
Dynamic Equivalence of Control Systems

via In�nite Prolongations

by

Matthew Stackpole

B.A., Lawrence University, 2005

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

2011



This thesis entitled:
Dynamic Equivalence of Control Systems

via In�nite Prolongations
written by Matthew Stackpole

has been approved for the Department of Mathematics

Jeanne Clelland

George Wilkens

Date

The �nal copy of this thesis has been examined by the signatories, and we �nd that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Stackpole, Matthew (Ph.D., Mathematics)

Dynamic Equivalence of Control Systems

via In�nite Prolongations

Thesis directed by Prof. Jeanne Clelland

Abstract: Control systems are underdetermined systems of n ordinary di�erential equations

(ODEs),

ẋ = f(x,u), (1)

that show up in the design of electrical and mechanical systems, among other things. The variables

x whose time evolution is determined by the ODEs are called state variables, while the �free pa-

rameters� u are called control variables. A control system can be viewed as a submanifold Σ of the

tangent bundle of the state space in the following way: given a manifold M and a curve x : I →M ,

we say that x is a solution to the system Σ ⊂ TM if (x(t), ẋ(t)) lies in Σ for all t ∈ I. The map

Rs → TxM given by u 7→
(
x, f(x,u)

)
is a parametrization of Σx = Σ ∩ TxM with the parameters

u seen as local coordinates on Σx.

A dynamic equivalence takes trajectories of one system, ẋ = f(x,u), to those of another,

ẏ = g(y,v), and back again via maps between jet spaces which allow state derivatives to get mixed

in:

(x,u, u̇, . . . ,u(J)) 7→ y(x,u, u̇, . . . ,u(J)).

Through the de�ning equation (1), derivatives of state variables can be expressed in terms of control

variables and their derivatives as well. Static (feedback) equivalence, which is a di�eomorphism of

the state space, is a special case when y = y(x).

Up to dynamic equivalence at the �rst jet level (J = 0), i.e. x = x(y,v) and y = y(x,u), my

results classify all a�ne linear control systems,

ẋ = f0(x) + uif i(x),
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of at most three states and two controls through the use of Cartan's method of equivalence. My

main result is that every a�ne linear control system of three states and two controls falls into one

of three classes under dynamic equivalence. The numbered rows represent these three classes. The

entries in each row are systems that, while dynamically equivalent, are not statically equivalent.

1 ẋ1 = u1 ẋ1 = u1 ẋ1 = u1

ẋ2 = u2 ẋ2 = u2 ẋ2 = u2

ẋ3 = x2 ẋ3 = x2u1 ẋ3 = 1 + x2u1

2 ẋ1 = u1

ẋ2 = u2

ẋ3 = 0

3 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1
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Chapter 1

Control Systems

A system of ordinary di�erential equations (ODEs) with more variables than equations is

called a control system. Locally a control system with n + s variables and n equations can be

written in the form

ẋ1 = f1(x1, . . . , xn, u1, . . . , us),

ẋ2 = f2(x1, . . . , xn, u1, . . . , us),

...

ẋn = fn(x1, . . . , xn, u1, . . . , us).

For our purposes, we will consider the functions fi, 1 ≤ i ≤ n, to be C∞.

Here, xi : R→ R and uj : R→ R. We will use t as our independent variable, and derivatives

with respect to t will be denoted by a dot: dxi
dt = ẋi. This system of equations can be abbreviated

with the single vector equation ẋ = f(x,u) where x = (x1, . . . , xn)T , u = (u1, . . . , us)T , and

f = (f1, . . . , fn)T . This type of control system is called time independent since there is no

explicit t dependence in the fi.

In general, quantities that are vectors or matrices, like x above, will be written in bold face

to distinguish them from scalars, like xi.

The variables xi are known as the state variables, while the variables uj are known as the con-

trol variables. To explain the terminology, imagine a hovercraft on the surface of a two-dimensional
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lake. The state variables would be those needed to describe the state of the hovercraft on the lake:

position of the hovercraft, which direction the hovercraft is turned, and the translational and rota-

tional velocities of the hovercraft. The time evolution of state variables is predetermined, in this

case by the Newton-Euler equations of motion, which are given explicitly in the example below. The

control variables allow external in�uence of the state variables' time evolution. In the hovercraft

scenario, control variables could describe the hovercraft's motor: the magnitude and direction of its

thrust. Control variables are exactly what the hovercraft operator uses to control the system.

Here is the simple example of the hovercraft in more detail.

Example 1 Hovercraft on a 2D lake [1]

Figure 1.1: Hovercraft in two dimensions

Let e1, e2 be an orthonormal frame for a stationary frame of reference, and f1, f2 an or-

thonormal frame for the hovercraft's frame of reference with origin at the hovercraft's center of

mass. Assuming the stationary frame of reference and the frame of the hovercraft have the same

orientation, then the con�guration of the hovercraft may be written entirely in terms of the station-

ary frame of reference by writing the position of the hovercraft's center of mass as a displacement

vector, x = x1e1 + x2e2, and by writing the hovercraft's reference frame in terms of the stationary

frame, f1 = (cos θ)e1 + (sin θ)e2 and f2 = (− sin θ)e1 + (cos θ)e2. Therefore the con�guration space

of a hovercraft on a lake is R2×SO(2,R). A natural choice of local coordinates would be (x1, x2, θ).
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Suppose a force F = u1f1 + u2f2 is applied to the hovercraft a distance h > 0 from the center

of mass along the negative f1 axis. Think of this as a thruster with variable direction. Then the

Newton-Euler equations of motion for this system are the following.

mẍ1 = u1 cos θ − u2 sin θ

mẍ2 = u1 sin θ + u2 cos θ

Jθ̈ = −hu2

Here m is the mass of the hovercraft and J is its moment of inertia about the normal line to the

plane that passes through the center of mass.

This second order system of ODEs can be turned into a �rst order control system simply by

introducing intermediate derivatives, a.k.a. velocities, into the system as new state variables.

ẋ1 = v1

ẋ2 = v2

θ̇ = ω

v̇1 = (u1 cos θ − u2 sin θ) /m

v̇2 = (u1 sin θ + u2 cos θ) /m

ω̇ = −hu2/J

This system has six state variables, (x1, x2, θ, v1, v2, ω), and two control variables, (u1, u2).



Chapter 2

Dynamic Equivalence

Geometrically, a control system can be viewed as a submanifold Σ = R×Σ of R×TM in the

following manner: Given local coordinates x on M , the control system Σ is a manifold with local

coordinates (x,u). With local coordinates (x, ẋ) on TM , there is an embedding

ι : R× Σ→ R× TM

given in by

(t,x,u) 7→ (t,x, f(x,u)).

This embedding ι pulls back the contact forms {dxi− ẋi dt | i = 1, . . . , n } on R×TM to the forms

{ ωi = dxi − fi(x,u) dt | i = 1, . . . , n } on R× Σ.

A solution to a control system also has a geometric interpretation. Let x(t) be a curve in

M , i.e. x : R → M , and de�ne p1x(t) = (x(t), ẋ(t)) ∈ TM . Such a curve x(t) is a solution to the

control system Σ if there exists a map σ : R→ Σ that makes the following diagram commute:

Σ
ι|Σ // TM

��
R x

//

p1x

>>|||||||||||||||||

σ

OO�
�
�
�
�
�

M

In particular,

p1x(t) = (ι|Σ ◦ σ) (t),

or in other words, p1x(t) ∈ Σ for all t. Note that ωi(σ̇) = 0 for i = 1, . . . , n.
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We will use the convention in this paper that control a system with a bar over it, for example

Σ, is a subbundle of R × TM , while a control system without the bar, Σ, is a subbundle of TM

which is the projection of Σ. In fact, since we will be requiring that time be preserved through our

equivalences, we will have Σ = R× Σ.

2.1 Jet Spaces

Since the idea of dynamic equivalence is to allow a �change of variables� using higher order

derivatives, we need a setting in which these higher order derivatives can be dealt with, much like

the tangent bundle lets us work with �rst order derivatives. This setting is a jet space. We will say

that curves a, b : R→ R with a(0) = b(0) = 0 have the same K-jets at 0 if

da

dt
(0) =

db

dt
(0),

d2a

dt2
(0) =

d2b

dt2
(0), . . . ,

dKa

dtK
(0) =

dKb

dtK
(0).

Given n-dimensional di�erentiable manifolds U and V and maps a, b : U → V with a(x) = b(x) = q,

we will say that a and b have the same K-jets at x if for any di�erentiable maps φ : R → U ,

ψ : V → R with φ(0) = x, ψ ◦ a ◦ φ and ψ ◦ b ◦ φ have the same K-jets at 0.

Note that having the same K-jets at x is an equivalence relation among maps from U to V .

De�ne the Kth-order jet bundle of M , denoted by JK(M), to be the bundle over M whose �ber

JK(M)x over a point x ∈ M is the space of curves a : R→ M modulo the equivalence relation of

having the same K-jets at x. Notice that with this de�nition, J 0(M) = M and J 1(M) = TM ,

where the equality here is actually a bundle-preserving di�eomorphism.

De�ne the prolongation map pj,k which takes lifts of C∞ curves from M in J j(M) to lifts

of C∞ curves from M in J k(M) (j < k) as follows.

pj,k( x(t), ẋ(t), ẍ(t), . . . , x(j)(t) ) = ( x(t), ẋ(t), ẍ(t), . . . , x(j)(t), . . . , x(k)(t) )

We will denote p0,j simply as pj .
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2.2 De�nition of Dynamic Equivalence

Let M and N be smooth manifolds (state spaces) and

Σ : ẋ = f(x,u)

Λ : ẏ = g(y,v)
(2.1)

control systems over their respective state spaces.

We say control systems (2.1) on M and N are dynamically equivalent over open sets

U ⊂ J J+1(M) and V ⊂ JK+1(N) for nonnegative integers J and K if there exist smooth maps

Φ : U → N and Ψ : V →M so that when restricted to the appropriate open sets:

(1) for any solution x(t) of ẋ = f(x,u), (Φ ◦ pJ+1)(x(t)) is a solution to ẏ = g(y,v),

(2) for any solution y(t) of ẏ = g(y,v), (Ψ ◦ pK+1)(y(t)) is a solution to ẋ = f(x,u),

(3) the following diagram commutes for solutions,

J J+1(M)
OO

Φ

$$IIIIIIIIIIIIIIIIIIII
JK+1(N)

OO

Ψ
uuuuuuuuu

zzuuuuuuuuu

R x //

pJ+1x

BB���������������
J 0(M) J 0(N) R

yoo

pK+1y

\\999999999999999

i.e. Ψ ◦ pK+1 ◦ Φ ◦ pJ+1(x(t)) = x(t) whenever x(t) is a solution of Σ, and Φ ◦ pJ+1 ◦ Ψ ◦

pK+1(y(t)) = y(t) whenever y(t) is a solution of Λ.

Note that this means

y = Φ
(
x, ẋ, . . . ,x(J+1)

)
,

x = Ψ
(
y, ẏ, . . . ,y(K+1)

)
.

We will use the same notation for maps between jet spaces as we did for control systems,

namely ϕ : J j(M)→ J k(N) and ϕ̄ : R×J j(M)→ R×J k(N) with ϕ̄ = id×ϕ. Also note that in

the de�nition of dynamic equivalence, we are using maps ϕ : J j(M)→ J k(N), so they are de�ned
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in terms of the coordinates:

( x, ẋ, ẍ, . . . , x(j) ) 7→ ( y, ẏ, ÿ, . . . , y(k) ).

