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Woolwine, Kyle J. (Ph.D., Aerospace Engineering)
A Reduced Order Model of an External Compression Supersonic Inlet

Thesis directed by Prof. Kenneth Jansen

The research contained in this thesis was performed in order to model the external compres-
sion axisymmetric inlet portion of a supersonic jet engine in a way that captures the effects of a
full 3-D CFD model while maintaining the quickness of a lower dimensional model. This was ac-
complished by first creating high fidelity 3-D and 2-D models with the CFD code PHASTA. These
models were used as base models to both verify and drive the creation of the lower dimensional
model. The lower dimensional 1-D model, created in MATLAB, was developed by piecing together
established methods with novel ones. In particular, a new approach was developed in order to
properly model the dynamics of the inherently three dimensional external compression flow field.
With comparison to the higher order PHASTA models, the lower order model proved capable of
accurately modeling both the steady state and dynamic response of the the external compression
supersonic inlet. This was accomplished approximately 13,000 times more efficiently than using
the higher order CFD models. The results of this research provided a lower dimensional supersonic
inlet model that maintains the dynamic accuracy of a higher order CFD model while exhibiting

the benefit of quick execution time and adaptability allowed by its simpler construction.
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Chapter 1

Introduction

The following scientific investigation stems from ongoing research that is intended to meet
specific goals of the of the AeroServoElasticity (ASE) task in the Supersonics Project under the
Fundamental Aeronautics Program, which aims to investigate integrated vehicle performance such
as ride quality, vehicle stability and integrated controls. The focus in this thesis is to develop and
verify a dynamic model of the external compression inlet, baselined for the supersonic propulsion
system, that will be integrated with the rest of the propulsion system and the structure-aerodynamic
vehicle model in order to allow for these integrated AeroPropulsoServoElasticity studies.

The focus of this research will be on modeling the baseline axisymmetric inlet geometry to
include both the external and internal inlet portions (before the engine face), extending the flow field
to the freestream, which is necessary to capture the conical flow field. It is important to accurately
model the engine inlet because its dynamic response to freestream flow fluctuations can couple with
the propulsion dynamics and with the full APSE system to cause performance challenges such as
vehicle ride quality and stability (Figure . This can occur from pressure, temperature or Mach
number disturbances in the free stream due to atmospheric turbulence and/or vehicle maneuvering,
together with flow field disturbances caused by potential excitation of the vehicle structural modes.
These disturbances can enter the inlet and the engine to affect the thrust dynamics, which in turn
can couple back to the structural modes of the vehicle to disturb the flow field into the inlet, acting
as a closed loop system.

Under most steady state flight conditions the solution of a conical flow in the inlet can be



modeled using a well established technique such as the axisymmetric method of characteristics
method [4]. However, the inlet model must also be able to handle variations in pitch as part of
APSE model dynamics and the flow field in that case will become inherently three dimensional.
This poses a dilemma because the current ASPE model is written in Simulink and developing a
time efficient 3-D CFD code in Simulink would be extremely difficult if not impossible. There are
two possible solutions to this problem; either run an external CFD code on a parallel cluster which
is called by Simulink during simulations or create a simpler, scaled down, two or one dimensional
approximation of the flow field, using dynamic variables developed from the results of a high fidelity
CFD code, to approximate the inherently three dimensional flow. This necessitates the use of a
high fidelity 3-D CFD code to be either used directly as in the first case or indirectly and as a
verification tool in the second case. As will be discussed in further detail, the research described
here will focus on the second option as that is deemed to be the less problematic of the two choices.
This will be carried out using the CFD code PHASTA as the verification tool to create 3-D and 2-D

models. Using the results from these models, a quasi 1-D CFD model will be created in simulink

' Atmospheric
| Disturbance

Thrust Jl
Dynamic

/

Flow Field
Disturbance

Inlet Model "' Engine Model

Figure 1.1: AeroServoElastic Model Overview (Kopasakis[33])



and inserted into the overall ASPE model. The creation of the verified quasi 1-D CFD model that

accurately captures the 3-D effects of the true model is the basis of the thesis.



Chapter 2

Background

As mentioned, the purpose of this research is to create a quasi 1-D inlet model that captures
the dynamic effects of the inherent 3-D flow field. In order to understand the issues facing this task,
it is best to split the flow field into five main sections and discuss the problems facing modeling each
region. The first region is the atmospheric model where the inflow plane of the model is defined.
This region includes the inflow boundary conditions as well as the turbulence models from which
the perturbation tests are based. The next region includes the external conical shock wave and
subsequent isentropic compression. The remaining regions of interest are the normal shock, the
cowl lip and associated mass spillage and finally the internal subsonic region which leads to the
compressor face. Following the discussion of the different regions of the inlet will be a discussion

on the current inlet models being used and their strengths and weaknesses.

2.1 Research Scope

Before proceeding into the details of the various modeling techniques and background of
supersonic inlets, it is a good idea to give a scope of the contained research. The end result of
this research is to provide collaborators at NASA Glenn with a dynamic supersonic inlet model
written in the Matlab/Simulink environment that they can ’plug’ into a larger propulsion system
model. This model will be combined with an aero-elastic model of the aircraft structure to create
an overall aero-propulso-servo-elastic model. The inlet model thats described here will have flow

variable input variables from the free stream, including atmospheric disturbances and output flow



variables of mass flow rate, temperature, pressure, and velocity that will act as inputs to the
turbo-machinery.

The inlet model was created by piecing together several established modeling techniques,
altering them when necessary and using the approach that the model should be as simple as
possible but not simpler. The intent is to capture the relevant dynamics of the inherently 3D flow
field while minimizing computational expense. In order to accomplish this several assumptions had
to be made. The first is that the free stream perturbations resulting from atmospheric turbulence
or sudden vehicle maneuvers will be modeled using small perturbations to individual flow variables
at the inflow plane of the inlet. Modeling disturbances in this way, will cause the perturbation to
travel through the inlet as two acoustic wave (6%,57) and an entropy wave(d¢) from the source of
the perturbation (i.e. the tip of the inlet). In reality, the disturbance will propagate from a source
further upstream. This is not seen as an issue because the point of this research is to create a model
capable of responding to inflow disturbances regardless of their source. The current approach is
to use atmospheric turbulence models to determine the amplitude and frequency range that will
exist in reality and apply perturbations to the individual flow variables within that range. A more
detailed discussion of this approach will follow in the next section.

The second assumption, is that the flow field may be approximated as inviscid. Indeed, the
unsteady 3-D viscous CFD results from both Chima et. al. and Conway et. al. show little boundary
layer separation in the flow of the their simulations [I2, [16]. It is recognized that normal shock
movement due to perturbation may cause increased separation and thus effect the assumption that
the quasi 1D Euler equations are accurately capturing the dynamics of the flow field. However,
for this research effort it is assumed that the volume dynamics of the bulk flow will be the greater
contributor to this effect. Furthermore, many inlets use bleed to reduce the amount of separation
experienced by the inlet so this assumption is deemed acceptable.

The last main assumption, is that the upstream vehicle effects, such as the oblique shock
wave which emanates from wing (Figure , will not be considered. Essentially, this results in

modeling a 'flying inlet’ or perhaps an inlet in a wind tunnel without wall effects. This assumption



Figure 2.1: N + 2 Concept Vehicle (Connolly Figure 2.2: Total Vehicle CFD Simulation -
[14]) Relative Surface Pressure (Connolly [14])

is assumed valid for two reasons. First, the vehicle being studied is still in the conceptual design
stage and a physical prototype does not exist (Figure . Spending a lot effort modeling this
specific configuration would most likely be wasted down the road. Second, the modeling techniques
of this inlet model are robust and general enough to account for changes in geometry or free stream
conditions later on. For this reason, free stream conditions are assumed to enter the inlet unimpeded
by aircraft affects.

Lastly, in connection with the previous statement, the inlet is modeled at cruise altitude with
zero base line angle of attack. While this does prevent the inlet model from used over the entire
flight envelope, it would not take a complete overhaul of the model to add this capability. However,
due to time constraints, it was not possible to include this capability. The final chapter of this

paper will detail potential options for further work.

2.2 Atmospheric Model

The atmospheric model contains the inflow boundary conditions and how they should vary to
properly simulate the steady state conditions, atmospheric turbulence and the effects that vehicle
maneuvering have on the incoming flow field. For purposes of this research all flight conditions will
be considered supersonic and as such, the flow must be completely defined at the furtherest point
upstream. This is because at the inlet of supersonic flows the viscous terms in the Navier-Stokes

equations are of negligible scale and thus all the characteristics point downstream [4]. In the case



of the Euler equations, the result is that the pressure, velocity, and temperature must be defined
at the inflow plane. These states at the steady state condition are defined simply by altitude and
flight Mach number using an atmospheric properties table [6].

Properly defining the inflow condition becomes more difficult when atmospheric perturbations
are introduced. The literature shows that most methods for handling this are based off of a variation
of the Kolmogorov turbulence model [31}, 53] [42] [18]. In this model, turbulence is considered locally
isotropic and kinetic energy cascades from large eddies to smaller ones until the length scales become
small enough that the kinetic energy is dissipated as heat [30]. The rate in which this happens is
dependent on the eddy dissipation rate. However this model used by itself is problematic because
the energy approaches infinity as frequency approaches zero [31, 32]. Many models therefore use
the von Karmen model which is similar to the Kolmogorov method but with finite energy. One of
the more popular atmospheric models is based off of the von Karmen turbulence model and was
developed by Tank et. al [53] [54]. This model is similar to the Kolmogorov method in that it
follows the -5/3 power law seen in Equation but levels off at lower wave numbers as seen in

Figure An additional model named the Dryden model developed by Hoblit [24] uses a second
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Figure 2.3: Acoustic wave velocity spectral comparisons for the Kolmogorov and Von Karman
spectral (Kopasakis[32])



order approximation of the 5/3 fractional order of the energy spectral. However, as Kopasakis

notes [32] this model underestimates the magnitude of the atmospheric turbulence.

Sy(k) = a3k (2.1)

Kopasakis’s atmospheric disturbance model differs from previous models mainly in that he
uses integer order transfer functions to approximate the fractional order transfer functions of the von
Karman model. His model was created specifically for analyzing and developing control systems for
supersonic propulsion models in the Simulink environment. The model was created using a circuit
analog as a basis to derive the pole-zero product approximate transfer functions. The transfer
function approximation works by ”interleafing” integer order poles and zeros symmetrically about
the von Karman transfer function using the turbulence parameters until the approximation falls

on top of the von Karman model as seen in Equation ([2.2)).

mz

[1(s/wzi + 1)
Wio = Kt,fitnip—Wt (2.2)

I;I(S/ wpi +1)
Here the proportional gain K; ¢; differs depending on the type of turbulence being modeled and
is based off of the model developed by Tank. For instance, if a temperature disturbance is being
simulated K; y;; can be calculated from Equation . Figure show the results as compared

to the fractional order von Karman model.

K7 fit(temp) = 14.0£2/35/3 23)

From Equation it can be seen that the proportional gain is dependent on both eddy
viscosity and integral length (turbulence patch length). Kopasakis notes that observations show
an offset in magnitude but not frequency when eddy viscosity is changed. Integral length scale
however does effect frequency response but only at very low frequencies where typical feedback

control design would have no problem handling. The effects of eddy viscosity and integral length
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Figure 2.4: Kopasakis Turbulence Model Results [32]

scale on the turbulence model can be seen in Figure A simplified model can therefore be
developed using poles and zeros for industry standard length scale of 762m and by making gain
adjustments strictly from eddy viscosity. This simplified model is the one which is implemented in
Simulink. Again using temperature disturbances as an example, Equation displays what this

looks like.

(5/33.0 + 1)(s/45.6 + 1)(5/602.4 + 1)
(s/L.1+ 1)(s/25.1 + 1)(s/109.8 + 1)(s/816.3 + 1)

Gr(s) = 943£2/6 (2.4)

The resulting atmospheric turbulence model (implemented in Simulink as shown in Fig-
ure [2.5)) provides the correct magnitude perturbations for each flow variable (P, T, rho, u, v) based
on the desired frequency disturbance to model. This model will eventually be used to analyze the
lower order inlet. For now small amplitude single frequency flow variable perturbations will be
applied to the PHASTA and Simulink models in the frequency range of interest to analyze it’s
dynamic behavior.

In addition to the differences found amongst the atmospheric models there are also a variety

of different ways to apply the atmospheric disturbances in a larger model. Ashun [I] used the Tank
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Figure 2.5: Feedback control diagram of inlet shock position system with disturbance model
(Kopasakis[32])

model as the source of the disturbance and applied them to his inlet model as a combination of
characteristic forms (a fast moving acoustic wave J+, slow moving acoustic wave J-, or entropy
wave). These forms are regarded by the author as 'fundamental modes’ of the atmospheric dis-
turbances and are applied by perturbing three of the flow variables simultaneously to propagate a
single characteristic wave. These modes are what Ashun used to develop the controller laws used
to stabilize his inlet model. Conversely, Kopasakis [31], [32] used his atmospheric model to apply
the disturbances to the individual flow variables. Applying these individual disturbances is similar
to the Ashun model in that they will cause the three characteristic modes to propagate through the
inlet simultaneously. This is similar to a Reimann problem using a shock tube as described in [29].
The difference is that in the Ashun model, the controller design will be based off characteristic
mode disturbances whereas using the Kopasakis model will results in a controller design based off
of flow variable perturbations. Therefore, the response of the inlet and subsequent designed control

laws will be accurate as long as the user is consistent.



(a) 3-D View (b) 2-D Slice

Figure 2.6: Axisymmetric Inlet

2.3 External Compression

Supersonic inlets have a moderate degree of variation in their shape and flow field characteris-
tics but they all are designed to perform the same basic function, which is to provide the compressor
face of the turbo machinery with the required amount of subsonic flow in the most efficient way
possible and with the least amount of distortion [50]. Therefore, careful thought and design are
dedicated to compressing the incoming air as close to isentropically and with as little boundary
layer separation as possible. Depending on the flight regime and position of the engines, the shape
of the inlet will vary to accomplish these objectives. For aircraft operating near sonic conditions,
pitot inlets and streamlined Buseman designs are common due to weakness of the shock field. If the
operating point is at a higher Mach number near = 2, it is common to use an axisymmetric exter-
nal compression inlet design. According to Slater [51], ”external-compression inlets are considered
better choices for flight Mach numbers below Mach 2.0 due to greater shock system stability and
the possibility of simpler inlet mechanisms”. Beyond a Mach number of 2, conditions are such that
mixed compression inlets (2-D, 2-D bifurcated, and axisymmetric) become more efficient. For the
purposes of this research, the focus will be on axisymmetric external compression inlets and their
specific characteristics.

The exterior of a typical external compression axisymmetric inlet is characterized by an

external cone of a fixed angle followed followed by either a smooth or abrupt transition to a larger
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angled cone (Figure . The purpose of this is to compress the flow through a series of conical
shocks as close to isentropically as possible. The greater number of angle transitions (and therefore
shocks) in the centerbody, the closer to isentropic conditions the flow is compressed. Ideally, the
centerbody would start very thin and smoothly transition to the desired angle over a long distance
thereby compressing the flow through mach waves instead of shocks. Due to structural instability,
this is impossible. It is therefore common for the centerbody to have the shape seen in Figure[2.6(a)|
In Figure it can be seen that the cone transitions smoothly to a larger angle. This design
feature causes the flow to pass through an initial shock wave at the tip of the centerbody and
smoothly compress afterwards though a series of Mach waves which coalesce in a shock wave at the
cowl lip. If this section was instead replaced by an abrupt change in cone angle, a second shock
wave would emanate from the centerbody. While this design feature results in closer to isentropic
compression and therefore more efficient compression, it nonetheless makes modeling this field more
difficult.

Steady supersonic flow around a semi-infinite cone, at zero angle of attack, can be solved
using the Taylor-Maccoll equations [4], [56]. Under these conditions the flow is axisymmetric and
the flow properties are constant along rays (Figure . Using these assumptions, the Navier-
Stokes equations (in spherical coordinates) can be reduced to a single ordinary differential equation.
Although this equation has no closed-form solution, it can be solved numerically, the solution of
which is exact for this flow field. As previously stated, the goal of this research is to develop an inlet
model capable of handling variations in free stream conditions as well as angles of attack. While
the assumptions used to develop the Taylor-Maccoll equations would be violated in this case, they
can still be used to determine the initial shock wave for the steady state case and in conjunction
with other techniques.

