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The multiresolution estimator, originally a wavelet-based method for density estimation, was

recently extended for estimation of hazard functions. The multiresolution hazard (MRH) method’s

main advantage is its multiscale property, making simultaneous modeling and inference at multiple

time scales possible. Additional advantages, stemming from its Bayesian foundation, are its simple

computational implementation, estimation and inference procedures, and ability to easily quantify

the uncertainty in hazard function estimates (via point-wise or curve-wise credible bands) adjusted

for uncertainty in other model parameters, such as covariate effects. In this dissertation, we fur-

ther extend the MRH methodology to accommodate the case of varying smoothness in the hazard

function over time. The proposed pruned multiresolution hazard (PMRH) performs data-driven

“fusing” of adjacent hazard intervals, increasing computational efficiency and reducing uncertain-

ty in hazard rate estimation over regions with low event counts. We apply the PMRH method

to examine patterns of failure after treatment for prostate cancer, using data from a large-scale

randomized clinical trial.

Additionally, one of the main goals of survival analysis centers around how predictors af-

fect the hazard function, and today, more and more datasets have time-varying predictors and

biomarkers, which are functions of time. We extend the MRH methodology to handle time-varying

covariates. We study several missingness scenarios, and conclude that when there is no missing

data our MRH models perform well and efficiently with time-varying covariates as well. When the

amount of missing time-varying covariates increases, our results show how increasing L2 norm of

the predictor function minus its mean within an interval is related to the bias and variance in the

MRH model parameter estimators.
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Chapter 1

Introduction

The multiresolution estimator proposed by Kolaczyk (1999) was originally developed for

intensity function estimation in astrophysics, where structure may be visible at multiple scales.

This relatively new area of statistical multiscale modeling has recently been introduced into survival

analysis (Bouman et al. 2005, 2007; Dukic and Dignam 2007; Dignam et al. 2009), where flexible

multiresolution modeling of hazard functions can reveal intricate patterns in patient failure risk over

time. Questions of interest in those applications may include assessment of hazard structures over

multiple time scales, and implied optimal follow-up monitoring schedules during the post-treatment

surveillance period. Associated with these questions is the question of whether a single degree of

smoothness is enough to adequately describe hazard behavior over long period of time (Dukic and

Dignam 2007; Dignam et al. 2009).

The multiresolution hazard (MRH) model partitions the cumulative hazard function in a tree-

like manner, over multiple time scales, via the framework of Bouman et al. (2007) and Dukic and

Dignam (2007). The Bayesian MRH framework allows specification of any a priori desired shape and

amount of smoothness in the hazard function. The multiresolution method’s main advantages are

its self-consistency across multiple scales (Bouman et al. 2007), simple implementation, estimation

and inference procedures – namely its ability to provide uncertainty estimates on hazard functions

via point-wise or curve-wise credible bands at multiple scales simultaneously. In addition, effects

of factors influencing the hazard (covariates), and the hazard function itself are estimated jointly,

resulting in adjusted inference about both of these quantities.
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In some survival analysis settings, such as clinical trials investigating failure outcomes under

different disease treatments in humans, however, we are faced with the challenge of having peri-

ods of intense failure activity combined with longer periods of slower failure activity as more time

passes after the initial treatment. In this thesis, we thus further extend the MRH methodology

to accommodate the case of varying smoothness in the hazard rate functions over time. (Note

that “smoothness” here is taken in the sense of Bouman et al. (2005), and pertains to total varia-

tion of the hazard function rather than its differentiability properties.) We propose the “pruned”

multiresolution hazard (PMRH), which performs data-driven “fusing” of adjacent hazard intervals,

increasing computational efficiency and reducing uncertainty in hazard rate estimation over regions

with low event counts.

1.1 Survival analysis and hazard function

Survival analysis is analysis over time-to-event data. In survival analysis, we observe subjects

of certain time span and study the time when the event of our interest happens to them. Survival

analysis is widely used in many fields. The events studied can be any kind, as long as they are of

our interest. In biomedical aspect, events include death, cancer recurrence, heart attack and so on.

Social scientists show more interest in graduation from school, first employment, marriage divorce

and others. Reliability analysis or failure time analysis are more commonly used in engineering,

instead of survival analysis. The timing of an assemble line stops working or the lifetime of a bulb

before it burns out is more attractive to engineers. In study of those time-to-event data, we in

hope to answer questions as what is the survival rate of a population after a certain time when a

highly contiguous disease breaks out, how environmental and individual characteristics can affect

one’s survival probability.

Censoring happens when the time of event is not observed. Drop out from the study when it

is still ongoing or the study time span is not long enough, thereby certain subject experiences no

event before the termination of the study are two possible causes for censoring. Generally, there

are three types of censoring, left censored, interval censored and right censored. A data point is left
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censored if it is only known to be smaller than a certain value. A data point is interval censored if

only a range of its value is known. A data point is right censored if its value is above a certain value.

In survival analysis, many data are right censored. Also, they are non-informative censoring and

informative censoring. When a subject drops out from the study due to reasons not statistically

related to the study, such as job rotation to a different state or accidental death, we name it

non-informative or random censoring. In a study of graduation from college, it is conceivable that

students with not so good performance would have a higher risk to quit than that of students who

do well in their classes. And this is informative censoring. Correctly handling censoring in data

management will ensure more unbias estimates in analysis.

Survival function S(t) = Pr(T > t) is the probability the time T of death(failure) after a

certain time t. And as defined, S(t) is apparently non-increasing and S(0) = 1. Moreover, as

time t goes to infinity, the survival probability S(t) will decline to zero. As contrast to survival

function, we introduce lifetime distribution function F (t), which is the probability the time T of

death(failure) before or at a certain time t. Therefore F (t) = Pr(T 6 t) = 1 − S(t). Hazard

function or hazard rate λ(t) is the momentary failure rate conditional on survival so far

λ(t) dt = Pr(t 6 T < t+ dt|T > t) =
−S′(t)dt

S(t)

In consideration of aggregation of the hazard over time, we define Λ(t), cumulative hazard function

as

Λ(t) =

∫ t

0
λ(u) du

Some simple calculation reveals that cumulative hazard function and survival function are related

through equation

Λ(t) = − ln(S(t))

In practice, we sometimes study the cumulative hazard function Λ(t) directly, since by transform

of

F (t) = 1− e−Λ(t) = 1− e−
∫ t
0 λ(u) du
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we can get information about F (t) and S(t) easily. We define hazard increment from time a to

time b as:

Λ(b)− Λ(a) =

∫ b

a
λ(u) du

In most case, we can’t get λ(t) at all t’s. One way we can take is to estimate hazard increments over

a partition of the study window, then by assuming constant hazard rate over each time interval

respectively, in order to approximate Λ(t). Figure 1.1 illustrates an instance how hazard increments

can be employed to estimate survival function.
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Figure 1.1: Diagram of using hazard increments to estimate survival function

1.2 Hazard estimation

From now on, we will use h(t) to refer hazard function and H(t) as cumulative hazard

function. Although in last section we discussed about we may estimate cumulative hazard function

instead of hazard function under some situation, the main appeal of hazard functions is that it

can visualize details in failure risk patterns not apparent in aggregate summaries such as S(t) or

H(t) = − ln(S(t)), the cumulative hazard function, and identify periods of elevated failure risk in

a population (Aalen and Gjessing 2001).
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There is parametric regression model which is based on exponential distribution.

log(hi(t)) = β0 + β1Xi,1 + β2Xi,2 + · · ·+ βkXi,k (1.1)

In equation (1.1) subjects are indexed with i and Xi,j are explanatory covariates of subject i,

where j = 1, . . . , k. Once the coefficients βj can be decided, the hazard function hi(t) is completely

determined. Parametric model can also be built via other distributions, such as Gompertz and

Weibull distributions, since these distributions are commonly used in modeling survival analysis

data. When we take all the covariates as zero, we would have hi(t) = eβ0 ≡ h0(t), which can be

somewhat taken as baseline hazard function and it is a constant. But in most cases, hazard function

is always unstable and has a mutable pattern which is not easy to differentiate. Many parametric

models have the unimodal assumption, as opposed to possible nonunimodality of hazard function,

so we need models allow more flexibility.

Cox (1972) introduces the well-known semiparametric Cox proportional hazard model. Base-

line hazard function now can have a flexible shape in any form, since we allow β0 to vary over time

t as a function β0(t) instead of fixing it as we did in equation (1.1)

log(hi(t)) = β0(t) + β1Xi,1 + β2Xi,2 + · · ·+ βkXi,k (1.2)

In other form,

hi(t) = h0(t)e
β1Xi,1+β2Xi,2+···+βkXi,k (1.3)

Cox model estimates the baseline hazard function together with individual covariates effects.

By assuming covariates Xi,j are not time dependent, Cox model holds its property that any two

observations’ hazard function ratio is constant. When proportionality is not satisfied, we may con-

sider multiple strata with separate baseline hazard function but all strata share the same covariate

effects, example including Dukic and Dignam (2007) model randomized clinical trial data of early

stage breast cancer recurrence of different treatment groups jointly with common covariate effects

but different hazard baseline among groups.

In order to estimate parameters in Cox model, maximum likelihood can perform this task,

but it is difficult. For a general case, we only consider right censored data with indicator δi = 0 if
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observation ti is right censored, and δi = 1 if not. For notation convenience, we denote explanatory

covariates Xi,1, Xi,2 · · ·Xi,k of observation i as Xi and effects β1, β2 · · ·βk as β. The likelihood

function of Cox model is as following of a size N data set:

N∏
i=1

[h(ti|Xi, β)]
δiS(ti|Xi, β) =

N∏
i=1

[h0(ti)e
X′

iβ]δiS0(ti)
eX

′
iβ

So Cox brings out partial likelihood function and proposes to gain parameter estimates

through maximizing the partial likelihood function. Details can be found in Cox (1972). Pren-

tice et al. (1978) modeled cause-specific hazard via this approach in a study of acute leukemia

patients in the treatment of bone marrow transplantation. The model is applied to investigate how

different factors such as patients age, regimen type can affect the timing of recurrence. Also it

models how risk of recurrence and risk of mortality from graft versus host disease are related by

patient characteristics. In typical practice, we always take baseline hazard function as a nuisance

parameter but put more emphasis studying the covariate effects. However, in this thesis, we will

focus on estimating baseline hazard function in a more efficient method besides estimating covariate

effects. Particularly, we try to optimize the spread of t′js–time resolutions over the muliresolution

model developed in Bouman et al. (2005, 2007), aiming at a more precise estimation hazards and

less time-consuming algorithm.

Gray (1990) adopts kernel-based smoothing approach to estimate subgroup baseline hazard

over the cumulative hazard function derived from Breslow (1974) and applies it to data from ad-

juvant therapy for premenopausal breast cancer. It can be used to diagnose the correctness of the

fitting model, since when Cox proportionality is satisfied, baseline hazard from subgroups should

be the same within sampling variability. Gray (1992) incorporates both linear and spline function

to estimate covariate parameters. Estimates from maximizing penalized partial likelihood function

summaries more details about covariate effects to breast cancer recurrence risk. Gray (1996) pro-

poses a more general regression approach emphasizing on hazard function estimation by dividing

the time axis, and using nonparametric regression smoother. In Andersen et al. (1993), many other

methods are discussed such as the non-parametric Nelson-Aalen estimator for cumulative hazard
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function, Kaplan-Meier estimator for estimating the survival function. But most of them still pay

effort more on covariate effects and model checking, than on hazard function.

Beta process prior and gamma process prior are two highly used stochastic process priors

in the context of nonparametric Bayesian hazard estimation. A process is named beta process,

provided its cumulative hazard function has independent increments and those increments are

approximately beta distributed. Hjort (1990) introduces beta process prior and concludes that

the posterior of cumulative hazard function is still a beta process. Lee and Kim (2002) develop an

computational algorithm to approximate beta process by generating sample path from a compound

Poisson process. Kalbfleisch (1978) and Burridge (1981) model the cumulative hazard function as

a gamma process. Correlated process priors are also used in modeling cumulative hazard function.

Arjas and Gasbarra (1994) introduce a simple martingale jump process to mode the hazard rate.

They assume hazard rate is a constant between two jump times, and the jump times are from a

homogeneous Poisson process. Correlated gamma priors are placed to hazard rate to make it a

martingale. In Nieto-Barajas and Walker (2002) the hazard priors are correlated by introducing a

latent Poisson process between two adjacent hazard increments. More other methods are reviewed

in Sinha and Dey (1997).

In the context of Bayesian intensity estimation, multiresolution methods have gained pop-

ularity in the recent years. In a now well-known example from astrophysics Kolaczyk (1999),

gamma-ray photon counts over equal time intervals were modeled as an inhomogeneous Poisson

process, with constant intensity function over the recursive dyadic partitions of the time-axis. In

Nowak and Kolaczyk (2000), Bayesian multiscale model was extended to Poisson inverse problems.

Non-Bayesian multiresolution modeling examples include the methods based on wavelets, as in

Antoniadis et al. (1999).

Bayesian multiresolution models were extended to hazard function estimation, and equipped

to deal with censoring and truncation, in the works of Bouman et al. (2005), Bouman et al. (2007),

and Dukic and Dignam (2007). Inspired by Kolaczyk (1999), these models assume a binary parti-

tion tree structure, with a gamma prior placed on the total cumulative hazard over a finite time
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interval, and beta priors describing the recursive partition parameters (the “split” parameters).

The smoothness of the resulting piece-wise constant hazard rate is controlled by hyperparameter-

s of these gamma and beta tree priors. The MRH model was used to estimate reporting delay

(Bouman et al. 2005), breast cancer recurrence risk (Bouman et al. 2007), and, via its hierarchical

multiresolution hazard (HMRH) extension, the multivariate hazard for different subpopulations

(Dukic and Dignam 2007).

1.3 Multiresolution hazard(MRH) model

In this section we review the multiresolution hazard model that is used to estimate baseline

population survival function. Data for patients from different sources include their failure times,

possibly censored and covariate of individual characteristics. We take the Cox proportional hazard

model, since it is desirable with censoring failure times and covariates, especially for estimating a

overall population survival.

In our analysis, we have the ”time resolution” tj evenly distributed within the whole time

span of study and estimate the associated baseline hazard increment dj from tj−1 to tj . We can

transform the posterior estimates of dj into survival probability estimates via dj =
∫ tj
tj−1

h(s)ds.

Here h(t) is the hazard rate function at time t. Hence, we will focus on estimating the cumulative

hazard function Hbase(t) and the discrete hazard increments dj ≡ Hbase(tj)−Hbase(tj−1).

1.3.1 Multiresolution prior for baseline hazard increments

In our model, we firstly choose time points 0 < t1 < t2 < · · · < tJ according to clinical

interest. The time points don’t necessarily have to be evenly spaced. But in our MRH model, we

have the them evenly distributed. Then we use Cox proportional hazard model to estimate baseline

cumulative hazard Hbase(t) at tj as well as covariates. This differs from a standard Cox model in

which the baseline hazard function is treated as a nuisance parameter. We assume J = 2M where

M > 0 is the “depth” of the partition tree. M can be chosen in a variety of ways; for example,
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using model selection criteria as in Bouman et al. (2007), or using clinical input, as in Dignam et al.

(2009). An appropriate M has to ensure that each bin has multiple observations from a statistical

convenience point of view.

In our model, Sbase(t) is not defined after time point tJ . Therefore times after tJ will be taken

as right-censored. In this case, we then have to pick tJ wisely so that our lost in information can be

minimized. Our estimation of overall Hbase(t) is a piece-wise function. It has constant hazard rate

hbase(t) over two neighbored time points. With fixed time points 0 < t1 < t2 < · · · < tJ , we can

transform hazard increments to hazard rate easily. And it is notable that many papers in literature

have used the idea of piecewise-constant hazard, for instance, Walker and Mallick (1997). We use

this idea to estimate the cumulative hazard function in our model.

The sum of 2M hazard increments {dj}j=J
j=1 will always equal the total cumulative hazard over

the study interval (t0, tJ), H(tJ). For simplicity, we will use H to denote H(tJ). Now let HM,0 ≡

d1,HM,1 ≡ d2, . . . , HM,2M−1 ≡ dJ . For each m, m = 1, 2, . . . ,M − 1, we will recursively define the

”level-m” hazard increments as Hm,p ≡ Hm+1,2p +Hm+1,2p+1, where p = 0, 1, 2, . . . , 2m−1 − 1.

If we further define the corresponding split variable Rm,p as Hm,2p/Hm−1,p, it follows that

the partition tree with depth M can be specified by H, and the set of splits R1,0, . . . , RM,2M−1−1.

From there, any dj can be represented as a product of H and a certain branch of split variables.

For example, when M = 3 we have the following set of relationships, also depicted in Figure 1.2.

d1 = HR1,0R2,0R3,0,

d2 = HR1,0R2,0(1−R3,0),

...

d8 = H(1−R1,0)(1−R2,1)(1−R3,3).

(1.4)

We adopt Beta priors on the the Rm,p’s and a Gamma prior on H as in Nowak and Kolaczyk

(2000). The prior expectation of each hazard increments are determined by both the shape param-

eters of each Beta prior for each Rm,p and the hyperparameters of H. We adopt a hyperparameter
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Figure 1.2: Diagram of the 3-level multiresolution prior

k and multiply it to the shape parameter of the Beta priors at each additional level, to gain more

smoothness in the multiresolution priors. Follow this fashion, H and Rm,p in a M = 3, J = 8 model

would have the following priors:

H ∼ Ga(a, λ),

R1,0 ∼ Be(2γ1,0ka, 2(1− γ1,0)ka),

R2,p ∼ Be(2γ2,pk2a, 2(1− γ2,p)k
2a), p = 0, 1

R3,p ∼ Be(2γ3,pk3a, 2(1− γ3,p)k
3a), p = 0, 1, 2, 3.

(1.5)

Note that the prior expectation of each hazard increment is determined by the shape param-

eters of the beta priors, and the hyperparameters of H, as each increment dj can be represented

as a product of a set of independent variables on the same branch. For example, in the above,

E(d1) = E(H)E(R1,0)E(R2,0)E(R3,0). The tree hyperparameters are thus directly linked to the

distribution of the hazard increment, and control not only their a-priori expected values, but al-

so the correlation between them. In that sense, the tree hyperparameters directly relate to the

smoothness of the multiresolution prior, as shown in Bouman et al. (2005) and Bouman et al.

(2007).
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1.3.2 Properties of the MRH prior

Although the MRH prior is a piece-wise constant prior for the hazard rate, the carefully con-

structed tree-based approach presented above assures the self-consistency property. This property

means that the joint distribution of hazard increments at any given level m does not depend on

the total depth of the tree, M . This multiscale property allows researchers to change focus form

one resolution to the other, without having to re-derive prior distributions.

To see this and other properties of the generalized multiresolution prior, involving the deriva-

tion of the hazard increment distribution, we will first let 0 < γm,p < 1 and k = 0.5. We

then consider what happens with the hazard increments at level m = 1. As H ∼ Ga(a, λ) and

R1,0 ∼ Be(γ1,0a, (1 − γ1,0)a), the two level-1 hazard increments can be derived as H1,0 = HR1,0

and H1,1 = H(1−R1,0). Then:

P (H1,0 6 x) =

∫ 1

0

∫ x/R1,0

0

Ha−1e−H/λ

λaΓ(a)

R
γ1,0a−1
1,0 (1−R1,0)

(1−γ1,0)a−1

B(γ1,0a, (1− γ1,0)a)
dHdR1,0 (1.6)

implying that the density of H1,0, which we denote as f(x), is Ga(γ1,0a, λ), as shown in Equa-

tion (1.7):

f(x) =

∫ 1

0

d

(∫ x/R1,0

0
Ha−1e−H/λ

λaΓ(a)

R
γ1,0a−1

1,0 (1−R1,0)
(1−γ1,0)a−1

B(γ1,0a,(1−γ1,0)a)
dH

)
dx

dR1,0

=

∫ 1

0

( x
R1,0

)a−1e
− x

R1,0λ

λaΓ(a)

R
γ1,0a−1
1,0 (1−R1,0)

(1−γ1,0)a−1

B(γ1,0a, (1− γ1,0)a)

1

R1,0
dR1,0

=
xa−1

λaΓ(a)B(γ1,0a, (1− γ1,0)a)

∫ ∞

1
e−xt/λ(t− 1)(1−γ1,0)a−1dt

=
xa−1

λaΓ(a)B(γ1,0a, (1− γ1,0)a)

∫ ∞

0
e−x(u+1)/λu(1−γ1,0)a−1du

=
xγ1,0a−1e−x/λ

λγ1,0aΓ(γ1,0a)
∼ Ga(γ1,0a, λ)

(1.7)

Following the same reasoning, we can show that H1,1 ∼ Ga((1− γ1,0)a, λ). We next consider

the second-level hazard increments, at m = 2, when R2,0 ∼ Be(γ2,0a/2, (1 − γ2,0)a/2) and R2,1 ∼
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Be(γ2,1a/2, (1 − γ2,1)a/2). Then the prior distribution of H2,0 = HR1,0R2,0 = H1,0R2,0 can be

obtained as follows:

P (H2,0 6 x) =

∫ 1

0

∫ x/R2,0

0

H
γ1,0a−1
1,0 e−H1,0/λ

λγ1,0aΓ(γ1,0a)

R
γ2,0a/2−1
2,0 (1−R2,0)

(1−γ2,0)a/2−1

B(γ2,0a/2, (1− γ2,0)a/2)
dH1,0dR2,0 (1.8)

implying that the form of the prior density of H2,0 can be derived as in Equation (1.9):

∫ 1

0

d

(∫ x/R2,0

0

H
γ1,0a−1

1,0 e−H1,0/λ

λγ1,0aΓ(γ1,0a)

R
γ2,0a/2−1

2,0 (1−R2,0)
(1−γ2,0)a/2−1

B(γ2,0a/2,(1−γ2,0)a/2)
dH1,0

)
dx

dR2,0

=

∫ 1

0

( x
R2,0

)γ1,0a−1e
− x

R2,0λ

λγ1,0aΓ(γ1,0a)

R
γ2,0a/2−1
2,0 (1−R2,0)

(1−γ2,0)a/2−1

B(γ2,0a/2, (1− γ2,0)a/2)

1

R2,0
dR2,0

=
xγ1,0a−1

∫∞
1 e−xt/λ(t− 1)(1−γ2,0)a/2−1tγ1,0a−a/2dt

λγ1,0aΓ(γ1,0a)B(γ2,0a/2, (1− γ2,0)a/2)

(1.9)

The expression on the last line in Equation (1.9) is a gamma density only when γ1,0 = 0.5.

In that case we have H2,0 ∼ Ga(γ2,0a/2, λ). Following the same steps, we can also get the result

that H2,1, H2,2 and H2,3 will not have a gamma density unless γ1,0 = 0.5. When γ1,0 = 0.5,

H2,1 ∼ Ga((1 − γ2,0)a/2, λ), H2,2 ∼ Ga(γ2,1a/2, λ) and H2,3 ∼ Ga((1 − γ2,1)a/2, λ). Thus we have

the following properties of multiresolution prior:

• Resolution invariance: the prior of Hm,p does not depend on M , the depth of the tree.

The prior of Hm,p will only contain parameters from the level m itself, and from the upper

levels (levels closer to the root). The choice of γm,p will have an impact on the densities of

hazard increments.

• When all γm,p = 0.5 at levelm and the upper levels, a prioriHm,p ∼ Ga(a/2m, λ). Although

this is the same gamma distribution for all increments at the same level, they will not in

general be independent. The correlation is controlled in part by k, as shown in Bouman

et al. (2005), Bouman et al. (2007).
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• When all γm,p = 0.5, except at the levelm, thenHm,2p ∼ Ga(γm,pa/2
m−1, λ) andHm,2p+1 ∼

Ga((1− γm,p)a/2
m−1, λ). This property illustrates the flexibility in using γm,p parameters

to specify the hazard shape a priori.

1.4 Outline of the thesis

The rest of this dissertation is organized as follows. In Chapter 2, we describe an extension of

multiresolution hazard(MRH) models, called pruned multiresolution hazard(PMRH) models and

evaluate PMRH model performance with simulated data. As an application of PMRH models,

we show the analysis of prostate cancer data in Chapter 3. Next, we give a literature review

about hazard models with time-varying covariates and discuss about cumulative hazard function

estimation in extended proportional hazards models in Chapter 4. In Chapter 5, we formulate

algorithms for MRH models with time-varying covariates. Results of MRH models and PMRH

models having time-varying covariates with simulated data are demonstrated as well. In Chapter

6, we review hazard models with missing time-varying covariates and outcomes. In Chapter 7, we

discuss about different missing time-varying covariates imputation approaches and give results of

MRH models having missing time-varying covariates with simulated data. Finally, we conclude

this dissertation along with future work in Chapter 8.



Chapter 2

Pruned multiresolution hazard(PMRH) models

2.1 Pruning the MRH tree

The choice of the level of the maximal resolution in the MRH prior is driven by a compromise

between the desire for detail and the amount of data: as the resolution increases (and the number

of time bins increases), counts within each bin will decrease. While useful for revealing detailed

patterns, large number of bins (and consequently, large number of model parameters) will generally

require longer computing times. Similarly, more bins will eventually mean lower event count per

bin, and this lower information content will translate into lower efficiency. It would thus make sense

to provide an algorithm that could adaptively choose the appropriate number of bins over different

time intervals, with an increased number of bins in the regions of high event counts, and fewer

bins where the counts are low. Ideally, the method would balance computing time and accuracy.

Motivated by these goals, we develop a data-driven “tree pruning” method, which starts with the

full MRH prior, and as the end result provides a smaller tree prior with fewer branches.

