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1. INTRODUCTION

This paper presents an algorithm for finding all the elementary circuits
in a directed graph. The method employed is a hybrid depth-first and breadth-
first search. The correctness of the algorithm is proven by means of a novel
informal proof technique, and the efficiency of the algorithm is studied
carefully.

Tiernan [1], Weinblatt [2], and Tarjan [3] have recently produced
algorithms for finding all the elementary circuits in a directed graph. Ex-
cept for Tarjan, these investigators have not given precise efficiency measures
of their algorithms. In Tarjan's paper crippling weaknesses are demonstrated
in the algorithms of Tiernan and Weinblatt. He also asserts [+] that the effic-
iency of his algorithm is O(nxe). In this paper, we too establish O(nxe) as the
measure of our algorithm's efficiency and also develop some heuristic machinery
for speeding the execution of the algorithm even further. This algorithm
differs significantly from Tarjan's and is noteworthy for its straightforward
simplicity.

The major problems to be solved in producing an efficient algorithm are:
1) to find all elementary circuits, 2) to avoid finding any circuit more than
once, and 3) to avoid wasting a great deal of effort in a fruitless search
for nonexistent circuits. The depth-first search technique proves to be an
excellent vehicle for solving problems 1) and 2). The depth-first search is
a technique which has been employed in the past in such places as garbage
collection marking algorithms, and has more recently been employed with great
success by Hopcroft and Tarjan [4] in the production of highly efficient

graph algorithms. An essential feature of all depth-first graph searches is

+ Private communication. The efficiency measure presented in reference 3 is
incorrect. Here n and e are the number of vertices and edges, respectively.



a path stack which, as the search proceeds, will always contain a simple

path through the graph. A new point will be added to the stack provided

that it can lengthen the existing simple path, but a point will be popped
from the stack only when all simple paths which lead from it and do not inter-
sect the simple path leading to it have been created on the stack.

It is rather easy to use this method to produce all elementary circuits,
for any unsuccessful attempt to extend the existing simple path on the path
stack must necessarily produce an elementary circuit. Hence, the depth-
first search, in its attempts to produce all simple paths, will also generate
all elementary circuits. Moreover, through careful and systematic selection
and screening of points to be considered for placement upon the pathstack,
it is fairly easy to guarantee that no elementary circuit is generated more
than once.

Thus it is not surprising that other workers (e.g., Tarjan, and
Tiernan) have used modified depth-first search methods to find all cycles.
A11 have attempted to optimize their searches through the elimination of
fruitless searching. They have attempted to do so without departing from
the depth-first search philosophy. We have also begun with a depth-first
search but have attacked the third major problem by departing from the basic
depth~first approach and using a breadth-first approach.

The essential difference here is that this algorithm recognizes that the
goal of the depth-first search should be the production of elementary circuits,
not simple paths. Thus whenever the algorithm is about to add a vertex to its
path stack it first determines whether the addition of the candidate vertex
will further the production of a circuit. In particular, it is necessary

to determine whether there exists a simple path from the candidate vertex to



the vertex on the bottom of the path stack which does not intersect the path
stack. A breadth-first search is well suited to efficiently solving the
more general problem of identifying all vertices reachable from a candidate
vertex by paths not intersecting the path stack. Hence it is used here.

The search begins from an initial vertex and it is assumed that every
other vertex on the graph lies on some path from this vertex. If this assumption
were false, then the algorithm would apply on the maximal subgraph for which
it were true; in this case it would be a simple matter to use the algorithm
jteratively until the entire graph was considered.

As already noted, the efficiency estimate for this algorithm equals the
estimate for the best known existing algorithm (Tarjan's). Tiernan's work
has, however, helped convince us of the worth of heuristics. Thus, in a
preliminary pass, this algorithm gathers some heuristic information which in
many cases speeds the execution of the algorithm considerably. This informa-
tion is in the form of a triangular Boolean array. By consulting this array,
the algorithm can often immediately recognize that certain vertices cannot
possibly lead to the production of new simple cycles. Thus the array can often

preclude the necessity for breadth-first searches.



2. SOME DEFINITIONS FROM GRAPH THEORY

Before proceeding any farther, it is important that we define the graph
theoretic structures with which we will be working.

Definition 2.1: A vertex set, V, is a set of vertices, or points.

Definition 2.2: The edge set on V, EV is the set of all ordered pairs
of vertices in V, specifically including the vertex pairs for which both
vertices are the same.

Definition 2.3: A graph is an ordered pair (V, Ev) where V is a vertex

set and EV is some subset of E,, the edge set on V.

V?
Definition 2.4: The undirected edge set on V, FV, is the set of all un-
ordered pairs of distinct vertices in V.
Definition 2.5: An undirected, Toop free graph is an ordered pair (V, FV)
where V is a vertex set and FV is some subset of FV, the undirected edge set
on V.,
It is important to note here that our definitions are somewhat non-standard.
Most authors define a graph to be what we have defined as an undirected, Toop-free
graph. Moreover, what we défine to be a graph is more commonly referred to in
the Titerature as a directed graph with Toops. Since our paper deals almost
exclusively with the latter structure, we have formed our definitions as we
did Targely as a matter of convenience.
Definition 2.6: Let G = (V, EV) be a graph. Then if eeEv, we call e an
edge of the graph G, moreover, if we let e = (a, b), then a, b are vertices
of G, and we refer to a as the source vertex or tail of e and b as the destin-
ation vertex or head of e.The total number of edges having the tail vertex a is

called the out-degree of a. The total number of edges having the head vertex b

is called the in-degree of b.



Definition 2.7: Let G = (V, EV) be a graph. Suppose a, beV. We define
a path in G from a to b to be a sequence of vertices a = Vs Vqs Voo eees
Vo1e Vg T b for which Vs V,i=0,1, ..., n and for which (Vj-]’ vj)eEV,
j=1,2, ..., n. An elementary path in b from a to b is a path in G from a
to b for which all the v, are distinct except perhaps Vg = Ve

Definition 2.8: Let G = (V, EV) be a graph. A circuit in G is a path in
G from a to a, aeV.

Definition 2.9: Let G = (V, EV) be a graph. An elementary circuit in G

is an elementary path in G from a to a, aeV.



3. THE ALGORITHM

An informal description of the algorithm is presented here, along with
an example showing how execution proceeds for a sample graph. Flow diagrams
are presented in the following section where they are used in connection
with proving certain assertions about the algorithm.

The algorithm is divided into two phases: The first phase gathers infor-
mation about the graph and the second phase actually finds the circuits of the
graph with the help of this information. Specifically, in the first phase,

a depth-first search is used to investigate the structure of the graph. In
the course of the search, the vertices of the graph are numbered using an
order which facilitates the functioning of the algorithm, and a lower trian-
gular Boolean array, E, is produced. We use the vertex numbering to classi-
fy the circuits of the graph according to their lowest numbered vertex.

Hence the problem of phase 2 is reduced from the problem of finding all
circuits of a graph to the problem of finding all circuits of a given class.
This reduction makes it easier to avoid finding a given circuit more than once
during phase 2 , a potential source of inefficiency.

The purpose of the E array is likewise to help avoid inefficiency in
phase 2. Phase 1 sets an entry, E[1, j] of E, to be TRUE if and only if
there is a path from the vertex numbered i to the vertex numbered j, where
j is the lowest numbered vertex of some circuit. A1l other entries in E are
set FALSE. Using the E array as a guide, we can avoid examination of certain
irrelevant parts of the graph during phase 2.

