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Woolwine, Kyle J. (Ph.D., Aerospace Engineering)

A Reduced Order Model of an External Compression Supersonic Inlet

Thesis directed by Prof. Kenneth Jansen

The research contained in this thesis was performed in order to model the external compres-

sion axisymmetric inlet portion of a supersonic jet engine in a way that captures the effects of a

full 3-D CFD model while maintaining the quickness of a lower dimensional model. This was ac-

complished by first creating high fidelity 3-D and 2-D models with the CFD code PHASTA. These

models were used as base models to both verify and drive the creation of the lower dimensional

model. The lower dimensional 1-D model, created in MATLAB, was developed by piecing together

established methods with novel ones. In particular, a new approach was developed in order to

properly model the dynamics of the inherently three dimensional external compression flow field.

With comparison to the higher order PHASTA models, the lower order model proved capable of

accurately modeling both the steady state and dynamic response of the the external compression

supersonic inlet. This was accomplished approximately 13,000 times more efficiently than using

the higher order CFD models. The results of this research provided a lower dimensional supersonic

inlet model that maintains the dynamic accuracy of a higher order CFD model while exhibiting

the benefit of quick execution time and adaptability allowed by its simpler construction.
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Chapter 1

Introduction

The following scientific investigation stems from ongoing research that is intended to meet

specific goals of the of the AeroServoElasticity (ASE) task in the Supersonics Project under the

Fundamental Aeronautics Program, which aims to investigate integrated vehicle performance such

as ride quality, vehicle stability and integrated controls. The focus in this thesis is to develop and

verify a dynamic model of the external compression inlet, baselined for the supersonic propulsion

system, that will be integrated with the rest of the propulsion system and the structure-aerodynamic

vehicle model in order to allow for these integrated AeroPropulsoServoElasticity studies.

The focus of this research will be on modeling the baseline axisymmetric inlet geometry to

include both the external and internal inlet portions (before the engine face), extending the flow field

to the freestream, which is necessary to capture the conical flow field. It is important to accurately

model the engine inlet because its dynamic response to freestream flow fluctuations can couple with

the propulsion dynamics and with the full APSE system to cause performance challenges such as

vehicle ride quality and stability (Figure 1.1). This can occur from pressure, temperature or Mach

number disturbances in the free stream due to atmospheric turbulence and/or vehicle maneuvering,

together with flow field disturbances caused by potential excitation of the vehicle structural modes.

These disturbances can enter the inlet and the engine to affect the thrust dynamics, which in turn

can couple back to the structural modes of the vehicle to disturb the flow field into the inlet, acting

as a closed loop system.

Under most steady state flight conditions the solution of a conical flow in the inlet can be
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modeled using a well established technique such as the axisymmetric method of characteristics

method [4]. However, the inlet model must also be able to handle variations in pitch as part of

APSE model dynamics and the flow field in that case will become inherently three dimensional.

This poses a dilemma because the current ASPE model is written in Simulink and developing a

time efficient 3-D CFD code in Simulink would be extremely difficult if not impossible. There are

two possible solutions to this problem; either run an external CFD code on a parallel cluster which

is called by Simulink during simulations or create a simpler, scaled down, two or one dimensional

approximation of the flow field, using dynamic variables developed from the results of a high fidelity

CFD code, to approximate the inherently three dimensional flow. This necessitates the use of a

high fidelity 3-D CFD code to be either used directly as in the first case or indirectly and as a

verification tool in the second case. As will be discussed in further detail, the research described

here will focus on the second option as that is deemed to be the less problematic of the two choices.

This will be carried out using the CFD code PHASTA as the verification tool to create 3-D and 2-D

models. Using the results from these models, a quasi 1-D CFD model will be created in simulink
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Figure 1.1: AeroServoElastic Model Overview (Kopasakis[33])
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and inserted into the overall ASPE model. The creation of the verified quasi 1-D CFD model that

accurately captures the 3-D effects of the true model is the basis of the thesis.



Chapter 2

Background

As mentioned, the purpose of this research is to create a quasi 1-D inlet model that captures

the dynamic effects of the inherent 3-D flow field. In order to understand the issues facing this task,

it is best to split the flow field into five main sections and discuss the problems facing modeling each

region. The first region is the atmospheric model where the inflow plane of the model is defined.

This region includes the inflow boundary conditions as well as the turbulence models from which

the perturbation tests are based. The next region includes the external conical shock wave and

subsequent isentropic compression. The remaining regions of interest are the normal shock, the

cowl lip and associated mass spillage and finally the internal subsonic region which leads to the

compressor face. Following the discussion of the different regions of the inlet will be a discussion

on the current inlet models being used and their strengths and weaknesses.

2.1 Research Scope

Before proceeding into the details of the various modeling techniques and background of

supersonic inlets, it is a good idea to give a scope of the contained research. The end result of

this research is to provide collaborators at NASA Glenn with a dynamic supersonic inlet model

written in the Matlab/Simulink environment that they can ’plug’ into a larger propulsion system

model. This model will be combined with an aero-elastic model of the aircraft structure to create

an overall aero-propulso-servo-elastic model. The inlet model thats described here will have flow

variable input variables from the free stream, including atmospheric disturbances and output flow
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variables of mass flow rate, temperature, pressure, and velocity that will act as inputs to the

turbo-machinery.

The inlet model was created by piecing together several established modeling techniques,

altering them when necessary and using the approach that the model should be as simple as

possible but not simpler. The intent is to capture the relevant dynamics of the inherently 3D flow

field while minimizing computational expense. In order to accomplish this several assumptions had

to be made. The first is that the free stream perturbations resulting from atmospheric turbulence

or sudden vehicle maneuvers will be modeled using small perturbations to individual flow variables

at the inflow plane of the inlet. Modeling disturbances in this way, will cause the perturbation to

travel through the inlet as two acoustic wave (δ+, δ−) and an entropy wave(δe) from the source of

the perturbation (i.e. the tip of the inlet). In reality, the disturbance will propagate from a source

further upstream. This is not seen as an issue because the point of this research is to create a model

capable of responding to inflow disturbances regardless of their source. The current approach is

to use atmospheric turbulence models to determine the amplitude and frequency range that will

exist in reality and apply perturbations to the individual flow variables within that range. A more

detailed discussion of this approach will follow in the next section.

The second assumption, is that the flow field may be approximated as inviscid. Indeed, the

unsteady 3-D viscous CFD results from both Chima et. al. and Conway et. al. show little boundary

layer separation in the flow of the their simulations [12, 16]. It is recognized that normal shock

movement due to perturbation may cause increased separation and thus effect the assumption that

the quasi 1D Euler equations are accurately capturing the dynamics of the flow field. However,

for this research effort it is assumed that the volume dynamics of the bulk flow will be the greater

contributor to this effect. Furthermore, many inlets use bleed to reduce the amount of separation

experienced by the inlet so this assumption is deemed acceptable.

The last main assumption, is that the upstream vehicle effects, such as the oblique shock

wave which emanates from wing (Figure 2.2), will not be considered. Essentially, this results in

modeling a ’flying inlet’ or perhaps an inlet in a wind tunnel without wall effects. This assumption
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Figure 2.1: N + 2 Concept Vehicle (Connolly
[14])

Figure 2.2: Total Vehicle CFD Simulation -
Relative Surface Pressure (Connolly [14])

is assumed valid for two reasons. First, the vehicle being studied is still in the conceptual design

stage and a physical prototype does not exist (Figure 2.1). Spending a lot effort modeling this

specific configuration would most likely be wasted down the road. Second, the modeling techniques

of this inlet model are robust and general enough to account for changes in geometry or free stream

conditions later on. For this reason, free stream conditions are assumed to enter the inlet unimpeded

by aircraft affects.

Lastly, in connection with the previous statement, the inlet is modeled at cruise altitude with

zero base line angle of attack. While this does prevent the inlet model from used over the entire

flight envelope, it would not take a complete overhaul of the model to add this capability. However,

due to time constraints, it was not possible to include this capability. The final chapter of this

paper will detail potential options for further work.

2.2 Atmospheric Model

The atmospheric model contains the inflow boundary conditions and how they should vary to

properly simulate the steady state conditions, atmospheric turbulence and the effects that vehicle

maneuvering have on the incoming flow field. For purposes of this research all flight conditions will

be considered supersonic and as such, the flow must be completely defined at the furtherest point

upstream. This is because at the inlet of supersonic flows the viscous terms in the Navier-Stokes

equations are of negligible scale and thus all the characteristics point downstream [4]. In the case
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of the Euler equations, the result is that the pressure, velocity, and temperature must be defined

at the inflow plane. These states at the steady state condition are defined simply by altitude and

flight Mach number using an atmospheric properties table [6].

Properly defining the inflow condition becomes more difficult when atmospheric perturbations

are introduced. The literature shows that most methods for handling this are based off of a variation

of the Kolmogorov turbulence model [31, 53, 42, 18]. In this model, turbulence is considered locally

isotropic and kinetic energy cascades from large eddies to smaller ones until the length scales become

small enough that the kinetic energy is dissipated as heat [30]. The rate in which this happens is

dependent on the eddy dissipation rate. However this model used by itself is problematic because

the energy approaches infinity as frequency approaches zero [31, 32]. Many models therefore use

the von Karmen model which is similar to the Kolmogorov method but with finite energy. One of

the more popular atmospheric models is based off of the von Karmen turbulence model and was

developed by Tank et. al [53, 54]. This model is similar to the Kolmogorov method in that it

follows the -5/3 power law seen in Equation(2.1) but levels off at lower wave numbers as seen in

Figure 2.3. An additional model named the Dryden model developed by Hoblit [24] uses a second

Figure 2.3: Acoustic wave velocity spectral comparisons for the Kolmogorov and Von Karman
spectral (Kopasakis[32])
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order approximation of the 5/3 fractional order of the energy spectral. However, as Kopasakis

notes [32] this model underestimates the magnitude of the atmospheric turbulence.

St(k) = αtε
2/3k−5/3 (2.1)

Kopasakis’s atmospheric disturbance model differs from previous models mainly in that he

uses integer order transfer functions to approximate the fractional order transfer functions of the von

Karman model. His model was created specifically for analyzing and developing control systems for

supersonic propulsion models in the Simulink environment. The model was created using a circuit

analog as a basis to derive the pole-zero product approximate transfer functions. The transfer

function approximation works by ”interleafing” integer order poles and zeros symmetrically about

the von Karman transfer function using the turbulence parameters until the approximation falls

on top of the von Karman model as seen in Equation (2.2).

Wt,o
∼= Kt,fit

mz∏
1

(s/ωzi + 1)

mp∏
1

(s/ωpi + 1)

Wt (2.2)

Here the proportional gain Kt,fit differs depending on the type of turbulence being modeled and

is based off of the model developed by Tank. For instance, if a temperature disturbance is being

simulated Kt,fit can be calculated from Equation (2.3). Figure 2.4(a) show the results as compared

to the fractional order von Karman model.

KT,fit(temp) =
√

14.0ε2/3L5/3 (2.3)

From Equation (2.3) it can be seen that the proportional gain is dependent on both eddy

viscosity and integral length (turbulence patch length). Kopasakis notes that observations show

an offset in magnitude but not frequency when eddy viscosity is changed. Integral length scale

however does effect frequency response but only at very low frequencies where typical feedback

control design would have no problem handling. The effects of eddy viscosity and integral length
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(a) Temperature von Karman spectral and its TF fit (b) von Karman longitudinal acoustic wave velocity spec-
tral and its TF due to different values of eddy dissipation
rates and integral length scales

Figure 2.4: Kopasakis Turbulence Model Results [32]

scale on the turbulence model can be seen in Figure 2.4(b). A simplified model can therefore be

developed using poles and zeros for industry standard length scale of 762m and by making gain

adjustments strictly from eddy viscosity. This simplified model is the one which is implemented in

Simulink. Again using temperature disturbances as an example, Equation (2.4) displays what this

looks like.

GT (s) = 943ε2/6
(s/33.0 + 1)(s/45.6 + 1)(s/602.4 + 1)

(s/1.1 + 1)(s/25.1 + 1)(s/109.8 + 1)(s/816.3 + 1)
(2.4)

The resulting atmospheric turbulence model (implemented in Simulink as shown in Fig-

ure 2.5) provides the correct magnitude perturbations for each flow variable (P, T, rho, u, v) based

on the desired frequency disturbance to model. This model will eventually be used to analyze the

lower order inlet. For now small amplitude single frequency flow variable perturbations will be

applied to the PHASTA and Simulink models in the frequency range of interest to analyze it’s

dynamic behavior.

In addition to the differences found amongst the atmospheric models there are also a variety

of different ways to apply the atmospheric disturbances in a larger model. Ashun [1] used the Tank
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Figure 2.5: Feedback control diagram of inlet shock position system with disturbance model
(Kopasakis[32])

model as the source of the disturbance and applied them to his inlet model as a combination of

characteristic forms (a fast moving acoustic wave J+, slow moving acoustic wave J-, or entropy

wave). These forms are regarded by the author as ’fundamental modes’ of the atmospheric dis-

turbances and are applied by perturbing three of the flow variables simultaneously to propagate a

single characteristic wave. These modes are what Ashun used to develop the controller laws used

to stabilize his inlet model. Conversely, Kopasakis [31, 32] used his atmospheric model to apply

the disturbances to the individual flow variables. Applying these individual disturbances is similar

to the Ashun model in that they will cause the three characteristic modes to propagate through the

inlet simultaneously. This is similar to a Reimann problem using a shock tube as described in [29].

The difference is that in the Ashun model, the controller design will be based off characteristic

mode disturbances whereas using the Kopasakis model will results in a controller design based off

of flow variable perturbations. Therefore, the response of the inlet and subsequent designed control

laws will be accurate as long as the user is consistent.
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(a) 3-D View (b) 2-D Slice

Figure 2.6: Axisymmetric Inlet

2.3 External Compression

Supersonic inlets have a moderate degree of variation in their shape and flow field characteris-

tics but they all are designed to perform the same basic function, which is to provide the compressor

face of the turbo machinery with the required amount of subsonic flow in the most efficient way

possible and with the least amount of distortion [50]. Therefore, careful thought and design are

dedicated to compressing the incoming air as close to isentropically and with as little boundary

layer separation as possible. Depending on the flight regime and position of the engines, the shape

of the inlet will vary to accomplish these objectives. For aircraft operating near sonic conditions,

pitot inlets and streamlined Buseman designs are common due to weakness of the shock field. If the

operating point is at a higher Mach number near ≈ 2, it is common to use an axisymmetric exter-

nal compression inlet design. According to Slater [51], ”external-compression inlets are considered

better choices for flight Mach numbers below Mach 2.0 due to greater shock system stability and

the possibility of simpler inlet mechanisms”. Beyond a Mach number of 2, conditions are such that

mixed compression inlets (2-D, 2-D bifurcated, and axisymmetric) become more efficient. For the

purposes of this research, the focus will be on axisymmetric external compression inlets and their

specific characteristics.

The exterior of a typical external compression axisymmetric inlet is characterized by an

external cone of a fixed angle followed followed by either a smooth or abrupt transition to a larger
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angled cone (Figure 2.6). The purpose of this is to compress the flow through a series of conical

shocks as close to isentropically as possible. The greater number of angle transitions (and therefore

shocks) in the centerbody, the closer to isentropic conditions the flow is compressed. Ideally, the

centerbody would start very thin and smoothly transition to the desired angle over a long distance

thereby compressing the flow through mach waves instead of shocks. Due to structural instability,

this is impossible. It is therefore common for the centerbody to have the shape seen in Figure 2.6(a).

In Figure 2.6(b), it can be seen that the cone transitions smoothly to a larger angle. This design

feature causes the flow to pass through an initial shock wave at the tip of the centerbody and

smoothly compress afterwards though a series of Mach waves which coalesce in a shock wave at the

cowl lip. If this section was instead replaced by an abrupt change in cone angle, a second shock

wave would emanate from the centerbody. While this design feature results in closer to isentropic

compression and therefore more efficient compression, it nonetheless makes modeling this field more

difficult.

Steady supersonic flow around a semi-infinite cone, at zero angle of attack, can be solved

using the Taylor-Maccoll equations [4, 56]. Under these conditions the flow is axisymmetric and

the flow properties are constant along rays (Figure 2.7). Using these assumptions, the Navier-

Stokes equations (in spherical coordinates) can be reduced to a single ordinary differential equation.

Although this equation has no closed-form solution, it can be solved numerically, the solution of

which is exact for this flow field. As previously stated, the goal of this research is to develop an inlet

model capable of handling variations in free stream conditions as well as angles of attack. While

the assumptions used to develop the Taylor-Maccoll equations would be violated in this case, they

can still be used to determine the initial shock wave for the steady state case and in conjunction

with other techniques.

Another popular technique for solving steady supersonic flow fields is the method of char-

acteristics. If the flow field is supersonic everywhere, the behavior of the Navier-Stokes equations

outside of the boundary layer become more like the Euler equations and become hyperbolic. At a

given point there exists a direction in which the local velocity has a Mach number of one. Lines



13 

 
American Institute of Aeronautics and Astronautics 

 
 

2 

II. Theory 
For a three-dimensional cone, it is convenient to use 

spherical coordinates to describe the flow field.  Under 
the assumption that the flow is axisymmetric there are 
only two velocity components, which are in the radial and 
normal directions.  This can be seen clearly in figure 11 
and is expressed in Eq.(1)1.  

 
                              !! = !!! + !!!                             (1) 
 

For supersonic flow about the cone, a conical shock will 
form at the nose of the cone.  Under the axisymmetric 
flow assumption, the shock can be modeled as an oblique 
shock.  The shock and corresponding angle can also be 
seen in figure 1.   If the assumption is also made that the 
cone is semi-infinite, then the properties along the cones 
surface, as well as any other ray that extends from the tip, 
must be constant1.  This is the definition of conical flow.   

If it is also assumed that the flow is irrotational, then the Taylor-Maccoll equation can be derived from the 
continuity and Euler equations.  For a full derivation of the Taylor-Maccoll equation, the results of which are 
reproduced in Eq.(2), refer to Anderson1. 
 
                           !!!! 1 − !′!! − !′!! 2!′! + !′! cot ! + !′! − !′! !′!!′! + !′!!′! = 0                (2) 
where, 
 

                                                                 !′! = !!!!
!"    and   !′! = !!!!!

!!!    
 
It should be noted that in the derivation of Eq.(2), all components of velocity have been non-dimensionalized by a 
theoretical value of velocity(Vmax) obtained if the flow was expanded until the static temperature became zero.  By 
using the energy equation the non-dimensional variable V’ can be related to the Mach number using Eq.(3)1. 
 

                                                                  !
!!"#

= !! = !
!!! !! + 1

!!!                                                                     (3) 

 

III. Procedure 
The Taylor-Maccoll equation as expressed in Eq.(2), has no closed form solution so it must be integrated 

numerically.  There are two approaches that can be used to accomplish this.  The first is the direct method that starts 
by solving for the flow variables at the cone’s surface and then integrates the Taylor-Maccoll equation until a 
boundary condition is matched at the shock wave.  The second is the inverse method, which is used in this paper and 
reproduced from Anderson1.  The inverse method starts by assuming a value for the angle of the oblique shock wave 
and calculating the Mach number and flow direction behind the shock using Eqs.(4) and (5)2. 

 

                                                     cot ! = tan !! !!! !!!
! !!! !"#! !!!!

− 1                                                                    (4) 

 

                                                     !!
! = !!! !!! !"#! !!!!

!!!!! !"#! !!! !!! !"#! !!!!
                                                                    (5) 

 
With the Mach number after the shock known, the non-dimensionalized velocity V’ can be found from Eq.(3).  

From here the radial and normal velocity components can be determined from the geometry in figure 21.  If the 
remaining distance between the cone’s surface and the shock is broken up into incremental flow angles ∆!, a 
numerical integrator can be used to solve Eq.(2) for the flow field.  For this research the 4th order Runge-Kutta 
method was used with the initial conditions set to the radial and normal velocity after the shock.  This was possible 

 

 
Figure 1.  Coordinate System used for Cone 
 

Figure 2.7: Supersonic Conical Flow Field
(Anderson[4])
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Figure 2.8: Illustration of the characteristic
direction. (Anderson[4])

perpendicular to them are Mach lines or characteristic lines as seen in Figure 2.8. Along the

characteristic lines the flow variables are continuous but their derivates are indeterminate. The

conservations equations may therefore be reduced to ordinary differential equations along these

lines and solved for. The procedure for this method is outlined in Anderson and is a popular choice

for both inlet design [3, 50, 51] as well as the analysis of inlets [13, 46, 52]. The popularity of this

method is due to reduced complexity of solving ODEs rather than PDEs.