The idea of MRH tree pruning is simple: two adjacent bins constructed via the same split

parameter, Rm,p, are merged if the the estimated hazard increments in these two bins (Hm+1,2p and

Hm+1,2p+1) are statistically similar. Here, the estimate of the hazard increment in a bin is derived

as the number of observed failures within the bin divided by the number of patients at risk at the

initial time point of the bin. The pruning proceeds as follows: for a given level m (for m = 1, ...,M),

the null hypothesis H0 : Rm,p = 0.5 is tested versus the alternative Ha : Rm,p ̸= 0.5 (with a pre-set

type I error α) for each split parameter Rm,p (p = 0, ..., 2m−1 − 1). If the null hypothesis is not
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Figure 2.1: Diagram of the 3-level multiresolution pruned prior

rejected, that split Rm,p is set to 0.5; the adjacent hazard increments are considered equal and the

bins declared “fused”. The resulting pruned prior tree is smaller than the full MRH tree used in

previous analyses (Bouman et al. 2007; Dukic and Dignam 2007).

The hypothesis testing can be applied to all M levels of the tree, but often in practice only

the few bottom levels need be considered. Figure 2.1 presents a hypothetical example diagram with

event counts shown at each level of a three-level hierarchy. If all levels are subject to pruning, the

split parameters R3,0, R3,1, and R3,3 (shown in red in the figure) will be set to 0.5 after the pruning

procedure, and the resulting final resolution will have only 5 bins instead of 8 which the full MRH

prior with 3 levels would have.

The information in the counts used for testing the equality of adjacent bin hazard increments

is not independent across bins, and small event counts may be frequent in the bins at the bottom

levels. For that reason, we perform the pruning hypothesis tests using a modified Fisher’s exact

test, based on the 2 by 2 table composed of the number of failures within in the bin time interval

and at-risk patients at the end of the bin time interval for each pair of adjacent bins sharing a

split parameter. It is important to note that the Fisher’s exact test provides a simple approximate

solution to a fundamentally more complex inference problem, and that other tests could be used

instead in future applications. We add a modification to the test in situations where no failures

occur in one or both of the bins – the pruning algorithm presented in this thesis fuses the pair of
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adjacent bins with no failures, while the bins where only one bin has 0 failures are not fused. Other

modifications might be considered instead, though we do not explore them in this thesis.

The pruned (PMRH) model still retains its resolution-invariance under aggregation. Although

the pruning is expected to reduce sensitivity of the MRH method in identifying subtle changes in

the hazard rate, the pruning method carries several advantages that may be worth considering.

With pruning, the posterior hazard increment estimates are expected to be less variable compared

to the equivalent non-pruned model. With some split parameters preset to 0.5, fewer total number

of model parameters need to be estimated, and, consequently, the estimation time is expected to

be reduced as well. Given that the estimation in these models is done using Markov chain Monte

Carlo (MCMC) methods, total computing time savings might be substantial.

2.2 Model fitting

The multiresolution prior for the hazard rate can be used in conjunction with any desired

likelihood for time-to-event data. One of the more commonly used models in survival analysis is

the “proportional-hazards” model (Cox 1972), where the hazard rate for patient i (hi) is modeled

as the product of an unspecified baseline hazard rate (h0) and the systematic covariate function:

hi(t) = h0(t)e
β1Xi,1+β2Xi,2+···+βkXi,k . (2.1)

Here, the parameter vector of log-hazard ratios, β⃗, contains the effects of covariates in X⃗, the

matrix whose p columns correspond to the explanatory variables X⃗1, X⃗2 · · · X⃗p. The hazards in

different covariate groups are thus assumed to be proportional to each other over the entire study

period, giving this model its name.

Unlike the classic Cox proportional hazards model, whose main goal is to estimate the effects

of covariates while treating the hazard rate itself as a nuisance parameter, the PMRH model

estimates all parameters and the hazard rate jointly. The PMRH prior is placed on the baseline

hazard rate h0, and the posterior distribution for all PMRH tree parameters, as well as the β⃗

parameter, are estimated based on the joint posterior derived using MCMC.
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Considering only right censored data, with indicator δi = 0 if the patient i’s time-to-event,

Ti, is right censored, and δi = 1 if not (i.e. if that observation was an observed failure event),

the likelihood function of the proportional hazards model for a set of N independent observations

(T⃗ , δ⃗) = {Ti, δi}N1 is as follows:

L(β⃗, h0 | T⃗ , δ⃗) =
N∏
i=1

[h(Ti|X⃗i, β⃗)]
δiS(Ti|Xi, β⃗) =

N∏
i=1

[h0(Ti)e
X⃗′

iβ⃗]δiS0(Ti)
eX⃗

′
iβ⃗

The Bayesian model is then completed by specifying prior distributions for β⃗, as well as for the

multiresolution hazard tree parameters (a, λ, k, and γ⃗).

The PMRH algorithm proceeds in two steps. The hypothesis testing step is run only once

at the beginning, as the prior tree is set. Rm,p parameters for which the H0 is not rejected are set

the to 0.5 with probability 1, while those for which the H0 is rejected are to be estimated in the

second step, the MCMC-step. Once the testing of all candidate Rm,p is completed, the MCMC

step samples the remaining parameters (H, all Rm,p that were not set to 0.5, a, λ, k, γ⃗, and β⃗)

from their full conditional distributions, following Bouman et al. (2007). We briefly outline each

full conditional distribution below (η− is used to denote the set of all parameters and data except

for η):

(1) If k is given an exponential prior distribution with mean µk, the full conditional distribution

for k is as follows:

π(k|k−) ∝ ΠM
m=1Π

2m−1−1
p=0

{
R

2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

B(2γm,pkma, 2(1− γm,p)kma)

}
e
− k

µk

(2) If a is given a zero-truncated Poisson prior,
e−µaµa

a

a! (1− e−µa)
(chosen for computational con-

venience), the full conditional distribution for a is:

π(a|a−) ∝ Haµa
a

λa(a− 1)!a!
ΠM

m=1Π
2m−1−1
p=0

{
R

2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

B(2γm,pkma, 2(1− γm,p)kma)

}

(3) If the scale parameter λ in the gamma prior for the cumulative hazard function H is given

an exponential prior with mean µλ, the resulting full conditional is:

π(λ|λ−) ∝ 1

λa
e−

H
λ e

− λ
µλ
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(4) The full conditional for H, π(H|H−) is a gamma density, with the shape parameter a +∑N
i=1 δi, and rate parameter λ−1+

∑N
i=1 exp (X

′
iβ)F (Ti), where F (Ti) =H(min(Ti, tJ))/H(tJ)

(5) If a Beta(u, w) prior is placed on each γm,p, the full conditional distribution for each γm,p

is proportional to:

R
2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

B(2γm,pkma, 2(1− γm,p)kma)
γu−1
m,p (1− γm,p)

w−1

(6) A normal N(0, σ2
β) prior on each log hazard ratio, βj , leads to the the following full condi-

tional distribution, where F (Ti) = H(min(Ti, tJ))/H(tJ):

π(βj |β−
j ) ∝ exp{−

β2
j

2σ2
β

}ΠN
i=1{[exp (Xi,jβj)]

δi exp
(
−exp

(
X ′

iβ
)
HF (Ti)

)
}

(7) The full conditional for each Rm,p for which H0 was rejected, is proportional to:

R
2γm,pkma−1
m,p (1−Rm,p)

2(1−γm,p)kma−1ΠN
i=1

{
[h0 (Ti)]

δi exp (−exp (X ′
iβ)HF (Ti))

}
For most parameters, the full conditionals could be sampled from either directly, or using a

Metropolis-Hastings sampler within each iteration of the MCMC sampler. For Rm,p and each βj , we

used the adaptive rejection sampling (ARS) algorithm of Gilks and Wild (1992). For parameters

with full conditionals that are not log-concave, such as λ and k, adaptive rejection Metropolis

sampling (ARMS) of Gilks et al. (1995) can be used.

2.3 Evaluating PMRH performance with simulated data

2.3.1 Simulated data generation

A natural question to ask is how using the data twice – once for the hypothesis testing in

the construction of the prior, and once in the likelihood – might impact the results of the PMRH

algorithm. The performance of the algorithm is also expected to depend on the number of failures

in each bin, the true underlying intensity function, and the type I error of the test, α used in

pruning.
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In order to assess the overall behavior of PMRH estimators, and compare it to the behavior

of the regular MRH estimators, we simulated 200 datasets closely resembling a real clinical trial

(Fisher et al. 1989, 1996). In this breast cancer clinical trial, the estimated hazard rate exhibited a

mixture of features (bumps and flat regions), which was ideal for evaluating the PMRH method’s

performance (Dukic and Dignam 2007; Dignam et al. 2009). Each dataset was given 1000 patients

(500 in the treatment arm, and 500 in the control arm), and for each patient the failure time

was simulated depending only on the treatment indicator (our only covariate). Anyone with the

failure time occurring after 5 years was considered right-censored. The resulting data were over

70% censored, matching the amount of censoring in the trial in Fisher et al. (1989). The tamoxifen

treatment log-hazard ratio, βtreat, was set at -0.44, to match the value estimated in Bouman et al.

(2007). In order to see how the model performs in smaller datasets, we then repeated the set of

simulations under the same conditions, except with 200 patients instead of 1000 per set, with 100

patients per arm.

We used a rich PMRH model with 5 levels (M = 5), with 32 equal length bins over 5 years.

The average number of failures in the 32 bins, over all simulated datasets with 200 patients per

dataset, is given in Table 2.1 and the average number of failures in the 32 bins, over all simulated

datasets with 1000 patients per dataset, is given in Table 2.2. As can be seen, realistically small

failure counts per bin were simulated on average. The average failure counts for bins in the larger

simulation, where 1000 patients per dataset were used, were approximately 5 times higher on

average, as expected.

2.3.2 Evaluating PMRH performance with simulated data

For each set of data, we implemented 4 different PMRH strategies:

• NPM4: 4-level model without any pruning,

• NPM5: 5-level model without any pruning,

• PM52: 5-level model with 4th and 5th level subject to pruning,
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bin 1 2 3 4 5 6 7 8 9 10 11

untreated 0.22 0.38 0.76 0.505 1.00 1.165 1.305 1.10 0.92 0.905 1.13
treated 0.13 0.25 0.39 0.365 0.88 0.740 0.765 0.66 0.64 0.680 0.89
pool 0.35 0.63 1.15 0.870 1.88 1.905 2.070 1.76 1.56 1.585 2.02

bin 12 13 14 15 16 17 18 19 20 21 22

untreated 1.360 0.95 1.060 1.02 0.905 0.615 0.765 0.865 1.050 0.675 0.800
treated 0.745 0.69 0.695 0.74 0.620 0.415 0.490 0.675 0.685 0.540 0.585
pool 2.105 1.64 1.755 1.76 1.525 1.030 1.255 1.540 1.735 1.215 1.385

bin 23 24 25 26 27 28 29 30 31 32 censored

untreated 0.67 0.420 1.08 0.975 1.025 0.555 0.49 0.500 0.625 0.635 73.570
treated 0.46 0.375 0.65 0.635 0.630 0.440 0.35 0.355 0.525 0.435 81.875
pool 1.13 0.795 1.73 1.610 1.655 0.995 0.84 0.855 1.150 1.070 155.445

Table 2.1: Average counts in each bin, across 200 simulated datasets with 200 patients each.

bin 1 2 3 4 5 6 7 8 9 10 11

untreated 1.26 2.175 3.420 2.945 4.52 5.45 6.545 5.5 4.825 4.635 6.195
treated 0.85 1.355 2.365 1.910 3.17 3.69 4.285 3.7 3.105 3.465 4.175
all 2.11 3.530 5.785 4.855 7.69 9.14 10.830 9.2 7.930 8.100 10.370

bin 12 13 14 15 16 17 18 19 20 21 22

untreated 6.33 4.685 5.52 5.145 4.92 2.905 4.050 4.475 4.870 3.580 4.220
treated 4.08 3.140 3.86 3.405 3.16 1.990 2.855 3.120 3.435 2.295 2.655
all 10.41 7.825 9.38 8.550 8.08 4.895 6.905 7.595 8.305 5.875 6.875

bin 23 24 25 26 27 28 29 30 31 32 censored

untreated 3.125 2.49 4.49 5.095 4.715 3.15 2.615 2.485 4.00 3.145 366.520
treated 2.365 1.91 3.32 3.455 3.605 2.03 1.830 2.000 2.97 2.085 408.365
all 5.490 4.40 7.81 8.550 8.320 5.18 4.445 4.485 6.97 5.230 774.885

Table 2.2: Average counts in each bin, across 200 simulated datasets with 1000 patients each.

• PM55: 5-level model with all levels subject to pruning.
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MCMC chains with 1000000 iterations for each of the 200 datasets were run separately, under each

of the 4 PMRH strategies. The first half of each MCMC chain was discarded as the burn-in, and

every 200th sample from the chain was kept to reduce autocorrelation. In the end, 2500 posterior

samples per dataset were used to derive posterior PMRH estimates (posterior means), resulting

in 200 sets of estimates. The mean square error (MSE) was computed for each PMRH estimator

based on these approximate estimator distributions.

All the simulations were run on a supercomputer with 1368 nodes, each containing two hex-

core 2.8Ghz Intel Westmere processors with 12 cores per node and 2GB of RAM per core. For

a dataset of size 200, it took about 3 hours for model PM55 to complete 1 million iterations; 5

hours for model PM52; 2.5 hours for model NPM4 and 8 hours for model NPM5. The model

NPM5 takes about 2.67 times longer than model PM55, as expected: PMRH method can reduce

computing time substantially for a given maximum resolution of the model. Model NPM4 requires

the shortest amount of computing time among all 4 models, which is also not surprising: a smaller

tree is on average denser (has more events per bin), and the PMRH method may not prune it

heavily.

For a dataset with 1000 patients, model PM55 took about 7.5 hours for 1 million iterations;

model PM52 took 15 hours; model NPM4 took 13 hours; and model NPM5 took 41 hours. Model

NPM5 takes about 5.47 longer than model PM55. In this case, model PM55 has the shortest time

among all 4 models. In this case, as the true baseline hazard rate used to generate the datasets

was quite flat, it is expected that as the dataset size increases and the number of observations in

each bin also increases, the modified Fisher’s exact test will result in fewer rejections of the null

hypothesis. Eventually, model PM55 contains a tree with fewer branches than the NPM4 model.

Figure 2.2 depicts the square root of MSE of each hazard increment posterior mean in the

four PMRH strategies, for simulations with 1000 patients (top) and 200 patients (bottom). PM55

model seems to have the smallest root MSE, while the NPM5 model has the largest, on average

over all bins. The first few PM55 hazard increment estimators have larger root MSE than the other

increments, which is due to low counts in those first few bins in our simulated data (see Table 2.1),
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Figure 2.2: Estimated square root of the MSE for 4 PMRH hazard increment estimators (posterior
means), based on 200 datasets with 1000 patients per dataset (top figure) and 200 patients per
dataset (bottom figure).

and the estimators of hazard increments in these bins are expected to be more variable than the

rest. In particular, PM55 performs poorly in those first few bins as these bins are often merged

into a single bin under PM55, as the null hypothesis is rarely rejected for bins with low counts.

However, if we examine the square root of the integrated MSE for hazard increments (over

all bins), shown in Table 2.3, we see that for the 200-patient simulation the PM55 model has the
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smallest square root of the integrated MSE, followed by PM52 model, NPM4 model and NPM5

model. In the 1000-patient simulation, PM52 has the smallest square root of integrated MSE,

followed by NPM4 model, PM55 model and NPM5 model. The difference among root-integrated

MSEs among models is much smaller in the 1000 patients per-set case than that of 200 patients

per-set case. As the pruning only affects the prior, and the prior effect dampens as the dataset size

size increases, we can expect that the estimates will be very close among the different 4 models in

larger datasets.

Table 2.3: Square root of integrated mean square error of all hazard increments from models PM55,
PM52, NPM4 and NPM5, in simulations of 200 datasets with 200 patients, and 200 datasets with
1000 patients.

data set size PM55 PM52 NPM4 NPM5

200 0.022 0.023 0.025 0.029
1000 0.015 0.013 0.014 0.016

Figure 2.3 shows the 95% probability intervals of posterior means for the 32 individual hazard

increments, for the four PMRH strategies, in datasets with 1000 patients (top two plots) and with

200 patients (bottom 2 plots). The left column represents the raw PMRH results, while the right

column shows smoothed versions of those using polynomials of degree 7. While more aggressive

pruning will generally result in more variation in bins with fewer counts (for example, the first and

last bins), it will also tend to reduce the variability over the other bins, resulting in less variable

hazard rate estimator.

Figure 2.4 shows the histograms of posterior means of H and βtreat over 200 datasets for

each of the 4 strategies; the top four shows the performance of H estimator, while the bottom four

shows the estimator of βtreat. The red line indicates the true value of H and βtreat used to simulate

the data. Unlike with the hazard increment estimators, it appears that the 4 pruning strategies do

not differ much in estimating the baseline H and βtreat. This is consistent with the fact that the

pruning algorithm only reallocates hazard increments, thus leaving the total of all increments, i.e.

the baseline H value, unaffected.
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Figure 2.3: 95% probability intervals of individual hazard rate posterior means (left) and their
smoothed version (right), for 4 different PMRH estimators. The top row shows the performance over
200 simulated datasets with 1000 patients per dataset, and the bottom row shows the performance
over 200 simulated datasets with 200 patients each. (Model NPM5 has the widest 95% probability
intervals.)

The effect of number of observations is shown in Figure 2.5, which depicts the distribution

of marginal posterior means of H and βtreat for two different sample sizes, 1000 (gray) and 200

(white). Both are centered around true values, but the variances of the distributions based on the

larger sample size are clearly smaller than their counterparts based on the smaller sample size.
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Figure 2.4: Top 4 plots: Histograms of posterior means of H over 200 datasets, with 1000 patients
per dataset, for 4 different PMRH estimators. (Red line is the true H value of 0.31, used to simulate
the data.) Bottom 4 plots: Histograms of posterior means of βtreat over 200 datasets, with 1000
data per dataset, for 4 different PMRH estimators. (Red line is the true βtreat value of −0.44, used
to simulate the data.) 95% CPI denotes the central 95% probability interval.
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Figure 2.5: Results from two sets of simulations: 1000 observations per dataset (gray) and 200
observations per dataset (white). Top 4 plots: Histogram of 200 posterior means of H, for 4
different PMRH estimators (H was set to 0.31 to simulate the datasets). Bottom 4 plots: Histogram
of posterior means of 200 βtreat, for 4 different PMRH estimators (βtreat was set to −0.44 to simulate
the datasets.)



Chapter 3

Applications of PMRH models–analysis of prostate cancer data

In this chapter we employ PMRH method to a landmark clinical trial investigating radia-

tion and hormone treatment for men with localized (e.g., not metastatic) prostate cancer. Early

stage prostate cancer presents a valuable example of a complex failure process over time, which, if

understood completely, would yield valuable insight and guidance for clinical decisions regarding

appropriate degree of treatment and follow-up surveillance for disease recurrence.

3.1 Randomized clinical trials for prostate cancer

In the prostate cancer literature, it is well known that the disease progression and mortality

hazard for patients experiencing intermediate clinical events, such as elevated Prostate-Specific

Antigen (PSA), is higher than for those that do not experience such events. However, even in men

with high-risk disease, the cumulative hazard of death from other causes exceeds that of death from

prostate cancer, primarily due to the advanced age at which prostate cancer is often diagnosed.

Apart from the common assumption that the disease may be more indolent if diagnosed in late

age (or become so as the individual ages), little is still known about how prostate cancer mortality

hazard may be changing over time, and what factors may influence it.

The data for this case study come from a large clinical trial performed by the Radiation

Therapy Oncology Group (RTOG), which has comprehensively studied prostate cancer treatments

in a variety of risk groups. Earlier RTOG trials established that androgen deprivation (AD) after

radiation therapy was beneficial for avoidance of recurrence and improvement in prostate cancer-
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specific survival (Pilepich et al. 2005, 2001). The study that we will be analyzing in this thesis,

RTOG 9202, explored duration of AD among 1521 participants with locally advanced high risk

prostate cancer, who underwent external beam radiation therapy and were randomized to either 4

months of AD or additional 24 months of AD (Horwitz et al. 2008).

Our analysis looks at the subset of 1421 patients from RTOG 9202 trial, after excluding data

from 100 patients who were missing the Gleason score at baseline (a pathology score assigned to the

biopsied tissue to describe the disease severity). Out of the remaining 1421 patients, 716 are treated

with long-term AD hormonal therapy, and 705 with short-term AD hormonal therapy. The average

age of the 1421 patients at baseline (study entry) is 70 years, with a standard deviation of 6.5 years.

The Gleason score distribution was similar in both treatment groups, averaging at 6.7 and ranging

from 2 to 10. Primary trial endpoints included time to disease recurrence or death, specific types of

recurrence (local/regional recurrence, distant metastasis) and prostate cancer specific death, and

overall mortality. Here we model time to death from any cause, which reflects both beneficial and

potentially deleterious effects of hormone therapy, and reflects dynamics of patient factors such as

age at diagnosis.

3.2 Markov Chain Monte Carlo Bayesian model estimation of PMRH model

The time horizon for our study was set at 160 months, leaving 9 extra patients as adminis-

tratively right-censored, and 637 patients who were lost follow-up before the study ends. Patients

treated with short term AD with age 70 and Gleason score of 2 were taken as the baseline. To

address the question of whether different subgroups of men with specific disease and health features

at different ages may have different failure hazard patterns over time, our model will examine the

effects of Gleason score, linear centered age (age at baseline minus 70), and quadratic centered age

(age at baseline minus 70, squared). We also allow for different effects of age before and after the

baseline age of 70, to examine the possibility of more aggressive cancers in younger patients. These

variables are used as predictors in the proportional hazards setting, according to the following
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model:

hi(t) = h0(t) exp(β1Xi,1 + β2Xi,2 + · · ·+ β6Xi,6)

where Xi,1 to Xi,6 are the patient i’s covariates, as follows:

• Xi,1 is the treatment indicator: 1 if long-term and 0 if short-term;

• Xi,2 is the Gleason score minus 2;

• Xi,3 is the standardized age of the i-th patient, standardized by subtracting the average

age of 70 and dividing the age standard deviation of 6.5;

• Xi,4 equals Xi,3 if the i-th patient was older than 70 at baseline, and otherwise Xi,4 = 0;

• Xi,5 is the standardized age squared, X2
i,3;

• Xi,6 equals Xi,5 if the i-th patient was older than 70 at baseline, and otherwise Xi,6 = 0.

We compare the four PMRH models with 4 and 5 levels (corresponding to time bins with

length of 10 months and 5 months, respectively), and consider different levels of pruning: PM52

(5-level MRH with 2 bottom levels subject to pruning), PM55 (5-level MRH with all 5 levels

subject to pruning), NPM4 (4-level MRH with no pruning), and NPM5 (5-level MRH with no

pruning). For pruning, we set the type I error α = 0.05. All Rm,ps were given symmetric beta

priors, Rm,p ∼ Be(a/(2m), a/(2m)). The log hazard ratios (β parameters) were given a flat prior.

H was given a Ga(a, λ) prior. a was given a zero truncated Poisson prior with µa = 4, where µa is

the mean of the Poisson before truncation. λ was given an exponential prior with mean 100.

For each PMRH model, we run five MCMC chains with one million iterations, using the

first half as the burn-in, and taking every 200th sample from the second half to drastically reduce

autocorrelation. The resulting 2500 samples from each case were analyzed. Model PM55 took

approximately 8 hours for 1 million iterations; model PM52 10.5 hours; model NPM4 11.5 hours,

and model NPM5 27 hours. Model NPM5 took about 3 times longer than model PM55, which was

expected as PMRH method can reduce computing time substantially.
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3.3 Analysis of the death from any cause in prostate cancer

3.3.1 Hazard function estimation

In terms of the baseline hazard, Figure 3.1 shows the smoothed 95% posterior credible in-

tervals of hazard increments from the 4 PMRH models (PM55, NPM4, NPM5, and PM52). Here,

the smoothing was done using a degree 7 polynomial of the center points of each bin. The figure

indicates that PM55 model yields the narrowest hazard increment posterior intervals, while NPM5

yields the widest. This discrepancy is only notable towards the end of the study, from 11 to 13

years post enrollment, where the number of events and patients remaining under observation are

low. All our results indicate however that a linearly increasing hazard function might provide a

reasonable simpler model for modeling risk of death due to any cause in prostate studies.
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Figure 3.1: Smoothed posterior 95% pointwise credible intervals of individual baseline hazard rate

for the prostate cancer data, all 4 PMRH models.

3.3.2 Covariate effect estimation

In terms of covariate effects, Table 3.1 shows the posterior estimates and their 95% credible

intervals for each of the 6 covariates used. The posterior estimates appear almost identical across

4 PMRH strategies; as expected, the pruning method did not affect covariate estimation. The
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Table 3.1: Estimates for the prostate cancer predictor effects

Treatment Gleason Age Age >70 Age quad Age quad >70
(X1) (X2) (X3) (X4) (X5) (X6)

PM52
2.5% -0.253 0.083 0.042 -0.518 -0.005 -0.372
50% -0.112 0.131 0.353 0.097 0.114 -0.186
mean -0.113 0.131 0.355 0.096 0.113 -0.186
97.5% 0.030 0.179 0.678 0.696 0.226 -0.004

PM55
2.5% -0.252 0.082 0.041 -0.481 -0.004 -0.381
50% -0.112 0.129 0.361 0.099 0.118 -0.191
mean -0.112 0.130 0.360 0.102 0.116 -0.194
97.5% 0.029 0.180 0.667 0.707 0.221 -0.017

NPM5
2.5% -0.250 0.081 0.032 -0.474 -0.005 -0.379
50% -0.115 0.130 0.357 0.105 0.115 -0.188
mean -0.113 0.130 0.353 0.107 0.113 -0.189
97.5% 0.028 0.180 0.662 0.717 0.223 -0.003

NPM4
2.5% -0.255 0.079 0.039 -0.493 -0.007 -0.377
50% -0.114 0.130 0.352 0.104 0.114 -0.185
mean -0.114 0.130 0.353 0.103 0.113 -0.186
97.5% 0.028 0.180 0.669 0.710 0.221 -0.010

effect of the long-term treatment is estimated at -0.11, with the 95% credible interval of (-0.26,

-0.03). This implies that the hazard of death due to any cause for men treated with the long-term

treatment is lower by an estimated 11% than the hazard of those treated with the short-term

treatment, holding all other covariates constant. Figure 3.2 shows the smoothed estimated hazard

rates for patients on short-term treatment versus long-term treatment, aged 70 and with Gleason

score of 2 at enrollment, based on model PM55.

