with M3G would 

upregulate TNFα mRNA (pro-inflammatory cytokine). 

EXPERIMENT 1 RESULTS:   

The effects of endothelial cells stimulated with 
M3G and TLR4 antagonist, LPS-RS, on gene 
expression. (Figure 4) 
The data from this experiment support the 

hypothesis that endothelial cells do indeed 

express TLR4.  The cells treated with the 

control and then M3G (0.01 µM, 0.1 µM, 1 

µM) significantly (P<0.0001; F- (1,49)=21.41) 

upregulated TNFα mRNA expression (Figure 

4).  Endothelial cells that were treated with 
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LPS-RS (10 ng/mL) and M3G (0.001µM, 0.01 µM, 0.1 µM, 1 µM) did not differ from the 

control/control stimulated cells in their TNFα mRNA expression.  These data are evidence that 

endothelial cells can mediate TLR4 specific substances and express TLR4.  This data also 

conferred that endothelial cells are activated by M3G.	   

EXPERIMENT 2:  

The effects of endothelial cells stimulated with morphine and pan opioid receptor antagonist, 
nalmefene, on TNFα gene expression in endothelial cells. 
This experiment investigates TLR4 expression on endothelial cells. Nalmefene is a pan opioid 

receptor antagonist that blocks all types of classic opioid receptors (µ, ∆, к) but does not 

modulate TLR4.  Endothelial cells express µ3 opioid receptors, which function in an anti-

inflammatory role (Stefano et al., 1996).  Morphine is capable of binding both TLR4 and 

classical opioid receptors, but these pathways have confounding effects when stimulated 

together.  By stimulating endothelial cells with nalmefene, to block the µ3 opioid receptor, prior 

to treating the cells with morphine, the pro-inflammatory effects of the TLR4 cascades should be 

uncovered.  Endothelial cells were isolated and passaged onto 24 well microplates.  Cells were 

treated with control (saline)+ control, control + morphine alone (10 µM), 10 µM nalmefene  + 

morphine (10µM), or 100 nM nalmefene + morphine (10 nM) (n=6 in each condition). Cells 

were stimulated for 1 hour with either the control or nalmefene (10 nM, 100 nM) and then with 

either control or morphine (10 µM) for 4 hours.  After 4 hours, the cells were prepared for 

mRNA extractions and were ultimately measured for changes in TNFα mRNA expression. 

EXPERIMENT 2 RESULTS:  

The effects of endothelial cells stimulated with morphine and pan opioid receptor antagonist, 
nalmefene, on TNFα gene expression in endothelial cells. (Figure 5) 
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Endothelial cells were stimulated for 

1 hour with either the control or 

nalmefene (10 µM, 100 µM) and then 

with either control or morphine (10 

µM) for 4 hours.  Upon analysis of 

the mRNA expression for TNFα there 

was found to be a significant (p<. 05; 

normalized to 100% control; n=6 in 

each treatment condition) increase by 

the cells treated with 10 nM 

nalmefene + morphine.  This suggests 

that morphine bound to TLR4 and initiated a pro-inflammatory response.  Control+morphine 

treated endothelial cells did not differ in their expression of TNFα from the control + control 

group.  This data also supports the confounding results of morphine binding both TLR4 and the 

classic µ3 opioid receptor.  The data from this experiment and Experiment 1 provide suggest the 

CNS endothelial cells express TLR4 and can be activated by treatment with morphine.  

EXPERIMENT 3:   

The effects of opioid stimulation of endothelial cells on PGE2 secretion.  
This experiment investigated the secretion of PGE2 from polarized ECs.  Endothelial cells were 

polarized by seeding the cells onto transwell inserts (see methods above; Figure 3 for transwell 

schematic).  aCSF was put in the bottom chamber, while serum containing medium was in the 

upper chamber (blood side).  This set up provides an environment that is similar to endothelial 

cells in vivo.  The aim was to observe if there were differences in the secretions abluminally (into 

CNS) compared to luminally (into blood).  Endothelial cells on inserts were treated with control 
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(saline) and M3G (0.001µM, 0.01 µM, 0.1 µM, 1 µM, 10 µM) for 24 hours. After 24 hours, 

samples were collected from both upper and lower chambers and were assayed using the PGE2 

ELISA kit (Cayman).  

EXPERIMENT 3 RESULTS:   

The effects of opioid stimulation of endothelial cells on polarized PGE2 secretion. (Figure 6) 
Using a culture design in order for 

endothelial cells to secrete substances 

both abluminally (into CNS) and 

luminally (into blood), ECs were 

stimulated on transwell inserts and 

measured for PGE2 protein secretion after 

24 hours of incubation with control 

(saline) and M3G (0.001µM, 0.01 µM, 

0.1 µM, 1 µM, 10 µM).  Overall, there 

seemed to be a trend in the data that more 

PGE2 was secreted luminally compared to abluminally. Endothelial cells treated with 0.001 and 

0.01 µM M3G did not differ from the control in their secretion of PGE2 luminally or 

abluminally.  The 0.1-µM dose of M3G significantly enhanced the secretion of PGE2 luminally 

(p=. 01) and abluminally (p=. 05).  The 1 µM and 10 µM doses of M3G significantly (p=. 001) 

reduced abluminal secretion of PGE2, possibly indicating negative feedback onto the ECs.  

