
From Darkness to Light: Signatures of the Universe’s First Galaxies

in the Cosmic 21-cm Background

by

Jordan Mirocha

B.S., Physics, Drake University, 2009

M.S., Astrophysics, University of Colorado, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Astrophysical & Planetary Science

2015



This thesis entitled:
From Darkness to Light: Signatures of the Universe’s First Galaxies in the Cosmic 21-cm Background

written by Jordan Mirocha
has been approved for the Department of Astrophysical & Planetary Science

Prof. Jack Burns

Prof. Jeremy Darling

Prof. J. Michael Shull

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the
form meet acceptable presentation standards of scholarly work in the above mentioned discipline.



iii

Mirocha, Jordan (Ph.D., Astrophysics)

From Darkness to Light: Signatures of the Universe’s First Galaxies in the Cosmic 21-cm Background

Thesis directed by Prof. Jack Burns

Within the first billion years after the Big Bang, the intergalactic medium (IGM) underwent a re-

markable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched

plasma. Three milestones during this Epoch of Reionization – the emergence of the first stars, black

holes, and full-fledged galaxies – are expected to manifest as spectral “turning points” in the sky-averaged

(“global”) 21-cm background. However, interpreting these measurements will be complicated by the pres-

ence of strong foregrounds and non-trivialities in the radiative transfer (RT) required to model the signal.

In this thesis, I make the first attempt to build the final piece of a global 21-cm data analysis pipeline:

an inference tool capable of extracting the properties of the IGM and the Universe’s first galaxies from the

recovered signal. Such a framework is valuable even prior to a detection of the global 21-cm signal as it

enables end-to-end simulations of 21-cm observations that can be used to optimize the design of upcoming

instruments, their observing strategies, and their signal extraction algorithms.

En route to a complete pipeline, I found that (1) robust limits on the physical properties of the IGM,

such as its temperature and ionization state, can be derived analytically from the 21-cm turning points within

two-zone models for the IGM, (2) improved constraints on the IGM properties can be obtained through

simultaneous fitting of the global 21-cm signal and foregrounds, though biases can emerge depending on

the parameterized form of the signal one adopts, (3) a simple four-parameter galaxy formation model can be

constrained in only 100 hours of integration provided a stable instrumental response over a broad frequency

range (∼ 80 MHz), and (4) frequency-dependent RT solutions in physical models for the global 21-cm

signal will be required to properly interpret the 21-cm absorption minimum, as the IGM thermal history is

highly sensitive to the spectral energy distribution of the first galaxies. These results highlight the need for

continued development of theoretical models that can incorporate constraints from current and near-future

observatories, and the implementation of statistical algorithms capable of distinguishing competing models.
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Chapter 1

Introduction

In this chapter, I will focus on the broader context of this thesis and defer most technical details to

later chapters and appendices. In Section 1.1, I will introduce the high-z Universe1 as the sub-field in

astronomy & astrophysics it has become. Why is it difficult to study, and why is it worth pursuing? Then,

in Section 1.2, I will turn to current observational diagnostics of the high-z Universe that are beginning to

test theoretical models. This will set the stage for a discussion of the 21-cm background to follow in (§1.3),

including the basic physics involved and early predictions for the spectral structure of the global 21-cm

signal. I will close this chapter by motivating my thesis work within the context of Sections 1.1-1.3, and

provide an outline for chapters to follow.

1.1 The High-z Universe

Observations of the cosmic microwave background (CMB) reveal a universe of great simplicity just

400,000 years after the Big Bang (BB), varying in density and temperature on average by a factor of only

10−5 across the cosmos. Yet, from this homogeneous state emerged a landscape teeming with stars, galaxies,

and super-massive black holes (BHs) – all in less than one billion years. This brief window in time is

bracketed by observations of the CMB at redshift z≈ 1100, and quasars at redshift z≈ 6, but the intervening

∼ billion years remain virtually unexplored.