The second phase is essentially a depth-first search whose efficiency is

~greatly improved by the superposition of a breadth-first search. In this phase



—/-—

we find all circuits of class J setting J successively to 1, 2, ..., n where

n is the number of vertices of the graph. The procedure for finding all
circuits of class J works roughly as follows: A path from vertex J is
developed using a depth-first search. The path is extended to a vertex i only
if the resulting path is part of a new circuit. A set of tests is applied

to determine whether vertex i can be added to the path. Some of these tests
are independent of the number of vertices or edges in the graph and they are
applied first. If all of these tests are passed then a breadth-first search
from i is initiated to determine whether there is a path from i back to J
which does not intersect the path already developed. If this test is passed
then the path is extended to vertex i and the depth-first search continues from
vertex i. Whenever the depth-first search encounters vertex J the path which
has been developed is a circuit and is reported.

The orderly functioning of both phases of the algorithm relies on a
systematic procedure for searching along the edges from a given vertex. Hence,
in order to understand the detailed description of the algorithm which follows,
it is important to understand the mechanism which is used to select edges
from a given vertex. Let us assume v is a vertex with out-degree kv' We call
e,» an integer on the set {0, 1, ..., kV}, the edge selector from v; each of
its values 1, 2, ..., kv represents an edge with tail v. When e, = 0 we say
that the edge selector is in the null state. Both phase 1 and phase 2
begin with all edge selectors in the null state. Selection of a new edge from
v consists in incrementing e,s modulo kv + 1; thus if e <k thene <«e + 1
otherwise e, < 0. The null state of the edge selector is used by the algorithm

as a signal to initiate backtracking.



The first phase of the algorithm functions in the following way. A
vertex is selected, it is numbered 1, and it is put on an initially empty
stack, P; this action and the subsequent steps are displayed in a series of
pictures in Figure 3-1. The selection of this initial vertex is not entirely
arbitrary, for it is assumed that every other vertex on the graph lies on some
path from the initial vertex. The vertex at the top of the stack is called
POINT: it is indicated by the symbol M in Figure 3-1. An edge from POINT
is selected as described above and the head of the edge is called NUPT; NUPT
is indicated by the symbol @ 1in Figure 3-1. We assume, for the time being,
that selection of the edge does not put the edge selector in the null state.
Exactly one of the following three conditions will thus be true:

(a) NUPT is not numbered;

(b) NUPT dis numbered and is on P;

(c) NUPT is numbered and is not on P.

If (a) is true, then NUPT is numbered, it is pushed on the stack, it
becomes POINT cf. Figure 3-1-3, and we continue by selecting an edge from
POINT as above, cf. Figure 3-1-4, If (b) is true, then a circuit has been
traversed and, if J is the number of NUPT, the circuit belongs to class J
because the vertex numbering system guarantees that every vertex on the circuit
other than NUPT is numbered higher than J; cf. Figure 3-1-8. The circuit
is not reported, instead the element E[i, J], where i is the number of POINT,
is marked TRUE; cf. Figure 3-1-8 where x stands for TRUE. The process continues
with the selection of the next edge from POINT. Finally, if condition (c)

is TRUE the ith row of E, E[i,°], is changed by the assignment
(3"1) E[19 k] < E[19 k] v E[Y‘a k]a (k = ]9 29 esoy Y')

where r is the number of NUPT.



In this way circuit information associated with NUPT is inherited by POINT,
cf.Figure 3-1-14. Once again the process continues by selecting the next
edge from POINT.
Concluding the discussion of the first phase, let us consider the event
in which selection of a new edge from v puts the edge selector e, in the
null state. This event indicates that every edge from v has been selected
once since e, was last in the null state. When this occurs backtracking
begins. In the backtracking procedure the stack P is popped so that the pre-
decessor of POINT now becomes POINT and circuit information is inherited by
the new POINT from the old POINT as shown in Equation (3-1); cf. Figure 3-1-9.
It is important to note that the old POINT's circuit information must,
at this time, also be carried back to points other than the new POINT. Spe-
cifically, if t is a vertex which had previously been popped off the stack, P,
and if the old POINT is reachable from t, then t must also inherit the circuit
information of the old POINT. This is true because if the old POINT Ties on
a circuit of class J, then t might also 1ie on a circuit of class J (if J g‘t).
Fortunately all such vertices, t, are readily identifiable. They are exactly
those vertices, t, for which E[t, v0] (where Vo is the number of the old
POINT) is TRUE at the time when the old POINT is to be popped off of P.
Thus at this time we carry back circuit information not only to the new POINT,
but also to all vertices t, for which E[t, v0] is TRUE; specifically, for all

t > v, such that E[t, vo} = TRUE perform the assignment
(3-2) E[t, k] <E[t, kv E[VO, k1 (k =1, 2, ... Vg - 1);

cf. Figure 3-1-12.
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When the stack contains only vertex 1 and edge selection puts the edge
pointer for this vertex in the null state the first phase of the algorithm
terminates and the second phase begins, cf. Figure 3-1-15. It is worth
noting that every edge selector will be in the null state at this time.

The second phase of the algorithm functions in the following way. A
cycle class indicator, J, is initially set equal to 1 indicating the begin-
ning of the search for all cycles of class 1; this action and the subsequent
steps are displayed in a series of pictures in Figure 3-1. We observe that
vertex 1 is on P, having been Teft there upon completion of the first phase,
cf. Figure 3-1-16. Thus, vertex 1 is POINT.

The entry E[J, J] is examined. If E[J, J] is FALSE then there are no
cycles in this class, and no further searching will take place. Let us assume
for the time being, however, that E[J, J] is TRUE, implying that there is at
least one cycle in class J. An edge from POINT is selected, the head being
identified as NUPT with vertex number i, it being assumed now that the edge
selection does not put the edge pointer in a null state. Exactly one of the
following conditions will be true:

(a) 1=

(b) 1 < J;

(¢) 1>J and E[i, J] is FALSE:

(d) 1> J and E[i, J] is TRUE.

If condition (a) is true, then a cycle of class J has been found and it
is reported at this time; cf. Figure 3-1-23. If (b) is true then NUPT can-
not be on a cycle of class J and another edge is selected from POINT; cf.

Figure 3-1-43, If (c) is true the situation is the same as when (b) is true.



-11-

If (d) is true NUPT may be on a cycle of class J now partially formed in P
and a further condition is examined:

(e) NUPT 1is on P.
If (e) is true, then a cycle has been found but it does not belong to the
class under consideration. It is ignored at this time and a new edge is
selected. If (e) is false, we have not ruled out the possibility that NUPT
lies on a new circuit of class J. Unfortunately, neither have we established
that NUPT must necessarily lie on such a circuit. We know that there are
one or more elementary paths from NUPT back to vertex J, but we do not know
whether any of these paths is entirely free of points currently on P. If
so, we should put NUPT on P make it POINT and continue the process described
above, cf. Figure 3-1-18. If not, we should select a new NUPT and continue as
above, cf. Figures 3-1-21 to 3-1-23. It is here that a breadth-first search
technique is used to give the desired answer.

The breadth-first search uses a 1ist P'. Whenever the state of the
path stack P is changed, P' is cleared. The breadth-first search begins by
placing a vertex v on P'; a pointer, I, is used to identify the head of the
list P'. Another pointer I' is set to v's position on P'. The head, V' of
each edge from P'[I'] is examined; if the number of V' is J then the search
terminates successfully; if not and V' is not on P' or on P it is added to
the head of the 1ist P' (and I is incremented by one); if not and V' is on
P or on P' then no further action on V' is taken. After all vertices adjacent
from P'[I'] have thus been considered I' is incremented by one and the above
search from P'[I'] is repeated. This continues until "success" or until

I' > I, signifying failure. If this search ends successfully we know that
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there is a simple path from the vertex at the bottom of P' to the vertex

at the bottom of P which does not cross any vertex on P. The determination of
whether a vertex is on P or P' can be done easily by addressing a Boolean
array, W[m], where W[m] =T if m is on P or P', otherwise W[M] = F. It is
worth noting at this point that if the search terminates unsuccessfully, we will
soon be embarking upon another breadth-first search with the same J, the

same POINT, but a new NUPT. The information currently in P' and W will be
useful to us at that time. Thus we save it. By the construction of this
algorithm, it is certain that we will eventually encounter a NUPT from which
the search for J will succeed. After this has happened we can (indeed

must) reinitialize P' and W.