However, in practice we will be concerned only with the restrictions of these maps to the prolonga-

tions of control systems (de�ned below). Therefore, by way of the de�ning equations ẋ = f(x,u)

and ẏ = g(y,v) of the control systems, we will be looking at the restriction of ϕ to the appropriate

submanifolds with the following coordinates:

( x, u, u̇, . . . , u(j−1) ) 7→ ( y, v, v̇, . . . , v(k−1) ).

The proof of the following theorem should be clear from the de�nition, which is the same

de�nition given in [10].

Theorem 1 Dynamic equivalence is an equivalence relation of control systems.

Static (feedback) equivalence is a special case of dynamic equivalence for which J = K =

−1, i.e. Φ : M → N is a di�eomorphism with Ψ = Φ−1. For static equivalence, we have Φ̄∗Σ = Λ

and Ψ̄∗Λ = Σ. We say two systems are locally static equivalent over U ⊂M and V ⊂ N if there

exist coverings U =
⋃

α∈A Uα and V =
⋃

α∈A Vα such that the systems are static equivalent over

each Uα and Vα.

From an engineering point of view, equivalence can be achieved through the addition of a

feedback loop in the control system. In Figure 2.1, the system Σ has input u and output x. By

adding a feedback loop, the new system Λ has input v and output y. In the case of static equivalence,

the feedback loop only incorporates the old output x so that the new input v is only a function of

x and u. Including one or more integrators to the feedback loop allows v to be a function of x, u,

and some number of derivatives of u, and this is dynamic extension.

2.3 Prolongation

A key ingredient in dynamic equivalence is the notion of prolongation of a control system.

For integers k ≥ 1, de�ne the prolongation of the system Σ to the kth order, denoted by Σk, to
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Figure 2.1: Control system with feedback

be the subbundle of J k(M) that corresponds to the prolongations of solutions of Σ, i.e. for any

x : I →M ,

p1(x(t)) ∈ Σ ∀t ∈ I ⇐⇒ pk(x(t)) ∈ Σk ∀t ∈ I.

Obviously Σ1 = Σ. In the same way that Σ is a control system with s control variables with state

manifold M of dimension n, we can view Σ2 as a control system with s control variables with state

manifold Σ of dimension n+ s. An important fact is that Σ is strictly dynamically equivalent,

i.e. dynamically equivalent but not static equivalent, to Σ2, as can be seen in the diagram below.

Σ2
OO

p1,2

Φ ΣOO

p1

��

J 0(M)
zz

Ψ

Example 2 The system

Σ : ẋ1 = u1

ẋ2 = u2
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has two states and two controls. Σ is dynamically equivalent to Σ2:

Σ2 : ẏ1 = y3

ẏ2 = y4

ẏ3 = v1

ẏ4 = v2

where

x1 = y1, x2 = y2, u1 = y3,

u2 = y4, u̇1 = v1, u̇2 = v2.

(2.2)

We have increased the number of states from two to four by viewing the controls as new state vari-

ables. (2.2) gives the equivalence map. This is an example of what we will call a total prolongation.

In general, a total prolongation of the system ẋ = f(x, u) is the system ẋ

u̇

 =

 f(x,u)

0

 +
∑

i

Eiu̇i, (2.3)

where Ei is the vector with a 1 in the (i + n)th entry and zeros elsewhere. Here (x,u) are the

new state variables and u̇ are the new control variables. This system has a special form. A control

system of the form

ẋ = f(x,u) = f0(x) +
∑

i

f i(x)ui (2.4)

is called control a�ne. In particular, (2.3) is control a�ne. Thus we have the following theorem.

Theorem 2 Every control system Σ is dynamically equivalent to an a�ne linear control system,

namely Σ2.

Similar to a total prolongation, some, but not all, of the control variables can be made into

new state variables, as we see in the following example.
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Example 3 The system

Σ : ẋ1 = u1

ẋ2 = u2

is dynamically equivalent to Λ:

Λ : ẏ1 = y3

ẏ2 = v1

ẏ3 = v2

where

x1 = y1, x2 = y2, u1 = y3,

u2 = v1, u̇1 = v2.

We have increased the number of states from two to three by viewing only one of the controls

as a new state variable. This process is called a partial prolongation. Every control system is

dynamically equivalent to any partial prolongation of that system.

We will assume, without loss of generality, that the two systems in a dynamic equivalence

have the same number of state variables (m = n). If m < n, perform repeated prolongations, either

partial or total, until the number of states are equal and consider this new system.

A method for constructing a potential dynamic equivalence which is not a partial prolongation

was mentioned brie�y in a paper by Pomet [9]. Below we give a speci�c example of how the method

works. This example incorporates both partial prolongation and changes of variables (a.k.a static

equivalences) to give not only two control systems that are strictly dynamically equivalent but also

the equivalence map.
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Example 4 Start with an a�ne linear control system:
ẋ1

ẋ2

ẋ3

 =


1

0

x2

u1 +


0

1

0

u2. (2.5)

Partially prolong the three state system to a four state system.

z1 = x1 z2 = x2

z3 = x3 z4 = u2

w1 = u1 w2 = u̇2

ż1

ż2

ż3

ż4


=



0

z4

0

0


+



1

0

z2

0


w1 +



0

0

0

1


w2

By the nature of this partial prolongation, the w2 vector must be of the form (0 0 0 1)T . The

systems (x,u) and (z,w) are dynamically equivalent. Through a change of basis, transform the w1

vector into (0 0 0 1)T . 

−z2 −z1 1 0

0 1 0 0

0 0 0 1

1 0 0 0





1

0

z2

0


=



0

0

0

1


This corresponds to the change of coordinates (z̃1, z̃2, z̃3, z̃4) = ( z3− z1z2, z2, z4, z1 ). The change

of coordinates is a static equivalence between (z,w) and (z̃,w), and so we have yet another system

dynamically equivalent to (x,u).

˙̃z1

˙̃z2

˙̃z3

˙̃z4


=



−z̃3z̃4

z̃3

0

0


+



0

0

0

1


w1 +



0

0

1

0


w2
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The (z̃,w) will be a partial prolongation of a three state system. In this case,

z̃1 = ỹ1, z̃2 = ỹ3,

z̃3 = ỹ2, z̃4 = ṽ1,

w1 = ˙̃v1 , w2 = ṽ2.

The numberings were chosen so that the �nal equations of the control system end up in this par-

ticularly nice form. 
˙̃y1

˙̃y2

˙̃y3

 =


0

0

ỹ2

 +


−ỹ2

0

0

 ṽ1 +


0

1

0

 ṽ2

By construction, the systems (x,u) and (ỹ,v) are dynamically equivalent. What the process

does not tell us is if this equivalence is strictly dynamic, for it could easily be static as well. In this

example, however, the (x,u) system is one of the classes of static equivalence given in Elkin [2] and

Wilkens [11], while the (ỹ,v) system is clearly static equivalent to a distinct class (y,v)
ẏ1

ẏ2

ẏ3

 =


0

0

y2

 +


1

0

0

 v1 +


0

1

0

 v2 (2.6)

following the transformation

ỹi = yi, i = 1, 2, 3,

v1 = −ỹ2ṽ1, ṽ2 = v2.

It is interesting to note that unlike the original system (2.5) in our equivalence, (2.6) decouples

into two smaller and separate systems: the �rst equation involves just y1, v1, while the other two

equations involve only y2, y3, v2. This equivalence also converts a nonlinear system (x,u) into

a linear one (y,v). Both decoupling of equations and linearity greatly simplify the analysis of

solutions of control systems.
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Not only does the process presented above tell us that (x,u) and (y,v) are dynamically

equivalent, but through some back tracking, it gives us the explicit equivalence maps.

(x1, x2, x3, u1, u2) 7→ (x3 − x1x2, u2, x2, −x1u2, u̇2)

(y1, y2, y3, v1, v2) 7→ (−v1
y2
, y3, y1 −

y3v1
y2

,
v1v2 − y2v̇1

y2
2

, y2)

This simple example also shows why it is necessary to consider dynamic equivalence on open

sets. In this case, we run into problems with this equivalence when y2 = 0.

To complete this example, we will verify that this transformation does in fact take solutions

of (2.5) to solutions of (2.6) and vice versa.

ẏ1 =
d

dt
(x3 − x1x2)

= ẋ3 − ẋ1x2 − x1ẋ2

= x2u1 − u1x2 − x1u2

= −x1u2

= v1 X

ẏ2 = u̇2

= v2 X

ẏ3 = ẋ2

= u2

= y2 X

ẋ1 =
d

dt

(
−v1
y2

)
=

v1y2 − y3v̇1
y3

2

= u1 X

ẋ2 = ẏ3

= y2
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= u2 X

ẋ3 =
d

dt

(
y1 −

y3v1
y2

)
= v1 −

y2(y2v1 + y3v̇1)− y3v1v2
y2

2

= y3
v1v2 − y2v̇1

y2
2

= x2u1 X

The fact that these maps act as inverses on solutions is easy to verify.



Chapter 3

Previous Results

The �rst theorem of this section is one of the most important, yet simplest to state, properties

of dynamic equivalence. It can be found stated in a compatible form in [3], but the following theorem

and its proof, which are more in line with the terminology of this thesis, can be found in [9].

Theorem 3 The number of control variables is an invariant of dynamic equivalence.

Note that while this theorem states that dynamically equivalent systems must have the same

number of control variables, they may have di�erent numbers of state variables. This is most

obviously illustrated by Theorem 2. A system with n states and s controls is equivalent to its pro-

longation, which has n+s states and s controls. Thus the number of states in a system dynamically

equivalent to a given system is unbounded.

Recall that a submanifold of an a�ne space is called ruled if, given any point of the sub-

manifold, there is a line that passes through that point and that is contained completely within

the submanifold. Classic examples of ruled submanifolds are planes, cylinders, and the hyperboloid

of one sheet. We will abuse this terminology slightly and still call a submanifold ruled if it is the

intersection of a ruled submanifold with a possibly bounded open set. A control system is called

ruled if, when viewed as a subbundle Σ of the tangent bundle TM , it de�nes at every point x a

ruled submanifold Σx of the tangent space TxM at that point.

To state what is probably the most signi�cant result to date in dynamic equivalence, some

notation must be established. For j < k, let πk,j be the canonical projection from J k(M) to J j(M).
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Obviously πk,k is the identity. For any open set Ω ⊂ J k(M), de�ne the subset Ωl ⊂ J l(M) by

Ωl =

 πk,l(Ω) if l ≤ k,

πl,k
−1(Ω) if k ≤ l.

The following is due to Pomet [10].

Theorem 4 (Pomet) Let Σ and Λ be control systems with state manifolds M and N of dimension

m and n, J , K two positive integers, and U ⊂ J J+1(M), V ⊂ JK+1(N) two open sets satisfying

U1 ∩ Σ ⊂ (U ∩ ΣJ+1)1 and V1 ∩ Λ ⊂ (V ∩ ΛK+1)1. (3.1)

If Σ and Λ are dynamic equivalent over U and V, then

• if m > n, then Σ is ruled in U1.

• if n > m, then Λ is ruled in V1.

• if m = n, then

∗ (real analytic case) if U1 ∩Σ and V1 ∩Λ are connected, either Σ and Λ are ruled in U1

and V1, respectively, or they are locally static equivalent over U1 and V1.

∗ (C∞ case) there are open sets R,S ⊂ U1 and R,S ⊂ V1 with

(1) U1 = R̄ ∪ S = R ∪ S̄,

(2) V1 = R̄ ∪ S = R∪ S̄,

(3) Σ and Λ are ruled over R and R,

(4) Σ and Λ are static equivalent over S and S.