This may not seem like great cause for concern given that the Universe is ∼ 13.7 Giga-years (Gyr)

1 The “high-z Universe” is a vague term, whose meaning has evolved considerably over the last few decades. For example, in
the early 1960s the most distant objects known were at z ∼ 0.4, and it wasn’t until the late 1980s that objects at z > 4 had been
found. For the remainder of this document, the phrase “high-z” loosely corresponds to z & 6, i.e., the time from the Big Bang until
the end of the Epoch of Reionization.
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old, meaning the entire z > 6 epoch constitutes less than 10% of the current age of the Universe. However,

the first stars are thought to be exotic, massive ∼ 100 M� stars that transform their environs in life through

intense ionizing radiation fields and in death via mechanical heating and chemical enrichment of nearby

clouds – the raw material from which the next generation of stars may form. The formation mechanism of

the first BHs is as intriguing as that of the first stars. If the first BHs were the remnants of the first stars, and

thus likely 10’s of solar masses initially, they would need to grow in mass by a factor of ∼ 107 or 108 in less

than a Gyr in order to become the engines powering z∼ 6 quasars. A tempting short-cut in mass is available

if, for some reason, black holes can form via the direct collapse of massive proto-galactic clouds.

Part of the allure of the high-z Universe are these puzzles, interesting in their own right, but also in

the broader context of galaxy formation. How did the first stars and BHs – exotic or not – sculpt the first

galaxies? When did galaxies begin to resemble objects not too dissimilar from those we see in the local

Universe?

There are three main reasons that answers to these questions remain elusive:

(1) The first galaxies lie at great cosmological distances and are thus difficult to observe directly simply

because they are faint.

(2) The luminosity of galaxies is dominated by their most massive stars, whose spectra peak at ultra-

violet (UV) wavelengths. This means that observers detect z > 6 sources at IR wavelengths, which

are absorbed readily by molecules in the Earth’s atmosphere.

(3) The IGM is increasingly neutral at z > 6, which makes UV sources even more difficult to observe

since neutral hydrogen atoms readily absorb UV photons with energies above 13.6 eV (wavelengths

≤ 912 Å).

The first two difficulties can be overcome to some degree by a large, space-based, optical/infrared telescope,

such as NASA’s Hubble Space Telescope, or better yet, the James Webb Space Telescope (JWST). However,

point #3 implies that there exists a redshift beyond which rest frame emission from galaxies at wavelengths

below 912 Å cannot be seen at all, owing to a fully neutral, and thus opaque IGM.
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Given the dearth of observational constraints on high-z galaxies, we will focus in the next three

subsections on a plausible theoretical picture pieced together over the last few decades that describes the

emergence of galaxies in the early Universe and their impact on the IGM. A discussion of observational

tests of this picture will follow in Section 1.2.

1.1.1 First Stars

For a few hundred thousand years after the Big Bang, the entire Universe was a (nearly) perfectly

uniform medium composed of hydrogen and helium, hot enough to keep protons and electrons from bind-

ing to form neutral atoms. As cosmic expansion continued the gas cooled, eventually falling below ∼ 104

K at which point protons and electrons could combine to form neutral hydrogen atoms. The rapid disap-

pearance of free electrons meant most photons had scattered for the last time, streaming freely through the

Universe from that moment onward. This “surface of last scattering” is now visible as the cosmic microwave

background (CMB), most recently mapped by the Planck satellite (see Figure 1.1).

Figure 1.1 All-sky map of the cosmic microwave background radiation from Planck. Contrast between blue
and red regions corresponds to temperature fluctuations of order 10−5.

In the darkness following cosmological recombination, tiny density perturbations grew under the



4

influence of gravity until eventually the central regions of collapsing clouds reached densities and tempera-

tures great enough to ignite nuclear fusion. A critical milestone in the evolution of any proto-stellar cloud

– whether it resides in the Milky Way or a tiny dark matter halo just a few Myr after the Big Bang – is the

moment at which thermal pressure can no longer withstand the inward pull of gravity.