The effect of the Gleason score is estimated at 0.13, with the 95% credible interval of (0.08,

0.18), implying that there is an estimated increase of 14% in the hazard with each one-unit increase

in the Gleason score at baseline, holding all else constant.

The effect of age has to be examined in more detail. The linear effect of age is estimated
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Figure 3.2: The smoothed estimated hazard rates (solid lines) and their pointwise credible intervals
(dashed lines) for patients on short-term treatment versus long-term treatment, aged 70 and with
Gleason score of 2 at enrollment, based on model PM55.

at 0.35 with the 95% credible interval of (0.04, 0.68). This effect seems to be similar in patients

who are younger and older than 70 at baseline, as the estimated effect of Xi,4 is approximately 0.1

with 95% credible interval of (-0.52,0.70). The quadratic effect of age is estimated at 0.11, with

the 95% CI of (-0.0048, 0.226), but this effect appears to differ depending on whether the patient

was under or over 70 at baseline: the estimated effect of Xi,6 is -0.19 with 95% credible interval of

(-0.37,-0.004).

The overall effect of age is thus perhaps best interpreted through examples: a 50-year old

patient’s hazard rate is estimated to be 1.29 times higher than a 60 year old patient’s rate, and

2% lower than a 70 year old patient’s rate, if patients are on the same treatment and with the

same Gleason score. On the other hand, an 80-year old patient’s rate is estimated to be 1.68 times

higher than a 70-year old patient’s rate, 2.23 times higher than a 60-year old’s, and 1.72 times

higher than a 50-year old patient’s rate, for patients who are on the same treatment and have

the same Gleason score. Interpreted more broadly, this finding reflects the fact that very aged

individuals have high mortality which is expected and mostly due to non-cancer causes, while very

young individuals with prostate cancer have high mortality relative to the cases with more typical

age at onset, because the disease tends to be most aggressive in early onset cases. Figure 3.3 shows
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the smoothed estimated hazard rates for patients on short-term treatment with Gleason score of

2, aged 50, 60, 70 and 80 years at enrollment, based on model PM55. The smoothed estimated

hazard rates for patients aged 50 and 70 years at enrollment, and on short-term treatment with

Gleason score of 2, are almost identical.
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Figure 3.3: The smoothed estimated hazard rates for patients on short-term treatment with Gleason

score of 2, aged 50, 60, 70 and 80 years at enrollment, based on model PM55. (The hazard rates

for patients on short-term treatment with Gleason score of 2, aged 50 and 70 years at enrollment

are almost identical.)

3.4 Comparison to piecewise exponential hazard model

In this section, we run four piecewise exponential hazard models over the same prostate

cancer data that we used in Section 3.1:

• EPEM5: partition the whole study time evenly to 25 = 32 subintervals, then fit data with

piecewise exponential functions based on this partition

• EPEM4: partition the whole study time evenly to 24 = 16 subintervals, then fit data with

piecewise exponential functions based on this partition
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• QPEM5: partition the whole study time using 25 = 32 quantiles of available failure times,

then fit data with piecewise exponential functions based on this partition

• QPEM4: partition the whole study time using 25 = 16 quantiles of available failure times,

then fit data with piecewise exponential functions based on this partition

Table 3.2 gives the 95% credible intervals of predictor effects for four multiresolution hazard models

discussed Section 3.3.2 and 95% confidence intervals of predictor effects for four piecewise exponen-

tial hazard models. The estimates seems very close among all the models and more identical within

the same model groups – the multiresolution hazard model group and the piecewise exponential

hazard model group, which is consistent with our aforementioned discussions over simulated data.

However, using prostate cancer data, the number of subintervals used in model QPEM5 is 32 and

in model QPEM4 is 16. This is different from the number of subintervals we get when fitting these

two models over simulated data. While we running simulated data sets much fewer subintervals

than 16 or 32 were got. Because the prostate cancer data has very different structure which only

about 0.6% patients were censored at the end of the study, and also the failure time are measured

in a continues scale which means ties are rare. Under this condition, we can expect almost all

unique 16 or 32 quantiles yielding 16 or 32 subintervals.

In our PMRH models, we estimate predictor effects together with baseline hazard function

and these estimates will affect each other. So when we compare the predictor effects estimated

from a PMRH model with a very coarse resolution to one with fine resolution, we can tell there

are obviously difference among the estimates. But we also know that when two PMRH models

both have although different, but fine enough resolution up to certain level, the predictor effects

estimated from these two PMRH models will still be very close. So we claim that pruning will

not affect the estimates of predictor effects based on comparing models have fine enough time

resolutions.

In Table 3.3 we show the Akaike type information criterion of the four PMRH models and

four piecewise exponential hazard models we investigate. The effective number of parameters in



35
Treatment Gleason Age Age >70 Age quad Age quad >70

(X1) (X2) (X3) (X4) (X5) (X6)

PM52
2.5% -0.253 0.083 0.042 -0.518 -0.005 -0.372
50% -0.112 0.131 0.353 0.097 0.114 -0.186
mean -0.113 0.131 0.355 0.096 0.113 -0.186
97.5% 0.030 0.179 0.678 0.696 0.226 -0.004

PM55
2.5% -0.252 0.082 0.041 -0.481 -0.004 -0.381
50% -0.112 0.129 0.361 0.099 0.118 -0.191
mean -0.112 0.130 0.360 0.102 0.116 -0.194
97.5% 0.029 0.180 0.667 0.707 0.221 -0.017

NPM5
2.5% -0.250 0.081 0.032 -0.474 -0.005 -0.379
50% -0.115 0.130 0.357 0.105 0.115 -0.188
mean -0.113 0.130 0.353 0.107 0.113 -0.189
97.5% 0.028 0.180 0.662 0.717 0.223 -0.003

NPM4
2.5% -0.255 0.079 0.039 -0.493 -0.007 -0.377
50% -0.114 0.130 0.352 0.104 0.114 -0.185
mean -0.114 0.130 0.353 0.103 0.113 -0.186
97.5% 0.028 0.180 0.669 0.710 0.221 -0.010

EPEM5
2.5% -0.254 0.086 0.038 -0.501 0.003 -0.371
MLE -0.113 0.136 0.356 0.101 0.118 -0.188
97.5% 0.028 0.186 0.673 0.704 0.232 -0.006

QPEM5
2.5% -0.255 0.086 0.039 -0.502 0.003 -0.371
MLE -0.114 0.136 0.356 0.101 0.118 -0.189
97.5% 0.028 0.186 0.67 0.703 0.232 -0.006

EPEM4
2.5% -0.254 0.085 0.038 -0.502 0.003 -0.370
MLE -0.113 0.135 0.355 0.101 0.118 -0.188
97.5% 0.028 0.185 0.673 0.704 0.232 -0.005

QPEM4
2.5% -0.254 0.085 0.038 -0.502 0.003 -0.370
MLE -0.113 0.135 0.355 0.101 0.118 -0.188
97.5% 0.028 0.185 0.673 0.704 0.232 -0.005

Table 3.2: Estimates for the prostate cancer predictor effects (95% credible intervals of predictor
effects for four multiresolution hazard models and 95% confidence intervals of predictor effects for
four piecewise exponential hazard models)
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-2log(L)
effective number of

AIC calculated
parameters in the model

NPM5 9318.092 39 9396.092
NPM4 9331.522 23 9377.522
PM52 9333.798 16 9365.798
PM55 9347.010 13 9373.010
EPEM5 9316.438 38 9392.438
EPEM4 9331.044 22 9375.044
QPEM5 9319.844 38 9395.844
QPEM4 9346.312 22 9390.312

Table 3.3: Akaike type information criterion of pruned multiresolution hazard models and piecewise
exponential hazard models

the statistical model is the number of parameters in the statistical model, as in the conventional

Akaike information criterion(AIC), when the model is a piecewise exponential hazard model. The

baseline cumulative hazard H, the Rm,p associated with non-pruned bins and all the covariate

effects are counted as effective parameters of a Bayesian PMRH model. And the effective number

of parameters is the total number of these parameters plus one. We adjust the sum by one is

because the prior of H has two parameters a and λ, where H = aλ, and if H is known, we just

need to know one of a and λ, then we know both of them. And among all these 8 models, model

PM52 has the smallest AIC value, which indicates that moderate pruning will definitely balance

estimation accuracy and computation cost.

Figure 3.4 shows the MLEs of baseline hazard rates and its smoothed version from the

4 different piecewise exponential hazard models(EPEM5, EPEM4, QPEM5, QPEM4), and the

posterior medians of baseline hazard rates and it smoothed version from the 4 different PMRH

models (PM55, NPM4, NPM5, and PM52). We can see that the hazard rate is obviously decreasing

near the endpoint of the study from the result of model EPEM5 and NPM5. And the estimation

result of predictor effects and baseline hazard rate from these two models are more similar in

comparison with other models, as showed in Table 3.2 and Figure 3.4. Different from all the other

models we are comparing here, they don’t have such notable decrements in hazard rate around the

termination point of the study. All this is because both EPEM5 and NPM5 models are having 32
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Figure 3.4: MLEs of hazard rates for patients on short-term treatment with Gleason score of 2,
aged 70 years at enrollment (top-left) and its smoothed version (top-right), for 4 different piecewise
exponential hazard models. Posterior medians of hazard rates for patients on short-term treatment
with Gleason score of 2, aged 70 years at enrollment (bottom-left) and its smoothed version (bottom-
right), for 4 different PMRH models.

equal-size subintervals and there is only a few failures in the last a few intervals with no pruning is

performed over these two models, the hazard rate would drop according to its definition. For the

other models, we either have a coarser grid, subintervals partitioned by the failure counts quantiles ,

or a pruned MRH model. Any of these can resulting in averaging the hazard rate near the endpoint

to that from the subinterval next to it. Hence, we won’t have apparent changes in hazard rates in

the end for those models.



Chapter 4

Hazard models with time-varying covariates

In survival analysis, we always try to estimate how covariates affect hazard function, jointly

with the study of hazard function. Nowadays, more and more analysis need to handle time-varying

covariates and biomarkers. Covariates are often no longer constants, they are functions of time,

and can be both discrete and continuous. In this chapter, we give an overview of hazard models

with time-varying covariates, discuss cumulative hazard function estimation in hazard models and

talk about different standardization approaches in handling time-varying covariates.

4.1 Hazard models with time-varying covariates

Treatment is one commonly used variable of interest in survival models. Throughout a study,

subjects may change treatments due to changes in their physical condition or other factors. If the

change in treatment is not incorporated into the survival model, biased parameter estimates may

result. Another type of time-varying covariates are biomarkers, which are measured repeatedly

or periodically over time. Examples include glucose levels for patients with diabetes, which are

measured and recorded routinely in their treatment. Depending on the purpose of study, sometimes

only measures at enrollment would be enough for covariate values. But in many cases, the time-

span of study will last a few years, such as studies of chronic diseases, then considering lab result

changes in modeling fitting, has its necessity.

Hazard function always reflects the underlying process in a study. When covariates influence

the process, failure risk associated with process will have corresponding response. In this sense,



39

some covariates may have instant effect on the risk function. For instance, if a patient’s oxygen

saturation suddenly drops below normal, this will immediately affect the risk of death. On the

other hand, some covariates only indicate how far a process has developed, such as CD4 counts in

HIV infection.

Time-varying covariates can also be categorized as internal covariates or external covariates.

Internal covariates can only be measured when people are alive, such as lab results and body

temperature, to name a few. If a variable changes in a way independent of all individuals, then it

is an external covariate, for instance, humidity in the air.

The classic Cox proportional-hazards model can be extended to handle time-varying covari-

ates, and in this way, the model no longer has proportional-hazards as the hazard ratio depends

on time-varying covariates now. Advantages and disadvantages of using extended Cox model are

reviewed in Fisher and Lin (1999). The Cox model including time-dependent covariates will pro-

vide more opportunities for investigating uncertain associations and mechanisms of covariates and

survival, such as surrogate outcome analysis. Tumor response is always an ideal outcome in cancer

clinical trials, since in many cases the primary endpoint of cancer study, such as death, is undesired.

If we investigate the relationship between a tumor shrinking and survival time, we can better know

how survival time can be predicted based on tumor response. One drawback of the extended Cox

model is that it may not be useful for individual predictive analysis, since we may not have future

values of a time-varying covariate. Meanwhile, choosing an inappropriate form for a time-varying

covariate can also lead to incorrect estimates. Some biological understanding of the treatment

mechanism and the clinical trial can help in choosing functional forms of time-varying covariates

and checking the parameter estimates. With a formatted dataset, proportional hazard model with

time-varying covariates can directly be processed by SAS, Stata and R.

Fisher and Lin (1999) propose partial likelihood score function to estimate unknown regres-

sion parameters of proportional hazard model using time-varying covariates. In this approach, T

is the failure time of our interest and Z is the set of possible time-varying covariates. Covariate

value at time t is denoted as Z(t) and notation Z(t) represents the history of covariate values up
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to time t, where Z(t) = {Z(s) : 0 6 s 6 t}. As usual, let β be the vector of unknown regression

coefficents and λ0(t) be the baseline hazard function. The conditional hazard function of T given

Z can be rewritten as

λ(t|Z) = λ0(t)e
β′Z(t) (4.1)

Then based on this hazard function, the partial likelihood is

L(β) =
n∏

i=1

(
eβ

′Zi(Xi)∑
j∈Ri

eβ
′Zj(Xi)

)δi

(4.2)

and the corresponding log partial likelihood is

l(β) =

n∑
i=1

δi

β′Zi(Xi)− log
∑
j∈Ri

eβ
′Zj(Xi)

 (4.3)

Taking the first derivative of Equation (4.3) with respective to β, we have the partial likelihood

score function U(β)

U(β) =

n∑
i=1

δi

(
Zi(Xi)−

∑
j∈Ri

eβ
′Zj(Xi)Zj(Xi)∑

j∈Ri
eβ

′Zj(Xi)

)
(4.4)

The solution of U(β) = 0, which serves as the maximum partial likelihood estimator β̂, is the

partial likelihood estimator of β.

Now we talk about some notation used in Equation (4.2), Equation (4.3) and Equation (4.4).

n is the total number of units under observation in the study; Xi is the last follow-up time of the

i-th unit; indicator δi = 0 if the i-th unit is right censored at time Xi, and δi = 1 if not; Zi(t) is

the history of covariates of the i-th unit up to time t; Ri is the set of units who are at risk at time

Xi. Examining Equation (4.4) carefully, we notice that Zj(Xi) may not have a value if time Xj is

less than Xi. In this scenario, data imputation need to be considered.

Although age is time-varying, when using the Cox model to study the effect of age on failure

time, we use the age at enrollment as a fixed covariate instead of a time-varying covariate. Because

of the property of partial likelihood structure both methods will yield the same estimates in age

effects. Let us have a look at the partial likelihood when taking age as a time-varying covariate
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and a fixed covariate. Still use the notation in Equation (4.3), for the convenience of illustration,

we consider age as the only covariate in the model. For a general case, the derivation steps will

be similar. For the i-th subject in the study, we assume the age at enrollment is Wi. And we also

assume that all the subjects enroll the study at the same time B. When taking age as a fixed

covariate, the partial likelihood Equation (4.2) can be rewritten as

L(β) =
n∏

i=1

(
eβZi(Xi)∑

j∈Ri
eβZj(Xi)

)δi

=
n∏

i=1

(
eβWi∑

j∈Ri
eβWj

)δi

(4.5)

With all the assumptions made above, we have Zj(Xi) = Wj + Xi − B. Therefore, when taking

age as a time-varying covariate, the partial likelihood Equation (4.2) can be rewritten as

L(β) =

n∏
i=1

(
eβZi(Xi)∑

j∈Ri
eβZj(Xi)

)δi

=

n∏
i=1

(
eβ(Wi+Xi−B)∑

j∈Ri
eβ(Wj+Xi−B)

)δi

=

n∏
i=1

(
eβWi∑

j∈Ri
eβWj

)δi

(4.6)

We can see that no matter age is considered as a fixed or a time-varying covariate, the survival

model ends up having the same partial likelihood function as showed in Equation (4.5) and Equation

(4.6). Therefore, the estimates for age effect will be the same.

In survival analysis, not only covariates can change over time but also covariate effects can

depend on time. Motivated by the decay of predictive effect as time goes by, Anderson and Senthil-

selvan (1982) propose a two-step hazard model extended from Cox model. And this two-step model

can be considered as a fixed effects Cox model with time-varying covariates. To allow more fea-

sibility, Gore et al. (1984) introduce a step function proportional hazards model to survival data

with fixed covariates and time-varying covariate effects. They are straightforward methods but

may cause inefficient parameter estimates if the chosen form of step function is inappropriate. This

thesis does not consider time-varying effects.
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4.2 Cumulative hazard estimation in extended proportional hazards models

In survival analysis, one of the goals is to study the cumulative hazard function. The cumu-

lative hazard function of a subject is determined as

H(t) =

∫ t

0
exp(x(τ)β)λ0(τ)dτ (4.7)

where x(t) is a vector of momentary covariate value functions along the time, β is a vector of

corresponding predictor effects, and λ0(t) is the hazard rate function. Here we still assume that

all the covariate effects are constant. One of the issues we have is how to evaluate Equation (4.7).

Most of the time, we can’t evaluate it analytically due to the mathematical form of x(t) and λ0(t).

In our MRH and PMRH models so far we assume that covariates x(t) are constants through the

whole study and hazard function λ0(t) is a piecewise function having constant value of each piece.

In this section, we are going to discuss how to approximate Equation (4.7), when covariates x(t)

are time-varying and λ0(t) is still a piecewise constant function.

4.2.1 Cumulative hazard function estimation in models with one predictor

4.2.1.1 Approximation using first order Taylor expansion

First, we consider the simplest case with only one time-varying predictor. Given xi(t) is the

covariate function of the i-th subject, we expand the exponential function at xi(t) = ais, over the

interval [ts−1, ts], where 0 = t0 < t1 < t2 < . . . < tJ−1 < tJ is a partition of the whole time axis

with constant hazard function within each interval and censoring time as tJ .

Iis =

∫ ts

ts−1

exp{xi(τ)β}λ0(τ)dτ

=

∫ ts

ts−1

{1 + β(xi(τ)− ais) + β2(xi(τ)− ais)
2/2 + · · · }eaisβλ0(τ)dτ

(4.8)
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For yi = min(Ti, TJ), where Ti is the observed failure time or censoring time of the i-th subject, we

still assume that we have tj−1 < yi 6 tj , for some j, then Equation (4.7) becomes:

Hi(yi) =

j−1∑
s=1

∫ ts

ts−1

{1 + β(xi(τ)− ais) + β2(xi(τ)− ais)
2/2 + · · · }eaisβλ0(τ)dτ

−
∫ yi

tj−1

{1 + β(xi(τ)− aij) + β2(xi(τ)− aij)
2/2 + · · · }eaijβλ0(τ)dτ

(4.9)

Using first order Taylor expansion,

Iis ≈
∫ ts

ts−1

{1 + β(xi(τ)− ais)}eaisβλ0(τ)dτ (4.10)

and error can be written as

erroris =

∫ ts

ts−1

1

2!
β2(xi(τ)− ais)

2ec(τ)βλ0(τ)dτ (4.11)

where cis(τ) is between xi(τ) and ais. Denote mis as the minimal value of xi(τ) over interval

[ts−1, ts] and Mis as the maximal value of xi(τ) over interval [ts−1, ts]. In order to minimize

|erroris|, it is obvious that constant a should take some value between mis and Mis. Consequently,

cis(τ) is bounded by mis and Mis. With the assumption of constant hazard rate λs on time interval

[ts−1, ts], and predictor effect β positive we have

|erroris| 6
1

2!
β2λse

Misβ

∫ ts

ts−1

(xi(τ)− ais)
2dτ (4.12)

When β is negative, the result will be similar. Now we want to minimize
∫ ts
ts−1

(xi(τ) − ais)
2dτ to

choose the appropriate constant ais between mis and Mis. Then the overall error using first order

of Taylor expansion to estimate integral part in Equation (4.9)is bounded as:

|error| 6 1

2!
β2max(λs)e

max(xi(τ))β

{
j−1∑
s=1

∫ ts

ts−1

(xi(τ)− ais)
2dτ +

∫ yi

tj−1

(xi(τ)− aij)
2dτ

}
(4.13)

Let

G(ais) =

∫ ts

ts−1

(xi(τ)− ais)
2dτ (4.14)
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then our goal is to find some constant ais, such that the value of function G(ais) is as small as

possible. As

G′(ais) =

∫ ts

ts−1

−2(xi(τ)− ais)dτ (4.15)

it can be verified that

ais =
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ (4.16)

makes G′(ais) equal to 0. And

G′′(ais) = 2(ts − ts−1) > 0 (4.17)

so Equation (4.14) reaches its minimal value

G(
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ) =

∫ ts

ts−1

(xi(τ)−
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ)
2dτ

=

∫ ts

ts−1

x2i (τ)dτ − 1

ts − ts−1

(∫ ts

ts−1

xi(τ)dτ

)2 (4.18)

at ais =
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ .

Then overall error bound Equation (4.13) becomes

|error| 6 1

2!
β2max(λ0(τ))e

max(xi(τ))β


∫ yi

0
x2i (τ)dτ −

j−1∑
s=1

(∫ ts
ts−1

xi(τ)dτ
)2

ts − ts−1
−

(∫ yi
tj−1

xi(τ)dτ
)2

yi − tj−1


(4.19)

From Cauchy-Schwartz inequality, we know that the right side of Equation (4.19) is always non-

negative. As ais =
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ is the average of xi(t) over interval [ts−1, ts], we can see

in order to make the right side of Equation (4.13) small, we need the L2-norm of the difference of

xi(t) and its mean over interval [ts−1, ts] to be small.

Now we are going to illustrate two examples. First one is when covariate function xi(t) is a

piecewise linear function. Assume xi(t) is linear over interval [ts−1, ts], denoting as xi(t) = pist+qis,

when take

ais =
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ =
1

ts − ts−1

∫ ts

ts−1

pisτ + qisdτ (4.20)
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Using Equation (4.9), the cumulative hazard function for the i-th subject can be approximated as

Hi(yi) =

j−1∑
s=1

(ts − ts−1) exp{(
pis(ts + ts−1)

2
+ qis)β}λs

− (yi − tj−1) exp{(
pij(yi + tj−1)

2
+ qij)β}λj

(4.21)

the over all error bound Equation (4.19) becomes

|error| 6 1

2!
β2max(λs)e

max(xi(τ))β

{
j−1∑
s=1

p2is(ts − ts−1)
3

6
+

p2ij(yi − tj−1)
3

6

}
(4.22)

We can see that the closer to zero of the slope pis within each interval [ts−1, ts], the better approx-

imation we can get.

Second example is when the covariate is a piecewise quadratic function. Assume xi(t) is

quadratic over interval [ts−1, ts], denoting as xi(t) = pist
2 + qist+ wis, when take

ais =
1

ts − ts−1

∫ ts

ts−1

xi(τ)dτ =
1

ts − ts−1

∫ ts

ts−1

pisτ
2 + qisτ + wisdτ (4.23)

This time, the cumulative hazard function for the i-th subject can be approximated as

Hi(yi) =

j−1∑
s=1

(ts − ts−1) exp{(
pis(t

2
s + tsts−1 + t2s−1)

3
+

qis(ts + ts−1)

2
+ wis)β}λs

− (yi − tj−1) exp{(
pij(y

2
i + yitj−1 + t2j−1)

3
+

qij(yi + tj−1)

2
+ wij)β}λj

(4.24)

4.2.1.2 Approximation using second order Taylor expansion

Following the same fashion from last section, now we use second order Taylor expansion to

approximate the cumulative hazard function. With all the same assumptions, Equation (4.10) now

becomes

Iis ≈
∫ ts

ts−1

{1 + β(xi(τ)− ais) + β2(xi(τ)− ais)
2/2}eaisβλ0(τ)dτ (4.25)

and error can be written as

erroris =

∫ ts

ts−1

1

3!
β3(xi(τ)− ais)

3ecis(τ)βλ0(τ)dτ (4.26)
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where cis(t) is between xi(t) and ais. Denote mis as the minimal value of xi(t) over interval [ts−1, ts]

and Mis as the maximal value of xi(t) over interval [ts−1, ts]. In order to minimize |erroris|, it is

obvious that constant ais should take some value between mis and Mis. Consequently, cis(t) is

bounded by mis and Mis. Still assuming constant hazard rate λs on time interval [ts−1, ts], then

|erroris| 6
1

3!
β3λse

Misβ

∫ ts

ts−1

|(xi(τ)− ais)
3|dτ (4.27)

Here we assume β to be positive(the negative case will be very similar). Now we want to mini-

mize
∫ ts
ts−1

|(xi(τ)− ais)
3|dτ by choosing the appropriate constant ais between mis and Mis. Then

the overall error using first order Taylor expansion to estimate integral part in Equation (4.9) is

bounded as:

|error| 6 1

3!
β3max(λs)e

max(xi(τ))β

{
j−1∑
s=1

∫ ts

ts−1

|(xi(τ)− ais)
3|dτ +

∫ yi

tj−1

|(xi(τ)− aij)
3|dτ

}
(4.28)

Let D1 = {t ∈ [ts−1, ts]|xi(t) > ais} and D2 = {t ∈ [ts−1, ts]|xi(t) < ais}, then∫ ts

ts−1

|(xi(τ)− ais)
3|dτ =

∫
D1

(xi(τ)− ais)
3dτ +

∫
D2

(ais − xi(τ))
3dτ (4.29)

Denote Equation (4.29) as G(ais), then

G′(ais) =

∫
D1

−3(xi(τ)− ais)
2dτ +

∫
D2

3(ais − xi(τ))
2dτ (4.30)

In order to have G′(ais) = 0, a needs to be the solution of∫
D1

(xi(τ)− ais)
2dτ =

∫
D2

(ais − xi(τ))
2dτ (4.31)

When we have enough assumptions about xi(τ), such as monotonic, or continuous, Equation (4.31)

can be solved numerically to minimize the difference between the left side and right side. And as

G′′(ais) =

∫
D1

6(xi(τ)− ais)dτ +

∫
D2

6(ais − xi(τ))dτ > 0, (4.32)

the critical point we find from Equation (4.31) will serve as a minimizer of function G(ais).
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4.2.2 Cumulative hazard function estimation in models with multiple predictors

In this section, we will discuss the cumulative hazard function estimation in models with

multiple predictors. Recall that Taylor expansion for scalar-valued function of more than one

variable can be written compactly as:

f(x) = f(a) +Df(a)T (x− a) +
1

2!
(x− a)TD2f(a)(x− a) + · · · (4.33)

where Df(a) is the gradient of f evaluated at x = a and D2f(a) is the Hessian matrix. If we let

x = (x1, . . . , xp)
T and a = (a1, a2, . . . , ap)

T , then we can rewrite Equation (4.33) in Σ notation as

f(x) = f(a) +

p∑
j=1

∂f(a)

∂xj
(xj − aj) +

1

2!

p∑
j=1

p∑
k=1

∂2f(a)

∂xj∂xk
(xj − aj)(xk − ak) + · · · (4.34)

When we have multiple covariates in our extended proportional hazard model, with vector

xi(t) = (xi1(t), . . . , xip(t))
T as the covariates for the i-th subject and vector β = (β1, . . . , βp)

T as

the associated constant predictor effect, we again expand, Iis, the cumulative hazard increment for

the i-th subject over interval [ts−1, ts] at ais = (ais1, aisp, . . . , aisp)
T , the we have

Iis =

∫ ts

ts−1

exp{xT
i (τ)β}λ0(τ)dτ

=

∫ ts

ts−1

[eais
′β + eais

′β(xi(τ)− ais)
′β +

eais
′β

2
(xi(τ)− ais)

′W(xi(τ)− ais) + · · · ]λ0(τ)dτ

=

∫ ts

ts−1

[1 + (xi(τ)− ais)
′β +

1

2
(xi(τ)− ais)

′W(xi(τ)− ais) + · · · ]eais
′βλ0(τ)dτ

(4.35)

where

W =



β1β1 β1β2 · · · β1βp

β2β1 β2β2 · · · β2βp

...
...