Another popular technique for solving steady supersonic flow fields is the method of char-
acteristics. If the flow field is supersonic everywhere, the behavior of the Navier-Stokes equations
outside of the boundary layer become more like the Euler equations and become hyperbolic. At a

given point there exists a direction in which the local velocity has a Mach number of one. Lines
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Figure 2.7: Supersonic Conical Flow Field Figure 2.8: Tllustration of the characteristic
(Anderson[4]) direction. (Anderson[4])

perpendicular to them are Mach lines or characteristic lines as seen in Figure Along the
characteristic lines the flow variables are continuous but their derivates are indeterminate. The
conservations equations may therefore be reduced to ordinary differential equations along these
lines and solved for. The procedure for this method is outlined in Anderson and is a popular choice
for both inlet design [3| [50] 51] as well as the analysis of inlets [I3], 46, 52]. The popularity of this
method is due to reduced complexity of solving ODEs rather than PDEs.

The above description of the method of characteristics is related to two dimensional and
axisymmetric flow fields. While this method is useful in determining the steady state condition of
the external portion of the inlet, it is not applicable when atmospheric disturbances or changes in
angle of attack are introduced. One reason is that when changes in angle of attack are introduced,
the flow field becomes inherently three dimensional. Fortunately, this method has been extended
to three dimensions by Rakich, Chuskin and Sauerwein, amongst others [13] 40, [48]. The extended
method, as outlined by Anderson [4], is similar to the lower order methods and involves dividing

the flow field into arbitrary number planes around the centerline of the body of revolution. Within
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in these planes, information is propagated along characteristic lines and an additional streamline.
While, this method accurately solves the flow field, it is considerably more complex and computa-
tionally expensive. Likewise, most other solutions to three dimensional flows around axisymmetric
bodies involve complex CFD methods as seen in Anderson [4].

The other shortcoming of the original method of characteristics is that it is for steady flow
and therefore cannot account for changes in flow variables at the boundaries (i.e. atmospheric
changes). Sauerwein has developed a multidimensional unsteady method of characteristics pro-
cedure [48]. However, due to its complexity and computational expense, it becomes similar to
running a traditional unsteady 3D CFD method (finite difference, finite volume, etc.). Likewise,
several authors have created unsteady, dynamic models using 3D CFD, but due to their complex-
ity are limited in there application [22] [43]. Other models have attempted to introduce flow field
perturbations by using a simpler method such as the oblique shock relations coupled with a time
delay [34]. As will be discussed in greater detail in a later section, this approach does not accurately
represent the correct physics and will lead to unacceptably large errors. Summarily, several simpli-
fied models exist for determining the steady state flow field of the external compression portion of
a supersonic inlet but there does not appear to exist any that can properly simulate the unsteady

response to perturbations without resorting to full 3-D CFD.

2.4 Operating Condition

A,,./A4,=0.76

Figure 2.9: External compression inlet Mach contours at sub-critical(left), critical(center), and
super-critical(right) operating points (Slater[50]).
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External compression axisymmetric inlets are designed for a specific cruise Mach number
such that the conical shock field terminates at or just above the cowl-lip and the normal shock sits
just outside of the cowl-lip [51](center Mach contour Figure . The inlets are designed this way
for two main reasons. The first is that this operating point (called the critical point) corresponds
to the optimal combination of total pressure recovery and mass flow capture. If the normal shock
is ingested by the inlet (i.e. supercritical operation), the upstream Mach number before the normal
shock increases, the normal shock becomes stronger, and the total pressure loss increases. If the
normal shock moves further upstream from the cowl lip (i.e. subcritical operation), there will be
greater subsonic mass flow spillage around the cowl lip and the mass flow rate that is fed to the
engine will suffer. Where the normal shock sits, and consequently what operating point it is at,
will depend on the free stream conditions and the back pressure at the compressor face. This
relationship between mass flow capture and total pressure loss as a function of operating condition
is illustrated by a standard ”cane curve” (Figure .

If the normal shock is pushed far enough upstream the ”buzz” phenomenom will occur.

This condition is highly unstable and results in the normal shock oscillating back and forth along
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Figure 2.11: Centerbody Separation

(ChimalL1]).

Figure 2.10: Cane Curve Example

(Slater[51]).
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the external position of the inlet, causing drastic oscillations in pressure and mass rate into the
engine [49]. The buzz condition can be initiated either because the shear layer created from the
intersection of the oblique and normal shocks is ingested by the inlet or because of separation at the
centerbody caused by the normal shock(Figure . Both of these situations are due to viscous
affects.

This leads to the other reason that proper inlet design requires the normal shock to sit just
outside of the cowl lip and that is to provide a measure of stability to the inlet by allowing it
to absorb perturbations better. Seddon et. al. describe the mechanisms and phenomena that
determine the stable operation of an external compression inlet [49]. In it, they list the ingestion
of the shear layer created from the intersection of the oblique or conical shock system with the
normal shock as a main trigger for causing instability. If the normal shock sits just outside the
cowl lip and intersects the oblique shock above the cowl lip, the shear layer will pass over the inlet.
Conversely, if the intersection point is at the cowl lip, the system is only marginally stable because
perturbations in free stream conditions can cause the intersection point and thus the shear layer to
drop below cowl lip and initiate "buzz”.

Additionally, Bogar, et. al. [7] showed that the dynamic response of an external compression
inlet will vary depending on the operating point its in. In their experimental work, they found that
the inlet’s behavior became more nonlinear under critical and especially sub-critical operating con-
ditions. This behavior was more exaggerated when the perturbation frequency was near the natural
frequency ("buzz” frequency) of the normal shocks movement. Ideally, a dynamic supersonic inlet
model would accurately represent these flow physics. However, as mentioned, the buzz phenomenon
is triggered by viscous effects and the model created in this research makes the assumption that
the flow field can be approximated as inviscid. This is an important distinction to make because it
means that the dynamic response of the model to flow field perturbations will only be valid during
the critical and super-critical operating conditions. While this limits its total range of simulation,
the model will still be able to predict the operating state that it is in so it is not deemed a critical

limitation.
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2.5 The Cowl Lip Region

Not many papers in the literature provide detail concerning how to model the normal shock
position and subsequent mass flow spillage near the cowl lip in reduced order models. Most of
the publications that do describe this are based off of the same model found in the LAPIN re-
port [19L 34, 57]. In the report, subsonic spillage is modeled using a technique developed by
Moeckel used to determine the mass flow spillage around a pitot tube or inlet. In Moeckel [41], the
author first develops a relationship between distance of detached bow shockwave and a flat faced
body and calculated mass flux through an assumed straight sonic line (Figure . The mass
flux properties across the sonic line, indicated with an asterisk, are easily determined though the
continuity equation (2.5)).
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ASSUMED STRAIGHT
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(a) Straight sonic line approximation (b) Curved sonic line

Figure 2.12: Shock Distance and Mass Flow(Varner[57])
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(2.5)

In reality, the sonic line is curved, as seen in Figure[2.12(b)l Moeckel, develops a correction factor F

to account for this which relates the mass flow in the real case(Figure [2.12(b)]) to the approximate

case(Figure 2.12(a)|) as seen in Equation ({2.6)).
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pV = Fp*V* (2.6)

where, F' = 65* /aa

Moeckel goes on to show that the parameter F' can be determined strictly from the free stream
Mach number. With F' determined both the mass flow spillage and distance d can be determined.
Finally, he shows that the same factor F' can be applied to a similar relationship for flow through
a pitot tube. The authors of LAPIN extend this model for use in a supersonic inlet by creating a

new correction factor Fi, that effectively scales the original F' which can be seen in Equations (2.7))

and (2.8). The parameters in Equation ([2.8)) are seen in Figure

pV = Fop*V* (2.7)
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This method is then used to determine not only the mass flux leakage but the momentum and energy
flux leakage as well. The resulting model compared well to experimental data when modeling the

unstart condition in mixed compression inlets where the normally ingested normal shock is expelled
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Figure 2.13: Mass spillage model for a supersonic inlet (Varner[57]).
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from the inlet [57]. While this modification was intended to model a mixed compression inlet, the
same physics in the cowl lip region are experienced by an external compression inlet at its design
point, so the model is applicable.

Kopasakis, et. al. provide an alternative method for determining the mass flux leakage around
the cowl lip in [34]. This method is based of off the assumed mass capture at the freestream and
the experimentally determined mass flow demand at the compressor face. The mass flow leakage is
then calculated as the difference between the two. The issue with this approach is that it requires a
priori knowledge of the inlet’s behavior and can therefore not be generalized to untested geometries.
Additionally, this approach, while accurate for the steady state case, may not accurately simulate
dynamic response of the inlet to perturbations. This is due to the fact that changes in mass flow
demand and/or mass flow capture would be felt instantaneously at the cowl lip location. Likewise,
changes in normal shock position caused by free stream perturbations would not effect the amount
of mass flow spillage, which is unphysical. For these reasons, this type of modeling approach will

not be used.

2.6 Internal Duct Modeling

After the flow undergoes external compression it enters the inlet at the cowl lip station. At
this point conservations equations can be used to model the flow inside the inlet. The general Navier-
Stokes equations can be simplified under the assumptions that the flow is quasi one dimensional,
an ideal gas, inviscid, and has no external heat sources added to it. The flow can still vary in time
and changes in area as a function of time are allowed as well. The resulting Euler equations will
accurately model the internal portion of the inlet if there is very little boundary layer separation [12}
16].

The quasi 1-D Euler equations, along with the equation of state, are listed as Equations ([2.9)),

(2.10), (2.11), and (2.12)) which were taken from [5].
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Continuity:
0 0
5 (PA) + o (pAug) = 0 2.9
57 (PA) + 5 (pAus) (2.9)
Momentum:
0 0 op
o7 (PAug) + = (pAuz) = —A 2.10
gy (PAua) + 5 (pAuz) 97 (2.10)
Energy:
0 0 0A
51 (PAE0t) + 5 (pAuzHeot) = —p— - 2.11
8t(p tt)+8x(pu tot) pgt ( )
where, Fiot = ¢,T + % and Hyot = ¢, T + %
Equation of State:
P = pRT (2.12)

The continuity, momentum, and energy equations can be expressed generally as equation (2.13]):

Ui +Fp=S (2.13)

where, U is the flow state, F' is the flux term and S is the source term for each equation.

These equations, while simplified, require a CFD method to solve them. Several methods
exist for solving unsteady quasi-one dimensional flow [B, [57], but for the sake of brevity only one
method of interest will be discussed in detail. MacCormack’s technique has been a popular choice
for solving unsteady quasi-one dimensional flow problems since it’s inception. It’s popularity is due
to it ease of implementation and it’s degree of accuracy for many flow problems. The technique
is an explicit CFD method which utilizes a predictor-corrector step for the time integration and a
central difference approximation for the spatial derivatives. As such, the method is second order
accurate in both space and time [5]. The method is also able to handle transitions from supersonic
to subsonic flow through a normal shock wave with the addition of artificial viscosity. Previous
reduced order inlet models have used this method to model the internal compression portions of the
inlet with much success [15, 34, [57]. In these models the method was able to match the steady-state
and dynamic results of other more complicated quasi 1-D CFD models and experimental data very

closely.
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Another popular choice for solving unsteady quasi-one dimensional flow is the split char-
acteristics method. This method is described in detail in the LAPIN report [57]. In the report,
five separate CFD methods (MacCormack, Beam-Warming, Hybrid Beam-Warming, Split Flux,
and Split Characteristics) were tested to model the internal duct flow of a supersonic inlet. The
authors found that the split characteristic method produced high fidelity solutions, handled large
perturbations such as hammershock transients correctly, and could run with the highest Courant
number. While the method ran half as fast as the less accurate and robust MacCormack method, it
ran between one and a half and twice as fast as the other methods while maintaining or exceeding
their accuracy. A complete description of the Split Characteristics method is beyond the scope of
this thesis, but the basic approach is to propagate information numerically in the same direction
as physically predicted by characteristic theory. This is done by determining the characteristic
directions as well as the compatibility equations from the eigenvalues of the system of equations
at each nodal point. From there, a new set of equations are created and are solved separately
using either forward or backward differences depending on their characteristic direction. A more
complete description of the method can be found in the LAPIN report [57]. Originally, this method
was considered for the model created with this research but it was found that the already devel-
oped MacCormack method compared well with higher fidelity CFD. Therefore, at this stage only
the MacCormack method is used in the reduced order model but the split characteristics method
should be considered in the future if limitations are found.

In contrast to these methods and others like them where the quasi 1-D Euler equations are
solved, MacMartin has developed a reduced order model of a mixed compression supersonic inlet by
focusing solely on the normal shock movement [40]. For mixed compression inlets, stability of the
inlet is determined by the normal shock position. Mixed compression models are focused primarily
on controlling normal shock movement so this is a valid approach. In his model, only internal duct
flow is considered and a simplified ODE is developed to model the normal shock. Atmospheric
disturbances are applied as perturbations to either acoustic or entropy waves to induce motion

in the shock. MacMartin develops the ODE by combining the equation perturbation model with
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normal shock relations and a linearized approximation of the pressure increase across the normal
shock.

Additionally, MacMartin shows that disturbances that propagate through the duct can be
modeled, on either side of the shock wave using Equations and , and through the

normal shock using Equation ([2.16)).

i1l o1 i1
+ e
= - d = —d 2.14
’ /z eM+=1"" 7 /x M (2.14)

+ 1 3
5]-:Miﬂ<Mj>z{1+[(7—1)/2]Mf} (2.15)

6y =050y +0, 6 +076] + 076 (2.16)

In Equation the ¢’s are perturbation waves, c is the speed of sound, subscript j denotes a
point downstream of a location represented by subscript ¢, subscripts 1 and 2 denote properties
upstream and downstream of the shock wave, respectively, and superscripts 4, -, and e denoted
fast and slow acoustic waves and entropy waves, respectively. This equation relates the amplitude
of a single acoustic wave at different points in the flow field that travel at a speed found using
Equation . Entropy waves are convected at a constant amplitude with a propagation time
found using the second equation in Equation . Equation predicts the amplitude of the
disturbance propagating downstream of the normal shock based on the upstream and downstream
disturbances using reflection and transmission coefficients (o). A more detailed explanation and
derivation of these equations can be found in MacMartin [40]. The main feature of this work
that is relatable to this research, is that a method is presented for properly modeling disturbance
propagation in a reduced order model as a function of local flow variables. While this method will
not be used to model the internal duct dynamics of the inlet, it will be used to help develop a more

accurate external compression model.
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2.7 Boundary Conditions

In addition to the flow solver used for the internal duct modeling, the choice of boundary
conditions have an impact on the accuracy and stability of the simulation. For the upstream
boundary condition, the flow is supersonic regardless of whether the domain extends past the cowl
lip. The characteristics for supersonic flow propagate information downstream and as such, all of
the state variables must be defined at the inflow boundary proscribed by the external compression
model [5]. The outflow boundary on the other hand has only one characteristic coming from
outside the domain and therefore one state variable must be defined. Common choices in the
literature are Mach number, mass flow rate, and static pressure [5, 35, 57| with varying degrees
of accuracy and stability. Kopasakis, for instance, reports stability issues with using mass flow
rate [35]. Regardless of the choice of the boundary condition, the preferred method for determining
the remain boundary conditions at the exit plane involves solving the flow along characteristic
lines as detailed in [34] 57]. Pressure seems to be the most common choice though and according
to Chima et. al [12], the results of an unsteady RANS simulation of a coupled axisymmetric-fan
system confirm that this is a realistic boundary condition. In the simulation close to uniform static
pressure was measured at the compressor face. Unless the flow separates upstream this behavior

is predicted by the fact that static pressure is constant across boundary layers [36]. However, this
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Figure 2.14: Disturbance interaction with compressor fan (Paynter[45])
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is only true of the steady state case where atmospheric disturbances are not being modeled. For
unsteady simulations, more sophisticated boundary conditions are needed.

It has been shown separately by both Paynter et. al. [45] and Sajben et. al. [47] using a
linearized theory of the conservation equations, that portions of a flow disturbance will be both
reflected and transmitted by the compressor fan system(Figure . Both authors assume small
planar perturbations and base there relations off of the upstream flow characteristics and the com-
pressor blade geometry. These results were confirmed experimentally by Opalski et. al. [44] using
a subsonic duct coupled with a single row compressor fan. In the experiment a wire spanning the
duct was exploded creating two acoustic waves and an entropy wave that travel through the duct.
The researchers measured the propagation of the waves as they intersected with the compressor
fan and accurately measured the reflected and transmitted portions of the waves. In both the theo-
retically derived and experimentally obtained results, it was found that the traditional compressor
face boundary conditions (constant pressure, velocity or Mach number) created reflections into the
inlet that were much larger in magnitude than what should naturally occur. This is illustrated
nicely by Paynter et. al. [45] in Figure Here, the new compressor face boundary conditions
were implemented in the code LAPIN and compared to experimental results as well as the results
of using traditional boundary conditions. Figure clearly shows that the modified boundary
conditions better represent the physics of this disturbance interaction.