The condition 3.1 basically says that nothing is lost when either prolonging the control system

up or projecting the open set down in the jet spaces. In fact this containment is an equality; the

reverse inclusion follows directly from the de�nitions.

Recall that every system Σ is dynamically equivalent to its prolongation Σ2. Since the di-

mension of the state space of Σ2 is larger than the dimension of the state space of Σ, this theorem
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guarantees that Σ2 is ruled. Of course we already know that Σ2 is a�ne linear, so in this case the

result is trivial. A natural question that arises from this, and one that is partially answered by this

thesis, is this:

Given an a�ne linear control system, when is it the prolongation of a smaller system?

At the moment, this question has not been answered in its full generality, here or elsewhere.

In an attempt to partially address this issue, this thesis will classify control systems of low dimension

that are a�ne linear up to dynamic equivalence in Chapter 11. The methods used to do this rely on

a previous classi�cation of a�ne linear control systems under static equivalence. For the complete

classi�cation of a�ne linear systems under static equivalence with at most three states, which I

present here without proof, see [2].

In the following theorem, n represents the number of state variables xi, and uj are control

variables. Given a control system Σ : ẋ = f(x,u) with state space M , we say that a point p ∈ M

is regular if there is a neighborhood of p on which the rank of Σ, de�ned to be the rank of ∂f
∂u , is

constant.

Theorem 5 (Elkin) An a�ne linear control system (2.4) with n ≤ 3 states is locally static equiv-

alent at a regular point p to one of the following systems:

• n = 1

ẋ1 = 0, ẋ1 = 1, ẋ1 = u1.

• n = 2  ẋ1 = 0

ẋ2 = 0
,

 ẋ1 = 1

ẋ2 = 0
,

 ẋ1 = u1

ẋ2 = 0
,

 ẋ1 = u1

ẋ2 = 1
,

 ẋ1 = u1

ẋ2 = x1

,

 ẋ1 = u1

ẋ2 = u2

,
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• n = 3
ẋ1 = 0

ẋ2 = 0

ẋ3 = 0

,


ẋ1 = 1

ẋ2 = 0

ẋ3 = 0

,


ẋ1 = u1

ẋ2 = 0

ẋ3 = 0

,


ẋ1 = u1

ẋ2 = 1

ẋ3 = 0

,


ẋ1 = u1

ẋ2 = x1

ẋ3 = 0

,


ẋ1 = u1

ẋ2 = x1

ẋ3 = 1

,


ẋ1 = u1

ẋ2 = x1

ẋ3 = x2

,


ẋ1 = u1

ẋ2 = H(x)u1

ẋ3 = 1 + x2u1

,

where H(x) is an arbitrary function with ∂H
∂x3

is nonzero.
ẋ1 = u1

ẋ2 = u2

ẋ3 = 0

,


ẋ1 = u1

ẋ2 = u2

ẋ3 = 1

,


ẋ1 = u1

ẋ2 = u2

ẋ3 = u3

,


ẋ1 = u1

ẋ2 = u2

ẋ3 = x2

,


ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

,


ẋ1 = u1

ẋ2 = u2

ẋ3 = 1 + x2u1

.

The following theorem takes the problem of classifying control systems with one control vari-

able under dynamic equivalence and reduces it to the simpler case of static equivalence. While this

theorem has been known for some time (see [9] for one example), a new proof of this theorem in

the framework of this thesis will be given in Chapter 7.

Theorem 6 Let the control systems Σ, Λ in (2.1) be dynamically equivalent with s = 1 control

variable and m, n state variables, respectively. If m = n, then the systems are in fact static

equivalent. If m < n (m > n), then the systems are static equivalent after a �nite number of

prolongations of the smaller system Σ (Λ).



Chapter 4

The Equivalence Problem

Given a manifold M , a framing on M is a collection {Xi}ni=1 of smooth sections of the

tangent bundle TM such that for every p ∈M , the collection of vectors {(Xi)p}ni=1, called a frame,

forms a basis for TpM . A coframing is simply the dual of this notion, i.e. a collection of 1-forms

{ωj}nj=1 (smooth sections of the cotangent bundle T ∗M) such that {(ωj)p}nj=1 forms a basis for

T ∗pM for every p ∈M . Every coframing ωj has a corresponding framing Xi for which ω
j(Xi) = δj

i .

An equivalence problem [4] can be stated in the following way: LetMn and Nn be smooth

n-dimensional manifolds and G ⊂ GL(n,R) a subgroup. Let ω = {ωi}mi=1 and Ω = {Ωi}ni=1 be

coframings of U ⊂M and V ⊂ N , respectively, chosen in some geometrically natural way. We wish

to �nd necessary and su�cient conditions that there exists a di�eomorphism ϕ : U → V such that

ϕ∗ΩV = γV UωU

where γV U : U → G. A common abuse of notation, one which will be used in this thesis, is to drop

the pullback from the notation where the map ϕ is clear from context: ΩV = γV UωU .

For example, suppose we are given manifoldsM and N with metrics ds2 and dS2, respectively.

We can locally diagonalize the metrics on open sets U ⊂M and V ⊂ N such that

ds2 =
∑

i

(ωi
U )2, dS2 =

∑
i

(Ωi
V )2.

The problem then is to �nd necessary and su�cient conditions such that a di�eomorphism ϕ : M →

N exists such that ϕ∗ΩV = γV UωU , where γV U is an element of the orthogonal group O(n).
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The goal of this thesis is to adapt the framework of an equivalence problem to dynamic

equivalence. Then, using methods of exterior di�erential systems, we will classify a collection of

control systems. What makes the dynamic equivalence problem tricky is the unboundedness of the

size of the potentially equivalent state manifold, and hence also the lack of di�eomorphisms. A

di�eomorphism ϕ : M → N cannot exist due to di�erences in dimension. In fact, strict dynamic

equivalences are de�ned in terms of submersions rather than di�eomorphisms. This di�culty due

to submersions persists through any �nite number of prolongations. To solve this problem with

submersions, in the next section we will simply make everything the same size: in�nite.



Chapter 5

In�nite Prolongations

The trick to dealing with our submersion woes is through prolongation, an idea introduced in

section 2. Recall that a control system on M

Σ : ẋi = fi(x,u), 1 ≤ i ≤ n, (5.1)

can be represented by

X =
∂

∂t
+

n∑
i=1

fi(x,u)
∂

∂xi

as a parametrization of Σ inside R× TM . A basis for the space X⊥ is

ωi = dxi − fi(x,u) dt, 1 ≤ i ≤ n.

The forms ωi are the pullback to Σ by the inclusion map of the contact forms dxi − ẋi dt on the

cotangent bundle T ∗(R ×M), where R × TM has coordinates (t, xi, ẋi).The collection of 1-forms

{dt, ωi, duj} forms a coframing on Σ that encodes the information of the control system.

Prolongation of (5.1) yields a system Σ2 given by the equations

ẋ = f(x,u)

u̇ = ū

with state variables x,u and control variables ū. This system has corresponding vector �elds

X =
∂

∂t
+

n∑
i=1

fi(x,u)
∂

∂xi
+

s∑
j=1

ūj
∂

∂uj
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Thus a suitable coframing on Σ2 that encodes the information of the original control system and

the control system is 

ω−1 = dt,

ω0
i = dxi − fi(x,u) dt, 1 ≤ i ≤ n,

ω1
j = duj − ūj dt, 1 ≤ j ≤ s,

ω2
j = dūj , 1 ≤ j ≤ s.


De�ne the in�nite jet bundle J∞(M) as the projective limit of the �nite jet bundles

J∞(M) = lim←−
K

JK(M), endowed with the projective limit topology. Let Σ∞ and Λ∞ be the

projective limits of the prolongations of the control systems Σ and Λ, respectively. By repeated

iterations of the prolongation process above, a suitable choice for preferred coframings on Σ∞

and Λ∞ with coordinates (t,x,u, u̇, ü, . . .) and (t,y,v, v̇, v̈, . . .), respectively, which encodes the

information of the respective control systems is as follows.

ω =



ω−1

ω0

ω1

ω2

...


=



dt

dx− f(x,u)dt

du− u̇dt

du̇− üdt
...


Ω =



Ω−1

Ω0

Ω1

Ω2

...


=



dt

dy − g(y,v)dt

dv − v̇dt

dv̇ − v̈dt
...


(5.2)

The covectors ωi and Ωi are n-dimensional for i = 0 and s dimensional for i > 0.

Now we should take a closer look at what happens to the mappings involved in the de�nition

of dynamic equivalence under this in�nite prolongation process. Given a map Φ : ΣJ+1 → N , as in

the de�nition of dynamic equivalence, de�ne the kth prolongation of the map, denoted Φ[k] as the

map that makes the following diagram commute on solutions.
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ΣJ+k+1OO

pJ+1,J+k+1

Φ[k]

''PPPPPPPPPPPPP

ΛkOO

pkΣJ+1OO
pJ+1

Φ

((PPPPPPPPPPPPPP

M N
In other words,

(pk ◦ Φ)
(
pJ+1(x(t))

)
=

(
Φ[k] ◦ pJ+1,J+k+1

) (
pJ+1(x(t))

)
for solutions x(t) ∈M .

Now de�ne Φ∞ : Σ∞ → Λ∞ by Φ∞ = limk→∞Φ[k] in the obvious fashion, i.e. for projection

the projection map πk that takes an in�nite jet to the kth jet,

πk ◦ Φ∞ = Φ[k] ◦ πJ+k+1.

Let Ψ : ΛK+1 → M be the map used in section 2 in the de�nition of dynamic equivalence, and

de�ne Ψ∞ similarly. From the de�nitions of dynamic equivalence and prolongation, it is simple to

show that

Ψ ◦ Φ[K+1] ◦ pJ+K+2 = Id0

is the identity on curves in M . Finite prolongation of this relation shows

Ψ[k] ◦ Φ[K+1+k] ◦ pk,J+K+2+k = Idk (5.3)

is the identity on curves in Σk. Taking the limit of (5.3) as k tends to in�nity tells us that

Ψ∞ ◦ Φ∞ = Id∞

is the identity on Σ∞. Similarly

Φ∞ ◦Ψ∞ = Id∞

is the identity on J∞(N), and we can conclude that Φ∞−1 = Ψ∞ and that Φ∞ is a di�eomorphism.
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To recap, in order to pose an equivalence problem for dynamic equivalence, we needed a

di�eomorphism between spaces. The problem with dynamic equivalence is that the maps used in

the de�nition of the equivalence can never give us a di�eomorphism at any �nite level (unless the

equivalence is actually static). By passing to the in�nite prolongation, the submersions become

di�eomorphisms. We obtain the nice transformations we wanted, and now the issue is that we have

to work on in�nite-dimensional spaces.



Chapter 6

Group Action on the In�nite Prolongations

Now that we have our di�eomorphism between in�nite jet bundles, we would like to know

the form of our group action G. Instead of working with a subgroup of GL(n,R), what we have

now is a group of transformations T ∗Σ∞ → T ∗Λ∞. In an equivalence problem of �nite dimensional

objects, ϕ∗ω = γΩ, γ is essentially the pointwise Jacobian of the di�eomorphisms ϕ. The same is

true in the case of in�nite prolongations.

Suppose we have a transformation (t,x,u, u̇, . . .) 7→ (t,y,v, v̇, . . .) such that t 7→ t. Suppose

y = y(x,u, u̇, . . . ,u(J)), i.e. yu(J) is nonzero and yu(k) = 0 for all k > J . If v = v(x,u, u̇, . . . ,u(J1)),

we need to know �rst of all how J1 is related to J .