. . .
...

βpβ1 βpβ2 · · · βpβp


(4.36)

Using the assumptions and notations as in Equation (4.9), the cumulative hazard function for the
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i-th subject becomes:

Hi(yi) =

j−1∑
s=1

∫ ts

ts−1

[1 + (xi(τ)− ais)
Tβ +

1

2
(xi(τ)− ais)

TW(xi(τ)− ais) + · · · ]eais
Tβλ0(τ)dτ

−
∫ yi

tj−1

[1 + (xi(τ)− aij)
Tβ +

1

2
(xi(τ)− aij)

TW(xi(τ)− aij) + · · · ]eaij
Tβλ0(τ)dτ

(4.37)

As we have done before, with the same assumption that hazard rate is constant λs over

interval [ts−1, ts], if we only use the first order Taylor expansion in Equation (4.35), then it will

yield

Hi(yi) ≈
j−1∑
s=1

∫ ts

ts−1

[1 + (xi(τ)− ais)
Tβ]eais

Tβλ0(τ)dτ −
∫ yi

tj−1

[1 + (xi(τ)− aij)
Tβ]eaij

Tβλ0(τ)dτ

=

j−1∑
s=1

eais
Tβλs

∫ ts

ts−1

[1 +

p∑
l=1

(xil(τ)− aisl)βl]dτ − eaij
Tβλj

∫ yi

tj−1

[1 +

p∑
l=1

(xil(τ)− aijl)βl]dτ

(4.38)

Moreover, for l = 1, 2, . . . , p, when we take aisl =
1

ts − ts−1

∫ ts

ts−1

xil(τ)dτ , s = 1, 2, . . . , j − 1 and

aijl =
1

yi − tj−1

∫ yi

ts−1

xil(τ)dτ , Equation (4.38) becomes

Hi(yi) ≈
j−1∑
s=1

ea
′
isβλs(ts − ts−1)− ea

′
ijβλj(yi − tj−1) (4.39)

Equation (4.39) gives us a more general formula for cumulative hazard function estimation using

first order Taylor expansion. When a covariate is time-varying, we can use its average value over a

interval to represent the value for this covariate within that interval in the process of approximating

cumulative hazard function.

4.3 Standardization of time-varying covariates

Sometimes, covariate values in a dataset can vary from widely. If we don’t standardize

them before using them in models, numerical issues, such as blow-up or running out of memory
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during model fitting procedure, may occur. When a covariate is time-varying, there are several

ways of standardizing. In this section, we give a brief discussion of different ways of standardizing

time-varying covariates.

For the convenience of discussion, let us introduce some notation. For the i-th subject, we

denote the observed failure time as Ti, the corresponding censoring time as Ci and yi as the smaller

one between Ti and Ci, i.e. yi = min(Ti, Ci). We partition the whole time axis into J intervals,

0 = t0 < t1 < t2 < . . . < tJ−1 < tJ , with tJ no less than the maximum of yi. λk(t) is the hazard rate

function within each interval (tk−1, tk]. As usual, the covariate effects is denoted as β = (β1, . . . , βp).

And vector xik = (xi1k, . . . , xipk)
′, k = 1, 2, . . . , J represents the observed covariate values in the

k-th time interval for i-th subject. To make it clear enough, xipk is the observed value associated

to p-th covariate in the k-th time interval for the i-th subject. The same as other chapters in this

dissertation, we only consider constant covariate effects, which means β doesn’t change over time.

First, we could standardize all the covariates related to the l-th predictor with the same mean

µl and sample standard deviation σl for all the subjects, where µl and σl are calculated all units in

the data set. Then we have the standardized covariate values for the i-th unit in the k-th interval

associated to all predictors as

x∗
ik = (

xi1k − µ1

σ1
, . . . ,

xipk − µp

σp
) (4.40)

In extended proportional hazard models, when we directly use original(non-standardized)

data xik, we denote the corresponding baseline hazard function as λ(t) and covariate effects as β;

and when we use the standardized x∗
ik as showed in Equation (4.40), we denote the corresponding

baseline hazard function as λ∗(t) and covariate effects as β∗. Considering the hazard function as a

given time t, we have the following equation

λ(t) exp(x′
ikβ) = λ∗(t) exp((x∗

ik)
′β∗) (4.41)

Substitute x∗
ik in Equation (4.41) with Equation (4.40), then we have



50


β∗
l = βlσl

λ∗(t) = λ(t) exp(µ1β1 + . . .+ µpβp)

(4.42)

where l = 1, 2, . . . , p.

From Equation (4.42), we can tell that if covariates are standardized in this way, the baseline

resulting from using standardized data will remain the same along the whole study and we can

easily figure out the baseline hazard function and predictor effects from using standardized data

provided the original baseline hazard function, predictor effects and standardization information

are given, or the vice versa. More generally, the baseline will always keep unchanged over time,

as long as for a covariate, all the values associated to it from all the subjects in the data set are

standardized by subtracting the same number and dividing by the same number. This method

of standardization can provide us a time independent baseline, which is mostly used in survival

analysis. Moreover, we know that the baseline is only determined by the covariate means used in

standardization procedure. As long as these means keep the same, any selection of sample standard

deviations in performing standardization won’t change the baseline. So we can always scale the

data such that extreme values exceeding the the computer memory capacity will not be produced

in numerical simulations. This will greatly reduce the numerical issues while running simulations

and in analyzing real data. With this advantage, no matter the covariates are time-varying or not

in a data set, we always use this way to standardize data.

Secondly, we could standardize all the covariates related to the l-th predictor in the k-th time

interval with the same mean µlk and sample standard deviation σlk for all the subjects. In this

way, we have the covariates for the i-th unit in the k-th time interval after standardization as

x̂ik = (
xi1k − µ1k

σ1k
, . . . ,

xipk − µpk

σpk
) (4.43)

Again, we still denote baseline hazard function as λ(t) and covariate effects as β when we directly

use xik in the extended proportional hazard model; and when we use the standardized x̂ik, we

denote baseline hazard function as λ̂(t) and covariate effects as β̂. As defined already, λ(t) = λk(t)
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and λ̂(t) = λ̂k(t) within each interval (tk−1, tk]. Similarly, we have equation

λ(t) exp(x′
ikβ) = λ̂(t) exp(x̂ik)

′β̂) (4.44)

Substitute x̂ik in Equation (4.44) with Equation (4.43), then we find that in order to have β and

β̂ be constant over time, σlk must equal to 1, for l = 1, 2, . . . , p and k = 1, 2, . . . , J . The baseline

hazard function and predictor effects before and after standardizing the data are related to each

other as following:


β̂l = βl

λ̂k(t) = λk(t) exp(µ1kβ1 + . . .+ µpkβp)

(4.45)

over interval (tk−1, tk], where l = 1, 2, . . . , p and k = 1, 2, . . . , J . In this case, we can note that

instead of having a time independent baseline along the whole study, we have a piecewise baseline

resulting from standardization. Baseline for the standardized data only remain unchanged within

each time interval. This may cause us trouble in interpreting our results. Also, with the restriction

of having all the sample standard deviation used in standardization step to be 1, we then can

only center the data using their corresponding means. The ranges of the covariates will remain

unchanged. As discussed in the first approach, this may cause numerical issues if the original

covariates have wide ranges. But this way of standardization may possibly be useful in handling

piecewise covariates, whose value doesn’t change much within each interval, but change a lot among

different intervals over the time.



Chapter 5

MRH models and PMRH models with time-varying covariates

In this chapter, we first talk about how MRH models can be extended to handling time-

varying covariates. Then we evaluate MRH models and PMRH models with time-varying covariates

using simulated datasets. The simulated datasets that we use here consist of three different types.

In each observation, we include a fixed covariate and a time-varying covariate. The time-varying

covariates are generated from linear functions, five degree polynomials or cosine like functions. Our

results show that the MRH models perform quite well and efficiently with time-varying covariates.

In the end of this chapter, we demonstrate some results of fitting the same datasets to piecewise

exponential hazard function.

5.1 MRH model with time-varying covariates

5.1.1 Time-varying covariates in MRH models

In MRHmodels, we need to have at least one observation of the covariate of interest in order to

investigate how that covariate affects the hazard function. MRH models have already been studied

with constant covariates in Bouman et al. (2005), Bouman et al. (2007), Dukic and Dignam (2007),

and Dignam et al. (2009). When it comes to time-varying covariates, there are different scenarios.

One scenario is, for a time-varying covariate, we have one and only one observation in each bin

of the finest level of a MRH model. In Section 5.1.2, and Section 5.1.3 we will implement MRH

model with time-varying covariates in this scenario. The other scenario is we have no observation

or multiple observations of a time-varying covariate within a bin. Unlike constant covariates, time-
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varying covariates can be observed at any time to some extent. For example, the red blood cell

counts of a patient with leukemia is repeatedly tested when the disease is diagnosed. But when a

patient progresses to a later stage, we can expect that blood tests will be performed more frequently

than when he is in an early stage. So we may have no observation of red blood cell counts for a

period a time we picked, and also we may have more than one result for a time period. In Chapter 7

we are going to discuss approaches to analyse data sets with missing time-varying covariate values.

5.1.2 Posteriors of parameters of MRH models with time-varying covariates

As discussed in Section 5.1.1, now we derive the posteriors of parameters of a five level MRH

model with Nβ time-varying covariates, provided that for any time-varying covariate, each bin in

the finest level contains one observation of it. If a covariate is a constant, we just need to assign the

same value over all the bins. For a M = 5 level model, we have 2M = 32 time intervals(bins) at the

finest level, based on our model structure. Intuitively, we index those bins with integers starting

from 1 and ending in 2M . We format covariate matrix of the i-th subject, Xi as following:

Xi =



bin1 bin2 · · · bin32

β1 ∗ ∗ · · · ∗

β2 ∗ ∗ · · · ∗
... · · · · · · · · · · · ·

βNβ
∗ ∗ · · · ∗


Xi is a Nβ by 2M matrix with entry Xi[j, l] denoting the observed value associated to the j-th

covariate in the l-th bin for the i-th unit. Some more notations are introduced for the convenience

of discussion:

Ni : the number of bin which the i-th subject falls into, i.e. the bin contains failure time Ti. If the

patient is censored when the study ends, Ni = 2M .

ratioi : the portion of hazard increment the i-th subject takes in bin Ni. For instance, with

bin width as 1, M = 2, Ti = 3.75, we will have Ni = 4 and ratioi =
3.75− (Ni − 1)× 1

1
=
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3.75− (4− 1)× 1

1
= 0.75. When the i-th subject is censored as the study ends, we will have

ratioi = 1.

δi : censoring indicator, δi = 1 means the i-th subject is not censored and δi = 0 means the i-th

subject is censored.

Fl : Fl is defined as Fl =
dl
H

or dl = HFl, where dl is the l-th hazard increment of the finest level,

and from our model structure, we know Fl is a product of some Rm,p and 1−Rm,p

β: β = (β1, β2, . . . , βNβ
) is the vector of predictor effects.

When we consider the the baseline cumulative hazard function H with gamma prior Ga(a, λ),

the posterior of H is then proportional to a gamma density:

Ga(
N∑
i=1

δi + a,
1

1
λ +

∑N
i=1(

∑Ni−1
l=1 exp(βXi[ , l])Fl + exp(βXi[ , Ni])FNiratioi)

) (5.1)

with mean=

∑N
i=1 δi + a

1
λ +

∑N
i=1(

∑Ni−1
l=1 exp(βXi[ , l])Fl + exp(βXi[ , Ni])FNiratioi)

The following is the log full conditional distribution for Rm,p (conditioning on all other model

parameter R−
m,p), and notation R−

m,p is used to denote all other parameters and data except for

Rm,p itself.

N∑
i=1

δi log(FNi)−
N∑
i=1

(

Ni−1∑
l=1

exp(βXi[ , l])HFl + exp(βXi[ , Ni])HFNiratioi)

+(2γm,pk
ma− 1) log(Rm,p) + (2(1− γm,p)k

ma− 1) log(1−Rm,p)

(5.2)

We place a normal prior with mean µβj
and variance σ2

j on βj , yielding the log full conditional

distribution for βj as

N∑
i=1

δi(βXi[ , Ni])−
N∑
i=1

(

Ni−1∑
l=1

exp(βXi[ , l])HFl + exp(βXi[ , Ni])HFNiratioi)−
(βj − µβj

)2

2σ2
j

(5.3)

When we consider the hyperprior of k is exponential distributed with mean µk, we have the
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full conditional distribution for k.

π(k|k−) ∝ ΠM
m=1Π

2m−1−1
p=0

{
R

2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

Be(2γm,pkma, 2(1− γm,p)kma)

}
e
− k

µk (5.4)

A zero-truncated Poisson hyperprior
e−µaµa

a

a! (1− e−µa)
is chosen for a for computational con-

venience. In most practical cases, integer shape parameters can serve the goal. Hence, the full

conditional distribution for a is

π(a|a−) ∝
{

1

λaΓ(a)
Ha

}
ΠM

m=1Π
2m−1−1
p=0

{
R

2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

Be(2γm,pkma, 2(1− γm,p)kma)

}
µa
a

a!
(5.5)

For the scale parameter λ of our cumulative hazard function H, we choose an exponential

distribution with mean µλ, resulting in

π(λ|λ−) ∝ 1

λa
e−

H
λ e

− λ
µλ (5.6)

A Beta prior with shape u and w is placed to γm,p. So the full conditional distribution for

γm,p is proportional to

R
2γm,pkma
m,p (1−Rm,p)

2(1−γm,p)kma

Be(2γm,pkma, 2(1− γm,p)kma)
γu−1
m,p (1− γm,p)

w−1 (5.7)

5.1.3 Model fitting

Our algorithm is implemented via Gibbs sampler steps (G-step). And the whole procedure

is very similar to model fitting of PMRH models as we discussed in Chapter 2. The Gibbs sampler

steps (Geman and Geman 1984) for the parameters H, Rm,p, a, λ, β’s, γm,p and k:

(1) Draw H from its full conditional posterior density (5.1)

(2) Draw the Rm,p only those are rejected in H-step, (in any order) from its density(5.2)

(3) Draw λ from π(λ|λ−), a from π(a|a−), βj from π(βj |β−
j ), γm,p from π(γm,p|γ−m,p) and k

from π(k|k−), as described in Section 5.1.2.



56

In our simulations, we fix k = 0.5 and γm,p = 0.5. The conditional posterior distributions

for H, is Gamma. The full conditionals for Rm,p, and each βj are log-concave and are therefore

sampled via the adaptive rejection sampling (ARS) algorithm of Gilks and Wild (1992). Since the

hyperparameters λ is in general not log-concave, we use adaptive rejection Metropolis sampling

(ARMS) of Gilks et al. (1995). ARMS is known as an extension of ARS.

5.2 Simulation of time-varying predictors

In this section we present the methodology of simulating failure time Ti with time-varying

covariates. As a reminder, our covariate effects βj ’s are all constants here. We use a two-level

multiresolution hazard model to illustrate the idea. Without loss of generality, we only consider

two covariates, one is a constant and the other is time-varying. For the sake of discussion, we let

the constant covariate be the indicator of gender, and let the time-varying one be glucose values.

If a subject is a male, we will set the indicator as 1. Otherwise, we will set the indicator as 0 for

a female subject. We denote the i-th subject’s gender indicator as Geni. As described in Section

5.1.2, for a subject, we need to simulate 4 glucose values in a two-level MRH model, one value

per bin, and we use Gi,j to denote the glucose value of i-th patient observed in the j-th bin. The

baseline group here consists of patients with all Gi,j = 0 and Geni = 0. Here, all these Gi,j ’s are

values after standardization. In practice, we always standardize the original data of a covariate

with its sample mean and sample standard deviation before use them in a MRH model.

First we pick a set of values for the baseline cumulative hazard H and the splits Rm,p’s. Then

we can calculate hazard increments d1 to d4 via equations discussed in Section 1.3.1. And this step

only need to be performed once. All the values here are taken as true values of parameters of our

MRH model and will be used to simulate failure times from now on. And we also pick the terminate

time of the study, the covariate effect of gender–βgen and the covariate effect of glucose–βglu.

Secondly, we simulate the covariates of a patient. If a patient is male, we set the gender

indicator as 1, otherwise 0. In a simulated data set, half of the patients are male and half are
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female. We generate the timing-varying glucose values Gi,j ’s using equation

Gi,j = a0,i + a1,iti,j (5.8)

where a0,i is from a normal distribution with mean 100 and standard deviation 0.5, and a1,i has a

normal distribution with mean 5 and standard deviation 0.1. For each patient, we draw a vector

of (a0,i, a1,i) from the above normal distributions, and use it to simulate this patient’s Gi,j values.

ti,j is picked randomly within binj following a uniform distribution.

The third step is to standardize the simulated Gi,j values. Provided we are trying to generate

data for a data set with size 200, after the first two steps, for each patient we then already have

one gender covariate and 4 glucose values. In all we have 4 × 200 = 800 glucose values. Then

we standardize each simulated glucose value by subtracting the mean of all these available glucose

values and dividing by the standard deviation of all these available glucose values. For simplicity,

we still denote the glucose values after standardization Gi,j .

The fourth step is to simulate a failure time using the generated gender covariate from step

two and standardized glucose values from step three. Now, hazard increments of patient i over four

bins are :

d1 exp(Geniβgen +Gi,1βglu), d2 exp(Geniβgen +Gi,2βglu)

d3 exp(Geniβgen +Gi,3βglu), d4 exp(Geniβgen +Gi,4βglu)

(5.9)

Still using the assumption that hazard function is a constant within each interval, we can

get life time distribution function Fi(t) using Fi(t) = 1 − exp(−Hi(t)), noticing that Hi(t) is

a step function fully determined by hazard increments above. Then we use inverse probability to

generate one failure time Ti from Fi(t). For our case, we can’t have an analytic function to generate

failure time. Given the baseline hazard rate is piecewise constant, our simulation is conducted via

numerical methods. With some assumptions, we can have a closed analytic form to sample failure

time too. Austin (2012) discusses generating failure time for Cox proportional hazards model

with time-varying covariates and derives closed-form expression to simulate failure time for some
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special cases. Examples are illustrated over three kinds of distribution for baseline survival time:

Exponential, Weibull and Gompertz distribution with three types of time-varying covariate: a

continuous liner covariate, a dichotomous covariate with one change before the study ends, and a

dichotomous covariate with more than one change before the study ends.

When we have to generate a data set with certain size, first we run step one once, then run

step two as many times as we meet the data set size, then run step three once and run step four for

each patient in the set. In the end, for each patient in this data set, we generated his/her observed

failure time Ti, constant covariate Geni, and four observations of time-varying glucose values. This

methodology can be easily extended to a multiresolution hazard model with any level and also with

more than one time-varying covariate, and the function chosen for generating covariates can be in

any form not limited to linear as in Equation (5.8).

Following the above steps, we simulated 200 data sets, each of them containing 200 patients,

200 data sets of 500 patients per set, and 200 data sets of 1000 patients per set, all with two

covariates of a three-level multiresolution hazard model. In each data set, half of the patients

are male with time-varying glucose values and half of them are female with time-varying glucose

values. Assume the whole study takes 20 years, so that failure time after 20 would be taken as

right-censored. We have M = 3 in our model, so there are 8 equal length bins before the censored

time 20. For the true parameters, we set H = 1, a = 10, λ = 0.03 and Rm,p’s as in the table 5.1.

The gender effect βgen is set as 0.48 and the glucose effect βglu is set as 0.7.

R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

0.368 0.550 0.547 0.650 0.496 0.396 0.289

Table 5.1: True Rm,p values used in generating the simulated data set

For each data set, we count the number of people with failure time falling in each bin, and
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then we average those counts over 200 data set for a same bin. Table 5.2, Table 5.3 and Table 5.4

are the average failures over each bins and average censored subjects in the end, over all simulated

datasets with 200 patients per set, 500 patients per set and 1000 patients per set. For the picked

censoring time 20, a total right censoring rate is about 16.5%, where the female group has a right

censoring rate at about 11.7% and the male group has a right censoring rate at about 4.8%. These

rates differ very subtly with different data set sizes.

1 2 3 4 5 6 7 8 censored

female 4.4 3.2 4.7 5.9 11.9 19.6 8.1 18.7 23.4
male 7.3 4.9 7.1 8.7 16.3 23.1 8.0 15.0 9.6
pool 11.8 8.1 11.8 14.6 28.2 42.7 16.2 33.6 32.9

Table 5.2: Average counts in each bin of 200 simulated data sets with one constant covariate
and one time-varying covariate (200 data per set, time-varying covariate is generated from linear
function)

1 2 3 4 5 6 7 8 censored

female 11.2 7.5 11.9 14.9 30.2 49.2 20.3 46.2 58.6
male 17.8 12.6 18.1 22.4 40.7 56.6 20.3 37.8 23.7
pool 29.0 20.1 30.0 37.3 70.9 105.9 40.6 84.0 82.2

Table 5.3: Average counts in each bin of 200 simulated data sets with one constant covariate
and one time-varying covariate (500 data per set, time-varying covariate is generated from linear
function)

Apart from using linear function to generate time-varying covariates, we also use a cosine

shaped function and a five degree polynomial to generate time-varying covariates. Following exact

the same fashion as aforementioned in this section, and keep everything the same, but just replace
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1 2 3 4 5 6 7 8 censored

female 21.9 15.6 23.8 30.2 62.2 95.5 40.6 92.5 117.8
male 35.7 24.3 35.8 43.0 82.8 115.0 40.4 75.0 48.0
pool 57.6 39.9 59.6 73.2 144.9 210.4 81.0 167.5 165.8

Table 5.4: Average counts in each bin of 200 simulated data sets with one constant covariate
and one time-varying covariate (1000 data per set, time-varying covariate is generated from linear
function)

Equation (5.8) with

G(t) = a0 + a1 cos(a2t) (5.10)

where a0 has a normal distribution with mean 100 and standard deviation 0.5; a1 has a normal

distribution with mean 5 and standard deviation 0.1; a2 has a normal distribution with mean 2

and standard deviation 0.1. We generate 200 datasets with 200 subjects per set.

Similarly, keeping all other parameters the same, the time-varying covariate values are gen-

erated using a five degree polynomial

G(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (5.11)

where a0 has a normal distribution with mean 100 and standard deviation 0.5; a1 has a normal

distribution with mean 5 and standard deviation 1; a2 has a normal distribution with mean 3 and

standard deviation 1; a3 has a normal distribution with mean 2 and standard deviation 1; a4 has a

normal distribution with mean 1 and standard deviation 1; a5 has a normal distribution with mean

0.5 and standard deviation 1. We again generate 200 datasets with 200 subjects per set.

We count the average of failures in each bin and subjects censored when the study terminated

over 200 datasets for these two cases as well. When the time-varying covariates are generated from

cosine shape function as Equation (5.10), as showed in Table 5.5, the average censoring rate for

female is 15.3%, for male is 7.4% and overall censoring rate is 22.7%. When the time-varying

covariates are generated from five degree polynomials as Equation (5.11), from Table 5.6, we can
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see the average censoring rate for female is 15.5%, for male is 8.7% and overall censoring rate is

24.1%. The total censoring rate for these two scenarios are very close.

1 2 3 4 5 6 7 8 censored

female 12.6 8.1 8.9 6.7 8.4 11.9 4.4 8.5 30.6
male 19.3 11.9 12.0 9.0 9.8 11.8 4.0 7.5 14.8
pool 31.9 19.9 20.9 15.7 18.2 23.7 8.3 16.0 45.3

Table 5.5: Average counts in each bin of 200 simulated data sets with one constant covariate and
one time-varying covariate (200 data per set, time-varying covariate is generated from cosine like
functions)

1 2 3 4 5 6 7 8 censored

female 10.3 5.0 5.4 5.0 8.6 12.4 6.5 15.9 30.9
male 16.1 7.6 8.0 7.4 10.9 14.0 5.9 12.8 17.3
pool 26.4 12.6 13.4 12.4 19.5 26.4 12.4 28.7 48.1

Table 5.6: Average counts in each bin of 200 simulated data sets with one constant covariate and
one time-varying covariate (200 data per set, time-varying covariate is generated from five degree
polynomials)

Finally, we have generated the following datasets and we will use them to evaluate our MRH

models and PRMH models later in this chapter.

