Graph Grammars with Node-Label Controlled
Rewriting and Embedding

D. Janssens
G. Rozenberg

CU-CS-251-83

{ F‘EB
%Lﬂ University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.



GRAPH GRAMMARS WITH NODE~LABEL
CONTROLLED REWRITING AND EMBEDDING

by

D. Janssens and G. Rozenberg

CU-CS=-251-83 July, 1983

*Institute of Applied Mathematics and Computer Sicence,
University of Leiden, Wassenaarseweg 80, Leiden, The Nether-
lands



GRAPH GRAMMARS WITH NODE-LABEL

CONTROLLED REWRITING AND EMBEDDING

by
D. Janssens G. Rozenberg
Institute of Applied Mathematics Institute of Applied Mathematics
and Coniputer Science, and Computer Science,
University of Leiden, University of Leiden,
Leiden, The Netherlands , Leiden, The Netherlands

INTRODUCTION

The theory of graph grammars is an area within theoretical computer science that is
mathematically very interesting and challenging and at the same time it is an area with
many fields of potential applications such as data bases, compiler techniques, syntax
and semantics of programming Tanguages, data flow analysis, concurrency, pattern recog-
nition and developmental biology; this is well reflected in [CER], [N] and in the pre-
sent volume. Although there exists quite a body of literature concerning the mathema-
tical theory of graph grammars, it is not yet as well developed as the theory of string
grammars; a partial explanation of this situation may be the objective fact that the
theory of graph grammars seems to be more "difficult" than the corresponding theory
of string grammars (after all, the structure.of a granh is more involved than
the structures of a string). ‘

There certainly is a great need for fundamental research on graph grammars - in
particular there is a need for a systematic framework for graph grammars within which
various issues can be discussed and compared. A frequent situation within the existing
theory is that various issues are investigated within various models, a situation that
is often undesirable. NLC grammars were introduced (see [JR1] and [JR2]) as a first
step towards such a systematic theory. Our approach is "bottom-up"; that is we would
Tike to build up a "solid" theory of NLC grammars and languages, and once this is
achieved (to some degree) we consider various extensions and variations of the basic
model so that eventually a quite general (and mathematically solid) framework for graph
grammars based on the NLC model will emerge. In particular we hope that in this way
it will become more clear what are the central notions of the theory andwhich mathema-
tical means are needed to investigate them.

In the Tast few years a number of basic and quite different issues were investiga-
ted within the theory of NLC grammars. In the present paper we will survey some of
them trying to convey to the reader the "flavour" of the theory. Because of the



restrictions on the size of the paper our survey has a rather informal and sketchy
character; however the interested reader can find the technical (formal) details in
the references indicated. Also, the Ph.D. Thesis by D. Janssens (to appear) gives a
rather complete picture of the theory of NLC grammars.

1. BASIC DEFINITIONS

We assume the reader to be familiar with the basic formal language theory and the
basic graph theory. We recall now a number of basic mathematical notations.

For sets A, B, #A denotes the cardinality of A, AN B denotes the intersection of
A and B and A-B denotes the difference of A and B; P denotes the empty set.

A node-labelled undirected graph is specified as a 4-tuple (V,E,Z,9) where V is the

function (of nodes by labels). Accordingly, for a node-labelled undirected graph M,
VM denotes its set of nodes, EM its set of edges, ZM its set of labels and Py its
labelling function. For an alphabet 4, G, denotes the family of all node-labelled un-
directed graphs H such that 2, = A,

M
In the sequel a node-labelled undirected graph will be referred to simply as a

If M is a graph and M is a full subgraph of M, then M\M denctes the full subgraph
of M spanned on: the node set VM‘” VM . For a graph M and subgraphs Q,R of M,
M(Q,R) = {(u,v)|{u,v} € Ey> U € VQ and v € Vp}.
diam(M) denotes the diameter of a graph M and und(M) denotes the unlabelled version
of M, that is und(M) = (V.E,).

A string grammar operates by rewriting strings into strings - a graph grammar

tial graph grammars in which in a direct derivation step one production is applied to
one occurrence of its left-hand side.

A direct derivation step in a (sequential) graph grammmar consists of two stages:

(1) a subgraph (called a mother graph) of a graph (called a host graph) is replaced

(rewritten) by applying a production and then (2) the graph (called the daughter graph)

that has replaced the mother graph is embedded in the rest of the host graph (that is
in the host graph with the mother graph removed). The first part of this process is
completely analogous to the one performed in string grammars, the second part - the
embedding - is intrinsic to graph grammars; strings can be viewed as graphs with a
very uniform rigid stnucture so that the embedding process takes place "automatically"

(one does not need a special mechanism to specify it).
In specifying a (new) model of a graph grammar one has to specify both its rewriting

and its embedding part. In the basic model we will discuss in this paper we assume
the following restrictions:

(1) on rewriting:

(1.1) our graph grammars will be node rewriting,




(1.2) the rewriting of a node depends on its label only;

(2) on embedding:
(2.1) we will assume that the embedding rule is global, i.e., the embedding mecha-

nism is provided for the grammar and not for each of its productions indivi-

dually,
(2.2) only nodes that are direct neighbours of the mother node are being considered

for the connection with nodes of the daughter graph,

(2.3) whether a candidate pair of nodes (a node from the daughter graph and a node
which is a direct neighbour of the mother graph) gets connected depends sole-
ly on the labels of these nodes. '

Hence in this model both the rewriting and the embedding process are controlled by
labels of the nodes involved.