The method by Paynter et. al., is the most detailed and supported method found in the
literature for applying inlet compressor boundary conditions in reduced order inlet models. The
derivation is beyond the scope of this thesis so the following explanation is meant only to highlight
the method. The authors start by assuming the flow state upstream of the compressor is known
and the the compressor blades are flat plates of zero thickness. From there, they assume the
disturbance is of a small amplitude and use a small-perturbation analysis along with isentropic
relations to develop a system of equations to relate the flow properties in regions 1-4 seen in
Figure [2.14] They then combine the equations though some algebraic manipulation to yield an

expression for the reflection coefficient which is defined as the ratio of the reflected disturbance
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Figure 2.15: Compressor boundary condition comparison (Paynter[45]).

pressure change to the incident disturbance pressure change as seen in eqn (2.17)

Rt (5 (202)

1— My

(2.17)
where, I' is the blade stagger angle and M, is the upstream Mach number.

From here the authors linearize the Euler equations and use a characteristic approach to
develop their boundary condition model. By determining what information should be propagated
into and out of the domain and by making some assumptions related to their small disturbance

analysis, they develop a set of boundary conditions using a reflection parameter 3, that properly

represent the compressor in a reduced order model. By setting 3 to the value of R developed in

eqn (2.17), the proper boundary condition can be established. Furthermore, traditional boundary

conditions of constant pressure or velocity can be modeled by setting 8 to -1 or 1 respectively.

Nonreflecting boundary conditions can be obtained by setting £ to 0.

25
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2.8 Complete Inlet Models

In general, the literature presents two approaches to creating a total inlet model. Either
several methods are put together to represent the different parts of the flow field in a piecewise
fashion or a reduced order model is created from a linearized high fidelity CFD model. Of the
'piecewise models’, most model 2-D mixed compression inlets and therefore model the external
compression using oblique shock relations which are not applicable to conical flow fields [I], 17, 23],
35, [40]. Many did not apply atmospheric disturbances to verify the dynamics of the model [17, 23],
50, 52, 57]. Finally, almost none of the previous models have a subsonic mass spillage model for
the cowl lip [1}, 17, 23| [35], 40, 50} 52] or account for the dynamics of the external compression flow
field [1), 177, 23], 35, 40, (0L 52, 57]. Of the current piecewise models’ in existence, the work by Varner,
et. al. [57] and Kopasakis, et. al [34] B35], are most closely related to the proposed research. The
main improvement over these works will be a more complete and accurate modeling of the external
compression field and the added capability to simulate changes in angle of attack. A summary of
the state of the art ’piecewise models’ and their features can be seen in Figure 2.16] Here, cells
in green represent methods that correctly represent the physics of an external compression inlet,
where cells in red resent methods that may have worked for a different type of inlet or problem but
are not applicable to the research in this proposal. Cells with a red ' X’ signify that the paper does
not have the capability to model the region of the flow field seen in the associated column title.

The second common method for creating a reduced order supersonic inlet model involve
higher fidelity CFD and mathematical model reduction [10, 21, 37, [60]. In these models a high
fidelity CFD code is used to obtain a single or many steady state solution(s) to the overall flow
field. The model is then linearized about this point and projected onto a lower dimensional space
characterized by set of basis vectors using a model reduction technique such as Arnoldi [37, 60] or
modified square root reduction [I0]. Dynamic simulations are created by slightly perturbing the
reduced order model. Although these model have produced excellent results when compared to the

respective higher order CFD model they are derived from, they do not handle large perturbations
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Figure 2.16: Summary of current inlet models.

such as shock movement. Additionally, one of the main goals of this research is to develop the model
in simulink. The mathematical complexity of these methods may make it difficult or impossible to
implement in the Simulink environment, which may be unnecessary if a robust and simpler model
may be used. Finally, recent work by Farhat et. al. [2, 9, 38, [39] has taken this approach and
modified to be accurate over a larger range for nonlinear systems. His work, while focused mostly
on aero-elastic models, would be applicable to modeling supersonic inlets as it is a less complex
system than the method is already proven to work for. His method does not suffer the drawbacks

associated with linearizing the N.S. equations but would still be difficult to reproduce in Simulink

due to its complexity.

2.9 High Fidelity CFD Verification

An additional large component of this research, is to verify the lower order inlet model using
a high fidelity CFD code. The CFD code PHASTA has been chosen as that verification tool.
PHASTA is a good choice for verification not only for its proven accuracy and efficiency but also

for it ability to solve complex turbulent flow fields. Although the current simulations employ the
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Fuler equations and using such a powerful CFD solver may seem overkill, a higher fidelity model
may be needed in the future to study the effects of turbulence and boundary layer separation in the
model. Using PHASTA would remove the uncertainty involved in switching models if a different
verification tool had been used for the 3D inviscid model.

PHASTA is a parallel, hierarchic (2nd to 5th order accurate), adaptive, stabilized (finite-
element) transient analysis tool for the solution of compressible or incompressible flows. PHASTA
(and its predecessor ENSA) was the first massively parallel unstructured grid LES/DNS code [25]
20, 28] and has been applied to flows ranging from verification benchmarks to cases of practical
interest. The practical cases of interest not only involve complicated geometries (such as detailed
aerospace configurations or human arterial system) but also complex physics (such as fluid turbu-
lence or multi-phase interactions).

In PHASTA, flow computations are performed using a stabilized, semi-discrete finite element
method for the transient, compressible or incompressible Navier-Stokes partial differential equa-
tion (PDE) governing fluid flows. In particular, PHASTA employs the streamline upwind /Petrov-
Galerkin (SUPG) stabilization method introduced in [8] to discretize the governing equations. The
stabilized finite element formulation currently utilized has been shown to be robust, accurate and
stable on a variety of flow problems (see for example [55, 58]). In the flow solver (PHASTA), the
Navier-Stokes equations (conservation of mass, momentum and energy) plus any auxiliary equa-
tions (as needed for turbulence models or level sets in two-phase flow) are discretized in space and
time. The discretization in space based on a stabilized finite element method leads to a weak form
of the governing equations, where the solution (and weight function) are first interpolated using
hierarchic, piecewise polynomials [58), 59], and followed by the computation of integrals appearing
in the weak form using Gauss quadrature. Implicit integration in time is then performed using a
generalized-a method [27] which is second- order accurate and provides precise control of the tem-
poral damping to reproduce Gear’s Method, Midpoint Rule, or any blend in between. On a given
time step, the resulting non-linear algebraic equations are linearized to yield a system of equations

which are solved using iterative procedures. For the current stage of research, the following Euler
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equations are being solved by PHASTA.

Continuity:
P+ lpuili =0 (2.18)
Momentum:
[oujle + lpuiugli = —P; (2.19)
Energy:
[petot] t + [puietot] i = —[ui Pl (2.20)

where, e;or = € + uju; /2 = CpT + uiu; /2
2.10 1D Model Overview

As mentioned the main research goal of this proposal is to develop a quasi 1-D model of an
external compression inlet that can be implemented easily in Matlab/Simulink. The model needs to
be constructed in the Matlab/Simulink environment using either Simulink blocks or S-functions so
that it can be incorporated with a larger AeroPropulsoServoElastic model. The implementation in
Simulink should be general enough to handle multiple geometries and robust enough to be modified
with additional features in the future if necessary (i.e. mass sources and sinks for flow control).
The model must be able to handle changes in free stream perturbations as well as perturbations
coming from the engine( compressor surge, etc.). While the perturbations applied to the model will
mostly likely be small, the engine must be able to handle large nonlinear changes in the flow field,
namely shock movement and mass flow spillage at the cowl lip. Finally, the model must simulate
this inherently 3-D flow field as efficiently possible.

Modeling the inlet can be broken up into five main components (Figure , the atmo-
spheric model, the external compression region, the cowl lip spillage, the internal duct and the
exit boundary conditions. In Section it was shown that there exists two common methods for
applying atmospheric perturbations. One model developed by Ashun [I], applies perturbations as

either acoustic or entropy waves using a combination of perturbations to the flow variables. The
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Figure 2.17: Inlet modeling techniques

other, developed by Kopasakis [31], B2], applies the perturbations to the flow variables individually.
As shown, both methods are valid for either characterizing the dynamic behavior of a model or
developing control algorithms. The researchers at NASA Glenn who are developing the rest of the
propulsion model use the latter method developed by Kopasakis. For this reason, his model will
be used in characterizing the dynamics of both the reduced order and high fidelity inlet models.
The next region is the external compression portion of the inlet, which consists generally of
a single conical shock followed by isentropic compression (as is the case with the model used in this
research) or as a series of conical shocks (as is the case with simpler models). This portion of the
flow field is modeled using a combination of the solution to the Taylor-Maccoll equations and the
method of characteristics. These methods are modified in a novel way to account for atmospheric
perturbations. The cowl lip mass flux spillage region as well as the location of the normal shock will
be modeled in two separate ways, first using the method developed in the LAPIN report [57] and
then using new approach that makes use of PHASTA simulations. The merits of both approaches

are compared. The internal duct portion will be modeled using previously developed methods from
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Kopasakis [34] 35] that solves the quasi 1D equations using the MacCormack method. Finally,
the compressor face exit boundary condition will be modeled using the procedure described in
Section This model ensures that the proper information is being reflected and transmitted as

was shown to be the case experimentally



Chapter 3

High Fidelity Simulations

The supersonic transport vehicle and inlet model being used for this research is still in the
design phase and therefore no experimental data exists for this inlet. As such, using PHASTA to as
verification device was crucial in the development of the 1D model. This was true both for verifying
the results of the 1D model and, as will be seen in subsequent chapters, in the development of certain
capabilities that would otherwise be impossible. Next the results from the PHASTA simulations
are presented. First the results of a few calibration tests are presented, followed by the steady state
and dynamic results of the total inlet. These results were verified at all three operating conditions
(sub-critical, critical, and super-critical). The PHASTA results were obtained using the full 3D
model as well as a quasi 2D model. These results will be followed by the results of simulations run

just using the external compression portion of the inlet.

3.1 PHASTA Calibration Tests

As mentioned in Section PHASTA is a proven high fidelity CFD solver shown to ac-
curately model a wide range of flow regimes. PHASTA is also a robust tool with a wide range
of flow solver settings that allow it to optimize both speed and accuracy. For these reasons it is
necessary to run test cases to ensure not only that the results match theoretical predictions for the
flow regimes relevant to this research but that the correct flow solver attributes are set to achieve
accurate results. In order to accomplish this, three test cases were devised which together make up

the relevant flow features of the simulations to be run on the total inlet model. The first test cases
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assess PHASTA’s ability to capture normal shocks. This test determines not only the proper shock
location but all the jump in flow states across a normal shock as well. The second test determines
PHASTA’s capability to simulate a conical shock field. This is relevant to the external compression
portion of the inlet. The final test case consists of a simple 1D duct with constant area. This test
case was used to track speed and amplitude of perturbations as they travel through a flow field
as compared to theoretical predictions. The test was also used to determine the affects of time
integration and discontinuity capturing settings as well. In all three test cases the results matched
theoretical predictions with very little error.

The first step in verifying PHASTA’s ability to simulate supersonic flows is the ability to
capture normal shockwaves. This test involved creating a simple expanding duct. Supersonic
inflow conditions were applied for the velocity, pressure and temperature and a subsonic back
pressure was applied that would cause a normal shockwave to form close to the middle of the duct.
The value of the back pressure was predicted using quasi 1-D compressible flow equations which
can be found in Anderson [5]. Initial attempts failed in acquiring a stable solution when attempting
to start from supersonic initial conditions. Compressible flows require care in the setting of initial
conditions if one is to avoid generating spurious waves that may take a very long time to decay.
It was observed that the fastest convergence to steady state was achieved by initializing the flow
to linearly vary between inflow and outflow conditions.. In this simulation velocity, pressure and
temperature were initialized based on the quasi 1-D predictions of the inflow and predicted outflow.
Using this method and applying PHASTA’s discontinuity capturing feature, the predicted quasi
1-D results were obtained.

Figure [3.1] shows the Mach number variation in a cross sectional slice of the duct. It should
be noted that PHASTA is correctly capturing the 3-D features of the flow not present in the quasi
1-D prediction, i.e. the expansion waves before the normal shock wave. The expansion waves

cause the flow properties to oscillate about the predicted values, which are smooth in the quasi

1-D prediction. This can be seen in Figures|3.2(a) and [3.2(b)}, which display the Mach number and

non-dimensional pressure variation along the center of the duct respectively. The pressure variation
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matches the predicted values almost exactly after the normal shock wave. The Mach number also

matches closely but has some constant error after the shock.

Figure 3.1: Mach Number Variation From PHASTA
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Figure 3.2: PHASTA results compared to compressible flow theory

The second test was to verify PHASTA’s ability to model conical shock waves correctly. For
this test, the first third of the centerbody of the inlet being studied was analyzed (Figure .
The conical centerbody has an initial angle of 15 degrees followed by smooth transition to a final
angle of 25 degrees. Supersonic inflow conditions were applied for the pressure, velocity, and tem-

perature, based off of relevant flight conditions with a freestream Mach number of 1.8 at an altitude
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of 50,000 ft. The simulation was inviscid, and no outflow conditions were applied. Figure
shows the results of the PHASTA simulation, which displays the Mach number variation past the
cone. This test used a fairly coarse mesh, which accounts for the fuzziness of the conical shock

wave location.

(a) Geomtery (b) Mach number variation

Figure 3.3: External compression section of the inlet

In order to validate the results of this simulation, the Taylor-Maccoll equations were solved.
As mentioned in Section the solution to these equations is exact for flow around a semi-infinite
cone. To accomplish this, a function was written in MATLAB which solves these equations to a
specified tolerance.For this comparison, the region just behind the first conical shock emanating
from the initial flow deflection angle was chosen. Table displays this comparison where it can
be seen that the flow variables from PHASTA match the predicted values very closely. It should
be noted that values from other regions of the flow were compared and showed similar precision.

The final test case was created to assess PHASTA’s ability to propagate small amplitude
disturbances with little to no artificial damping or phase lag. The test geometry consisted of a
straight, thin pipe with a square cross section and no change in cross sectional area or essentially,

a 1D duct. Two tests were performed on this geometry that included a step change in pressure
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Table 3.1: Supersonic Conical Flow Field

Taylo.r - Maccoll PHASTA | % Difference
Solution

Shock Angle 37.30° 37.05° 0.670

Mach Number | 1.659 1.646 0.784

Piy/Pyso 0.998 0.997 0.100

PQ/POO 1.244 1.259 1.206

Ts/Tx 1.064 1.066 0.188

applied at the inflow plane and a sinusoidal change in pressure applied at the inflow plane. In
order to accomplish these tests the time integrator function in PHASTA was altered to call the
new function before every time step. The new function then scanned all of the surface nodes of the
model. Nodes on the inflow boundary that were tagged with an ID number during pre-processing
were then updated with the pressure perturbation as a function of time.

Once the ability of the new function was confirmed, the 1-D test case was used to optimize
PHASTA'’s settings for unsteady simulations. Specifically, this model was used to determine the
effect of the mesh size, time step, and discontinuity capturing feature. These test cases were
performed using a second order accurate time integrator. The first test was performed by altering
the mesh size and time step. Table details the list of trials that were run. For these tests a
sinusoidal pressure wave was prescribed at the inflow with an amplitude of 100 Pa and a frequency
of 1000 Hz. The results of this test were analyzed by looking at the CFL number and the non-
dimensional wavenumber. The CFL number is a measure of how well the physics of the flow are
being represented. The Courant number should be less than 1 for this reason. If its greater than 1,
the simulation is propogating the solution faster than the flow can physically respond(Ref Singer
CFD PDF). Additionally, the non-dimensional wave number kh determines how well a sinusoidal
disturbance is resolved. According to Hughes [19] a non-dimensional wave number less than 0.6 is

desired to decrease the amount of damping and phase lag in the simulation. The results of these

tests are seen in Figures[3.4(a)|and [3.4(b)| where Figure shows a close up of one of the peaks.

From these figures it is clear that the simulations with a non- dimensional wave number more than
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0.6 have considerable damping (plots in red) and was the greatest determination for error. The

rest of the simulations had acceptable amounts of error and for computational time consideration,

a time step of At = le — 5(s) and grid size of Az = h/2 = 0.0125(m) were chosen as the optimal

combination for the remaining simulations.