• 200 datasets with size 200, including a time-varying covariate generated from linear func-

tions and a fixed covariate.

• 200 datasets with size 500, including a time-varying covariate generated from linear func-

tions and a fixed covariate.
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• 200 datasets with size 1000, including a time-varying covariate generated from linear func-

tions and a fixed covariate.

• 200 datasets with size 200, including a time-varying covariate generated from five degree

polynomials and a fixed covariate.

• 200 datasets with size 200, including a time-varying covariate generated from cosine shape

functions and a fixed covariate.

5.3 Evaluating MRH models with time-varying covariates with simulated

data

First, for each set of data from Section 5.2, we implemented MRH strategy TVC-NPM3

(3-level model with time-varying covariates without any pruning, no missing data). MCMC chains

with 200000 iterations for each of the 200 datasets were run separately. The first 50000 iterations

of each MCMC chain was discarded as the burn-in, and every 10th sample from the chain was kept

to reduce autocorrelation. In the end, 15000 posterior samples per dataset were used to derive

posterior PMRH estimates (posterior means), resulting in 200 sets of estimates. And we use these

means to calculate the corresponding 95% probability intervals for each parameter of our interest.

All the simulations were coded in R and run on a supercomputer with 1368 nodes, each

containing two hex-core 2.8Ghz Intel Westmere processors with 12 cores per node and 2GB of

RAM per core. When the time-varying covariates are generated from linear functions, for a dataset

of size 200, it took about 2.1 hours for model TVC-NPM3 to complete 200000 iterations; 3.2

hours for a dataset of size 500; 5.5 hours for a dataset of size 1000. For the dataset of size 200,

with time-varying covariates are generated using Equation (5.10), it took about 2.1 hours for model

TVC-NPM3 to complete 200000 iterations. For the dataset of size 200, with time-varying covariates

are generated using Equation (5.11), it took about 2.1 hours for model TVC-NPM3 to complete

200000 iterations. With the same dataset size, the model TVC-NPM3 takes about the same time

to finish a certain number of iterations, no matter how the covariates are generated. As dataset size
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increases, it requires longer time to complete the same number of iterations for the same model.

In Table 5.7, we give the 95% probability intervals for all parameters of model TVC-NPM3

over 200 datasets with 200 subjects per set. The time-varying covariates in these datasets are

generated from linear function Equation (5.8), cosine shape function Equation (5.10) and five

degree polynomial Equation (5.11) separately. We can see, for each model parameter, all the 95%

probability intervals are centered around its true value. For the group that time-varying covariates

are generated from cosine shape functions and five degree polynomials, the posterior mean seems

to be a very good estimate for all model parameters repectively. But the overall result from the

group with time-varying covariates generated from linear functions sounds to be more variant when

comparing with the other two groups. In Table 5.8 we show that variations will be reduced and

better estimates will be attained as dataset size increases for this group.

In Table 5.8, we show the 95% probability intervals for all parameters of model TVC-NPM3

running over 200 datasets with 200, 500, and 1000 patients per set with time-varying covariates

generated from linear function Equation (5.8). We can see, for each model parameter, all the

95% probability intervals are still centered around its true value. The posterior mean can be a very

good estimate for baseline cumulative hazard function H0 and gender effect. Although the posterior

mean of glucose effect is not so close to the true glucose effect βglu 0.7, when we look at the results

from dataset of size 200 and dataset of size 500, the 95% probability intervals still contain the true

βglu. However, if we look at these results together with the probability interval of βglu from dataset

of 1000, we can see we do have better estimates as dataset size increases. Combining the result for

glucose effect βglu estimates in Table 5.7 and Table 5.8, it definitely indicates that for time-varying

covariate effects, in order to get an estimate with similar tolerance to the truth, a larger dataset

size will probably be required comparing with that needed for estimating other constant covaraites

associated effects in some scenario. In all, Table 5.7 and Table 5.8 verify that our MRH model with

time-varying covariates without missing data works well.
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H0 Gender Glucose R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 1.00 0.48 0.70 0.37 0.55 0.55 0.65 0.50 0.40 0.29

Time-varying covariates are generated from linear functions
2.5% 0.79 0.19 0.51 0.30 0.45 0.48 0.43 0.35 0.31 0.20
50% 1.04 0.49 0.86 0.44 0.57 0.58 0.65 0.51 0.41 0.30
mean 1.03 0.50 0.87 0.44 0.58 0.58 0.65 0.51 0.41 0.31
97.5% 1.27 0.84 1.22 0.56 0.72 0.68 0.82 0.68 0.53 0.43

Time-varying covariates are generated from cosine shape functions
2.5% 0.73 0.21 0.54 0.30 0.46 0.43 0.54 0.35 0.28 0.15
50% 0.97 0.52 0.71 0.38 0.55 0.54 0.64 0.50 0.39 0.30
mean 0.98 0.51 0.72 0.38 0.55 0.54 0.65 0.51 0.39 0.30
97.5% 1.26 0.82 0.91 0.47 0.66 0.66 0.77 0.66 0.52 0.47

Time-varying covariates are generated from five degree polynomials
2.5% 0.75 0.19 0.54 0.30 0.43 0.44 0.51 0.32 0.29 0.18
50% 0.96 0.51 0.73 0.38 0.55 0.55 0.65 0.50 0.41 0.30
mean 0.97 0.50 0.73 0.38 0.55 0.55 0.65 0.50 0.41 0.30
97.5% 1.26 0.80 0.87 0.47 0.66 0.66 0.78 0.66 0.56 0.43

Table 5.7: Estimates and 95% probability intervals for all parameters of model TVC-NPM3 over
200 datasets with 200 subjects per set (time-varying covariates are generated from linear functions,
cosine shape functions and five degree polynomials separately, no missing data)

5.4 Evaluating PMRH models with time-varying covariates with simulated

data

In Section 5.3, we already applied regular MRH models to datasets with time-varying covari-

ates. In this section, we are going to investigate the performance of PMRH models over datasets

with time-varying covariates. As discussed in Chapter 2 and Chapter 3, PMRH models are applied

to baseline hazards only. For each set of data, we implemented 3 different PMRH strategies:

• TVC-NPM3: 3-level model with time-varying covariates without any pruning, no missing

data
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H0 Gender Glucose R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 1.00 0.48 0.70 0.37 0.55 0.55 0.65 0.50 0.40 0.29

200 datasets with 200 patients per set
2.5% 0.79 0.19 0.51 0.30 0.45 0.48 0.43 0.35 0.31 0.20
50% 1.04 0.49 0.86 0.44 0.57 0.58 0.65 0.51 0.41 0.30
mean 1.03 0.50 0.87 0.44 0.58 0.58 0.65 0.51 0.41 0.31
97.5% 1.27 0.84 1.22 0.56 0.72 0.68 0.82 0.68 0.53 0.43

200 datasets with 500 patients per set
2.5% 0.88 0.29 0.39 0.27 0.45 0.46 0.52 0.37 0.34 0.22
50% 1.02 0.49 0.81 0.42 0.57 0.57 0.65 0.51 0.41 0.30
mean 1.03 0.49 0.80 0.42 0.57 0.57 0.65 0.51 0.41 0.30
97.5% 1.25 0.67 1.18 0.57 0.66 0.66 0.78 0.63 0.49 0.38

200 datasets with 1000 patients per set
2.5% 0.91 0.36 0.41 0.27 0.46 0.49 0.55 0.42 0.35 0.24
50% 1.02 0.48 0.73 0.39 0.56 0.56 0.65 0.50 0.41 0.29
mean 1.02 0.48 0.74 0.39 0.56 0.56 0.65 0.51 0.41 0.30
97.5% 1.16 0.62 1.05 0.53 0.64 0.64 0.75 0.60 0.47 0.36

Table 5.8: Estimates and 95% probability intervals for all parameters of model TVC-NPM3 over
200 datasets with 200, 500, and 1000 patients per set (time-varying covariates are generated from
linear functions, no missing data)

• TVC-PM31: 3-level model with time-varying covariates with the 3rd level subject to

pruning, no missing data

• TVC-PM33: 3-level model with time-varying covariates with all 3 levels subject to prun-

ing, no missing data

First, for each dataset with size 200 from Section 5.2, we implemented PMRH strategy

TVC-PM33 (3-level model with time-varying covariates with all 3 levels subject to pruning, no

missing data). To fresh our memory, there are three groups of datasets with size 200, and each

group contains 200 datasets. One group consists of 200 datasets whose time-varying covariates are

generated from linear function as Equation (5.8), one consists of 200 datasets having time-varying
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covariates generated from cosine shape function as Equation (5.10), and one consists of 200 datasets

with time-varying covariates from five degree polynomial as Equation (5.11).

MCMC chains with 200000 iterations for each of the 200 datasets were run separately. The

first 50000 iterations of each MCMC chain was discarded as the burn-in, and every 20th sample

from the chain was kept to reduce autocorrelation. In the end, 7500 posterior samples per dataset

were used to derive posterior PMRH estimates (posterior means), resulting in 200 sets of estimates.

And we use these means to calculate the corresponding 95% probability intervals for each parameter

of our interest.

The same as in Section 5.3, all the simulations were coded in R and run on a supercomputer

with 1368 nodes, each containing two hex-core 2.8Ghz Intel Westmere processors with 12 cores per

node and 2GB of RAM per core. On average, for a dataset of size 200, when the time-varying

covariates were generated from linear functions, it took about 1.4 hours for model TVC-PM33

to complete 200000 iterations; when the time-varying covariates were generated from cosine shape

functions, it took about 1.2 hours; when the time-varying covariates were generated from five degree

polynomials, it took about 1.2 hours. And results from last section tell us it took about 2.1 hours

for model TVC-NPM3 to complete 200000 iterations, for a dataset of size 200. Pruning saved

computation time about 50% in this case.

In Table 5.9, we give the 95% probability intervals for all parameters of model TVC-PM33

over 200 datasets with 200 subjects per set. The time-varying covariates in these datasets are

generated from linear function Equation (5.8), cosine shape function Equation (5.10) and five

degree polynomial Equation (5.11) separately. We can see, for each model parameter, all the 95%

probability intervals are centered around its true value. For the group that time-varying covariates

were generated from cosine shape functions and five degree polynomials, the posterior mean seems

to be a very good estimate for all model parameters repectively even we made all the levels in our

MRH models subject to pruning. The result from cosine shape function group tells us that, for each

dataset, except the bins associated with R10, all the other bins have been merged in most of the

200 datasets. When it comes to the five degree polynomial group, for each dataset, except the bins
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H0 Gender Glucose R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 1.00 0.48 0.70 0.37 0.55 0.55 0.65 0.50 0.40 0.29

Time-varying covariates are generated from linear functions
2.5% 0.82 0.19 0.23 0.21 0.39 0.41 0.50 0.31 0.28 0.18
50% 1.06 0.49 0.50 0.30 0.50 0.50 0.50 0.50 0.38 0.28
mean 1.07 0.50 0.54 0.31 0.48 0.50 0.52 0.48 0.38 0.28
97.5% 1.32 0.83 1.01 0.45 0.51 0.58 0.80 0.50 0.50 0.44

Time-varying covariates are generated from cosine shape functions
2.5% 0.72 0.20 0.51 0.30 0.50 0.50 0.50 0.50 0.28 0.15
50% 0.97 0.52 0.68 0.38 0.50 0.50 0.50 0.50 0.50 0.50
mean 0.98 0.51 0.68 0.40 0.50 0.51 0.54 0.51 0.44 0.37
97.5% 1.26 0.80 0.87 0.50 0.61 0.65 0.77 0.65 0.50 0.50

Time-varying covariates are generated from five degree polynomials
2.5% 0.76 0.20 0.53 0.28 0.50 0.44 0.50 0.50 0.29 0.18
50% 0.96 0.51 0.70 0.38 0.50 0.50 0.50 0.50 0.50 0.30
mean 0.99 0.51 0.69 0.38 0.52 0.51 0.59 0.50 0.44 0.30
97.5% 1.26 0.81 0.85 0.47 0.66 0.58 0.78 0.50 0.50 0.50

Table 5.9: Estimates and 95% probability intervals for all parameters of model TVC-PM33 over
200 datasets with 200 subjects per set (time-varying covariates are generated from linear functions,
cosine shape functions and five degree polynomials separately, no missing data)

associated with R10 and R33, all the other bins have been merged in most of the 200 datasets. For

the linear function group, for each dataset, except the bins associated with R10, R33 and R32, all the

other bins have been merged in most of the 200 datasets. We could say that all the models applied

to these three groups have been pruned heavily. But the estimates for cumulative baseline hazard

function H0 and time-varying covariate glucose effect βglu are not as close to the true values as those

from the other two groups. As we already discussed in Section 2.3, since the estimates for each

parameter counting on all the other parameters, when a model is pruned too heavily, it is possible

that the accuracy for estimating model parameter, such as predictor effects and cumulative baseline

hazard function, will be affected. One advantage of PMRH models is to balance computation cost

and estimates accuracy. Apart from the extent of pruning, the performance of PMRH models also
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depends on the dataset itself. For instance, here we have MRH models for all three groups be

heavily pruned, but only the results from group having linear function generating time-varying

covariates are not so good. And we also can see that even under such extensive pruned MRH

models, the estimates for the constant covariate effect are always very close to the corresponding

true values.

Taking the same group of datasets whose time-varying covariates were generated from linear

functions as in Equation (5.8), for each dataset with size 200, 500 and 1000, we implemented PMRH

strategy TVC-PM31 (3-level model with time-varying covariates with only the third level subject

to pruning, no missing data) and TVC-PM33 (3-level model with time-varying covariates with all

3 levels subject to pruning, no missing data).

MCMC chains with 200000 iterations for each of the 200 datasets were run separately. The

first 50000 iterations of each MCMC chain was discarded as the burn-in, and every 50th sample

from the chain was kept to reduce autocorrelation. In the end, 3000 posterior samples per dataset

were used to derive posterior PMRH estimates (posterior means), resulting in 200 sets of estimates.

And we use these means to calculate the corresponding 95% probability intervals for each parameter

of our interest.

The same as in Section 5.3, all the simulations were coded in R and run on a supercomputer

with 1368 nodes, each containing two hex-core 2.8Ghz Intel Westmere processors with 12 cores per

node and 2GB of RAM per core. When PMRH model TVC-PM31 is used, for a dataset of size

200, it took about 1.7 hours to complete 200000 iterations; 3 hours for a dataset of size 500; 4.1

hours for a dataset of size 1000, on average. When PMRH model TVC-PM33 is used, for a dataset

of size 200, it took about 1.4 hours to complete 200000 iterations; 2.2 hours for a dataset of size

500; 4.1 hours for a dataset of size 1000, on average.

Considering how the pruning procedure is implemented of PMRH models, we know that it is

highly possible that a TVC-PM31 model and a TVC-PM33 model will end up be the same when

applied to the same dataset with relative big size. We only have about 14% TVC-PM31 model and

TVC-PM33 model be identical, when they were applied to datasets of size 200; this rate becomes
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H0 Gender Glucose R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 1.00 0.48 0.70 0.37 0.55 0.55 0.65 0.50 0.40 0.29

TVC-PM31 (200 datasets with 200 patients per set)
2.5% 0.79 0.19 0.36 0.26 0.42 0.46 0.50 0.34 0.30 0.19
50% 1.03 0.49 0.75 0.39 0.55 0.56 0.50 0.50 0.40 0.29
mean 1.03 0.50 0.75 0.39 0.55 0.56 0.52 0.49 0.40 0.30
97.5% 1.29 0.83 1.16 0.51 0.69 0.65 0.82 0.50 0.50 0.44

TVC-PM33 (200 datasets with 200 patients per set)
2.5% 0.82 0.19 0.23 0.21 0.39 0.41 0.50 0.31 0.28 0.18
50% 1.06 0.49 0.50 0.30 0.50 0.50 0.50 0.50 0.38 0.28
mean 1.07 0.50 0.54 0.31 0.48 0.50 0.52 0.48 0.38 0.28
97.5% 1.32 0.83 1.01 0.45 0.51 0.58 0.80 0.50 0.50 0.44

TVC-PM31 (200 datasets with 500 patients per set)
2.5% 0.89 0.29 0.29 0.23 0.43 0.43 0.50 0.37 0.33 0.21
50% 1.04 0.49 0.65 0.35 0.53 0.53 0.50 0.50 0.39 0.29
mean 1.05 0.49 0.64 0.35 0.53 0.53 0.54 0.48 0.39 0.29
97.5% 1.28 0.66 0.96 0.48 0.62 0.62 0.78 0.50 0.47 0.37

TVC-PM33 (200 datasets with 500 patients per set)
2.5% 0.89 0.29 0.23 0.20 0.41 0.42 0.50 0.36 0.32 0.21
50% 1.07 0.49 0.53 0.31 0.50 0.51 0.50 0.50 0.38 0.28
mean 1.08 0.49 0.56 0.32 0.50 0.51 0.54 0.48 0.38 0.28
97.5% 1.33 0.66 0.94 0.48 0.60 0.61 0.77 0.50 0.46 0.36

TVC-PM31 (200 datasets with 1000 patients per set)
2.5% 0.92 0.36 0.21 0.20 0.43 0.44 0.50 0.40 0.33 0.23
50% 1.06 0.48 0.55 0.31 0.51 0.52 0.50 0.50 0.39 0.28
mean 1.07 0.48 0.57 0.32 0.52 0.52 0.56 0.48 0.39 0.28
97.5% 1.27 0.62 0.88 0.46 0.60 0.60 0.74 0.50 0.45 0.36

TVC-PM33 (200 datasets with 1000 patients per set)
2.5% 0.92 0.36 0.21 0.20 0.43 0.44 0.50 0.40 0.33 0.22
50% 1.06 0.48 0.54 0.31 0.50 0.51 0.50 0.50 0.39 0.28
mean 1.07 0.48 0.55 0.31 0.51 0.52 0.56 0.48 0.39 0.28
97.5% 1.27 0.62 0.88 0.46 0.60 0.60 0.74 0.50 0.45 0.36

Table 5.10: Estimates and 95% probability intervals for all parameters of model TVC-PM31 and
TVC-PM33 over 200 datasets with 200, 500, and 1000 patients per set (time-varying covariates are
generated from linear functions, no missing data)
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60%, when TVC-PM31 model and TVC-PM33 model were applied to datasets of size 500; when

it comes to datasets of size 1000, we have 91% identical models. This is not surprising. Because

the modified fisher’s exact test used in pruning steps have a higher power when larger number of

counts are used in the test, then the chance of rejecting the null increases, resulting in keeping more

branches. In this case, the counts of failures in each bin are completely proportional to the dataset

size, so when dataset size increases, even we have all 3 levels of a MRH model subject to pruning,

the branches in level 1 and level 2 will still be kept rather than pruned. This then ends up with the

two PMRH models TVC-PM31 and TVC-PM33 being the same. In this case, with datasets of size

1000, we have 91% of the TVC-PM31 and TVC-PM33 models be identical for a dataset. Then on

average, surely the computation time for model TVC-PM31 and TVC-PM33 are about the same.

In Table 5.10, we show the 95% probability intervals for all parameters of model TVC-PM31

and TVC-PM33 running over 200 datasets with 200, 500, and 1000 patients per set with time-

varying covariates generated from linear function Equation (5.8). We can see, for each model

parameter, all the 95% probability intervals still contain its true value. First, we can see no

matter how dataset size changes and the pruning strategy changes, the estimates for constant

covariate(gender) effect can always be estimated very accurately. Second, in this case, it seems the

more intensively the MRH models have been pruned, the mean and median of the estimates for

cumulative baseline hazard function H0 is getting further and further away from its true value 1,

in the positive direction. Since all the parameter values affect each other, in the mean time, the

mean and median of the estimates for time-varying covariate(glucose) effect is getting further and

further away from its true value 0.7, in the negative direction. It is also not surprising that the

results for datasets with size 1000 over model TVC-PM31 and TVC-PM33 are almost identical,

since we already know that 90% of these two models are the same over a same dataset in this

case. In all, from Table 5.9 and Table 5.10, we can conclude that the performance of PMRH

models depends on the extent of pruning, the time-varying covariate values and the dataset size

and constant covariates associated effects can always be well estimated almost in all PRMH models

with and without time-varying covariates.
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5.5 Comparison to piecewise exponential hazard model

In this section, we compare the results from applying MRH models and piecewise exponential

hazard models to the same simulated dataset that we used in Section 5.3. For each dataset, we

implemented the following two strategies:

• TVC-NPM3: 3-level model with time-varying covariates without any pruning, no missing

data

• TVC-EPEM3: “TVC” means the dataset used having time-varying covariates and no

missing data; the first “E” means the time axis is partitioned with equal width intervals;

“PE” refers to piecewise exponential hazard model; “M3” means the time axis is partitioned

into 23 = 8 intervals

As discussed in Section 5.3, for each dataset implemented by strategy TVC-NPM3, MCMC

chains with 200000 iterations for each of the 200 datasets were run separately. The first 50000

iterations of each MCMC chain was discarded as the burn-in, and every 10th sample from the

chain was kept to reduce autocorrelation. In the end, 15000 posterior samples per dataset were

used to derive posterior PMRH estimates (posterior means), resulting in 200 sets of estimates. And

we use these means to calculate the corresponding 95% probability intervals for each parameter of

our interest. For each dataset implemented by strategy TVC-EPEM3, the MLEs were considered as

the piecewise exponential hazards model estimates, also resulting in 200 sets of estimates. Following

the same fashion, these MLEs were used to calculate the corresponding 95% probability intervals

for each parameter of our interest.

Table 5.11 gives the estimates and 95% probability intervals for all parameters and hazard

increments of model TVC-NPM3 and model TVC-EPEM3 over 200 datasets with 200 subjects

per set. All the time-varying covariates in the datasets are generated from cosine shape function-

s and there is no missing data. We can see that the results from model TVC-NPM3 and model

TVC-EPEM3 are very close to each other, and all are centered around their true values respectively.
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In Table 5.12 we demonstrate the estimates and 95% probability intervals for all parameters

and hazard increments of model TVC-NPM3 and model TVC-EPEM3 over 200 datasets with 200

subjects per set. All the time-varying covariates in the datasets are generated from five degree

polynomials and there is no missing data. We reach the same conclusion that the results from

model TVC-NPM3 and model TVC-EPEM3 are very close to each other, and all are centered

around their true values respectively.

In Table 5.13 we show the estimates and 95% probability intervals for all parameters and

hazard increments of model TVC-NPM3 and model TVC-EPEM3 over 200 datasets with 200, 500,

and 1000 subjects per set. In each dataset, the time-varying covariates are generated from linear

functions and there is no missing data. When dataset size is the same, for a parameter, we can

see that the estimates from model TVC-EPEM3 are more variant comparing with that from model

TVC-NPM3. As the dataset size increases, for model TVC-EPEM3, we get narrower 95% proba-

bility intervals for all parameters and hazard increments. We also have narrower 95% probability

intervals for all parameters and hazard increments when examine the result from applying model

TVC-NPM3 to larger datasets. But the changes in probability interval width are not as obvious as

that from applying model TVC-EPEM3.