Additionally, through other experiments, minocycline (thought to be a glia specific inhibitor) 

was found to cause a decrease in PGE2 secretion by endothelial cells (Ramos et al., manuscript in 

preparation).   
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EXPERIMENT 4:  

The effects of intrathecal injection of stimulated endothelial cells on tactile allodynia. 

Endothelial cells were treated with M3G (0.1 µM), morphine (10µM), and a control 

(saline) for 18 hours. The cells were prepared for intrathecal injection into male Lewis rats.  The 

rats were then behaviorally tested for allodynia (pain response to a non-painful stimuli) using 

von Frey testing (see above) at 1,2,3, and 24 hours post intrathecal injection of stimulated cells.   

To prepare endothelial cells for injection, the medium was removed following drug stimulation 

(0.1 µM M3G, 10µM morphine, and control (saline)) and the cells were rinsed twice with PBS. 

The cells were then incubated with 0.05% trypsin containing EDTA (Invitrogen) for 2 min at 

37°C. DMEM/F-12 containing 10% FBS was added to stop the enzyme, and the cells were 

centrifuged for 5 min, 180 × g. The supernatant was removed and cells were resuspended in PBS 

at a density of 1,000 cells per 10 µl. 

For injection of the stimulated cells, rats were lightly anesthetized with isoflurane. The 

lumbar region of the back was shaved and cleaned with 70% ethanol. An 18-gauge guide needle, 

with the hub removed, was inserted into the L5/6 intervertebral space. A PE-10 catheter was 

threaded through the guide needle, pre-marked such that the distal end of the PE-10 tubing rested 

over the L4–L6 lumbar spinal cord. Cells were injected over 15 s (10 µl of PBS containing 1,000 

cells followed by 6 µl of sterile PBS flush) with a 30 s delay before removing the catheter and 

guide needle. Each animal was anesthetized for a maximum of 5 min, and none exhibited 

neurological damage from the procedure. 
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EXPERIMENT 4 RESULTS:  

The effects of intrathecal injections of stimulated endothelial cells on tactile allodynia in Lewis 
rats. (Figure 7) 
After months of modifying this experiment to reduce confounding data, allodynia was finally 

produced by intrathecal injection of 

endothelial cells treated with 0.1 µM M3G.  

This group was significantly different than 

the other groups (vehicle (PBS), saline-

stimulated cells, and 10 µM morphine-

stimulated cells) at 1,2,3 hours post-

injection (p<0.0001;interatction of 

treatment and time, F( 12, 160)=5.121).  This 

indicates that M3G activated endothelial 

cells are sufficient to cause pain in vivo.   

Additionally, these data and the polarized 

endothelial cell secretion of PGE2 data saw 

the most significant effects occur with treatment of 0.1 µM M3G.  Because of the significance 

seen using 0.1µM M3G, this concentration was used repeatedly in the following experiments.  

Following the promising data collection from endothelial cells, both in vitro and in vivo, the role 

endothelial cells play in relation to astrocytes and microglia was examined (Experiments 5-10). 

 

EXPERIMENT 5:  

The effects of four-hour opioid stimulation of astrocytes, cultured alone, on gene expression.   
In Experiment 1, astrocytes were seeded alone in a microplate and stimulated with saline 

(control), 100 ng/mL LPS, 0.1 µM M3G, or 10 µM morphine.  Astrocytes were isolated from 
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neonatal Sprague Dawley rats as described above.  After the flask reached confluence (approx. 8 

days), microglia were shaken off and an L-leucine methyl ester solution was applied and 

incubated for 2 hours to kill the remaining microglia, to achieve a pure sample of astrocytes.  

The astrocytes were resuspended, plated at ~200,000 cells/well and incubated in a CO2 incubator 

at 37°C for 2 days prior to stimulation with drug.  Drugs were administered to each well using a 

repeat pipettor, and the plate was placed back into the CO2 incubator for the duration of the 

stimulation.  After 4 hours of incubation, the cell media containing the respective drugs were 

removed.  800 µL of Trizol (Invivogen) was added to each well of cells and the plate was frozen 

at -80°C until mRNA extractions, cDNA synthesis, and RT-PCR was performed.  The cells were 

tested for changes in expression of mRNA for HMGB1, TNFα, TLR-4, and GFAP.  HMGB1 

and TNFα are pro-inflammatory cytokines that were measured to understand the pro-

inflammatory secretions that are implications of TLR4 signaling. 