Formally our model is defined as follows:

Definition 1.1. (i) A node-label controlled graph grammar (abbreviated NLC gram-
mar) is a system G = (2,A,P,C,Z) where 3 is a finite nonempty set (called the total

alphabet), 4 is a finite nonempty subset of 5 (called the terminal alphabet), P is a
finite set of pairs of the form (d,D) with d ¢ 2 and D¢ 67 (called the set of produc~

(ii) Let M, M ¢ G?, v € Vy and D ¢ G, . Then M concretely directly derives M repla-

cing v by D (denoted M == M) if
(v,D)
D is a full subgraph of M and Vg n V, = 0,

)
) there exists (d,D) € P such that @M(v) =d and D is isomorphic to D,
) M
)

\D = M\{v} and
M{D,@\ﬁ)wz ((xy)]x € Vg, y € VM\D . {Vv,y} € Ey and E 5(x)s oy(y)) € C}. |
1i1) Let M,M ¢ GZ' Then M concretely directly derives M (denoted M === M) if

M == M for some v ¢ VM and D ¢ GZ

~

et M,M ¢ G,. Then M directly derives M (denoted M g M) if there exists a M such

that M is isomorphic to M and Mzeé@‘

-

(v) The relation é is the reflexive and transitive closure of G (if, for M,M ¢ G s

M é M then we say that M derives M). )
(vi) The exhaustive language of G (denoted S(G)) is the set {M ¢ GZ A c M}. o

By iterating the direct derivation step in our NLC grammar G one gets the set of
(all) graphs that the grammar generates - this is its ~exhaustive language S(G).
Now based on those languages one can obtain - by using different "language squeezing"
mechanisms - various other kinds of languages associated with G. There are also other

important (especially the first one) kinds of languages one wants to associate with

(define by) an NLC grammar.



Definition 1.2. Let G = (2,4,P,C,Z) be an NLC grammar.

(1) The language of G (denoted L(G)) is the set (M € 6, : Z % My

We use L(NLC) to denote the class of graph Tanguages generated by NLC grammars.
(2) The connected language of G (denoted Lcon(G)) is the set {M ¢ GA 1 Z % Mand M is
connected}. o
The structure of (graphs in) L(G) is provided by the language of unlabelled graphs

obtained from graphs in L(G) by removing their node labels; this "structure language"
is denoted by und(L(G)).

Example 1.1. Let G = (2,4,P,C,Z) be the NLC grammar with 5 = {A,A},s ={A}, Z =
the connection relation C given by the following directed graph

A
&,

A A
,t"““"“\,
O

and P consisting of the following four productions:
A A A A A
A~e——s , A>e¢ ,A>e and A e
G . o

O

Example 1.2. Let G = (3,4,P,C,Z) be the NLC grammar with 2 = {a,b,c,d,é,E,E,a,S,é},

Then L(G)

A= {a,b,c,d,é,g,z,a }, 7 = @, the connection relation C given by the following direc-

ted graph

a b a b
S - S - S
d C d C
b
S+ a SENN
- d

It is easy to see that L(G) consists of all graphs of the form:
a b




Y

C
Example 1.3. get G = (2,0,P,C,Z) be the NLC grammar withz= {a,b,c,S,5},

& N
d d

A = {a,b,c}, Z=ou, C-= {(a,a),(b,b),(c,c)} and P consists of the following four

productions

a b C a a b S c
S » &——o—=0 , S {\\\e & —
a
) S c b c
S - e and S -+ &—- @
b
a a a b b b o o c
Then L(G) = {#—% ... 8—— o—% ... 6—0—=0 ... 0 1 n=1} . 0o
Ll A * s ad
n n n



2. COMBINATORIAL PROPERTIES OF NLC LANGUAGES

some sets of graphs (graph languages) can be defined by NLC grammars and some
cannot. An NLC grammar is a finite definition of a (possibly infinite) set of graphs.
One can expect that the definability of a graph language by an NLC grammar should
imply some specific properties of the graph language (properties that make it
possible to define this language by an NLC grammar). Hence it is natural to Took
for combinatorial properties of NLC languages (that would distinguish them from
other kinds of graph languages). The ultimate goal is to provide a combinatorial
characterization of NLC graph languages, but such an aim seems to be too ambitious
at the moment (even in the case of string languages we do not have yet a combinatorial
characterization of context-free languages'). As a first step towards achieving this
goal one looks into necessary conditions for a graph language to be an NLC Tanguage.
A typical result in this direction would look as follows: "Let K be an NLC Tanguage.
If 1 ¢ K and the property P of M holds, then L(M) ¢ K where L(M) is a (preferably
infinite) language of graphs that are nrelated” to M . If L(M) results from M by
(iterating) local changes then such a result is traditionally referred to as a
"pumping theorem" (see,.e.g., classical pumping results for context-free string
Tanguages ). |