Table 3.2: Time Step and Mesh Size Tests

Mesh Size(h = 0.025m) | h h h h/2 h/2 h/2 h/4 | h/4 | h/4
Time Step (s) 1e-05 | 5e-06 | 1e-06 | 1e-05 | 5e-06 | 1e-06 | 1e-05 | 5e-06 | le-06
Cr = (u+ c)ﬁ—; 033 |0.17 |0.03 |0.66 |033 |0.07 |1.32 |0.66 |O0.13
kh = hzf 0.66 |0.66 |0.66 |033 |033 |033 |0.17 |0.17 |0.17
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Figure 3.4: Pressure Response in 1D Duct comparing time step and mesh size

x107°

A second test was performed to determine the effect that the discontinuity capturing feature

has on the accuracy of the unsteady results. In PHASTA there are three types of discontinuity

capturing features; DC- Mallet, DC-Quadratic, and DC-minimum. Each is implemented by adding

an extra term to the SUPG method but with varying strengths.

These features are crucial in

obtaining a stable solution when shock waves are present. As such, one of these features must be
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Figure 3.5: Pressure Response in 1D Duct comparing discontinuity capturing settings

used for the actual inlet simulations. In the test case the same perturbation was added to the inflow
plane as the previous tests using a time step of At = le — 5(s) and mesh size of Az = 0.0125(m).
This test was run with each of the discontinuity capturing features and was compared to the base

run without this feature on. Again, a 100 Pa amplitude, 1000Hz sinusoidal perturbation was

applied at the inflow boundary condition. Figures|3.5(a)| and [3.5(b)| show the results of this test

which clearly illustrate that the DC-minimum feature should be used to avoid excessive damping
of the perturbation.

The final test compares PHASTA’s ability to propagate small amplitude disturbances to
those predicted by theory. In this test the same simple 1D duct was used to analyze a Riemann
problem as described in Knight [29]. The Riemann problem is an initial value problem in which
two flow states are separated by a partition or diaphragm as seen in Figure At time zero the
diaphragm is burst and the flow finds a new equilibrium as two characteristic waves and a contact
surface wave (or equivalently, a fast acoustic, slow acoustic, and entropy wave) move through the
flow field at u + ¢, u — ¢, and u respectively (Figure . Here u is the local velocity and c is
the speed of sound. The amplitude of flow variables of the waves can be predicted by solving
the Riemann problem as described in Knight. In PHASTA, this problem was set up for the 1D

duct case by placing the imaginary diaphragm at the inflow boundary condition. The solution



Diaphragm

State 1

u; py Ty

Uy Py Ty

State 4

L

2nd Characteristic

Contact Surface

Figure 3.6: Riemann Problem at t = 0 (Knight [29])

(SlOW Acoustic WaVE) (Entropy Wave)
/ K
State 1| |—> u-c |State 2 .—> u |State 3| b—> u+c |State 4
| S

L

15t Characteristic
(Fast Acoustic wave)

Figure 3.7: Riemann Problem at t > 0

39

was run using the optimized settings described previously. Table [3.3] compares the speeds of the

disturbance waves and associated jumps in pressure from the PHASTA results with that predicted

by the solution to the Riemann problem. From this table it can be seen that PHASTA accurately

models both the speed of the disturbance waves as well as the jump in flow states. Note that the

contact surface wave (or entropy wave) does not cause a jump in pressure although it does cause

jumps in temperature and density.

Table 3.3: Riemann Problem Results

Py (Pa) | P, (Pa) | P3 (Pa) | Py (Pa) | 67 (m/s) | 6¢ (m/s) | 6~ (m/s)
Ri Probl
1OMAni TTODM ) 11607 | 11647 | 11647 | 11597 | 826.1 531.1 | 236.0
Solution
PHASTA Solution | 11697 | 11646.9 | 11646.9 | 11597 | 822.4 531.9 | 238.1
Percent Difference | 0.000 0.001 0.001 0.000 0.448 0.151 0.890

From these results, we see that a change in single flow variable causes three disturbance waves
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to propagate through the flow field. An alternative method for representing this phenomenon
is detailed by MacMartin [40] and was briefly mentioned in Section In MacMartin, non-
dimensional perturbations to the flow variables (u, P, T, and/or p) are converted to equivalent fast
acoustic (1), slow acoustic (67), and entropy (6¢) wave disturbances using the conversion matrix
in Equation . These disturbance waves propagate through a general 1D flow at u + ¢, u — ¢,
and u respectively. The propagation delay of each wave at any point in the flow field can be found
using Equations in Section At any point, the flow properties in between the waves can
be found by converting a single disturbance wave to equivalent flow field perturbations using the
conversion matrix in Equation . Representing flow variable perturbations this way was found
to be the most convenient method and is how disturbances will be represented throughout the rest

of the paper.
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Before moving on to the steady state and dynamics PHASTA results for the actual inlet
model, it is necessary to discuss the results of these test cases in one more context as they explain a

more complex behavior seen in inlet model. Most notably, in the external compression flow field of
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the inlet. In the previous discussion, two types of tests were applied to the 1D duct flow case. The
first applied a 100 Pa amplitude, 1000 Hz sinusoidal pressure disturbance and the second applied a
single 100 Pa pressure step, both to the inflow boundary condition. These tests can be visualized
at the same time step during each simulation in Figure [3.8] and are labeled ’Test a’, and "Test b’
respectively. "Test b’ clearly moves through the flow field as two pressure jumps. Likewise, when
these two tests are presented side by side it can be seen that the sinusoidal pressure disturbance
test also moves as two pressure waves ,albeit sinusoidally varying ones. It can be seen that in the
region where just the first characteristic (fast acoustic wave) has moved through the flow field there
is a simple sine wave. Conversely, in the region where the second characteristic wave(slow acoustic
wave) has traveled there is a complex interaction of the two disturbances. In other words at a given
point in the flow field the interaction between the two overlapping is both unique and predictable.
More generally, the response at any given point is the response of three waves, including the entropy
wave, as mentioned before. For ease of presentation, pressure was reported here because it is only
affected by two of the three disturbance waves and is thus easier to visualize.

Pressure (Pa)

Overlapping pressure waves Single pressure wave jrem first characteristi .

I N ™
et [N I TN
I 2nd characteristic 1st characteristid
| |—> |—>
wave: u-a wave: u+a

Testb _

Figure 3.8: 1-D test example

”Test a” from Figure was repeated at discrete frequencies between 100 and 1000 Hz. The
response was measured at a distance of 1m from the inflow plane and the resulting max amplitude
was recorded. As mentioned before the pressure response to these disturbances can be modeled
simply as the overlapping of two equal amplitude pressure waves. Eqn. below is the simplified

version of two sinusoidal waves, with equal amplitudes A and propagation speeds of u+a and u-a
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respectively, added together.

P = Axcos (7rf (uic_uf—c>> *sin(wf <2t_uj—c_ua—cc)>

From Equation (3.3) it is clear that the resulting max amplitude at location x is simply the com-

(3.3)

bination of the applied perturbation amplitude A and the cosine term. Figure displays both
the results of the discrete frequency pressure perturbation tests and the predicted amplitudes us-
ing Equation (3.3). The Bode plot in Figure was created by taking the ratio of measured
perturbation amplitude to the applied amplitude for both the test case and predicted value from
Equation . As can be seen, the equation perfectly predicts the response of the test case at

each frequency in both magnitude and phase.
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Figure 3.9: Bode plot of 1-D test example

The behavior seen in Figure [3.9) can be expected whenever a sinusoidal flow variable pertur-
bation is applied to supersonic flow. Namely, that based on both location, flow state and frequency
of disturbance, different points in the flow field will have wildly different responses. For the pur-
poses of this research, these types of disturbances will be applied to the freestream, and as such,
the response of the external compression flow field will respond with a similar behavior. These

results show that a more sophisticated disturbance propagation model is needed for the external
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compression flow field than what was previously employed in Kopasakis [34]. This will become

more apparent in the ensuing 1D Model section.

3.2 Steady State PHASTA Results

(a) 3-D View (b) Y-Z Plane

Figure 3.10: 3D Inlet Model

i

Figure 3.11: Meshed Fluid Domain of 2D Model (X-Y Plane of the 3D Model)

In PHASTA, two models were created, a 3-D model(Figure and a 2-D model (Fig-
ure [3.11). The 2-D model is a 10° section of the Y-Z plane in the 3D model. PHASTA is strictly
a 3D flow solver so the domain still has three dimensions but the flow is restricted to streamwise
and radial directions. This was done to help understand what order of fidelity was needed for
different simulations. The thought being that a 3-D model was probably not needed for free stream
disturbances and the 2-D model would suffice. This would cut down on unnecessary computational
expense and allow for more trial to be run. Conversely, cases involving changes in angle of attack

would most likely necessitate a 3-D model but running 2-D model would help determine what dy-
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namics might be missing from the future Simulink model and help facilitate potential correction
factors if needed. So far both models have been confirmed against a previous GE model to provide
the correct steady state results.

All steady state results were obtained using the optimized setting determined in the previous
section. However the mesh size of dx = 0.0125m is only true of the bulk flow. Two areas employed
mesh refinement due to better resolve the local flow structure. As can be seem in Figure the
regions at the centerbody tip and the cowl lip were refined by a factor of ten. This was done to help
resolve the sudden change in flow direction in each area. Additionally, an extra 3m of straight duct
was added to the internal duct portion of the inlet with a mesh that slow transition to approximate
30 times coarser. This was done to artificially dampen solution noise that exists between the normal
shock and the exit plane. Without the this extra length, numerical perturbations can reflect off
the exit plane and persist in this region, causing longer convergence times and potential error in
dynamic results. This mesh was used for all of the 2D for all 2D simulations. The same mesh sizes
were revolved to produce the mesh used in the 3D simulations (36 times larger mesh).

Likewise, all of the 2D and 3D simulations used the same boundary and initial conditions. For
the current research only the cruise condition was considered and as such, the flow was supersonic
in the free stream and subsonic at the exit of the inlet’s internal duct. For these conditions it is
necessary to specify the entire flow state at the upstream boundary condition because the Navier-
Stokes equations have a hyperbolic mathematical form. Static pressure was used as the sole exit
boundary condition within the inlet as it was shown in Section [2.7] to be an accurate choice. All
surfaces, as well as the slip planes used to 'cut’ the 3D model and create the 2D model, were
treated as slip surfaces to adhere to the inviscid flow assumption. For the initial conditions, the
free stream variables were used in all regions external to the inlet and in the internal duct region,
the flow states were varied linearly from the free stream to he exit BC following the strategy from
the normal shock test case in the previous section. The boundary conditions and initial conditions
are summarized in Table [3.41

The first steady state tests were used to compare PHASTA’s results with simulations run by



Table 3.4: Boundary Conditions Used for PHASTA Inlet Simulations

Boundary Type

Boundary Condition

Inflow Py, Too,and Vi
Supersonic Outflow None
Subsonic Outflow P =Pg

Walls and Slip Planes

V.ii=0,0T/0x, =0

45

GE using the supercritical operating condition (Pp = 45,930 Pa) at the cruise altitude (Mo, = 1.7,

h=15.24 km). The results of the 3-D model represented in the x-z plane are shown in Figure|3.12(a)|

This figure illustrates the complicated flow field consisting of shocks, isentropic compression waves,

and expansion waves upstream of the normal shock. Using these results, the outflow conditions of

the inlet were measured by finding the integral averaged state at the exit plane (Py, My and m).

The outflow conditions of the 2-D model were obtained using the same technique. These results

were compared to those obtained by General Electric (GE) and are shown in Figure As

can be seen in this Table, both models match the GE model very closely, showing less than 1%

error in the flow variables of interest. Based on these results, the PHASTA models were able to

Mass Flow
M, | P,(Pa) (kg/s)
GE 0.530 | 45930 191
PHASTA 2D 0.523 | 45856 189
PHASTA 3D 0.524 | 45783 189

(a) 3-D model in x-z plane

(b) Steady state comparison

Figure 3.12: Steady state results
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obtain accurate steady state representations of the inlet at cruise.

Additionally, these results show that the 2D and 3D models provide adequate representations
of flow field at steady state. With this in mind, the inlet was run to steady state at four other
operating conditions using the 2D model to minimize computational expense. The operating con-
dition spanning fully sub-critical to super-critical, was controlled by varying the back pressure(Pp)
as a percentage of the back pressure at the critical operating point (Pp = 46,388 Pa). Table
and Figure display the total pressure recovery normalized by the freestream total pressure as
well as the mass flow rate at the compressor face normalized by the theoretical maximum captured
mass flow rate. The theoretical maximum captured mass flow rate is determined by the free stream
flow conditions and the radius of the cowl lip. Figure displays the steady state flow field for
four of these operating points. The most interesting feature from these simulations is the inlets
sensitivity to back pressure at the critical operating point (Figure . It can be seen that a
~1% increase in back pressure slightly alters the flow field by pushing the normal shock slightly
upstream to become subcritical (Figure . However, an additional ~1% increase in back
pressure causes the normal shock to move almost halfway up the inlet, resulting in large losses both

in total pressure and in captured mass flow rate (Figure [3.14(a))).

Table 3.5: Cane Curve Results
0.98 |
0.96 | Oper?t.i ne P Prs W2
. Condition Pp(critical) Pro Wcap
0”094 | ] Subcritical 1.023 0.8929 | 0.6276
K Subcritcal 1.012 0.9774 | 0.9741
0.92 - 1 Critical 1.000 0.9730 | 0.9846
0o | Supercritical 0.989 0.9664 | 0.9854
' Supercritical 0.972 0.9554 | 0.9854
0.88 : : :
0.6 0.7 0.8 0.9 1
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Figure 3.13: Cane Curve
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Figure 3.14: Operating Points

3.3 Dynamic PHASTA Results

With successful confirmation of the steady state results achieved, dynamic tests could be
applied. All of these tests used a second order time integrator and a step size of ts = le — 5s.
The first test performed involved applying sinusoidal pressure perturbations to the inflow plane of
the 2-D model (Figure . These perturbations were applied with an amplitude of 100Pa and
at discrete frequencies between 10 and 2000 Hz. The pressure response was then measured at the
outflow plane where the compressor face would be in the real propulsion system. The same test was
also performed with the 3-D model but for a fewer number of frequencies due to the computational
expense involved with the larger mesh.

Figure shows the results of these tests in the form of a Bode plot where the gain
is measured using the ratio of the max amplitude in pressure at the exit to the applied pressure

amplitude at the inflow. What’s important to note is that the 3-D test results overlap the 2-D



48
Location of

Applied
Pertu rbation\ pressure

47000

40000

130000

f20000

10000
9100

Location of
Engine Face

Figure 3.15: Location of perturbations shown on 2D model results

tests almost exactly. This was expected to happen because the flow field should not change around
the centerbody, because the steady state solution is axisymmetric and the applied disturbance
wave is normal to the primary flow direction. The results show that the 2-D model is an accurate
representation of the inlets response to flow pressure perturbations. Furthermore, its appears that
the inlets response varies significantly with frequency. It will be shown shortly that his is in fact

an artifact of the pressure hard exit boundary condition and the subsequent disturbance reflection.
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Figure 3.16: Bode plots of dynamic results

Following this test, the same perturbation was applied to the 2-D model at the operat-

ing points shown in Figure For these cases a subset of frequencies were tested at (f =
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50, 80, 100, 200, 400, and 1000H z). The results of these tests are shown in Figure From here
it appears that the inlets response varies significantly depending on both frequency and operating

condition. Again it will be shown, that this is the affect of the exit boundary condition.
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Figure 3.17: Response to pressure perturbations at various operating points

Another important feature of the PHASTA dynamic models is their response to variations
in angle of attack. A series of tests were performed on the 2-D model by applying sinusoidal
perturbations to the u and v velocity components to simulate perturbations in angle of attack. The
corresponding change in pressure was measured at the outflow plane and used to create the Bode
plot in Figure The angle of attack tests were performed once with a max angle of attack
of 0.05° and again with a max angle of 1.0°. The smaller angle is more realistic and is on the order
of expected disturbances. The larger angle of 1.0° was applied to determine if the inlets response
remained the same over a large range of disturbances even if it is unrealistic. From the results in
Figure[3.16(a)|it can be seen that the response is almost exactly the same for both situations. This
means that any transfer functions potentially developed from these tests will be accurate for all
expected perturbation amplitudes.