EXPERIMENT 5 RESULTS:  

The effects of four-hour opioid stimulation of astrocytes, cultured alone, on gene expression. 
(Figure 8)   

The aim of this experiment was to determine the effect on astrocytes when these primary 

cells were stimulated directly with opioids (morphine, which binds both TLR4 and mu opioid 

receptors; M3G which binds only TLR4) for 4 hours. No prior study has explored whether 

astrocytes will respond to M3G, and no prior study has explored morphine-induced effects on 

these endpoints in astrocytes.  Until recently, the literature generally assumes that astrocytes do 

not express TLR4 either at an mRNA or protein level.  Gorina et al., in early 2011 published a 

paper suggesting the primary spinal astrocytes do express TLR4.  Quantitative RT-PCR was 

completed to test for changes in mRNA for HMGB1, TNFα, GFAP, and TLR4 (Figure 8). These 

genes were chosen for analysis because TNFα and HMGB1 are both pro-inflammatory cytokines 
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that are important in the downstream effects of TLR4 activation; GFAP is an activation marker 

for astrocytes; and TLR4 is the receptor of interest that is suggested to be the culprit in these 

situations of pro-inflammatory signaling.  To avoid contamination with fibroblasts (which can 

also express GFAP), the meninges were removed from the cerebral cortices prior to enzymatic 

digestion.  This method provides >90% pure astrocyte culture (Viviani, 2006). There was no 

difference between the treatment groups and the control for the expression of HMGB1 or TLR4.  

This easily detected TLR4 mRNA expression is especially interesting as there is so little 

literature on astrocyte expression of TLR4.   There was a large effect on TNFα mRNA 

expression in the LPS-stimulated cells (P<. 05).  This result is consistent with the fact that LPS is 

a TLR4 agonist and astrocytes are recently found to express TLR4 receptors. The astrocytes in 

culture are rapidly dividing.  The apparent downregulation in GFAP expression was not a 

proliferation effect; rather there was true downregulation of GFAP.  This down regulation of 

GFAP could be due to negative feedback.  There is precedence of LPS stimulation 

downregulating astrocyte proliferation (Letournel-Boulland et al., 1994).   
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EXPERIMENT 6:  

The effects of twenty-four-hour opioid stimulation of astrocytes, cultured alone, on gene 
expression.   

In Experiment 2, the astrocytes were prepared as in Experiment 1.  In this experiment, the 

cells were incubated for 24 hours.  One plate was stimulated with morphine (1 µM, 10 µM, and 

100 µM) and M3G (0.01 µM, 0.1 µM, and 1 µM). Each plate was prepared for mRNA 

extractions as in Experiment 1.  mRNA changes were quantified for HMGB1, TNF-α, TLR-4, 

and GFAP.  On a third plate, cells were incubated in 100 ng/mL LPS, 0.1 µM M3G, and 10 µM 

morphine.  After 24 hours, samples were taken from each well for a cytokine ELISA measuring 

secreted levels of TNF-α.  The remaining media was removed and the cells were used for an In-
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cell Western blot using an antibody against GFAP.  The in-cell western protocol was completed 

as described above. 

EXPERIMENT 6 RESULTS:  

The effects of twenty-four-hour opioid stimulation of astrocytes, cultured alone, on gene 
expression.  (Figures 9-12) 

Similar to Experiment 1, this experiment examined the direct affect of opioids on 

astrocytes, but for a 24-hour stimulation.  Stimulations were extended from the 4 hours seen in 

Experiment 1 to 24 hours to see if the effects of direct opioid stimulation of astrocytes were 

different than data collected at 4 hours.  Morphine and M3G were administered in a dose 

response as to allow a better understanding of the interaction of opioids with astrocytes.  Again, 

contrary to much of the available literature, evidence was accrued for basal expression of TLR4 

mRNA in primary astrocytes isolated from neonatal cerebral cortices. After 24 hours of 

stimulation with morphine (1 µM, 10 µM, 100 µM; agonist at both mu opioid receptors and 

TLR4) there was no significant change in mRNA for HMGB1, GFAP, and TLR4 while there 

appeared to be a downward trend for the expression of TNFα mRNA (Figure 9). A different 

pattern of results was apparent upon stimulation with M3G (agonist at TLR4, but not mu opioid 

receptors). The astrocytes stimulated with M3G (0.01 µM, 0.1 µM, 1 µM) for 24 hours 

upregulated mRNA expression for HMGB1 (Significant in One-Way ANOVA, but not 

significantly different from control in post-hoc test p>.05) and TNFα (p< .05) No effect was 

seen on GFAP mRNA expression (Figure 10).  There was no effect on TLR4 mRNA.  This 

indicates that M3G can activate astrocytes directly, at least at the level of gene expression.  The 

GFAP In-cell Western blot showed no change in GFAP protein by M3G or morphine.  The LPS-

stimulated cells showed a significant decrease in GFAP protein expression (p<. 05; Figure 11), 

but no effect by either opioid at these doses.  The TNFα ELISA detected 50 pg/mL TNFα 
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release by the LPS-stimulated cells (Figure 12), a significantly elevated difference from the other 

groups (p<. 05).  There was no detected TNFα release by the astrocytes receiving the other 

treatment conditions. 
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EXPERIMENT 7:  

The effects of opioid stimulation of astrocytes co-cultured with endothelial cells on the secretion 
of TNFα and gene expression. 