On the one hand, we can directly compute the time derivative of y using the chain rule.

dy
dt

=
d

dt
y(x,u, u̇, . . . ,u(J))

= yx(x,u, u̇, . . . ,u(J))f(x,u) + yu(x,u, u̇, . . . ,u(J))u̇

+ . . . yu(J)(x,u, u̇, . . . ,u(J))u(J+1)

On the other hand, ẏ = g(y,v).

dy
dt

= g
(
y(x,u, u̇, . . . ,u(J)),v(x,u, u̇, . . . ,u(J1))

)
Comparing these two versions of dy

dt shows that v = v(x,u, u̇, . . . ,u(J+1)). Thus we have the

following theorem.

Theorem 7 yu(J) is nonzero and yu(k) = 0 for all k > J if and only if vu(J+1) is nonzero and

vu(k) = 0 for all k > J + 1.
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This relation and its repeated derivatives with respect to t show that

v(i) = v(i)(x,u, u̇, . . . ,u(J+i+1)).

Theorem 7 relates to our coframing as follows. Here we are omitting the pullbacks from our

notation.

dy = d
(
y(x,u, u̇, . . . ,u(J))

)
=

∂y
∂x

dx +
J∑

i=0

∂y
∂u(i)

du(i)

dy − g(y,v)dt =
∂y
∂x

dx +
J∑

i=0

∂y
∂u(i)

du(i) − g
(
x,u, . . . ,u(J+1)

)
dt

= A0
0(dx− f(x,u)dt) +

J∑
i=0

A0
i+1

(
du(i) − u(i+1)dt

)
where A0

j , 0 ≤ j ≤ J + 1, are matrices of functions of x,u, . . . ,u(J+1). The fact that dynamic

equivalence is time independent and takes solutions to solutions implies that there is no additional

A0
−1 dt here.

Similar calculations for dv(i) − v(i+1)dt imply that our preferred coframings (5.2) transform

in the following way,

Φ∗∞Ω = Aω
(
Φ∞−1

)∗
ω =

(
Φ∞−1A

)−1 Ω (6.1)

where Ω,A,ω have the form



Ω−1

Ω0

Ω1

Ω2

...


=



1 01×n 01×s 01×s · · · 01×s 01×s 01×s 01×s · · ·

0n×1 A0
0 A0

1 A0
2 · · · A0

J+1 0s×s 0s×s 0s×s · · ·

0s×1 A1
0 A1

1 A1
2 · · · A1

J+1 A1
J+2 0s×s 0s×s · · ·

0s×1 A2
0 A2

1 A2
2 · · · A2

J+1 A2
J+2 A2

J+3 0s×s · · ·
...





ω−1

ω0

ω1

ω2

...

ωJ+1

ωJ+2

...





27

and the Ai
j are submatrices of the following sizes.

matrix A0
0 A0

j Ai
0 Ai

j (i, j ≥ 1)

size n× n n× s s× n s× s

A matrix A of the above form for a �xed J may have an inverse matrix similar to the above form

with arbitrarily large K. For example, composition of dynamic equivalence maps leads to arbitrarily

large J and K.

From here on out, for any statement or theorem about A, an analogous statement or theorem

also holds for A−1 unless otherwise noted. These have been omitted for brevity. Submatrices of A

(A−1) will be denoted by uppercase Ai
j (lowercase ai

j), while individual entries of these submatrices

will denoted by (Ai
j)

k
l ((ai

j)
k
l ). If a particular submatrix is in fact a scalar, which happens when

s = 1, then no bold face type will be used: Ai
j .

Theorem 8 Given a dynamic equivalence Φ∗∞Ω = Aω with adapted coframings (5.2), Ai
J+i+1 =

A1
J+2 for all i ≥ 1.

Proof: This proof is by induction on i. The case of i = 1 is obvious. For i ≥ 1, consider d(Ωi).

Where an equivalence sign ≡ is present below, it is because we are considering the equation modulo

the linear span of {ω0, . . . ,ωJ+i+1}. Keep in mind that we are working with vector equations here.

Recall that ω0 = dx−f(x,u)dt is n×1, and ωj = du(j−1)−u(j)dt, Ωj = dv(j−1)−v(j)dt are s×1 for

j ≥ 1. It is straightforward to verify in coordinates that dωj = −ωj+1 ∧ dt and dΩj = −Ωj+1 ∧ dt

for j ≥ 1.

On the one hand,

d(Ωi) = d
(
dv(i−1) − v(i)dt

)
= −dv(i) ∧ dt

= −Ωi+1 ∧ dt

≡ −Ai+1
J+i+2ω

J+i+2 ∧ dt.
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On the other hand,

d(Ωi) = d(
J+i+1∑

j=0

Ai
jω

j)

=
J+i+1∑

j=0

[
d(Ai

j) ∧ ωj + Ai
jd(ω

j)
]

=
J+i+1∑

j=0

[
d(Ai

j) ∧ ωj −Ai
jω

j+1 ∧ dt
]

≡ −Ai
J+i+1ω

J+i+2 ∧ dt.

Since the ωj form a coframing, they are linearly independent. Thus we can conclude that

Ai
J+i+1 = Ai+1

J+i+2.

2

While this does not completely characterize the group action of dynamic equivalence, it will be

su�cient to prove a result in the next section that classi�es dynamic equivalence in the case of one

control variable. Later sections will narrow down what this group A looks; however, we will never

completely characterize it. What we do prove about A will be su�cient for some non-existence

results.



Chapter 7

Scalar Control

The following theorem about dynamic equivalence in the case of one control variable has been

known for some time. What is presented here is a proof based on Pomet's work [9] that has been

adapted to this framework of coframings on in�nite jet bundles. It reduces all dynamic equivalences

of control systems with just one control variable to the case of static equivalence.

Theorem 9 Let the control systems Σ, Λ in (2.1) be dynamically equivalent with s = 1 control

variable and m, n state variables, respectively. If m = n, then the systems are in fact static

equivalent. If m < n, then the systems are static equivalent after a �nite number of prolongations

of the smaller system Σ.

Proof: Let A = (Ai
j) and A−1 = (ai

j) as before.

If m < n, prolong Σ until m = n. Suppose the coframings of Σ, Λ in (2.1) pull back as in

(6.1). Suppose there exist nonnegative integers J and K such that xv(J) and yu(K) are nonzero. In

Theorem 11 in the next section, it is shown that it is not possible for just one of J or K to be −1,

i.e. Ai
j = 0 for all j > i if and only if ai

j = 0 for all j > i. So both J and K must be nonnegative

for a strict dynamic equivalence to exist.

By the computations in the previous section, A0
J+1 is a nonzero n × 1 matrix. Likewise,

ai
K+i+1 is a nonzero function for all i ≥ 1. Because A0

J+1 is a nonzero n × 1 vector, and aJ+1
K+J+2

is a nonzero function, their product A0
J+1a

J+1
K+J+2 is a nonzero n× 1 vector. However AA−1 is the

identity. Therefore A0
J+1a

J+1
K+J+2, which is an o� diagonal n × 1 entry since 0 < K + J + 2, must

be an all zero n× 1 vector.
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This is a contradiction. Thus J and K cannot exist, and xv(J) = yu(K) = 0 for all J,K ≥ 0.

This shows that the equivalence is in fact static. 2



Chapter 8

Group Adaptations for Two Controls

The last section dealt with the case of a scalar control, in which dynamic and static equivalence

are one and the same. Now we will work on the next simplest case of two controls (s = 2) with

J = K = 0. In the case of one control variable, there is essentially no �room for freedom" to

allow a true dynamic equivalence, aside from prolongations. With two control variables, there is

now �room" to have a strict dynamic equivalence, but just barely. While larger values of J and K

increase the �exibility of possible dynamic equivalences, in this section we will show that there is

really only one way to have a strict dynamic equivalence of two systems with J = K = 0.

8.1 Nonautonomous Static Equivalence

Recall the notation we have developed thus far for the pullbacks of our preferred coframings.

Note the equivalent submatrices Ai
i+1, i ≥ 1, from Theorem 8.

Φ̄∗∞



Ω−1

Ω0

Ω1

Ω2

...


=



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 A0
0 A0

1 0n×2 0n×2 0n×2 · · ·

02×1 A1
0 A1

1 A1
2 02×2 02×2 · · ·

02×1 A2
0 A2

1 A2
2 A1

2 02×2 · · ·
...





ω−1

ω0

ω1

ω2

ω3

...
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(
Φ̄−1
∞

)∗



ω−1

ω0

ω1

ω2

...


=



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 a0
0 a0

1 0n×2 0n×2 0n×2 · · ·

02×1 a1
0 a1

1 a1
2 02×2 02×2 · · ·

02×1 a2
0 a2

1 a2
2 a1

2 02×2 · · ·
...





Ω−1

Ω0

Ω1

Ω2

Ω3

...


In what follows, we will refer to a group element g,

g =



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 g0
0 0n×2 0n×2 0n×2 0n×2 · · ·

02×1 g1
0 g1

1 02×2 02×2 02×2 · · ·

02×1 g2
0 g2

1 g2
2 02×2 02×2 · · ·

...


,

that acts on our coframings as nonautonomous static equivalence, meaning gi
j = 0 for all i < j.

This terminology arises from the fact that such g arise as the Jacobian of a time-dependent static

equivalence x̃ = x(x, t) on the contact system of the in�nite prolongation Σ∞. Unlike the matrix

representing a true static equivalence, g allows changes of variables such as xi 7→ xi + t. Note that

such equivalences take a coframing on Σ∞ to another coframing on Σ∞ (orΛ∞ to Λ∞).

As in the case of dynamic equivalence, we wish to require that the following structure equations

are preserved by nonautonomous static equivalence.

dΩi ∈ span {Ωi+1 ∧Ω−1} mod Ωj , 0 ≤ j ≤ i. (8.1)

This additional condition allows us to simplify the form of g much like we did for A in Theorem 8.

The proof is identical to that of Theorem 8 with J = −1.

Theorem 10 Given a nonautonomous static equivalence g that preserves the structure equations

(8.1), gi
i = g1

1 for all i ≥ 1.
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A straightforward calculation in coordinates shows that every static equivalence is a nonau-

tonomous static equivalence, but of course the converse is not true.

Later we will be showing that every dynamic equivalence with J = K = 0 can be factored

into a constant matrix composed with nonautonomous static equivalences. This result will be key

in proving the main classi�cation results of this paper.

Theorem 11 A is a nonautonomous static equivalence, i.e. Ai
j = 0 for all i < j, if and only if

A−1 is also a nonautonomous static equivalence.

Proof: If A0
1 = 0, then A0

0 is a rank n matrix, hence invertible. Let the submatrices of A−1 be

denoted by ai
j . Since AA−1 = Id, the o� diagonal element A0

0a
0
1 must be zero. Because A0

0 is

invertible, this means a0
1 = 0. By Theorem 7, a0

1 is zero if and only if a1
2 is too. Theorem 8

completes the proof since ai
i+1 = a1

2 for all i ≥ 1 and ai
j = 0 for all j > i. Therefore A−1 is a

nonautonomous static equivalence. 2

8.2 Factoring A

In the following section, we will prove several theorems about the rank of certain submatrices

of A. This chapter will culminate in the �nal theorem, theorem (14), which states that we can

factor our dynamic equivalence in a special way: A = gSG. The g and G are two nonautonomous

static equivalences which encapsulate the traditional change of variables, as in static equivalence.

The S is a �xed constant orthogonal matrix which incorporates the mixing of higher derivatives

into dynamic equivalence.

Theorem 12 Given a strictly dynamic equivalence A with s = 2 and J = K = 0, A1
2 (a 2 × 2

submatrix) has rank 1.