The first stars to form in the Universe, though we have yet to detect them directly, are sure to have

been unique relative to stars today for one simple reason: by definition, as the first stars they formed out

of chemically pristine gas clouds, since massive stars capable of forging heavy elements had yet to exist.

Without heavy elements, the first proto-stellar clouds would have had difficulty cooling efficiently, thus

allowing thermal pressure to stall otherwise near-certain gravitational collapse.

One can predict the sense of this metallicity effect by considering an idealized spherical cloud. In

order for it to collapse, the inward pull of gravity must exceed the outward push of gas pressure. To put it

another way, collapse requires the sound-crossing time of a cloud to exceed its free-fall time, i.e.,

ts > tff

r
cs

>

√
3π

32Gρ
(1.1)

where r is radius of the cloud, cs is the speed of sound, and ρ is the density of the cloud. Assuming a

monatomic ideal gas, we find that collapse can only proceed if a cloud exceeds a particular temperature- and

density-dependent value, which scales as

MJ ∝ T 3/2
ρ
−1/2. (1.2)

The T 3/2 scaling of this “Jeans’ Mass” implies that a hot cloud, i.e., one which cannot cool, must be more

massive than a cold cloud to collapse (at fixed density). However, in a purely atomic hydrogen gas, cooling

does not become efficient until temperatures of T ∼ 104 K, at which time collisional excitation of Ly-α and

subsequent radiative decay becomes effective. Without metals or nearby sources of radiation to heat the gas,

early halos would have to wait to form stars until their temperatures were driven above the ∼ 104 K atomic

cooling threshold by virialization.
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The virial temperature of a halo is related to its mass via (e.g., Barkana and Loeb, 2001)

Tvir = 1.98×104
( µ

0.6

)( Mhalo

108 M�

)2/3[
Ωm

Ωm(z)
∆c

18π2

]1/3(1+ z
10

)
K (1.3)

where µ is the mean molecular weight of collapsing gas, Mhalo is the halo mass, ∆c is the critical overdensity

for collapse, and Ωm(z) is the matter density relative to the critical density. Without atomic cooling, halos

less massive than ∼ 108 M� – which constitute 99% of the collapsed mass density of the Universe at z > 10

– could not have formed stars. This is the irony of small halos in the early Universe: though they could have

contained nearly ∼ 108 M� of raw star-forming material, they would not have been hot enough to cool and

form stars.

The consideration of molecular hydrogen dramatically alters this simple prediction (Lepp and Shull,

1984). Unlike hydrogen atoms, whose lowest lying transition is 10.2 eV above the ground state, molecular

hydrogen has a series of rho-vibrational transitions that can be excited at temperatures of only a few hundred

Kelvin. This leads to efficient cooling, provided that there is no incident radiation field capable of dissociat-

ing H2 (see Figure 1.2). As a result, halos with masses on the order of ∼ 105 M� may have began forming

stars at z∼ 30 (e.g., Haiman et al., 1996, Tegmark et al., 1997).

Early numerical calculations supported the massive first-star hypothesis. Though computational limi-

tations prevent simulations from witnessing the moment of nuclear ignition, they were able to evolve clouds

to extreme densities (n & 1020 cm−3) and compute their masses, which were M & 100− 103 M� (e.g.,

Bromm et al., 1999, Abel et al., 2002). The implications for reionization and galaxy formation were imme-

diately clear: the more massive a star, the more UV photons it emits. Not only will massive stars be brighter

in the UV than typical O and B type stars, but their spectra will be harder as well (owing to surface temper-

atures of order 105 K Tumlinson and Shull, 2000, Bromm et al., 2001, Schaerer, 2002). That is, PopIII stars

should emit a larger relative number of Lyman continuum photons (LyC; hν > 13.6 eV) than that of O and

B stars, meaning they could ionize a substantial amount of intergalactic helium, in addition to hydrogen.