In this experiment, endothelial cells and astrocytes were co-cultured using transwell 

inserts (Corning, Corning, NY).  Endothelial cells were seeded onto transwell inserts (see 

methods above).  To co-culture the ECs on the inserts with astrocytes, a separate 24 well plate 

contained astrocytes seeded as in Experiments 1 and 2.  The day of the experiment, the medium 

was removed from the astrocytes and replaced with aCSF and the transwell inserts with the ECs 

were transferred to the astrocyte plate.  The combined cells were left to rest for 2 hours and then 

stimulated.  Drugs were added to the luminal (blood) side and left for 24 hr.  RT-PCR and TNFα 

ELISAs were completed on the astrocytes.  This approach allowed investigation of the effect 

activated ECs had on the astrocytes plated below them.  One plate of endothelial cells was 

stimulated with M3G (0.01 µM, 0.1 µM, and 1 µM) and another with (-) morphine (1 µM, 10 

µM, and 100 µM.) 
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EXPERIMENT 7 RESULTS:  

The effects of opioid stimulation of astrocytes co-cultured with endothelial cells on the secretion 
of TNFα and gene expression. (Figures 13&14) 
In this co-culture experiment, the endothelial cells were stimulated with the same doses of M3G 

as seen in Experiment 6, and the astrocytes (seeded in the separate chamber from the stimulated 

endothelial cells) were measured for effects on mRNA expression.  In the M3G-stimulated co-

cultured endothelial cells (drug administered to “blood side”) there was no effect on astrocyte 

mRNA expression for HMGB1, TLR4, or TNFα (Figure 13).  GFAP mRNA trended to be 

decreased (0.01 µM, 0.1 µM, 1 µM M3G doses, p=0.06).  In morphine treated cells, there was an 

increase in TLR4 (100 µM; Figure 14). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

	  



35	  

 

EXPERIMENT 8: 

The effects on astrocytes co-cultured with stimulated endothelial cells followed by direct 
stimulation with LPS on gene expression and TNFα	  secretion.	  

In this experiment, endothelial cells and astrocytes were combined as in Experiment 3A.  

The upper chamber with ECs was stimulated with 100 ng/mL LPS, 0.1 µM M3G, and 10 µM (-) 

morphine and incubated for 24 hours.  At the 24-hour time point, the inserts were removed and 

discarded and a sample of the aCSF was taken for an ELISA.  Then the astrocytes were directly 

stimulated with 100 ng/mL LPS and incubated for another 4 hours.  After 4 hours, another aCSF 

sample was taken for ELISA analysis and the cells were prepared for mRNA extractions for RT-

PCR gene analysis.  The purpose of this experiment was to look at the idea of glia priming.  The 
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signals released by the activated endothelial cells may not be enough to activate the astrocytes, 

but perhaps the signals they receive act to prime the astrocytes so that they become more reactive 

to direct TLR4 binding. 

EXPERIMENT 8 RESULTS:  

The effects on astrocytes co-cultured with stimulated endothelial cells followed by direct 
stimulation with LPS on gene expression and TNFα	  secretion. (Figures 15&16) 

After 24 hours of incubation with stimulated endothelial cells, the astrocytes were 

directly stimulated with LPS (100 ng/mL) for 4 more hours.  This experiment aimed to further 

investigate the role of glial priming.  Specifically, is it possible that the endothelial cells that 

were stimulated secreted substances onto the astrocytes that would cause them to become more 

sensitive to direct LPS (TLR4 agonist)?  Samples for a TNFα ELISA were taken at 24 hours 

from the astrocyte supernatant and there was no detectable release from cells in any condition.  

Then the inserts with the endothelial cells were thrown out and all astrocytes were stimulated 

with LPS (100 ng/mL) for 4 hours. After the direct LPS stimulation another sample was taken 

from the astrocyte supernatant for a TNFα ELISA.  There was no difference in TNFα secretions 

from the astrocytes incubated with endothelial cells stimulated with vehicle, M3G (0.1 µM) or 

morphine (10 µM; Figure 15).  In the astrocytes that had been co-cultured with LPS-stimulated 

ECs, there was a significant difference from the control cells in TNFα secretion after the 4-hour 

stimulation with LPS (100 ng/ml).  It is important to note that the astrocytes co-cultured with the 

vehicle-stimulated ECs secreted 300 pg/mL TNFα after the subsequent 4 hour stimulation with 

LPS (100 ng/ml), while astrocytes cultured alone and stimulated with LPS (100 ng/ml) only 

secreted 50 pg/mL in 24 hours (Experiment 2).  The ECs in the co-culture are communicating 

with the astrocytes and must be sending signals that cause the sensitization of TLR4 on the 

astrocytes.  When these astrocytes are treated with LPS, the sensitized TLR4 causes less 



37	  

secretion of TNFα.  The astrocytes stimulated with the LPS (100 ng/mL) treated ECs secreted 

significantly less TNFα.  It is not likely that this is the result of endotoxin tolerance.  Banks et 

al., (Banks et al., 2010) report that peripherally administered LPS is not taken up into the BBB at 

a level that would stimulate the CNS.  Rather, they explain that the brain endothelial cells 

sequester LPS, and then mediate the secretions to the brain side.  This supports the hypothesis 

that the endothelial cells in the in vitro BBB model are communicating to the astrocytes. 