Proof: We know that A1
2 cannot have rank zero by Theorem 11. Assume the rank of A1

2 is two.

Then through a change of coframing ω̃ = Gω via static equivalence G, it can be arranged that the
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elements of Ã = AG−1 look as follows.

Φ̃∗∞



Ω−1

Ω0

Ω1

Ω2

...


=



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 Ã0
0 Ã0

1 0n×2 0n×2 0n×2 · · ·

02×1 02×2 02×2 Id2×2 02×2 02×2 · · ·

02×1 02×2 02×2 02×2 Id2×2 02×2 · · ·
...





ω̃−1

ω̃0

ω̃1

ω̃2

ω̃3

...


We have Φ̃∗∞Ωj = ω̃j+1 for j ≤ 1. By the nature of pullbacks, this also means

(
Φ̃−1
∞

)∗
ω̃j+1 = Ωj .

However this means that A−1 now looks as follows.

(
Φ̃−1
∞

)∗



ω̃−1

ω̃0

ω̃1

ω̃2

...


=



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 ã0
0 ã0

1 0n×2 0n×2 0n×2 · · ·

02×1 ã1
0 ã1

1 ã1
2 02×2 02×2 · · ·

02×1 02×2 Id2×2 02×2 02×2 02×2 · · ·
...





Ω−1

Ω0

Ω1

Ω2

Ω3

...


In particular, 0 = ã2

3 = ã1
2. By the above argument this means that ã0

1 = 0 and the equivalence is

static. This contradicts J = K = 0. Therefore the rank of A1
2 must be one. 2

Theorem 13 Given a dynamic equivalence A with s = 2 and J = K = 0, A0
1 (an n×2 submatrix)

has rank 1.

Proof: The rank of A0
1 is either 0, 1, or 2. If the rank is zero, then the equivalence is static. Consider

(AA−1)02 = A0
1a

1
2 = 0n×2. If rank of A0

1 is two, then A0
1 has a 2× n left inverse, and we conclude

a1
2 = 02×2. However this again implies a static equivalence, so the rank is not two. 2

The plan now is to use this knowledge of the ranks to normalize A via non-autonomous static

group actions to ω and Ω. This will isolate the dynamic part of the mapping to one very speci�c
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form Ω̄ = Sω̄, where Ω̄ = g
−1Ω, ω̄ = Gω, ω and Ω are our preferred coframings (to be determined

later), and g, G are non-autonomous static group elements. An explicit example of how this is

done will follow in the next section.

Starting with the fact that A0
1 has rank one, we know it can be normalized to the following

form through Gauss-Jordan elimination, which in this context is nonautonomous static equivalences

applied to the coframings ω and Ω.

A0
1 =



0 1

0 0
...

...

0 0


Recall that all ωi = (ωi

j) and Ωi = (Ωi
j) are vectors. If we add multiples of ω0

i to ω1
1, we can

eliminate the �rst row of A0
0. Note that this can be accomplished by a static group action.

A0
0 =



0 · · · 0

∗ · · · ∗
...

...

∗ · · · ∗


Since the n× (n+ 2) matrix (A0

0 |A0
1) must have rank n for A to be invertible, the last n− 1 rows

of A0
0 must have rank n− 1. This allows us to normalize the rest of A0

0 via a static group action.

A0
0 =

 0 01×(n−1)

0 Id(n−1)×(n−1)


The �rst n+ 1 rows of A have now been reduced to ones and zeros.

Since the rank of Ai
i+1 is one, non-autonomous static equivalences applied to both coframings

ω and Ω yields a new coframing with

Ai
i+1 =

 0 0

0 1

 ,

Everything to the left of the ones in each Ai
i+1 can be absorbed by a non-autonomous static

equivalence that rede�nes ωi
i+1. In fact anything to the left of or below a one in the matrix A can



36

essentially be absorbed by a non-autonomous static equivalence that rede�nes either ω̄ (horizontal

zeros) or Ω̄ (vertical zeros). For ease of notation, these newly rede�ned coframings, which di�er from

the original preferred coframings by non-autonomous static equivalences, will be still be denoted

with Ω and ω. This leaves the following simpli�ed form of A.

Φ̄∗∞



Ω−1

Ω0

Ω1

Ω2

Ω3

.

.

.


=



1 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1 0 0 0 0 0 0 · · ·

0 0 Id(n−1)×(n−1) 0 0 0 0 0 0 0 0 · · ·

0 (A1
0)

1
1 0 (A1

1)
1
1 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 0 0 · · ·

0 (A2
0)

1
1 0 (A2

1)
1
1 0 (A2

2)
1
1 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 0 · · ·

0 (A3
0)

1
1 0 (A3

1)
1
1 0 (A3

2)
1
1 0 (A3

3)
1
1 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 0 0 · · ·
.

.

.





ω−1

ω0

ω1

ω2

ω3

ω4

.

.

.



Now if (A1
0)

1
1 is zero, one of the other (Ai

0)
1
1, i > 1, must be nonzero. This follows from the

fact that A−1A = Id, in particular ((A−1A)00)
1
1 = 1. If (A1

0)
1
1 is zero, there is an i > 1 such that

(a0
i )

1
1(A

i
0)

1
1 is nonzero. But (a0

i )
1
1 being nonzero implies K + 1 ≥ i > 1. Since we are restricting

our consideration to K = 0, this cannot happen. Therefore (A1
0)

1
1 must be nonzero. Since (A1

0)
1
1 is

nonzero, it can be scaled to unity through a nonautonomous static group action. All of the other

(Ai
0)

1
1 can then be eliminated through non-autonomous static group actions (adding multiples of

rows in this case).

It can similarly be shown that when J = K = 0, (Ai+1
i )11 is nonzero and can be scaled to

unity. All entries below them can be made zero. By examining A−1A = Id one can also check that

any of the (Ai
i)

1
1 being nonzero leads to K + 1 ≥ 2, and therefore (Ai

i)
1
1 = 0.

Finally all the group freedom of A has been absorbed through non-autonomous static group

actions on ω and Ω, and what is left is the following constant matrix.
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S =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 01×n 0 0 0 0 0 0 0 0 · · ·

0n×1

0 01×(n−1)

0 Id(n−1)×(n−1)

0

0(n−1)×1

1

0(n−1)×1

0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 · · ·

0 1 01×(n−1)
0 0 0 0 0 0 0 0 · · ·

0 0 01×(n−1)
0 0 0 1 0 0 0 0 · · ·

0 01×n 1 0 0 0 0 0 0 0 · · ·

0 01×n 0 0 0 0 0 1 0 0 · · ·

0 01×n 0 0 1 0 0 0 0 0 · · ·

0 01×n 0 0 0 0 0 0 0 1 · · ·
.

.

.

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(8.2)

It is easy to check that S is orthogonal, i.e. S−1 = ST .

S−1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 01×n 0 0 0 0 0 0 0 0 · · ·

0n×1

0 01×(n−1)

0 Id(n−1)×(n−1)

1

0(n−1)×1

0

0(n−1)×1

0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 · · ·

0 0 01×(n−1)
0 0 1 0 0 0 0 0 · · ·

0 1 01×(n−1)
0 0 0 0 0 0 0 0 · · ·

0 01×n 0 0 0 0 1 0 0 0 · · ·

0 01×n 0 1 0 0 0 0 0 0 · · ·

0 01×n 0 0 0 0 0 0 1 0 · · ·

0 01×n 0 0 0 1 0 0 0 0 · · ·
.

.

.

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Thus we have proved the following theorem.

Theorem 14 Given coframings ω and Ω on Σ∞ and Λ∞ for control systems Σ and Λ, respectively,

with s = 2 and a dynamic equivalence Φ∞ with J = K = 0 taking Σ∞ to Λ∞, the coframing pulls

back as follows:

Φ̄∗∞Ω = g S G ω

where g and G are nonautonomous static equivalences and S is given by (8.2) above.



38

This theorem means that, up to nonautonomous static equivalence, a dynamic equivalence

with J = K = 0 has a very speci�c form which is encoded in this speci�c orthogonal matrix S.

Most of the apparent complexity of dynamic equivalence actually arises from static equivalence on

either side, and the essence of dynamic equivalence is actually quite simple.



Chapter 9

Factoring the Dynamic Equivalence: An Example

What we have shown so far is that, given a dynamic equivalence Ω = Aω where J = K = 0

and s = 2 (n is still arbitrary), we can decompose the group action A = gSG where S is de�ned

by (8.2) and G and g are non-autonomous static equivalent group elements, i.e.

G =



1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 G0
0 0n×2 0n×2 0n×2 0n×2 · · ·

02×1 G1
0 G1

1 02×2 02×2 02×2 · · ·

02×1 G2
0 G2

1 G2
2 02×2 02×2 · · ·

...


Recall that nonautonomous static equivalence is not a true static equivalence

(x,u) 7→ (y(x),v(x,u)).

Unlike static equivalence, which is autonomous (time-independent), nonautonomous static equiv-

alence can have explicit time dependence, for example, xi 7→ xi + t. Its group action does not

preserve the ideal {dx}, just the ideal {dx − f(x,u) dt}. This equivalence is more general than

static equivalence.

Let us phrase the problem now as follows. Dynamic equivalence looks like Ω = Aω where

A = gSG. We can attack this problem in steps. First we will consider the coframing Ω̄ = SGω.

Then what remains will be the non-autonomous static problem Ω = gΩ̄.
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Example 5

Let us consider the following two dynamically equivalent systems:

ẋ1 = u1 ẏ1 = v1

ẋ2 = u2 ẏ2 = v2

ẋ3 = x2u1 ẏ3 = y2

The actual dynamic equivalence is given by the following maps between the in�nite jet bundles.

Φ∞(x,u, u̇, . . .) = ( x1x2 − x3, u2, x2, x1u2, u̇2, . . . )

Φ−1
∞ (y,v, v̇, . . .) = ( v1/y2, y3, y3v1/y2 − y1, . . . )

Here is a coframing for each of the in�nite jet bundles. The choice of ω0
3, while not obvious, is not

arbitrary. We will see why in a later section. For this example only the dt piece of the coframing

has been left out. Since t 7→ t, this would just add a one and many zeros to the matrices.

ω0 =


dx1 − u1dt

dx2 − u2dt

dx3 − x2u1dt− x2(dx1 − u1dt)

 Ω0 =


dy1 − v1dt

dy2 − v2dt

dy3 − y2dt


ω1 =

 du1 − u̇1dt

du2 − u̇2dt

 Ω1 =

 dv1 − v̇1dt

dv2 − v̇2dt


ω2 =

 du̇1 − ü1dt

du̇2 − ü2dt

 Ω2 =

 dv̇1 − v̈1dt

dv̇2 − v̈2dt


...

...

The pullback of Φ̄∞ is straightforward to calculate. For the rest of this section the pullback
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notation will be suppressed in order to emphasize and clarify the methods being used.

Ω0
1 = dy1 − v1dt

= d(x1x2 − x3)− (x1u2) dt

= x2 dx1 + x1 dx2 − dx3 − (x1u2) dt− (x2u1) dt+ (x2u1) dt

= − [dx3 − x2u1dt− x2(dx1 − u1dt)] + x1 (dx2 − u2 dt)

= −ω0
3 + x1ω

0
2

Ω0
2 = dy2 − v2dt

= du2 − u̇2 dt

= ω1
2

Ω0
3 = dy3 − y2dt

= dx2 − u2dt

= ω0
2

Ω1
1 = dv1 − v̇1 dt

= d(x1u2)− (u1u2 + x1u̇2) dt

= u2 (dx1 − u1 dt) + x1 (du2 − u̇2 dt)

= u2ω
0
1 + x1ω

1
2

Ω1
2 = dv2 − v̇2 dt

= du̇2 − ü2 dt

= ω2
2
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...