By using this breadth-first search, we are assured that a vertex will
be pushed on P during phase 2 1if and only if it is a part of a new elemen-
tary circuit.

When selection of an edge from POINT puts the edge pointer in the null
state and the number of the vertex POINT 1is unequal to J backtracking occurs;
if POINT is equal to J, then J is incremented by 1 and if J < n the above
process is next applied to find all circuits in class J cf. Figure 3-1-35; if
J > n the second phase terminates. Backtracking in the second phase consists
in popping the stack P, with the new occupant of the top of the stack
becoming POINT, selection of the next edge from POINT, and continuation of the
search as described above, cf. Figures 3-1-23 to 3-1-25. When the second
phase terminates all circuits have been reported exactly once and execution

of the algorithm terminates.
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4, PROOF OF TERMINATION AND REPORTING ALL CIRCUITS

Description of the space-time notation. In this section a series of

lemmas and theorems is proved leading to a proof of termination and a proof
that all cycles are reported once. A discussion of efficiency is deferred
until Section 5. Our method of proof makes reference to a flow diagram in
which every box is uniquely numbered, and to a hypothetical clock which is
initially zero and which’advances one unit as control moves through a box.
The flow diagram is constructed with only one Tline entering a box and one or
more lines leaving a box. If more than one line leaves the box they are
appropriately labeled for identification. The notation (b-) is used to denote
a location on the line entering box b and (b+) to denote a Jocation on the
Tine leaving box b. If more than one Tine Teaves a box b, say two Tines
labeled T and F, the notation (bT) and (bF) is used to designate locations
on these 1ines. When reference to a location (b-) or (b+) at a particular
time, say t, on the hypothetical clock is made, the notation (b-, t) or
(b+, t) is used. Thus, we are using a space-time coordinate system to
identify points of the computation.

These conventions are illustrated for the simple flow diagram in Figure
4-1, The location (2+) refers to a location on the line leaving box 2 and
the following assertion is obviously true:

I =1 at (1)
or more simply
I(1+) =1

When no reference to time is made, as in the above assertion, it is understood
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to apply to whatever time (or times) at which the Tocation is reached. The
clock is zero at (0+) by our conventions so the following assertion is
also true:
I(1+, 1) =1
Note that the clock advances one unit in passing through box 1. The Tocations
(1+) and (2-) are equivalent: assertions at one of these hold at the other.
On the other hand, (2+) and (3-) are not equivalent locations. The assertion
X(2+) =1
is true, but the assertion
X(3-) =1
is false. However, the assertions
X(3-,2) =1,  X(3-) >1
are true. The assertion
I(4F) # 10
is true, but the assertion
I(4F, 4) =1
is false.

It is convenient to use the symbol t to denote the interval of time
between successive visitations of a location on the flow diagram. Thus, we
make statements such as:

If I(3+, t) = 7 then I(3+, t+ 1) = 8
In our usage T is not a constant, it is simply a notational device to identify
the time between successive visits to a Tocation on the flow diagram.

point is a point which may be attained in the course of execution of the
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algorithm. To illustrate these two concepts, suppose the constant ten in box

4 of Figure 4-1 is replaced by the variable symbol N. We assume that when this
algorithm is called into execution N will have been assigned a particular value,
a positive integer. InAconsidering the algorithm, with N unassigned, we would
say that the points (4T, 4) and (4F, 4) are feasible since (4T, 4) is reached
if N =2 and (4F, 4) is reached if N > 2. On the other hand (4T, 3) and (4F, 3)
are not feasible since these points cannot be reached for any value of N. The
point (2+, 2) is necessarysince it is reached for all values of N. In this
example, once a value for N is assigned the course of execution is completely
determined and all points become either necessary or not feasible.

Description of the flow diagram for the first phase. A flow diagram for

the first phase of the algorithm is shown in Figure 4-2. 1In the discussion which
follows the expression vertex identifier is used to refer to the number initially
used to identify the vertex in the graph before execution of the algorithm,
and the expression vertex number is used to refer to the number assigned to the
vertex by the algorithm. Vertex identifiers and vertex numbers are integers
in the set {1, 2, ..., n}, where n is the number of vertices in the graph. The
letters T and F are used throughout to denote truth values, TRUE and FALSE.
The meaning of the variables appearing in the flow diagram follows:
E: Tower triangular Boolean array, described in Section 3. E is indexed
by vertex numbers.
K: path stack pointer; the value of K is the position of the top of the
stack P.
J: vertex numbering parameter; sequential values (1, 2, ... ) of J are

used to number the vertices.



-16-

L: array of vertex numbers; L[1], L[2], ..., LLn] represent the n
vertices of the graph; the value of L[i], where i is the vertex
identifier, is the number assigned to vertex i; if L[i] = O then
vertex i is not numbered.

P: path stack; P[K] dis the top of the stack; the va]ue of P[i],

1 <J <K, is a vertex identifier; P[1], P[2], ..., P[K] is a
simple path; P[K] is POINT (cf. section 3).

V: NUPT vertex (cf. section 3); the value of V is a vertex identifier;
the value V = 0 occurs when the edge selector for POINT (i.e., P[K])
is in the null state.

I: the initial vertex; the value of I is the identifier of the initial
vertex, specified on entry to the first phase.

The meaning of the subroutines appearing here follows:

SEL(v): select a new edge from v; the value of SEL(v) is the identifier
of the head vertex of an edge with a tail vertex having
identifier v (cf. section 3).

COPY (u, v): u and v are vertex identifiers, and execution of this

subroutine performs the assignment shown in (3-1) with
i =L[ul, d = [v].
COPY* (u, v): perform the assignment shown in (3-1) with i = L[u] and
J = L[v] and also the set of assignments shown in (3-2) with
Vg = LLv].
A brief description of each box in the flow diagram follows:
0: Execution begins at this point, I has been assigned akvalue which

is the vertex identifier for the initial vertex in the graph.
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Initialization takes place here. Set all entries in the E array
FALSE (E < F), mark all vertices as.unnumbered (L < 0), number the
initial vertex (J < 1, L[I] « J), put thg initial vertex on the path
stack (K< 1, P[K] « I).

Select an edge from the vertex at the top of the path stack. Set

V equal to zero if the edge-pointer is put in the null state, other-
wise set V equal to the vertex identifier for the head of the
selected edge.

Termination test. The algorithm terminates when there is only one
vertex in the path stack (K = 1) and the edge-pointer for that vertex
is in the null state (V = 0). |

Check if the edge pointer for the vertex at the top of the path stack
is in the null state, V = 0 is TRUE if it is.

Backtrack. Copy information in the E array according to (3-1 and
3-2) and pop the path stack (K <« K-1).

Check if the vertex V is on the path stack, V<= P is TRUE if it is.
An edge from P[K] has a head in the path stack, thus a cycle has

been found; set an element in the E array equal to TRUE to "remember"
this cycle.

Check if V is a numbered vertex; L[V] # 0 is TRUE if it is numbered.
Number V (J < J + 1, L[V] < J) and put V on the top of the path

stack (K« K + 1, P[K] <« V).