Pumping theorems are available also for NLC Tlanguages. The difficulty in obtaining
such a result is (at least) two-fold: (1) NLC grammars are not "context-free" in
nature, meanimqthatthe(ﬂ%kﬂ"Ofapp1icationsof(thesame set of) productions (to "the
same" nodes) can considerably influence the final result, (2) it is not at all clear
how to express mathematically the iteration of a subgraph in a graph (this is trivial
in the case of strings which have very rigid structure). These difficulties were
resolved in [JR1] where a pumping theorem for general NLC grammars is stated.
Because of the restriction on the size of this paper we will not attempt to state
formally the result (this reguires the introduction of specific mathematical notions
and notation to resolve point (2) stated above).Instead we will discuss the result
in a rather informal way; the interested reader can find formal details in [JR1].

Roughly speaking, the "pumping theorem" for NLC languages states the following.
If G is an NLC grammar then in each "big enough" graph M one can find three full
subgraphs M', M" and a such that the pair (M',M") forms a partition of M, a is a
subgraph of M', 2 = #VM, < CG (for some positive integer constant CG dependent on
G only) and #VM, :

\a = 1:

M: a

M M!



-7

where M' can be “"pumped". This pumping goes as follows. One can find two relations
1287 - VM' X VM‘ such that for each n = 2 the graph M(n) € L(G) where M(n) has the

B.,,B
structure:

R

L N
i
i Ml
" [n]

and

(1) there is a "simple algorithm" for establishing the edges between M" and M}

n]”

and

(2) M{ _, is constructed by forming (n-1) copies Ql,...ﬂ,Qnm1 of M"\a and one copy Qn

n
of M' and connecting

(2.1) for each i € {1,...,n-1} and each pair (x,y) ¢ B4 the copy of x in Qi with the

copy of y in Qi+1:

Xlﬁ\

~d
=d

INV]

Q Qs U3

X 1&\\
o
g ® 1 Q
%%1 n>""
[ W= .
Qn—l Qn

(2.2) for each i ¢ {1,...,n-1}, each j € {i+l,...,n} and each pair (u,v) € B, the

copy of u in Qi with the copy of v in Qj:

/ / T M\\\
Uy el T i T . T~ ®
D = T 1
- =, —
N""‘"@ e
Y2 Y3 1
AN » el
\\w\ L
I - //,///
) T N\\\.NMM
U % U3 U1



-8-

One of the main uses of results Tike the pumping theorem discussed above is to
prove that specific graph languages are not NLC languages -a task which in general
is rather difficult. We present now a corollary of the pumping theorem which then is
used to show that a specific graph language is not an NLC language. We say that a
graph language K is of bounded degree if there exists a positive integer d such that

each node in each graph of K is of degree not exceeding d. Accordingly, an NLC
grammar G is of bounded degree if L(G) is of bounded degree.

Theorem 2.1. Let G be an NLC grammar such that L(G) is infinite, L(G) is of
bounded degree and each graph in L(G) is connected. Then there exists a positive
integer constant C such that for each poiitive integer m there exists a graph M
in L(G) such that #VM > m and diam(M) = Mg

For a graph language K, und(K) = {str(M) : M € K}.

Corollary 2.1. Let K be a graph language such that und(K) consists of all the

graphs (grids) of the form:

H L] 5§ s e

Then K ¢ L(NLC). o




3. DECISION PROBLEMS

NLC Tanguages are defined using NLC grammars - in this way the "access" to an
NLC Tanguage we have is through an NLC grammar defining it. In particular, in order
to answer various questions concerning NLC languages we have to analyze NLC grammars
defining them. In order to determine how "good" are NLC grammars as definitions of
NLC Tlanguages one investigates various decision problems and in the first instance
one tries to establish the boundary between algorithmic and non-algorithmic proper-
ties of NLC grammars. In this section we provide a number of results of this kind.

First of all we investigate a number of traditional (classical) decision problems

concerning grammars as generative devices (of string or graph Tanguages)

Is M in L(G)?, where M is an arbitrary graph from GA and A is the terminal
habet of G. o

T e e e

1

(1) L(G1 = L(G?)?

(2) L(6)) N L(Gy) = P? o

The bulk of research on decision problems for NLC grammars concerns properties

intrinsic to graph grammars and languages (as opposed to properties that can be

provxde examples of such "common" propertwes).