The pullback put in matrix form looks as follows.



Ω0
1

Ω0
2

Ω0
3

Ω1
1

Ω1
2

Ω2
1

Ω2
2

...



=



0 x1 −1 0 0 0 0 0 0 · · ·

0 0 0 0 1 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 · · ·

u2 0 0 0 x1 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 · · ·

u̇2 0 0 u2 u1 0 x1 0 0 · · ·

0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2

...


We will now follow the algorithm for producing S. This amounts to a series of row or

column operations which are static equivalences on the Ω or ω coframes respectively. We will

use the notation of a typical introduction to linear algebra course to represent these operations, i.e.

R2 → R2 +R3 means to replace row 2 with row 2 plus row 3. Note that not every row operation is

a legal static equivalence. For example, R1 → R1 + R4 amounts to x 7→ x + u, which is dynamic,

not static.

First perform the following operations:

R1 → R3 → R2 → R1
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which results in the following coframing.



Ω0
2

Ω0
3

Ω0
1

Ω1
1

Ω1
2

Ω2
1

Ω2
2

...



=



0 0 0 0 1 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 · · ·

0 x1 −1 0 0 0 0 0 0 · · ·

u2 0 0 0 x1 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 · · ·

u̇2 0 0 u2 u1 0 x1 0 0 · · ·

0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2

...


Next perform the operation

R3 → x1R2 −R3

to get this new coframing.



Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1

Ω1
1

Ω1
2

Ω2
1

Ω2
2

...



=



0 0 0 0 1 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 0 0 · · ·

u2 0 0 0 x1 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 · · ·

u̇2 0 0 u2 u1 0 x1 0 0 · · ·

0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2

...


The �rst three rows of the transformation now look like the �rst three rows of S. Continue by
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letting

R4 →
R4 − x1R1

u2

to yield the coframing below.



Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1(
Ω1

1 − x1Ω0
2

)
/u2

Ω1
2

Ω2
1

Ω2
2

...



=



0 0 0 0 1 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 · · ·

u̇2 0 0 u2 u1 0 x1 0 0 · · ·

0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2

...


Now the �rst �ve rows match S. One more operation

R6 →
R6 − (u̇2R4 + u1R1 + x1R5)

u2

puts the coframing in the following form

Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1(
Ω1

1 − x1Ω0
2

)
/u2

Ω1
2(

Ω2
1 −

(
u̇2

(
u2Ω1

1 + x1Ω0
2

)
+ u1Ω0

2 + x1Ω1
2

) )
/u2

Ω2
2

...
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=



0 0 0 0 1 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 · · ·

0 0 0 1 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2

...



,

and all visible rows now match those of S. Continuing this process ad in�nitum gives us new

coframings that transform via S. At present, this transformation looks like

g
−1Ω = SGω,

where G is the identity. To put it in the desired form, we simply invert the action on the left hand

side. This results in the following factored transformation.

Ω =



0 x1 −1 0 0 0 0 · · ·

1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

x1 0 0 u2 0 0 0 · · ·

0 0 0 0 1 0 0 · · ·

−x1u̇2 − u1 0 0 u2u̇2 x1 u2 0 · · ·

0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...



S



1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 · · ·

0 0 0 1 0 0 0 · · ·

0 0 0 0 1 0 0 · · ·

0 0 0 0 0 1 0 · · ·

0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...



ω

Note that this decomposition using non-autonomous group elements is not unique, however it was

chosen so that the second non-autonomous group element of the latter equation was particularly

simple (the identity in this case). Any problem with three states and two controls can be simpli�ed

in a similar way, as we will see below.
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Three States and Two Controls

10.1 Preferred Structure Equations

In the method of equivalence, described in Chapter 4, one important step is to work with an

initial, preferred coframing that encapsulates the problem at hand and satis�es some particularly

nice relations that ought to be preserved by the equivalence in question. In this section we will make

one �nal re�nement to our coframings (5.2) so that they satisfy some particularly nice structure

equations that ought to be preserved by dynamic equivalence.

Note that for a control system ẋ = f(x,u) with n state variables and s ≤ n control variables,

the vector

f(x,u) =


f1(x,u)

...

fn(x,u)


must have rank ∂f

∂u = s. Therefore, by the implicit function theorem, a static equivalence always

exists so that the above system is equivalent to ˙̃x = f̃(x̃, ũ) where

f̃(x̃, ũ) =



ũ1

...

ũs

f̃s+1(x̃, ũ)
...

f̃n(x̃, ũ)


,
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where x̃i = xi for 1 ≤ i ≤ n up to reordering and ũj = fj(x,u) for 1 ≤ j ≤ s.

We will now, and for the rest of the paper, concern ourselves with the case of three state

variables and two control variables. The above adaptation suggests altering (5.2) for the case of

three states and two controls to the following coframing.

ω̃−1 = dt

ω̃0
1 = dx1 − u1 dt

ω̃0
2 = dx2 − u2 dt

ω̃0
3 = dx3 − f(x,u) dt

ω̃1
1 = du1 − u̇1 dt

ω̃1
2 = du2 − u̇2 dt

...

Here f(x,u) is a scalar function. Note that in this coframing, dω̃i
j = −ω̃i+1

j ∧ ω̃−1 for i ≥ 0

and j = 1, 2. The outlier in this nice pattern of exterior derivatives is, of course,

dω̃0
3 = −

3∑
i=1

fxi(x, u)ω̃
0
i ∧ ω̃−1 −

2∑
i=1

fui(x, u)ω̃
1
i ∧ ω̃−1.

With one more adaptation of the coframing, we can make even this structure equation easier to

work with. Let the following be our preferred coframing for the case of n = 3 state variables, s = 2

control variables.

ω−1 = dt

ω0
1 = dx1 − u1 dt

ω0
2 = dx2 − u2 dt

ω0
3 = dx3 − f dt− fu1(dx1 − u1 dt)− fu2(dx2 − u2 dt)

ω1
1 = du1 − u̇1 dt

ω1
2 = du2 − u̇2 dt

...

(10.1)
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Note that this coframing satis�es some particularly nice structure equations.

dω0
1 = −ω1

1 ∧ ω−1

dω0
2 = −ω1

2 ∧ ω−1

dω0
3 ≡ 0 mod ω0

dωj
k = −ωj+1

k ∧ ω−1 (j > 0, k = 1, 2)

We will take this coframing, along with the analogous coframing Ω in (y, v) coordinates, as our

starting point. Let ω̄ = Gω and Ω̄ = Sω̄ so that Ω = gΩ̄. In addition, we will require that at

every step of our transformation of the coframes, ω̄, Ω̄ preserves the following nice properties of the

structure equations and their algebraic ideals:

dω0
1 ≡ −ω1

1 ∧ ω−1

dω0
2 ≡ −ω1

2 ∧ ω−1

dω0
3 ≡ 0


mod ω0

dωj
k ≡ −ω

j+1
k ∧ ω−1 mod { ωi | 0 ≤ i ≤ j }, (j > 0, k = 1, 2).

(10.2)

10.2 Reducing G

Consider the coframing Ω̄ = SGω. Since we plan on applying a generic g in the non-

autonomous problem Ω = gΩ̄, G does not have to be completely generic. It can be simpli�ed

to remove some redundancies. For example, since ω̄0
3 7→ Ω̄0

3 under S, there is no need to add an

arbitrary multiple of ω̄0
3 to any other form through G since this can be taken care of with g. What

follows will illustrate this more explicitly.

We have coframings ω̄ = Gω and Ω̄ = Sω̄ = SGω. Recall that Gi
i = G1

1 for all i ≥ 1 by

Theorem 8. Consider the following identities.

Ω̄0
1 = (G1

0)
2
1 ω

0
1 + (G1

0)
2
2 ω

0
2 + (G1

0)
2
3 ω

0
3 + (G1

1)
2
1 ω

1
1 + (G1

1)
2
2 ω

1
2

Ω̄0
2 = (G0

0)
2
1 ω

0
1 + (G0

0)
2
2 ω

0
2 + (G0

0)
2
3 ω

0
3

Ω̄0
3 = (G0

0)
3
1 ω

0
1 + (G0

0)
3
2 ω

0
2 + (G0

0)
3
3 ω

0
3
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Ω̄1
1 = (G0

0)
1
1 ω

0
1 + (G0

0)
1
2 ω

0
2 + (G0

0)
1
3 ω

0
3

Ω̄1
2 = (G2

0)
2
1 ω

0
1 + (G2

0)
2
2 ω

0
2 + (G2

0)
2
3 ω

0
3 + (G2

1)
2
1 ω

1
1 + (G2

1)
2
2 ω

1
2 + (G1

1)
2
1 ω

2
1 + (G1

1)
2
2 ω

2
2

Ω̄2
1 = (G1

0)
1
1 ω

0
1 + (G1

0)
1
2 ω

0
2 + (G1

0)
1
3 ω

0
3 + (G1

1)
1
1 ω

1
1 + (G1

1)
1
2 ω

1
2

Ω̄2
2 = (G3

0)
2
1 ω

0
1 + (G3

0)
2
2 ω

0
2 + (G3

0)
2
3 ω

0
3 + (G3

1)
2
1 ω

1
1 + (G3

1)
2
2 ω

1
2 + (G3

2)
2
1 ω

2
1 + (G3

2)
2
2 ω

2
2

+(G1
1)

2
1 ω

3
1 + (G1

1)
2
2 ω

3
2

Ω̄3
1 = (G2

0)
1
1 ω

0
1 + (G2

0)
1
2 ω

0
2 + (G2

0)
1
3 ω

0
3 + (G2

1)
1
1 ω

1
1 + (G2

1)
1
2 ω

1
2 + (G1

1)
1
1 ω

2
1 + (G1

1)
1
2 ω

2
2

Ω̄3
2 = (G4

0)
2
1 ω

0
1 + (G4

0)
2
2 ω

0
2 + (G4

0)
2
3 ω

0
3 + (G4

1)
2
1 ω

1
1 + (G4

1)
2
2 ω

1
2 + (G4

2)
2
1 ω

2
1 + (G4

2)
2
2 ω

2
2

+(G4
3)

2
1 ω

3
1 + (G4

3)
2
2 ω

3
2 + (G1

1)
2
1 ω

4
1 + (G1

1)
2
2 ω

4
2

...

Now g will add arbitrary multiples of Ω̄0
2 and Ω̄0

3 to every other part of the coframing in order to

get the �nal coframing Ω. Since they are linearly independent, they do not need to be completely

arbitrary. We will not lose anything by letting (G0
0)

2
2 = (G0

0)
3
3 = 1 and (G0

0)
3
2 = (G0

0)
2
3 = 0. In fact

all of the other terms above involving ω0
2 and ω0

3 may as well be set to zero since g will take care

of these through nonautonomous static equivalence.