The astrocytes were also examined for change of GFAP gene expression (Figure 16).  

The astrocytes that were co-cultured with morphine-stimulated endothelial cells have 

significantly (p<. 05) more activation in response to LPS than astrocytes co-cultured with 

endothelial cells receiving any other treatment.  This gene expression fits with the earlier 

recorded observation (Experiment 7; Figure 14) that morphine treated endothelial cells 

upregulated TLR4 mRNA when co-cultured with astrocytes.  Additionally, M3G treated 

endothelial cells (Experiment 7; Figure 13) had no significant effect on TLR4 mRNA in co-

cultured astrocytes, which also is supported because astrocytes co-cultured with M3G-treated 

ECs showed no significant change in LPS-induced activation.   
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EXPERIMENT 9:  

The effects on gene and protein expression by opioid stimulation of astrocytes co-cultured with 
microglia. 

Astrocytes are in close proximity to microglia in the CNS, so it is logical to look at the 

role of microglia in this model of the blood brain barrier.  In this experiment microglia and 

astrocytes were isolated from neonatal pups as outlined above, but after reaching confluence, the 

microglia were saved and counted.  The astrocytes were passaged (as above) and seeded 

(~200,000 cells/well) into a 24 well plate.  The microglia (~23,000/well) were seeded on top of 

the astrocytes.  All isolated cells were used in the culture. These cells came directly from the 

animal; the ratio that they were seeded at is approximately what would be physiologically 

observed.  The day of the stimulation the cell media was removed and replaced with aCSF and 

allowed to sit for 2 hours prior to stimulation.  Cells were stimulated with aCSF as a control and 

0.1 µM M3G.  An in-cell western was completed (as seen above).  2 rows were tagged with 

astrocyte activation marker; GFAP and 2 rows were tagged with tagged with microglia activation 

marker CD11b.   

EXPERIMENT 9 RESULTS: 

The effects on gene and protein expression by opioid stimulation of astrocytes co-cultured with 
microglia. (Figure 17) 

Microglia and astrocytes were co-cultured together in the same well and were treated 

with aCSF as a control or 0.1 µM M3G.  In-cell Western blots (n=6) measured the changes in 

protein expression of CD11b and GFAP, which are activation markers specific to microglia and 

astrocytes respectively.  CD11b protein expression was upregulated while GFAP protein 

expression was downregulated in M3G-stimulated co-cultures (Figure 17).  It is important to 

note that when astrocytes alone were stimulated for the same time and with the same dose of 
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M3G, there was no effect on GFAP protein.  This indicates that there must be communication 

between the microglia and the astrocytes.   

 

 

 

 

 

 

 

EXPERIMENT 10:  

The effects of opioid stimulation on TNFα secretion and gene expression of astrocytes and 
microglia co-cultured with stimulated endothelial cells. 

Microglia and astrocytes were treated as in Experiment 9.  Additionally, ECs seeded on 

to inserts as seen in Experiment 7, were added to the microglia/astrocyte co-culture.  The inserts 

and the mixed glial culture were combined in the same fashion previously outlined.  In this 

experiment, the endothelial cells on inserts were stimulated with either M3G (0.1 µM) or the 

control (aCSF).  Changes in astrocyte and microglial activation were measured using RT-PCR on 

GFAP and CD11b (astrocytes and microglia; respectively).  PGE2 secretion was measured in the 

abluminal chamber. 
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EXPERIMENT 10 RESULTS:  

The effects of opioid stimulation on TNFα secretion and gene expression of astrocytes and 
microglia co-cultured with stimulated endothelial cells. (Figure 18) 

The progressive addition of cell types to each culture design allows for better control over 

the experiment conditions.  This is the most complex of the in vitro experiments completed for 

this project.  By co-culturing microglia and astrocytes with endothelial on inserts, it adds a new 

level of complexity that is found in vivo.  Endothelial cells were stimulated with M3G (0.1 µM) 

or the control (culture medium).  mRNA expression by the microglia and astrocytes was 

measured for CD11b (microglial activation marker) and GFAP (astrocyte activation marker; 

Figure 18, boxes A&B).  Additionally, aCSF was assayed for abluminal PGE2 protein secretions 