A major technical result (underlying the proofs of many other results concerning
undecidable properties of NLC grammars).is the following one. Its proof consists of
a rather elaborate way of coding (an instance of) the Poét Correspondence Problem
into the Tanqguage of an NLC grammar.

Theorem 3.3. It is undecidable whether or not the language of an arbitrary NLC

grammar contains a discrete graph. o
The above result is essentially used in the proofs of, e.qg., the following results
Theorem 3.4. 1t is undecidable whether or not the language of a given NLC grammar

(1) contains a planar graph,
(2) contains a connected graph

Given a graph M = (V E z,@) and two nonempty subsets ZysZ, of 2, we say that
Z1sL, are adjacent in M if E contains an edge {u,v} such that ¢(u) ¢ 21 and
o{v) € 22, otherwise 21,22 are not adjacent in M. We say that 21,22 are connected
in M if V contains nodes VisVps-ensVy for some n = 2 such that {vi,v1+1} €k,
(vl) € 2, and (v ) €2,. Given an NLC grammar G and two nonempty subsets A,B of
its terminal a1phabet we say that A,B are adjacent (connected) in G if L(G)

contains a araph M such that A.B are adiacent (connected) in G.




-10-

A is not adjacent to B in M, where G is an arbitrary NLC grammar and A,B are arbitrary
subsets of the termminal alphabet of G. ©

The following two results put the above theorem in a better perspective.
an arbitrary NLC grammar and A,B are arbitrary subsets of the terminal alphabet of
G. o

Theorem 3.7. It is undecidable whether or not A,B are connected in G, where G is

an arbitrary NLC grammar and A,B are arbitrary subsets of the terminal alphabet of
G. o

One of the important (also for practical reasons) properties of a graph grammar
is the bounded degree.Surprisingly enough, it turns out that the following result
holds.
bounded degree. o

The above theorem should be contrasted with the following two results.

(1) Lcon(G)‘is of bounded degree? ‘ '
(2) S(G) contains a graph M such that the family {M : M é M} is of bounded degree. o

Theorem 3.10. It is decidable whether or not L(G) - Lcon(G) is of bounded degree

where G is an arbitrary NLC grammar. o




4. CONTEXT-FREE NLC GRAMMARS

The connection relation is the "heart" of an NLC grammar - the embedding mecha-
nism ferms the difference between string and graph grammars (in the former it is not
needed .). Hence a way to investigate properties intrinsic to graph grammars is to

study their embedding mechanisms. In the case of NLC grammars this amounts to the
study of connection relations. In particular one studies the classification of NLC
grammarS based on the properties of connection relations. An example of such a study
is presented in this section.

Assume that G is an NLC grammar and M is a graph to be rewritten by G. Assume
that M has two different nodes u and v both of which are labelled by a and both of
which have a nonempty set of direct neighbours. Let n = a - ¢ be a production of G
and lTet x be a node of a. The following may happen. If we rewrite u by w, then (a
copy of) x will not be connected to any neighbour of u while when we rewrite v by w,

because the set of labels labelling the neighbours of u is not equal to the set of
labels labelling the neighbours of v and hence a pair from the connection relation
used to connect (a copy of) x to a neighbour of v is not applicable in establishing
a connection between (a copy of) x and neighbouks of u. This is an aspect of "con-
text-sensitivity" of G that is not provided by its rewriting mechanism (productions)
but by its embedding mechanism:(the connection relation). In order to forbid this kind
of context-sensitivity one considers context-free NLC grammars.

Definition 4.1. Let G = (2,4,P,C,Z) be an NLC grammar. We say that G is a context-

free NLC grammar (abbreviated CFNLC grammar) if for each a € Z, either ({a} x Z)N(=p

labels. o

L(CFNLC) will denote the class of languages generated by CFNLC grammars.

Informally speaking two derivations in an NLC grammar G are called similar if they
differ only by the order of applications of productions (the precise definition of .
simﬁlarity of derivations is given in [JR2]). Clearly, in general, two similar deri-
vations may result in totally different graphs (the number of nodes is the only "inva-
riant" of results of similar derivations .). However, the situation is different in
the case of CFNLC grammars.

THeorem 4.1. If G is a CFNLC grammar and D,,D, are two similar derivations in G
then the graphs resulting from D1 and 02 are isomorphic.

Note that the analogous result holds for the classical context-free (string) gram-
mars which means that our context-free restriction on the connection relation of a
CFNLC grammar captures an essential feature of the phenomenon of "context-freeness"
in rewriting systems.

1+ turns out that the context-free restriction on connection relations of NLC



grammars yields a restriction on the resulting class of graph languages.
Theorem 4.2. L(CENLC) g L(NLC). a
Actually one can prove that the language consisting of all the graphs in G

{a,b}
of the form
a a a a a
e e TR &=
X1 X? X3 Xn~1 xn
b b b b b
&8 ...... e ¢—8
Y1 Yo Y3 In-1Yn

where n =1, is in L(NLC) - L{CFNLC).