The above description of the method of characteristics is related to two dimensional and

axisymmetric flow fields. While this method is useful in determining the steady state condition of

the external portion of the inlet, it is not applicable when atmospheric disturbances or changes in

angle of attack are introduced. One reason is that when changes in angle of attack are introduced,

the flow field becomes inherently three dimensional. Fortunately, this method has been extended

to three dimensions by Rakich, Chuskin and Sauerwein, amongst others [13, 46, 48]. The extended

method, as outlined by Anderson [4], is similar to the lower order methods and involves dividing

the flow field into arbitrary number planes around the centerline of the body of revolution. Within
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in these planes, information is propagated along characteristic lines and an additional streamline.

While, this method accurately solves the flow field, it is considerably more complex and computa-

tionally expensive. Likewise, most other solutions to three dimensional flows around axisymmetric

bodies involve complex CFD methods as seen in Anderson [4].

The other shortcoming of the original method of characteristics is that it is for steady flow

and therefore cannot account for changes in flow variables at the boundaries (i.e. atmospheric

changes). Sauerwein has developed a multidimensional unsteady method of characteristics pro-

cedure [48]. However, due to its complexity and computational expense, it becomes similar to

running a traditional unsteady 3D CFD method (finite difference, finite volume, etc.). Likewise,

several authors have created unsteady, dynamic models using 3D CFD, but due to their complex-

ity are limited in there application [22, 43]. Other models have attempted to introduce flow field

perturbations by using a simpler method such as the oblique shock relations coupled with a time

delay [34]. As will be discussed in greater detail in a later section, this approach does not accurately

represent the correct physics and will lead to unacceptably large errors. Summarily, several simpli-

fied models exist for determining the steady state flow field of the external compression portion of

a supersonic inlet but there does not appear to exist any that can properly simulate the unsteady

response to perturbations without resorting to full 3-D CFD.

2.4 Operating Condition
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Table 6 compares the various inlet performance measures at the critical operating point as computed from 

SUPIN and from the CFD analysis.   The CFD results are those listed in Table 2 for Anoz / A2 = 0.740, which is 
assumed to approximate the critical operating point of the inlet.   The CFD simulation indicates slightly greater 
supersonic spillage.  This increased spillage is due to the blockage of the boundary layer on the centerbody.  An 
inviscid CFD analysis of the inlet was performed and yielded a supercritical flow rate of W2 / Wcap = 0.9789, which 
is 0.11% below the supersonic spillage specified within SUPIN.  A modification to SUPIN could be the estimation of 
the boundary layer displacement thickness on the external supersonic diffuser and the subsequent adjustment of the 
capture area to account for the boundary layer blockage.  The mass-averaged Mach number of the CFD simulation is 
slightly different from the value specified within SUPIN (M2 = 0.5); however, this is most likely due to the use of the 
outflow nozzle to approximate the critical operating point.    A CFD simulation could be performed for which the 
engine-face Mach number is specified as the boundary condition at station 2.   However, the results of Table 6 were 
sufficient for the purpose of this paper. The total pressure recovery, static pressure ratio, and wave drag coefficient 
of the CFD simulation agreed well with the values indicated by SUPIN.     Overall, this provides some confidence in 
the aerodynamic models within SUPIN for designing and analyzing axisymmetric, outward-turning inlets. 

Table 6.  Comparison of CFD and SUPIN results at the critical operating point. 
Method W2 / Wcap M2 pt2 / pt0 p2 / p0 CDwave 
SUPIN 0.9800 0.5000 0.9663 4.6802 0.1371 
CFD 0.9704 0.4968 0.9654 4.6683 0.1368 
%' -0.98% -0.63% -0.09% -0.25% -0.21% 
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Figure 17.  Mach contours at sub-critical (left), critical (center), and super-
critical (right) operation of the axisymmetric, outward-turning inlet. 

Figure 16.  Characteristic “cane” curve from the CFD 
simulations of the axisymmetric, outward-turning inlet. 
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Figure 2.9: External compression inlet Mach contours at sub-critical(left), critical(center), and
super-critical(right) operating points (Slater[50]).
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External compression axisymmetric inlets are designed for a specific cruise Mach number

such that the conical shock field terminates at or just above the cowl-lip and the normal shock sits

just outside of the cowl-lip [51](center Mach contour Figure 2.9). The inlets are designed this way

for two main reasons. The first is that this operating point (called the critical point) corresponds

to the optimal combination of total pressure recovery and mass flow capture. If the normal shock

is ingested by the inlet (i.e. supercritical operation), the upstream Mach number before the normal

shock increases, the normal shock becomes stronger, and the total pressure loss increases. If the

normal shock moves further upstream from the cowl lip (i.e. subcritical operation), there will be

greater subsonic mass flow spillage around the cowl lip and the mass flow rate that is fed to the

engine will suffer. Where the normal shock sits, and consequently what operating point it is at,

will depend on the free stream conditions and the back pressure at the compressor face. This

relationship between mass flow capture and total pressure loss as a function of operating condition

is illustrated by a standard ”cane curve” (Figure 2.10).

If the normal shock is pushed far enough upstream the ”buzz” phenomenom will occur.

This condition is highly unstable and results in the normal shock oscillating back and forth along
SUPIN Version 1X         March 7, 2014 
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Figure 6-1.  Example of the characteristic cane curve for an inlet. 

 
The cane curve represents the operation of an inlet.   As mentioned, turbine engines typically operate at constant 

corrected flow rates.  One can rewrite the inlet flow ratio (Eq. 5-13) in terms of the ratio of corrected flow rates 
using Eq. 5-5 and obtain the expression 

    
   

 (
     
   

)
  
    

 (6-4) 

The quantity in parenthesis is the slope of a line originating at the origin of the cane curve.   Thus, at a matched 
operation of the inlet and engine, a line can be formed from the origin to the critical point on the cane curve.  This 
corresponds to the critical corrected flow rate.  The critical operation is the “knee” of the cane curve.   

If the corrected engine flow rate increases beyond the critical flow rate, the line of Fig. 6-1 is rotated clockwise 
and the inlet operates supercritically.   For an external-compression inlet, this means the inlet flow ratio is full and 
cannot increase.  Thus, the cane curve is a vertical line and forms the stem of the cane.   The supersonic spillage is 
noted as the difference between the full flow ratio and unity.   The Mach number ahead of the normal shock will 
increase, which results in greater total pressure losses.   

If the corrected engine flow rate decreases from the critical rate, then the inlet flow becomes subcritical.  The 
terminal shock is pushed upstream forward of the cowl lip.  Greater flow is able to be spilled subsonically and the 
inlet flow ratio decreases.  The total pressure recovery typically remains constant or slightly decrease as the terminal 
shock is pushed into higher Mach number flow. 

E. Total Pressure Loss through Shock Waves 
For supersonic flows, shock waves can be used to compress and decelerate the flow.  The structure of the shock 

waves depends on the shape of inlet. 

Pitot Inlet 
For a pitot inlet in supersonic flow (    > 1), the flow is unchanged between stations L and EX.  Thus,  

        (6-5) 

and 

     
   

     (6-6) 

The pitot inlet creates a normal shock for the external supersonic compression.  The total pressure loss is 
computed using the change in total pressure from normal shock theory (Eq. C-12 from Appendix C) 
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Figure 16.—Signed Mach number contours and schlieren images during spike buzz. 

 
 
 

 
Figure 17.—Total pressure ratio contours, instantaneous 

streamlines, and a schlieren image showing a large ring vortex 
generated during buzz. 

  

Figure 2.11: Centerbody Separation
(Chima[11]).
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the external position of the inlet, causing drastic oscillations in pressure and mass rate into the

engine [49]. The buzz condition can be initiated either because the shear layer created from the

intersection of the oblique and normal shocks is ingested by the inlet or because of separation at the

centerbody caused by the normal shock(Figure 2.11). Both of these situations are due to viscous

affects.

This leads to the other reason that proper inlet design requires the normal shock to sit just

outside of the cowl lip and that is to provide a measure of stability to the inlet by allowing it

to absorb perturbations better. Seddon et. al. describe the mechanisms and phenomena that

determine the stable operation of an external compression inlet [49]. In it, they list the ingestion

of the shear layer created from the intersection of the oblique or conical shock system with the

normal shock as a main trigger for causing instability. If the normal shock sits just outside the

cowl lip and intersects the oblique shock above the cowl lip, the shear layer will pass over the inlet.

Conversely, if the intersection point is at the cowl lip, the system is only marginally stable because

perturbations in free stream conditions can cause the intersection point and thus the shear layer to

drop below cowl lip and initiate ’buzz”.

Additionally, Bogar, et. al. [7] showed that the dynamic response of an external compression

inlet will vary depending on the operating point its in. In their experimental work, they found that

the inlet’s behavior became more nonlinear under critical and especially sub-critical operating con-

ditions. This behavior was more exaggerated when the perturbation frequency was near the natural

frequency (”buzz” frequency) of the normal shocks movement. Ideally, a dynamic supersonic inlet

model would accurately represent these flow physics. However, as mentioned, the buzz phenomenon

is triggered by viscous effects and the model created in this research makes the assumption that

the flow field can be approximated as inviscid. This is an important distinction to make because it

means that the dynamic response of the model to flow field perturbations will only be valid during

the critical and super-critical operating conditions. While this limits its total range of simulation,

the model will still be able to predict the operating state that it is in so it is not deemed a critical

limitation.
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2.5 The Cowl Lip Region

Not many papers in the literature provide detail concerning how to model the normal shock

position and subsequent mass flow spillage near the cowl lip in reduced order models. Most of

the publications that do describe this are based off of the same model found in the LAPIN re-

port [19, 34, 57]. In the report, subsonic spillage is modeled using a technique developed by

Moeckel used to determine the mass flow spillage around a pitot tube or inlet. In Moeckel [41], the

author first develops a relationship between distance of detached bow shockwave and a flat faced

body and calculated mass flux through an assumed straight sonic line (Figure 2.12(a)). The mass

flux properties across the sonic line, indicated with an asterisk, are easily determined though the

continuity equation (2.5).
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Figure 2.12: Shock Distance and Mass Flow(Varner[57])

δ∗

a
=

1

2j
ρ∞V∞
ρ∗V ∗

(2.5)

In reality, the sonic line is curved, as seen in Figure 2.12(b). Moeckel, develops a correction factor F

to account for this which relates the mass flow in the real case(Figure 2.12(b)) to the approximate

case(Figure 2.12(a)) as seen in Equation (2.6).
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ρV = Fρ∗V ∗ (2.6)

where, F = δ∗/a
δ/a

Moeckel goes on to show that the parameter F can be determined strictly from the free stream

Mach number. With F determined both the mass flow spillage and distance δ can be determined.

Finally, he shows that the same factor F can be applied to a similar relationship for flow through

a pitot tube. The authors of LAPIN extend this model for use in a supersonic inlet by creating a

new correction factor FC , that effectively scales the original F which can be seen in Equations (2.7)

and (2.8). The parameters in Equation (2.8) are seen in Figure 2.13.

ρV = FCρ
∗V ∗ (2.7)

FC = F
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This method is then used to determine not only the mass flux leakage but the momentum and energy

flux leakage as well. The resulting model compared well to experimental data when modeling the

unstart condition in mixed compression inlets where the normally ingested normal shock is expelled

4
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Figure 2.13: Mass spillage model for a supersonic inlet (Varner[57]).
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from the inlet [57]. While this modification was intended to model a mixed compression inlet, the

same physics in the cowl lip region are experienced by an external compression inlet at its design

point, so the model is applicable.

Kopasakis, et. al. provide an alternative method for determining the mass flux leakage around

the cowl lip in [34]. This method is based of off the assumed mass capture at the freestream and

the experimentally determined mass flow demand at the compressor face. The mass flow leakage is

then calculated as the difference between the two. The issue with this approach is that it requires a

priori knowledge of the inlet’s behavior and can therefore not be generalized to untested geometries.

Additionally, this approach, while accurate for the steady state case, may not accurately simulate

dynamic response of the inlet to perturbations. This is due to the fact that changes in mass flow

demand and/or mass flow capture would be felt instantaneously at the cowl lip location. Likewise,

changes in normal shock position caused by free stream perturbations would not effect the amount

of mass flow spillage, which is unphysical. For these reasons, this type of modeling approach will

not be used.

2.6 Internal Duct Modeling

After the flow undergoes external compression it enters the inlet at the cowl lip station. At

this point conservations equations can be used to model the flow inside the inlet. The general Navier-

Stokes equations can be simplified under the assumptions that the flow is quasi one dimensional,

an ideal gas, inviscid, and has no external heat sources added to it. The flow can still vary in time

and changes in area as a function of time are allowed as well. The resulting Euler equations will

accurately model the internal portion of the inlet if there is very little boundary layer separation [12,

16].

The quasi 1-D Euler equations, along with the equation of state, are listed as Equations (2.9),

(2.10), (2.11), and (2.12) which were taken from [5].
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Continuity:

∂

∂t
(ρA) +

∂

∂x
(ρAux) = 0 (2.9)

Momentum:

∂

∂t
(ρAux) +

∂

∂x

(
ρAu2x

)
= −A∂p

∂x
(2.10)

Energy:

∂

∂t
(ρAEtot) +

∂

∂x
(ρAuxHtot) = −p∂A

∂t
(2.11)

where, Etot = cvT + u2x
2 and Htot = cpT + u2x

2

Equation of State:

P = ρRT (2.12)

The continuity, momentum, and energy equations can be expressed generally as equation (2.13):

U,t+F,x= S (2.13)

where, U is the flow state, F is the flux term and S is the source term for each equation.

These equations, while simplified, require a CFD method to solve them. Several methods

exist for solving unsteady quasi-one dimensional flow [5, 57], but for the sake of brevity only one

method of interest will be discussed in detail. MacCormack’s technique has been a popular choice

for solving unsteady quasi-one dimensional flow problems since it’s inception. It’s popularity is due

to it ease of implementation and it’s degree of accuracy for many flow problems. The technique

is an explicit CFD method which utilizes a predictor-corrector step for the time integration and a

central difference approximation for the spatial derivatives. As such, the method is second order

accurate in both space and time [5]. The method is also able to handle transitions from supersonic

to subsonic flow through a normal shock wave with the addition of artificial viscosity. Previous

reduced order inlet models have used this method to model the internal compression portions of the

inlet with much success [15, 34, 57]. In these models the method was able to match the steady-state

and dynamic results of other more complicated quasi 1-D CFD models and experimental data very

closely.
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Another popular choice for solving unsteady quasi-one dimensional flow is the split char-

acteristics method. This method is described in detail in the LAPIN report [57]. In the report,

five separate CFD methods (MacCormack, Beam-Warming, Hybrid Beam-Warming, Split Flux,

and Split Characteristics) were tested to model the internal duct flow of a supersonic inlet. The

authors found that the split characteristic method produced high fidelity solutions, handled large

perturbations such as hammershock transients correctly, and could run with the highest Courant

number. While the method ran half as fast as the less accurate and robust MacCormack method, it

ran between one and a half and twice as fast as the other methods while maintaining or exceeding

their accuracy. A complete description of the Split Characteristics method is beyond the scope of

this thesis, but the basic approach is to propagate information numerically in the same direction

as physically predicted by characteristic theory. This is done by determining the characteristic

directions as well as the compatibility equations from the eigenvalues of the system of equations

at each nodal point. From there, a new set of equations are created and are solved separately

using either forward or backward differences depending on their characteristic direction. A more

complete description of the method can be found in the LAPIN report [57]. Originally, this method

was considered for the model created with this research but it was found that the already devel-

oped MacCormack method compared well with higher fidelity CFD. Therefore, at this stage only

the MacCormack method is used in the reduced order model but the split characteristics method

should be considered in the future if limitations are found.

In contrast to these methods and others like them where the quasi 1-D Euler equations are

solved, MacMartin has developed a reduced order model of a mixed compression supersonic inlet by

focusing solely on the normal shock movement [40]. For mixed compression inlets, stability of the

inlet is determined by the normal shock position. Mixed compression models are focused primarily

on controlling normal shock movement so this is a valid approach. In his model, only internal duct

flow is considered and a simplified ODE is developed to model the normal shock. Atmospheric

disturbances are applied as perturbations to either acoustic or entropy waves to induce motion

in the shock. MacMartin develops the ODE by combining the equation perturbation model with
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normal shock relations and a linearized approximation of the pressure increase across the normal

shock.

Additionally, MacMartin shows that disturbances that propagate through the duct can be

modeled, on either side of the shock wave using Equations (2.14) and (2.15), and through the

normal shock using Equation (2.16).

τ± =

∫ xj

xi

1

c

1

M ± 1
dx, τ e =

∫ xj

xi

1

cM
dx (2.14)

δ±j
δ±i

=
Mi ± 1

Mj ± 1

(
Mj

Mi

) 1
2

{
1 + [(γ − 1) /2]M2

j

1 + [(γ − 1) /2]M2
i

} 1
2

(2.15)

δ+2 = σ−2 δ
−
2 + σ+1 δ

+
1 + σ−1 δ

−
1 + σe1δ

e
1 (2.16)

In Equation (2.15) the δ′s are perturbation waves, c is the speed of sound, subscript j denotes a

point downstream of a location represented by subscript i, subscripts 1 and 2 denote properties

upstream and downstream of the shock wave, respectively, and superscripts +, -, and e denoted

fast and slow acoustic waves and entropy waves, respectively. This equation relates the amplitude

of a single acoustic wave at different points in the flow field that travel at a speed found using

Equation (2.14). Entropy waves are convected at a constant amplitude with a propagation time

found using the second equation in Equation (2.14). Equation (2.16) predicts the amplitude of the

disturbance propagating downstream of the normal shock based on the upstream and downstream

disturbances using reflection and transmission coefficients (σ). A more detailed explanation and

derivation of these equations can be found in MacMartin [40]. The main feature of this work

that is relatable to this research, is that a method is presented for properly modeling disturbance

propagation in a reduced order model as a function of local flow variables. While this method will

not be used to model the internal duct dynamics of the inlet, it will be used to help develop a more

accurate external compression model.
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2.7 Boundary Conditions

In addition to the flow solver used for the internal duct modeling, the choice of boundary

conditions have an impact on the accuracy and stability of the simulation. For the upstream

boundary condition, the flow is supersonic regardless of whether the domain extends past the cowl

lip. The characteristics for supersonic flow propagate information downstream and as such, all of

the state variables must be defined at the inflow boundary proscribed by the external compression

model [5]. The outflow boundary on the other hand has only one characteristic coming from

outside the domain and therefore one state variable must be defined. Common choices in the

literature are Mach number, mass flow rate, and static pressure [5, 35, 57] with varying degrees

of accuracy and stability. Kopasakis, for instance, reports stability issues with using mass flow

rate [35]. Regardless of the choice of the boundary condition, the preferred method for determining

the remain boundary conditions at the exit plane involves solving the flow along characteristic

lines as detailed in [34, 57]. Pressure seems to be the most common choice though and according

to Chima et. al [12], the results of an unsteady RANS simulation of a coupled axisymmetric-fan

system confirm that this is a realistic boundary condition. In the simulation close to uniform static

pressure was measured at the compressor face. Unless the flow separates upstream this behavior

is predicted by the fact that static pressure is constant across boundary layers [36]. However, this

1324 PAYNTER, CLARK, AND COLE

Fig. 4 Flow schematic prior to the disturbance: disturbance appro-
aches the blade pair from the left.

Fig. 5 Flow schematic after the disturbance interaction: reèected dis-
turbance travels upstream to the left.

2) For both subsonic and supersonic Mach numbers, the initial
acoustic disturbance results in two disturbances after the interac-
tion with the cascade: a reèected, left-running acoustic disturbance
that propagates upstream and a transmitted, right-running acoustic
disturbance that propagates downstream.

3) For a subsonic initial Mach number, four distinct èow regions
were identiéed from the Euler simulations.These are denotedby the
circled numbers in Figs. 4 and 5. The èow properties in region 1 are
those prior to any disturbance. The èow properties in region 2 are
those just after the downstream propagating acoustic disturbance.
The èow propertiesin region3 are thosebetweenthecascadeleading
edge and the upstream propagating reèected disturbance. The èow
properties in region 4 are those between the downstreamface of the
cascade and the transmitted disturbance.

4) For the right-runninginitial disturbance(Fig. 4) a step increase
in pressure causes an increase in the axial velocity between regions
1 and 2. The tangential component of velocity is unchanged be-
tween regions 1 and 2. This means that the èow in region 2 is no
longer aligned with the cascade. The changes in static èow proper-
ties between regions 1 and 2 are isentropic. The total pressure and
temperatureof regions1 and 2 are, however, differentbecause these
regions are separated by a right-runningacoustic wave.