The epoch of PopIII star-formation was unlikely, however, to have been long-lived. Soft UV photons

(i.e., those red-ward of the Lyman edge at 13.6 eV), though incapable of ionizing hydrogen, can still interact

with gas in a very profound way. Most immediately, photons in the Lyman-Werner (LW) band (∼ 11.2−13.6
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Figure 1.2 Cooling curves for primordial gas at the z ∼ 10 cosmic mean density, nH = 0.045 cm−3. Solid
red line shows that of a purely atomic hydrogen and helium gas, with peaks corresponding to temperatures
at which collisional excitation cooling of H Iand He IIbecomes efficient. Dashed blue curve shows the same
quantity for a pure H2 gas. From (Barkana and Loeb, 2001).
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eV) can dissociate molecular hydrogen – the very coolant that enables the H2 mode of star formation in the

first place. On larger scales, in both time and space, LW photons redshift through Ly-n resonances of atomic

hydrogen, and ultimately contribute to the cosmic Ly-α background, either by redshifting into the blue wing

of the Ly-α line itself or by cascading downwards through Ly-n lines. We will find in Section 1.3 that the

Ly-α background is responsible for first “activating” the 21-cm background at redshifts z . 40.

Even if one could artificially turn off the H2-dissociating background, and thus stifle large-scale feed-

back, PopIII stars might still fundamentally alter the conditions for star-formation locally once they ex-

plode as supernovae. Blast-waves will mechanically heat the interstellar medium through shocks, and may

sweep up and ultimately expel material from the galaxy entirely. In addition, once heavy elements are re-

incorporated into the interstellar medium, cooling will be far more efficient than it was prior to first-light.

The timing of this transition from PopIII to PopII star formation is highly uncertain.

Numerical simulations continue to grow in sophistication every year, and in many cases are revising

the predicted mass scale for PopIII star formation downward with each improvement in resolution and the

inclusion of each new physical process. For example, thermal pressure may be augmented by non-thermal

processes, such as turbulence, magnetic fields, and radiation pressure (Hosokawa et al., 2011). In some

cases, a halo’s first star may not form out of chemically pristine material, as nearby halos may have already

seen a generation of star formation and polluted one or more of their neighbors (Smith et al., 2015).

Clearly, the formation of the first stars remains an area ripe for research. Their deaths also likely

coincide with the birth of the Universe’s first compact objects, including neutron stars and black holes,

which introduce an array of feedback processes unlike those brought about by their progenitors. These

objects are the focus of the next subsection.

1.1.2 Black Holes

Black holes (BHs) are a common feature of all galaxies in today’s Universe. The Milky Way, for

example, is likely to harbor ∼ 107-109 stellar mass (with M• ∼ 10 M�) black holes (van den Heuvel, 1992)

– the survivors of the explosions of massive stars. In contrast, the Milky Way has just a single super-massive

black hole (SMBH), which resides in the nucleus of the galaxy. This dichotomy seems to be the norm:
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Figure 1.3 Model spectral energy distributions from metal-poor (Z = 0.001 Z�) and metal-enriched (Z =
0.04 Z�) stellar populations with Salpeter a Salpeter initial mass function. The solid lines show the SED 1
Myr after a 106 M� burst of star formation, while the dashed lines show the SEDs 10 Myr after the initial
burst. Dotted vertical lines denote the He IIionization threshold and H Iionization threshold from left to
right. Adapted from (Leitherer et al., 1999).
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(nearly) all galaxies contain a nuclear SMBH with a mass of order 106 . M•/M� . 109, as well as an

unknown (but likely large) number of stellar mass BHs (M• ∼ 10 M�). The search for intermediate mass

BHs (102 . M•/M� . 105) is an active area of research.

The sheer existence of 109 M� SMBHs, many of which were already in place at z > 6 (Fan, 2006,

Mortlock et al., 2011), is one of the biggest puzzles of the high-z Universe. If the first stars are∼ 100 M� and

(optimistically) leave behind remnant black holes of comparable mass, they must accrete at the Eddington

limit nearly continuously in order to reach ∼ 109 M� by z ∼ 6. This challenge has inspired direct-collapse

models (Begelman et al., 2006, 2008), which predict the formation of BHs with M• & 103 M� in massive,

atomic-cooling dark matter halos via dynamical instabilities. These models alleviate the requirement of

continual Eddington-limited accretion throughout the reionization epoch, but remain unconstrained.