The class of CFNLC grammars (and languages) has quite interesting prooerties
especially when they are contrasted with the general class of NLC grammars (and lan-
guages). Firstly one gets a stronger version of the pumping theorem for NLC languages.
Informally speaking, one can say much more about the structure of connections between
pumped subgraphs (subgraphs Ql""’Qn from the description of the pumping theorem in
Section 2). The precise statement of the pumping theorem for CFNLC languages can be
found in [JR6]. _

secondly, many properties undecidablefor thegeneral class of NLC grammars turn
out to be decidable for the class of CFNLC grammars. Examples of some of such proper-
ties are provided in the following result.

(1). L(G) contains a discrete graph ?
(2). A,B are connected in G ? where A,B are arbitrary subsets of the terminal alpha-
bet of G.

(3). L G) is of bounded degree ? o

COH(

5. GENERATING STRING LANGUAGES USING NLC GRAMMARS

As illustrated by Example 1.3, (NLC) graph grammars can generate Tlanguages of
"string-Tike structures". A string grammar generates a string Tanguage ; moreover all
"intermediate" sentential forms are strings. One can use a graph grammar to generate
a string language (strings are special graphs), the difference will be that one allows
"intermediate" sentential forms to be arbitrary graphs. Such an alternative of having
a possibility of storing various "intermediate" information in a data structure more
general than strings may turn out to be quite attractive from the practical point of
view. :
In this section we will consider NLC grammars as generators of string languages

in the sense discussed above.

First of 3ll . Jet i€ recall +hat we demad wwtdbh oomdm Toate T T omd i 45 4



wnicn dao not provide a unique representdation O Sirings (Lhat 15 wWhy we 54y thal tne
NLC grammar from Example 1.3 generates a Jlanguage of "string-like structures" rather
than a Tlanguage of strings). This problem can be resolved very easily. Given an
alphabet A we take a symbol ¢ £ A and then a string dg...8 € A+, where n = 1,

a

. ¢ a a a__
3ps-+-5a, € A, Will be represented as the graph o ot 40 N n

(the unique node labelled by ¢ gives the "orientation" in reading off this graph as

a string). Then (to be sure that the Tabel ¢ does not play any "unexpected" role in

the generation process) we require that ¢ is a "reserved symbol" and in any NLC gram-
mar G (used to generate a string language) {¢} x 2 Uz x {¢} ¢ C where z is the alpha-
bet of G and C is its connection relation. Let us denote (somewhat informally) by
"STRINGS" the class of all graphs of the form described above.(assume that ¢ is a

fixed unique symbol). Then for an NLC grammar G its string language is defined by
Lstring(G) = L(G) n "STRINGS". Consequently we use L (NLC) to denote the class of
all string languages generated by NLC grammars and L (CFNLC) to denote the class

string

string
of all string languages generated by CFNLC graph grammars.