Based on the results we illustrate in Table 5.11, Table 5.12 and Table 5.13, we can conclude

that our TVC-MRH models can estimate model parameters efficiently. For any given dataset,

our TVC-MRH models can provide estimates either less variant than those getting from running

piecewise exponential hazard models or at least with the same extent of variation. Overall, our

TVC-MRH models can perform more stably and efficiently in comparison of piecewise exponential

hazard models.
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-NPM3
2.5% 0.73 0.21 0.54 0.09 0.04 0.05 0.04 0.08 0.13 0.03 0.11
50% 0.97 0.52 0.71 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.20
mean 0.98 0.51 0.72 0.13 0.07 0.08 0.08 0.13 0.20 0.08 0.20
97.5% 1.26 0.82 0.91 0.19 0.11 0.12 0.13 0.20 0.31 0.15 0.31

TVC-EPEM3
2.5% 0.76 0.23 0.56 0.10 0.04 0.05 0.05 0.08 0.14 0.03 0.12
50% 1.00 0.51 0.71 0.13 0.07 0.08 0.08 0.13 0.21 0.08 0.21
mean 1.00 0.50 0.71 0.14 0.07 0.08 0.08 0.14 0.21 0.08 0.21
97.5% 1.26 0.79 0.88 0.18 0.11 0.12 0.13 0.20 0.31 0.15 0.32

Table 5.11: Estimates and 95% probability intervals for all parameters of model TVC-NPM3 and
model TVC-EPEM3 over 200 datasets with 200 subjects per set (time-varying covariates are gen-
erated from cosine shape functions, no missing data)

H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-NPM3
2.5% 0.75 0.19 0.54 0.08 0.04 0.05 0.05 0.08 0.13 0.05 0.11
50% 0.96 0.51 0.73 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.19
mean 0.97 0.50 0.73 0.13 0.07 0.08 0.08 0.14 0.19 0.08 0.19
97.5% 1.26 0.80 0.87 0.19 0.11 0.13 0.13 0.20 0.29 0.13 0.29

TVC-EPEM3
2.5% 0.76 0.18 0.53 0.08 0.04 0.04 0.05 0.08 0.13 0.04 0.11
50% 0.97 0.51 0.73 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.20
mean 0.98 0.50 0.73 0.13 0.07 0.08 0.08 0.14 0.20 0.08 0.20
97.5% 1.27 0.79 0.92 0.19 0.11 0.13 0.13 0.21 0.30 0.13 0.31

Table 5.12: Estimates and 95% probability intervals for all parameters of model TVC-NPM3 and
model TVC-EPEM3 over 200 datasets with 200 subjects per set (time-varying covariates are gen-
erated from five degree polynomials, no missing data)
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-NPM3 (200 datasets with 200 subjects per set)
2.5% 0.79 0.19 0.51 0.08 0.04 0.05 0.05 0.08 0.13 0.04 0.10
50% 1.04 0.49 0.86 0.17 0.09 0.09 0.08 0.13 0.19 0.07 0.18
mean 1.03 0.50 0.87 0.18 0.09 0.09 0.09 0.13 0.19 0.08 0.18
97.5% 1.27 0.84 1.22 0.33 0.17 0.15 0.13 0.19 0.27 0.12 0.31

TVC-EPEM3 (200 datasets with 200 subjects per set)
2.5% 0.78 0.18 -0.32 0.03 0.02 0.04 0.04 0.07 0.09 0.02 0.04
50% 1.10 0.48 0.73 0.14 0.07 0.08 0.08 0.13 0.20 0.08 0.19
mean 1.17 0.49 0.76 0.20 0.09 0.09 0.08 0.14 0.22 0.09 0.26
97.5% 2.03 0.83 1.74 0.80 0.25 0.19 0.14 0.21 0.47 0.26 0.97

TVC-NPM3 (200 datasets with 500 subjects per set)
2.5% 0.88 0.29 0.39 0.09 0.04 0.06 0.06 0.10 0.14 0.05 0.10
50% 1.02 0.49 0.81 0.16 0.08 0.09 0.09 0.13 0.19 0.08 0.18
mean 1.03 0.49 0.80 0.17 0.08 0.09 0.09 0.13 0.20 0.08 0.20
97.5% 1.25 0.67 1.18 0.26 0.13 0.14 0.11 0.17 0.27 0.13 0.36

TVC-EPEM3 (200 datasets with 500 subjects per set)
2.5% 0.88 0.28 -0.02 0.04 0.03 0.05 0.06 0.10 0.12 0.03 0.06
50% 1.03 0.49 0.70 0.13 0.07 0.08 0.08 0.13 0.20 0.08 0.19
mean 1.08 0.49 0.71 0.15 0.08 0.09 0.08 0.14 0.21 0.09 0.24
97.5% 1.53 0.66 1.42 0.36 0.14 0.15 0.12 0.18 0.35 0.20 0.66

TVC-NPM3 (200 datasets with 1000 subjects per set)
2.5% 0.91 0.36 0.41 0.09 0.04 0.06 0.06 0.12 0.15 0.05 0.13
50% 1.02 0.48 0.73 0.14 0.08 0.09 0.08 0.14 0.20 0.08 0.20
mean 1.02 0.48 0.74 0.15 0.08 0.09 0.08 0.14 0.20 0.08 0.21
97.5% 1.16 0.62 1.05 0.23 0.12 0.12 0.10 0.17 0.26 0.12 0.32

TVC-EPEM3 (200 datasets with 1000 subjects per set)
2.5% 0.89 0.36 0.20 0.06 0.03 0.05 0.06 0.11 0.15 0.05 0.11
50% 1.02 0.48 0.66 0.12 0.07 0.08 0.08 0.14 0.21 0.09 0.21
mean 1.04 0.48 0.67 0.13 0.07 0.08 0.08 0.14 0.21 0.09 0.23
97.5% 1.27 0.62 1.14 0.24 0.13 0.12 0.10 0.17 0.30 0.15 0.42

Table 5.13: Estimates and 95% probability intervals for all parameters of model TVC-NPM3 and
model TVC-EPEM3 over 200 datasets with 200, 500, and 1000 subjects per set (time-varying
covariates are generated from linear functions, no missing data)



Chapter 6

Hazard models with missing covariates and outcomes

In survival analysis, we always need to face the unavoidable scenario that some covariate

values and event times are missing. In this chapter, we give an overview of models with missing

covariates, and Frequentist and Bayesian approaches for hazard models with missing covariates.

Also we talk about how different approaches of censoring may affect hazard model parameter

estimation. Methods of missing time-varying covariate imputation are discussed in the end of this

chapter.

6.1 Models with missing covariates

Missing data problems are commonly encountered in practice for researchers. There are many

kinds of issues that can cause missing data for a study. Survey study will have missing data, when

people accidently or intentionally skip some questions. In clinical trial, it is very likely that some

people drop out the study before it ends, or can’t make it to a few of the routinely scheduled tests.

Errors happen in data entry can also causing missing data. In a long-time observation experiment,

the failure of equipment would also make the data is unobservable while the equipment is being

fixed. Since we only focus on missing covariates in this thesis, from on now, we will use missing

data and missing covariates interchangeably.

Little and Rubin (1987) talk about three classes of missing covariates. The first classification

is missing completely at random (MCAR). MCAR means that the missing data is completely

independent of values of any covariates. When the data is MCAR, most analysis can still be
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implemented to the subset with complete cases, but a loss of statistical power can occur. Little

(1988) proposes a test for testing MCAR assumption and shows null distribution of this test statistic

is asymptotically chi-squared-distributed.

Unfortunately, in clinical trail, most missing data doesn’t fall into this class. Missing at

random (MAR) is the second class. MAR occurs when the missing data is only dependent on the

observed value of other covariates. By saying depending on the values of other covariates, we mean

that for a covariate that we have more than one observed values along the time, if there are some

missing values for it, the missing values are not dependent on the observed values this covariate,

but only dependent on the observed values of the other covariates. For example, if females are

more frequently to visit the doctor than the males, then the probability of missing a observation

of blood pressure is higher for males than that of females, given an assumption that a patient will

have blood pressure measured for each visit to hospital and we are carrying out a five-year study of

the change of elder people’s blood pressure. But if a patient decides to skip his scheduled follow-up

since his last visit showed his blood pressure was in the range, then the missing is not MAR. Apart

from the ignorable (i.e MCAR and MAR) missing data, the missing data is non-ignorable. When

handling analysis with non-ignorable missing covariates, the missing data mechanism has to be

incorporated too.

Methods of handling missing covariates can be roughly divided into the following four cate-

gories:

1. Complete data analysis

2. Imputation methods

3. Weighting methods

4. Model-based methods

Complete data analysis means that we only analyze units that are completely recorded and

discard those with missing data. One advantage of this method is that it is easy to implement

with any standard analysis methods. However, in order to get unbiased estimates, this method can
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only be applied to data that is MCAR. In addition, subject removal will always sacrifice statistical

power.

Imputation is any method that the missing data are filled with some estimates and then the

whole data set is treated as complete for standard statistical methods. There are single imputation

methods and multiple imputation methods. Single imputation means we only impute one value for

a missing item. In statistical practice, mean imputation, hot deck imputation and regression im-

putation are some of the commonly used single imputation methods. Mean imputation substitutes

the missing item with the mean of the other observed measures. In this way, the mean of the same

variable will remain the same, but it will underestimate the true variance. The hot deck method

uses values from similar responding units in the sample to fill the missing values. Unlike mean

imputation, this method still retains the distribution of sampled values of a variable. When the

missing value is replaced by the predicted value from a regression model over the observed data in

the unit, the method is regression imputation. Multiple imputation, first proposed by Rubin (1978),

is to fill a missing item with more than two imputed values from an appropriate distribution, which

in statistical practice the distribution can be the missing data’s posterior predictive distribution.

The advantage of multiple imputation is that it incorporates the degree of uncertainty about which

value to impute the way single imputation does not.

The weighting method is related to mean imputation method. By introducing design weights,

the imputed value of a missing data is sampled from Horvitz-Thomposon estimator. In this method,

the estimator of sample mean is unbiased.

In model-based methods, we always define a model for the missing data and make inference

about parameters based on the likelihood function under that model, using procedures such as

maximum likelihood and EM algorithm.

Regression analysis with missing values of the independent variables is excellently reviewed

in Little (1992). Schafer (1997) explores both frequentist and Bayesian approaches for incomplete

continuous and categorical multivariate data.
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6.2 Frequentist and Bayesian approaches for hazard models with missing

covariates

Missing data is an unavoidable problem in clinical trials, especially when covariates are re-

peatedly measured over time. Missing covariate values or survival times lead to incomplete data.

In this section we will only talk about missing covariates. There is literature on both frequen-

tist and Bayesian methods for survival models with MAR covariate data. Bayesian approaches to

handle missing data problems have a few advantages and disadvantages with respect to frequentist

approaches. Selecting a proper prior distribution can help overcome the problem of non-identifiable

parameters in the likelihood function. Moreover, more information can be provided to parameters

by adopting informative priors.

Since covariates can be either time-varying or fixed, first we review literature in handling

scenario that all the covariates are fixed but some are missing. When the missing covariate values

are missing at random (MAR), Expectation-maximization (EM) algorithm is commonly used in

frequentist approaches. Ibrahim (1990) develops a general EM algorithm for obtaining maximum

likelihood estimates for any generalized linear model (GLM) with data missing at random, with

assumption that the unobserved covariates are random variables discretely distributed with finite

range. In E step, the expected value of the log-likelihood function is calculated, with respect to

the conditional distribution of missing data given observed data under the current estimate of the

parameters. The M step maximizes quantity from the E step, which is the current estimate of the

parameters. Repeat the E step and M step until it converges. Let x = (x1, x2, . . . , xp)
′ denote the

covariates and assume they are random variables taking values from a finite set. Therefore, x has

a multinomial distribution that can be parameterized by γ = (γ1, γ2, . . . , γr)
′. As in any GLM,

we parameterize the conditional density of y|x from exponential family by (β, ϕ), where y is the

response. As from the exponential family, the density of y can be written as

f(y; ζ, ϕ) = exp

{
yζ − b(ζ)

ϕ
+ c(y, ϕ)

}
(6.1)

where ϕ is the dispersion parameter and ζ is the canonical parameter, and the functions b(ζ) and
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c(y, ϕ) are known. Therefore, by assuming ϕi = ϕ/mi for some known weights mi, the complete

data log-likelihood of the i-th individual

l(θ,xi, yi) =
yix

′
iβ − b(x′

iβ)

ϕi
+ c(yi, ϕi) (6.2)

Then the E step for all of the observations can be written as

Q(θ|θ(s)) =

n∑
i=1

∑
xmis,i

wi,(s)l(θ,xi, yi) =

n∑
i=1

∑
xmis,i

wi,(s){lyi|xi
(β, ϕ) + lxi(γ)} (6.3)

In Equation (6.2) and Equation (6.3), n is the number of observations; θ = (β, ϕ,γ); xi =

(xobs,i,xmis,i), where xobs,i denotes the observed data and xmis,i denotes the missing data for the

i-th individual; θ(s) is the current estimate of θ. Most importantly, the weight function

wi,(s) = p(xmis,i|xobs,i, yi,θ
(s))

=
p(yi|xmis,i,xobs,i,θ

(s))p(xmis,i,xobs,i|θ(s))∑
xmis,i

p(yi|xmis,i,xobs,i,θ
(s))p(xmis,i,xobs,i|θ(s))

=
p(yi|xi,θ

(s))p(xi|θ(s))∑
xmis,i

p(yi|xi,θ
(s))p(xi|θ(s))

(6.4)

is defined as the conditional distribution of missing data given the current estimate of θ and the

observed data. Once we implement the weighted complete data log-likelihood in E step, the M step

can be realized via Newton-Raphson algorithm.

Lipsitz and Ibrahim (1996) extend the EM method in Ibrahim (1990) to survival data that

may not from the class of generalized linear models, with missing covariates which are MAR and

categorical. In this approach, failure time Ti for the i-th unit is assumed to have an arbitrary

distribution, p(Ti|xi,β), parameterized by β given covariate vector xi. Using the conventional

notations for right-censored survival data, δi is the censoring indicator for the i-th unit and yi =

min(Ti, Ci), where Ci is the censoring time. The complete data log-likelihood function for the i-th

unit can be formatted as

l(β; yi, δi,xi) = δi log(p(yi|xi,β)) + (1− δi) log(S(yi|xi,β)) (6.5)
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where S(t|xi,β) is the survival function of failure time Ti. For example, when the failure time Ti

has a Weibull distribution with scale parameter k,

l(β; yi, δi,xi) = δi

{
log

[
x′
iβ

k
(x′

iβyi)
1
k
−1

]
+ (−x′

iβyi)
1
k

}
+ (1− δi)(−x′

iβy
1
k
i ) (6.6)

Then the weighted EM method in Ibrahim (1990) can be used, given all the other assumptions are

the same as in Ibrahim (1990).

Wei and Tanner (1990) propose a Monte Carlo version of the EM algorithm (MCEM), which

relaxes the requirement of categorical covariates to continuous or mixed categorical and contin-

uous covariates. In E step, the expected value of the log-likelihood function with respect to the

conditional distribution of missing data z given observed data y under the current estimate of the

parameters θ0 can be formally written as:

Q(θ, θ0) =

∫
Z
log(p(θ|z, y))p(z|y, θ0)dz (6.7)

where Z is the sample space for the latent data z. In M step, the goal still is to find the maximizer

of function Q(θ, θ0) as an update of θ. The same as a general EM method, assume

Qi+1(θ, θ
(i)) =

∫
Z
log(p(θ|z, y))p(z|y, θ(i))dz (6.8)

is the Q function after the (i + 1)-th iteration. Since the missing data is continuous or a mix of

continuous and categorical, we can’t evaluate the integral in (6.8) by setting a sum of finite terms.

In addition, the specification of the integrand can make it impossible to evaluate it analytically.

A Monte Carlo approach then is proposed to approximate Qi+1(θ, θ
(i)) by

1

m

m∑
j=1

log(p(θ|z(j), y)),

where z(1), z(2), . . . , z(m) are sampled from the conditional distribution p(z|y, θ(i)) and θ(i) is the

estimate of θ from the i-th iteration.

Ibrahim et al. (1999) develop a method for missing continuous or mixed categorical and

continuous covariates for any parametric regression model using MCEM from Wei and Tanner

(1990). Using the idea of composition method, the marginal distribution of covariates is modeled
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as a product of one-dimensional conditional distributions,

p(xi1, xi2, . . . , xip|α) = p(xip|xi1, . . . , xi,p−1, αp)

× p(xi,p−1|xi1, . . . , xi,p−2, αp−1)

× · · · × p(xi2|xi1, α2)p(xi1|α1)

(6.9)

where xi = (xi1, xi2, . . . , xip)
′ is the p-dimensional covariate vector and α = (α1, α2, . . . , αp). αj is

a vector of the indexing parameters for the j-th conditional distribution and they are all different.

Since our main interest is in the regression parameters, we treat the indexing parameters of marginal

distribution of the covariates as nuisance parameters. Adopting the form in Equation (6.9), more

flexibility is allowed for us to model the marginal distribution of the covariates and the number of

nuisance parameters introduced in E step can be reduced.

Apart from EM-like methods, Lipsitz and Ibrahim (1998) propose a likelyhood-based ap-

proach to estimate the parameters of Cox’s semiparametric proportional hazards model when some

categorical covariate values are missing at random using a set of estimation equations and a feasible

Monte Carlo method similar to MCEM algorithm proposed by Wei and Tanner (1990) to obtain

parameter estimates. Using the same notations as in Equation (6.5), and Ti is assumed to follow

the Cox proportional hazards regression model (Cox (1972)). Then the probability distribution for

data (yi, δi) given xi of the i-th individual is proportional to

p(yi, δi|xi,β) =
[
λ0(yi)e

x′
iβ
]δi

exp{−ex
′
iβΛ0(yi)} (6.10)

where λ0(t) is an arbitrary baseline hazard function and Λ0(t) is the cumulative baseline hazard

function which is defined as

Λ0(t) =

∫ t

0
λ0(u) du (6.11)

For example if λ0(t) is defined as a two-piece function:

λ0(t) =


λ1(t), if 0 < t 6 t1

λ2(t), if t1 < x < ∞
(6.12)
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where λi(t) is parameterized by ϕi and ϕ = (ϕ1, ϕ2), then we will have the corresponding log-

likelihood function for the i-th subject as

l(β,ϕ, yi, δi,xi) =


δi[log(λ1(yi)) + x′

iβ]− exp(x′
iβ)
∫ yi
0 λ1(τ)dτ, if 0 < yi 6 t1

δi[log(λ2(yi)) + x′
iβ]− exp(x′

iβ)(
∫ t1
0 λ1(τ)dτ +

∫ yi
t1

λ2(τ)dτ), if t1 < yi < ∞
(6.13)

Adopting the counting process notation and considering complete data, the Cox partial like-

lihood score vector turns out as:

uβ(β) =
n∑

i=1

∫ ∞

0
{xi − x̄(s,β)}dNi(s) (6.14)

Notations in Equation (6.14) are described in the following way: Ni(t) is the failure indicator of the

i-th subject at time t and Ni(t) = 1 if the observed failure time Ti is smaller than time t, otherwise

Ni(t) = 0. Ui(t) is the risk indicator of the i-th subject at time t, and Ui(t) = 1 if the i-th subject

is at risk at time t, otherwise Ui(t) = 0. As a weighted average of xi’s,

x̄(s,β) =

∑n
i=1 xiUi(s)e

x′
iβ∑n

i=1 Ui(s)e
x′
iβ

(6.15)

and dNi(s) = Ni(s) − Ni(s
−) which is a binary random variable only taking value one if the

failure time Ti equals s. The solution of uβ(β) = 0 is the maximum partial likelihood estimate β̂.

Moreover, using the Breslow estimate (Breslow 1974), the baseline hazard function λ0(t) can be

estimated as

λ̂0(t) =

∑n
i=1 dNi(t)∑n

i=1 Ui(t)e
x′
iβ̂

(6.16)

Thus, an equation having λ̂0(t) and β̂ as solution is constructed as below:

uλ[λ0(t),β] =

n∑
i=1

[
dNi(t)− λ0(t)Ui(t)e

x′
iβ
]

(6.17)

Eventually, Equation (6.10) can be estimated by

p̂(yi, δi|xi,β) =
[
λ̂0(yi)e

x′
iβ̂
]δi

exp{−ex
′
iβ̂Λ̂0(yi)} (6.18)
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When we have data missing at random, models for covariate distribution are needed. Here we

specify the marginal distribution of covariate xi as in Equation (6.9). With the help of complete

data maximum likelihood estimating equations

uα(α) =

n∑
i=1

∂ log(p(xi|α))

∂α
(6.19)

the estimate of α, α̂ can be solved from equation uα(α) = 0.

Let θ = (β, λ0(t),α), then all the estimates for complete data scenario turn out to be solutions

satisfying the following estimating equations:

u(θ) =


uβ(β)

uλ[λ0(t),β]

uα(α)

 = 0 (6.20)

In order to deal with categorical data missing at random, we take the expectation of u(θ) with

respect to the conditional distribution of the missing data given the observed data, and denote it as

u∗(θ). Then solution to equation u∗(θ) = 0 is the estimate θ̂. When the covariates are restricted

to be categorical, u∗(θ) can be rewritten as:

u∗(θ) =

n1∑
xmis,1(j)

· · ·
nn∑

xmis,n(j)

p1j · · · pnj


∑n

i=1

∫∞
0 {xi − x̄(s,β)}dNi(s)∑n

i=1

{
dNi(t)− λ0(t)Ui(t)e

β′xi

}
∑n

i=1
∂ log(p(xi|α))

∂α

 (6.21)

In Equation (6.21), the conditional probability pij is defined as

pij = pr[xmis,i = xmis,i(j)|xobs,i, yi, δi,θ]

= p[xmis,i(j)|xobs,i, yi, δi,θ]

=
p(yi, δi|xmis,i(j),xobs,i, λ,β)p(xmis,i(j),xobs,i|α)∑

xmis,i
p(yi, δi|xi, λ,β)p(xi|α)

(6.22)

where j = 1, . . . , ni are the indexes of the ni distinct covariate patterns that xmis,i can take given
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(yi, δi) and
∑ni

j=1 pij = 1. An EM-type algorithm is proposed to solve Equation (6.21) and details

can be found in Lipsitz and Ibrahim (1998).

Papers that discuss Bayesian approaches to model survival data with MAR covariate values

are rare. Ibrahim et al. (2001) detail Bayesian approaches to survival semiparametric models with

MAR covariate data using informative priors. The approach is similar to Equation (6.12), but

now the baseline hazard rate function is assumed to have a more general form. The time axis is

partitioned into J intervals, 0 = t0 < t1 < t2 < . . . < tJ−1 < tJ , with tJ no less than the censoring

time and a constant hazard rate λj within each interval (tj−1, tj ]. Keeping all the other notations

and assumptions the same as those for Equation (6.10), the complete data likelihood function for

the i-th subject is

L(β,λ|yi, δi,xi) =
[
λje

x′
iβ
]δi

exp{−ex
′
iβ[λj(yi − tj−1) +

j−1∑
g=1

λg(tg − tg−1)]} (6.23)

where λ = (λ1, λ2, . . . , λJ). Again the marginal distribution of covariates xi, p(xi|α), is specified

as in Equation (6.9). Thus, the joint posterior density of (β,λ,α) condition on the observed data

Dobs is

π(β,λ,α|Dobs) ∝
n∏

i=1

{∫
xmis,i

L(β,λ|yi, δi,xi)p(xi|α)dxmis,i

}
× π(β,λ,α) (6.24)

where π(β,λ,α) is the joint prior distribution of (β,λ,α) and it is constructed via the joint

covariate distributions of observed historical data and parameter prior before historical data is

observed.

There is also literature on handling non-ignorable missing data in survival models using fre-

quentist methods. In this scenario, in addition to the marginal distribution of covariates aforemen-

tioned with MAR data, the missing data mechanism is now must also be considered. Leong et al.

(2001) propose a model to handle categorical but non-ignorable missing data through a sequence

of one-dimensional conditional distributions. The approach follows the same fashion in Lipsitz

and Ibrahim (1998), and keeps all the notations the same as in Equation (6.21), but adds another

estimating equation about missing data mechanism to Equation (6.21). Ri = (Ri,1, . . . , Ri,K)′ is

defined as the missing covariate indicator for the covariates of the i-th subject. If xi,k is observed,
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then Ri,k equals one, otherwise zero. They define the missing data mechanism as the conditional

distribution of Ri given (yi, δi,xi) parameterized by vector ϕ, with notation p(ri|yi, δi,xi,ϕ). De-

fined in this way, p(ri|yi, δi,xi,ϕ) follows the multinomial distribution with 2K possible outcomes.

Therefore, the maximum likelihood estimate of ϕ over complete data is the solution of equation

uϕ(ϕ) = 0, where

uϕ(ϕ) =

n∑
i=1

∂ log(p(ri|yi, δi,xi,ϕ))

∂ϕ
(6.25)

In order to reduce the number of nuisance parameters used in p(ri|yi, δi,xi,ϕ), instead of using a

multinomial logistic regression, p(ri|yi, δi,xi,ϕ) is represented as a product of a sequence of one

dimensional conditional distributions:

p(ri1, ri2, . . . , riK |ϕ) = p(riK |ri1, . . . , ri,K−1, δi, yi,xi, ϕK)

× p(ri,K−1|ri1, . . . , ri,K−2, δi, yi,xi, ϕK−1)

× · · · × p(ri2|ri1, δi, yi,xi, ϕ2)p(ri1|δi, yi,xi, ϕ1)

(6.26)

where each of the distribution can be modeled by logistic regression, as rik is a binary outcome.

Incorporating the missing data mechanism, the conditional probability pij becomes

pij = pr[xmis,i = xmis,i(j)|xobs,i, yi, δi, ri,θ]

= p[xmis,i(j)|xobs,i, yi, δi, ri,θ]

=
p(yi, δi|xmis,i(j),xobs,i, λ,β)p(xmis,i(j),xobs,i|α)p(ri|xmis,i(j),xobs,i, yi, δi,ϕ)∑

xmis,i
p(yi, δi|xi, λ,β)p(xi|α)p(ri|xi, yi, δi,ϕ)

(6.27)

Parameter estimates can be obtained via the method described in Lipsitz and Ibrahim (1998).

Herring et al. (2004) propose a model for proportional hazards with non-ignorably missing

covariates that are categorical or continuous or mixed. The approach is very similar to the one

discussed in Leong et al. (2001), except the conditional density Equation (6.27) used in the E step

now consists of an integral rather than a sum.

p[xmis,i|xobs,i, yi, δi, ri,θ] =
p(yi, δi|xmis,i,xobs,i, λ,β)p(xmis,i,xobs,i|α)p(ri|xmis,i,xobs,i, yi, δi,ϕ)∫

xmis,i
p(yi, δi|xi, λ,β)p(xi|α)p(ri|xi, yi, δi,ϕ)dxmis,i

(6.28)

Monte Carlo Expectation Maximization(MCEM) algorithm is used to obtain parameter estimates.
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In a model, we may have either fixed covariates or time-varying covariates, or both. Be-

sides missing fixed covariates, timing-varying covariates can also be missing. There is literature in

Bayesian approaches about non-ignorably missing covariates in survival models with time-varying

covariates. Bradshaw et al. (2010) propose a Fully Bayesian(FB) approach to model proportional

hazards with non-ignorably missing time-varying covariates. The joint likelihood consists a series

of conditional distributions: the marginal distribution of covariates; the Cox proportional hazards

regression model the distribution of the event; the distribution of missing data mechanism. With

non-informative priors specified for model parameters, this approach will yield similar posterior

mean and standard deviations of parameter estimates to those from maximum likelihood method.

Moreover, the FB framework is not only less computationally intensive than MCEM framework

(Herring et al. 2004) for this model , but also can yield variance estimates more easily.

In this approach, failure time Ti for the i-th unit is assumed to have a Cox piecewise expo-

nential hazard distribution given the covariates, p(Ti|xi, zi,β,λ), parameterized by β and λ given

covariate vector xi and zi. For the i-th subject, xik = (xik1, . . . , xikp) denotes the k-th measure-

ment of p completely observed variables. and zik = (zik1, . . . , zikq) denotes the k-th measurement

of q variables with possible missing values, where k takes value from 1 to Ki. Using the conven-

tional notations for right-censored survival data, δi is the censoring indicator for the i-th unit and

yi = min(Ti, Ui), where Ui is the censoring time. The whole time axis is partitioned into J intervals,

0 = t0 < t1 < t2 < . . . < tJ−1 < tJ , with tJ no less than the maximum of yi and a constant hazard

rate λj within each interval (tj−1, tj ]. Noticing that the total number of measurementKi may small-

er than J , we therefore introduce notations for covariates over each interval. For interval (tj−1, tj ],

the covariates for subject i in it is defined as x∗
ij = (x∗ij1, . . . , x

∗
ijp)

′ and z∗ij = (z∗ij1, . . . , z
∗
ijq)

′, where

x∗ijl and z∗ijl can be imputed from observations of previous interval and following interval. In order

to model the missing data mechanism, missing data indictor ri is introduced. rik = (rik1, . . . , rikq)

is the missingness indicator for zik. If zikl is missing, rikl will be 1, otherwise 0. If yi fall into

interval (tj−1, tj ], the complete data likelihood function for the i-th unit can be formatted as
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L(β,λ|yi, δi,xi, zi) =
[
λj exp(x

∗′
ijβ1 + z∗

′
ijβ2)

]δi
× exp{− exp(x∗′

ijβ1 + z∗
′

ijβ2)λj(yi − tj−1)−
j−1∑
g=1

exp(x∗′
igβ1 + z∗

′
igβ2)λg(tg − tg−1)}

(6.29)

where λ = (λ1, λ2, . . . , λJ) denotes the baseline hazard rate vector and the covariate effects vector

β = (β1,β2) consists two subvectors β1 with dimension p× 1 and β2 with dimension q × 1, which

are associated with covariates x∗
ik and z∗ik respectively.