Despite being some of the most enigmatic objects in the Universe, even the most massive SMBHs

are dynamically irrelevant to their host galaxies, meaning the assembly of galaxies is unlikely to have been

gravitationally affected by their presence. This is strange, given that there are strong correlations between the

masses of SMBHs and the dynamics of their host galaxies (e.g., the BH mass - stellar velocity dispersion,

or M-σ relation; Gebhardt et al., 2000, Ferrarese and Merritt, 2000). However, if accompanied by a gas

accretion disk, BHs can become prodigious sources of energetic photons and winds, and can thus potentially

have a substantial effect on galactic and extragalactic gas nonetheless.

Though mysterious in origin and important in the context of galaxy-scale feedback, SMBHs seem

to be less important in hydrogen reionization2 , largely as a result of their rarity. Quasars are, however,

thought to be the primary agents of helium reionization (at z∼ 3) given that stellar sources emit few photons

energetic enough (E > 54.4 eV) to doubly ionize helium atoms. As a result, I will largely neglect quasars

from here onward, instead devoting attention to their stellar mass cousins.

Stellar-mass black holes (in so-called X-ray binary systems; XRBs) are the dominant source of X-

rays in nearby star-forming galaxies (Gilfanov et al., 2004, Mineo et al., 2012b). To gauge their role in

reionization, consider a photon with rest-frame energy hν, traveling through a uniform medium. The mean

2 They are, however, extremely historically important to studies of hydrogen reionization, as I will discuss briefly in §1.2.2.
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free path of this photon is given by

lν ≡
(

∑
j

n jσ j,ν

)−1

(1.4)

where n j is the number density of absorbing species j and σ j,ν is the bound-free absorption cross section of

species j. If we assume approximate cross sections,

σ j,ν ' σ0

(
ν

ν j

)−3

(1.5)

where hν j is the ionization threshold for species j, σ0, j is the cross-section at that energy, and a medium

composed of hydrogen and helium, we find

lν = ν
3 [xH In̄0

H(1+ z)2
σ0(ν

3
H + yν

3
He)
]−1

' 5.8 x−1
H I

(
hν

0.2 keV

)3(1+ z
10

)−2

cMpc (1.6)

where n̄0
H is the hydrogen number density today, y is the primordial helium abundance by number, xi is the

ionized fraction3 , and “cMpc” is short for “co-moving Mega-parsecs.”

In contrast to stellar UV emission, which extends to at most a few tens of eV (see Figure 1.3) and is

thus quickly absorbed in the IGM, Equation 1.6 shows that X-rays can travel great distances before being

absorbed. X-ray sources like XRBs are probably only relevant to the thermal history of the IGM, since each

X-ray ionization event produces photo-electrons that subsequently lose their energy to various processes,

including collisional ionization of hydrogen (or helium), collisional excitation, and heat (Shull and van

Steenberg, 1985, Ricotti et al., 2002, Furlanetto and Johnson Stoever, 2010). Though in a neutral gas most

of the photo-electron energy is deposited as further ionization, heating becomes the dominant channel once

the ionized fraction reaches xH II & 10−2.

Nearby star-forming galaxies exhibit a relationship between their X-ray luminosity and star-formation

rate (the so-called LX -SFR relation; Grimm et al., 2003, Gilfanov et al., 2004, Mineo et al., 2012b), that is

well fit by

LX = fX cX

(
SFR

M�/yr

)
(1.7)

3 We assume the singly-ionized helium fraction is the same as the hydrogen ionized fraction, xH II = xHe II = 0, and neglect
doubly ionized helium, i.e. xHe III = 0.
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Figure 1.4 Left: X-ray Luminosity star-formation rate (LX -SFR) relation from (Mineo et al., 2012b). Right:
X-ray SED of star-forming galaxy (per unit star-formation), assuming XRBs have α = 1.5 power-law spec-
tra. The solid green line shows the LX -SFR of Mineo et al. (2012b), while dashed and dotted lines show
factor of 5 and 10 amplification of the Mineo et al. (2012b) relation. Black and blue curves are the same as
those in Figure 1.3.
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where cX = 2.6×1039 erg s−1 (measured in the 0.5 - 8 keV band, see Figure 1.4; Mineo et al., 2012b), and

fX is an unknown correction factor introduced to account for our ignorance of how this relationship extends

to high-z.