Additionally, A« perturbations tests have been run on the 3-D model. The max angle of at-

tack was 0.05° and the perturbations were applied at 6 select frequencies (f = 88,100, 215, 464, 681,
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Figure 3.18: 3D model angle of attack results

and 1000Hz). Two distant features of note stand out from these results. The first is that the re-
sponse at the compressor face differs depending on the azimuthal angle ¢. This can be seen from
Figure where the response to a 100 Hz perturbation is measured at 4 different locations
(¢ = 0°,90°,180°, and 270°) on the compressor face by averaging the response of 7 probes along
each respective line. The results show that the responses at ¢ = 90° and 270° are very small in
magnitude while the responses at the ¢ = 0° and 180° are large in magnitude as well as 180° out of
phase. This makes sense because the freestream disturbance is oriented along the x-y plane which
includes the ¢ = 0° and 180° azimuthal angles but is perpendicular to ¢ = 90° and 270°.

The second result of note is the preliminary Bode plot generated from the 3D case. As with
the 2D case, the Bode plot is created by measuring the magnitude of the pressure response at the
compressor face in relation to the applied angle of attack. In Figure it can be seen that
the results of the 3D case seem to match the data from the 2D case well at frequencies near 100
Hz but begin to diverge at higher frequencies. Whats more, is that there seems to be a phase shift
at these frequencies as well. This is thought to result from the fact that the disturbances are not

propagating completely in the x-direction and are free to reflect off of the wall of the internal duct.
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These results prove the need for using a 3D model when simulating angle of attack perturbations
and that a more complicated correction factor would be needed to reproduce these results in the
lower order 1D model.

The results of both the 2-D and 3-D A« perturbations tests seem to show the strong frequency
dependance that the pressure perturbation tests displayed. Namely, that the gain contained large
'peaks’ and ’valleys’ close together. This behavior is easily explained with the help of the simple
1-D test case seen in Section (3.1} The behavior seen in Figure [3.9]is the same as that seen in
both the pressure and angle of attack perturbation tests performed on the inlet (Figures
and . This behavior is the result of the perturbation wave passing the measured response
point, reflecting off of the outflow plane of the CFD domain, and overlapping with itself. This
‘overlapping’ occurs at a predictable time based on the speed of the perturbation and the length
of the additional computational space (~ 0.025s in these simulations). Furthermore, this affect is
only seen at frequencies below ~ 200 HZ due to the coarseness of the grid spacing in the additional
length which dampens the amplitude of the perturbations.

To illustrate this affect the same data was analyzed a second time but this time the response
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Figure 3.19: Bode plots of perturbation response before and after reflection
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was recorded prior to the arrival of the reflected wave ( ¢ < 0.025s). In Figures [3.19(a) and |3.19(b)|

it can be seen that the 'peaks’ and ’valleys’ apparent in the previous results no longer exist. Without
the reflected perturbation wave the response is similar to what has been previously shown for these
types of tests, as in Kopasakis et al. It is clear from these results that the including or excluding
the reflected wave has a significant influence on how the data is presented. If Figures [3.16| and
are now replotted without the reflected disturbance a slightly different picture is painted. In
Figure the main take away is essentially the same. Namely, that the 2-D and 3-D models
give the same response to pressure perturbations and are equal representations of the flow field. The
only difference is that the response is smoother. In Figure it is now more clear that the 2-D
model greatly overestimates the response to angle of attack perturbations. Previously, this could be
seen somewhat but the shape of the Bode plots due to the disturbance reflection masked how large
the difference was. The new results strengthen the belief that the 2-D model does not accurately
portray angle of attack disturbances. In hindsight the 2D simulations are fundamentally flawed.
The axisymmetric BC with this disturbance is like a ”ring” of velocity perturbations as you revolve
the applied velocity around the body which is inaccurate for angle of attack perturbations. Finally,
Figure [3.21] shows the updated version of Figure [3.17] with the perturbation reflection. From these
results, the response of the inlet now looks much less dependent on operating condition. The gain
follows approximately the same trend as the baseline case. One interesting trend can be gathered
however from this figure. It seems that, in general, the inlet in sub-critical operating conditions has
a larger gain than at supercritical operating conditions. This is most likely due to that fact that
the normal shock is further upstream and therefore has a higher average Mach number upstream
of the shock, which creates a larger pressure jump across the shock.

The main question from these results is; which type of simulation is more accurate? It can
be argued that both results have value. On the one hand, the length and grid coarseness of the
extra length of computation domain are arbitrary and thus the exact shape of the initial Bode
plots are unique to these simulations. However, in reality the inlet will have a compressor fan

attached to it at the point where the response was measured so it is not possible to place the end



93

dB
o
dB
u

Gain,
1
w
-
I
Gain,
=)
-

-10 ' ; -5
10 102 10
Frequency, Hz

n 0 T n 0
[0} Q
& _2000 | 1 8
o~ o _1000 | ]
[0} Q X
A _4000 1 a *\
~ ~ 2-D Model
0 -2000 t . * 1
a -6000 - 1 z * 3-D Model (¢ = 0)
r - 3-D Model (¢ = 180°)
& -8000 : ‘ & -3000 :

10t 10® 10° 10t 102 10°

Frequency, Hz Frequency, Hz
(a) Response to pressure perturbation (b) Response to angle of attack perturbation

Figure 3.20: Bode plots of dynamic results without perturbation reflection

5 T
m
T of */”‘\“ " i
g
@ -5 1
1]
-10 :
10t 102 10®
Frequency, Hz
§ 0 S w\w
;U"l -2000 Super-critical (-1% P)) * b
[9] 144
Super-critical (-3% P
8 _go00f[ * W (3% %) -
~ Critical
g _6000 || % Sub-critical(+1% P)) i
g Sub-critical (+2% P)
& -8000
10t 102 10°

Frequency, Hz

Figure 3.21: Response to pressure perturbations at various operating points without perturbation
reflection

of the computational domain there if the response is to be measured. The domain will have to
be placed somewhere and this behavior will occur in those cases as well. It is therefore important
to present these results as cautionary tale moving forward so future researchers are aware of this
potential issue. That being said, it is believed that the latter cases are more accurate and also

more valuable. The engines response to these perturbations is the most important take away from
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these tests. And while the compressor face will cause reflections to propagate upstream in the real
case, all but a few of these simulations showed that this did not affect the normal shock position.
In subcritical cases at a perturbation frequency of 50 HZ, the shock was shown to oscillate some.
However, this too is dependent on the location of the exit plane so the exact movement cannot be
considered accurate. For now the PHASTA results will be seen as accurately representing the inlets
response to perturbations prior to the reflected wave. In a subsequent chapter, the 1-D model will
use these results as a verification tool. Regardless of how the PHASTA results are viewed if the 1D
model uses the same domain and produces the same results it can be said to provide an equivalent

representation of the flow field.

3.4 External Compression Dynamic Results

Before moving on to the sections concerning the 1-D model development, it is important to
discuss the results of one final PHASTA simulation as it is motivation for the next section. As
mentioned previously, most quasi-1D inlet models in existence either ignore the dynamics of the
external compression region or use a simple time delay for the propagation of disturbances through
the region. A test case was performed using solely the external portion of the inlets centerbody.
This geometry was converted to a 2-D representation and run to steady state using inflow cruise
conditions (Mo, = 1.7, Ps, and T,). After this, probes were located in the flow field spaced evenly
in the x-direction and y-direction (400 total). Finally a step in pressure with an amplitude of 100
Pa was applied at the inflow plane and its propagation through the flow field was recorded. The
process is detailed in Figure [3.22

The results from this test can be seen in Figure [3.23] Here, the disturbance was recorded at
three locations marked with a star as seen in Figure In Figure the y-axis variable
” Pprime” refers to the pressure rise due to the perturbation where the local steady state pressure
has been subtracted out. As predicted, the disturbance propagates as two distinct waves in the
free stream, which can be seen in Figure [3.23(b). However, one feature stood out from the test

that differed from expectations. Namely, that the rise time to the new steady state within the
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Figure 3.22: Dynamic Test of Eternal Compression Flow Field

shock field did not occur in two distinct steps as was the case with the simple 1-D test case in
Figure 3.8 (Test b) and as is seen at the free stream location(green data) of Figure[3.23(b)] Instead
three steps are seen at the points within the shock wave. The first and last are due to the fast
and slow acoustic waves as was expected. The second wave however, was due to the entropy wave
which normally does not affect the pressure response downstream of a disturbance. This case differs
from the previous 1-D test case due to the conical shock wave. Consequently, the entropy wave

temporarily changed the shock angle as it passed through, causing a jump in flow variables.

0.005  0.01 0.015 0.02
time (s)

(a) Location of the three example probes (b) Response pressure step perturbation

Figure 3.23: Preliminary external compression dynamic results
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Additionally, the slow acoustic wave is seen to approach the new steady state condition
asymptotically. The reason for this behavior, as will be shown in the next section, is because the
response at any given point in the shock field is due an upstream region of influence predicted by
characteristic lines. Disturbances will propagate through the flow field at different speeds depending
on the local velocity and speed of sound. The response at a given point is therefore the result of
the single step disturbance being distorted in time by the local flow properties at different points
within its zone of influence. Previous attempts to model the external compression field use the states
predicted by isentropic relations combined with a time delay to compensate for the propagation
of disturbances. The results of this test show that a more sophisticated technique is needed to
accurately capture the dynamic response of the external compression flow field. Furthermore, this
test illustrates the need for a high fidelity model to help guide the development of the lower order

model.



Chapter 4

External Compression Flow Field Modeling

It was seen in the previous chapter that perturbations move through the external compression
flow field in a nontrivial manner. The following chapter will be devoted to developing a dynamically
accurate 1-D model for this portion of the inlet. First an accurate steady state method is presented
which was developed using the axisymmetric method of characteristics (MOC) combined with a
Taylor-Maccoll (TM) equation solver. The accuracy of the TM solver is first verified using a GUI
from the NASA Glenn website. From here, the development of the MOC code is presented and
then verified using the results from PHASTA. Then a method for transforming a 2-D flow field
into an equivalent 1-D representation will be presented. This is necessary for its implementation
in the 1-D model. Lastly, a novel approach to modeling the unsteady dynamics of the external
flow field will be presented. This approach combines aspects of previous models [I], 40], where flow
field disturbances are decomposed into characteristic wave disturbances with a new method for

propagating these disturbances throughout the flow field.

4.1 Taylor-Maccoll Equation Solver

The axisymmetric MOC is used to solve the steady state solution of the external flow field but
this method requires a known solution state to ’seed’ it. Fortunately, the TM equations accurately
represent the flow at the tip of the centerbody. As mentioned in Section [2] the TM equations are
accurate for semi-infinite cones in supersonic flow. The initial portion of the inlet’s centerbody

has a constant flow deletion angle and therefore fits this description. The process for calculating a
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solution to the TM equations was described in Section 2] and will be briefly reiterated here.

Under the assumptions just described, the flow variables are constant along ray emanating
from the cone’s tip and the Euler equations, written in spherical coordinates, can be reduced to a
single ordinary differential equation (the TM equation). This equation has no closed form solution
so it must be integrated numerically. There are two approaches that can be used to accomplish this.
The first is the direct method that starts by solving for the flow variables at the cone”s surface
and then integrating the Taylor-Maccoll equation until a boundary condition is matched at the
shock wave. The second is the inverse method, which is used in this research, and reproduced from
Anderson[4]. The inverse method starts by assuming a value for the angle of the oblique shock wave
and calculating the Mach number and flow direction behind the shock using the theta-beta-Mach
relations[4]. The remaining distance between the cone’s surface and the shock is broken up into
incremental flow angles. A numerical integrator can be used to solve for the flow field. If the correct
shock wave angle is used the normal component of velocity will be zero. In most cases this will
not be true for the first guess so an iterative process must be used. Once the correct shock angle
is found within a prescribed error tolerance the flow field around the cone will be correctly solved
for.

For the purposes of this research, the above described method was programed in Matlab and
the 4" order accurate Runge-Kutta ODE solver ODE45 was used to iterate the TM equation. The

results of this process compare favorably to those from the GUI on the NASA GRC website [20]

(Figures|d.1(a)land|4.1(b))). As mentioned, the code solves the Taylor-Maccoll equations numerically

and is guided by the user set tolerance of the normal velocity error at the cones surface. Figure 4.1
shows that favorable results can be obtained with a relatively low error in the calculated shock
angle by prescribing a relatively high error tolerance. This resulted in very quick calculation time
(< 2 sec). It should be noted that the equation solver behind the GUI on the NASA website most
likely uses either the direct or inverse method to solve the TM equations. It is not known which
method is used the process is iterative in either case and similar error tolerance must be specified.

The user is not given the option to set this tolerance which is most likely the reason that the results
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do not converge exactly. Given that the results of the TM solver used in this research do converge

after a prescribed error tolerance, it is likely that the final values achieved are more accurate.

Shock Angle Comparison (Cone Angle = 10°, M_=2.0)
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Figure 4.1: Taylor-Maccoll solver results compared to NASA website [20]

Axisymmetric Method of Characteristics

Figure 4.2: Axisymmetric MOC mesh generation (Anderson[4])

The MOC was chosen to model the external compression flow field because it is the best

combination of accuracy and computational speed that satisfies the assumptions for this model. In

this region of the flow field, the flow is axisymmetric, supersonic, irrotational and is assumed to
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be inviscid and therefore the axisymmetric MOC is applicable [4]. In Section the method of
characteristics was briefly described. Its implementation is a little more nuanced and the source
material [4] that the code is based off of provides an outline but not a complete description of how
to apply it. For this reason, there likely exists several equally valid approaches to using the method,
therefore some time will be spent on exactly how the method was used in this research.

The MOC works for supersonic, unsteady, irrotational flow because both characteristic lines
point downstream. For this type of flow, Equation describes the direction of both the positive

and negative characteristic lines at any point in the flow field.

<§Z>Ci = tan (0 £ ) (4.1)

. 1
p=sin~ "t <M> (4.2)
Here 0 is the local flow direction, p is the Mach angle which is found from Equation , and
C corresponds to the positive and negative characteristic lines. For these equations, cylindrical
coordinates are assumed and x and r correspond to the axial and radial directions respectively.
Along these lines the compatibility equations describe the variation of the flow properties. They

are seen represented as in Equation (4.3]).

d0Fv) ! (d>
v = —
Cx VM2 —1+coth \ T

v+l 1 (v -1
=4/ ——t — (M2 —-1)—1t M2 -1 4.4
v 'y—lan \/(’y—i—l ( ) — tan (4.4)

Here, M is the local Mach number, « is the ratio of specific heats and v is the Prandtl-Meyer

function seen in Equation (4.4). If the flow state is known at two adjacent points, the flow at a new
point can be determined by finding the intersection point of the positive characteristic line of one
initial point and the negative characteristic line of the other point. This is seen in Figure 4.1(b)]

where the negative characteristic of point 1 intersects with the positive characteristic of point 2
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at point 3. At point 3, the compatibility equations are solved numerically and the solution
is found. Therefore, if a know line of data points is located at some point upstream, the entire
solution of the flow field can be determined using this process. The exact way in which this was
accomplished will now be shown.

Unlike two dimensional supersonic flows, both the characteristic line and compatibility equa-
tions are described by ODEs which require a numerical method to solve for them. Using the forward

difference method Equations (4.1)) and (4.3)) can be recast as Equations (4.5) and (4.6) between

two points (i and j) in the flow field:

(Tﬂ' - ”)Ci = tan (0; + ;) (4.5)

1 T —T;
6% v, = () + 05w
. \/ M2 — 1= cotb; K .

If Equations (4.5) are expressed in terms of the flow state at points 1 and 3 using the positive

(4.6)

characteristic version of Equations (4.5) and the flow state at points 2 and 3 using the negative

characteristic version of Equations (4.5)), they can be combined algebraically to find the location of

point 3 resulting in Equations (4.7)) and (4.8):

xatan (03 — po) — xitan (01 + p1) —re+ 11
tan (02 — po) — tan (01 + p1)

xr3 = (47)

ry = (w3 — x2) tan (02 — p2) + ro (4.8)
Likewise, if Equations (4.6]) are expressed along the positive characteristic line from point 1 to point
3 and along the negative characteristic line from point 2 to point 3, they can be combined to find
the flow direction 6 and the P.M. function v at point 3.

O3 =5 [(0+v)3+ (0 —v) (4.9)

N
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[(0+v)3 — (0 —v)] (4.10)

| =

vy =

These equations hold for points that are in the region between the centerbody surface and the
conical shock wave. For points on the surface, the flow angle is known so the negative characteristic
line coming from a point just above the surface (point 4 in Figure 4.1(b)|) can be used to find the
state of the flow on the surface (point 5 in Figure|4.1(b)|). Using the negative characteristic version
of eqns and the geometry of the surface the new point can be found at point 5. Additionally,

the PM function can be found from the negative characteristic form of Equation (4.6)) along with

the known flow angle 5. This results in eqns (4.11)) and (4.12)):

1 Ts — T4
0+v) = < >+ 0+v 4.11
O = A1 ot \ )TV (.11
vs = (6 + )5 — 65 (4.12)

Likewise, points near the conical shock wave require similar treatment. For points on at the
shock wave, the flow angle is also known so the positive characteristic line coming from a point
below the shock (point 6 in Figure can be used to find the state of the flow on the surface
(point 7 in Figure . Using eqns and the assumed initial shock angle, the new point

at the shock can be found. From here, the positive characteristic form of the PM function can be

found from Equation (4.13)).