The joint distribution of the missing covariates zi is modeled via a series of one-dimensional

conditional distributions as following:

pz(zi|xi,α) = p(ziKiq|ziKi1, . . . , ziKi(q−1), zi(K−1), . . . , zi1,xiKi , αKiq)

× · · · × p(ziKi1|zi(Ki−1), . . . , zi1,xiKi , αKi1)

× · · · × p(zi(Ki−1)q|zi(Ki−1)1, . . . , zi(Ki−1)(q−1), zi(Ki−2), . . . , zi1,xi(Ki−1), α(Ki−1)q)

× · · · × p(zi(Ki−1)1|zi(Ki−2), . . . , zi1,xi(Ki−2), α(Ki−1)1)

× · · · × p(zi1q|zi11, . . . , zi1(q−1),xi1, α1q)

× · · · × p(zi11|xi1, α11)

(6.30)

Similarly, the joint distribution of the missing data mechanism ri is modeled via a series of

one-dimensional conditional distributions as following:

pr(ri|yi,xi, zi,ϕ) = p(riKiq|riKi1, . . . , riKi(q−1), ri(K−1), . . . , ri1,xiKi , ziKi , yi, ϕKiq)

× · · · × p(riKi1|ri(Ki−1), . . . , ri1,xiKi , ziKi , yi, ϕKi1)

× · · · × p(ri(Ki−1)q|ri(Ki−1)1, . . . , ri(Ki−1)(q−1), ri(Ki−2), . . . , ri1,xi(Ki−1), zi(Ki−1), yi, ϕ(Ki−1)q)

× · · · × p(ri(Ki−1)1|ri(Ki−2), . . . , ri1,xi(Ki−2), zi(Ki−2), yi, ϕ(Ki−1)1)

× · · · × p(ri1q|ri11, . . . , ri1(q−1),xi1, zi1, yi, ϕ1q)

× · · · × p(ri11|xi1, yi, ϕ11)

(6.31)
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In all, substituting Equation (6.29), (6.30) and (6.31) into the following equation, we can

have the complete data likelihood.

l(β, λ, α, ϕ) =

n∏
i=1

p(ri, yi, zi|xi,β, λ, α, ϕ)

=

n∏
i=1

pr(ri|yi, zi,xi, ϕ)py(yi|zi,xi,β, λ)pz(zi|xi, α)

(6.32)

Consequently, given observed data, the joint posterior distribution of the parameters is pro-

portional to:

l(β, λ, α, ϕ|y, r,x, z) ∝

(
n∏

i=1

∫
zi

p(yi, ri,xi, zi|β, λ, α, ϕ) dzi

)
× p(β, λ, α, ϕ) (6.33)

6.3 Summary of approaches

Of all the literature on missing covariates in survival models, both Bayesian and frequentist

methods have been proposed. The ideas of these methods are similar in that they all consider

models for event times and models for covariates. When the missing data is non-ignorable, then

models for missing data mechanism are included.

In frequentist approaches, the failure time of subject i can either be modeled via a para-

metric distribution, for example, a Weibull distribution (Lipsitz and Ibrahim 1996); or via the

non-parametric Breslow estimate (Breslow 1974) as in estimation equation approaches (e.g., Lip-

sitz and Ibrahim (1998) and Leong et al. (2001)).

In Bayesian approaches, using proportional hazard regression model, a general form of com-

plete data time-to-event likelihood function for the i-th unit can be formatted as

L(β|yi, δi,xi) =
[
λ0(yi)e

x′
i(yi)β

]δi
exp{−

∫ yi

0
ex

′
i(τ)βλ0(τ)dτ} (6.34)

where the failure time of the i-th subject is Ti; censoring time is Ci; yi = min(Ti, Ci); δi is the

conventional censoring indicator; λ0(t) is the baseline hazard rate function, xi(t) is the vector of the

observed covariates for the i-th subject at time t and vector β denotes the regression coefficients.

There are different ways to evaluate Equation (6.34) or its logarithmic value equivalently.

Here we assume the regression coefficients and covariates xi(t) are constants. Frequently, the
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integral in Equation (6.34) doesn’t have a closed form, therefore approximation is needed. One

typical way is assuming the baseline hazard rate λ0(t) is a piecewise constant function based on

a partition of the time axis. In this way, the integral turns out to be a finite sum that is easy to

calculate, such as in Equation (6.23). When covariates xi(t) are time-dependent, the integral can

be approximated similar to Equation (6.29). The hazard rate over each interval can be assumed

to have the same non-informative independent prior by sharing the same hyperparameters. For

instance, in Bradshaw et al. (2010), given λj is the hazard rate of the j-th time interval, the prior

density of λj is specified as gamma distributions with shape and inverse scale parameters of 0.01.

In our MRH model, we also assume our baseline hazard rate is a piecewise constant function of

time, but the priors of hazard rate λj ’s are not independent and generally they are not the same

either. Only with certain assumptions, hazard rate prior over each interval will have the same

gamma density, details can be found in Section 1.3.2.

When it comes to model the covariates and missing data mechanism, the same technique

is adopted. The whole joint marginal distribution of covariates is modeled by a series of one-

dimensional conditional distributions. The missing data mechanism is modeled in the same fashion

if needed. Details of how they are modeled can be found in Ibrahim et al. (1999), Ibrahim et al.

(2001), Leong et al. (2001), Herring et al. (2004) and Bradshaw et al. (2010). This approach to

model the joint marginal density will reduce the number of nuisance parameters that have to be

specified effectively. Equation (6.30) represents the model of missing time-varying covariates. For

subject i, we can see each missing covariate zikl is sequentially conditioning on other z values at

the k-th measurement, all z values prior to the k-th measurement and the fully observed covariate

data xik.

Frequentist approaches are all EM-type algorithms, no matter the covariates are missing at

random(MAR) or non-ignorably missing. First, by setting up either the likelihood functions or a

set of estimation equations, then the parameter estimation steps are implemented by either regular

Expectation-maximization(EM) algorithm (Dempster et al. 1977) or an extended EM algorithm,

such as Monte Carlo EM (Wei and Tanner 1990). When the missing covariates all are discrete
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random variables with finite range, the E-step can be set up as a sum of weighted complete data

log-likelihood and regular EM method is used (e.g., Lipsitz and Ibrahim (1996), Lipsitz and Ibrahim

(1998) and Leong et al. (2001)). When the missing covariates are continuous or mixed categorical

and continuous covariates, the E-step consists of an integral rather than a sum and MCEM algo-

rithm is used (e.g., Herring et al. (2004)). In M-step, to find a maximizer of the quantity from

E-step, Newton-Raphson is always used.

There is limited literature on Bayesian approaches to survival analysis with missing covariate

data. Ibrahim et al. (2001) describe Bayesian approaches to survival semiparametric models with

MAR covariate data using informative priors in details and Bradshaw et al. (2010) propose methods

about non-ignorably missing time-vary covariates in survival models. Gibbs sampler is used to

obtain estimates of parameters. Within each iteration of Gibbs sampler, the full conditionals

could be sampled from either directly, or using adaptive rejection sampling (ARS) algorithm (Gilks

and Wild 1992) or other sampling methods, depending on the property of conditional posterior

distributions.

6.4 Approaches for censored data

Besides missing covariate values, missing response is also a common scenario in survival

analysis. In this section we are going to discuss some common statistical methods to analyse

censored data. There are four basic classes for handling censored data.

First, the same as our previous discussion, we can also use complete data analysis only over the

uncensored complete observations. With a usual censoring percentage of 50% or more in clinical

study, this approach will significantly decrease our sample size and undoubtedly lead to biased

inferences. Only when the censored data is MCAR can we get unbiased estimates via this method.

Secondly, we can impute the missing survival time by a left-point imputation, which assumes that

all censored data fails right after the censoring time. Or we can impute the censored data with

right-point, given assumption that these cases never fail. The survival probability will be either

underestimated or overestimated with these two methods, so neither of them are ideal for censored
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data. Third, analysis can be carried out based on dichotomized data. Instead of considering

right-censoring and interval-censoring, we only study if the event happens or not within a time-

window. Subjects is indicated as 1 if a failure is observed, otherwise as 0. Then standard methods

such as logistic regression and contingency table can be used for analysis. This method has some

disadvantages, including: that we can’t tell if a subject is drop-out the study before it ends or it

is censored at the end of the study, we can’t model the variability in the timing of the event, and

for models like this, we can’t incorporate any time-varying covariates. The last class is likelihood-

based approach. A common characteristic of likelihood-based approaches is that adjustment is

made based on whether or not an individual observation is censored. The non-parametric Kaplan-

Meier estimator of the survival function and the Cox model are both likelihood-based approaches.

These four methods are described further in Leung et al. (1997).

6.5 Practical implications

Now we consider MRH model with missing time-varying covariates. In a MRH model, when

the time resolution is picked, we have the time axis partitioned into 2M even length time intervals.

Regardless of whether the time-varying covariates are measured routinely or randomly for a sub-

jects, it is highly possible that for a covariate, we may have no measurement within one or more

time intervals. This scenario can be considered as missing data for this predesigned resolution. In

order to approximate integrals in calculating cumulative hazard function, our MRH model assumes

that within each time interval, the baseline hazard rate is constant, and the measurement for each

covariate is also a constant for a subject. With this assumption, we need only one measurement

for each covariate in a time interval for each subject. The following are the good ways of handling

missing data in a MRH model:

• Use the previous measurement to substitute the missing one, or use the average of the

previous and next measurement to substitute the missing value. This is a very rough

estimate of the missing covariate, especially when we have multiple missing observation in
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successive time intervals.

• Treat the missing measurement as parameters, and model the distribution of missing co-

variates, sampling the missing value iteratively in the Gibbs sampler procedure.

Apart from missing data, we may also have multiple measurements for a covariate in the

same bin for a subject. Theoretically, we need to integrate each covariate as a function of time

in calculating MLEs. But in general, we don’t know the exactly form of covariates as function of

time. As shown before, for a subject, an average of all the measurements for the same covariate

within a time interval can be used as a good and easy approximation of covariate value we need for

MRH model, since we always only have discrete measurements along the time. If we want to be

more accurate, we can fit these covariate data with a regression model, then average the integral

of the model over each time interval, and these average values will be used in our MRH model for

this covariate. And this can also be used to impute missing covariates.



Chapter 7

Evaluating MRH models with missing time-varying covariates with simulated

data

In this chapter, we evaluate MRH models with missing time-varying covariates using sim-

ulated datasets. We first talk about how to generate missing time-varying covariates from a full

dataset. Then we propose methods to impute missing time-varying covariates. In addition, we

show results of applying MRH models to simulated datasets with missing time-varying covariates

using their corresponding imputed datasets. In the end, we discuss how the shape of function for

a time-varying covariate will affect missing data imputation.

7.1 Generating missing time-varying covariates

First, we generate datasets with missing time-varying covariates. We still use the datasets

generated in Section 5.2 to build datasets with missing covariate values. For each dataset, we

assume no gender information is missing and we want to have some of the time-varying covariate

glucose values missing completely at random with a given percentage. For example, if we want 5% of

glucose values missing complete at random for a dataset, then for each glucose value in that dataset,

we run a Bernoulli distribution with success probability 95% for it. If the outcome is 1, we keep

this glucose value, otherwise we discard it. Then our missing covariate dataset is generated. Using

this procedure, we generate datasets having 5% and 15% of glucose values missing completely at

random. The full datasets we using are the 200 datasets of size 200 whose time-varying covariates

are generated from cosine shape functions and the 200 datasets of size 200 whose time-varying
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covariates are generated from five degree polynomials from Section 5.2.

7.2 Missing data imputation

When some of the covariate values in a dataset are missing, we can’t implement our TVC-

MRH model discussed in Chapter 5 directly to the dataset. We need to impute the missing covari-

ates first. We impute the missing covariates through the following steps.

(1) For a patient with one or more missing glucose values, we fit a curve based on the other

available glucose values and associate generate time t of this patient. This assumption is

reasonable. In real life, if we have a measurement on the chart, unusually the measure time

will also be on file. Here we use polynomials to fit the data, polynomials can be degree one

or more. And we select the relatively best model by comparing their AIC values.

(2) Once we figure out the model of a patient’s glucose value, we start to generate predictive

value of glucose G∗(t) at each given time t (the t’s we use to generate glucose value G(t)

for this patient, discarding the ones associated with missing data). The predictive value is

generated from predictive intervals of regression models. Statistic

G∗(t)− Ĝ(t)

S

√
1 + 1

n + n(t−t̄)2

n
∑

t2i−(
∑

ti)2

(7.1)

has a student’s t distribution with degree of freedom n − p, where p is the number of

parameters in the selected model. Here G∗(t) is the predictive value at time t; Ĝ(t) is the

fitted value at time t; n is the number of data points used in fitting the model; S is the

residual standard error; ti’s are the measure times associated to the given glucose values.

For instance, given a subject with glucose value G(t1), G(t2), G(t3), G(t5), G(t6), G(t8)

and their corresponding measure times, t1, t2, t3, t5, t6 and t8. We sample a set of G∗(ti),

i = 1, 2, 3, 5, 6, 8 using Equation (7.1). Then we fit the data we get in this step and model

is selected by comparing AIC still.
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(3) For each missing glucose value of this subject, we impute it by integrating the fitted curve

from step (2) over its associated time interval and dividing by the interval length. Still use

the example from step 7.1, we impute G(t4) and G(t7) in this step.

(4) We repeat step (2) to step (3) enough times, such as 1000, then we get a sample of G(t4)

estimates and a sample of G(t7) estimates. Then we calculate the mean and standard error

of those estimates, for G(t4) and G(t7) separately.

For a dataset, we run the above steps, for each subject. In the end, we will have a estimated

mean and standard error for each missing glucose values. Now for each missing data, we generate

a value using a normal distribution of mean equal to its estimated mean and standard deviation

equal to its estimated standard error. And these values together with the initial available values

will consist a full dataset. We repeated this five times, so in the end we get 5 imputed full dataset

per one datasets with missing time-varying covariates.

In step (1), we mentioned that fit a curve based on the other available glucose values and

associate generate time t of this patient. There are two ways of understanding other available

glucose values. If the event of our interest is failure/death, then there is no way for us to have the

glucose values after the observed failure time for a subject. In this case, we can at most have all

the glucose values before the failure time available. Thus, only those values can be used to fit the

glucose value associated curve in step (1). But if the event of our interest is recurrence, then it is

possible that we can also have glucose values available after the event happens until the termination

of the study. In other words, in step (1) we can use all available values in the record to fit a model

regardless of the event time. In this chapter, we impute missing values for the same dataset using

both of these two ways. In order to make the reference clear, we name the dataset imputed from the

first way as conditional imputed missing time-varying covariates(C-MTVC), since the availability

of time-varying covariates is also depending on the event time. And we name the dataset imputed

from the second way as unconditional imputed missing time-varying covariates(MTVC).
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And we also have another way of imputing missing covariates. We refer it as deterministic

imputation. The former one in this section is referred as non-deterministic imputation. This

deterministic imputation procedure is very similar to the one discussed aforementioned. Step (1) is

the same. In step (2), instead of sampling a set of predictive values G∗(t), we directly use the fitted

model from step (1) as the curved needed in step (3) and impute the missing value. All 3 steps just

need to be run once and no step (4) any more. Combining with the two different types of step (1), we

give a name for dataset imputed from this procedure as conditional deterministic imputed missing

time-varying covariates(EC-MTVC) and unconditional deterministic imputed missing time-varying

covariates(E-MTVC). In all, we may have four different types of imputed datasets, together with

conditional imputed missing time-varying covariates(C-MTVC), unconditional imputed missing

time-varying covariates(MTVC).

Later on when we compare MRH models over datasets imputed from different methods, we

will first include the type of the imputed datasets and the followed by the MRH model we use.

For example, notation EC-MTVC-NPM3 means the missing data are imputed from unconditional

and exact imputation procedure described early in this section and we use a 3-level MRH model

without any pruning over this imputed dataset.

Eventually, for each dataset with missing data generated in Section 7.1, we impute five MTVC

datasets, five C-MTVC datasets, an E-MTVC dataset and an EC-MTVC dataset for it.

7.3 Analysis of parameter estimates

First, for each set of data from Section 7.2, we implemented MRH strategy NPM3 (3-level

model with time-varying covariates without any pruning) and EPEM3 (piecewise exponential haz-

ard model with 23 = 8 equal width intervals). The details of applying MRH models to datasets

with time-varying covariates can be found in Section 5.1. To fresh our memory, the notation are

described as following:
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• E-MTVC-NPM3: dataset is imputed from unconditional and deterministic imputation

procedure and a 3-level MRH model without any pruning is used

• MTVC-NPM3: dataset is imputed from unconditional and non-deterministic imputation

procedure and a 3-level MRH model without any pruning is used

• EC-MTVC-NPM3: dataset is imputed from conditional and deterministic imputation

procedure and a 3-level MRH model without any pruning is used

• C-MTVC-NPM3: dataset is imputed from conditional and non-deterministic imputation

procedure and a 3-level MRH model without any pruning is used

• E-MTVC-EPEM3: dataset is imputed from unconditional and deterministic imputation

procedure and a piecewise exponential hazard model with 23 = 8 equal width intervals is

used

• MTVC-EPEM3: dataset is imputed from unconditional and non-deterministic imputa-

tion procedure and a piecewise exponential hazard model with 23 = 8 equal width intervals

is used

• EC-MTVC-EPEM3: dataset is imputed from conditional and deterministic imputation

procedure and a piecewise exponential hazard model with 23 = 8 equal width intervals is

used

• C-MTVC-EPEM3: dataset is imputed from conditional and non-deterministic imputa-

tion procedure and a piecewise exponential hazard model with 23 = 8 equal width intervals

is used

For MRH models, MCMC chains with 200000 iterations for each of the 200 datasets were

run separately. The first 50000 iterations of each MCMC chain was discarded as the burn-in, and

every 10th sample from the chain was kept to reduce autocorrelation. In the end, for the group of

E-MTVC-NPM3 and EC-MTVC-NPM3, 15000 posterior samples per dataset were used to derive
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posterior PMRH estimates (posterior means), resulting in 200 sets of estimates. For the group of

MTVC-NPM3 and C-MTVC-NPM3, since each of them had five chains for the same dataset, we

first merged the 15000 posterior samples from five chains in the same group together. We then had

75000 posterior samples per dataset per group, and similarly they were used to derive posterior

PMRH estimates (posterior means), resulting in 200 sets of estimates. And we use these means to

calculate the corresponding 95% probability intervals for each parameter of our interest.

All the simulations were coded in R and run on a supercomputer with 1368 nodes, each

containing two hex-core 2.8Ghz Intel Westmere processors with 12 cores per node and 2GB of

RAM per core. Since all the datasets are of size 200 and the model applied to them is the same, for

each chain the computation time is about the same. It takes about 2.1 hours to complete 200000

iterations no matter how the dataset was imputed.

For the piecewise exponential hazard models, we examine the MLEs for model parameters.

For the group of E-MTVC-EPEM3 and EC-MTVC-EPEM3, we have 200 sets of MLEs separately.

For the group of MTVC-NPM3 and C-MTVC-NPM3, since each of them had five sets of MLEs for

the same dataset, we take the average of MLEs for each parameter first, still resulting in a set of

MLEs per dataset. Again we have 200 sets of MLEs separately in the end. And we use these MLEs

to calculate the corresponding 95% probability intervals for each parameter of our interest.

In Table 7.1 and Table 7.2, we give the 95% probability intervals for parameters of model

TVC-NPM3, E-MTVC-NPM3, MTVC-NPM3, EC-MTVC-NPM3 and C-MTVC-NPM3 over 200

datasets with 200 subjects per set. The time-varying covariates in the original datasets are generat-

ed from five degree polynomial Equation (5.11) and 5% of the glucose values are missing completely

at random for the associated dataset with missing covariates.

From the result of TVC-NPM3, we can see when there is no missing data. The true parameter

values can be estimated efficiently. Among all other four models involving missing data imputation,

model E-MTVC-NPM3 performs the best, the followed by model EC-MTVC-NPM3, then model

MTVC-NPM3, and model C-MTVC-NPM3. It is not surprising because when we implemented

model E-MTVC-NPM3, for each subject, the missing data was imputed by making full use of
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all available covariate values regardless of the corresponding event time. And instead of using

multiple predictive curve, the missing value was imputed only using the fitted model average over

its associated interval, which definitely introduce less uncertainty to the imputed value. More

information and less uncertainty surely will lead to a better model performance. Comparing the

result from model MTVC-NPM3 and model C-MTVC-NPM3, and result from model E-MTVC-

NPM3 and model EC-MTVC-NPM3 we can find that with less information used in data imputation

process and other imputation steps be the same , conditional imputed datasets will always result in

the worse performance for a same model. Comparing the result from model E-MTVC-NPM3 and

model MTVC-NPM3, and result from model EC-MTVC-NPM3 and model C-MTVC-NPM3 we

can find that with the same amount of information used in data imputation process, exact imputed

datasets will always lead to better performance for a same model, since less uncertainty are brought

into the imputation process. We can also tell that no matter how the datasets are imputed, the

estimates for constant covariate effect always can be approximated to a certain accuracy. But when

the other parameter estimates are being affected too much, the constant covariate effect estimates

will still be influenced, since parameter estimates are all dependent on the other parameter values

in MRH models. Result of model C-MTVC-NPM3 is an example of showing this trend.

In Table 7.3, we show the 95% probability intervals for parameters of model TVC-EPEM3,

E-MTVC-EPEM3, MTVC-EPEM3, EC-MTVC-EPEM3 and C-MTVC-EPEM3 over 200 datasets

with 200 subjects per set. The time-varying covariates in the original datasets are generated from

five degree polynomial Equation (5.11) and 5% of the glucose values are missing completely at

random for the associated dataset with missing covariates. When comparing the result in Table 7.3

with the result in Table 7.1, we can still find that our MRH models with time-varying covariates

can yield equal or less variant parameter estimates than those from piecewise exponential hazard

models for the same dataset.