5)The tangentialcomponentofvelocityis,onceagain,unchanged
(between regions2 and 3). The reèected disturbanceis a planewave
propagating upstream in the axial direction that changes only the
axial component of velocity.The changes in static propertiesacross
the reèected wave are also isentropic.

6) The axial componentof velocity is decreasedbetween regions
2 and 3. This decrease in axial velocitypartiallyaligns the èow with
the blade passage.

7) Final alignmentof the èow with the bladepassageoccurs in the
blade passage between regions 3 and 4. The changes in static prop-
erties between regions 4 and 1 across the transmitted disturbance
are also isentropic.

8) The èow in region4 is alignedwith the blade passage.Because
the èow in region1 into which the transmitteddisturbancewill prop-
agate is also aligned, the transmitted disturbance must propagate
along the blade passage. This induces changes in both the axial and
tangential components of velocity to maintain the alignment of the
èow with the blade passage.

Small Disturbance Model for the Acoustic
Disturbance/Blade Interaction

If an analysis model of the reèection of an acoustic disturbance
from a cascade is to be useful in an outèow boundary condition, it
must satisfy two conditions. First, the model must predict the am-
plitude of the reèected disturbance accurately as a function of the
upstream èow properties, the blade geometry, and the initial distur-
bance amplitude. Second, the model must be simple enough to be
practical to implement in an outèow boundary condition.

Subsonic Mach Number
The èows in regions 3 and 4 can interact through the blade pas-

sage. The goal of the small-disturbancemodel is to relate the èow
properties in regions 1– 4 just after the interaction of the acous-
tic disturbance with the cascade as illustrated in Fig. 5. Following
Shapiro,14 it is assumed that the squares and products of perturba-
tion terms are negligible in the equations used to relate the èow
properties in regions 1– 4.

In addition to the preceding èow observations, the following as-
sumptions are made:

1) The èow properties prior to the disturbance (region 1) are
known.

2) The cascade blade geometry is a èat plate of zero thickness
and with a solidity greater than one.

3) The cascade is initially unloaded; the èow prior to the distur-
bance is aligned with the blade passage.

4)The disturbance is a step change in static pressure of known
amplitude.

Shapiro14 derives the following relationships for the motion of
a wave of small amplitude following a small-perturbationanalysis
approach. For a right-runningwave in a constant area èow with an
initial velocity U in the direction of wave propagation,

dp
p

= c
dU
a

= c M
dU
U

(1)

where a is the local sonic velocity. For a left-running wave,

dp
p

= ¡c
dU
a

= ¡c M
dU
U

(2)

The small-disturbancemodel is developedby writing a system of
èow equations relating the èow properties in regions 1– 4 of Fig. 5.
Using region 1 as a reference state and noting that the subscript
denotes the properties in a given èow region, we have, in small-
disturbance notation,

p2 = p1 + p0
2, u2 = u1 + u 0

2

Across the initial disturbance, from Eq. (1),

dp
p1

=
p2 ¡ p1

p1
=

p0
2

p1

Similarly,

du / u1 = u0
2 / u1

Using Eq. (1), we have

p0
2 / p1 = c Mx1(u 0

2 / u1) (3)

Using Eq. (2) and following a similar development for the left-
running reèected disturbance yields

p0
3 / p1 ¡ p0

2 / p1 = ¡c Mx1(u0
3 /u1) + c Mx1(u 0

2 / u1) (4)

Substituting Eq. (3) into Eq. (4) and rearranging yields

p0
3 / p1 + c Mx1(u 0

3 /u1) = 2( p0
2 / p1) (5)

Writing a continuity equation for a control volume about the
cascade blade passage (neglecting the storage effect of the blade
passage volume) yields

q3u3 = q4u4 (6)
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(a) Incoming disturbance before interacting with compres-
sor fan
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Fig. 4 Flow schematic prior to the disturbance: disturbance appro-
aches the blade pair from the left.

Fig. 5 Flow schematic after the disturbance interaction: reèected dis-
turbance travels upstream to the left.

2) For both subsonic and supersonic Mach numbers, the initial
acoustic disturbance results in two disturbances after the interac-
tion with the cascade: a reèected, left-running acoustic disturbance
that propagates upstream and a transmitted, right-running acoustic
disturbance that propagates downstream.

3) For a subsonic initial Mach number, four distinct èow regions
were identiéed from the Euler simulations.These are denotedby the
circled numbers in Figs. 4 and 5. The èow properties in region 1 are
those prior to any disturbance. The èow properties in region 2 are
those just after the downstream propagating acoustic disturbance.
The èow propertiesin region3 are thosebetweenthecascadeleading
edge and the upstream propagating reèected disturbance. The èow
properties in region 4 are those between the downstreamface of the
cascade and the transmitted disturbance.

4) For the right-runninginitial disturbance(Fig. 4) a step increase
in pressure causes an increase in the axial velocity between regions
1 and 2. The tangential component of velocity is unchanged be-
tween regions 1 and 2. This means that the èow in region 2 is no
longer aligned with the cascade. The changes in static èow proper-
ties between regions 1 and 2 are isentropic. The total pressure and
temperatureof regions1 and 2 are, however, differentbecause these
regions are separated by a right-runningacoustic wave.

5)The tangentialcomponentofvelocityis,onceagain,unchanged
(between regions2 and 3). The reèected disturbanceis a planewave
propagating upstream in the axial direction that changes only the
axial component of velocity.The changes in static propertiesacross
the reèected wave are also isentropic.

6) The axial componentof velocity is decreasedbetween regions
2 and 3. This decrease in axial velocitypartiallyaligns the èow with
the blade passage.

7) Final alignmentof the èow with the bladepassageoccurs in the
blade passage between regions 3 and 4. The changes in static prop-
erties between regions 4 and 1 across the transmitted disturbance
are also isentropic.

8) The èow in region4 is alignedwith the blade passage.Because
the èow in region1 into which the transmitteddisturbancewill prop-
agate is also aligned, the transmitted disturbance must propagate
along the blade passage. This induces changes in both the axial and
tangential components of velocity to maintain the alignment of the
èow with the blade passage.

Small Disturbance Model for the Acoustic
Disturbance/Blade Interaction

If an analysis model of the reèection of an acoustic disturbance
from a cascade is to be useful in an outèow boundary condition, it
must satisfy two conditions. First, the model must predict the am-
plitude of the reèected disturbance accurately as a function of the
upstream èow properties, the blade geometry, and the initial distur-
bance amplitude. Second, the model must be simple enough to be
practical to implement in an outèow boundary condition.

Subsonic Mach Number
The èows in regions 3 and 4 can interact through the blade pas-

sage. The goal of the small-disturbancemodel is to relate the èow
properties in regions 1– 4 just after the interaction of the acous-
tic disturbance with the cascade as illustrated in Fig. 5. Following
Shapiro,14 it is assumed that the squares and products of perturba-
tion terms are negligible in the equations used to relate the èow
properties in regions 1– 4.

In addition to the preceding èow observations, the following as-
sumptions are made:

1) The èow properties prior to the disturbance (region 1) are
known.

2) The cascade blade geometry is a èat plate of zero thickness
and with a solidity greater than one.

3) The cascade is initially unloaded; the èow prior to the distur-
bance is aligned with the blade passage.

4)The disturbance is a step change in static pressure of known
amplitude.

Shapiro14 derives the following relationships for the motion of
a wave of small amplitude following a small-perturbationanalysis
approach. For a right-runningwave in a constant area èow with an
initial velocity U in the direction of wave propagation,

dp
p

= c
dU
a

= c M
dU
U

(1)

where a is the local sonic velocity. For a left-running wave,

dp
p

= ¡c
dU
a

= ¡c M
dU
U

(2)

The small-disturbancemodel is developedby writing a system of
èow equations relating the èow properties in regions 1– 4 of Fig. 5.
Using region 1 as a reference state and noting that the subscript
denotes the properties in a given èow region, we have, in small-
disturbance notation,

p2 = p1 + p0
2, u2 = u1 + u 0

2

Across the initial disturbance, from Eq. (1),

dp
p1

=
p2 ¡ p1

p1
=

p0
2

p1

Similarly,

du / u1 = u0
2 / u1

Using Eq. (1), we have

p0
2 / p1 = c Mx1(u 0

2 / u1) (3)

Using Eq. (2) and following a similar development for the left-
running reèected disturbance yields

p0
3 / p1 ¡ p0

2 / p1 = ¡c Mx1(u0
3 /u1) + c Mx1(u 0

2 / u1) (4)

Substituting Eq. (3) into Eq. (4) and rearranging yields

p0
3 / p1 + c Mx1(u 0

3 /u1) = 2( p0
2 / p1) (5)

Writing a continuity equation for a control volume about the
cascade blade passage (neglecting the storage effect of the blade
passage volume) yields

q3u3 = q4u4 (6)
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(b) Disturbance partially reflected and transmitted after
interaction

Figure 2.14: Disturbance interaction with compressor fan (Paynter[45])
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is only true of the steady state case where atmospheric disturbances are not being modeled. For

unsteady simulations, more sophisticated boundary conditions are needed.

It has been shown separately by both Paynter et. al. [45] and Sajben et. al. [47] using a

linearized theory of the conservation equations, that portions of a flow disturbance will be both

reflected and transmitted by the compressor fan system(Figure 2.14). Both authors assume small

planar perturbations and base there relations off of the upstream flow characteristics and the com-

pressor blade geometry. These results were confirmed experimentally by Opalski et. al. [44] using

a subsonic duct coupled with a single row compressor fan. In the experiment a wire spanning the

duct was exploded creating two acoustic waves and an entropy wave that travel through the duct.

The researchers measured the propagation of the waves as they intersected with the compressor

fan and accurately measured the reflected and transmitted portions of the waves. In both the theo-

retically derived and experimentally obtained results, it was found that the traditional compressor

face boundary conditions (constant pressure, velocity or Mach number) created reflections into the

inlet that were much larger in magnitude than what should naturally occur. This is illustrated

nicely by Paynter et. al. [45] in Figure 2.15. Here, the new compressor face boundary conditions

were implemented in the code LAPIN and compared to experimental results as well as the results

of using traditional boundary conditions. Figure 2.15 clearly shows that the modified boundary

conditions better represent the physics of this disturbance interaction.

The method by Paynter et. al., is the most detailed and supported method found in the

literature for applying inlet compressor boundary conditions in reduced order inlet models. The

derivation is beyond the scope of this thesis so the following explanation is meant only to highlight

the method. The authors start by assuming the flow state upstream of the compressor is known

and the the compressor blades are flat plates of zero thickness. From there, they assume the

disturbance is of a small amplitude and use a small-perturbation analysis along with isentropic

relations to develop a system of equations to relate the flow properties in regions 1-4 seen in

Figure 2.14. They then combine the equations though some algebraic manipulation to yield an

expression for the reflection coefficient which is defined as the ratio of the reflected disturbance
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Fig. 10 Comparison of LAPIN results and experimental results.

Fig. 11 Effect of the outèow boundary condition on the predicted inlet
unstarttolerance: results for the NASA LERC 40–60 mixedcompression
inlet at M = 2:5.

freestream total pressure, respectively, corresponding to a stability
margin of several percent. That is, the inlet could tolerate about
a 9% reduction in corrected airèow without the terminal (normal)
shock moving upstreamof the throat and unstarting.The simulation
included inlet bleeds and bypasses but no active controls.

The inlet was subjected to step decreases in freestream static
pressure that occurred over one simulation time step of 0.00001 s.
The result is an expansion wave that travels downstream. When it
reaches the normal shock, the shock responds by moving upstream
an identicaldistanceregardlessof the outèow boundary.The pertur-
bation continues downstream and is reèected back upstream from
the outèow boundary. When it reaches the normal shock, the re-
èected wave will increase or decrease the upstream shock displace-
ment depending on whether the reèection is a compression wave
or an expansion wave, respectively. To determine the unstart tol-
erance, the perturbation amplitude was changed in increments of
0.5%. This allowed the onset of unstart to be bracketed to within
0.5%. Results from these simulations are shown in Fig. 11 and in-

dicate that the outèow boundary condition has a strong effect on
the strength of the disturbance needed to induce an unstart. As ex-
pected, use of the constant-pressureboundary condition results in
the lowest predicted unstart tolerance, between ¡1.5 and ¡2%,
because the expansion wave is reèected as a compression wave.
The tolerance is substantially lower than that predicted with the
proposed new small-disturbance model. In these simulations the
small-disturbance boundary condition used a response coefécient
of 0.4168 based on the J85 érst-stage-rotor midspan stagger angle
of 50 deg and the undisturbed compressor-face Mach number of
0.3143. The constant-Mach-number and constant-velocity bound-
ary conditions overpredict the unstart tolerance by about 40% rela-
tive to the small-disturbanceboundary condition.

The results of Figs. 10 and 11 illustrate the importance of se-
lecting a correct outèow boundary condition, particularly from an
inlet controls perspective.Using a boundary condition that predicts
a tolerance to unstart that is too low may result in the inlet being
controlled at an inefécient operating condition to assure operabil-
ity. If the predicted inlet tolerance is too high, the inlet control
might be designed such that excessive unstarts would occur. The
new small-disturbanceboundary condition is thought to provide the
most accurate short-term compressor response and, therefore, the
best prediction of inlet unstart tolerance.

Conclusions
The process for alignment of the èow with the blade passage

(after an acoustic disturbance has caused a misalignment) depends
on whether the èow in the blade passage prior to the disturbance is
subsonic or supersonic. If the èow is subsonic, realignment starts
with the passage of the èow through the reèected disturbance but
is completed within the blade passage. If the èow is supersonic,
all realignment occurs through the disturbance reèected from the
cascade ahead of the blade passage.

A small-disturbancemodel was formulated for the response from
a cascadeof a downstreampropagatingacousticdisturbance.Model
results agree well with Euler analysis results from Ref. 11 and with
the available experimental data.

The small-disturbanceresponsemodelwas thenused to formulate
a new one-dimensional outèow characteristic boundary condition
for acoustic disturbances that satisées at least simple checks on
the accuracy of the boundary condition for acoustic and convective
density disturbances.

The new outèow boundary condition was implemented in two
one-dimensional Euler codes. Simulation results indicate that
the boundary condition performed as expected for the compres-
sor experiment of Freund and Sajben.8,9 Simulation results also
demonstrated the importance of the outèow boundary condition to
the prediction of inlet normal-shock response and unstart tolerance
for a supersonic mixed compression inlet.
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Figure 2.15: Compressor boundary condition comparison (Paynter[45]).

pressure change to the incident disturbance pressure change as seen in eqn (2.17).

R = tan2
(

Γ

2

)(
1 +Mx1

1−Mx1

)
(2.17)

where, Γ is the blade stagger angle and Mx1 is the upstream Mach number.

From here the authors linearize the Euler equations and use a characteristic approach to

develop their boundary condition model. By determining what information should be propagated

into and out of the domain and by making some assumptions related to their small disturbance

analysis, they develop a set of boundary conditions using a reflection parameter β, that properly

represent the compressor in a reduced order model. By setting β to the value of R developed in

eqn (2.17), the proper boundary condition can be established. Furthermore, traditional boundary

conditions of constant pressure or velocity can be modeled by setting β to -1 or 1 respectively.

Nonreflecting boundary conditions can be obtained by setting β to 0.
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2.8 Complete Inlet Models

In general, the literature presents two approaches to creating a total inlet model. Either

several methods are put together to represent the different parts of the flow field in a piecewise

fashion or a reduced order model is created from a linearized high fidelity CFD model. Of the

’piecewise models’, most model 2-D mixed compression inlets and therefore model the external

compression using oblique shock relations which are not applicable to conical flow fields [1, 17, 23,

35, 40]. Many did not apply atmospheric disturbances to verify the dynamics of the model [17, 23,

50, 52, 57]. Finally, almost none of the previous models have a subsonic mass spillage model for

the cowl lip [1, 17, 23, 35, 40, 50, 52] or account for the dynamics of the external compression flow

field [1, 17, 23, 35, 40, 50, 52, 57]. Of the current ’piecewise models’ in existence, the work by Varner,

et. al. [57] and Kopasakis, et. al [34, 35], are most closely related to the proposed research. The

main improvement over these works will be a more complete and accurate modeling of the external

compression field and the added capability to simulate changes in angle of attack. A summary of

the state of the art ’piecewise models’ and their features can be seen in Figure 2.16. Here, cells

in green represent methods that correctly represent the physics of an external compression inlet,

where cells in red resent methods that may have worked for a different type of inlet or problem but

are not applicable to the research in this proposal. Cells with a red ’X’ signify that the paper does

not have the capability to model the region of the flow field seen in the associated column title.

The second common method for creating a reduced order supersonic inlet model involve

higher fidelity CFD and mathematical model reduction [10, 21, 37, 60]. In these models a high

fidelity CFD code is used to obtain a single or many steady state solution(s) to the overall flow

field. The model is then linearized about this point and projected onto a lower dimensional space

characterized by set of basis vectors using a model reduction technique such as Arnoldi [37, 60] or

modified square root reduction [10]. Dynamic simulations are created by slightly perturbing the

reduced order model. Although these model have produced excellent results when compared to the

respective higher order CFD model they are derived from, they do not handle large perturbations
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Figure 2.16: Summary of current inlet models.

such as shock movement. Additionally, one of the main goals of this research is to develop the model

in simulink. The mathematical complexity of these methods may make it difficult or impossible to

implement in the Simulink environment, which may be unnecessary if a robust and simpler model

may be used. Finally, recent work by Farhat et. al. [2, 9, 38, 39] has taken this approach and

modified to be accurate over a larger range for nonlinear systems. His work, while focused mostly

on aero-elastic models, would be applicable to modeling supersonic inlets as it is a less complex

system than the method is already proven to work for. His method does not suffer the drawbacks

associated with linearizing the N.S. equations but would still be difficult to reproduce in Simulink

due to its complexity.

2.9 High Fidelity CFD Verification

An additional large component of this research, is to verify the lower order inlet model using

a high fidelity CFD code. The CFD code PHASTA has been chosen as that verification tool.

PHASTA is a good choice for verification not only for its proven accuracy and efficiency but also

for it ability to solve complex turbulent flow fields. Although the current simulations employ the
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Euler equations and using such a powerful CFD solver may seem overkill, a higher fidelity model

may be needed in the future to study the effects of turbulence and boundary layer separation in the

model. Using PHASTA would remove the uncertainty involved in switching models if a different

verification tool had been used for the 3D inviscid model.

PHASTA is a parallel, hierarchic (2nd to 5th order accurate), adaptive, stabilized (finite-

element) transient analysis tool for the solution of compressible or incompressible flows. PHASTA

(and its predecessor ENSA) was the first massively parallel unstructured grid LES/DNS code [25,

26, 28] and has been applied to flows ranging from verification benchmarks to cases of practical

interest. The practical cases of interest not only involve complicated geometries (such as detailed

aerospace configurations or human arterial system) but also complex physics (such as fluid turbu-

lence or multi-phase interactions).

In PHASTA, flow computations are performed using a stabilized, semi-discrete finite element

method for the transient, compressible or incompressible Navier-Stokes partial differential equa-

tion (PDE) governing fluid flows. In particular, PHASTA employs the streamline upwind/Petrov-

Galerkin (SUPG) stabilization method introduced in [8] to discretize the governing equations. The

stabilized finite element formulation currently utilized has been shown to be robust, accurate and

stable on a variety of flow problems (see for example [55, 58]). In the flow solver (PHASTA), the

Navier-Stokes equations (conservation of mass, momentum and energy) plus any auxiliary equa-

tions (as needed for turbulence models or level sets in two-phase flow) are discretized in space and

time. The discretization in space based on a stabilized finite element method leads to a weak form

of the governing equations, where the solution (and weight function) are first interpolated using

hierarchic, piecewise polynomials [58, 59], and followed by the computation of integrals appearing

in the weak form using Gauss quadrature. Implicit integration in time is then performed using a

generalized-α method [27] which is second- order accurate and provides precise control of the tem-

poral damping to reproduce Gear’s Method, Midpoint Rule, or any blend in between. On a given

time step, the resulting non-linear algebraic equations are linearized to yield a system of equations

which are solved using iterative procedures. For the current stage of research, the following Euler
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equations are being solved by PHASTA.

Continuity:

ρ,t + [ρui],i = 0 (2.18)

Momentum:

[ρuj ],t + [ρuiuj ],i = −P,j (2.19)

Energy:

[ρetot],t + [ρuietot],i = −[uiP ],i (2.20)

where, etot = e+ uiui/2 = CpT + uiui/2

2.10 1D Model Overview

As mentioned the main research goal of this proposal is to develop a quasi 1-D model of an

external compression inlet that can be implemented easily in Matlab/Simulink. The model needs to

be constructed in the Matlab/Simulink environment using either Simulink blocks or S-functions so

that it can be incorporated with a larger AeroPropulsoServoElastic model. The implementation in

Simulink should be general enough to handle multiple geometries and robust enough to be modified

with additional features in the future if necessary (i.e. mass sources and sinks for flow control).