B 1 <r7 -6
VME — 1+ cotb T6

However, in this case the shock angle itself can change due to the influence of flow behind it. For

(0 —v);

> +(0—v)g (4.13)

these points an iterative process is used were the shock angle calculated previously is used to find
the states behind at point 7 using the theta-beta-Mach Equation. The values for § and v predicted
from this local shock angle is compared to that predicted by Equation (4.13|). If the difference is

too large a new guess for the local shock angle is used and the process is repeated.
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Figure 4.3: Axisymmetric MOC mesh

The above process describes how individual mesh points are created but not the entire process.
Overall, the MOC solutions starts by determining the initial shock wave and the solution in the
semi infinite cone portion of the centerbody using the TM equation solver. Using this solution the
MOC method can be seeded with an initial data line (green points in Figure. These points are
interpolated from the TM solution and their grid spacing (Ar) was shown to influence the accuracy
of the final MOC solution. A finer grid spacing initially led to a more accurate final solution
but also increased computational expense. From this initial data line new points were created
by looping over the initial points and creating new mesh points using Equations — for
interior, surface, and shock points. From here a new line of data down stream was created and the
process continued (red points in Figure . This process had to altered however because it was
found that the mesh points concentrated around compression waves emanating from the curvature
of the centerbody in the isentropic compression region. Left on its own, the mesh generation process
stalled as the mesh points became too concentrated and each new line of data was generated at
shorter and shorter distances downstream. This issue was overcome by creating a conditions that
removed new points if they were to close to pre-existing point from a previously created data line.

With this fix the solution was generated successfully. One interesting takeaway is that this process
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helps visually the flow field just by the grouping of mesh points. The compression waves do exist

in the flow field and this grouping of mesh points as seen in Figure illustrates where they are.
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Figure 4.4: Comparison of MOC and PHASTA solutions

To evaluate the accuracy of this method, the results from the previously discussed PHASTA
simulations were compared with it. To do this, probes were placed in both the PHASTA and MOC
solution fields as seen in Figure |4.4(a)l The flow states were then interpolated from the solutions
at each probe point. Figure shows the relative error at each probe location between the two
solutions. As can be seen in this figure, the MOC solution compares to PHASTA extremely well.
In all but a few locations the percent difference was less than %1. Similar tests were performed for
the flow variables resulting in the same level of accuracy. From, these results it was concluded that
the MOC formulation used here provided an accurate steady state representation of the external

compression flow field.

4.3 Equivalent 1-D Representation of a 3-D Flow Field

With the confirmation of the MOC code as an accurate representation of the external flow
field, it is now an appropriate point to discuss how this will fit into the 1-D model. The output

of the MOC is a 2-D solution field spanning the axial and radial directions. For implementation
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into the 1-D code, an accurate 1-D representation is needed. The reason being, is because the
internal duct portion during critical(plane A Figure and supercritical (not shown) operation
and the flow field aft of the normal shock during subcritical operation(planes B and C Figure
is modeled using quasi 1-D equations. These equations need the MOC solution as an upstream
boundary condition in order run. Initially, the flow state(P, p, T, etc.) at a given x location was
averaged and used to determine the basic conservation flow variables U. However, this approached
resulted in large errors in mass flow rate and thus compromised the total solution. For this reason,
the method for determining an equivalent 1-D flow field found in the LAPIN report [57] was used.

NEED EQUIVALENT ONE-DIMENSIONAL
UPSTREAM BOUNDARY CONDITIONS
AT ANY PLANE

Figure 4.5: Equivalent 1-D States (LAPIN report [57])

In the LAPIN report the process of converting a 2-D flow field to an equivalent 1-D represen-
tation is detailed. The derivation presented in this report contains an error so a brief derivation will

be shown here. For any given plane in the external flow field (A, B, or C in Figure , the area

integral average flux through that plane can be calculated with Equations (4.14)), (4.15)) and (4.16]).

Continuity:
le/pudA (4.14)
A
Momentum:

Q2 = /A (p+ puV)dA (4.15)
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Energy:

Q3 = /A (pEior + p) udA (4.16)

Here, V is the total velocity and u is the velocity component in the x-direction. When evaluating
MOC results, the integrals in these equations were evaluated using a combination of the trapezoidal
rule and Richardson extrapolation. The details of these method are standard and are detailed in
(reference numerical methods class notes). Conversely, when PHASTA results were being evaluated,
the post processing tool Paraview was used to evaluate these equations by taking advantage of its
surface integration tool chain. In Paraview, a 2-D plane or ’slice’ can be placed in a 3-D solution
field and a built-in integrator finds the integral over the slice area. This was accomplished by
writing a code in Python which looped over the solution files for a given number of time steps,
performed the integration using Paraview, and saving the files the a .csv file. From there the filed
is converted to a Matlab file to continue post-processing the data.

In terms of the conservative flow state variables U, the Q equations can be represented as:

Continuity:
Q1 =Us (4.17)
Momentum:
3—7 U2
= -1 U. — | | = 4.18
Q2 [(7 ) 3+< 5 )(Ulﬂ (4.18)
Energy:

oo () (D))

It was found that the equation for the flux term in the momentum equation had an error by re-

dressed these equations. The (y — 1) Us term is listed as (74 1) Us in the LAPIN report. This
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caused the initial solution to be incorrect. In addition to this error, the following equations had

to be re-derived to calculate the conservative flow variables. The original equations were found to

be inaccurate. From here, the conservative flow state variables U can be solved for using Equa-

tions (4.20)), (4.21)) and (4.22]).

Us = @1

Uy, —b++b2—4ac

71_ 2a

Q2 3—7 Us
Us = - 2
T 20-0%h

where,

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

From this point on, this method will be used to transition from a 2-D flow field to a 1-D

representation when necessary.

4.4 Dynamic Modeling of the External Compression Flow Field

With the steady state solution for the external compression flow field calculated successfully

using the MOC, it was then possible to create a dynamic model. Initially the method detailed

by MacMartin and mentioned in Section was tested. The initial results were promising but
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ultimately the method was not able to be adapted to the external compression flow field. Although
this method was unsuccessful it did provide several insights that were key in development of the
final model. Namely, the decomposition of flow variable perturbations into disturbance waves and
the propagation speed of these waves. Ultimately, a new method was created where temporary
steady state solutions were found for each of the disturbance waves created using the MOC and
the transition time between these solutions was modeled using their propagation delays along

streamlines. The details of the process will now be shown.

(a) Supersonic Expansion

(b) Supersonic Compression

Figure 4.6: 2D duct test case PHASTA simulations

To test the method created by MacMartin, a simple 2-D duct with an area ratio of 1.454
between the inflow and outflow planes was created in PHASTA. The duct could be run as either
supersonic expansion (Figure or supersonic compression (Figure depending on the
choice of the inflow plane. For both of these simulations, PHASTA was run to steady state using
the conditions in Table where the flow remained supersonic throughout and therefore no exit
boundary conditions were needed. In both cases, after steady state was achieved a step in pressure
of 100 Pa was applied to the inflow plane and the response was measured at a distance of 1.05m

downstream.
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Table 4.1: 2D test case boundary conditions

Boundary Condition Superso.nic Superson.ic
Expansion Compression

Inflow M 1.8 2.5

Inflow P (Pa) 11597 11597

Inflow T (K) 216.65 216.65

Slip Walls V-i=0,0T/0x, =0 |V -7=0,0T/0x, =0

Next the method detailed by MacMartin was implemented in Matlab. First, the applied
pressure perturbation of dp = 100Pa was decomposed into three disturbance waves using Equa-
tion . Then, the time delay of each disturbance wave was computed using Equations .
Next, the amplitude gain was calculated for the fast and slow acoustic waves using Equation .

Finally, the disturbance waves were converted back to flow variables using Equation (3.2]). As can

be seen in Figures |4.7(a){ and [4.7(b)} this method did an excellent job of predicting both the am-

plitude and time delay of the disturbance waves created by the pressure perturbation. Here the
change in pressure at the measured down stream point (x = 1.05m) due to the applied pressure

perturbation is shown.
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0 ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.005 0.01 0.015 0 0.002 0.004 0.006 0.008 0.01
time(s) time(s)
(a) Supersonic Expansion (b) Supersonic Compression

Figure 4.7: 2D duct test case results

With these results, the MacMartin method was then applied to the external compression



70

flow field of the inlet. In this case the MOC was used to find the steady state solution of the
external compression portion of the inlet. Freestream conditions were applied at cruise altitude to
the inflow plane as summarized in Table In this approach, the integral area average of the
MOC solution was taken at 33 equally spaced locations in the axial direction, spanning the entire
external flow field, from the freesteam to where the cowl lip region would be located in the real inlet
case (z = X¢r). This was done using Equations (4.14)- (4.22). The MacMartin method that was
detailed in the 2-D duct case was then run using this 1-D representation using the same pressure
perturbation of dp = 100Pa . To verify this test, the external compression PHASTA model seen
in Section was run to steady state using the boundary conditions in Table and the mesh
and time discretization setting discussed in Section For this simulation, no exit boundary
conditions were applied, as the flow remained supersonic throughout the whole solution field. The
simulation was then perturbed with a pressure perturbation of dp = 100Pa at the inflow plane.
The response was recorded at the cowl lip location(x = X¢p) at a sampling rate of 20000Hz by

using the Python script and the Paraview post processing program discussed previously.
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Figure 4.8: MacMartin model applied to the external compression flow field

As can be seen in Figure [1.8] the MacMartin method applied to the reduced MOC solution
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does not do an adequate job of simulating the dynamic response of the flow field. There are two
reasons for this. First, the time delay predicted using this method predicts the disturbance to move
as two step waves. The PHASTA results clearly show that this is not accurate especially in the
case of the slow acoustic wave. The reason, as discussed in Section is because the disturbance
waves are warped by the axially and radially varying speed of sound and velocity throughout
the flow field. The second reason, is that by reducing external compression flow field to a 1-D
representation, the affects of the conical shock wave are neglected. In MacMartin, an equation is
derived for the propagation of disturbance waves through a normal shock (Equation (2.16|)). Here,
he discusses the affect of the normal shock on amplify or damping the disturbance waves. However,
this equation does not apply to oblique or conical shock waves. Additionally, without accounting
for the conical shockwave, the affects of the entropy wave are completely missing. This happens,
because although the entropy wave does not affect the pressure directly, it does affect the strength
of the shock wave as it passes through it and thus indirectly raises the pressure aft of the shock.
One solution to this problem, would be to re-derive the normal shock equation in MacMartin for
oblique and conical shockwaves. However, this, if successful, would only account for the correct
amplification factors across the shockwave and not account for the correct time response. This is
problematic because one of the main goals of this research is to successfully model the response
to sinusoidal perturbations. As can be seen in Figure [£.8] the length of the response to a pressure
perturbation in time is on the scale of the frequencies of interest. Therefore, using a method that
does not accurately capture this affect would result in completely erroneous responses to sinusoidal
perturbations.

The solution to this issue involved using a novel approach to propagate disturbances through
the flow field. To start the solution, the steady state problem was solved using the MOC. Then the
incoming flow variable disturbance was decomposed into the 3 constituent disturbance waves (67,
0¢ and ¢67) using Equation . Then each of these waves was individually converted back into
flow variable disturbances using Equation . Next, each of these disturbances represented in

flow state variables are used as freesteam inputs to find a new temporary steady state solution using
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Figure 4.9: Decomposition of disturbance into separate 1-D steady states

the MOC, resulting in four overall MOC solutions for the entire flow field. The 1-D representation
of at the plane of a given x-location 7 is then found using Equations (4.14)- (4.22)) for each of these

solution states which is represented by Equation (4.26)). This process is illustrated in Figure

U; = U U Us Uy | (4.26)

However, this process only provides the temporary steady state solutions and not the full transient
response. To accomplish this, the initial steady state solution is interpolated along streamlines
placed at a constant inflow seed height Ay a seen in Figure Then the streamlines are
looped through and Equations are used to determine the time that it takes each disturbance

wave to be translated along a given streamline. The ”j”

stream line is then assigned a vector
seen in Equation (4.27) which stores this information for each streamline that corresponds to the

disturbance wave solutions in Equation (4.26]).

T(j) = [to 77 ¢ 77 (4.27)
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Finally the solution to either a step or sinusoidal freesteam flow variable disturbance can be
calculated by assuming that the 1-D representation of the flow field a given x-location ¢, transitions
through each of the temporary steady state MOC solutions as the disturbance waves are propagated
and distorted along the streamlines(Figure . The process is as follows. First, the time for
the entire simulation is set, which spans from ¢ = 0 to ¢ >= T, where T is the time it takes the
slowest disturbance wave to travel the slowest streamline. Then a time step size is prescribed and
the total number of time steps are looped through. At each time step the number of streamlines
are looped through and the local steady solution is interpolated from Equation using the
time step and the current streamlines disturbance wave delay vector Equation . At a given
x-location i, the plane normal to the axial direction is divided in N, points and at each point
the local solution is interpolated from the streamline solutions. Finally, the 1-D representation is
determined using Equations — resulting in the full unsteady result at the plane of a

given x-location Uj;(t).

y (m)

x(m) X (m)

(a) Streamlines at initial steady state (b) Example at time 1

Figure 4.10: Streamlines in the solution field

For example, assume at some time t; the fast acoustic wave has arrived at the location

labeled in Figure along some streamlines but not others. This is seen in Figure 4.10(b)|
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where the green streamlines represents streamlines along which the fast acoustic wave has arrived
at the chosen plane and the blue streamlines represent streamlines where it hasn’t. At this time

(t1) the solution as a function of radial direction r can be represented in Equation (4.28)).

Ul(ti,r) = [Uss(ro), UsS(ry), ..., , ] (4.28)

Here the green terms correspond to the steady state solution of the fast acoustic wave and the
blue terms correspond to the initial unperturbed steady state solution. The current equivalent
1-D solution at the measured exit plane can be calculated from Equation . This process is
repeated at every time step allowing the solution to capture the transient response of the external

compression flow field.

Ut)) = % /A Uty r)dA (4.29)

A similar process is used for sinusoidal free stream perturbations. In this case however, the
response is the result of the superposition of three overlapping sine waves offset by their respective
time delays. Again, the free stream flow variable is converted into the three principal disturbance
waves and then converted into four separate steady state solutions. Here the time vector is set in
the same way and the number of time steps and streamlines are looped over. At each time step,
Equation is used to find the response for each streamline. Here 7 is the time delay associated
with each wave and the amplitude results from the difference between the steady state of each wave.
Each term is added after the current time step exceeds the time delay for a given disturbance. As
with the step disturbance, the final result is obtained by taking the area integral average of all of

the streamlines at the exit plane using Equation (4.29)).

U(t,r) =U>®(t,r) + (U (t,r) —U>(t,r))sin[2rf(t — 71)]
+(U(t,r) — Ut (t,7))sin[27 f(t — 7°)] (4.30)

+ (U (t,r) =U(t,r))sin2nf(t — 77 )]
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Table 4.2: Temporary inflow conditions for each disturbance wave due to pressure disturbance

Inflow | Unperturbed | Fast Acoustic | Entropy | Slow Acoustic
Variable | Freestream Wave 6 Wave §°¢ Wave 6~
M 1.7000 1.7020 1.7041 1.7000
P (Pa) 11597 11647 11647 11697
T (K) 216.65 216.92 216.38 216.65
u (m/s) 501.57 502.48 502.48 501.57

To test the effectiveness of the new dynamic external compression model, two tests were
created. For both test cases, the steady state solution was first found at the cruise conditions
seen in the second column of Table In the first test a step input in pressure of 100 Pa was
added to the steady state solution. Using the method just described, this perturbation is used to
find three new temporary steady state solutions with the corresponding free stream inputs seen in
Table Using this method the dynamic response at the exit plan (x = X¢p) was calculated. To
verify the accuracy of this method, the external compression model in PHASTA (Figure [3.23(a))
was run to steady state using the first column of Table and was then perturbed with the same

100 Pa step in free stream pressure. The equivalent 1D representation was then recorded at a

sampling frequency of 20,000 Hz using Equations (4.14)- (4.22)). Figures 4.11(a)l [4.11(b)} and

compare the response in conservative flow variables (U;) at the cowl lip location, between
the PHASTA simulations and the new dynamic model. As can be seen from these figures the new
method matches the results from PHASTA almost exactly. Not only is the amplitude of each wave
predicted well but so is the transient response in between the arrival of each disturbance wave.
For sinusoidal disturbances, it is crucial that both of these features are captured. This is seen
in the second test where the same steady state solution was perturbed using a 100 Pa amplitude,
500 Hz freestream pressure disturbance. In this case, the same temporary steady solution were
used as in the previous test, as seen in Table to determine the relative amplitudes of each

wave expressed in Equation (4.30). Using the the new method, the response in conservative flow

variables(U;), is seen in Figures [4.12(a), [4.12(b)l and As with the previous case, the

response is compared to PHASTA using the same steady state solution and sinusoidal pressure
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Figure 4.11: Response to 100 Pa freestream pressure step

perturbation. From these figures, it can be seen that the new external compression dynamic model
matches the PHASTA results almost exactly.