We have the following two basic results (we use L(REG), [(CS) and L(REC) to denote
the classes of regular, context-sensitive and recursive string lanquages).
(NLC) < L(REC). "o

~~~~~~ string(CFNLC)“‘ &

The class of context-free string languages (L{CF)) is a very basic class of string
languages and so a characterization of this class by NLC grammars (used as generators
of string languages) seems to be a very natural research topic. We were not able to
provide such a characterization by pointing out a subclass of NLC grammars generating
exactly L(CF) (in the way that CFNLC grammars generate L(REG)). However, it turns out
that L(CF) can be characterized by (modified) NLC grammars when one turns to the gene-
ration of directed (rather than undirected) graphs.

Clearly, each string ag.--ap where n = 1 and IR are letters has a very na-
tural representation as a directed graph: iZ >:2 >§§w$"_ywm%2n .

We use "DSTRINGS" to denote the class of all graphs of this form. We have to adjust
now the notion of an NLC grammar in such a way that directed graphs are generated.

G = (Z,A,P,CIN,COUT,Z) such that both (Z’A’P’CIN’Z> and (Z,A,P,COUT,Z) are NLC grammars.
Intuitively speaking a DNLC grammar works in the same way as an NLC grammar except
that now after a rewriting of a node is done, the embedding is performed in two steps
the mother node to the nodes in the daughter graph are established using CI
(2) all edges outgoing from the nodes of the daughter graph to the direct neighbours
of the mother node are established using COUT: Analogously to the use of NLC grammars
we define its languages L(G) and its string Iénguage Lstring(G) = L(G) n "DSTRINGS";
the class of all string languages generated by directed CFNLC grammars is denoted by
Lstring(CFDNLC)' Then we get the following characterization of [(CF).

Cagorem N N0 {CFY = 10 . {CFDNLCY. o

N and



6. A GENERAL FRAMEWORK FOR GRAPH GRAMMARS

In the preceding sections the reader got acquainted with the several issues in
the theory of NLC grammars. This theory 1is proposed as an initial step in the syste-
matic build-up of the mathematical theory of graph grammars. The choice of the embed-
ding mechanisms (the connection relation) used in NLC grammars is one of many possible
choices and was dictated by its "naturalness" (elegance ?).

The aim of the present section is to put the theory of NLC grammars in the broa-
der perspective of a general theory of graph grammars. We will consider a framework
for the general theory of graph grammars in which embedding is restricted to direct
neighbours of the mother graph. Our approach is related to that of [RM]. The following
is the basic notion of such a general framework.

Definition 6.1. A graph grammar with neighbourhood controlled embedding (abbrevia-

ted NCE grammar) is a system G = (2 ,A,P,7) where % is a finite nonempty set (called

the total alphabet), A is a nonempty subset of 2 (called the terminal alphabet ), P

is a finite set of productions of the form (a,B,}) where « 1is a connected graph,

B is a graph and ¥ is a function from V _ x VB x 3 into {0,1};V} is called the embed-
ding function of the production and Z ¢ 67 (called the axiom). o

Intuitively speaking, a direct derivation step in an NCE grammar is performed as
follows. Let M be a graph. Let w = (a,B,¥) be a production of P, et 2 be a full sub-
graph of M such that & is isomorphic to a ( with h being an isomorphism from a into &)

and let p be isomorphic to g (with g being an isomorphism from p into g) where
V> n v

g N M\ &
by first removing & from H, then replacing & by B and finaly adding edges {n,v} be-

= f. Then the result of the app]ication of  to & (using h,g) is obtained

tween every n ¢ Vé and every v ¢ V' - Va such that
(1) there exists a node m ¢ V(I with {h(m),v} € EM’ and
(2) ¥(mg(n), py(v)) = 1.

Note that the embedding funct1on ¥ explicitly specifies which nodes of B can be
connected to nodes of M\@ that are nelghbours of nodes in @. Also Qrex911c1t1y speci-
fies nodes in @ the neighbours of which can be connected to nodes in B. However, ¥
cannot explicitly specify which neighbours of @ can be connected to nodes in é for the
simple reason that, in general, the number of such neighbours cannot be a priori 1imi-
ted, while the specification of a NCE grammar must remain finite. Hence ¥ is a func-
tion from Va x Vg x %3 the only way we can specify which neighbours of & can be connec-
ted to nodes of Bis by specifying themby their labels.

The above given description of a (concrete) direct derivationstep can be formalized

=

~giving rise to the direct derivation relation G Then the derivation relation é

=%

is défined as the transitive and reflexive closure of c
Definition 6.2. Let G

L(G)) is the set {M € GA:Z

Canmeren NI Avammarce aro

M}. =
ndo rowritina arammare we will be interested in those NCE

S oo o



-15-

grammars that rewrite single nodes.

Definition 6.3. A 1-NCE grammar is an NCE grammar (2,4,P,Z) such that each pro-
duction in P is of the form (a,p,V) with ¢V =1 and £ = . o

If (a,B,¥) is a production in a 1-NCE grammar then, clearly, ¥ corresponds in a
natural way to a function from VB % % into {0,1}. Hence we assume that the productions
of a 1-NCE grammar are given in the form (a,psV) where ¥ is a fuonction from VB x 7
into {0,1}. Thus ¥ is a function of two arguments. Depending on the fact whether or
not, for a given argument, W depends on this argument (or, in the case of the first