Copy information from row L[V] of the E array into row L[P[K]] of the
E array using (3-1), thus propagating circuit information from a

vertex (V) which was previously on the path stack.
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11: terminate execution of the first phase.
It should be pointed out that the test in box 6 does not require a search
of the path stack. For example, an ordered 1ist of n elements can be kept,
each corresponding to a vertex and an element can be marked or unmarked as
the corresponding vertex is added to or removed from the path stack.

Theorems and proofs for the first phase. Two lemmas which will be help-

ful in proving Theorem 1 on termination of the first phase of the algorithm
are introduced first.
Lerma 1. If for some t, (2+, t) is necessary then either the assertion
(4.7) (V(2+, t) = 0)a(K(2+, t) = 1)
is true or there is a t', 4 < t' <6, such that (2+, t + t') is
necessary. If the assertion (4.1) is true, then there is no t' > 0 for
which (2+, t + t') is feasible.

Proof of Lemma 1. If assertion (4.1) is true, then it is evident that

there is termination at time t + 1 and so (2+, t + t') is not feasible for
t' > 0. If it is false, then (3F, t + 1) is necessary. Now by simple
enumeration, there are exactly four execution paths from box 4 to box

2: (4+5+2); (4+6+7+2); 4-6+>8->10->2); (4+6>8>9>2),
From a consideration of the elapsed time on each of these paths the

truth of this Lemma is evident.l

Lemma 2. K(2+, t) > 1 for all feasible points (2+, t).

Proof of Lemma 2, Note first that for the "earliest" feasible (2+, t),

(i.e., that (2+, t) for which t is the smallest of all t for which (2+, t)
is feasible) namely (2+, 2),

K(2+, 2) =1.
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Other than in the initialization box 1, K is changed only in boxes 5 and
9, by decrementing one unit or incrementing one unit. Hence, if
K(2+, t) = k,
then
K(2+, t + 1) =k+ 1, k, ork-1.
We now carry out a proof by contradiction. Suppose for some (2+, t')
we have K(2+, t'):< T. It is evident from the above observations that
for this to happen there must have been a t", t" < t', such that
(4.2) K(5-, t") = 1.
This implies, working backwards through box 4,
K(3F, t" - 1) =1,
V(3F, t" - 1) =0,
and, similarly,
K(3-, tf -2) =1,
V(3-, t" - 2) = 0.
But the last two relations and box 3 clearly show that the point
(3T, t" = 1) is necessary, thus (4.2) and our hypothesis K(2+, t') <1
are contradicted. B
1.) is
feasible, namely (9-, t1), (9-, tz), vee s (9=, tp), where p < n.

Lenma 3. There is only a finite number of t. for which (9-, t

‘Proof of Lemma 3. We note first that an entry in the L array is set equal

to zero only in box 1 and for all t > O the point (1-, t) is not feasible.
Thus if at some Tater time L[V] is set unequal to zero for some V, it
will remain unequal to zero for all future times. We note that for each

feasible (9-, t,

1) we have
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L[V] (9-, ti) = 0, and

L[V] (9+, to 1) # 0.
(Note that J is initially set to 1 (box 1) and subsequently changed
only in box 9; it cannot be zero.) Thus a zero entry in the L array is
removed, and since there are only a finite number of entries in the L

array (equal to the number of vertices in the graph) the truth of the

Lemma is evident.l
Theorem 1. The first phase of the algorithm terminates; i.e., for some
t' the point (3T, t') is necessary.

Proof of Theorem 1. By Lemma 3 there is a t" such that for all t > t"

the point (9-, t) is not feasible. Assume now that (3T, t') is not

feasible for all t' > t", then by Lemma 1 there is an infinite sequence
(2+, ti) i=1, 2, ... of necessary points where t: <ty and t" < ty.
Since there is a finite number of edges from each vertex and a new edge

is selected on each execution of box 2 we see that there exists a ti’ say

ti" such that

il

v(2+9 t-iﬁ) O’

K(2+, ti') k.

We observe that k > 1 by Lemma 2. If k = 1, then (3T, b+ 1) is
necessary and the proof is completed. Otherwise, k > 1, and we see that

(5+, ti‘ + 3) 1is necessary. Hence

V(2+, ti' + T) V,

1

K(2+, til + T) k - ]-
We now recall that k can only be incremented in box 9, and that we are

only considering t for which t > t" -- that is, points for which (9-, t)
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is not feasible. Thus k cannot increase in value. Thus it is evident
by induction that eventually, for some ti"’
V(2t, to) =0,
K(2+, ti") =1,
and it follows that (3T, ti" + 1) 1is necessary. We have shown that
(3T, t') 1is necessary for some t' > t" provided that box 11 is not executed

at some t for which t < t". If 11 is executed for some t < t"our

assertion is clearly true, hence Theorem 1 1is proven.é
Now some lemmas are introduced which lead to the second theorem, concern-
ing the state of the Boolean array E upon termination of the first phase.
Lemma 4. If I is the initial vertex and if there is a path from I to v,
say I = vy Vos weey V) =V, then v will be numbered in the first phase.

p
‘Proof of Lemma 4. The proof is by contradiction. Suppose v is not

numbered then it can be shown that vp_1 was never placed on the path
stack and so it was never numbered. This leads to a contradiction. The
argument proceeds as follows. If vp_] had been placed on the path stack,
say
P(9+, t') = ... Vp1s
then termination of the algorithm implies that for some t" > t'
V(2+, t") = Vo
Since, by 0ut hypothesis, vp is unnumbered, it is easily verified that
(9+, t" + 5) is a necessary point, hence vp = v would be numbered. This
contradiction forces the conclusion that Vo1 must not ever be stacked

and hence remains unnumbered. Applying this argument recursively, working

backward along the path, we will come to the conclusion that I was never

placed on the path, an obvious contradiction. B
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It is to be noted that since we assume there is a path from the initial
vertex to every vertex on the graph, it follows from this Lemma that in the
first phase every vertex gets numbered.

Lemma 5. If there is a path Vis Vps cees vp and vy has a lower number

than the other vertices,

(4.3) LLvqT < LDvyd, i=2,3, «ea P
then in the interval (t', t") defined by

(4.4) P(9+, t') = ... vy,
and
V(2+, tf) = 0,
P(2+, t") = ... Vi

each of these other vertices will be placed on P.

Proof of Lemma 5. By the hypothesis (4.3) it is evident that these other

vertices cannot have been on P before t' for then they would have been
assigned a number Tess than L[v]]. The proof is now just Tike that used
for Lemma 4. Suppose Yy was not on P in (t', tf) then it will follow
that vp_] was also not on P in (t', t?) and tracing backward along the
path we conclude vy was not on Pin (t', tf) violating (4.4).“
‘Lemma 6. If, at any time and for any i, J

E[i, j1=T,
then this equation will be true for all later times.

‘Proof of Lemma 6. The truth of this assertion is immediately evident

from the observation that an entry in the E array can be set equal to F
only in box 1 and (1-, t) is not feasible for t > 0. Notice that only

operations performed in boxes 5, 7, and 10 can change an entry in the E
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array and the change can only be from F to 7. B

Now the second theorem concerning the first phase of the algorithm is

presented.

Theorem 2. If there is an elementary circuit Vis Vos cees vp, vy of
class J, (i.e., L[v1] = J; J < L[vi], i=2,3, ..., p) then upon
termination of the first phase

(4.5) E[L[vi], J]1 =T, (i=1,2, ... p).