The model must be able to handle changes in free stream perturbations as well as perturbations

coming from the engine( compressor surge, etc.). While the perturbations applied to the model will

mostly likely be small, the engine must be able to handle large nonlinear changes in the flow field,

namely shock movement and mass flow spillage at the cowl lip. Finally, the model must simulate

this inherently 3-D flow field as efficiently possible.

Modeling the inlet can be broken up into five main components (Figure 2.17), the atmo-

spheric model, the external compression region, the cowl lip spillage, the internal duct and the

exit boundary conditions. In Section 2.2 it was shown that there exists two common methods for

applying atmospheric perturbations. One model developed by Ashun [1], applies perturbations as

either acoustic or entropy waves using a combination of perturbations to the flow variables. The
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Figure 2.17: Inlet modeling techniques

other, developed by Kopasakis [31, 32], applies the perturbations to the flow variables individually.

As shown, both methods are valid for either characterizing the dynamic behavior of a model or

developing control algorithms. The researchers at NASA Glenn who are developing the rest of the

propulsion model use the latter method developed by Kopasakis. For this reason, his model will

be used in characterizing the dynamics of both the reduced order and high fidelity inlet models.

The next region is the external compression portion of the inlet, which consists generally of

a single conical shock followed by isentropic compression (as is the case with the model used in this

research) or as a series of conical shocks (as is the case with simpler models). This portion of the

flow field is modeled using a combination of the solution to the Taylor-Maccoll equations and the

method of characteristics. These methods are modified in a novel way to account for atmospheric

perturbations. The cowl lip mass flux spillage region as well as the location of the normal shock will

be modeled in two separate ways, first using the method developed in the LAPIN report [57] and

then using new approach that makes use of PHASTA simulations. The merits of both approaches

are compared. The internal duct portion will be modeled using previously developed methods from
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Kopasakis [34, 35] that solves the quasi 1D equations using the MacCormack method. Finally,

the compressor face exit boundary condition will be modeled using the procedure described in

Section 2.7. This model ensures that the proper information is being reflected and transmitted as

was shown to be the case experimentally



Chapter 3

High Fidelity Simulations

The supersonic transport vehicle and inlet model being used for this research is still in the

design phase and therefore no experimental data exists for this inlet. As such, using PHASTA to as

verification device was crucial in the development of the 1D model. This was true both for verifying

the results of the 1D model and, as will be seen in subsequent chapters, in the development of certain

capabilities that would otherwise be impossible. Next the results from the PHASTA simulations

are presented. First the results of a few calibration tests are presented, followed by the steady state

and dynamic results of the total inlet. These results were verified at all three operating conditions

(sub-critical, critical, and super-critical). The PHASTA results were obtained using the full 3D

model as well as a quasi 2D model. These results will be followed by the results of simulations run

just using the external compression portion of the inlet.

3.1 PHASTA Calibration Tests

As mentioned in Section 2.9, PHASTA is a proven high fidelity CFD solver shown to ac-

curately model a wide range of flow regimes. PHASTA is also a robust tool with a wide range

of flow solver settings that allow it to optimize both speed and accuracy. For these reasons it is

necessary to run test cases to ensure not only that the results match theoretical predictions for the

flow regimes relevant to this research but that the correct flow solver attributes are set to achieve

accurate results. In order to accomplish this, three test cases were devised which together make up

the relevant flow features of the simulations to be run on the total inlet model. The first test cases
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assess PHASTA’s ability to capture normal shocks. This test determines not only the proper shock

location but all the jump in flow states across a normal shock as well. The second test determines

PHASTA’s capability to simulate a conical shock field. This is relevant to the external compression

portion of the inlet. The final test case consists of a simple 1D duct with constant area. This test

case was used to track speed and amplitude of perturbations as they travel through a flow field

as compared to theoretical predictions. The test was also used to determine the affects of time

integration and discontinuity capturing settings as well. In all three test cases the results matched

theoretical predictions with very little error.

The first step in verifying PHASTA’s ability to simulate supersonic flows is the ability to

capture normal shockwaves. This test involved creating a simple expanding duct. Supersonic

inflow conditions were applied for the velocity, pressure and temperature and a subsonic back

pressure was applied that would cause a normal shockwave to form close to the middle of the duct.

The value of the back pressure was predicted using quasi 1-D compressible flow equations which

can be found in Anderson [5]. Initial attempts failed in acquiring a stable solution when attempting

to start from supersonic initial conditions. Compressible flows require care in the setting of initial

conditions if one is to avoid generating spurious waves that may take a very long time to decay.

It was observed that the fastest convergence to steady state was achieved by initializing the flow

to linearly vary between inflow and outflow conditions.. In this simulation velocity, pressure and

temperature were initialized based on the quasi 1-D predictions of the inflow and predicted outflow.

Using this method and applying PHASTA’s discontinuity capturing feature, the predicted quasi

1-D results were obtained.

Figure 3.1 shows the Mach number variation in a cross sectional slice of the duct. It should

be noted that PHASTA is correctly capturing the 3-D features of the flow not present in the quasi

1-D prediction, i.e. the expansion waves before the normal shock wave. The expansion waves

cause the flow properties to oscillate about the predicted values, which are smooth in the quasi

1-D prediction. This can be seen in Figures 3.2(a) and 3.2(b), which display the Mach number and

non-dimensional pressure variation along the center of the duct respectively. The pressure variation
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matches the predicted values almost exactly after the normal shock wave. The Mach number also

matches closely but has some constant error after the shock.

Figure 3.1: Mach Number Variation From PHASTA
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Figure 3.2: PHASTA results compared to compressible flow theory

The second test was to verify PHASTA’s ability to model conical shock waves correctly. For

this test, the first third of the centerbody of the inlet being studied was analyzed (Figure 3.3(a)).

The conical centerbody has an initial angle of 15 degrees followed by smooth transition to a final

angle of 25 degrees. Supersonic inflow conditions were applied for the pressure, velocity, and tem-

perature, based off of relevant flight conditions with a freestream Mach number of 1.8 at an altitude
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of 50,000 ft. The simulation was inviscid, and no outflow conditions were applied. Figure 3.3(b)

shows the results of the PHASTA simulation, which displays the Mach number variation past the

cone. This test used a fairly coarse mesh, which accounts for the fuzziness of the conical shock

wave location.

(a) Geomtery (b) Mach number variation

Figure 3.3: External compression section of the inlet

In order to validate the results of this simulation, the Taylor-Maccoll equations were solved.

As mentioned in Section 2.3, the solution to these equations is exact for flow around a semi-infinite

cone. To accomplish this, a function was written in MATLAB which solves these equations to a

specified tolerance.For this comparison, the region just behind the first conical shock emanating

from the initial flow deflection angle was chosen. Table 3.1 displays this comparison where it can

be seen that the flow variables from PHASTA match the predicted values very closely. It should

be noted that values from other regions of the flow were compared and showed similar precision.

The final test case was created to assess PHASTA’s ability to propagate small amplitude

disturbances with little to no artificial damping or phase lag. The test geometry consisted of a

straight, thin pipe with a square cross section and no change in cross sectional area or essentially,

a 1D duct. Two tests were performed on this geometry that included a step change in pressure
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Table 3.1: Supersonic Conical Flow Field

Taylor - Maccoll
Solution

PHASTA % Difference

Shock Angle 37.30◦ 37.05◦ 0.670

Mach Number 1.659 1.646 0.784

Pt2/Pt∞ 0.998 0.997 0.100

P2/P∞ 1.244 1.259 1.206

T2/T∞ 1.064 1.066 0.188

applied at the inflow plane and a sinusoidal change in pressure applied at the inflow plane. In

order to accomplish these tests the time integrator function in PHASTA was altered to call the

new function before every time step. The new function then scanned all of the surface nodes of the

model. Nodes on the inflow boundary that were tagged with an ID number during pre-processing

were then updated with the pressure perturbation as a function of time.

Once the ability of the new function was confirmed, the 1-D test case was used to optimize

PHASTA’s settings for unsteady simulations. Specifically, this model was used to determine the

effect of the mesh size, time step, and discontinuity capturing feature. These test cases were

performed using a second order accurate time integrator. The first test was performed by altering

the mesh size and time step. Table 3.2 details the list of trials that were run. For these tests a

sinusoidal pressure wave was prescribed at the inflow with an amplitude of 100 Pa and a frequency

of 1000 Hz. The results of this test were analyzed by looking at the CFL number and the non-

dimensional wavenumber. The CFL number is a measure of how well the physics of the flow are

being represented. The Courant number should be less than 1 for this reason. If its greater than 1,

the simulation is propogating the solution faster than the flow can physically respond(Ref Singer

CFD PDF). Additionally, the non-dimensional wave number kh determines how well a sinusoidal

disturbance is resolved. According to Hughes [19] a non-dimensional wave number less than 0.6 is

desired to decrease the amount of damping and phase lag in the simulation. The results of these

tests are seen in Figures 3.4(a) and 3.4(b), where Figure 3.4(b) shows a close up of one of the peaks.

From these figures it is clear that the simulations with a non- dimensional wave number more than
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0.6 have considerable damping (plots in red) and was the greatest determination for error. The

rest of the simulations had acceptable amounts of error and for computational time consideration,

a time step of ∆t = 1e − 5(s) and grid size of ∆x = h/2 = 0.0125(m) were chosen as the optimal

combination for the remaining simulations.

Table 3.2: Time Step and Mesh Size Tests

Mesh Size(h = 0.025m) h h h h/2 h/2 h/2 h/4 h/4 h/4

Time Step (s) 1e-05 5e-06 1e-06 1e-05 5e-06 1e-06 1e-05 5e-06 1e-06

Cr = (u+ c) ∆t
∆x

0.33 0.17 0.03 0.66 0.33 0.07 1.32 0.66 0.13

kh = h2π
λ

0.66 0.66 0.66 0.33 0.33 0.33 0.17 0.17 0.17
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Figure 3.4: Pressure Response in 1D Duct comparing time step and mesh size

A second test was performed to determine the effect that the discontinuity capturing feature

has on the accuracy of the unsteady results. In PHASTA there are three types of discontinuity

capturing features; DC- Mallet, DC-Quadratic, and DC-minimum. Each is implemented by adding

an extra term to the SUPG method but with varying strengths. These features are crucial in

obtaining a stable solution when shock waves are present. As such, one of these features must be
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Figure 3.5: Pressure Response in 1D Duct comparing discontinuity capturing settings

used for the actual inlet simulations. In the test case the same perturbation was added to the inflow

plane as the previous tests using a time step of ∆t = 1e− 5(s) and mesh size of ∆x = 0.0125(m).

This test was run with each of the discontinuity capturing features and was compared to the base

run without this feature on. Again, a 100 Pa amplitude, 1000Hz sinusoidal perturbation was

applied at the inflow boundary condition. Figures 3.5(a) and 3.5(b) show the results of this test

which clearly illustrate that the DC-minimum feature should be used to avoid excessive damping

of the perturbation.

The final test compares PHASTA’s ability to propagate small amplitude disturbances to

those predicted by theory. In this test the same simple 1D duct was used to analyze a Riemann

problem as described in Knight [29]. The Riemann problem is an initial value problem in which

two flow states are separated by a partition or diaphragm as seen in Figure 3.6. At time zero the

diaphragm is burst and the flow finds a new equilibrium as two characteristic waves and a contact

surface wave (or equivalently, a fast acoustic, slow acoustic, and entropy wave) move through the

flow field at u + c, u − c, and u respectively (Figure 3.7). Here u is the local velocity and c is

the speed of sound. The amplitude of flow variables of the waves can be predicted by solving

the Riemann problem as described in Knight. In PHASTA, this problem was set up for the 1D

duct case by placing the imaginary diaphragm at the inflow boundary condition. The solution
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Figure 3.6: Riemann Problem at t = 0 (Knight [29])
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Figure 3.7: Riemann Problem at t > 0

was run using the optimized settings described previously. Table 3.3 compares the speeds of the

disturbance waves and associated jumps in pressure from the PHASTA results with that predicted

by the solution to the Riemann problem. From this table it can be seen that PHASTA accurately

models both the speed of the disturbance waves as well as the jump in flow states. Note that the

contact surface wave (or entropy wave) does not cause a jump in pressure although it does cause

jumps in temperature and density.

Table 3.3: Riemann Problem Results

P1 (Pa) P2 (Pa) P3 (Pa) P4 (Pa) δ+ (m/s) δe (m/s) δ− (m/s)

Riemann Problem

Solution
11697 11647 11647 11597 826.1 531.1 236.0

PHASTA Solution 11697 11646.9 11646.9 11597 822.4 531.9 238.1

Percent Difference 0.000 0.001 0.001 0.000 0.448 0.151 0.890

From these results, we see that a change in single flow variable causes three disturbance waves
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to propagate through the flow field. An alternative method for representing this phenomenon

is detailed by MacMartin [40] and was briefly mentioned in Section 2.6. In MacMartin, non-

dimensional perturbations to the flow variables (u, P, T, and/or ρ) are converted to equivalent fast

acoustic (δ+), slow acoustic (δ−), and entropy (δe) wave disturbances using the conversion matrix

in Equation (3.1). These disturbance waves propagate through a general 1D flow at u + c, u − c,

and u respectively. The propagation delay of each wave at any point in the flow field can be found

using Equations (2.14) in Section 2.6. At any point, the flow properties in between the waves can

be found by converting a single disturbance wave to equivalent flow field perturbations using the

conversion matrix in Equation (3.2). Representing flow variable perturbations this way was found

to be the most convenient method and is how disturbances will be represented throughout the rest

of the paper.


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(3.2)

Before moving on to the steady state and dynamics PHASTA results for the actual inlet

model, it is necessary to discuss the results of these test cases in one more context as they explain a

more complex behavior seen in inlet model. Most notably, in the external compression flow field of
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the inlet. In the previous discussion, two types of tests were applied to the 1D duct flow case. The

first applied a 100 Pa amplitude, 1000 Hz sinusoidal pressure disturbance and the second applied a

single 100 Pa pressure step, both to the inflow boundary condition. These tests can be visualized

at the same time step during each simulation in Figure 3.8, and are labeled ’Test a’, and ’Test b’

respectively. ’Test b’ clearly moves through the flow field as two pressure jumps. Likewise, when

these two tests are presented side by side it can be seen that the sinusoidal pressure disturbance

test also moves as two pressure waves ,albeit sinusoidally varying ones. It can be seen that in the

region where just the first characteristic (fast acoustic wave) has moved through the flow field there

is a simple sine wave. Conversely, in the region where the second characteristic wave(slow acoustic

wave) has traveled there is a complex interaction of the two disturbances. In other words at a given

point in the flow field the interaction between the two overlapping is both unique and predictable.

More generally, the response at any given point is the response of three waves, including the entropy

wave, as mentioned before. For ease of presentation, pressure was reported here because it is only

affected by two of the three disturbance waves and is thus easier to visualize.

disturbances even if it is unrealistic.  From the results in figure 4 it can be seen that the response is almost 
exactly the same for both situations.  This means that the transfer functions developed from these tests 
will be accurate for all expected perturbation amplitudes. 
 
Explanation of Dynamic Results 

For both the pressure and angle of attack 
perturbation results, the Bode plots exhibit some 
strange behavior at frequencies less than 100Hz.  
Typically the gain in this region should not 
contain the large peaks and valleys so close 
together.  This behavior is easily explained with 
the help of a simple 1-D test case.  As seen in 
figure 6, a 2-D duct was created with constant 
height making the flow field essentially 1-D.  
First, a sinusoidal pressure perturbation was 
applied at the inflow plane as show in “Test a”.  
Next, an additional test was performed using a 
single pressure step of 100 Pa above the initial 
conditions applied at the inflow plane at t=0 as 
seen in “Test b”.  This disturbance was easier to 
track and clearly shows that pressure perturbation disturbances move through the flow field at two speeds.  
The first wave moved at a speed equal to the flow speed plus the speed of sound with an amplitude equal 
to half of the disturbance.  The second wave moved at a speed equal to the flow speed minus the speed of 
sound with an amplitude equal to half of the disturbance.  This phenomenon is similar to the response of a 
general Riemann problem.  It can be seen that in the region where just the first characteristic has moved 
through the flow field there is a simple sine wave.  Conversely, in the region where the second wave has 
traveled there is a complex interaction of the two disturbances.  In other words at a given point in the flow 
field the interaction between the two overlapping is both unique and predictable. 

“Test a” from figure 6 was performed at discrete frequencies between 100 and 1000 Hz.  The 
response was measured at a distance of 1m from the inflow plane and the resulting max amplitude was 
recorded.  As mentioned before the response to these disturbances can be modeled simply as the 
overlapping of two pressure waves.  Eqn. 1 below is the simplified version of two sinusoidal waves, with 
equal amplitudes A and propagation speeds of u+a and u-a respectively, added together. 

 

! = ! ∗ !"# !" !
!!! −

!
!!! ∗ !"#! !" 2! − !

!!! −
!

!!! !!                       (1) 

 
From eqn. 1 it is clear that the resulting max amplitude at location x is simply the combination of the 
applied perturbation amplitude A and the cosine term.  Figure 6 displays both the results of the discrete 

Figure 6. 1-D Test Examples#

!
Figure 6. Dynamic Results Test Case 

Figure 3.8: 1-D test example

”Test a” from Figure 3.8 was repeated at discrete frequencies between 100 and 1000 Hz. The

response was measured at a distance of 1m from the inflow plane and the resulting max amplitude

was recorded. As mentioned before the pressure response to these disturbances can be modeled

simply as the overlapping of two equal amplitude pressure waves. Eqn. (3.3) below is the simplified

version of two sinusoidal waves, with equal amplitudes A and propagation speeds of u+a and u-a
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respectively, added together.

P = A ∗ cos
(
πf

(
x

u− c −
x

u+ c

))
∗ sin

(
πf

(
2t− x

u+ c
− x

u− c

))
(3.3)

From Equation (3.3) it is clear that the resulting max amplitude at location x is simply the com-

bination of the applied perturbation amplitude A and the cosine term. Figure 3.9 displays both

the results of the discrete frequency pressure perturbation tests and the predicted amplitudes us-

ing Equation (3.3). The Bode plot in Figure 3.9 was created by taking the ratio of measured

perturbation amplitude to the applied amplitude for both the test case and predicted value from

Equation (3.3). As can be seen, the equation perfectly predicts the response of the test case at

each frequency in both magnitude and phase.

Figure 3.9: Bode plot of 1-D test example

The behavior seen in Figure 3.9 can be expected whenever a sinusoidal flow variable pertur-

bation is applied to supersonic flow. Namely, that based on both location, flow state and frequency

of disturbance, different points in the flow field will have wildly different responses. For the pur-

poses of this research, these types of disturbances will be applied to the freestream, and as such,

the response of the external compression flow field will respond with a similar behavior. These

results show that a more sophisticated disturbance propagation model is needed for the external
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compression flow field than what was previously employed in Kopasakis [34]. This will become

more apparent in the ensuing 1D Model section.

3.2 Steady State PHASTA Results

(a) 3-D View (b) Y-Z Plane

Figure 3.10: 3D Inlet Model

Figure 3.11: Meshed Fluid Domain of 2D Model (X-Y Plane of the 3D Model)

In PHASTA, two models were created, a 3-D model(Figure 3.10) and a 2-D model (Fig-

ure 3.11). The 2-D model is a 10◦ section of the Y-Z plane in the 3D model. PHASTA is strictly

a 3D flow solver so the domain still has three dimensions but the flow is restricted to streamwise

and radial directions. This was done to help understand what order of fidelity was needed for

different simulations. The thought being that a 3-D model was probably not needed for free stream

disturbances and the 2-D model would suffice. This would cut down on unnecessary computational

expense and allow for more trial to be run. Conversely, cases involving changes in angle of attack

would most likely necessitate a 3-D model but running 2-D model would help determine what dy-
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namics might be missing from the future Simulink model and help facilitate potential correction

factors if needed. So far both models have been confirmed against a previous GE model to provide

the correct steady state results.

All steady state results were obtained using the optimized setting determined in the previous

section. However the mesh size of dx = 0.0125m is only true of the bulk flow. Two areas employed

mesh refinement due to better resolve the local flow structure. As can be seem in Figure 3.11, the

regions at the centerbody tip and the cowl lip were refined by a factor of ten. This was done to help

resolve the sudden change in flow direction in each area. Additionally, an extra 3m of straight duct

was added to the internal duct portion of the inlet with a mesh that slow transition to approximate

30 times coarser. This was done to artificially dampen solution noise that exists between the normal

shock and the exit plane. Without the this extra length, numerical perturbations can reflect off

the exit plane and persist in this region, causing longer convergence times and potential error in

dynamic results. This mesh was used for all of the 2D for all 2D simulations. The same mesh sizes

were revolved to produce the mesh used in the 3D simulations (36 times larger mesh).