argument VB’ whether or not ¢ depends only on the Tabel of the argument) we get the

following “natural” subclasses of the class of 1-NLC grammars.

for each X € {0,1,2} and Y € {0,1} that satisfy the following conditions:
(1) If there exists a production (a,p,¥) € P, nodes x,y ¢ VB and a label £ € 7 such
that y(x,£) # ¥(y,&), then X = 1.
(2) 1If there exists a production (a,B.y) € P, nodes x,y ¢ VB and a label ¢ ¢ 2 such ¢
that wﬁ(x):zwﬁ(y) and V(x,2) # ¥(y,¢), then X = 2
(3) If there exists a production (a,p,V) € P, a node x ¢ VB and labels £,,¢, € 2
such that w(x,zl) # V(x,2,) then Y=1. 0 ' |

Thus, intuitively speaking, X = 0 implies that ¥ is not dependent on the nodes of
the daughter graph B and X = 1 implies that, although ¥ can distinguish beﬁween diffe-
rent nodes of the daughter graph, ¥ cannot distinguish two nodes of the daughter graph
Jabelled in the same way. Y = O implies that § cannot distinguish between any two
neighbours of the rewritten node (even if they have different labels). Observe that a
"(2,1) grammar" is in this way a synonym for a "1-NCE grammar".

If all productions of a (X,Y)-grammar G use "“the same" embedding function  (this
(X;Y)9~grammar).

1f T denotes a type of an NCE grammar (e.g. T = 1-NCE or T = (1,1) or T = (1,0)g)
then L(T) denotes the class of all languages generated by type T grammars (to simpli-
fy the notations we will omit "redundant" parenthesis)

In order to understand better the role of various components of 1-NCE grammars in
the graph generating process one investigates the relationship between classes of lan-
quages generated by various subclasses of the class of 1-NCE grammars. Here we have

the following results.



-16-

L (NCE)

L(1-NCE) = L(2,1) = L(1,1) = L(1,1)

-
—
™
-
O
—
{

i
—~
—~
e

-
(=
~—
i

L(0,1)

L(0,0),

where for classe A,B of graph languages A »~ B stands for "A ? BY and A —« B
stands for "A - B #pPand B -A#0". o ‘ '

Now in order to understand the place of the class of NLC grammars in the general
theory of graph grammars one should relate them to the classification of various sub-
classes as presented in the diagram of the statement of Theorem 6.1. It turns out
that indeed L((CFNLC)and L(NLC) are already present in this diagram and moreover that

(NLC) is the class of all 1-NCE languages. Hence, although arrived at in a different
way, the class of NLC grammars (and languages) would have to be "discussed" in the
cr

systematic investigation of the theory of gramph grammars ..
Theorem 6.2. L(2,1) = L(NLC) and L(2,0) = L(CFNLC). o



/. DISCUSSION

In our paper we have provided a (rather sketchy) survey of a number of research
areas within the theory of NLC grammars. We hope that it gives the reader an idea of
a number of developments within this theory. Because of the restrictions on the size
of this paper we could not cover quite many other issues that are being actively
investigated within the theory of NLC grammars. We will outline some of them in this
final section.

As we have indicated already, it is expected that the investigation of various
issues within one (systematically built up) theory of graph grammars will lead to
the development of mathematical techniques to deal with many problems of the theory.
Although a number of such techniques were developed already, we feel that a lot
remains to be done. A Tack of mathematical techniques is often reflected in open
technical problems. Here are some of such problems concerning NLC grammars - it is
expected that‘solving them will Tead to new techniques.
right hand side of productions in G have no more than k nodes. Does there exist a
positive integer k such that each NLC Tanguage can be generated by an NLC grammar
in k-ary form? (Note that the corresponding question for "classical" classes of
grammars, such as context-free or context-sensitive, gets a positive easy to prove

answer!).

(2). We say that an NLC grammar is symmetric if its connection relation is a symmetric
relation. Can every NLC language be generated by a symmetric NLC grammar?

(3). We say that an NLC grammar is functional if its connection relation is a function.

NLC grammar planar (connected, discrete, hamiltonian,...)?".

We consider the NLC model to be the basic, initial model in the systematic build
up of a general theory of graph grammars. There are several ways of extending this
model in order to get a more general theory.

(i) First of all one can extend the rewriting mechanism. This can be achieved in
several ways.

-(i.1) The rewriting of a node can be made "context-sensitive" by providing application
conditions for a production; e.g., a node u labelledby b can be rewritten by a produc-
tion b - B only if u has a direct neighbour Tabelled by c¢. This type of a context-
sensitive extension of the notion of an NLC grammar is considered in [JR2].

(1.2) Rewriting units may be more general than nodes only. For example, one can
rewrite the so called "generalized handles" (see [GJTR]]. The so extended model,
called GH grammars, turns out to be very useful in the study of basic issues



-18-

concerning concurrent processes. In particular it is demonstrated in [GJTR) that a
very close connection can be established between the theory of GH grammars and the
theory of Petri Nets.
(1.3) Modes of rewriting other than the sequential one are also considered. In [GJTR]
considered. Such a mode of rewriting is also considered in [EJKR] where the theory
of NLC grammars is "tested" against various issues concerning concurrency and