Proof of Theorem 2. We will use an induction argument. It is easy to

show that the hypothesis implies (4.5) is true for i = p. The argument
proceeds in the following way. From Lemma 5 there is a time tp,
t! < tp < t", using the notation of Lemma 5, when

2+,
V( tp)

1]

<
et
“

P(2+, tp) ooV eee Vs
and it is easily seen that

E[LLv, ], V] (74, ty +4) = T.
Now, using Lemma 6, it is evident that (4.5) holds for i = p. Let us
assume now that (4.5) holds for i = s + 1, we will show that this fimplies

it holds for i = s. Define tS and t‘s

v(2+, ts) = Vo

P(2+, ts) = vy Vs
v(2+, tg) = 0,

P(2+, t;) = Vi eee Voo

Earlier Lemmas can be used to establish that (2+, ts) and (2+, té) are
both necessary. At the point (2+, ts) there are exactly three possibilities:

(a) vs+1§5 P A L[Vs+1] = 0;
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(b) Vs+1§£ P A L[Vs+1] # 0;
(c) vsﬂcr::.P.
We consider each of these in turn. If (a) is true then

P(2+, to + T) = aee Vi eee Vg V

s sti°
Now either
(a.) E[L[Vs+]]: J] (2+9 tls+]) =T,
or
(a'i) E[L[VS+]]9 J] (2+2 t‘s+1) = F'

If (a') is true then it is evident from the COPY* function and the fact
that (5-, tls+1 + 2) is necessary that
E[LLv ], 91 (24, t'q + ©) = T,

If, on the other hand, (a'') is true, there must be an edge from v to

s+1
another vertex, vq, on P, L[v1] < L[vq] < L[V5+1]3 thus
1 -
(4.6) ELLLvg,q ]y LIv 1D (24, €)= T.
Otherwise, there would be no possibility for E[L[vs+]], J] to be set equal
to T at any later time. Furthermore, either
ELL . 2+, t') =T,
[ [vq] J] ( q)
or vq is similarly linked to vq,where L[v]] < L[vq,], for the same reason.
Thus, eventually, for some vertex vq", with L[v]] < L[un], in this
chain we must have
wls J 2+, 'h) = s
E[LIvgels 91 (2%, t) = T
and by virtue of this chain
E[LIv, 1> 31 (2%, th + 1) = T

q
Observing that

E[L[Vs]a L[Vq]] (2+9 t'S+] + T) =T
by (4.6) and the COPY* function it also follows that
E[L[VS], J] (2+, t'qu +1) =T,
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If (b) is true then (10-, t + 4) is necessary and the COPY function will
be performed. The argument here is the same as for case (a).

If (c) is true then it is evident that (7-, t, + 3) is necessary, hence
(4.7) ELLLve]s LLvqd1 (24, £, + 7) = T.

. . . . . . . .
Now consider the time t S+ which in this case sat1sf1es t s+] > tS + 1.

Either
(c') E[LLIvg,q s 91 (24, t1,q) = T, or
(c") ELLIV , 1> 91 (2%, t',q) = F.

In case (c') the COPY* operation and the link (4.7) produces
t -
E[LIv ], 9] (2+, g, + 1) = T.
In case (c") we follow an argument like that used in case (a"). Thus

for every case we must conclude that (4.5) holds for i =s. This completes

the induction argument, the theorem follows at once. i
Two observations concerning this theorem are worth noting here. First,
it is evident that if there are no circuits of class J then E[J, J] is FALSE
upon termination. Second, and not so evident, is that if E[i, J] is TRUE
upon termination then it is not necessarily true that the vertex numbered i is
on a circuit of class J. This is illustrated in Figure 4-3. This result is
not as bad as it might seem at first, for in the course of looking for circuits
of class 2 in the graph of Figure 4-3 during the second phase we will never

encounter the vertex whose number is 5.
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Description of the flow diagram for the second phase. A flow diagram for

the second phase is shown in Figure 4-4. Except for J and I the meaning of the
variables appearing in the flow diagram is the same as described for the first
phase. Parameters which are newly introduced here are described below.

L*: array of vertex identifiers; L*[1], L*[2],...,L*[n] represent the n
vertices of the graph; the value of L*[i], where i is the vertex
number, is the vertex identifier.

J: Circuit class identifier, while J = 1 circuits of class 1 are being
Tocated, while J = 2 circuits of class 2 are being located, etc.

I: Index for head of path Tlist P' which is maintained by BRFSRCH.

P': List of vertices encountered in the execution of BRFSRCH.

Subroutines BRFSRCH and REPORT introduced here are briefly defined below.

BRFSRCH: The breadth-first search algorithm (Figure 4-5). If there is a

simple path from V to L*[J] which does not intersect a vertex on
P then BRFSRCH is assigned the value T otherwise F.
REPORT: A subroutine to print or otherwise record the elementary circuit
P[1], P[2],...,P[K], P[1].
A brief description of each box in the flow diagram follows:

0: Execution begins at this point, the array L* has been loaded with the
vertex identifiers, the L and E arrays are in the same state as when
the first phase terminated.

1: Initialize the circuit class identifier (J <« 0) and the path stack
pointer (K <« 1).

2: Increment the circuit class identifier to commence search for the next
class of circuits.

3: End test. Stop if circuit class identifier exceeds the number of

vertices, n, in the graph.
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Execution of the second phase terminates here.

Test for existence of circuits of class J; E[J; J]_: Fif there are no
circuits of class J.

Put identifier for vertex J on the path stack and initialize P' pointer,
Select an edge from the vertex at the top of the path stack and set

V equal to zero if the edge pointer is put in the null state, other-
wise set V equal to the vertex identifier for the head of the selected
edge.

End test for search of circuits belonging to class J. V=0A K=1 is
TRUE if all circuits of class J have been considered.

Test for all edges examined from vertex at head of path stack.

Remove vertex from head of path stack, and initialize P' pointer.

Test if selected vertex is the identifier for vertex number J.

The path stack contains an elementary circuit, report it.

If any one of these four conditions is false V cannot be on the ele~
mentary circuit now being constructed.

If the breadth-first search algorithm returns a false value, then V
cannot be on the circuit now being constructed.

V is on a circuit consisting of P[1], P[2],...,P[K],V and other vertices
yet to be determined so put V on the top of the path stack, and initia-
1ize P' pointer.

Theorems and proofs for the second phase. It is important for an under-

standing of the subsequent proofs that the TRUE exit from box 14 will be taken

if and only if V 1ies on a circuit of class J, the initial segment of which is

on P upon entry to box 14. Furthermore, if the FALSE exit is taken then any
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That is, at all times every vertex on P is different from every other
vertex on P.
This lemma and the following one are easily proved by considering the
implications of boxes 13 and 15. We omit the proofs.
‘Lemma 11. For all feasible points (7+, t) and al1 1 < I <K
L[PLI]] 7+, t) > L[PLTI] (7+, t) = 4.
That is, at all times the lowest numbered vertex on P is the vertex at
PL1] and that vertex is numbered J.
Lemma 12. For some k, (k = 1, 2, ..., n) the point (7+, t) with
K(7+, t) = k,
V(7+, t) = 0,
is necessary.

Proof of Lemma 12. If the Lemma were false there would be an infinite

sequence of necessary points (7+, t), (7+, t + ), (7 + t + 27), ... and K
is nondecreasing on these points since box 10 can never be entered. Now
the observation that a new edge has been selected on each successive entry

to box 7 and the fact that the number of edges is finite shows that such

an infinite sequence is impossib]e.f
Lemma 13. If the point (7+, t') with

K(7+, t') = k'

P(7+, t') = Vi Vo een Vpu

V(7+, t') =0
is necessary, then for no t" > t' will it be true that
(4.8) P(7+, t") = P(7+, t').