Likewise, all of the 2D and 3D simulations used the same boundary and initial conditions. For

the current research only the cruise condition was considered and as such, the flow was supersonic

in the free stream and subsonic at the exit of the inlet’s internal duct. For these conditions it is

necessary to specify the entire flow state at the upstream boundary condition because the Navier-

Stokes equations have a hyperbolic mathematical form. Static pressure was used as the sole exit

boundary condition within the inlet as it was shown in Section 2.7 to be an accurate choice. All

surfaces, as well as the slip planes used to ’cut’ the 3D model and create the 2D model, were

treated as slip surfaces to adhere to the inviscid flow assumption. For the initial conditions, the

free stream variables were used in all regions external to the inlet and in the internal duct region,

the flow states were varied linearly from the free stream to he exit BC following the strategy from

the normal shock test case in the previous section. The boundary conditions and initial conditions

are summarized in Table 3.4.

The first steady state tests were used to compare PHASTA’s results with simulations run by
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Table 3.4: Boundary Conditions Used for PHASTA Inlet Simulations

Boundary Type Boundary Condition

Inflow P∞, T∞, and V∞
Supersonic Outflow None

Subsonic Outflow P = PB

Walls and Slip Planes ~V · ~n = 0, ∂T/∂xn = 0

GE using the supercritical operating condition (PB = 45, 930 Pa) at the cruise altitude (M∞ = 1.7,

h=15.24 km). The results of the 3-D model represented in the x-z plane are shown in Figure 3.12(a).

This figure illustrates the complicated flow field consisting of shocks, isentropic compression waves,

and expansion waves upstream of the normal shock. Using these results, the outflow conditions of

the inlet were measured by finding the integral averaged state at the exit plane (P2,M2 and ṁ).

The outflow conditions of the 2-D model were obtained using the same technique. These results

were compared to those obtained by General Electric (GE) and are shown in Figure 3.12(b). As

can be seen in this Table, both models match the GE model very closely, showing less than 1%

error in the flow variables of interest. Based on these results, the PHASTA models were able to

(a) 3-D model in x-z plane

Introduction 
The work contained within this report details the goals and progress of the second year of the 

GSRP fellowship.  Overall, the main goal of this project is to create 2-D and 3-D PHASTA models as 
well as a  quasi 1-D Simulink model of an axisymmetric external compression inlet.  The PHASTA 
models are used as reference models and to create dynamic correction factors for the Simulink model to 
capture 3-D flow effects.  The Simulink model is to be incorporated into the rest of the propulsion system 
at Glenn.  The main goals of this year were to develop the 2-D and 3-D PHASTA models, verify their 
results, and create dynamic models from them capable of handling perturbations in flow variables as well 
as changes in aircraft maneuvers (Δα, Δβ, etc.).  At this point the 2-D and 3-D models have been created 
and their steady state results confirmed with data from GE.  A sub-function in PHASTA has been created 
to introduce flow field perturbations.  To date, results for 2-D and 3-D models response to pressure 
disturbances have been obtained along with results for the 2-D models response to angle of attack 
perturbations.  The final step for this year is yet to be completed, which involves performing the same 
angle of attack perturbations on the 3-D model and comparing the results. 
 In addition to these results, much of the work this year went into developing a plan for the quasi 
1-D inlet model.  For the reduced order model the flow domain will be broken up into four separate 
regions which include the initial conical shock, the isentropic compression region behind the shock, the 
mass flux leakage at the cowl lip and the region between the normal shock and the exit.  Preliminary 
research has gone into developing the tools to represent these different domains as will be presented later. 

 
Review of Steady State Results 

The first step in obtaining valid 
dynamic models of the external compression 
supersonic inlet was to verify the steady state 
results.  Both the 2-D and 3-D PHASTA 
models were run at the cruise condition (M∞ = 
1.7) to steady state.  The results of the 3-D 
model represented in the x-z plane are shown 
in figure 2.  This figure illustrates the 
complicated flow field consisting of shocks, 
isentropic compression waves, and expansion waves 
upstream of the normal shock.  This confirms the need 
for a high fidelity CFD code such as PHASTA as a 
validation device.  Using these results, the outflow 
conditions of the inlet were measured by finding the 
integral averaged state at the exit plane.  The outflow 
conditions of the 2-D model were obtained using the 
same technique.  These results were compared to those 
obtained by General Electric (GE) and are shown in table 
1.  As can be seen in this table, both models match the 
GE model very closely, showing less than 1% error in the 
flow variables of interest.  Based on these results, I feel 
confident that both of the PHASTA models were able to 
obtain accurate steady state representations of the inlet at 
cruise.   
 
 
 
 
 
 

!
Figure 2. 3-D Model Shown in x-z Plane 

  M2# P2#(Pa)#
Mass#Flow#

(kg/s)#

!GE! 0.530! 45930! 191!
!PHASTA!2D! 0.523! 45856! 189!
!PHASTA!3D! 0.524! 45783! 189!

Table 1. Steady State Comparison 
(b) Steady state comparison

Figure 3.12: Steady state results
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obtain accurate steady state representations of the inlet at cruise.

Additionally, these results show that the 2D and 3D models provide adequate representations

of flow field at steady state. With this in mind, the inlet was run to steady state at four other

operating conditions using the 2D model to minimize computational expense. The operating con-

dition spanning fully sub-critical to super-critical, was controlled by varying the back pressure(PB)

as a percentage of the back pressure at the critical operating point (PB = 46, 388 Pa). Table 3.5

and Figure 3.13 display the total pressure recovery normalized by the freestream total pressure as

well as the mass flow rate at the compressor face normalized by the theoretical maximum captured

mass flow rate. The theoretical maximum captured mass flow rate is determined by the free stream

flow conditions and the radius of the cowl lip. Figure 3.14 displays the steady state flow field for

four of these operating points. The most interesting feature from these simulations is the inlets

sensitivity to back pressure at the critical operating point (Figure 3.14(c)). It can be seen that a

∼1% increase in back pressure slightly alters the flow field by pushing the normal shock slightly

upstream to become subcritical (Figure 3.14(b)). However, an additional ∼1% increase in back

pressure causes the normal shock to move almost halfway up the inlet, resulting in large losses both

in total pressure and in captured mass flow rate (Figure 3.14(a)).
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Figure 3.13: Cane Curve

Table 3.5: Cane Curve Results

Operating
Condition

PB

PB(Critical)

PT2
PT∞

W2

WCap

Subcritical 1.023 0.8929 0.6276

Subcritcal 1.012 0.9774 0.9741

Critical 1.000 0.9730 0.9846

Supercritical 0.989 0.9664 0.9854

Supercritical 0.972 0.9554 0.9854
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(a) 1.023PB(Critical) (b) 1.012PB(Critical)

(c) 1.000PB(Critical) (d) 0.972PB(Critical)

Figure 3.14: Operating Points

3.3 Dynamic PHASTA Results

With successful confirmation of the steady state results achieved, dynamic tests could be

applied. All of these tests used a second order time integrator and a step size of ts = 1e − 5s.

The first test performed involved applying sinusoidal pressure perturbations to the inflow plane of

the 2-D model (Figure 3.15). These perturbations were applied with an amplitude of 100Pa and

at discrete frequencies between 10 and 2000 Hz. The pressure response was then measured at the

outflow plane where the compressor face would be in the real propulsion system. The same test was

also performed with the 3-D model but for a fewer number of frequencies due to the computational

expense involved with the larger mesh.

Figure 3.16(a) shows the results of these tests in the form of a Bode plot where the gain

is measured using the ratio of the max amplitude in pressure at the exit to the applied pressure

amplitude at the inflow. What’s important to note is that the 3-D test results overlap the 2-D
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Location of 
Applied 
Perturbation

Location of 
Engine Face

Figure 3.15: Location of perturbations shown on 2D model results

tests almost exactly. This was expected to happen because the flow field should not change around

the centerbody, because the steady state solution is axisymmetric and the applied disturbance

wave is normal to the primary flow direction. The results show that the 2-D model is an accurate

representation of the inlets response to flow pressure perturbations. Furthermore, its appears that

the inlets response varies significantly with frequency. It will be shown shortly that his is in fact

an artifact of the pressure hard exit boundary condition and the subsequent disturbance reflection.

(a) Response to pressure perturbation (b) Response to angle of attack perturbation

Figure 3.16: Bode plots of dynamic results

Following this test, the same perturbation was applied to the 2-D model at the operat-

ing points shown in Figure 3.14. For these cases a subset of frequencies were tested at (f =
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50, 80, 100, 200, 400, and 1000Hz). The results of these tests are shown in Figure 3.17. From here

it appears that the inlets response varies significantly depending on both frequency and operating

condition. Again it will be shown, that this is the affect of the exit boundary condition.
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Figure 3.17: Response to pressure perturbations at various operating points

Another important feature of the PHASTA dynamic models is their response to variations

in angle of attack. A series of tests were performed on the 2-D model by applying sinusoidal

perturbations to the u and v velocity components to simulate perturbations in angle of attack. The

corresponding change in pressure was measured at the outflow plane and used to create the Bode

plot in Figure 3.16(b). The angle of attack tests were performed once with a max angle of attack

of 0.05◦ and again with a max angle of 1.0◦. The smaller angle is more realistic and is on the order

of expected disturbances. The larger angle of 1.0◦ was applied to determine if the inlets response

remained the same over a large range of disturbances even if it is unrealistic. From the results in

Figure 3.16(a) it can be seen that the response is almost exactly the same for both situations. This

means that any transfer functions potentially developed from these tests will be accurate for all

expected perturbation amplitudes.

Additionally, ∆α perturbations tests have been run on the 3-D model. The max angle of at-

tack was 0.05◦ and the perturbations were applied at 6 select frequencies (f = 88, 100, 215, 464, 681,
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(b) Response of 2D and 3D models to 0.05◦∆α angle of
attack perturbation

Figure 3.18: 3D model angle of attack results

and 1000Hz). Two distant features of note stand out from these results. The first is that the re-

sponse at the compressor face differs depending on the azimuthal angle φ. This can be seen from

Figure 3.18(a) where the response to a 100 Hz perturbation is measured at 4 different locations

(φ = 0◦, 90◦, 180◦, and 270◦) on the compressor face by averaging the response of 7 probes along

each respective line. The results show that the responses at φ = 90◦ and 270◦ are very small in

magnitude while the responses at the φ = 0◦ and 180◦ are large in magnitude as well as 180◦ out of

phase. This makes sense because the freestream disturbance is oriented along the x-y plane which

includes the φ = 0◦ and 180◦ azimuthal angles but is perpendicular to φ = 90◦ and 270◦.

The second result of note is the preliminary Bode plot generated from the 3D case. As with

the 2D case, the Bode plot is created by measuring the magnitude of the pressure response at the

compressor face in relation to the applied angle of attack. In Figure 3.18(b) it can be seen that

the results of the 3D case seem to match the data from the 2D case well at frequencies near 100

Hz but begin to diverge at higher frequencies. Whats more, is that there seems to be a phase shift

at these frequencies as well. This is thought to result from the fact that the disturbances are not

propagating completely in the x-direction and are free to reflect off of the wall of the internal duct.
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These results prove the need for using a 3D model when simulating angle of attack perturbations

and that a more complicated correction factor would be needed to reproduce these results in the

lower order 1D model.

The results of both the 2-D and 3-D ∆α perturbations tests seem to show the strong frequency

dependance that the pressure perturbation tests displayed. Namely, that the gain contained large

’peaks’ and ’valleys’ close together. This behavior is easily explained with the help of the simple

1-D test case seen in Section 3.1. The behavior seen in Figure 3.9 is the same as that seen in

both the pressure and angle of attack perturbation tests performed on the inlet (Figures 3.16(b)

and 3.16(a)). This behavior is the result of the perturbation wave passing the measured response

point, reflecting off of the outflow plane of the CFD domain, and overlapping with itself. This

’overlapping’ occurs at a predictable time based on the speed of the perturbation and the length

of the additional computational space (∼ 0.025s in these simulations). Furthermore, this affect is

only seen at frequencies below ∼ 200 HZ due to the coarseness of the grid spacing in the additional

length which dampens the amplitude of the perturbations.

To illustrate this affect the same data was analyzed a second time but this time the response
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Figure 3.19: Bode plots of perturbation response before and after reflection



52

was recorded prior to the arrival of the reflected wave ( t < 0.025s). In Figures 3.19(a) and 3.19(b)

it can be seen that the ’peaks’ and ’valleys’ apparent in the previous results no longer exist. Without

the reflected perturbation wave the response is similar to what has been previously shown for these

types of tests, as in Kopasakis et al. It is clear from these results that the including or excluding

the reflected wave has a significant influence on how the data is presented. If Figures 3.16 and

3.17 are now replotted without the reflected disturbance a slightly different picture is painted. In

Figure 3.20(a), the main take away is essentially the same. Namely, that the 2-D and 3-D models

give the same response to pressure perturbations and are equal representations of the flow field. The

only difference is that the response is smoother. In Figure 3.20(b) it is now more clear that the 2-D

model greatly overestimates the response to angle of attack perturbations. Previously, this could be

seen somewhat but the shape of the Bode plots due to the disturbance reflection masked how large

the difference was. The new results strengthen the belief that the 2-D model does not accurately

portray angle of attack disturbances. In hindsight the 2D simulations are fundamentally flawed.

The axisymmetric BC with this disturbance is like a ”ring” of velocity perturbations as you revolve

the applied velocity around the body which is inaccurate for angle of attack perturbations. Finally,

Figure 3.21 shows the updated version of Figure 3.17 with the perturbation reflection. From these

results, the response of the inlet now looks much less dependent on operating condition. The gain

follows approximately the same trend as the baseline case. One interesting trend can be gathered

however from this figure. It seems that, in general, the inlet in sub-critical operating conditions has

a larger gain than at supercritical operating conditions. This is most likely due to that fact that

the normal shock is further upstream and therefore has a higher average Mach number upstream

of the shock, which creates a larger pressure jump across the shock.

The main question from these results is; which type of simulation is more accurate? It can

be argued that both results have value. On the one hand, the length and grid coarseness of the

extra length of computation domain are arbitrary and thus the exact shape of the initial Bode

plots are unique to these simulations. However, in reality the inlet will have a compressor fan

attached to it at the point where the response was measured so it is not possible to place the end
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Figure 3.20: Bode plots of dynamic results without perturbation reflection
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Figure 3.21: Response to pressure perturbations at various operating points without perturbation
reflection

of the computational domain there if the response is to be measured. The domain will have to

be placed somewhere and this behavior will occur in those cases as well. It is therefore important

to present these results as cautionary tale moving forward so future researchers are aware of this

potential issue. That being said, it is believed that the latter cases are more accurate and also

more valuable. The engines response to these perturbations is the most important take away from
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these tests. And while the compressor face will cause reflections to propagate upstream in the real

case, all but a few of these simulations showed that this did not affect the normal shock position.

In subcritical cases at a perturbation frequency of 50 HZ, the shock was shown to oscillate some.

However, this too is dependent on the location of the exit plane so the exact movement cannot be

considered accurate. For now the PHASTA results will be seen as accurately representing the inlets

response to perturbations prior to the reflected wave. In a subsequent chapter, the 1-D model will

use these results as a verification tool. Regardless of how the PHASTA results are viewed if the 1D

model uses the same domain and produces the same results it can be said to provide an equivalent

representation of the flow field.

3.4 External Compression Dynamic Results

Before moving on to the sections concerning the 1-D model development, it is important to

discuss the results of one final PHASTA simulation as it is motivation for the next section. As

mentioned previously, most quasi-1D inlet models in existence either ignore the dynamics of the

external compression region or use a simple time delay for the propagation of disturbances through

the region. A test case was performed using solely the external portion of the inlets centerbody.

This geometry was converted to a 2-D representation and run to steady state using inflow cruise

conditions (M∞ = 1.7, P∞, and T∞). After this, probes were located in the flow field spaced evenly

in the x-direction and y-direction (400 total). Finally a step in pressure with an amplitude of 100

Pa was applied at the inflow plane and its propagation through the flow field was recorded. The

process is detailed in Figure 3.22.

The results from this test can be seen in Figure 3.23. Here, the disturbance was recorded at

three locations marked with a star as seen in Figure 3.23(a). In Figure 3.23(b), the y-axis variable

”PPrime” refers to the pressure rise due to the perturbation where the local steady state pressure

has been subtracted out. As predicted, the disturbance propagates as two distinct waves in the

free stream, which can be seen in Figure 3.23(b). However, one feature stood out from the test

that differed from expectations. Namely, that the rise time to the new steady state within the
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Figure 3.22: Dynamic Test of Eternal Compression Flow Field

shock field did not occur in two distinct steps as was the case with the simple 1-D test case in

Figure 3.8 (Test b) and as is seen at the free stream location(green data) of Figure 3.23(b). Instead

three steps are seen at the points within the shock wave. The first and last are due to the fast

and slow acoustic waves as was expected. The second wave however, was due to the entropy wave

which normally does not affect the pressure response downstream of a disturbance. This case differs

from the previous 1-D test case due to the conical shock wave. Consequently, the entropy wave

temporarily changed the shock angle as it passed through, causing a jump in flow variables.

(a) Location of the three example probes
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Figure 3.23: Preliminary external compression dynamic results
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Additionally, the slow acoustic wave is seen to approach the new steady state condition

asymptotically. The reason for this behavior, as will be shown in the next section, is because the

response at any given point in the shock field is due an upstream region of influence predicted by

characteristic lines. Disturbances will propagate through the flow field at different speeds depending

on the local velocity and speed of sound. The response at a given point is therefore the result of

the single step disturbance being distorted in time by the local flow properties at different points

within its zone of influence. Previous attempts to model the external compression field use the states

predicted by isentropic relations combined with a time delay to compensate for the propagation

of disturbances. The results of this test show that a more sophisticated technique is needed to

accurately capture the dynamic response of the external compression flow field. Furthermore, this

test illustrates the need for a high fidelity model to help guide the development of the lower order

model.



Chapter 4

External Compression Flow Field Modeling

It was seen in the previous chapter that perturbations move through the external compression

flow field in a nontrivial manner. The following chapter will be devoted to developing a dynamically

accurate 1-D model for this portion of the inlet. First an accurate steady state method is presented

which was developed using the axisymmetric method of characteristics (MOC) combined with a

Taylor-Maccoll (TM) equation solver. The accuracy of the TM solver is first verified using a GUI

from the NASA Glenn website. From here, the development of the MOC code is presented and

then verified using the results from PHASTA. Then a method for transforming a 2-D flow field

into an equivalent 1-D representation will be presented. This is necessary for its implementation

in the 1-D model. Lastly, a novel approach to modeling the unsteady dynamics of the external

flow field will be presented. This approach combines aspects of previous models [1, 40], where flow

field disturbances are decomposed into characteristic wave disturbances with a new method for

propagating these disturbances throughout the flow field.

4.1 Taylor-Maccoll Equation Solver

The axisymmetric MOC is used to solve the steady state solution of the external flow field but

this method requires a known solution state to ’seed’ it. Fortunately, the TM equations accurately

represent the flow at the tip of the centerbody. As mentioned in Section 2, the TM equations are

accurate for semi-infinite cones in supersonic flow. The initial portion of the inlet’s centerbody

has a constant flow deletion angle and therefore fits this description. The process for calculating a
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solution to the TM equations was described in Section 2 and will be briefly reiterated here.

Under the assumptions just described, the flow variables are constant along ray emanating

from the cone’s tip and the Euler equations, written in spherical coordinates, can be reduced to a

single ordinary differential equation (the TM equation). This equation has no closed form solution

so it must be integrated numerically. There are two approaches that can be used to accomplish this.

The first is the direct method that starts by solving for the flow variables at the cone”s surface

and then integrating the Taylor-Maccoll equation until a boundary condition is matched at the

shock wave. The second is the inverse method, which is used in this research, and reproduced from

Anderson[4]. The inverse method starts by assuming a value for the angle of the oblique shock wave

and calculating the Mach number and flow direction behind the shock using the theta-beta-Mach

relations[4]. The remaining distance between the cone’s surface and the shock is broken up into

incremental flow angles. A numerical integrator can be used to solve for the flow field. If the correct

shock wave angle is used the normal component of velocity will be zero. In most cases this will

not be true for the first guess so an iterative process must be used. Once the correct shock angle

is found within a prescribed error tolerance the flow field around the cone will be correctly solved

for.