Ω̄0
1 = (G1

0)
2
1 ω

0
1 + (G1

1)
2
1 ω

1
1 + (G1

1)
2
2 ω

1
2

Ω̄0
2 = (G0

0)
2
1 ω

0
1 + ω0

2

Ω̄0
3 = (G0

0)
3
1 ω

0
1 + ω0

3

Ω̄1
1 = (G0

0)
1
1 ω

0
1

Ω̄1
2 = (G2

0)
2
1 ω

0
1 + (G2

1)
2
1 ω

1
1 + (G2

1)
2
2 ω

1
2 + (G1

1)
2
1 ω

2
1 + (G1

1)
2
2 ω

2
2

Ω̄2
1 = (G1

0)
1
1 ω

0
1 + (G1

1)
1
1 ω

1
1 + (G1

1)
1
2 ω

1
2
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Ω̄2
2 = (G3

0)
2
1 ω

0
1 + (G3

1)
2
1 ω

1
1 + (G3

1)
2
2 ω

1
2 + (G3

2)
2
1 ω

2
1 + (G3

2)
2
2 ω

2
2 + (G1

1)
2
1 ω

3
1 + (G1

1)
2
2 ω

3
2

Ω̄3
1 = (G2

0)
1
1 ω

0
1 + (G2

1)
1
1 ω

1
1 + (G2

1)
1
2 ω

1
2 + (G1

1)
1
1 ω

2
1 + (G1

1)
1
2 ω

2
2

Ω̄3
2 = (G4

0)
2
1 ω

0
1 + (G4

1)
2
1 ω

1
1 + (G4

1)
2
2 ω

1
2 + (G4

2)
2
1 ω

2
1 + (G4

2)
2
2 ω

2
2 + (G4

3)
2
1 ω

3
1 + (G4

3)
2
2 ω

3
2

+(G1
1)

2
1 ω

4
1 + (G1

1)
2
2 ω

4
2

...

Of course we are keeping careful note that every group reduction we have made is allowed due to

the freedom we have in choosing g.

Now it is clear that we may as well choose (G0
0)

1
1 = 1, and thus we may also set any term

involving ω0
1 below Ω̄1

1 to zero since g will be adding arbitrary multiples of Ω̄1
1 to these.

Ω̄0
1 = (G1

0)
2
1 ω

0
1 + (G1

1)
2
1 ω

1
1 + (G1

1)
2
2 ω

1
2

Ω̄0
2 = (G0

0)
2
1 ω

0
1 + ω0

2

Ω̄0
3 = (G0

0)
3
1 ω

0
1 + ω0

3

Ω̄1
1 = ω0

1

Ω̄1
2 = (G2

1)
2
1 ω

1
1 + (G2

1)
2
2 ω

1
2 + (G1

1)
2
1 ω

2
1 + (G1

1)
2
2 ω

2
2

Ω̄2
1 = (G1

1)
1
1 ω

1
1 + (G1

1)
1
2 ω

1
2

Ω̄2
2 = (G3

1)
2
1 ω

1
1 + (G3

1)
2
2 ω

1
2 + (G3

2)
2
1 ω

2
1 + (G3

2)
2
2 ω

2
2 + (G1

1)
2
1 ω

3
1 + (G1

1)
2
2 ω

3
2

Ω̄3
1 = (G2

1)
1
1 ω

1
1 + (G2

1)
1
2 ω

1
2 + (G1

1)
1
1 ω

2
1 + (G1

1)
1
2 ω

2
2

Ω̄3
2 = (G4

1)
2
1 ω

1
1 + (G4

1)
2
2 ω

1
2 + (G4

2)
2
1 ω

2
1 + (G4

2)
2
2 ω

2
2 + (G4

3)
2
1 ω

3
1 + (G4

3)
2
2 ω

3
2

+(G1
1)

2
1 ω

4
1 + (G1

1)
2
2 ω

4
2

...
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One entry in every Ω̄i
j can be scaled to unity. Note that G1

1 is an invertible 2 × 2 matrix, so that

either the pair (G1
1)

1
1, (G1

1)
2
2 or (G1

1)
1
2, (G1

1)
2
1 is nonzero. If the former pair is zero, then g would

allow us to switch the roles of every Ω̄i
1 and Ω̄i

2 for i ≥ 1. Thus without loss of generality we can let

(G1
1)

1
1 = (G1

1)
2
2 = 1. The arbitrariness of g will then let us cancel out any terms below these scaled

terms. For example, adding multiples of Ω̄0
1 and Ω̄1

1 to Ω̄1
2 will get rid of the ω1

2 term in all the Ω̄i,

i ≥ 1. We can also scale the ω2
2 term in Ω̄1

2 to unity, and thus every ω2
2 below can be eliminated.

After this process of scaling one term per Ω̄i
j and using this to eliminate the appropriate terms

below, we are left with the following.

Ω̄0
1 = (G1

0)
2
1 ω

0
1 + (G1

1)
2
1 ω

1
1 + ω1

2

Ω̄0
2 = (G0

0)
2
1 ω

0
1 + ω0

2

Ω̄0
3 = (G0

0)
3
1 ω

0
1 + ω0

3

Ω̄1
1 = ω0

1

Ω̄1
2 = (G2

1)
2
1 ω

1
1 + (G1

1)
2
1 ω

2
1 + ω2

2

Ω̄2
1 = ω1

1

Ω̄2
2 = (G3

2)
2
1 ω

2
1 + (G1

1)
2
1 ω

3
1 + ω3

2

Ω̄3
1 = ω2

1

Ω̄3
2 = (G4

3)
2
1 ω

3
1 + (G1

1)
2
1 ω

4
1 + ω4

2

...

After all such redundancies are removed, this is what our group element, now called G, looks
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like.

G =



1 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 0 0 0 · · ·

0 (G0
0)

2
1 1 0 0 0 0 0 0 0 0 0 · · ·

0 (G0
0)

3
1 0 1 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1 0 0 0 0 0 0 0 · · ·

0 (G1
0)

2
1 0 0 (G1

1)
2
1 1 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 0 0 0 · · ·

0 0 0 0 (G2
1)

2
1 0 (G1

1)
2
1 1 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 0 0 · · ·

0 0 0 0 0 0 (G3
2)

2
1 0 (G1

1)
2
1 1 0 0 · · ·

...


We will need to use the fact that ω̄ is a coframing. Therefore exterior derivatives of the entries

of G can be written as linear combinations of these. Note that as far as we know, every d(Gi
j)

k
l

could be linear combinations of ω̄r for some unknown r. We will employ the following notation:

d(Gi
j)

k
l = (Gi

j)
k
l,−1ω

−1 +
∑
α

∑
β

(Gi
j)

k,β
l,α ω

α
β

We will show below that r is not arbitrarily large by looking at structure equations.

By investigating dΩ̄, we can further reduce the entries of G. Until stated otherwise, the

following equivalences ≡ are modulo Ω̄0
i , i = 1, 2, 3. We will start with dΩ̄0

3.

Ω̄0
3 = ω0

3 + (G0
0)

3
1ω

0
1

dΩ̄0
3 = dω0

3 + d(G0
0)

3
1 ∧ ω0

1 + (G0
0)

3
1 dω

0
1

≡
[(
u2fu1x2 − fx1 − (G0

0)
3
1,−1 + u1fu1x1 + fu1x3f + fx3(G

0
0)

3
1 − fx3fu1 + u̇1fu1u1 + u̇2fu1u2

)
− (G0

0)
2
1

(
u2fu2x2 + u1fu2x1 + u̇2fu2u2 − fx2 + fu2x3f + u̇1fu1u2 − fx3fu2

)]
Ω̄1

1 ∧ Ω̄−1

+
[(
fu1u2 − fu2u2(G

1
1)

2
1

)
(G0

0)
2
1 −

(
(G0

0)
3,1
1,2(G

1
1)

2
1 − fu1u2(G

1
1)

2
1 + fu1u1 − (G0

0)
3,1
1,1

)]
Ω̄2

1 ∧ Ω̄1
1

− (G0
0)

3
1 Ω̄2

1 ∧ Ω̄−1
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Anything above that is not a multiple of Ω̄1
1 ∧ Ω̄−1 or Ω̄1

2 ∧ Ω̄−1 must have zero coe�cient. Of

greatest interest at the moment is the term Ω̄2
1∧ Ω̄−1. Since this cannot be here, its coe�cient must

be zero.

(G0
0)

3
1 = 0 (10.3)

There is also a Ω̄2
1 ∧ Ω̄1

1 term which must vanish. Through the above equation, this simpli�es to the

following. (
fu1u2 − fu2u2(G

1
1)

2
1

)
(G0

0)
2
1 +

(
fu1u2(G

1
1)

2
1 − fu1u1

)
= 0

Moving on, we will look at dΩ̄0
2.

Ω̄0
2 = ω0

2 + (G0
0)

2
1 ω

0
1

dΩ̄0
2 = dω0

2 + d(G0
0)

2
1 ∧ ω0

1 + (G0
0)

2
1 dω

0
1

≡
(
(G1

0)
2
1 − (G0

0)
2
1,−1

)
Ω̄1

1 ∧ Ω̄−1 +
(
(G1

1)
2
1 − (G0

0)
2
1

)
Ω̄2

1 ∧ Ω̄−1

+
∞∑
i=1

(
(G0

0)
2,1
1,i − (G0

0)
2,2
1,i (G

1
1)

2
1 − (G0

0)
2,2
1,i+1(G

i+1
i )21

)
Ω̄i+1

1 ∧ Ω̄1
1

+
∞∑
i=1

(G0
0)

2,2
1,i+1Ω̄

i
2 ∧ Ω̄1

1

Similarly here it is the vanishing of the Ω̄2
1 ∧ Ω̄−1 term that tells us

(G1
1)

2
1 = (G0

0)
2
1.

The vanishing of the terms in the �nal two summations tells us

(G0
0)

2,1
1,1 = (G0

0)
2,1
1,2(G

0
0)

2
1,

(G0
0)

2,1
1,i = 0,

(G0
0)

2,2
1,i = 0

for all i ≥ 2. We knew that

d(G0
0)

2
1 = (G0

0)
2
1,−1ω

−1 +
∑
α

∑
β

(G0
0)

2,β
1,αω

α
β
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had to be a �nite sum, and now we have a bound on where that sum must terminate (α = 1).

Now consider dΩ̄0
1.

Ω̄0
1 = (G1

0)
2
1 ω

0
1 + (G0

0)
2
1 ω

1
1 + ω1

2

dΩ̄0
1 = d(G1

0)
2
1 ∧ ω0

1 + (G1
0)

2
1 dω

0
1 + d(G0

0)
2
1 ∧ ω1

1 + (G0
0)

2
1 dω

1
1 + dω1

2

≡
[(

(G0
0)

2,2
1,0 − (G1

0)
2,2
1,1

)
(G0

0)
2
1 + (G1

0)
2,1
1,1 − (G0

0)
2,1
1,0 − (G1

0)
2,2
1,2(G

2
1)

2
1 + (G0

0)
2,2
1,1(G

1
0)

2
1

]
Ω̄2

1 ∧ Ω̄1
1

− (G1
0)

2
1,−1Ω̄

1
1 ∧ Ω̄−1 − Ω̄1

2 ∧ Ω̄−1 − (G1
0)

2,2
1,2Ω̄

1
1 ∧ Ω̄1

2

+
(
(G2

1)
2
1 − (G1

0)
2
1 − (G0

0)
2
1,−1

)
Ω̄2

1 ∧ Ω̄−1

+
∞∑
i=2

(
(G1

0)
2,1
1,i − (G1

0)
2,2
1,i (G

0
0)

2
1 − (G1

0)
2,2
1,i+1(G

i+1
i )21

)
Ω̄i+1

1 ∧ Ω̄1
1

+
∞∑
i=2

(G1
0)

2,2
1,i+1Ω̄

i
2 ∧ Ω̄1

1

The relations that come from this calculation are these for i ≥ 2.

(G2
1)

2
1 = (G1

0)
2
1 + (G0

0)
2
1,−1

(G1
0)

2,1
1,1 = (G1

0)
2,2
1,1(G

0
0)

2
1 + (G0

0)
2,1
1,0 − (G0

0)
2,2
1,0(G

0
0)

2
1 − (G0

0)
2,2
1,1(G

1
0)

2
1

(G1
0)

2,2
1,i = 0

(G1
0)

2,1
1,i = 0

Therefore we have found a bound on the sum for d(G1
0)

2,2 as well.