Proof of Lemma 13. By Lemma 12 we know that there is some point (7+, t‘)g
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vertices on P' at the time of the exit cannot lie on a circuit of class J, the

initial segment of which is on P. These assertions are proved later in the

part which deals with the BRFSRCH algorithm.

Now a series of lemmas are introduced to prove Theorem 3 which is concerned

with termination of the second phase. Some of these are similar to lemmas

introduced already in dealing with the first phase and in these cases proofs are

omitted.

Lemma 7. If for some t, (7+, t) is necessary, then either (7+, t + t')
is necessary for 4 < t' <3n+ 7 or (3T, t + t') is necessary for

3 <th < 3n,

Lemma 8. K(7+, t) > 1 for all feasible points (7+, t).

Lemma 9. If for some t', (11T, t') is necessary then P[1] (11T, t') =
L*[J].

This lemma asserts that when a circuit is reported the number of the
vertex at the tail of the 1list (i.e., in P[1]) is the number of the class
of this circuit.

~Proof of Lemma 9. Excluding box 1 which is never entered for t > 0, P is

only changed in boxes 6, 10, and 15. Lemma 8 precludes changing P[1] in
boxes 10 or 15. Since J is changed only in box 2,the only points (x, t)
where

PL1T (x, t) # L¥[J]
are in the set (2+, t), (3F, t + 1), (3T, t+ 1), (5F, t +2), (5T, t + 2),

’ assuming (2+, t) is feasible. Obviously (11T, t') for any t' is not in this

set.
‘Lemma 10. For all feasible points (7+, t) and al1 1 < I < I' <K
PLIT] (7+, t) # P[I'] (7+, t).
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Suppose the Lemma is false. Pick t" to be the earliest time after t'
at which (4.8)holds; then we must have
K(7+, t'' - 1) = k' - 1,

1

P(7+, t'' = 1) Vis Voo sees Vi 7s

V(7+, t'' - 1) = Vit
but the properties of the SEL function imply then that for some g,
tho< 't o< "

K(7+, t''") = k' - 1,

P(7+, t''")

V(7+, t''")

V-l, Vzg 80 8 Vkl_'l,
0.

Now by following an obvious induction we conclude that there must be a
time t'V, t' <tV < t" such that

K(7+, t'Y) = 1,

P(7+, t') = v,

v(7+, tV) = 0.
Now either the algorithm terminates without returning to box 7 or a
new vertex replaces v, and v, can never again occupy P[1] (cf. Lemma 9
and the proof of Lemma 9). In either case there is an obvious contradiction.l'
We are now in a position to prove the following Theorem.
Theorem 3. The second phase of the algorithm terminates; i.e., for some
t', the point (3T, t') is necessary.

Proof of Theorem 3. Consider the possible paths from (7+, t) to (7+, t + 1).

For each of these one of the following is true (cf. Lemma 7):

(a) K(7+, t + 1) = K(7+, t) + 1;

1]

(b) K(7+: t+ T) K(7+5 t);

K(7+, t) - 1.

1]

(c) K(7+, t + 1)
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If (a) is true then by Lemma 13 the path on P can never have been on P

at any earlier time. Because there are only a finite number of possible
paths it is evident that (a) can be true for only a finite number of points
(7+, t). If (b) is true then after some finite amount of time either (a)
will be true or (c) will be true or the algorithm terminates; this is
evident from the observation that over the sequence of times for which

(b) remains true a new edge is selected each time. If (c) is true then it
will be true at some Tater time or the algorithm terminates. This is
evident from the observations about (a) and (b) already made. But (c)
cannot be true for an infinite sequence of times without violating Lemma
8. Hence, the second phase must terminate.ll

‘Theorem 4. Only elementary circuits are reported.

Proof of Theorem 4. For any feasible point (11T, t)

P(T1T, t) = vq, Vos wees Vy
is clearly a path. By Lemma 10 it is an elementary path. Since

LLVI(1IT, t) = 4,
then from Lemma 9, V = vy and Vis Vos eees Vps Vy is an elementary circm’t.'
Theorem 5. No circuit is reported more than once.

Proof of Theorem 5. Suppose for some t]

P(11T, t1) = Vs Voo eees Vi

V(11T, t]) Vi
Then, since the algorithm terminates, there is a t' such that

P(7+, t, + t")

V-‘, V2, eee s ng
0.

1

1
Suppose that there is a tys ty >ty ¥ t', such that (11T, tz) is a

1l

V(7+, t, + t")

necessary point for which:
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P(11T, tz) = Vis Vo eees Vpo
V(11T, tz) =V

then
P(7+, tz +t') = Vis Vos eees Vps

V(7+, t, + t')

i

2 0,

and Lemma 13 is contradicted.ﬂ

- Theorem 6. Every circuit is reported.

Proof of Theorem 6. This is easily proved by contradiction. Suppose

v], Vos eees vp, vy is a circuit that is not reported. Since it is not
reported there is no t' such that

V(7+, t')

1l

vy
P(7+, t') = Vis Vos eees Vo o
L[v]]-

Observing that Theorem 2 assures us that E[L[vi], L[v]]] =Tfori=1,2, eeus P

1

J(7+, t')

and using the properties of the breadth-first search algorithm we may now
work backwards along the path to arrive at a contradiction; namely, there
is no t" such that

P(7+, t'')= Vqa
which contradicts Theorem 2 and the implications of box 5 in Figure 4-4. B

Description of the flow diagram for the breadth-first search (BRFSRCH).

The flow diagram for the breadth-first search is shown in Figure 4-5, The var-
iables V, I, P', J,and the array L, used in the second phase (Figure 4-4), are
assumed to be available to this algorithm. A duplicate set of edge selectors,
independent of those used in Figure 4-4, is used in this algorithm: the edge

selector for vertex v is evaluated by SEL'(v) which operates like SEL(v) in
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Figure 4-4, When execution of the breadth-first search begins, it is assumed
that all edge selectors referenced by it are in the null state. Variables
appearing in this flow diagram and not in Figure 4-4 are described below.

I': Pointer for P' indicating the tail vertex for edge selection.

V': Vertex considered for placement on P'.

A brief description of each box in the flow diagram follows:

0: Execution begins at this point.

1: The next vertex to be placed on P' is V (V' < V), increment pointer for
the head of the list P' (I « I + 1), set pointer for tail vertex used
in edge selection (I' « I).

2: Put vertex on Tist P'.

3: Select an edge from vertex on P', the head vertex of this edge is
assigned to V'.

4: Check if the edge selector for the vertex P? [I'] is in the null state,
V' = 0 is TRUE if it 1is.

5: Does vertex V' have vertex number J? If the answer is yes this implies
that there is a simple path from V back to the first vertex on P which
does not cross the path on P.

6: If the pointers I' and I are equal, execution of this algorithm should
terminate and no simple path from V back to the first vertex on P which
does not cross the.path on P exists.

7: Assign the value TRUE to BRFSRCH because the search was successful
(cf. box 5).

8: Assign the value FALSE to BRFSRCH because the search was unsuccessful

(cf. box 6).
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9: Increment pointer to tail vertex for edge selection.

10: Is the vertex at the head of the selected edge already on P or on P'.
If it is, then we will ignore it. If it is not, then we will put it on
P"

11: Increment pointer for the head of the Tist P'.

12: Execution terminates here.