(Figure 18, box C).  n=6 for each of the treatment conditions.    CD11b mRNA expression was 

not significantly (p=.24) affected by M3G (0.1 µM).  Although it appears that with more trials, 

this might become a significant increase in CD11b mRNA.  GFAP mRNA expression was 

almost significantly increased (p=.1).  There was a 26% increase in GFAP mRNA in astrocytes 

when co-cultured with both microglia and endothelial cells.  This experiment provides the most 

evidence to support the hypothesis that activated endothelial cells can activate glia.   PGE2 

protein secretions in the abluminal chamber were measured and found to be significantly (p<.05) 

lower by astrocytes/microglia incubated the M3G (0.1 µM) treated endothelial cells.  Since the 

abluminal chamber contains secretions from three cell types, it is unknown which cells were 

secreting PGE2 and how much each cell type contributed to the overall PGE2 measured. 

Experiment 3 (Figure 6) showed that there is more PGE2 secreted luminally, than there is 

abluminally.  This may because ECs secrete PGE2 into the blood to recruit peripheral immune 

cells to the CNS. 
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DISCUSSION: 
 Experiments in this thesis were undertaken to support the novel observation that 

endothelial cells of the brain and spinal cord are involved in the modulation and enhancement of 

opioid-induced CNS inflammation.  The progression of experiments shows that CNS endothelial 

cells can be activated by M3G, which can induce the secretion of PGE2.  Treatment of CNS 

endothelial cells with TLR4 and opioid receptor antagonists (LPS-RS and nalmefene, 

respectively) followed by treatment with M3G and morphine (respectively), show that this 

activation is consistent with TLR4-mediated pathways.  M3G-activated CNS endothelial cells 

were also sufficient to induce pain in vivo.  Following these experiments, primary astrocytes and 

microglia were added to in vitro studies.  Astrocytes were shown to behave differently when 

cultured alone, compared to when they were cultured with CNS endothelial cells or with CNS 
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endothelial cells and microglia.  The difference in behavior and activation seen in these 

experiments suggests that there is important communication between these cell types, and further 

exploration of this topic is warranted.  

 Through the data presented in Experiments1-4, CNS endothelial cell activation by 

opioids was examined.  There is no precedence of this in the literature.  There was robust 

expression of TLR4 found in CNS endothelial cells (Ramos et al., manuscript in preparation). It 

has previously been reported that CNS endothelial cells express the µ3 opioid receptor (Stefano 

et al., 1996).  Experiments 1 and 2 explored the use of both opioid receptor (nalmefene) and 

TLR4 (LPS-RS) antagonists.  The data collected in these experiments supported the original 

hypotheses.  When stimulating the ECs with nalmefene (opioid receptor antagonist) followed by 

morphine (which can signal through both TLR4 and opioid receptors), it was expected that there 

would be an upregulation in pro-inflammatory gene expression.  Indeed, this was the case 

(Experiment 2; Figure 5).  The opposite was also true; when ECs were treated with LPS-RS 

(TLR4 antagonist) followed by treatment with M3G, it was expected that there would be 

suppression of pro-inflammatory gene expression.  This was also supported (Experiment 1; 

Figure 4).  Experiment 3 provides evidence that, upon stimulation of polarized ECs with M3G 

(0.001µM, 0.01 µM, 0.1 µM, 1 µM, and 10 µM), PGE2 was secreted in different concentrations 

luminally compared to abluminally.  PGE2 secretion significantly increased by stimulation with 

0.1 µM M3G.  This is the same dose of M3G that caused activation of ECs sufficient to cause 

allodynia when the cells were injected into the lumbar intrathecal space.   PGE2 is released by 

CNS ECs to induce fever in instances of bacterial or viral infection (Milton et al., 1970; 

Elmquist, et al., 1997). Interestingly, morphine can induce fever as well, but fever caused by this 

co-activator of mu-opioid receptors and TLR4 is not blocked by prostaglandin synthesis 
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inhibitors (Nikolov, 2010; Prakash et al., 1981; Clark et al., 1978). As there appear to be no 

studies of alterations in core body temperature by M3G, whether TLR4 activation by M3G is 

sufficient to induce fever via a PGE2-dependent mechanism is unknown. PGE2 also induces 

other pro-inflammatory responses in the body that cause pain. (Shih et al., 2010). 

 Experiment 4 provided evidence that M3G-activated endothelial cells are sufficient to 

cause pain in vivo (Figure 7).  In this experiment, endothelial cells were stimulated for 18 hours 

with M3G (0.1 µM), morphine (10 µM), or saline.  After the stimulation, cells were prepared and 

injected intrathecally into male Lewis rats.  The rats underwent von Frey behavioral testing at 1, 

2, 3, and 24 hours post injection.  The rats injected with 0.1 µM M3G were more sensitive to 

stimulation at hours 1, 2, and 3.  The rats that received morphine- or saline-stimulated cells did 

not differ in pain response from the control group that was injected with PBS.  These studies 

provide key evidence that endothelial cells may play a larger role in opioid-induced CNS 

inflammation than has been previously appreciated.  These data provided a platform to begin the 

next set of studies involving astrocytes and microglia.   