From these results and those of the previous test it is concluded that the new model is an
accurate representation of the dynamics of the external compression flow field in response to low
amplitude flow field perturbations. The formulation of this model is believed to be physically valid

for the following reasons. First, in one dimensional flow it has been shown that single flow field
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Figure 4.12: Response to a 500 Hz, 100 Pa freestream pressure disturbance

perturbations create the three disturbance waves used in this modeling process to find the new
temporary steady state solutions. Since the perturbation is applied at the free stream this portion
of the flow field can be approximated as 1-D. Additionally, these waves are shown to propagate
at u + ¢, u, and u — ¢ based on the local flow conditions. In the true three dimensional case,
the disturbances will propagate along characteristic lines throughout the flow field, so that each

portion of the disturbance wave actually spreads out in a fairly complicated manner. This is why
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the individual probe points in Figure [3.23]in Section [3.4] show a similar behavior as the 1-D average
and not three distinct steps as would be expected if the disturbances actually moved solely along
streamlines. This method uses the approximation that the disturbances move along streamlines
but in the 1-D case this is considered valid because we are interested in the average 1-D cross-
sectional response of the flow field and this approximation is in fact a 1-D average of how these
disturbances would propagate along characteristic lines. For this research the 1-D approximation is
more valuable because if the disturbance waves were propagated along characteristic lines, as in the
3-D case, the method would essentially amount to an unsteady MOC formulation which would be
much more computational expensive. In the end the 1-D average would be taken anyways, so there
would be no advantage to doing this, especially considering how accurate the current method is.
In the next section, this model will be combined with other methods discussed in the Background

Section to piece together a complete 1-D dynamic inlet model.



Chapter 5

Quasi 1-D External Compression Inlet Model

The main purpose of this research is to create a quasi 1-D external compression inlet in the
Matlab environment. To reiterate, the inlet model should be accurate in both steady state and
dynamic operation over a range of operating points spanning subcritical, critical, and supercritical
operation. With the creation of the dynamic external compression model detailed in the previous
chapter, it is now possible to discuss the overall inlet model. In this chapter the different modeling
regions of the inlet model seen in Figure [2.17) will be discussed in detail. First, the external
compression model will be slightly modified to accommodate a moving boundary between the
external field and the internal duct modeling. This region is separated by the normal shock during
critical and subcritical operation. In these situations the normal shock can move upstream and
downstream and the inlet must capture this movement correctly. Next, the internal duct modeling
which uses quasi 1-D CFD is detailed. This region is modeled using the MacCormack method as
stated in the Background Section. Next, the cowl lip spillage model necessary for critical and
subcritical operation will be discussed. Initially, the method from the LAPIN report discussed in
Section [2] was used. As will be shown, this method was only able to be implemented for a specific
operating point and was extremely unstable. To remedy this, a new method was created using
data from the PHASTA simulations. Next, the exit boundary conditions used for this modeled will
be discussed. The method detailed in Paynter is used and is compared to the original constant
pressure boundary condition for accuracy. Finally, the results of the reduced order model will be

compared to the PHASTA simulations. It will be shown this model matches PHASTA with very
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low error for both steady state and dynamic operation for all of the operating points tested.

5.1 External Compression Flow Field

The external compression portion of the inlet is modeled using the method detailed in the
previous section. To recap, this model use the MOC combined with a Taylor-Maccoll equation
solve to determine the steady state solution of the flow field. Flow field disturbances are converted
into characteristic disturbances waves which are used to create three new temporary steady state
solutions. The unsteady solution is determined by assuming that the flow field transitions between
these solutions along streamlines and the integral area average is taken at each time step at a
prescribed location. In the previous section this was done at the end of the external compression
flow field where the cowl lip or start of the internal duct is located. For supercritical operation this
is accurate because the normal shock is located within the duct and the boundary between external
compression flow field modeling and quasi 1-D CFD is at this location. However, for critical and
subcritical operation the normal shock is located outside of the cowl lip. In these cases quasi 1-D
CFD is used to model everything downstream of the normal shock the the external compression
flow field must be used to find the equivalent 1-D solution upstream of the normal shock. For this
reason, the external compression model was modified to have the equivalent 1-D state taken at
equal spaced locations from the tip of the centerbody to the cowl lip region. The grid spacing of
these locations is determined by the grid spacing of the internal duct domain.

With this modification, the external compression model can be incorporated into the overall
inlet model. First the free stream Mach number (M), pressure (Ps), and temperature (Ts)
are prescribed and the initial steady state solution is determined using the MOC and the TM
equation solver. Then, using the grid spacing determined by the internal duct model, the external
compression flow field is reduced to an equivalent 1-D solution using Equations — from
the freestream to the cowl lip location. This solution is then saved so that future simulations
at these conditions do not require the flow field to be solved again. A benefit of the completely

supersonic flow field is that the downstream flow field in the internal duct does not the affect the
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solution so it can be used in any simulation under these conditions. Next, if a flow field perturbation
is applied, it is converted into the three characteristic disturbance waves DELS. The MOC is used
to determine the steady solutions for each wave and the equivalent 1-D solution is determined for
each location from the freestream to the cowl lip location. Again, this solution is saved for possible
future simulations because regardless of the perturbation type or frequency, these disturbance wave
solutions can be reused to save computational expense. Finally the specific perturbation type(step
or sinusoidal) is solved for using the methods described in the previous section. This results in the
entire solution for the external compression flow field (expressed as UF(z,t)) independent of the
internal duct solution which will be described in the following section. This decoupling of solutions
is again possible because internal duct flow field does not affect the upstream solution in the purely

supersonic external compression flow field.

5.2 Internal Duct Modeling

The internal duct portion of the supersonic inlet is modeled using quasi 1-D CFD. The
domain spans either the cowl lip location or the normal shock to compressor face depending on
operating condition. As mentioned in the Background Section , if it is assumed that the flow
is quasi one dimensional, an ideal gas, inviscid, and has no external heat sources, then the quasi
1-D CFD Equations , , , and can be used to model this portion of the
inlet. The method used to solve these equations is the MacCormack method. The method was
briefly discussed in the Background Section and a full derivation of the method will be skipped
here. What is contained here is how the internal duct model fits into the overall model and what
modifications were made to it. Following this, the initial results of the internal duct modeling will
be shown as compared to the results from PHASTA.

Under supercritical operation, the internal duct portion of the inlet spans the cowl lip region
to the compressor face. The upstream boundary conditions are taken from the last cell of the
external compression flow at the cowl lip and the downstream boundary conditions are are applied

as to best emulate the compressor face (more detail here in Section [5.4)). The time step used
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is determined from the applied grid spacing dx and using a CFL number of 0.2026. The initial

conditions used to start the simulation are taken either from the equivalent 1-D representation

of PHASTA data at steady state using Equations (4.14)- (4.22]) or from the final time step of a

previous solution. From here the total number of time steps is looped over using the MacCormack

method as is consistent with Anderson [5]. For supercritical operation, nothing more is needed and

the internal duct solution can be solved for(U/(z,t)). The domain split for this situation is seen in

Figure |5.1(a)
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Figure 5.1: External compression and quasi 1-D CFD domains

For critical and subcritical operation however, the normal shock wave is expelled from the

inlet and the MacCormack method must be modified to account for the domain moving upstream
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with the shock. As the back pressure at the compressor face is raised the normal shock moves
upstream to adjust to the flow field. Once, the normal shock reaches the cowl lip the domain must
be extended to allow it to keep moving freely. This is done by extending the CFD domain upstream
by 4 cells as seen in Figure for subcritical operation. The area used for each new cell is taken
from the difference in height between the cowl lip and the centerbody, also seen in Figure
At each time step the shock position is determined from Equation by looping through the

solution field in x.

(5.1)

OP(x) OM(x) >
oz oz

ZShock = Max < b

Here, the max is taken as the combined max gradient of the Mach number and pressure, where
the gradients are evaluated using the central difference method. At each time step, the upstream
boundary is moved to allow proper shock motion. At this point the total solution is updated
as Uj(z,t) = [UF(z,t),Ul(x,t)]. This procedure works because the external compression flow
field has already been solved for the total time of the simulation. Likewise, if the shock moves
downstream, the previous internal duct cell is converted back to an external compression cell using

the pre-calculated value at that time step.

Table 5.1: Boundary conditions from PHASTA for the internal duct test

Boundary Type | Boundary Condition
PCowlLip 247349(Pa)
UCowlLip 430.84(m/s)
TcowlLip 249.24(K)

Pp 45,930(Pa)

To test the accuracy of the MacCormack method to simulate the internal duct portion of the
inlet independent of the inlet model, it was compared to the PHASTA data at the supercritical
operating point seen in Figure in Section To do this, the PHASTA data at the cowl lip
was used as the upstream boundary conditions for the internal duct and the same constant pressure

was used at the exit boundary conditions as seen in Table The results of this test are seen in
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Figure [5.2(a)l These results are presented in non-dimensional form using the max value for each
flow variable to non-dimensionalize the data. As can be seen here the results match very closely

including the normal shock position.
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Figure 5.2: Internal Duct Comparison(Connolly [15])

From here the dynamic response of the internal duct to upstream perturbations was tested.
As before the data from PHASTA was used to determine the upstream boundary conditions at
the cowl lip location and the same exit pressure was used as a downstream boundary condition.
The PHASTA data came from the supercritical pressure perturbation tests in Section using
freestream perturbations with a 100 Pa amplitude sinusoidal disturbance at frequencies of f = [10,
100, 400, 1000] Hz. In Figure the dynamic response of the internal duct and PHASTA are
displayed in the form of a Bode plot. As can be seen, the dynamic response of the internal duct is
almost exactly the same as PHASTA both in gain and frequency response. With these results it is

concluded that the internal duct is modeled correctly using the MacCormack method.

5.3 Cowl Lip Spillage

In Section [5.2] the MacCormack method was modified to allow the quasi 1-D CFD domain to

change as the normal shock moved under sub-critical and critical operation. For these operating
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points, an additional modification is needed to account for the mass flow spillage around the cowl
region. This can be seen in Figure in Section where the flow is spilling out around the
cowl lip after the normal shock. In Figure the domain for the external compression field was

defined by the centerbody and the cowl lip height. To account for this flow spillage, extra terms

must be added to the quasi 1-D equations ((2.9)), (2.10)), and (2.11)) as seen in Equations (5.2)),
B3). and G3).

Continuity:
0 0
P (pA) + I (pAuy) = Slspiu (5.2)
Momentum:
1o} 0 dp
g (pAug) + 7 (pAuZ) = — 92 S25piu (5.3)
Energy:
0 0 0A
a (PAEtot) + % (pAuthot) = —Pa + S3Spill (5~4)

Here each Sigpi; term represents the amount of mass, momentum, and energy that leaves
the domain. In the vector representation of the conservation equations (Equation (2.13])) this can

be expressed as Equation ([5.5).

Ui+F,.=S+ SSpill (55)

These terms are needed for two reasons. First, without them the flow values downstream of
the normal shock and at the compressor face will be in accurate. This is unacceptable both for
taking meaningful results from the inlet model and when combining the inlet with the rest of engine
as part of a much larger simulation. Therefore simply locking the shock wave at a known location
for a given back pressure is not an option. The second reason, is that without these terms the
solution becomes unstable. This happens because as the normal shock is expelled from the internal
duct, it keeps moving upstream towards the centerbody causing the solution to crash because there

is no pressure relief to match the applied boundary conditions. To solve this issue, two method
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are presented. The first is the method from the LAPIN report which was detailed in Section
This method ended up being accurate for only a single operating condition so it was ultimately
abandoned. A brief summary method is still presented however because considerable progress was
made in getting it to work correctly and future research could potentially make it more general.
This is the ideal situation because then the inlet model would be completely independent of outside
data, either from CFD simulations or test data. The second method, which was implemented in
the final inlet model, uses data from the PHASTA simulations to determine these spillage terms.
As will be seen, this method works extremely well. It is able to predict the correct shock location
while maintaining low steady state error and was found to be robust for the cruise condition at
which it was applied.

The method in the LAPIN report was detailed in Section 2] There it was shown that the
method predicts the mass flow spillage around the cowl lip by modifying a previous method by
Moeckel [41]. In Moeckel, a method for determining the mass spillage around a pitot tube using
a correction factor F', based on the known theoretical supersonic flow around a cylinder was de-
veloped. In LAPIN, this method was modified using the conditions upstream of the normal shock
and the conditions at the cowl lip during the upstart condition for a mixed compression inlet to
create a new set of correction factors F'c;. In applying this method for the research contained here,
it was found that the original correction factor F' reported in the LAPIN report had an error. The
first step in using this method was to follow the original paper by Moeckel and create a function
to correctly predict this correction factor as a function of pre-shock Mach number. For brevity,
the details are left out of this thesis and can be found in Moeckel. From here one correction factor
was calculated for each conservation equation spillage term as described in the LAPIN report. The
spillage term for the continuity equation was determined using Equations and and analo-
gous terms were found for the momentum and energy equations by replacing the pU terms with pU?
and pUe;y respectively. Here the correction terms were applied to the local conservation terms U;
isentropically expanded to the sonic condition. These spillage terms were then added to the quasi

1-D equations seen in Equations (5.2)), (5.3)), and (5.4) and incorporated into the MacCormack
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method.

Initially, this method did not work and the normal shock moved to the free stream, as in the
case without spillage terms, and the solution became unstable. It was found that if limits were
placed on the correction factors F'c;, seen in Table then a stable solution was able to be found.
At a back pressure of 47,119(Pa) or 1.017Pp(criticary and using the cruise freestream conditions
seen in Table the LAPIN spillage method allowed the inlet to match the data from PHASTA
very closely as seen in Figure[5.3] Here the shock location is off by only 2 cells and the steady state
pressure error at the compressor face is 0.891%, with similar results for the other flow variables.
However, although a stable solution was found for several operating points using these limits, an
accurate solution was only able to be produced for this single sub-critical operating point. At other
operating conditions there were large errors in the steady state solution on the order of 50%. An
attempt was made to scale the limits with the back pressure but without success. Ultimately, this

would not be a good solution as the method would then lose generality.

4.5
Table 5.2: LAPIN correction factor limits ol
Correction Factor Limits 3.5}
Continuity 10.50, 0.74] |
M Fclt 2 __ Quasi 1D Model
ome ) L with illage i
HI;CI; i [0.50, 0.75] &2 Phasta
E 2r 1
r}frgy [0.99, 1.00]
€3 1.5 ‘/J 1
1 |
0.5 : : : : :
0 20 40 60 80 100

Axial CFD Cells

Figure 5.3: Steady state pressure using LAPIN
spillage model

These results show that it may be possible to use this method in the future with modification.

It is also possible that this may have been considered a success for the purposes of the LAPIN
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report. In that report the model used was a mixed compression inlet and their main concern was
inlet upstart. For mixed compression inlets the design point is at the supercritical operating with
the normal shock inside the duct. It may have been that the authors were only concerned with a
single upstart or sub-critical operating point since it is an off design consideration. In that case it
would make sense not to test the model at several sub-critical operating conditions for accuracy.
For this research, this functionality does not suffice and so it was not used in the final model.

As a result of the limitations of the LAPIN method, a new spillage model was created
using the data from PHASTA simulations. In this method, the 1-D solution was extracted from
PHASTA simulations at four sub-critical operating points. Here, the equivalent 1-D solution is
taken at equally spaced locations from the freestream to the cowl lip, using Equations —
and the cowl lip height to determine the area of each cell as seen in Figure At steady state,

the unsteady term in Equation(b.5)) U, is zero and the equation can be reduced to Equation(5.6)).