For the purposes of this research, the above described method was programed in Matlab and

the 4th order accurate Runge-Kutta ODE solver ODE45 was used to iterate the TM equation. The

results of this process compare favorably to those from the GUI on the NASA GRC website [20]

(Figures 4.1(a) and 4.1(b)). As mentioned, the code solves the Taylor-Maccoll equations numerically

and is guided by the user set tolerance of the normal velocity error at the cones surface. Figure 4.1

shows that favorable results can be obtained with a relatively low error in the calculated shock

angle by prescribing a relatively high error tolerance. This resulted in very quick calculation time

(< 2 sec). It should be noted that the equation solver behind the GUI on the NASA website most

likely uses either the direct or inverse method to solve the TM equations. It is not known which

method is used the process is iterative in either case and similar error tolerance must be specified.

The user is not given the option to set this tolerance which is most likely the reason that the results
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do not converge exactly. Given that the results of the TM solver used in this research do converge

after a prescribed error tolerance, it is likely that the final values achieved are more accurate.

equations.  A solver has been coded already in Matlab, the results of which compare favorably to those 
from the NASA GRC website (Figures 8a and 8b).  Next, the external isentropic compression behind the 
initial shock will be modeled using the method of characteristics.  A preliminary working solver has been 
coded in Matlab but it hasn’t been adapted to the inlet geometry at this time.  This portion of the flow 
field will extend to either the normal shock or the cowl lip depending on the operating condition of the 
inlet (subcritical, critical, or supercritical).  The remaining flow leading downstream to the engine will be 
modeled with a quasi 1-D CFD method.  A current model exists at NASA GRC based off of the 
MacCormack method.  This model may be used but other CFD methods are also being explored.  Finally, 
the mass flow leakage that occurs at the cowl lip will be modeled using the method developed in LAPIN.  
All of these techniques will have to be modified to incorporate the dynamic correction factors developed 
with the PHASTA models in order to accurately represent the complex three dimensional flow field. 

 The most recent research performed in development of the 1-D model illustrates the need for an 
accurate dynamic representation of the external compression flow field downstream of the initial conical 
shock.  A test case was performed using solely the external portion of the inlets centerbody.  This 
geometry was converted to a 2-D representation and run to steady state using inflow cruise conditions 
(M∞ = 1.7, etc.).  After this, probes were located in the flow field spaced evenly in the x-direction and y-
direction (400 total).  Finally a step in pressure with an amplitude of 100 Pa was applied at the inflow 
plane and its propagation through the flow field was recorded.  The process is detailed in figure 9. 
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Figure 9. Dynamic Test of External Compression Flow Field 
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(b) Comparison to NASA GRC website

Figure 4.1: Taylor-Maccoll solver results compared to NASA website [20]

4.2 Axisymmetric Method of Characteristics

Figure 4.2: Axisymmetric MOC mesh generation (Anderson[4])

The MOC was chosen to model the external compression flow field because it is the best

combination of accuracy and computational speed that satisfies the assumptions for this model. In

this region of the flow field, the flow is axisymmetric, supersonic, irrotational and is assumed to
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be inviscid and therefore the axisymmetric MOC is applicable [4]. In Section 2.3 the method of

characteristics was briefly described. Its implementation is a little more nuanced and the source

material [4] that the code is based off of provides an outline but not a complete description of how

to apply it. For this reason, there likely exists several equally valid approaches to using the method,

therefore some time will be spent on exactly how the method was used in this research.

The MOC works for supersonic, unsteady, irrotational flow because both characteristic lines

point downstream. For this type of flow, Equation (4.1) describes the direction of both the positive

and negative characteristic lines at any point in the flow field.

(
dr

dx

)

C±

= tan (θ ± µ) (4.1)

µ = sin−1
(

1

M

)
(4.2)

Here θ is the local flow direction, µ is the Mach angle which is found from Equation (4.2), and

C± corresponds to the positive and negative characteristic lines. For these equations, cylindrical

coordinates are assumed and x and r correspond to the axial and radial directions respectively.

Along these lines the compatibility equations describe the variation of the flow properties. They

are seen represented as in Equation (4.3).

d (θ ∓ ν)C±
=

1√
M2 − 1± cotθ

(
dr

r

)
(4.3)

ν =

√
γ + 1

γ − 1
tan−1

√(
γ − 1

γ + 1

)
(M2 − 1)− tan−1

√
M2 − 1 (4.4)

Here, M is the local Mach number, γ is the ratio of specific heats and ν is the Prandtl-Meyer

function seen in Equation (4.4). If the flow state is known at two adjacent points, the flow at a new

point can be determined by finding the intersection point of the positive characteristic line of one

initial point and the negative characteristic line of the other point. This is seen in Figure 4.1(b),

where the negative characteristic of point 1 intersects with the positive characteristic of point 2
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at point 3. At point 3, the compatibility equations (4.3) are solved numerically and the solution

is found. Therefore, if a know line of data points is located at some point upstream, the entire

solution of the flow field can be determined using this process. The exact way in which this was

accomplished will now be shown.

Unlike two dimensional supersonic flows, both the characteristic line and compatibility equa-

tions are described by ODEs which require a numerical method to solve for them. Using the forward

difference method Equations (4.1) and (4.3) can be recast as Equations (4.5) and (4.6) between

two points (i and j) in the flow field:

(
rj − ri
xj − xi

)

C±

= tan (θi ± µi) (4.5)

(θj ∓ νj)C±
=

1√
M2
i − 1± cotθi

(
rj − ri
ri

)
+ (θi ∓ νi)C±

(4.6)

If Equations (4.5) are expressed in terms of the flow state at points 1 and 3 using the positive

characteristic version of Equations (4.5) and the flow state at points 2 and 3 using the negative

characteristic version of Equations (4.5), they can be combined algebraically to find the location of

point 3 resulting in Equations (4.7) and (4.8):

x3 =
x2tan (θ2 − µ2)− x1tan (θ1 + µ1)− r2 + r1

tan (θ2 − µ2)− tan (θ1 + µ1)
(4.7)

r3 = (x3 − x2) tan (θ2 − µ2) + r2 (4.8)

Likewise, if Equations (4.6) are expressed along the positive characteristic line from point 1 to point

3 and along the negative characteristic line from point 2 to point 3, they can be combined to find

the flow direction θ and the P.M. function ν at point 3.

θ3 =
1

2
[(θ + ν)3 + (θ − ν)3] (4.9)
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ν3 =
1

2
[(θ + ν)3 − (θ − ν)3] (4.10)

These equations hold for points that are in the region between the centerbody surface and the

conical shock wave. For points on the surface, the flow angle is known so the negative characteristic

line coming from a point just above the surface (point 4 in Figure 4.1(b)) can be used to find the

state of the flow on the surface (point 5 in Figure 4.1(b)). Using the negative characteristic version

of eqns (4.1) and the geometry of the surface the new point can be found at point 5. Additionally,

the PM function can be found from the negative characteristic form of Equation (4.6) along with

the known flow angle θ5. This results in eqns (4.11) and (4.12):

(θ + ν)5 =
1√

M2
4 − 1− cotθ4

(
r5 − r4
r4

)
+ (θ + ν)4 (4.11)

ν5 = (θ + ν)5 − θ5 (4.12)

Likewise, points near the conical shock wave require similar treatment. For points on at the

shock wave, the flow angle is also known so the positive characteristic line coming from a point

below the shock (point 6 in Figure 4.1(b)) can be used to find the state of the flow on the surface

(point 7 in Figure 4.1(b)). Using eqns (4.1) and the assumed initial shock angle, the new point

at the shock can be found. From here, the positive characteristic form of the PM function can be

found from Equation (4.13).

(θ − ν)7 =
1√

M2
6 − 1 + cotθ6

(
r7 − r6
r6

)
+ (θ − ν)6 (4.13)

However, in this case the shock angle itself can change due to the influence of flow behind it. For

these points an iterative process is used were the shock angle calculated previously is used to find

the states behind at point 7 using the theta-beta-Mach Equation. The values for θ and ν predicted

from this local shock angle is compared to that predicted by Equation (4.13). If the difference is

too large a new guess for the local shock angle is used and the process is repeated.
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Figure 4.3: Axisymmetric MOC mesh

The above process describes how individual mesh points are created but not the entire process.

Overall, the MOC solutions starts by determining the initial shock wave and the solution in the

semi infinite cone portion of the centerbody using the TM equation solver. Using this solution the

MOC method can be seeded with an initial data line (green points in Figure 4.3). These points are

interpolated from the TM solution and their grid spacing (∆r) was shown to influence the accuracy

of the final MOC solution. A finer grid spacing initially led to a more accurate final solution

but also increased computational expense. From this initial data line new points were created

by looping over the initial points and creating new mesh points using Equations (4.7)-(4.13) for

interior, surface, and shock points. From here a new line of data down stream was created and the

process continued (red points in Figure 4.3). This process had to altered however because it was

found that the mesh points concentrated around compression waves emanating from the curvature

of the centerbody in the isentropic compression region. Left on its own, the mesh generation process

stalled as the mesh points became too concentrated and each new line of data was generated at

shorter and shorter distances downstream. This issue was overcome by creating a conditions that

removed new points if they were to close to pre-existing point from a previously created data line.

With this fix the solution was generated successfully. One interesting takeaway is that this process
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helps visually the flow field just by the grouping of mesh points. The compression waves do exist

in the flow field and this grouping of mesh points as seen in Figure 4.3 illustrates where they are.

(a) Probe locations (b) Relative error in Mach number

Figure 4.4: Comparison of MOC and PHASTA solutions

To evaluate the accuracy of this method, the results from the previously discussed PHASTA

simulations were compared with it. To do this, probes were placed in both the PHASTA and MOC

solution fields as seen in Figure 4.4(a). The flow states were then interpolated from the solutions

at each probe point. Figure 4.4(b) shows the relative error at each probe location between the two

solutions. As can be seen in this figure, the MOC solution compares to PHASTA extremely well.

In all but a few locations the percent difference was less than %1. Similar tests were performed for

the flow variables resulting in the same level of accuracy. From, these results it was concluded that

the MOC formulation used here provided an accurate steady state representation of the external

compression flow field.

4.3 Equivalent 1-D Representation of a 3-D Flow Field

With the confirmation of the MOC code as an accurate representation of the external flow

field, it is now an appropriate point to discuss how this will fit into the 1-D model. The output

of the MOC is a 2-D solution field spanning the axial and radial directions. For implementation
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into the 1-D code, an accurate 1-D representation is needed. The reason being, is because the

internal duct portion during critical(plane A Figure 4.5) and supercritical (not shown) operation

and the flow field aft of the normal shock during subcritical operation(planes B and C Figure 4.5)

is modeled using quasi 1-D equations. These equations need the MOC solution as an upstream

boundary condition in order run. Initially, the flow state(P, ρ, T, etc.) at a given x location was

averaged and used to determine the basic conservation flow variables U . However, this approached

resulted in large errors in mass flow rate and thus compromised the total solution. For this reason,

the method for determining an equivalent 1-D flow field found in the LAPIN report [57] was used.
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Figure 4.5: Equivalent 1-D States (LAPIN report [57])

In the LAPIN report the process of converting a 2-D flow field to an equivalent 1-D represen-

tation is detailed. The derivation presented in this report contains an error so a brief derivation will

be shown here. For any given plane in the external flow field (A, B, or C in Figure 4.5), the area

integral average flux through that plane can be calculated with Equations (4.14), (4.15) and (4.16).

Continuity:

Q1 =

∫

A
ρudA (4.14)

Momentum:

Q2 =

∫

A
(p+ ρuV ) dA (4.15)
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Energy:

Q3 =

∫

A
(ρEtot + p)udA (4.16)

Here, V is the total velocity and u is the velocity component in the x-direction. When evaluating

MOC results, the integrals in these equations were evaluated using a combination of the trapezoidal

rule and Richardson extrapolation. The details of these method are standard and are detailed in

(reference numerical methods class notes). Conversely, when PHASTA results were being evaluated,

the post processing tool Paraview was used to evaluate these equations by taking advantage of its

surface integration tool chain. In Paraview, a 2-D plane or ’slice’ can be placed in a 3-D solution

field and a built-in integrator finds the integral over the slice area. This was accomplished by

writing a code in Python which looped over the solution files for a given number of time steps,

performed the integration using Paraview, and saving the files the a .csv file. From there the filed

is converted to a Matlab file to continue post-processing the data.

In terms of the conservative flow state variables U , the Q equations can be represented as:

Continuity:

Q1 = U2 (4.17)

Momentum:

Q2 =

[
(γ − 1)U3 +

(
3− γ

2

)(
U2
2

U1

)]
(4.18)

Energy:

Q3 =

[
γU3 −

(
γ − 1

2

)(
U2
2

U1

)](
U2

U1

)
(4.19)

It was found that the equation for the flux term in the momentum equation had an error by re-

dressed these equations. The (γ − 1)U3 term is listed as (γ + 1)U3 in the LAPIN report. This
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caused the initial solution to be incorrect. In addition to this error, the following equations had

to be re-derived to calculate the conservative flow variables. The original equations were found to

be inaccurate. From here, the conservative flow state variables U can be solved for using Equa-

tions (4.20), (4.21) and (4.22).

U2 = Q1 (4.20)

U2

U1
=
−b±

√
b2 − 4ac

2a
(4.21)

U3 =
Q2

γ − 1
− 3− γ

2 (γ − 1)
Q1

U2

U1
(4.22)

where,

a = − (γ + 1)

2 (γ − 1)
Q1 (4.23)

b =
γ

γ − 1
Q2 (4.24)

c = −Q3 (4.25)

From this point on, this method will be used to transition from a 2-D flow field to a 1-D

representation when necessary.

4.4 Dynamic Modeling of the External Compression Flow Field

With the steady state solution for the external compression flow field calculated successfully

using the MOC, it was then possible to create a dynamic model. Initially the method detailed

by MacMartin and mentioned in Section 2.3 was tested. The initial results were promising but
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ultimately the method was not able to be adapted to the external compression flow field. Although

this method was unsuccessful it did provide several insights that were key in development of the

final model. Namely, the decomposition of flow variable perturbations into disturbance waves and

the propagation speed of these waves. Ultimately, a new method was created where temporary

steady state solutions were found for each of the disturbance waves created using the MOC and

the transition time between these solutions was modeled using their propagation delays along

streamlines. The details of the process will now be shown.

(a) Supersonic Expansion

(b) Supersonic Compression

Figure 4.6: 2D duct test case PHASTA simulations

To test the method created by MacMartin, a simple 2-D duct with an area ratio of 1.454

between the inflow and outflow planes was created in PHASTA. The duct could be run as either

supersonic expansion (Figure 4.6(a)) or supersonic compression (Figure 4.6(b)) depending on the

choice of the inflow plane. For both of these simulations, PHASTA was run to steady state using

the conditions in Table 4.1, where the flow remained supersonic throughout and therefore no exit

boundary conditions were needed. In both cases, after steady state was achieved a step in pressure

of 100 Pa was applied to the inflow plane and the response was measured at a distance of 1.05m

downstream.
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Table 4.1: 2D test case boundary conditions

Boundary Condition
Supersonic
Expansion

Supersonic
Compression

Inflow M 1.8 2.5

Inflow P (Pa) 11597 11597

Inflow T (K) 216.65 216.65

Slip Walls ~V · ~n = 0, ∂T/∂xn = 0 ~V · ~n = 0, ∂T/∂xn = 0

Next the method detailed by MacMartin was implemented in Matlab. First, the applied

pressure perturbation of δp = 100Pa was decomposed into three disturbance waves using Equa-

tion (3.1). Then, the time delay of each disturbance wave was computed using Equations (2.14).

Next, the amplitude gain was calculated for the fast and slow acoustic waves using Equation (2.15).

Finally, the disturbance waves were converted back to flow variables using Equation (3.2). As can

be seen in Figures 4.7(a) and 4.7(b), this method did an excellent job of predicting both the am-

plitude and time delay of the disturbance waves created by the pressure perturbation. Here the

change in pressure at the measured down stream point (x = 1.05m) due to the applied pressure

perturbation is shown.
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Figure 4.7: 2D duct test case results

With these results, the MacMartin method was then applied to the external compression
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flow field of the inlet. In this case the MOC was used to find the steady state solution of the

external compression portion of the inlet. Freestream conditions were applied at cruise altitude to

the inflow plane as summarized in Table 3.4. In this approach, the integral area average of the

MOC solution was taken at 33 equally spaced locations in the axial direction, spanning the entire

external flow field, from the freesteam to where the cowl lip region would be located in the real inlet

case (x = XCL). This was done using Equations (4.14)- (4.22). The MacMartin method that was

detailed in the 2-D duct case was then run using this 1-D representation using the same pressure

perturbation of δp = 100Pa . To verify this test, the external compression PHASTA model seen

in Section 3.4 was run to steady state using the boundary conditions in Table 3.4 and the mesh

and time discretization setting discussed in Section 3.1. For this simulation, no exit boundary

conditions were applied, as the flow remained supersonic throughout the whole solution field. The

simulation was then perturbed with a pressure perturbation of δp = 100Pa at the inflow plane.

The response was recorded at the cowl lip location(x = XCL) at a sampling rate of 20000Hz by

using the Python script and the Paraview post processing program discussed previously.
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Figure 4.8: MacMartin model applied to the external compression flow field

As can be seen in Figure 4.8, the MacMartin method applied to the reduced MOC solution
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does not do an adequate job of simulating the dynamic response of the flow field. There are two

reasons for this. First, the time delay predicted using this method predicts the disturbance to move

as two step waves. The PHASTA results clearly show that this is not accurate especially in the

case of the slow acoustic wave. The reason, as discussed in Section 3.4, is because the disturbance

waves are warped by the axially and radially varying speed of sound and velocity throughout

the flow field. The second reason, is that by reducing external compression flow field to a 1-D

representation, the affects of the conical shock wave are neglected. In MacMartin, an equation is

derived for the propagation of disturbance waves through a normal shock (Equation (2.16)). Here,

he discusses the affect of the normal shock on amplify or damping the disturbance waves. However,

this equation does not apply to oblique or conical shock waves. Additionally, without accounting

for the conical shockwave, the affects of the entropy wave are completely missing. This happens,

because although the entropy wave does not affect the pressure directly, it does affect the strength

of the shock wave as it passes through it and thus indirectly raises the pressure aft of the shock.

One solution to this problem, would be to re-derive the normal shock equation in MacMartin for

oblique and conical shockwaves. However, this, if successful, would only account for the correct

amplification factors across the shockwave and not account for the correct time response. This is

problematic because one of the main goals of this research is to successfully model the response

to sinusoidal perturbations. As can be seen in Figure 4.8, the length of the response to a pressure

perturbation in time is on the scale of the frequencies of interest. Therefore, using a method that

does not accurately capture this affect would result in completely erroneous responses to sinusoidal

perturbations.

The solution to this issue involved using a novel approach to propagate disturbances through

the flow field. To start the solution, the steady state problem was solved using the MOC. Then the

incoming flow variable disturbance was decomposed into the 3 constituent disturbance waves (δ+,

δe and δ−) using Equation (3.1). Then each of these waves was individually converted back into

flow variable disturbances using Equation (3.2). Next, each of these disturbances represented in

flow state variables are used as freesteam inputs to find a new temporary steady state solution using
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where the first two terms represent the advective flux and the last two represent the di↵usive
flux. Finally, the force vector is:
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Written together the N.S. equations can be expressed as:

U,t + Fi,i � F = 0 (8)

1.2 CFD Methods

There are three main types of computational fluid dynamic methods: finite di↵erence, finite
volume, and finite element [1]. The main di↵erence in these methods is in how they treat the
spatial derivatives contained in the flux vector (6). The most common is the finite di↵erence
method, mostly due to its simplicity. The finite di↵erence method works by representing
the flow field as a grid and performing a taylor series expansion (9) of the state variables at
each grid point. From there the spatial derivatives are solved for and the error is truncated.
A common finite di↵erence method is the second order accurate central di↵erence method.
As depicted in equation (10), it is the combination of two taylor series expansions, one with
a positive �x (forward di↵erence) and one with a negative �x (backward di↵erence). This
method is e↵ective for many types of problems, but it has a few drawbacks. The main issue
is that this method requires structured meshes. For large problems this can cause a severe
reduction in computational performance.
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The finite element method uses a much di↵erent approach. In this method, the Navier-
Stokes equations as expressed in equation (8) are solved by the Galerkin method. This
method works by multiplying equation (8) by an arbitrary weighting system and integrating
of the domain of problem. This method has several advantages over the other methods such
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(b) Flow variable decomposition

Figure 4.9: Decomposition of disturbance into separate 1-D steady states

the MOC, resulting in four overall MOC solutions for the entire flow field. The 1-D representation

of at the plane of a given x-location i is then found using Equations (4.14)- (4.22) for each of these

solution states which is represented by Equation (4.26). This process is illustrated in Figure 4.9.