Experiments 5-10 aim to gain a deeper understanding of whether there is communication 

between microglia, astrocytes, and endothelial cells derived from the spinal cord and brain.  Data 

were collected using five different cell culture set-ups, that were designed to understand how 

treatment with LPS (100 ng/mL), M3G (0.01 µM, 0.1 µM, 1 µM) and morphine (1 µM, 10 µM, 

100 µM) affected astrocytes alone for either 4 hours or 24 hours, astrocytes co-cultured with 

endothelial cells, astrocytes co-cultured with microglia, and astrocytes co-cultured with 

microglia and endothelial cells.   Effects on the various cell types were measured using RT-PCR 

(to measure expression of mRNA for HMGB1, GFAP, TLR4, TNFα), In-cell Western blots (to 

measure GFAP and CD11b protein expression), TNFα ELISAs, and PGE2 ELISAs. The data 
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presented provide evidence that there is indeed communication between CNS endothelial cells 

and the microglia and astrocytes present in the CNS. 

The experimental design chosen for these next experiments was important to the 

relevancy of this in vitro work in vivo.  Several experiments were undertaken to determine how 

opioid-activated endothelial cells would in turn affect co-cultured astrocytes and microglia.  The 

experiment design utilized a cell culture model that approximates the blood brain barrier.  

Endothelial cells are polar cells, meaning that they have a luminal side that is exposed to the 

blood, and an abluminal side that faces the central nervous system.  The endothelial cells used 

for all of the present experiments were primary cells isolated from the brain and spinal cord 

tissue of adult male Sprague Dawley rats.  Endothelial cells were grown in confluent monolayers 

on the transwell inserts, such that their luminal sides faced an upper chamber containing cell 

culture medium while their abluminal sides faced a lower chamber containing artificial 

cerebrospinal fluid (aCSF; Figure 2).  The primary astrocytes and microglia were isolated from 

the cortex of neonatal male Sprague Dawley rats.  These cells were grown on the surface of the 

microplate itself in the aCSF.  The permeable membrane at the bottom of the transwell insert 

allowed for signaling molecules to pass between the endothelial cells and the astrocytes and 

microglia.  The endothelial cells were grown in culture medium containing 20% fetal bovine 

serum (FBS), which functioned as “blood” in this model of the blood brain barrier.  The lower 

chamber of glia contained aCSF. The endothelial cells in the upper chamber (within the insert) 

were stimulated with various drugs including morphine and M3G. 

It was observed in Experiment 6 (Figure 10), that stimulating astrocytes alone for 24 

hours with M3G (0.01 µM, 0.1 µM, 1 µM) resulted in increases of mRNA expression for 

HMBG1 and TNFα.  This suggests that astrocytes can be activated by M3G directly.  
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Interestingly, there was no effect on GFAP protein expression in astrocytes alone treated with 0.1 

µM M3G for 24 hours, but when astrocytes were co-cultured with microglia with identical 

treatment (Experiment 9; Figure 17), there was a significant decrease in GFAP protein 

expression.  This suggests that there must be communication between the microglia and 

astrocytes to cause this change.  In vivo, Microglia are activated first and then recruit astrocytes 

(Ledeboer et al., 2006).  There were also differences seen between the astrocytes alone 

stimulated for 24 hours with M3G (0.01 µM, 0.1 µM, 1 µM) and the astrocytes co-cultured with 

endothelial cells (on inserts).  The astrocytes cultured alone (Experiment 6; Figure 10) had 

increased expression of mRNA for HMGB1 and TNFα, while the astrocytes co-cultured with 

ECs (Experiment 7; Figure 13) downregulated GFAP mRNA.  Since only the endothelial cells 

were directly exposed to M3G, and the astrocytes were not, this suggests that the change in 

mRNA expression is due to signaling from the activated ECs to the astrocytes.  Again, the 

decrease in GFAP is not due to a decrease in proliferation, rather it a decrease in the production 

of GFAP mRNA.  In both of these examples, astrocytes behave differently alone than they do 

when co-cultured with CNS endothelial cells. 

 Another important observation of how endothelial cells alter astrocyte functioning relates 

to TNFα secreted by astrocytes in response to 100 ng/mL LPS.  Astrocytes stimulated with 100 

ng/mL LPS (Experiment 6; Figure 12) secreted 50 pg/mL of TNFα in 24 hours.  Co-culturing the 

astrocytes with endothelial cells altered this responsiveness, as shown in Experiment 8: 

astrocytes co-cultured with saline-stimulated ECs for 24-hour subsequently secreted 300 pg/mL 

TNFα in response to a 4-hour stimulation with 100 ng/ml LPS. This is strong evidence that co-

culturing astrocytes with endothelial cells changes the way the astrocytes respond compared to 

the response by astrocytes cultured alone and treated with the same treatment. 