F,o =S+ Sspin (5.6)
Here the flux term F,, can be approximated using the central difference method and the
spillage terms can be solved for using Equation(5.7)).

F; 1 — F;_
S,S’pill = % -8 (57)

At each operating point the normal shock position is also known, so the spillage terms at
each location x of the external compression portion of the inlet can be correlated with the shock
position. Using this data the spillage terms were curve fit as function of shock position using linear
interpolation. In this way the inlet adjusts naturally as the shock moves out of the inlet. This
method was successful in predicting both the shock position and flow field down stream of the
normal shock. The results will be shown in the final section of this chapter. The main benefit of
this method is that it is robust at this freestream condition allowing the flow field to adjust properly

to changes in back pressure. The downside is that the model is dependent on PHASTA data and
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so this model most likely will not work at different freestream conditions. Fortunately, only steady
state CFD data is needed so generalizing this inlet to work at different parts of the flight envelope

would require only a modest number of additional CFD simulations.

5.4 Exit Boundary Conditions

For all of the simulations performed so far, the applied exit boundary condition has been a
constant back pressure. In Section[2]this was shown to be an accurate boundary condition for steady
state but not the most accurate when studying the unsteady response of an inlet. In Section
a method was presented by Paynter et. al. [45] to properly model the effects of a compressor
face as the exit boundary condition in a quasi 1-D CFD model. To briefly reiterate, this method
linearizes the 1-D Euler equations along characteristic lines to develop boundary conditions based
purely on a refection parameter R. The reflection parameter can be used to set constant pressure,
constant velocity, nonreflecting, or realistic boundary conditions based off of the compressor blade
stagger angle. In this section, the capability of this model is tested using different values of the
reflection parameter R to set the exit boundary condition. For the final results presented in this
thesis, which verify the accuracy of the inlet using the results from PHASTA, a constant pressure
boundary condition is still used because that was the boundary condition used in the PHASTA
simulations. The purpose here is to show this capability has been added to the quasi 1-D inlet
model for future studies when the compressor face blade geometry is known.

To test the capability of the new exit boundary condition model a test was developed. First
the quasi 1-D inlet model was run to steady state at the supercritical operating condition using a
back pressure 45,089(Pa) or 0.972Pp(Criticary and the freestream conditions seen in Table A
step in pressure of 100 Pa was applied to the freestream and measured at a point 0.291 m in front
of the exit plane. As with the PHASTA simulations a 3m straight duct was added to the end of the
inlet. For this test, this straight section eliminates the affects of changes in area to better analyze
the properties of the reflected disturbance. This test was performed on the inlet using the original

constant pressure exit boundary conditions along with the constant pressure(R = —1) and constant
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Figure 5.4: Response upstream of exit boundary to freestream pressure step

velocity(R = 1) boundary conditions using the Paynter model. In Figures |5.4(a){and [5.4(b)| the

results are presented as the response in pressure at measured location and the change in shock
position respectively. in Figure it seen that the initial wave is the same in all three cases
but the reflected wave is greatly affected the choice of boundary condition. As can be seen in
Figures the results using the constant pressure boundary condition with the Paynter method
exactly matches the original constant pressure boundary condition both in the reflected pressure
wave and the affect on shock movement. Additionally, the behavior of the reflected pressure wave
using the constant velocity boundary condition with the Paynter method matches the qualitative
response seen in Paynter et. al. [45]. Namely that the reflected pressure wave has a positive
amplitude above the mean pressure at that location. From these results it is concluded that the
boundary condition method is working properly. Future simulations will use the correct boundary

condition when the blade geometry is known.
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5.5 Implementation of the Quasi 1-D Inlet Model in Matlab

As mentioned, the quasi 1D inlet model has been developed completely in the Matlab envi-
ronment. The current version is written as a Matlab script with future plans to convert the code to
a hybrid Matlab/Simulink model to interface more easily with the rest of the engine/vehicle model.
The model was developed as a modification of a previous model which used the MacCormack
method to model the internal duct portion of the inlet and data from separate CFD simulations to
model the external portion of the inlet. The main contributions to the quasi 1-D inlet model are
the dynamic external compression model detailed in Section [ and the mass spillage model detailed
in Section [5.3] The dynamic external compression model is run before the internal duct portion
while the mass spillage model was integrated into the internal duct model and is called at each
time step.

At the beginning of the quasi 1-D inlet model code, the geometry of the inlet and as well
as the initial conditions are loaded. The geometry file includes points in x and y that locate the
centerbody and the cowl surface of the inlet. The initial conditions provide the area averaged
1-D state and either come from an externally run CFD simulation, test data, or a previously run
quasi 1-D inlet solution. Note, it is necessary to start from a previously run steady state file if
a freestream disturbance is to be applied. From here, the parameters of the simulation are set,
such as the total number of time steps, the CFL number, etc. Next, the steady state solution
to the external compression portion of the inlet is obtained using the Method of Characteristics
(MOC). The MOC solution can either be run, if using a new set of free stream values, or loaded
from a previous solution. From here, if necessary, a disturbance is applied to the freestream. As
mentioned in Section |4} the dynamic model is obtained by transitioning between three temporary
steady state solutions caused be the subsequent disturbance waves, created by the free stream flow
disturbance. These temporary states are based on the amplitude of the change in free stream
values. Additionally, these temporary states are calculated using the MOC, like the original steady

state solution, and is the most computational expensive portion of the external compression model.
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For this reason, an option exists to save these states so that any subsequent simulations using the
same magnitude disturbance will not have to repeat this step. For instance, if a 1 % change in
pressure is applied as a step disturbance, the resulting temporary steady state solutions will be the
same as is if a 100Hz 1% amplitude change in pressure sinusoidal disturbance was applied. From
here, the type of applied disturbance is selected (step or sinusoidal wave) and the solution for the
total number of time steps of the simulations is obtained for the external compression portion of
the inlet. As mentioned in Section [d] this is possible because the flow is supersonic throughout this
region and the external compression portion can be decoupled from the internal duct.

With this solution obtained, the internal duct portion of the code is run. The total number
of time steps and the total number of points x in the streetwise direction are looped though and
the MacCormack method is used to solve the internal duct portion of the inlet. At each time step
the amount of spillage needed at the cowl lip is applied using the current normal shock position
and the data from the PHASTA simulations. If the normal shock is inside of the duct then, then
these spillage terms are not applied. Finally, at each time step, the solution data from the external
compression model is used as an upstream boundary condition and the Paynter model is used for
the exit boundary conditions. When the simulation is complete, the flow field data for each point
x and for every time step is output to the Matlab work space. This process is summarized in the

following pseudo code.
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Algorithm 1 Quasi 1D Inlet Code

1
2
3
4
5
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:

19:

20

21:
22:
23:
24:
25:
26:
27:

28:

: procedure INITIALIZE SIMULATION
Load geometry
Load initial conditions
Set simulation parameters(At, Ax,t, etc)

: procedure EXTERNAL COMPRESSION FLOwW FIELD
if New simulation = True then
Determine steady state with MOC
else
Load steady state solution
end if
if Apply freestream disturbance = True then
if Apply new disturbance = True then
Calculate three temporary steady state solutions for resulting disturbance waves.
else
Load temporary steady state solutions
end if
Enter disturbance type (step or sinusoidal wave)
Calculate dynamic response for the total length of the simulation.
end if
: procedure INTERNAL DucT
for At =1totdo
Apply upstream BCs using external compression solution
for Ax =1to L do
Apply MacCormacks method
Apply spillage where needed
end for
Apply downstream BCs using Paynter method

end for
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5.6 Steady State and Dynamic Results of the Quasi 1-D Inlet Model

With all of the individual sections of the quasi 1-D inlet model verified, it is now possible to
simulate the entire inlet model. In the final version of the inlet model, the external compression
portion of the inlet is modeled using a novel approach developed in Section [4] the internal duct
portion is model using the MacCormack method, modified to allow a moving upstream boundary,
the cowl lip spillage is modeled using a new approach developed in Section and the exit
boundary conditions are modeled using the method developed by Paynter, et. al. To verify the
accuracy of the complete inlet model, results have been obtained and compared to the previous
PHASTA results seen in Sections and These results have been obtained at both steady
state and dynamically, at several operating point at the cruise freestream conditions. From these
results, it will be shown that the reduced order model is an accurate representation of the inlet.

The first step in verifying the complete inlet model was to test its capability to model the inlet
at steady state. To do this, the inlet was simulated at the freestream using the inflow boundary
conditions seen in Table[3.4] and at the operating conditions seen in Tabldg3.5] For each simulation,
the back pressures in this table were applied as the exit boundary condition. Figures [5.5{5.9] show
the pressure distribution from freestream to the compressor face location. In each of these figures it
can be seen that both the steady state solution and the shock match the PHASTA results extremely
well.

In particular, the error in the external compression portion is very low, at less than 1% in
every simulation. The max error for every flow variable in each simulation is less the 5% and the
max error for every flow variable at the compressor face location is less the 1.7% and less than 1%
in most cases. The shock position is only off in two cases but matches PHASTA in all of the other
instances. Once, at a supercritical operating point (Pp = 0.989Pp(critica)) and again at the critical
operating point. The fact that the shock is spread out over more CFD cells than in PHASTA is due
to the artificial viscosity used in the MacCormack method. The pressure distribution plots from

Figures [5.5{{5.9| are shown in Figures to better illustrate the shock location comparison
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between the two models. Additionally, the cowl lip spillage model does an excellent job modeling
the spillage and allowing the inlet to operate at the subcritical operating conditions. Compared to
the results using the spillage model from LAPIN seen in Figure this is a large improvement.

These results show that the reduced order model accurately models the inlet at steady state.
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The final test in verifying the complete inlet model was to test its capability at handling
freestream perturbations. For each of the operating points in the steady state tests, the freestream
was perturbed with a 100 Pa amplitude sinusoidal pressure disturbance at multiple frequencies. In
Figures the response to 100 Hz free stream perturbation is measured at the compressor
face. Here, the y-axis variable AP is the difference in the measured response in pressure due to the
perturbation and the steady state value. The response is only shown to ~ 0.025s because after this
time, the slow acoustic wave which is reflected off of the exit boundary arrives at the compressor
location and interferes with the solution making it difficult to compare to PHASTA. This test was

repeated for select frequencies between 50-1000 Hz for all of the operating conditions except the

supercritical operating point (Pp = 0.989Pp(criticary) as seen in Figures [5.2045.2115.22) and [5.24]

In the supercritical case, frequencies between 50-2500Hz were chosen to compare with the extra
data from PHASTA which is shown in Figure As can be seen from these plots, the reduced

order model matches both the gain and frequency results from PHASTA extremely well at each
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operating point tested. However, the reduced order model does seem to lose some accuracy at
higher frequencies. This may be due to the grid size of the internal duct portion of the 1-D model.
Part of the reason the results match so well is because of the accuracy of the external compression
model. As was seen in Section the measured amplitude of an applied pressure perturbation
in a supersonic flow field is dependent on the location it is measured due to the interference of
the resulting disturbance waves. It is therefore important not only that the external compression
model predicts this behavior correctly but that the normal shock wave is in the correct location
for sub-critical operation as well. Overall, these results illustrate that the reduced order model
correctly models the dynamics of the inlets response to small amplitude flow field perturbations.
Finally, the quasi 1-D inlet code ran much more efficiently than PHASTA for this type of
simulation. The model was seen to simulate 532timesteps/(min % proc) while PHASTA simulated
only 0.041timesteps/(min * proc). This is a factor of 13,000 times faster. These results were
obtained by running the quasi 1-D inlet code on one processor for 4900 time steps which took 9.23
mins to complete. Likewise, PHASTA was run for 4000 time steps on 72 processors and took 1,365
mins to complete. Additional runs of both codes resulted in the same level of efficiency. PHASTA
of course is a powerful generalized solver capable of solving a wide variety of flows while this code
is tailored to simulate a supersonic inlet. Still, it speaks to the approach chosen, that this type of

efficiency was able to be obtained while maintaining the desired accuracy.
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Chapter 6

Summary

The purpose of this research was to create a verified, dynamically accurate, general, quasi 1-D
supersonic inlet model in the Matlab environment. The goals of this research were met by using
a piecewise modeling approach by breaking up the inlet into five main sections which included
the atmospheric model, the external compression region, the cowl lip region, the internal duct
region, and the exit boundary conditions at the compressor face. These sections were modeled by
combining established methods when possible and by creating new methods when necessary. Once
complete, the reduced order inlet model was verified using the steady state and dynamic results of
high fidelity CFD code PHASTA.

The first portion of the contained research established a baseline of results using PHASTA.
Calibration tests were first performed using sample test cases to ensure that the settings were
properly calibrated to analyze the inlet model. These sample tests included simulating a Riemann
problem which was later used to establish the speeds of the characteristic waves which result from
a flow variable perturbation. 2-D and 3-D models of the inlet were then simulated using PHASTA.
These results were obtained both at steady state and dynamically over a wide range of operating
conditions. This base of tests established the inlets response to both freestream perturbations and
changes in back pressure. Additionally, these tests illustrated the effect of exit boundary location
and how disturbances in the freestream can reflect off of this location and affect the solution within
the flow field. The angle of attack perturbations using these models proved that the 2-D model is

not capable of simulating these types of disturbances accurately. In retrospect, these are actually
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two different types of disturbances with the 2-D angle of attack disturbance simulating a vortex
ring rather than a change in angle of attack. Finally, the external compression portion of the inlet
was isolated in order to visualize how free stream perturbations move through this region of the
flow field. Using a step in freestream pressure, it was seen that the resulting disturbance waves are
distorted as they move through the flow field due to the variation in local velocity and speed of
sound. This result motivated the development of a novel dynamic external compression model.

In Section [4] a new dynamic external compression model was developed due to the findings
of the previous chapter. This new approach involved decoupling a freestream flow disturbance
into resulting disturbance waves and finding three new temporary ’steady state’ solutions. These
solutions were obtained using a combination of the Taylor-Maccoll equations and the Method
of Characteristics. It was then shown that an accurate dynamic model could be obtained if these
temporary solutions were transitioned between by finding the local transmission speed of each wave
along streamlines. In this way the downstream characteristic speeds are averaged which results in
an accurate 1-D representation downstream by taking the area weighted integral average of all of
these streamlines. Again these results were verified using the CFD code PHASTA.

In the final chapter, the quasi 1-D inlet model was developed by piecing together established
methods with the newly created external compression model. The Kopasakis model was used
for the atmospheric model, the MacCormack method was used for internal duct portion and the
Paynter method was used for the exit boundary conditions. In addition to these methods, a new
cowl lip spillage model was created when it was found that the Lapin method was only viable for
one operating condition. This new method was created using the results of PHASTA and while
this caused the 1-D model to lose some of its generality, extending the model to new freestream
operating points would require few additional CFD runs. Finally, the 1-D model was compared
to PHASTA at both steady state and dynamically using freestream pressure perturbations over a
range of frequencies. At each operating condition test, the 1-D model showed very little error when
compared to PHASTA. The biggest errors encountered were at high frequency perturbations which

are beyond the expected range of freestream perturbations.
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In conclusion, there are several significant takeaways from this research. The main one is
that this is the first accurate quasi 1-D external compression inlet, shown to operate at both sub-
critical and super-critical operating points. This is mostly due to the novel external compression
model developed during this research. All previous models were not capable of accurately simulat-
ing responses to freestream perturbations or at operating at multiple subcritical operating points.
Additionally, this is the first quasi 1-D model to be verified dynamically by a high fidelity CFD
code. Previous, models were only verified at steady state operation. Another take away is that
this model was developed entirely in the Matlab environment. This makes it compatible with the
remainder of the supersonic engine. In addition to that, it is also extremely efficient computation-
ally. The model was seen to simulate 532timesteps/(min x proc) while PHASTA simulated only
0.041timesteps/(min * proc). This is a factor of 13,000 times faster. Finally, this inlet model is
completely general with the exception of the spillage model as noted. This is a limitation, however
extending the range of the model would require few additional CFD runs.

Going forward, there are a few recommendations to extend this research. The first would
be to run the quasi 1-D model and PHASTA at different freestream Mach numbers. While the
inlet model is general and should be able to operate at all supersonic freestream conditions below
the hypersonic point, it would be good to extend the CFD data to enhance the spillage model.
A second recommendation would be to replace the cowl lip spillage model using a physics based
approach. This would allow the quasi 1-D model to be completely general but would most likely
require a significant effort to complete. Finally, viscous simulations should me run using turbulence
modeling to further verify the accuracy of the model. While it is believed that the behavior of the
model should be dominated by inviscid phenomena, it is likely that certain subcritical operating
points simulated may encroach on buzz limit which would greatly affect the performance at these

points.
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