In Table 7.4 we show the result of the 95% probability intervals for parameters of model

E-MTVC-NPM3 and E-MTVC-EPEM3 over 200 datasets with 200 subjects per set. The time-

varying covariates in the original datasets are generated from five degree polynomial Equation
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-NPM3
2.5% 0.75 0.19 0.54 0.08 0.04 0.05 0.05 0.08 0.13 0.05 0.11
50% 0.96 0.51 0.73 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.19
mean 0.97 0.50 0.73 0.13 0.07 0.08 0.08 0.14 0.19 0.08 0.19
97.5% 1.26 0.80 0.87 0.19 0.11 0.13 0.13 0.20 0.29 0.13 0.29

E-MTVC-NPM3 (5% of glucose values are missing completely at random)
2.5% 0.75 0.20 0.56 0.08 0.04 0.05 0.05 0.08 0.12 0.05 0.12
50% 0.96 0.51 0.73 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.19
mean 0.97 0.51 0.73 0.13 0.07 0.08 0.08 0.14 0.19 0.08 0.19
97.5% 1.25 0.79 0.87 0.19 0.11 0.13 0.13 0.21 0.29 0.13 0.30

MTVC-NPM3 (5% of glucose values are missing completely at random)
2.5% 0.80 0.16 0.06 0.07 0.04 0.04 0.05 0.08 0.13 0.05 0.14
50% 1.04 0.50 0.51 0.12 0.07 0.07 0.08 0.13 0.19 0.09 0.27
mean 1.05 0.49 0.47 0.12 0.07 0.08 0.08 0.13 0.20 0.10 0.27
97.5% 1.32 0.76 0.83 0.19 0.10 0.12 0.12 0.20 0.29 0.16 0.46

EC-MTVC-NPM3 (5% of glucose values are missing completely at random)
2.5% 0.78 0.19 0.48 0.08 0.04 0.05 0.05 0.08 0.13 0.05 0.13
50% 0.98 0.51 0.67 0.13 0.07 0.08 0.08 0.13 0.19 0.09 0.21
mean 1.00 0.50 0.67 0.13 0.07 0.08 0.08 0.14 0.20 0.09 0.21
97.5% 1.29 0.78 0.82 0.19 0.11 0.13 0.13 0.20 0.29 0.14 0.33

C-MTVC-NPM3 (5% of glucose values are missing completely at random)
2.5% 0.95 0.14 0.00 0.07 0.03 0.04 0.04 0.08 0.13 0.07 0.26
50% 1.15 0.46 0.02 0.11 0.06 0.07 0.07 0.12 0.20 0.12 0.38
mean 1.16 0.45 0.02 0.11 0.06 0.07 0.07 0.13 0.21 0.12 0.39
97.5% 1.45 0.72 0.08 0.15 0.09 0.11 0.11 0.19 0.32 0.19 0.54

Table 7.1: Estimates and 95% probability intervals for parameters of model TVC-NPM3, E-MTVC-
NPM3, MTVC-NPM3, EC-MTVC-NPM3 and C-MTVC-NPM3 over 200 datasets with size 200
(time-varying covariates are generated from five degree polynomial and 5% of glucose values
are missing completely at random in the original datasets)
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R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 0.37 0.55 0.55 0.65 0.50 0.40 0.29

TVC-NPM3
2.5% 0.30 0.43 0.44 0.51 0.32 0.29 0.18
50% 0.38 0.55 0.55 0.65 0.50 0.41 0.30
mean 0.38 0.55 0.55 0.65 0.50 0.41 0.30
97.5% 0.47 0.66 0.66 0.78 0.66 0.56 0.43

E-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.30 0.43 0.44 0.51 0.31 0.29 0.18
50% 0.38 0.55 0.55 0.65 0.50 0.41 0.30
mean 0.38 0.55 0.55 0.65 0.50 0.41 0.30
97.5% 0.47 0.66 0.66 0.78 0.65 0.56 0.44

MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.24 0.44 0.34 0.51 0.31 0.27 0.15
50% 0.34 0.55 0.47 0.65 0.49 0.40 0.27
mean 0.33 0.55 0.48 0.64 0.50 0.40 0.27
97.5% 0.43 0.66 0.65 0.77 0.66 0.54 0.39

EC-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.29 0.44 0.43 0.52 0.31 0.29 0.18
50% 0.37 0.56 0.53 0.65 0.50 0.41 0.29
mean 0.37 0.55 0.53 0.65 0.50 0.41 0.29
97.5% 0.45 0.66 0.64 0.78 0.65 0.56 0.42

C-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.21 0.43 0.30 0.51 0.31 0.26 0.14
50% 0.27 0.55 0.40 0.65 0.49 0.38 0.24
mean 0.27 0.55 0.40 0.65 0.49 0.38 0.25
97.5% 0.34 0.66 0.49 0.78 0.65 0.53 0.36

Table 7.2: Estimates and 95% probability intervals for split parameters of model TVC-NPM3,
E-MTVC-NPM3, MTVC-NPM3, EC-MTVC-NPM3 and C-MTVC-NPM3 over 200 datasets with
size 200 (time-varying covariates are generated from five degree polynomial and 5% of glucose
values are missing completely at random(MCAR) in the original datasets)
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-EPEM3
2.5% 0.76 0.18 0.53 0.08 0.04 0.04 0.05 0.08 0.13 0.04 0.11
50% 0.97 0.51 0.73 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.20
mean 0.98 0.50 0.73 0.13 0.07 0.08 0.08 0.14 0.20 0.08 0.20
97.5% 1.27 0.79 0.92 0.19 0.11 0.13 0.13 0.21 0.30 0.13 0.31

E-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.76 0.19 0.54 0.08 0.04 0.04 0.04 0.08 0.13 0.04 0.11
50% 0.97 0.51 0.73 0.13 0.07 0.08 0.08 0.14 0.19 0.08 0.19
mean 0.98 0.50 0.73 0.13 0.07 0.08 0.08 0.14 0.20 0.08 0.20
97.5% 1.27 0.79 0.92 0.19 0.11 0.13 0.13 0.21 0.30 0.13 0.32

MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.80 0.16 0.07 0.07 0.03 0.04 0.04 0.08 0.13 0.05 0.13
50% 1.02 0.49 0.58 0.12 0.07 0.07 0.08 0.13 0.20 0.09 0.25
mean 1.04 0.49 0.54 0.12 0.07 0.08 0.08 0.13 0.20 0.09 0.26
97.5% 1.34 0.78 0.86 0.19 0.11 0.13 0.12 0.20 0.30 0.15 0.45

EC-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.79 0.18 0.47 0.08 0.03 0.04 0.04 0.08 0.13 0.05 0.13
50% 0.99 0.50 0.66 0.13 0.07 0.08 0.08 0.13 0.20 0.08 0.22
mean 1.01 0.49 0.66 0.13 0.07 0.08 0.08 0.14 0.20 0.09 0.22
97.5% 1.32 0.78 0.84 0.19 0.11 0.13 0.13 0.21 0.30 0.14 0.35

C-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.87 0.13 0.04 0.07 0.03 0.04 0.04 0.08 0.13 0.05 0.18
50% 1.10 0.47 0.32 0.12 0.06 0.07 0.07 0.13 0.20 0.11 0.33
mean 1.11 0.47 0.33 0.12 0.06 0.07 0.07 0.13 0.21 0.11 0.33
97.5% 1.41 0.74 0.66 0.17 0.10 0.12 0.12 0.20 0.31 0.17 0.50

Table 7.3: Estimates and 95% probability intervals for all parameters of model TVC-EPEM3,
E-MTVC-EPEM3, MTVC-EPEM3, EC-MTVC-EPEM3 and C-MTVC-EPEM3 over 200 datasets
with size 200 (time-varying covariates are generated from five degree polynomial and 5% of
glucose values are missing completely at random(MCAR) in the original datasets)
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(5.11) and 15% of the glucose values are missing completely at random for the associated dataset

with missing covariates. As expected, our MRH models with time-varying covariates still yield

equal or less variant parameter estimates than those from piecewise exponential hazard models.

As we discussed above, among all the strategies we used to impute missing covariates in a dataset,

the unconditional exact imputation approach will perform relatively the best, so when we increase

the percentage of missing value we can still get very attractive estimates for parameters. And if

we compare the result in Table 7.4 with the result of model MTVC-NPM3 in Table 7.1, we can

find that even with a higher percentage of missing data, if we use exact imputation in our miss

data imputation process, we may possibly still get better estimates for parameters. Based on the

conclusions we draw from Table 7.1, we don’t even need to bother the other three imputation

strategies, since the more data is missing, surely they will perform even worse. And in both Table

7.1 and Table 7.4 we can tell as more data is missing, or the less available data can be used in

imputation process, or use non-exact imputation step, all will lead to the estimates of time-varying

covariates become smaller and the estimates of the baseline cumulative hazard function become

larger correspondingly. Since any of these three conditions happens, more uncertainty is brought

to the imputed dataset.

Exactly as what we did to the imputed dataset associated to five degree polynomial group,

now we run all the models over 200 datasets with 200 subjects per set. The time-varying covariates

in the original datasets are generated from cosine shape Equation (5.10) and 5% of the glucose

values are missing completely at random for the associated dataset with missing covariates. In

Table 7.5 and Table 7.6, we give the 95% probability intervals for all parameters of running MRH

models. In Table 7.7, are the 95% probability intervals for all parameters of running piecewise

exponential hazard models. From the result of TVC-NPM3 and TVC-EPEM3, again, we can see

when there is no missing data. The true parameter values can be estimated efficiently. But for

all the other models, the estimates for baseline cumulative hazard function and the glucose effects

seem to be approximated very badly. In comparison with result from Table 7.1, we may guess that

the reason causing this difference is due to the different data structures of the original time-varying
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

E-MTVC-NPM3 (15% of glucose values are MCAR)
2.5% 0.76 0.18 0.53 0.08 0.04 0.05 0.05 0.08 0.12 0.05 0.13
true 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20
50% 0.96 0.52 0.72 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.19
mean 0.98 0.50 0.71 0.13 0.07 0.08 0.08 0.14 0.19 0.08 0.20
97.5% 1.24 0.77 0.87 0.19 0.11 0.13 0.13 0.20 0.29 0.13 0.30

E-MTVC-EPEM3 (15% of glucose values are MCAR)
2.5% 0.76 0.18 0.52 0.08 0.04 0.04 0.04 0.08 0.12 0.04 0.12
true 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20
50% 0.97 0.51 0.71 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.20
mean 0.99 0.50 0.72 0.13 0.07 0.08 0.08 0.14 0.20 0.08 0.20
97.5% 1.26 0.77 0.93 0.19 0.11 0.13 0.13 0.21 0.30 0.13 0.32

Table 7.4: Estimates and 95% probability intervals for all parameters of model E-MTVC-NPM3
and E-MTVC-EPEM3 over 200 datasets with size 200 (time-varying covariates are generated from
five degree polynomial and 15% of glucose values are missing completely at random in the
original datasets)

covariates, since except the datasets, both the imputation methods and MRH models used in this

two case are completely the same. And MRH models with time-varying covariates provide equal

or less variant parameter estimates as well.

For completeness, in Table 7.8 we still show the result of the 95% probability intervals for all

parameters of model E-MTVC-NPM3 and E-MTVC-EPEM3 over 200 datasets with 200 subjects

per set. The time-varying covariates in the original datasets are generated from cosine shape

function Equation (5.10) and 15% of the glucose values are missing completely at random for

the associated dataset with missing covariates. As expected, the glucose estimator exhibits poor

performance, analogous to the MRH models.
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-NPM3
2.5% 0.73 0.21 0.54 0.09 0.04 0.05 0.04 0.08 0.13 0.03 0.11
50% 0.97 0.52 0.71 0.13 0.07 0.08 0.08 0.13 0.19 0.08 0.20
mean 0.98 0.51 0.72 0.13 0.07 0.08 0.08 0.13 0.20 0.08 0.20
97.5% 1.26 0.82 0.91 0.19 0.11 0.12 0.13 0.20 0.31 0.15 0.31

E-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.90 0.18 0.00 0.09 0.06 0.07 0.06 0.09 0.15 0.04 0.13
50% 1.16 0.50 0.04 0.13 0.10 0.11 0.10 0.14 0.23 0.10 0.23
mean 1.17 0.50 0.07 0.13 0.10 0.12 0.10 0.14 0.23 0.11 0.24
97.5% 1.53 0.83 0.18 0.19 0.15 0.17 0.17 0.23 0.36 0.19 0.35

MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.92 0.19 0.0 0.09 0.06 0.08 0.06 0.09 0.15 0.04 0.13
50% 1.16 0.50 0.0 0.13 0.10 0.11 0.10 0.14 0.23 0.10 0.24
mean 1.18 0.50 0.0 0.13 0.10 0.12 0.10 0.14 0.23 0.11 0.24
97.5% 1.57 0.81 0.0 0.19 0.15 0.18 0.17 0.23 0.36 0.19 0.36

EC-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.92 0.18 0.01 0.09 0.06 0.08 0.06 0.09 0.15 0.04 0.14
50% 1.17 0.50 0.03 0.13 0.10 0.11 0.10 0.14 0.23 0.10 0.24
mean 1.18 0.50 0.03 0.13 0.10 0.12 0.10 0.14 0.23 0.11 0.24
97.5% 1.56 0.81 0.03 0.19 0.15 0.18 0.17 0.23 0.36 0.19 0.35

C-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.92 0.18 0.0 0.09 0.06 0.08 0.06 0.09 0.15 0.04 0.13
50% 1.17 0.50 0.0 0.13 0.10 0.11 0.10 0.14 0.23 0.10 0.24
mean 1.18 0.49 0.0 0.13 0.10 0.12 0.10 0.14 0.23 0.11 0.24
97.5% 1.57 0.81 0.0 0.19 0.15 0.18 0.17 0.23 0.36 0.19 0.36

Table 7.5: Estimates and 95% probability intervals for parameters of model TVC-NPM3, E-MTVC-
NPM3, MTVC-NPM3, EC-MTVC-NPM3 and C-MTVC-NPM3 over 200 datasets with size 200
(time-varying covariates are generated from cosine shape functions and 5% of glucose values are
missing completely at random(MCAR) in the original datasets)
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R1,0 R2,0 R2,1 R3,0 R3,1 R3,2 R3,3

True: 0.37 0.55 0.55 0.65 0.50 0.40 0.29

TVC-NPM3
2.5% 0.30 0.46 0.43 0.54 0.35 0.28 0.15
50% 0.38 0.55 0.54 0.64 0.50 0.39 0.30
mean 0.38 0.55 0.54 0.65 0.51 0.39 0.30
97.5% 0.47 0.66 0.66 0.77 0.66 0.52 0.47

E-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.31 0.41 0.41 0.47 0.38 0.27 0.16
50% 0.39 0.51 0.53 0.57 0.53 0.38 0.32
mean 0.39 0.51 0.53 0.58 0.53 0.38 0.31
97.5% 0.47 0.62 0.65 0.70 0.69 0.52 0.52

MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.31 0.41 0.41 0.46 0.38 0.27 0.15
50% 0.39 0.51 0.52 0.57 0.53 0.38 0.31
mean 0.39 0.51 0.52 0.57 0.53 0.38 0.31
97.5% 0.47 0.62 0.64 0.70 0.70 0.52 0.51

EC-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.31 0.41 0.41 0.47 0.38 0.27 0.15
50% 0.39 0.51 0.52 0.57 0.53 0.38 0.31
mean 0.39 0.51 0.52 0.58 0.53 0.38 0.31
97.5% 0.47 0.62 0.64 0.71 0.70 0.52 0.51

C-MTVC-NPM3 (5% of glucose values are MCAR)
2.5% 0.32 0.41 0.41 0.46 0.38 0.27 0.15
50% 0.39 0.51 0.52 0.57 0.53 0.38 0.31
mean 0.39 0.51 0.52 0.58 0.53 0.38 0.31
97.5% 0.47 0.62 0.63 0.70 0.70 0.52 0.51

Table 7.6: Estimates and 95% probability intervals for split parameters of model TVC-NPM3,
E-MTVC-NPM3, MTVC-NPM3, EC-MTVC-NPM3 and C-MTVC-NPM3 over 200 datasets with
size 200 (time-varying covariates are generated from cosine shape functions and 5% of glucose
values are missing completely at random(MCAR) in the original datasets)



107

H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

True: 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20

TVC-EPEM3
2.5% 0.76 0.23 0.56 0.10 0.04 0.05 0.05 0.08 0.14 0.03 0.12
50% 1.00 0.51 0.71 0.13 0.07 0.08 0.08 0.13 0.21 0.08 0.21
mean 1.00 0.50 0.71 0.14 0.07 0.08 0.08 0.14 0.21 0.08 0.21
97.5% 1.26 0.79 0.88 0.18 0.11 0.12 0.13 0.20 0.31 0.15 0.32

E-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.91 0.16 0.00 0.09 0.06 0.07 0.05 0.09 0.15 0.03 0.13
50% 1.16 0.49 0.07 0.13 0.09 0.11 0.10 0.14 0.24 0.10 0.24
mean 1.18 0.49 0.11 0.13 0.10 0.11 0.10 0.14 0.24 0.10 0.24
97.5% 1.56 0.82 0.45 0.20 0.15 0.17 0.17 0.24 0.37 0.18 0.37

MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.93 0.18 0.0 0.09 0.06 0.08 0.05 0.09 0.15 0.04 0.13
50% 1.19 0.49 0.0 0.13 0.10 0.11 0.10 0.14 0.24 0.10 0.25
mean 1.20 0.48 0.0 0.13 0.10 0.12 0.10 0.14 0.24 0.11 0.25
97.5% 1.60 0.81 0.0 0.19 0.15 0.18 0.17 0.23 0.37 0.20 0.38

EC-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.86 0.16 0.02 0.09 0.06 0.06 0.05 0.09 0.15 0.03 0.10
50% 1.13 0.50 0.16 0.13 0.09 0.11 0.10 0.14 0.23 0.09 0.23
mean 1.14 0.50 0.21 0.13 0.09 0.11 0.10 0.14 0.24 0.10 0.23
97.5% 1.50 0.82 0.65 0.19 0.15 0.16 0.17 0.22 0.35 0.18 0.35

C-MTVC-EPEM3 (5% of glucose values are MCAR)
2.5% 0.93 0.17 0.0 0.09 0.06 0.08 0.05 0.09 0.15 0.04 0.13
50% 1.19 0.49 0.0 0.13 0.10 0.11 0.10 0.14 0.24 0.10 0.25
mean 1.20 0.48 0.0 0.13 0.10 0.12 0.10 0.14 0.24 0.11 0.25
97.5% 1.60 0.80 0.0 0.19 0.15 0.18 0.17 0.23 0.37 0.19 0.38

Table 7.7: Estimates and 95% probability intervals for all parameters of model TVC-EPEM3,
E-MTVC-EPEM3, MTVC-EPEM3, EC-MTVC-EPEM3 and C-MTVC-EPEM3 over 200 datasets
with size 200 (time-varying covariates are generated from cosine shape functions and 5% of
glucose values are missing completely at random(MCAR) in the original datasets)
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H0 Gender Glucose d1 d2 d3 d4 d5 d6 d7 d8

E-MTVC-NPM3 (15% of glucose values are MCAR)
2.5% 0.92 0.18 -0.01 0.09 0.06 0.08 0.06 0.09 0.15 0.04 0.13
true 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20
50% 1.16 0.50 0.02 0.13 0.10 0.11 0.10 0.14 0.23 0.10 0.23
mean 1.17 0.50 0.02 0.13 0.10 0.12 0.10 0.14 0.23 0.11 0.24
97.5% 1.53 0.81 0.09 0.19 0.15 0.18 0.17 0.22 0.36 0.19 0.35

E-MTVC-EPEM3 (15% of glucose values are MCAR)
2.5% 0.93 0.17 -0.01 0.09 0.06 0.08 0.05 0.09 0.15 0.04 0.13
true 1.00 0.48 0.70 0.13 0.07 0.08 0.08 0.14 0.21 0.08 0.20
50% 1.18 0.49 0.03 0.13 0.10 0.11 0.10 0.14 0.24 0.10 0.24
mean 1.19 0.49 0.03 0.13 0.10 0.12 0.10 0.14 0.24 0.11 0.25
97.5% 1.55 0.80 0.10 0.19 0.15 0.18 0.17 0.23 0.37 0.19 0.37

Table 7.8: Estimates and 95% probability intervals for all parameters of model E-MTVC-NPM3
and E-MTVC-EPEM3 over 200 datasets with size 200 (time-varying covariates are generated from
cosine shape functions and 15% of glucose values are missing completely at random(MCAR) in
the original datasets)

7.4 Theoretical analysis

Recall that, in Section 4.2, we discussed about cumulative hazard function estimation. Con-

sider the i-th subject with failure time yi, over each time interval [ts−1, ts], if we use the average

value of G(t) of this interval to replace G(t) within this interval, then the general form of overall

error bound of approximating the his/her cumulative function H(yi) is showed in Equation (4.19).

In our simulated data study, we generate the glucose value per each subject in a dataset use

a function

G(t) = a0 + a1 cos(a2t) (7.2)

Therefore, with all the assumption the same as in Section 4.2, the overall error for approximating

the i-th unit’s cumulative hazard function becomes
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|error| 6 1
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2
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}
(7.3)

Further, in our MRH model, although we have time-varying covariates, but within each interval,

even for these time-varying covariates we still assume it is a constant. In other words, in each

interval, we just choose a G(t) value to represent the whole G(t) values, when we calculate our

true cumulative hazard function and this representing value is selected completely at random.

With this assumption, when trying to approximate the value of a time-varying covariate using

its average value over that interval, the error can even bigger. In this scenario, Equation (4.13)

becomes

|error| 6 1

2!
β2max(λs)e

max(G(τ))β

{ j−1∑
s=1

∫ ts

ts−1

(a1 cos(a2t
∗
s)−

a1(sin(a2ts)− sin(a2ts−1))

a2(ts − ts−1)
)2dτ

+

∫ yi

tj−1

(a1 cos(a2t
∗
j )−

a1(sin(a2yi)− sin(a2tj−1))

a2(yi − tj−1)
))2dτ

}

6 1

2!
β2max(λs)e

max(G(τ))β

{ j−1∑
s=1

∫ ts

ts−1

a21dτ +

∫ yi

tj−1

a21dτ

}
=

1

2!
β2max(λs)e

max(G(τ))βa21yi

(7.4)

In Equation (7.4), we assume the failure time yi falls into the j-th time interval and t∗s denotes a

randomly picked time in the s-th time interval [ts−1, ts]. So we can see when use the average value

of G(t) over each interval to replace the covariate value in the corresponding interval, and use it to



110

approximate the cumulative hazard function up to failure time, sometimes the error can be very

big as showed in the last line of Equation (7.4).

Similarly, when we deal with missing data, if we use the average value of the fitted curve to

be the imputed value of missing data in a interval, the error for calculating hazard increment of

the interval can be as large as

|error| 6 1

2!
β2λse

Msβa21(ts − ts−1) (7.5)

Here we assume the missing data is in the s-th interval, β is positive and Ms is the maximum value

of G(t) over interval [ts−1, ts]. When β is less than 0, corresponding error bound can be figured

out.

Moreover, the bounds from Equation (7.5) are calculated based on that we have the true

expression of G(t). In real life, we will never have the true expression of covariate curve, so we will

always fit a curve for a covariate using its available values. In many case this fitted curve may not

reflect the fact, therefore, the error in Equation (7.5) will be even larger. In Figure 7.1 , Figure

7.2 and Figure 7.3 we showed exmaples of how fitted curves can vary from the real values, for the

case that one, two, or three out of eight covariate values are missing in a subject’s record. When

it comes to take average of the fitted curve as the missing value over corresponding intervals, the

difference of the true missing value and the average will be even large.

In all, from Figure 7.1 , Figure 7.2 and Figure 7.3, we can conclude that, if we want to use

the average value of the covariate over an interval to represent the missing value, intuitively,the

covariate need to be very ”flat”, within each interval from our initial partition of the time axis.

Mathematically, for each time interval in the study, the covariate function should have a very small

L2 norm of the difference of itself and its mean over that interval.

From all the simulation tests result and the above discussion, we now have better understand-

ing about how MRH models can perform with missing time-varying covariates. First, it seems no

matter what method we use, when the covariate has a pattern of going up and down quite frequently

over the study time with a large range, it is very hard to use average value of the covariate within
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that interval to substitute the missing value. This coincides with our conclusion drawn aforemen-

tioned, since for a function behaves in this way, it is too various and the L2 norm of itself minus its

mean within that interval won’t be small. For instance, if over the interval the covariate happen

to have a full cycle of cosine function, then the average will be zero. But when we take covariate

values in our survival model, for one time interval, when we have a covariate value available, we

just make the covariate have this value in this interval. Since this value can be any number in the

range of cosine function. It is improper to use its average to replace the missing value.

Secondly, when it comes to fit models with available data, we may also not get good fitted

curves. When we use polynomials to fit cosine function base curve, as the cases we analyse here,

depending on how the given data spreading sometimes even the fitted model itself will not be good,

therefore the average of integral values can’t be good. I randomly pick a unit’s full data of eight

glucose values, including all the glucose values and their corresponding measure times. And the

original glucose values are from the dataset we generated in Section 5.3 with cosine shape functions.

I randomly discard one or two or three values from these 8 values. Then I use polynomials to fit

the rest data, best model is selected by AIC values. I then calculate the predictive value of each

missing data using their real measure times. In real life, we may not have the times, so it will

be even worse. In Figure 7.1 we have only one data missing at a time, in Figure 7.2 we have two

data missing at a time,and in Figure 7.3 we have three data missing at a time. In these Figures,

observed data is in blue, the true value of missing data is in red and the predictive values are in

green. When there is only one data missing, when the data is missing will affect its prediction

value a lot. As in Figure 7.1, we can see when it is missing at the beginning or the end of a study,

the prediction value will not be closed to the real one. When a value is missing in the middle of a

study, the prediction of it would be much closer to the real one. But when more than one data is

missing, no matter when the value is missing, the predictions will become worse and worse. Also

even with the same number of missing data, when the data are missing will affect the fitted model

and prediction value a lot.
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Figure 7.1: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using cosine like function)

In the same fashion, I plot Figure 7.4, Figure 7.5 and Figure 7.6, where the original full

covariate values of a subject is just from the dataset we generated in Section 5.3 with five degree

polynomials. Again, we can find that the percentage of covariate values is missing and when the
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Figure 7.2: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using cosine like function)

data is missing both will affect the fitted model and therefore may severely affect the missing data

imputation that we discussed in Section 7.2.
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Figure 7.3: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using cosine like function)
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Figure 7.4: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using five degree polynomial no random noise added)
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Figure 7.5: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using five degree polynomial no random noise added)
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Figure 7.6: Expectation of imputed missing value (in red), missing values are in green, available
values are in blue. (original data is generated using five degree polynomial no random noise added)



Chapter 8

Conclusions and future work

8.1 Conclusions

The first part of this thesis we propose an extension to the multiresolution model (MRH)

prior that can accommodate data-driven varying smoothness of the hazard rate function over time.

The method still relies on the tree-like prior structure for the hazard rate, but makes data-driven

choices about using identical hazard rates in adjoint time intervals. The method, which we call

pruned MRH (PMRH) method, is studied in simulated data, revealing computational savings,

stable estimation, and inferential procedures for the hazard rate, with little impact on covariate

effect and the overall hazard estimates. The model is applied to a prostate cancer study, where

it was used to jointly estimate the baseline hazard function and the impact of treatment, Gleason

score, and age on hazard over time.

The second part investigates how PMRH models can be implemented in data with time-

varying covariates, and verify that PMRH models also work well in these data. Apart from full

datasets, we also study the missing data imputation strategies and how MRH models can perform

with datasets having missing time-varying covariates, using their imputed full datasets from differ-

ent approaches. Among the four imputation approaches we propose, we show that unconditional

exact imputation will lead us to the best MRH model performance when all the other conditions

are the same. We find that no matter how much data is missing and no matter which imputation

approach is used, the estimates for constant covariate effects can mostly be approximated to cer-

tain accuracy. But the estimates for baseline cumulative hazard function have a trend to be larger
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and larger, and time-varying covariate effects are getting more and more close to zero, when more

covariate values are missing , and the conditional imputation or non-exact imputation or mixed

are used. Further more, we investigate how the shape of the original covariate function can affect

missing data imputation and therefore affect the performance of MRH models. In order to impute

missing data effectively, the L2 norm of the original covariate function minus the mean of it within

each interval from the time axis partition in MRH models need to be small. Moreover, beside the

shape of the original covariate function,we show that the percentage of missing covariate values and

the time they are missing also would affect the fitted model for covariates. The higher percentage

of missing covariates and more missing data at the beginning or close to the failure/censoring time,

will make the model fitting more difficult, and result in worse missing data imputation.

8.2 Future work

In this thesis we have shown that our extended MRH models and approaches can solve some

survival analysis problems. But there are still more extensions can be made. Currently, all the

models we study having the assumption that the covariate effects are time independent. On the

other hand, in survival analysis, we also have encountered time-varying effects in applications.

Therefore, we are going to incorporate time-varying effects to our PMRH models and MRH models

with time-varying covariates in our future work.
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