" Theorems and proofs for the breadth-first search algorithm (BRFSRCH). The

algorithm BRFSRCH is called in the second phase to determine whether there is a
path from vertex V (cf. Figure 4-4) to the first vertex on the path stack P,
not containing any other vertex on P. If there is such a path then V Ties on
a circuit, hence it should be placed on P; in this case the TRUE exit from box
14, Figure 4-4, is taken, otherwise the FALSE exit is taken. These assertions
from the substance of Theorem 7 and its corollarys. It is important to recognize
that when BRFSRCH s called into execution the Tist P' may or may not be empty:
it is empty when I = 0. It should be evident from the proof of
Theorem 7 that if it is not empty then there is no path from any vertex on P'
to the vertex numbered J, the first vertex on the stack P. Finally, it is to
be observed that a test of the type implied by box 10, Figure 4-5, does not
actually require a search of P'. We assume that an ordered list of the vertices
on P' is maintained and determination of whether or not a vertex, v, is on P'
simply rgquires interrogating this 1ist at the position corresponding to v.
Whenever I is set to zero in Figure 4-4 this 1ist must be cleared.
Maintenance of this Tist is not explicitly shown in the flow diagrams.

Lemma 14. Every vertex on P' is distinct from every other vertex on P!

and from every vertex on P.

traversal of box 2. Second, notice that
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V(1-, 0) & P A V(1-, 0) & P!
is true; this follows from consideration of box 13 in Figure 4-4. Now
suppose (2-, t') is necessary, then either (1QF, t'-1) 1is necessary or
(1=, t'-1) is necessary. In either case it is evident that

V'i(2-, t') &P a V' (2-, t') & P!
is true, hence every vertex placed on P' is distinct from every vertex on

P' and from every vertex on P. Since P' is initially empty (implied by the

operation I < 0), the Lemma is true.
Lemma 15. For all feasible points (x, t), t > 0
(4.9) I(Xa t) > I‘(Xs t)'

Proof of Lemma 15. Notice first that I' is changed only in boxes 1 and 9.

Now (1+, 1) and (3-, 2) are necessary points and
I(1+, 1)
I(3-, 2)

1

I'(1+, 1),
I'(3-, 2),

1

hence (4.9) is true when t = 1, 2. Now either the algorithm terminates at
t = 6 (by taking the path 3+ 4 >5+7 or 3 4 > 6 > 8) or there will
be a return to location 3- and

either

il

I(3-, 2+ 1) =1'(3-, 2+ 1),
or
I(3-, 2+ 1) >1' (3=, 2 + 1)>
depending on whether or not box 11 was traversed (i.e., (11-, 6) is
necessary). Notice that the point (6F, 5) is not feasibleshence I' could

not have been incremented. Now if (3-, t') is feasible for some t' and

I(3-, t') > I'(3-, t')>
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then either the algorithm terminates at t' + 4 or

I(3-, t' + 1) _>_I‘(3—; th o+ 1),
The truth of this is evident from the observation that if equality holds at
(3-, t') then (9-, t' + 3) is not feasible; and if equality does not hold
then I' can only be incremented by 1. Thus (4.9) is true for all feasible
(3-, t). Finally, consideration of possible paths from (3-, t') to

(3=, t'" + 1) or (12-, t' + 4) easily shows (4.9) is true for all feasible

(x, t).
‘Lemma 16. Algorithm BRFSRCH terminates.

Proof of Lemma 16. Box 2 can only be traversed a finite number of times

since there are a finite number of vertices in the graph and by Lemma 14

all vertices on P' are distinct. Consequently box 11 can only be traversed
a finite number of times, thus I is bounded. Since, by Lemma 15, I' (x, t) <
I(x, t) it follows that box 9 can only be traversed a finite number of times.
Thus if the algorithm did not terminate it would be necessary to traverse

the path 3 -4 -5 > 10 ~ 3 an infinite number of times. But this is im-
possible because SEL' must eventually return a value of zero since the

graph contains only a finite number of vertices.g

~ Theorem 7. Suppose

P(1", O) = V-I, V29 ee oy Vk?
V(T-, O) = Vo i

J(1-, 0) = 3, (LLv,] = §)
I(1-, 0) = 0,

then for some t' > 0 one of the following is true:
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(a) BRFSRCH (12-, t')

i

T;

(b) BRFSRCH (12-, t') F.
Moreover (a) is true iff there is a simple path from v to vy which does
not include any of the vertices Vos Vs eees Vs otherwise (b) is true,

Proof of Theoren 7; Since, by Lemma 16, the algorithm terminates and

termination implies traversal of box 9 or box 10, it follows that BRFSRCH
will be assigned the value T or F before termination. At (2+, 2) we have
P'[11(2+, 2) = v,
I(2+, 2) = 1.
It is evident from a consideration of the path 3 +4 +5 > 10> 11 + 2 = 3
that if another vertex is placed on P' then there must be an edge from
v to that vertex. By carrying out an obvious induction it is evident that
there is a path from v to every vertex placed on P' and this path consists
only of vertices on P'. Now suppose that (7+, t') is necessary (i.e., the
algorithm terminates with BRFSRCH equal to T) then (5T, t'~1) is necessary
hence there must be an edge from a vertex on P' to the vertex Vys SO
there must be a path from v through vertices only on P' to Vi Since the
vertices on P' are distinct from those on P by Lemma 14 it follows that if
(a) is true then there is a path from v to vy which does not include any
of the vertices Vos Vgs eees Vyo
We now need only prove the converse, namely that if there is a path
from v to vy which does not include any of the vertices Voo vg, cees Vi
then (a) is true. The proof is by contradiction. Suppose there is such a
path, say Vys vé, vé, cees v&, vy where v{ # v5 for all i # j with

2 <i, j <mand (b) is true. We must conclude v& was never placed on P!

(i.e., for no t is V'(3+, t) = v&) otherwise at a later time, t', the edge
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(Vs Vq) would be selected and (5T, t') would be necessary. A similar

argument Teads us to the conclusion that,vé!], cee V3s vé, v could not

have been placed on P'. Since v was placed on P' we arrive at a contra-

diction consequently under these hypotheses (b) cannot be true. &
- Corollary 1. Suppose

P(1-,0) = vy Vos wens Vics

V(1-, 0) = v,

s (LIv,] = 3)

i,

1l

J(1-, 0)
I(1-, 0)

then for some t' > 0 one of the following is true:

(a) BRFSRCH(12-, t')

Ts
F.

(b) BRFSRCH(12-, t')
Moreover (a) is true iff there is a simple path from v to vy which does
not include any of the vertices Vos Vgs wues Vi3 otherwise (b) is true.
Proof. Consideration of boxes 10 and 15 in Figure 4-4 shows that if
i # 0 then P cannot have changed since the last execution of BRFSRCH.
Moreover the last execution of BRFSRCH must have assigned the value FALSE
to BRFSRCH. Assume that I(1-, 0) = 0 on the last execution of BRFSRCH,
then Theorem 7 applies and since this execution assigned the value FALSE
to BRFSRCH it follows that there is no path from any vertex on P' to vy
Now an argument like that used in proving Theorem 7 can be applied to prove
this Corollary. If I(1-, 0) # 0 on the last execution of BRFSRCH, then

an obvious induction argument Teads to the result stated in this Coro]lahy.E

- Corollary 2. Suppose

P'(12-, t') =,vi, vé, cees v&

BRFSRCH(12-, t') = F
J(12-, t') = j
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then there is no path from any of the vertices‘v% to the vertex
numbered j which does not intersect a vertex on P or P',

This Corollary is an immediate consequence of Corollary 1.
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5. EFFICIENCY

Any attempt to discuss the efficienqy of circuit finding algorithms is,
of necessity, hampered by the lack of universa]Ty accepted efficiency measures.
The efficiency of sorting algorithms is genera]]y measured in terms of the
number of comparisons required. The efficiency of matrix computation algorithms
is usually measured in terms of the number of multiplications involved. No such
clear-cut yardsticks exist in our area.