Continuing this process for higher order terms yields the following important result

(Gi+2
i+1)

2
1 = (G1

0)
2
1 + (i+ 1)(G0

0)
2
1,−1

for i ≥ 1.
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To review, G now has the following form.

G =



1 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 0 0 0 0 · · ·

0 (G0
0)

2
1 1 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 1 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1 0 0 0 0 0 0 0 · · ·

0 (G1
0)

2
1 0 0 (G0

0)
2
1 1 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 0 0 0 · · ·

0 0 0 0 (G1
0)

2
1 + (G0

0)
2
1,−1 0 (G0

0)
2
1 1 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 0 0 · · ·

0 0 0 0 0 0 (G1
0)

2
1 + 2(G0

0)
2
1,−1 0 (G0

0)
2
1 1 0 0 · · ·

...



(10.4)

What we have boiled the problem down to now is the equivalence Ω = gΩ̄, where the

coframing Ω̄ contains three functions f , (G0
0)

2
1, and (G1

0)
2
1.

Remark: An important but subtle point to take note of is the following: we have singled out

Ω̄0
1 through S as the piece of the coframing Ω̄0 that contains higher order terms in ω, and we have

also singled out Ω̄0
3 by choosing an adapted coframing with dΩ̄0

3 ≡ 0 mod Ω̄0, and these two choices

are compatible.

This fact is actually quite easy to see. In our coframings, note that Ω̄0
3 = ω0

3. Since g preserves

the span of { Ω̄0
1, Ω̄

0
2, Ω̄

0
3 }, ω0

3 must be in the span of { Ω0
1,Ω

0
2,Ω

0
3 }. Thus ω0

3, which has the property

that dω0
3 ≡ 0 mod ω0, does not also get bumped up in the dynamically equivalent coframing to a

higher order term.



Chapter 11

Dynamic Equivalence of A�ne Linear Systems

Keep in mind at this point that we are concerned with dynamic equivalence, which is a weaker

equivalence than static equivalence. The static equivalence case was dealt with �rst in the control

linear case of three states and two controls by Wilkens and later by Elkin in the a�ne linear case up

to four states. The representatives of the �ve distinct static equivalent a�ne linear control systems

with three states and two controls put forth by Elkin are these:

ẋ1 = u1 (11.1)

ẋ2 = u2 (11.2)

ẋ3 = f(x,u) (11.3)

where f(x,u) is one of the �ve following functions:

0

1

x2

x2u1

1 + x2u1


In this section, we will �nally put to use our previous results involving in�nite prolongations

and the factorization of coframing pullbacks. We show, using arguments about certain ideals pre-

served under dynamic equivalence, that neither of the �rst two systems listed above are dynamically



57

equivalent to any other control system with J = K = 0. The proof of the �nal theorem gives explicit

dynamic equivalences between the last three systems above.

Theorem 15 The control system corresponding to ẋ3 = 0 with two control variables is not dynam-

ically equivalent to any other control system with J = K = 0 to which it is not static equivalent.

Proof: Suppose Ω = gSGω, where G is given by (10.4), S is given by (8.2), g is a generic nonau-

tonomous static equivalence, and ω is the following coframing for ẋ3 = 0.

ω−1 = dt

ω0
1 = dx1 − u1 dt

ω0
2 = dx2 − u2 dt

ω0
3 = dx3

...

The coframing Ω̄ = SGω would then look as follows.

Ω̄−1 = dt

Ω̄0
1 =

(
(G1

0)
2
1 dx1 + (G0

0)
2
1 du1 + du2

)
−

(
(G1

0)
2
1 u1 + (G0

0)
2
1 u̇1 + u̇2

)
dt

Ω̄0
2 =

(
dx2 + (G0

0)
2
1 dx1

)
−

(
(G0

0)
2
1 u1 + u2

)
dt

Ω̄0
3 = dx3

...

Now notice that the algebraic ideal Ω̄0 is preserved by g. But all of our equivalences also

preserve t, and hence dt. Therefore, if Λ∞ has the coframing

Ω−1 = dt

Ω0
1 = dy1 − g1(y, v) dt

Ω0
2 = dy2 − g2(y, v) dt

Ω0
3 = dy3 − g3(y, v) dt

...
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we get that {Ω̄0
1, Ω̄

0
2, Ω̄

0
3} ≡ {dy1, dy2, dy3} mod dt. Since this is an integrable ideal that contains

Ω̄0
3 = dx3, we can arrange through the appropriate choice of g that dy3 = dx3. Note that this

automatically satis�es dΩ̄0
3 ≡ 0 mod Ω̄0

1, Ω̄
0
2, Ω̄

0
3 since dΩ̄0

3 is identically zero.

Therefore ẏ3 = ẋ3 = 0. What we have done is taken any strict dynamic equivalence to the

system ẋ3 = 0 with J = K = 0 and altered it via static equivalence to a strict dynamic equivalence

to itself. So any control system that is dynamically equivalent to ẋ3 = 0 with J = K = 0 is in fact

a dynamic equivalence to a system that is static equivalent to ẋ3 = 0. 2

Theorem 16 The control system corresponding to ẋ3 = 1 with two control variables is not dynam-

ically equivalent to any other control system with J = K = 0 to which it is not static equivalent.

Proof: The proof is nearly identical to that of the previous theorem. Replace ẋ3 = 0 with ẋ3 = 1,

and proceed in the same fashion. 2

Note that the method used in the previous two theorems could also be applied to the case

of ẋ3 = x2. A di�erence occurs, however, when reaching the step ẏ3 = ẋ3 = x2. Since x2 is

not necessarily equal to y2, we see that the resulting system may or may not necessarily be static

equivalent to the original system ẋ3 = x2. It in fact turns out, as stated in the next theorem, that

this new system need not be static equivalent to the original system.

Theorem 17 The control systems ẋ3 = x2, x2u1, 1 + x2u1 are strictly dynamically equivalent to

each other.

Proof: The following sets of maps between in�nite jet bundles give explicit dynamic equivalences

for the three systems. We will demonstrate that the maps take solutions of one control system to

solutions of the other. The fact that the maps composed with their respective inverses are in fact

the identity on solutions is simple enough and is left to the reader.

ẋ1 = u1 ẏ1 = v1 ż1 = w1

ẋ2 = u2 ẏ2 = v2 ż2 = w2

ẋ3 = x2u1 ẏ3 = y2 ż3 = 1 + z2w1
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Equivalence maps: (x,u)↔ (y,v)

ϕ(x, u, u̇, . . .) = ( x1x2 − x3, u2, x2, x1u2, u̇2, . . . )

ϕ−1(y, v, v̇, . . .) = ( v1/y2, y3, y3v1/y2 − y1,
y2v̇1 − v1v2

y 2
2

, y2, . . . )

Verifying solutions:

ẏ1 = d
dt(x1x2 − x3)

= ẋ1x2 + x1ẋ2 − ẋ3

= u1x2 + x1u2 − x2u1

= x1u2

= v1

ẋ1 =
d

dt

(
v1
y2

)
=

y2v̇1 − v1v2
y2

2

= u1

ẏ2 = u̇2

= v2

ẋ2 = ẏ3

= y2

= v2

ẏ3 = ẋ2

= u2

= y2

ẋ3 =
d

dt

(
y3v1
y2
− y1

)
=

y2(ẏ3v1 + y3v̇1)− ẏ2y3v1
y2

2
− ẏ1

= v1 + y3
y2v̇1 − v1v2

y2
2

− v1

= x2u1
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Equivalence map: (z,w)↔ (y,v)

ψ(z, w, u̇, . . .) = ( z3 − z1z2, w2, z2, 1− z1w2, ẇ2, . . . )

ψ−1(y, v, ẇ, . . .) = (
1− v1
y2

, y3, y1 + y3
1− v1
y2

,
v1v2 − v2 − y2v̇1

y 2
2

, y2, . . . )

Verifying solutions:

ẏ1 =
d

dt
(z3 − z1z2)

= ż3 − ż1z2 − z1ż2

= 1 + z2w1 − w1z2 − z1w2

= v1

ż1 =
d

dt

1− v1
y2

=
−y2v̇1 − (1− v1)ẏ2

y2
2

=
v1v2 − v2 − y2v̇1

y2
2

= w1

ẏ2 = ẇ2

= v2

ż2 = ẏ3

= y2

= w2

ẏ3 = ż2

= w2

= y2

ż3 =
d

dt

(
y1 + y3

1− v1
y2

)
= ẏ1 + ẏ3

1− v1
y2

+ y3
−y2v̇1 − (1− v1)ẏ2

y2
2

= v1 + 1− v1 + y3
v1v2 − v2 − y2v̇1

y2
2

= 1 + z2w1
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Equivalence map: (x,u)↔ (z,w)

θ(x, u, u̇, . . .) = (
1
u2
− x1, x2,

x2

u2
− x3, −u1 −

u̇2

u 2
2

, u2, . . . )

θ−1(z, w, ẇ, . . .) = (
1
w2
− z1, z2,

z2
w2
− z3, −w1 −

ẇ2

w 2
2

, w2, . . . )

Note that θ = ψ−1 ◦ φ.

Verifying solutions:

ẋ1 =
d

dt

(
1
w2
− z1

)
=
−1
w2

2
ẇ2 − ż1

=
−ẇ2

w2
2
− w1

= u1

ż1 =
d

dt

(
1
u2
− x1

)
=
−1
u2

2
u̇2 − ẋ1

=
−u̇2

u2
2
− u1

= w1

ẋ2 = ż2

= w2

= u2

ż2 = ẋ2

= u2

= w2

ẋ3 =
d

dt

(
z2
w2
− z3

)
=

w2ż2 − z2ẇ2

w2
2

− ż3

= 1− z2
ẇ2

w2
2
− (1 + z2w1)

= z2

(
−w1 −

ẇ2

w2
2

)
= x2u1

ż3 =
d

dt

(
x2

u2
− x3

)
=

u2ẋ2 − x2u̇2

u2
2

− ẋ3

= 1− x2
u̇2

u2
2
− x2u1

= 1 + x2

(
−u1 −

u̇2

u2
2

)
= 1 + z2w1

2

non-equivalences



Chapter 12

Conclusions

Elkin shows that there are �ve equivalence classes of a�ne linear control systems with three

state variables and two control variables under static equivalence. Below is a listing of how these

classes combine using dynamic equivalence through one prolongation. Each equivalence class under

dynamic equivalence is numbered. These nontrivial equivalences (or non-equivalences) are the work

of this thesis.

1 ẋ1 = u1 ẋ1 = u1 ẋ1 = u1

ẋ2 = u2 ẋ2 = u2 ẋ2 = u2

ẋ3 = x2 ẋ3 = x2u1 ẋ3 = 1 + x2u1

2 ẋ1 = u1

ẋ2 = u2

ẋ3 = 0

3 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1

Future avenues of research into the classi�cation of a�ne linear control systems under dynamic

equivalence include looking at higher order equivalences (J and/or K > 0) as well as increasing

the number of state and control variables. One obstacle to overcome with higher order equivalences

and larger numbers of variables is that, unlike the case presented here where a unique S exists, the
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problem quickly splits into many cases with di�erent S. In addition, this method relies on the fact

that a�ne linear systems in this dimension have already been classi�ed under static equivalence,

and the static equivalence problem for a�ne control systems has only been completed in a few

low-dimensional cases. Nevertheless, the further exploration of this decomposition may still yield

new insights into the phenomenon of dynamic equivalence in general.
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