Ui =
[
U∞i U+

i Uei U−i

]
(4.26)

However, this process only provides the temporary steady state solutions and not the full transient

response. To accomplish this, the initial steady state solution is interpolated along streamlines

placed at a constant inflow seed height ∆y a seen in Figure 4.10(a). Then the streamlines are

looped through and Equations (2.14) are used to determine the time that it takes each disturbance

wave to be translated along a given streamline. The ”jth” stream line is then assigned a vector

seen in Equation (4.27) which stores this information for each streamline that corresponds to the

disturbance wave solutions in Equation (4.26).

τ (j) =
[
t0 τ+ τ e τ−

]
(4.27)
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Finally the solution to either a step or sinusoidal freesteam flow variable disturbance can be

calculated by assuming that the 1-D representation of the flow field a given x-location i, transitions

through each of the temporary steady state MOC solutions as the disturbance waves are propagated

and distorted along the streamlines(Figure 4.10(a)). The process is as follows. First, the time for

the entire simulation is set, which spans from t = 0 to t >= Tf , where Tf is the time it takes the

slowest disturbance wave to travel the slowest streamline. Then a time step size is prescribed and

the total number of time steps are looped through. At each time step the number of streamlines

are looped through and the local steady solution is interpolated from Equation (4.26) using the

time step and the current streamlines disturbance wave delay vector Equation (4.27). At a given

x-location i, the plane normal to the axial direction is divided in Nr points and at each point

the local solution is interpolated from the streamline solutions. Finally, the 1-D representation is

determined using Equations (4.14)- (4.22) resulting in the full unsteady result at the plane of a

given x-location Ui(t).
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(a) Streamlines at initial steady state
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(b) Example at time t1

Figure 4.10: Streamlines in the solution field

For example, assume at some time t1 the fast acoustic wave has arrived at the location

labeled in Figure 4.9(a) along some streamlines but not others. This is seen in Figure 4.10(b),
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where the green streamlines represents streamlines along which the fast acoustic wave has arrived

at the chosen plane and the blue streamlines represent streamlines where it hasn’t. At this time

(t1) the solution as a function of radial direction r can be represented in Equation (4.28).

U(t1, r) =
[
USS(r0),U

SS(r1), ...,U
+(rNr−1),U+(rNr)

]
(4.28)

Here the green terms correspond to the steady state solution of the fast acoustic wave and the

blue terms correspond to the initial unperturbed steady state solution. The current equivalent

1-D solution at the measured exit plane can be calculated from Equation (4.29). This process is

repeated at every time step allowing the solution to capture the transient response of the external

compression flow field.

U(t1) =
1

A

∫

A
U(t1, r)dA (4.29)

A similar process is used for sinusoidal free stream perturbations. In this case however, the

response is the result of the superposition of three overlapping sine waves offset by their respective

time delays. Again, the free stream flow variable is converted into the three principal disturbance

waves and then converted into four separate steady state solutions. Here the time vector is set in

the same way and the number of time steps and streamlines are looped over. At each time step,

Equation (4.30) is used to find the response for each streamline. Here τ is the time delay associated

with each wave and the amplitude results from the difference between the steady state of each wave.

Each term is added after the current time step exceeds the time delay for a given disturbance. As

with the step disturbance, the final result is obtained by taking the area integral average of all of

the streamlines at the exit plane using Equation (4.29).

U(t, r) = U∞(t, r) + (U+(t, r)−U∞(t, r))sin[2πf(t− τ+)]

+ (U e(t, r)−U+(t, r))sin[2πf(t− τ e)]

+ (U−(t, r)−U e(t, r))sin[2πf(t− τ−)]

(4.30)
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Table 4.2: Temporary inflow conditions for each disturbance wave due to pressure disturbance

Inflow
Variable

Unperturbed
Freestream

Fast Acoustic
Wave δ+

Entropy
Wave δe

Slow Acoustic
Wave δ−

M 1.7000 1.7020 1.7041 1.7000

P (Pa) 11597 11647 11647 11697

T (K) 216.65 216.92 216.38 216.65

u (m/s) 501.57 502.48 502.48 501.57

To test the effectiveness of the new dynamic external compression model, two tests were

created. For both test cases, the steady state solution was first found at the cruise conditions

seen in the second column of Table 4.2. In the first test a step input in pressure of 100 Pa was

added to the steady state solution. Using the method just described, this perturbation is used to

find three new temporary steady state solutions with the corresponding free stream inputs seen in

Table 4.2. Using this method the dynamic response at the exit plan (x = XCL) was calculated. To

verify the accuracy of this method, the external compression model in PHASTA (Figure 3.23(a))

was run to steady state using the first column of Table 4.2 and was then perturbed with the same

100 Pa step in free stream pressure. The equivalent 1D representation was then recorded at a

sampling frequency of 20,000 Hz using Equations (4.14)- (4.22). Figures 4.11(a), 4.11(b), and

4.11(c) compare the response in conservative flow variables (Ui) at the cowl lip location, between

the PHASTA simulations and the new dynamic model. As can be seen from these figures the new

method matches the results from PHASTA almost exactly. Not only is the amplitude of each wave

predicted well but so is the transient response in between the arrival of each disturbance wave.

For sinusoidal disturbances, it is crucial that both of these features are captured. This is seen

in the second test where the same steady state solution was perturbed using a 100 Pa amplitude,

500 Hz freestream pressure disturbance. In this case, the same temporary steady solution were

used as in the previous test, as seen in Table 4.2, to determine the relative amplitudes of each

wave expressed in Equation (4.30). Using the the new method, the response in conservative flow

variables(Ui), is seen in Figures 4.12(a), 4.12(b), and 4.12(c). As with the previous case, the

response is compared to PHASTA using the same steady state solution and sinusoidal pressure
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(c) U3 response

Figure 4.11: Response to 100 Pa freestream pressure step

perturbation. From these figures, it can be seen that the new external compression dynamic model

matches the PHASTA results almost exactly.

From these results and those of the previous test it is concluded that the new model is an

accurate representation of the dynamics of the external compression flow field in response to low

amplitude flow field perturbations. The formulation of this model is believed to be physically valid

for the following reasons. First, in one dimensional flow it has been shown that single flow field
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Figure 4.12: Response to a 500 Hz, 100 Pa freestream pressure disturbance

perturbations create the three disturbance waves used in this modeling process to find the new

temporary steady state solutions. Since the perturbation is applied at the free stream this portion

of the flow field can be approximated as 1-D. Additionally, these waves are shown to propagate

at u + c, u, and u − c based on the local flow conditions. In the true three dimensional case,

the disturbances will propagate along characteristic lines throughout the flow field, so that each

portion of the disturbance wave actually spreads out in a fairly complicated manner. This is why
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the individual probe points in Figure 3.23 in Section 3.4 show a similar behavior as the 1-D average

and not three distinct steps as would be expected if the disturbances actually moved solely along

streamlines. This method uses the approximation that the disturbances move along streamlines

but in the 1-D case this is considered valid because we are interested in the average 1-D cross-

sectional response of the flow field and this approximation is in fact a 1-D average of how these

disturbances would propagate along characteristic lines. For this research the 1-D approximation is

more valuable because if the disturbance waves were propagated along characteristic lines, as in the

3-D case, the method would essentially amount to an unsteady MOC formulation which would be

much more computational expensive. In the end the 1-D average would be taken anyways, so there

would be no advantage to doing this, especially considering how accurate the current method is.

In the next section, this model will be combined with other methods discussed in the Background

Section (2) to piece together a complete 1-D dynamic inlet model.



Chapter 5

Quasi 1-D External Compression Inlet Model

The main purpose of this research is to create a quasi 1-D external compression inlet in the

Matlab environment. To reiterate, the inlet model should be accurate in both steady state and

dynamic operation over a range of operating points spanning subcritical, critical, and supercritical

operation. With the creation of the dynamic external compression model detailed in the previous

chapter, it is now possible to discuss the overall inlet model. In this chapter the different modeling

regions of the inlet model seen in Figure 2.17 will be discussed in detail. First, the external

compression model will be slightly modified to accommodate a moving boundary between the

external field and the internal duct modeling. This region is separated by the normal shock during

critical and subcritical operation. In these situations the normal shock can move upstream and

downstream and the inlet must capture this movement correctly. Next, the internal duct modeling

which uses quasi 1-D CFD is detailed. This region is modeled using the MacCormack method as

stated in the Background Section(2). Next, the cowl lip spillage model necessary for critical and

subcritical operation will be discussed. Initially, the method from the LAPIN report discussed in

Section 2 was used. As will be shown, this method was only able to be implemented for a specific

operating point and was extremely unstable. To remedy this, a new method was created using

data from the PHASTA simulations. Next, the exit boundary conditions used for this modeled will

be discussed. The method detailed in Paynter is used and is compared to the original constant

pressure boundary condition for accuracy. Finally, the results of the reduced order model will be

compared to the PHASTA simulations. It will be shown this model matches PHASTA with very
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low error for both steady state and dynamic operation for all of the operating points tested.

5.1 External Compression Flow Field

The external compression portion of the inlet is modeled using the method detailed in the

previous section. To recap, this model use the MOC combined with a Taylor-Maccoll equation

solve to determine the steady state solution of the flow field. Flow field disturbances are converted

into characteristic disturbances waves which are used to create three new temporary steady state

solutions. The unsteady solution is determined by assuming that the flow field transitions between

these solutions along streamlines and the integral area average is taken at each time step at a

prescribed location. In the previous section this was done at the end of the external compression

flow field where the cowl lip or start of the internal duct is located. For supercritical operation this

is accurate because the normal shock is located within the duct and the boundary between external

compression flow field modeling and quasi 1-D CFD is at this location. However, for critical and

subcritical operation the normal shock is located outside of the cowl lip. In these cases quasi 1-D

CFD is used to model everything downstream of the normal shock the the external compression

flow field must be used to find the equivalent 1-D solution upstream of the normal shock. For this

reason, the external compression model was modified to have the equivalent 1-D state taken at

equal spaced locations from the tip of the centerbody to the cowl lip region. The grid spacing of

these locations is determined by the grid spacing of the internal duct domain.

With this modification, the external compression model can be incorporated into the overall

inlet model. First the free stream Mach number (M∞), pressure (P∞), and temperature (T∞)

are prescribed and the initial steady state solution is determined using the MOC and the TM

equation solver. Then, using the grid spacing determined by the internal duct model, the external

compression flow field is reduced to an equivalent 1-D solution using Equations (4.14)- (4.22) from

the freestream to the cowl lip location. This solution is then saved so that future simulations

at these conditions do not require the flow field to be solved again. A benefit of the completely

supersonic flow field is that the downstream flow field in the internal duct does not the affect the



81

solution so it can be used in any simulation under these conditions. Next, if a flow field perturbation

is applied, it is converted into the three characteristic disturbance waves DELS. The MOC is used

to determine the steady solutions for each wave and the equivalent 1-D solution is determined for

each location from the freestream to the cowl lip location. Again, this solution is saved for possible

future simulations because regardless of the perturbation type or frequency, these disturbance wave

solutions can be reused to save computational expense. Finally the specific perturbation type(step

or sinusoidal) is solved for using the methods described in the previous section. This results in the

entire solution for the external compression flow field (expressed as UEi (x, t)) independent of the

internal duct solution which will be described in the following section. This decoupling of solutions

is again possible because internal duct flow field does not affect the upstream solution in the purely

supersonic external compression flow field.

5.2 Internal Duct Modeling

The internal duct portion of the supersonic inlet is modeled using quasi 1-D CFD. The

domain spans either the cowl lip location or the normal shock to compressor face depending on

operating condition. As mentioned in the Background Section (2), if it is assumed that the flow

is quasi one dimensional, an ideal gas, inviscid, and has no external heat sources, then the quasi

1-D CFD Equations (2.9), (2.10), (2.11), and (2.12) can be used to model this portion of the

inlet. The method used to solve these equations is the MacCormack method. The method was

briefly discussed in the Background Section (2) and a full derivation of the method will be skipped

here. What is contained here is how the internal duct model fits into the overall model and what

modifications were made to it. Following this, the initial results of the internal duct modeling will

be shown as compared to the results from PHASTA.

Under supercritical operation, the internal duct portion of the inlet spans the cowl lip region

to the compressor face. The upstream boundary conditions are taken from the last cell of the

external compression flow at the cowl lip and the downstream boundary conditions are are applied

as to best emulate the compressor face (more detail here in Section 5.4). The time step used
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is determined from the applied grid spacing dx and using a CFL number of 0.2026. The initial

conditions used to start the simulation are taken either from the equivalent 1-D representation

of PHASTA data at steady state using Equations (4.14)- (4.22) or from the final time step of a

previous solution. From here the total number of time steps is looped over using the MacCormack

method as is consistent with Anderson [5]. For supercritical operation, nothing more is needed and

the internal duct solution can be solved for(U Ii (x, t)). The domain split for this situation is seen in

Figure 5.1(a).

Length(m)
0 0.5 1 1.5 2 2.5

He
ig

ht
(m

)

-0.2

0

0.2

0.4

0.6

0.8

1

Conical
Shock

Quasi 1-D CFD Domain

Cowl Lip
Location

Normal
Shock

External
Compression Domain

(a) Supercritical Operation

Length(m)
0 0.5 1 1.5 2 2.5

He
ig

ht
(m

)

-0.2

0

0.2

0.4

0.6

0.8

1

Conical
Shock

Cowl Lip
Location

External
Compression Domain

Normal
Shock

Quasi 1-D CFD Domain

Cowl Lip
Height Used
for External
Cell Area

(b) Subcritical Operation

Figure 5.1: External compression and quasi 1-D CFD domains

For critical and subcritical operation however, the normal shock wave is expelled from the

inlet and the MacCormack method must be modified to account for the domain moving upstream
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with the shock. As the back pressure at the compressor face is raised the normal shock moves

upstream to adjust to the flow field. Once, the normal shock reaches the cowl lip the domain must

be extended to allow it to keep moving freely. This is done by extending the CFD domain upstream

by 4 cells as seen in Figure 5.1(b) for subcritical operation. The area used for each new cell is taken

from the difference in height between the cowl lip and the centerbody, also seen in Figure 5.1(b).

At each time step the shock position is determined from Equation (5.1) by looping through the

solution field in x.

xShock = max

(
∂P (x)

∂x
• ∂M(x)

∂x

)
(5.1)

Here, the max is taken as the combined max gradient of the Mach number and pressure, where

the gradients are evaluated using the central difference method. At each time step, the upstream

boundary is moved to allow proper shock motion. At this point the total solution is updated

as Ui(x, t) = [UEi (x, t), U Ii (x, t)]. This procedure works because the external compression flow

field has already been solved for the total time of the simulation. Likewise, if the shock moves

downstream, the previous internal duct cell is converted back to an external compression cell using

the pre-calculated value at that time step.

Table 5.1: Boundary conditions from PHASTA for the internal duct test

Boundary Type Boundary Condition

PCowlLip 24,349(Pa)

uCowlLip 430.84(m/s)

TCowlLip 249.24(K)

PB 45,930(Pa)

To test the accuracy of the MacCormack method to simulate the internal duct portion of the

inlet independent of the inlet model, it was compared to the PHASTA data at the supercritical

operating point seen in Figure 3.12(a) in Section 3.2. To do this, the PHASTA data at the cowl lip

was used as the upstream boundary conditions for the internal duct and the same constant pressure

was used at the exit boundary conditions as seen in Table 5.1. The results of this test are seen in
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Figure 5.2(a). These results are presented in non-dimensional form using the max value for each

flow variable to non-dimensionalize the data. As can be seen here the results match very closely

including the normal shock position.
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Figure 5.2: Internal Duct Comparison(Connolly [15])

From here the dynamic response of the internal duct to upstream perturbations was tested.

As before the data from PHASTA was used to determine the upstream boundary conditions at

the cowl lip location and the same exit pressure was used as a downstream boundary condition.

The PHASTA data came from the supercritical pressure perturbation tests in Section 3.3 using

freestream perturbations with a 100 Pa amplitude sinusoidal disturbance at frequencies of f = [10,

100, 400, 1000] Hz. In Figure 5.2(b), the dynamic response of the internal duct and PHASTA are

displayed in the form of a Bode plot. As can be seen, the dynamic response of the internal duct is

almost exactly the same as PHASTA both in gain and frequency response. With these results it is

concluded that the internal duct is modeled correctly using the MacCormack method.

5.3 Cowl Lip Spillage

In Section 5.2 the MacCormack method was modified to allow the quasi 1-D CFD domain to

change as the normal shock moved under sub-critical and critical operation. For these operating
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points, an additional modification is needed to account for the mass flow spillage around the cowl

region. This can be seen in Figure 3.14 in Section 3.2 where the flow is spilling out around the

cowl lip after the normal shock. In Figure 5.1(b) the domain for the external compression field was

defined by the centerbody and the cowl lip height. To account for this flow spillage, extra terms

must be added to the quasi 1-D equations ((2.9), (2.10), and (2.11)) as seen in Equations (5.2),

(5.3), and (5.4).

Continuity:

∂

∂t
(ρA) +

∂

∂x
(ρAux) = S1Spill (5.2)

Momentum:

∂

∂t
(ρAux) +

∂

∂x

(
ρAu2x

)
= −A∂p

∂x
+ S2Spill (5.3)

Energy:

∂

∂t
(ρAEtot) +

∂

∂x
(ρAuxHtot) = −p∂A

∂t
+ S3Spill (5.4)

Here each SiSpill term represents the amount of mass, momentum, and energy that leaves

the domain. In the vector representation of the conservation equations (Equation (2.13)) this can

be expressed as Equation (5.5).

U,t+F,x= S + SSpill (5.5)

These terms are needed for two reasons. First, without them the flow values downstream of

the normal shock and at the compressor face will be in accurate. This is unacceptable both for

taking meaningful results from the inlet model and when combining the inlet with the rest of engine

as part of a much larger simulation. Therefore simply locking the shock wave at a known location

for a given back pressure is not an option. The second reason, is that without these terms the

solution becomes unstable. This happens because as the normal shock is expelled from the internal

duct, it keeps moving upstream towards the centerbody causing the solution to crash because there

is no pressure relief to match the applied boundary conditions. To solve this issue, two method



86

are presented. The first is the method from the LAPIN report which was detailed in Section 2.

This method ended up being accurate for only a single operating condition so it was ultimately

abandoned. A brief summary method is still presented however because considerable progress was

made in getting it to work correctly and future research could potentially make it more general.

This is the ideal situation because then the inlet model would be completely independent of outside

data, either from CFD simulations or test data. The second method, which was implemented in

the final inlet model, uses data from the PHASTA simulations to determine these spillage terms.

As will be seen, this method works extremely well. It is able to predict the correct shock location

while maintaining low steady state error and was found to be robust for the cruise condition at

which it was applied.

The method in the LAPIN report was detailed in Section 2. There it was shown that the

method predicts the mass flow spillage around the cowl lip by modifying a previous method by

Moeckel [41]. In Moeckel, a method for determining the mass spillage around a pitot tube using

a correction factor F , based on the known theoretical supersonic flow around a cylinder was de-

veloped. In LAPIN, this method was modified using the conditions upstream of the normal shock

and the conditions at the cowl lip during the upstart condition for a mixed compression inlet to

create a new set of correction factors Fci. In applying this method for the research contained here,

it was found that the original correction factor F reported in the LAPIN report had an error. The

first step in using this method was to follow the original paper by Moeckel and create a function

to correctly predict this correction factor as a function of pre-shock Mach number. For brevity,

the details are left out of this thesis and can be found in Moeckel. From here one correction factor

was calculated for each conservation equation spillage term as described in the LAPIN report. The

spillage term for the continuity equation was determined using Equations (2.8) and (2.7) and analo-

gous terms were found for the momentum and energy equations by replacing the ρU terms with ρU2

and ρUetot respectively. Here the correction terms were applied to the local conservation terms Ui

isentropically expanded to the sonic condition. These spillage terms were then added to the quasi

1-D equations seen in Equations (5.2), (5.3), and (5.4) and incorporated into the MacCormack
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method.

Initially, this method did not work and the normal shock moved to the free stream, as in the

case without spillage terms, and the solution became unstable. It was found that if limits were

placed on the correction factors Fci, seen in Table 5.2, then a stable solution was able to be found.

At a back pressure of 47, 119(Pa) or 1.017PB(Critical) and using the cruise freestream conditions

seen in Table 3.4, the LAPIN spillage method allowed the inlet to match the data from PHASTA

very closely as seen in Figure 5.3. Here the shock location is off by only 2 cells and the steady state

pressure error at the compressor face is 0.891%, with similar results for the other flow variables.