It seems to us that in order for such a measure to be of value it must
somehow reflect not only execution speed but also storage requirements. We
are convinced that our algorithm is like most others in that given more storage
it could be altered to execute faster. Thus, in order to give a balanced
picture of our algorithm's efficiency, we will first discuss its storage and
then its execution speed.

The storage requirements of this algorithm are roughly proportional to the
square of n, the number of vertices in the graph. Two structures account for
nearly all of the storage utilization -- the E array and the representation of
the actual graph. The graph is represented by n circularly linked 1ists, where
the ith 1ist contains representations of each of the vertices reachable as a
destination vertex from vertex i. Each of the n Tists also contains a list
header. Thus, a graph having e edges requires n + e list nodes for its represen-
tation. Since a graph on n vertices may have up to n2 edges, a graph on n
vertices will require at most n + n2 list nodes. Hence, the storage requirement
for the graph representation is at most roughly proportional to n2.

The E array is, as noted before, a lower triangular Boolean array. Since

each vertex has a row in E it is clear that the size of E is proportional to
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(ﬂ—iﬁllﬂn - -%-(n2 + n). Hence the storage requirement for E is also roughly

proportional to n2°

The algorithm also makes use of various other arrays. These, however, are
all Tinear in n. Hence it seems fair to claim that the algorithm requires
roughly k1n2 list nodes and roughly k2n2 Boolean switches where k1, k2 are
constants. Thus it requires storage roughly proportional to nz.

It is in trying to assess the execution speed of the algorithm that we are
most hampered by the lack of agreed upon measures.

Tiernan [ 1] claims that his algorithm is "the theoretically most efficient,"
observing that each circuit of the graph is considered only once. He claims
that each circuit must be considered at most once and therefore, that his
algorithm is "most efficient." It is not hard to find cases in which Tiernan's
procedure seems to be highly inefficient. A good example is found in Tarjan
[31.

An appropriate measure of execution time efficiency seems to be the number
of edge traversals made during the execution of a graph searching algorithm.

By an edge traversal we mean the process of getting to a head vertex from a given
tail vertex. The traversal itself requires that we access the structure used

to represent the graph, and the procedure followed upon reaching a head vertex
seems to involve some more or less standard sequence of tests, followed by
another edge traversal. Hence the edge traversal would seem to be an appropriate
unit of work.

It is clearly unsatisfactory to compute the number of edge traversals
required every time we consider a new graph, however. A more useful approach

is to produce an upper bound for the number of edge traversals required which
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is valid over a wide class of graphs. Among those who have addressed this

problem, Hopcroft and Tarjan [4] have adopted what seems to us to be a useful,

but sometimes misleading scheme. They produce "order of magnitude" estimates for

the maximum amount of work required to process all graphs on n vertices and e

edges, casting these estimates as functions of n and e. Hence they may, for instance,
describe the efficiency (or complexity) of a graph algorithm to be O(n + e), (order
of n + e). A rigorous definition of this terminology might be the following:

Let A be a graph algorithm whose complexity is O(n + e). Then if G is a

graph on n vertices having e edges, there exists a constant K such that A

will process G in at most Kx(n + e) operations, the operations themselves

being independent of n and e.

Since we feel that such estimates are useful we now develop a complexity
estimate for our algorithm. During phase 1 our algorithm traverses each edge of
the graph exactly once. We omit the detailed proof of this assertion but one can
see the truth of it fairly easily by observing that a vertex is removed from P
after every edge from it has been selected once (cf. boxes 4 and 5 of Figure 4-2)
and after it has been removed from P it cannot again be placed on P (cf. box 8
of Figure 8). Each such traversal will necessitate at most a copy operation
(if the head vertex is marked old). Additionally, whenever a vertex is popped off
the stack, a COPY? operation must be performed (i.e., a COPY operation for up to
n - 1 rows). Hence, considering a COPY operation to be O(n) in complexity, we
easily see that the complexity of phase 1 is

O(exn + n3).
Since e ﬁ_nz the above 1is equivalent to
O(n3).

Phase 2 is arranged so that no vertex will be placed on the search stack unless

it is known that the vertex is part of an evolving circuit. We observe that a

circuit can have at most n vertices. Thus, the complexity per circuit in
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phase 2 can be easily determined from the amount of work done between
placing two vertices on the search stack.

Having just placed a vertex on the search stack 1in phase 2, we recall that
we next examine in turn each head vertex reachable from the newly stacked
vertex. In the worst case, it will be necessary to execute a breadth—first
search from each of these head vertices before being able to stack one. It
is clear that no edge of the graph will be traversed more than once during any
breadth-first search. But, additionally, we readily see that\even in this
worst case any edge traversed in a breadth first search from one particular
vertex will not be traversed during the breadth first search of any of the
other vertices. Hence the algorithm will perform at most e edge traversals
before finally stacking the next vertex.

From this it is clear that the complexity of phase 2 is

0(cln x el)»
where ¢ is the number of circuits. Thus.the.complexity of the entire algorithm is
(5-1) o(n® + c[n x el).

In many graphs c is quite Targe in comparison to n and e. At worst, c
may grow factorially in n since there are (n - 1)! n-circuits in the complete
~graph on n points. Thus it is not unreasonable to observe that the second
term of the complexity estimate often dominates the first. Hence, regarding
phase 1 as a preliminary phase which contributes a fixed overhead cost of 0(n3),
we see that the dominant cost of the algorithm is

0(c[n x el).
Although the efficiency estimate, (5-1), is an interesting and important

one, we would at this point like to observe that it can also be misleading.
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We can easily construct an algorithm similar to the one presented here by
substituting a Vector,.E%, for our E array and defining,Ef by:
Ex[i] = E[i, i] 1 <1 <n.

In our new algorithm we would test.Ef[ij before embarking upon a search
for cycles of class i, but during the search itself, we would rely solely
upon the breadth-first search method described here. The efficiency estimate
of this simple algorithm is O(e + c[exn]). It is particularly interesting
that the complexity of phase 2 of this algorithm is 0(c[nxe]) which is identical
to the complexity of phase 2 of our original algorithm. It seems clear,
however, that the original algorithm would execute phase 2 more rapidly and

in many cases, offer very large improvements in speed.

On the face of it, it might appear that the simpler algorithm is the pre-
ferable one because it reduces the amount of intermediate storage required
while also Towering the estimate of execution time. Yet this example shows
why inordinate reliance upon such estimates can be misleading. The extra
storage required for our algorithm can decrease actual running times consider-
ably while nevertheless failing to decrease the execution time estimate, as

represented by the complexity figure.
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An illustration of the steps taken by the
algorithm in processing a sample graph

ITlustration of flow diagram notation for
the informal proof technique

Flow diagram for the first phase

Example showing that the converse of Theorem 2 is
false. Vertex numbers and the E array are shown
here when the first phase terminates

Flow diagram for the second phase

Breadth-first search algorithm (BRFSRCH)

Figure

Figure

Figure

Figure

Figure

Figure

3-1

4-1

4-2

4-3

4-4

4-5



Figure 4-1: Illustration of flow diagram
notation for informal proof technique
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Figure 4-2: Flow diagram for the first phase




Figure 4-3

Example showing that the converse of Theorem 2 is false. Vertex numbers and
the E array are shown here when the first phase terminates. Notice that E[5, 2]

is true but the vertex numbered 5 is not on a circuit of class 2.
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Figure 4-4:

Flow diagram for the second phase
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Figure 4-5: Breadth-first search algorithm (BRFSRCH)
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