canonical derivations as developed in the "Berlin school of graph grammars" (see,
e.g., [EK] and [K]). The parallel mode of rewriting, as used in the theory of L-
systems (see, e.qg., [RS]), is investigated in [JRV1] and [JRV2]. Here the comparison
with the Culik-Lindenmayer model of graph grammars based on parallel rewriting (see,
e.g., [CL]) is done and various new variants of both models are considered.
(i1) One can extend the rewriting mechanism. At Teast two extensions seem to be
natural. '
(i1.1) A "context-sensitive" extension: e.g. an edge between a node u labelled by b
in the daughter graph and a node v .labelled by ¢ in the direct neighbourhood of the
mother node is established only if (b,c) is in the connection relation and u has a
direct neighbour labelled by a.
(11.2) A connection relation may be used to connect (with the nodes of a daughter
graph) nodes that are connected to, but are not necessarily the direct neighbours of,
the mother node.

The work on (ii.1) and (i1.2) is at progress.

There are many problem areas that must be investigated before we can get a really

mature theory of graph grammars based on the NLC model. Among. those problem areas are:

(1) Parsing and complexity considerations.

(2) Relationship to other models such as Nagl model (see, e.g., [N]) and Schneider-
Ehrig-Kreowski model (see, e.g., [E]).

(3) Distinguishing and studying the "central” subclasses of the class of NLC grammars
(the class of CFNLC grammars is an example of such a central subclass).

(4) Considering classes of languages obtained from NLC grammars by "saueezing
mechanisms" other than the intersection with the terminal alphabet; taking only
"connected graphs" or graphs of degree not exceeding k, where k is a fixed positive
integer, are two examples of such squeezing mechanisms. _

(5) Extending the basic notion of a graph and considering the generation of directed,
edge labelled, ... graphs.



8. BIBLIOGRAPHICAL COMMENTS

NLC grammars were introduced in [JR1] and [JR2]. Section 2 is based on [JR1].
A1T results from Section 3 are from [3] except for Theorem 3.8 which is from [JR1].
CFNLC grammars were introduced in [JR2] where Theorem 4.1 and 4.2 were proved.
Theorem 4.3 and the stronger version of the pumping theorem are from [JR6]. Section
5 is based on [JR2]) and [JR4); Theorems 5.1 and 5.2 are from [JR2] and Theorem 5.3
is from [JR4]. Section 6 is based on [JR5].

ACKNOWLEDGEMENTS

The second author gratefully acknowledges the financial support of NSF grant
MCS 79-038038.

REFERENCES

[CER]

[CL]

E]
[EJKR]

(EK]

[GJTR]

[JR1]
JR2 ]
[JR3]
[JR4]

[JR5]
[JR6 ]

[JR7]

Claus, V., Ehrig, H. and Rozenberg, G. (Eds.), Graph grammars and their ap-
plication to computer science and biology, Lecture Notes in Computer Science,
v. 73, 1979.

Culik II, K. and Lindenmayer, A., Parallel graph generating and graph -
recurrence systems for multicellular development, International Journal of
General Systems, v. 3, 53-66, 1976. -

Ehrig, H., Introduction to the algebraic theory of graph grammars (a survey),
in CER .

Ehrig, H., Janssens, D., Kreowski, H.-J. and Rozenberg, G., Concurrency of
node-label controlled graph transformations, University of Antwerp, U.I.A.,
Technical Report 82-38, 1982. , ;
Ehrig, H. and Kreowski, H.-J., Parallelism of manipulations in multidimensio-
nal information structures, Lecture Notes in Computer Science, v. 45,
234-293, 1976.

Genrich, H., Janssens, D., Thiagarajan, P.S. and Rozenberg, G., Generalized
handle grammars and their relation to Petri Nets, Institut fiir Informations-
systemforschung, GMD Bonn, Technical Report 82-06, 1982.

Janssens, D. and Rozenberg, G., On the structure of node-]abel controlled
graph languages, Information Sciences, v. 20, 191-216, 1980.

Janssens, D. and Rozenberg, G., Restrictions, extensions and variations of

‘NLC grammars, Information Sciences, v. 20, 217-244, 1980.

Janssens, D. and Rozenberg, G., Decision problems for node-label controlled
graph grammars, Journal of Computer and System Sciences, v. 22, 144-177, 1981,
Janssens, D. and Rozenberg, G., A characterization of context-free string
languages by directed node-Tabel controlled graph grammars, Acta Informatica,
v. 16, 63-85, 1981,

Janssens, D. and Rozenberg, G., Graph grammars with neighbourhood controlled
embedding, Theoretical Computer Science, v. 21, 556-74, 1982.

Janssens, D. and Rozenberg, G., Context-free NLC grammars, University of
Leiden, Institute of Applied Mathematics and Computer Science, Technical
Report, 1983.

Janssens, D. and Rozenberg, G., Bounded degree is decidable for NLC grammars,
Institute of Applied Mathematics and Computer Science, University of Leiden,
Technical Report, 1983. - ‘




[JRV1]

[JRVZ]

[K]

[N]
[RM]

[RS]

~20-

Janssens, D., Rozenberg, G. and Verraedt, R., On sequential and parailel node-
rewriting graph grammars, part 1, Computer Graphics and Image Processing,

v. 18, 279-301, 1982.

Janssens, D., Rozenberg, G. and Verraedt, R., On sequential and parallel node-
rewriting graph grammars, part 2, Computer Graphics and Image Processing,

to appear.

Kreowski, H.-J., Manipulationen van graphmanipulationen, Ph.D. Thesis,
Technical University of Berlin, Computer Science Department, 1977.

Nagl, M., Graph-Grammatiken, Vieweg und Sohn, Braunschweig-Wiesbaden, 1979.
Rosenfeld, A. and MiTgram, D., Web automata and web grammars, Machine
Intelligence, v. 7, 307-324, 1972. T

Rozenberg, G. and Salomaa, A., The mathematical theory of L systems,
Academic Press, London-New York, I198T.