47	  

 In Experiment 8, where TNFα secretions were measured from astrocytes that were co-

cultured with endothelial cells for 24 hours and then stimulated with 100 ng/mL LPS, there was a 

significant decrease in TNFα secretion by the astrocytes co-cultured with LPS-stimulated 

endothelial cells (Figure 15).  A question could be raised that this decrease is due to endotoxin 

tolerance.  However, the literature supports that LPS does not cross the BBB in significant 

enough amounts to activate glia in the CNS (Banks et al., 2010).  It is hypothesized that 

peripheral LPS binds TLR4 on the brain endothelial cells, and the ECs then release secretions 

into the brain.  This suggests that the effect seen is not due to endotoxin tolerance and supports 

the communication link between endothelial cells and astrocytes. 

 Further evidence of the hypothesized cellular cross talk is seen in Experiment 8.  

Astrocytes when co-cultured with M3G-stimulated ECs (Experiment 7; Figure 13) had no 

significant change in TLR4 mRNA expression and no significant change in subsequent 

responsiveness to LPS stimulation (as measured by GFAP mRNA; Figure 16).  In contrast, when 

astrocytes were co-cultured with morphine-stimulated ECs, the astrocytes significantly increased 

expression of TLR4 mRNA and subsequently had a significantly great response to LPS 

stimulation (as measured by GFAP mRNA; Figure 16).  

 Since the involvement of endothelial cells and opioid-induced CNS inflammation via 

TLR4 is relatively new, the concept that ECs could contribute to the effects of other drugs of 

abuse (also linked to TLR4) has never been explored.  While this series of studies has focused on 

M3G, as a well-characterized TLR4 agonist with no mu opioid agonist activities, there is 

growing recognition that TLR4 is activated by other drugs such as alcohol and cocaine (Wu et 

al., 2011; Northcutt et al., 2010).  Endothelial cells are exposed to the highest levels of systemic 

drugs of any cell type in the CNS, and may have previously undiscovered roles in the effects of 
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many such drugs of abuse.  These effects include neuroinflammation that has been linked to the 

suppression of morphine-induced analgesia enhancement of morphine reward, enhancement of 

morphine-induced drug dependence and withdrawal, morphine- and cocaine-induced reward, 

alcohol-induced sedation and ataxia, and morphine-induced respiratory depression (Watkins et 

al., 2005; Johnston et al., 2004; Raghavendra et al., 2002; Raghavendra et al., 2004).  Until now, 

the possibility that these drug effects arise, at least in part, due to the activation of CNS 

endothelial cells has never been considered. 

 The contribution of CNS endothelial cells to opioid-induced CNS inflammation has been 

overlooked until now.  Historically, the study of non-neuronal cell types an (Abbot, Ronnback, & 

Hansson, Astrocyte-endothelial interctions at the blood brain barrier., 2006) (Abbot, Ronnback, 

& Hansson, Astrocyte-endothelial interctions at the blood brain barrier., 2006) (Abbot, 

Astrocyte-endothelial interactions and blood-brain barrier permeability, 2002)d their influences 

on neuronal function have focused almost exclusively on microglia and astrocytes.  Microglia 

and astrocytes readily express activation markers that can easily be quantified. The ease of 

measuring activation makes astrocytes and microglia easy to study. Schwann cells and 

oligodendrocytes have been studied for their interactions with the axons they enwrap.  Their 

activation can be imaged in cell culture by treatment with calcium sensitive dyes that “light up” 

when the cells are activated.  Endothelial cells lack classical activation markers, and therefore 

their involvement has often gone over-looked.  The data presented in this thesis provide proof 

that endothelial cells become active when treated with M3G, and suggest that future studies of 

CNS inflammation should include study of endothelial cells.   

 While the studies included here have tried to accurately reflect the in vivo environments 

for the chosen cell types, there remains the question of whether cell culture adequately addresses 
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what happens in vivo.  This difference between the in vitro and in vivo data suggests that in vivo 

signaling is more complicated than the experimental design allows.  While the co-culture 

experiments aimed to more closely model in vivo signaling, the cultures only included, at most, 

three cell types.  There is no question that in vivo signaling involves more cell types and 

molecules than the ones included in the cultures presented.   

 In future experiments, an even more relevant cell culture model could include neurons in 

the cultures, or at least physiologically relevant amounts of substances that are known neuron-to-

glia signals.  Fractalkine is an example of a neuron-to-glia signal.  Fractalkine is expressed only 

by neurons and its receptor only by microglia (Verge et al., 2004).  Literature shows that 

fractalkine enhances responsivity by activating microglia via the release of pro-inflammatory 

cytokines (Milligan et al., 2005; Johnston et al., 2004).  Further studies in support of the data 

presented in this thesis are exploring whether adding neurons to the co-cultures and mimicking 

the release of neuron-to-glia signals may amplify the effects observed in the present studies.   
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