However, although a stable solution was found for several operating points using these limits, an

accurate solution was only able to be produced for this single sub-critical operating point. At other

operating conditions there were large errors in the steady state solution on the order of 50%. An

attempt was made to scale the limits with the back pressure but without success. Ultimately, this

would not be a good solution as the method would then lose generality.

Table 5.2: LAPIN correction factor limits

Correction Factor Limits

Continuity
Fc1

[0.50, 0.74]

Momentum
Fc2

[0.50, 0.75]

Energy
Fc3

[0.99, 1.00]

Axial CFD Cells

0 20 40 60 80 100

P
/
P
∞

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Quasi 1D Model
with LAPIN Spillage
Phasta

Figure 5.3: Steady state pressure using LAPIN
spillage model

These results show that it may be possible to use this method in the future with modification.

It is also possible that this may have been considered a success for the purposes of the LAPIN
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report. In that report the model used was a mixed compression inlet and their main concern was

inlet upstart. For mixed compression inlets the design point is at the supercritical operating with

the normal shock inside the duct. It may have been that the authors were only concerned with a

single upstart or sub-critical operating point since it is an off design consideration. In that case it

would make sense not to test the model at several sub-critical operating conditions for accuracy.

For this research, this functionality does not suffice and so it was not used in the final model.

As a result of the limitations of the LAPIN method, a new spillage model was created

using the data from PHASTA simulations. In this method, the 1-D solution was extracted from

PHASTA simulations at four sub-critical operating points. Here, the equivalent 1-D solution is

taken at equally spaced locations from the freestream to the cowl lip, using Equations (4.14)-(4.22)

and the cowl lip height to determine the area of each cell as seen in Figure 5.1(b). At steady state,

the unsteady term in Equation(5.5) U,t is zero and the equation can be reduced to Equation(5.6).

F,x= S + SSpill (5.6)

Here the flux term F,x can be approximated using the central difference method and the

spillage terms can be solved for using Equation(5.7).

SSpill =
Fi+1 − Fi−1

2∆x
− S (5.7)

At each operating point the normal shock position is also known, so the spillage terms at

each location x of the external compression portion of the inlet can be correlated with the shock

position. Using this data the spillage terms were curve fit as function of shock position using linear

interpolation. In this way the inlet adjusts naturally as the shock moves out of the inlet. This

method was successful in predicting both the shock position and flow field down stream of the

normal shock. The results will be shown in the final section of this chapter. The main benefit of

this method is that it is robust at this freestream condition allowing the flow field to adjust properly

to changes in back pressure. The downside is that the model is dependent on PHASTA data and
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so this model most likely will not work at different freestream conditions. Fortunately, only steady

state CFD data is needed so generalizing this inlet to work at different parts of the flight envelope

would require only a modest number of additional CFD simulations.

5.4 Exit Boundary Conditions

For all of the simulations performed so far, the applied exit boundary condition has been a

constant back pressure. In Section 2 this was shown to be an accurate boundary condition for steady

state but not the most accurate when studying the unsteady response of an inlet. In Section 2

a method was presented by Paynter et. al. [45] to properly model the effects of a compressor

face as the exit boundary condition in a quasi 1-D CFD model. To briefly reiterate, this method

linearizes the 1-D Euler equations along characteristic lines to develop boundary conditions based

purely on a refection parameter R. The reflection parameter can be used to set constant pressure,

constant velocity, nonreflecting, or realistic boundary conditions based off of the compressor blade

stagger angle. In this section, the capability of this model is tested using different values of the

reflection parameter R to set the exit boundary condition. For the final results presented in this

thesis, which verify the accuracy of the inlet using the results from PHASTA, a constant pressure

boundary condition is still used because that was the boundary condition used in the PHASTA

simulations. The purpose here is to show this capability has been added to the quasi 1-D inlet

model for future studies when the compressor face blade geometry is known.

To test the capability of the new exit boundary condition model a test was developed. First

the quasi 1-D inlet model was run to steady state at the supercritical operating condition using a

back pressure 45, 089(Pa) or 0.972PB(Critical) and the freestream conditions seen in Table 3.4. A

step in pressure of 100 Pa was applied to the freestream and measured at a point 0.291 m in front

of the exit plane. As with the PHASTA simulations a 3m straight duct was added to the end of the

inlet. For this test, this straight section eliminates the affects of changes in area to better analyze

the properties of the reflected disturbance. This test was performed on the inlet using the original

constant pressure exit boundary conditions along with the constant pressure(R = −1) and constant
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Figure 5.4: Response upstream of exit boundary to freestream pressure step

velocity(R = 1) boundary conditions using the Paynter model. In Figures 5.4(a) and 5.4(b) the

results are presented as the response in pressure at measured location and the change in shock

position respectively. in Figure 5.4(a) it seen that the initial wave is the same in all three cases

but the reflected wave is greatly affected the choice of boundary condition. As can be seen in

Figures 5.4, the results using the constant pressure boundary condition with the Paynter method

exactly matches the original constant pressure boundary condition both in the reflected pressure

wave and the affect on shock movement. Additionally, the behavior of the reflected pressure wave

using the constant velocity boundary condition with the Paynter method matches the qualitative

response seen in Paynter et. al. [45]. Namely that the reflected pressure wave has a positive

amplitude above the mean pressure at that location. From these results it is concluded that the

boundary condition method is working properly. Future simulations will use the correct boundary

condition when the blade geometry is known.
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5.5 Implementation of the Quasi 1-D Inlet Model in Matlab

As mentioned, the quasi 1D inlet model has been developed completely in the Matlab envi-

ronment. The current version is written as a Matlab script with future plans to convert the code to

a hybrid Matlab/Simulink model to interface more easily with the rest of the engine/vehicle model.

The model was developed as a modification of a previous model which used the MacCormack

method to model the internal duct portion of the inlet and data from separate CFD simulations to

model the external portion of the inlet. The main contributions to the quasi 1-D inlet model are

the dynamic external compression model detailed in Section 4 and the mass spillage model detailed

in Section 5.3. The dynamic external compression model is run before the internal duct portion

while the mass spillage model was integrated into the internal duct model and is called at each

time step.

At the beginning of the quasi 1-D inlet model code, the geometry of the inlet and as well

as the initial conditions are loaded. The geometry file includes points in x and y that locate the

centerbody and the cowl surface of the inlet. The initial conditions provide the area averaged

1-D state and either come from an externally run CFD simulation, test data, or a previously run

quasi 1-D inlet solution. Note, it is necessary to start from a previously run steady state file if

a freestream disturbance is to be applied. From here, the parameters of the simulation are set,

such as the total number of time steps, the CFL number, etc. Next, the steady state solution

to the external compression portion of the inlet is obtained using the Method of Characteristics

(MOC). The MOC solution can either be run, if using a new set of free stream values, or loaded

from a previous solution. From here, if necessary, a disturbance is applied to the freestream. As

mentioned in Section 4, the dynamic model is obtained by transitioning between three temporary

steady state solutions caused be the subsequent disturbance waves, created by the free stream flow

disturbance. These temporary states are based on the amplitude of the change in free stream

values. Additionally, these temporary states are calculated using the MOC, like the original steady

state solution, and is the most computational expensive portion of the external compression model.
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For this reason, an option exists to save these states so that any subsequent simulations using the

same magnitude disturbance will not have to repeat this step. For instance, if a 1 % change in

pressure is applied as a step disturbance, the resulting temporary steady state solutions will be the

same as is if a 100Hz 1% amplitude change in pressure sinusoidal disturbance was applied. From

here, the type of applied disturbance is selected (step or sinusoidal wave) and the solution for the

total number of time steps of the simulations is obtained for the external compression portion of

the inlet. As mentioned in Section 4, this is possible because the flow is supersonic throughout this

region and the external compression portion can be decoupled from the internal duct.

With this solution obtained, the internal duct portion of the code is run. The total number

of time steps and the total number of points x in the streetwise direction are looped though and

the MacCormack method is used to solve the internal duct portion of the inlet. At each time step

the amount of spillage needed at the cowl lip is applied using the current normal shock position

and the data from the PHASTA simulations. If the normal shock is inside of the duct then, then

these spillage terms are not applied. Finally, at each time step, the solution data from the external

compression model is used as an upstream boundary condition and the Paynter model is used for

the exit boundary conditions. When the simulation is complete, the flow field data for each point

x and for every time step is output to the Matlab work space. This process is summarized in the

following pseudo code.
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Algorithm 1 Quasi 1D Inlet Code

1: procedure Initialize Simulation
2: Load geometry
3: Load initial conditions
4: Set simulation parameters(∆t,∆x, t, etc)

5: procedure External Compression Flow Field
6: if New simulation = True then
7: Determine steady state with MOC
8: else
9: Load steady state solution

10: end if
11: if Apply freestream disturbance = True then
12: if Apply new disturbance = True then
13: Calculate three temporary steady state solutions for resulting disturbance waves.
14: else
15: Load temporary steady state solutions

16: end if
17: Enter disturbance type (step or sinusoidal wave)
18: Calculate dynamic response for the total length of the simulation.

19: end if
20: procedure Internal Duct
21: for ∆t = 1 to t do
22: Apply upstream BCs using external compression solution
23: for ∆x = 1 to L do
24: Apply MacCormacks method
25: Apply spillage where needed

26: end for
27: Apply downstream BCs using Paynter method

28: end for
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5.6 Steady State and Dynamic Results of the Quasi 1-D Inlet Model

With all of the individual sections of the quasi 1-D inlet model verified, it is now possible to

simulate the entire inlet model. In the final version of the inlet model, the external compression

portion of the inlet is modeled using a novel approach developed in Section 4, the internal duct

portion is model using the MacCormack method, modified to allow a moving upstream boundary,

the cowl lip spillage is modeled using a new approach developed in Section 5.3, and the exit

boundary conditions are modeled using the method developed by Paynter, et. al. To verify the

accuracy of the complete inlet model, results have been obtained and compared to the previous

PHASTA results seen in Sections 3.2 and 3.3. These results have been obtained at both steady

state and dynamically, at several operating point at the cruise freestream conditions. From these

results, it will be shown that the reduced order model is an accurate representation of the inlet.

The first step in verifying the complete inlet model was to test its capability to model the inlet

at steady state. To do this, the inlet was simulated at the freestream using the inflow boundary

conditions seen in Table 3.4 and at the operating conditions seen in Table3.5. For each simulation,

the back pressures in this table were applied as the exit boundary condition. Figures 5.5-5.9 show

the pressure distribution from freestream to the compressor face location. In each of these figures it

can be seen that both the steady state solution and the shock match the PHASTA results extremely

well.

In particular, the error in the external compression portion is very low, at less than 1% in

every simulation. The max error for every flow variable in each simulation is less the 5% and the

max error for every flow variable at the compressor face location is less the 1.7% and less than 1%

in most cases. The shock position is only off in two cases but matches PHASTA in all of the other

instances. Once, at a supercritical operating point (PB = 0.989PB(Critical)) and again at the critical

operating point. The fact that the shock is spread out over more CFD cells than in PHASTA is due

to the artificial viscosity used in the MacCormack method. The pressure distribution plots from

Figures 5.5-5.9 are shown in Figures 5.10-5.14 to better illustrate the shock location comparison
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between the two models. Additionally, the cowl lip spillage model does an excellent job modeling

the spillage and allowing the inlet to operate at the subcritical operating conditions. Compared to

the results using the spillage model from LAPIN seen in Figure 5.3, this is a large improvement.

These results show that the reduced order model accurately models the inlet at steady state.
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Figure 5.5: Steady state results PB = 1.023P(Critical)
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Figure 5.6: Steady state results PB = 1.012P(Critical)
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Figure 5.7: Steady state results PB = 1.000P(Critical)



97

Axial CFD Cells

20 60 100

P
/
P
∞

1

2

3

Phasta Quasi 1-D Model Cowl Lip Location

Axial CFD Cells

20 60 100

u
/
a
∞

0.8

1

1.2

1.4

1.6

Axial CFD Cells

20 60 100

T
/
T
∞

1

1.1

1.2

1.3

1.4

Axial CFD Cells

20 60 100

ρ
/
ρ
∞

1

1.5

2

2.5

Figure 5.8: Steady state results PB = 0.989P(Critical)
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Figure 5.9: Steady state results PB = 0.972P(Critical)
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Figure 5.10: Steady state pressure distribution PB = 1.023P(Critical)
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Figure 5.11: Steady state pressure distribution PB = 1.012P(Critical)
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Figure 5.12: Steady state pressure distribution PB = 1.000P(Critical)
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Figure 5.13: Steady state pressure distribution PB = 0.989P(Critical)
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Figure 5.14: Steady state pressure distribution PB = 0.972P(Critical)

The final test in verifying the complete inlet model was to test its capability at handling

freestream perturbations. For each of the operating points in the steady state tests, the freestream

was perturbed with a 100 Pa amplitude sinusoidal pressure disturbance at multiple frequencies. In

Figures 5.15-5.19, the response to 100 Hz free stream perturbation is measured at the compressor

face. Here, the y-axis variable ∆P is the difference in the measured response in pressure due to the

perturbation and the steady state value. The response is only shown to ∼ 0.025s because after this

time, the slow acoustic wave which is reflected off of the exit boundary arrives at the compressor

location and interferes with the solution making it difficult to compare to PHASTA. This test was

repeated for select frequencies between 50-1000 Hz for all of the operating conditions except the

supercritical operating point (PB = 0.989PB(Critical)) as seen in Figures 5.20,5.21,5.22, and 5.24.

In the supercritical case, frequencies between 50-2500Hz were chosen to compare with the extra

data from PHASTA which is shown in Figure 5.23. As can be seen from these plots, the reduced

order model matches both the gain and frequency results from PHASTA extremely well at each
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operating point tested. However, the reduced order model does seem to lose some accuracy at

higher frequencies. This may be due to the grid size of the internal duct portion of the 1-D model.

Part of the reason the results match so well is because of the accuracy of the external compression

model. As was seen in Section 3.1, the measured amplitude of an applied pressure perturbation

in a supersonic flow field is dependent on the location it is measured due to the interference of

the resulting disturbance waves. It is therefore important not only that the external compression

model predicts this behavior correctly but that the normal shock wave is in the correct location

for sub-critical operation as well. Overall, these results illustrate that the reduced order model

correctly models the dynamics of the inlets response to small amplitude flow field perturbations.

Finally, the quasi 1-D inlet code ran much more efficiently than PHASTA for this type of

simulation. The model was seen to simulate 532timesteps/(min ∗ proc) while PHASTA simulated

only 0.041timesteps/(min ∗ proc). This is a factor of 13,000 times faster. These results were

obtained by running the quasi 1-D inlet code on one processor for 4900 time steps which took 9.23

mins to complete. Likewise, PHASTA was run for 4000 time steps on 72 processors and took 1,365

mins to complete. Additional runs of both codes resulted in the same level of efficiency. PHASTA

of course is a powerful generalized solver capable of solving a wide variety of flows while this code

is tailored to simulate a supersonic inlet. Still, it speaks to the approach chosen, that this type of

efficiency was able to be obtained while maintaining the desired accuracy.
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Figure 5.15: 100 Pa 100Hz pressure disturbance response with PB = 1.023P(Critical)
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Figure 5.16: 100 Pa 100Hz pressure disturbance response with PB = 1.012P(Critical)
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Figure 5.17: 100 Pa 100Hz pressure disturbance response with PB = 1.000P(Critical)
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Figure 5.18: 100 Pa 100Hz pressure disturbance response with PB = 0.989P(Critical)
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Figure 5.19: 100 Pa 100Hz pressure disturbance response with PB = 0.972P(Critical)
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Figure 5.20: 100 Pa pressure disturbance Bode plot PB = 1.023P(Critical)
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Figure 5.21: 100 Pa pressure disturbance Bode plot PB = 1.012P(Critical)
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Figure 5.22: 100 Pa pressure disturbance Bode plotPB = 1.000P(Critical)
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Figure 5.23: 100 Pa pressure disturbance Bode plot PB = 0.989P(Critical)
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Figure 5.24: 100 Pa pressure disturbance Bode plot PB = 0.972P(Critical)



Chapter 6

Summary

The purpose of this research was to create a verified, dynamically accurate, general, quasi 1-D

supersonic inlet model in the Matlab environment. The goals of this research were met by using

a piecewise modeling approach by breaking up the inlet into five main sections which included

the atmospheric model, the external compression region, the cowl lip region, the internal duct

region, and the exit boundary conditions at the compressor face. These sections were modeled by

combining established methods when possible and by creating new methods when necessary. Once

complete, the reduced order inlet model was verified using the steady state and dynamic results of

high fidelity CFD code PHASTA.

The first portion of the contained research established a baseline of results using PHASTA.

Calibration tests were first performed using sample test cases to ensure that the settings were

properly calibrated to analyze the inlet model. These sample tests included simulating a Riemann

problem which was later used to establish the speeds of the characteristic waves which result from

a flow variable perturbation. 2-D and 3-D models of the inlet were then simulated using PHASTA.

These results were obtained both at steady state and dynamically over a wide range of operating

conditions. This base of tests established the inlets response to both freestream perturbations and

changes in back pressure. Additionally, these tests illustrated the effect of exit boundary location

and how disturbances in the freestream can reflect off of this location and affect the solution within

the flow field. The angle of attack perturbations using these models proved that the 2-D model is

not capable of simulating these types of disturbances accurately. In retrospect, these are actually
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two different types of disturbances with the 2-D angle of attack disturbance simulating a vortex

ring rather than a change in angle of attack. Finally, the external compression portion of the inlet

was isolated in order to visualize how free stream perturbations move through this region of the

flow field. Using a step in freestream pressure, it was seen that the resulting disturbance waves are

distorted as they move through the flow field due to the variation in local velocity and speed of

sound. This result motivated the development of a novel dynamic external compression model.

In Section 4, a new dynamic external compression model was developed due to the findings

of the previous chapter. This new approach involved decoupling a freestream flow disturbance

into resulting disturbance waves and finding three new temporary ’steady state’ solutions. These

solutions were obtained using a combination of the Taylor-Maccoll equations and the Method

of Characteristics. It was then shown that an accurate dynamic model could be obtained if these

temporary solutions were transitioned between by finding the local transmission speed of each wave

along streamlines. In this way the downstream characteristic speeds are averaged which results in

an accurate 1-D representation downstream by taking the area weighted integral average of all of

these streamlines. Again these results were verified using the CFD code PHASTA.

In the final chapter, the quasi 1-D inlet model was developed by piecing together established

methods with the newly created external compression model. The Kopasakis model was used

for the atmospheric model, the MacCormack method was used for internal duct portion and the

Paynter method was used for the exit boundary conditions. In addition to these methods, a new

cowl lip spillage model was created when it was found that the Lapin method was only viable for

one operating condition. This new method was created using the results of PHASTA and while

this caused the 1-D model to lose some of its generality, extending the model to new freestream

operating points would require few additional CFD runs. Finally, the 1-D model was compared

to PHASTA at both steady state and dynamically using freestream pressure perturbations over a

range of frequencies. At each operating condition test, the 1-D model showed very little error when

compared to PHASTA. The biggest errors encountered were at high frequency perturbations which

are beyond the expected range of freestream perturbations.
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In conclusion, there are several significant takeaways from this research. The main one is

that this is the first accurate quasi 1-D external compression inlet, shown to operate at both sub-

critical and super-critical operating points. This is mostly due to the novel external compression

model developed during this research. All previous models were not capable of accurately simulat-

ing responses to freestream perturbations or at operating at multiple subcritical operating points.

Additionally, this is the first quasi 1-D model to be verified dynamically by a high fidelity CFD

code. Previous, models were only verified at steady state operation. Another take away is that

this model was developed entirely in the Matlab environment. This makes it compatible with the

remainder of the supersonic engine. In addition to that, it is also extremely efficient computation-

ally. The model was seen to simulate 532timesteps/(min ∗ proc) while PHASTA simulated only

0.041timesteps/(min ∗ proc). This is a factor of 13,000 times faster. Finally, this inlet model is

completely general with the exception of the spillage model as noted. This is a limitation, however

extending the range of the model would require few additional CFD runs.

Going forward, there are a few recommendations to extend this research. The first would

be to run the quasi 1-D model and PHASTA at different freestream Mach numbers. While the

inlet model is general and should be able to operate at all supersonic freestream conditions below

the hypersonic point, it would be good to extend the CFD data to enhance the spillage model.

A second recommendation would be to replace the cowl lip spillage model using a physics based

approach. This would allow the quasi 1-D model to be completely general but would most likely

require a significant effort to complete. Finally, viscous simulations should me run using turbulence

modeling to further verify the accuracy of the model. While it is believed that the behavior of the

model should be dominated by inviscid phenomena, it is likely that certain subcritical operating

points simulated may encroach on buzz limit which would greatly affect the performance at these

points.
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