Assuming fX = 1 at all redshifts, the IGM should be heated to∼ 1.2×104 K in a Hubble time assum-

ing a star formation efficiency of 10% in atomic cooling halos and a power-law XRB spectrum (Furlanetto,

2006). However, if the first stars are especially massive, we might expect their remnants to follow suit.

Assuming Eddington-limited accretion, LX ∝ M•, this implies an amplification of the LX -SFR relation at

high-z. As a result, any observations that can constrain the normalization of LX -SFR (which we parameter-

ize via fX ) have the potential to constrain the first BHs to form in the Universe, and thus provide an indirect

constraint on the first stars.

1.1.3 Galaxies & the Epoch of Reionization

The “galaxies” hosting the first generations of stars and BHs would have looked nothing like the spiral

and elliptical galaxies that litter the cosmic landscape today4 . In fact, the very first halos to experience star

formation may have initially been home to just one massive metal-free star (or perhaps a few; Turk et al.,

2009, panel 1 of Figure 1.5). A substantial fraction of halo gas would have been heated mechanically by the

first supernovae, and may have required tens of Myr to subsequently cool and form stars once again. Accre-

tion onto BH remnants of the first stars could lengthen a halo’s star-less period to ∼ 100 Myr through X-ray

heating (Jeon et al., 2014). The fragility of the first halos and the array of potential feedback mechanisms

support a “bursty” picture of star-formation at high-z.

Second generation stars would almost certainly have formed from enriched material and thus have

been less massive than the generation before them (panel 2 of Figure 1.5). With less intense ionizing

radiation and less powerful supernovae than PopIII stars, their impact on the host galaxy would have been

been correspondingly weaker, meaning star-formation could have persisted rather steadily. With star and BH

formation occurring in halos across the Universe, large-scale radiation backgrounds would have emerged,

4 Despite bearing little resemblance to present-day galaxies, we will henceforth refer to all halos that have experienced star-
formation as galaxies.
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Figure 1.5 Cartoon showing a plausible guess for the formation of the first galaxies. (1) The first stars form
in small halos via H2 cooling. (2) These stars empty evacuate their host halos of gas via photoevaporation
and supernova blast-waves, changing the mode of star formation. (3) The IR and UV radiation from low-
and high-mass stars suppresses star formation throughout the universe, gradually increasing the character-
istic mass of star-forming halos. (4) The first self-sustaining galaxies eventually form in massive halos, as
accreting stellar remnants of the first stars in binary systems give rise to a relatively uniform X-ray back-
ground. (5) X-rays cause large-scale heating, which increases the characteristic mass of star-forming halos
even further. The Epoch of Reionization has begun, and PopIII stars have likely become extinct.
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primarily in the Ly-α/LW (10.2 < hν < 13.6 eV) and hard X-ray (hν & 1 keV) bands (following the mean-

free-path arguments of the previous section), and introduced the possibility of external feedback. The LW

background generally acts to suppress star formation in metal-free gases through dissociation of H2, meaning

halos may have been “sterilized” before forming any stars at all (panel 3 of Figure 1.5). It is possible that

an X-ray background could counteract H2-dissociative feedback by enhancing the free electron fraction and

thus catalyzing H2 formation (Kuhlen and Madau, 2005, Hummel et al., 2015). X-rays also heat the IGM

on large-scales, i.e., the mostly neutral “bulk IGM” beyond the fully-ionized bubbles surrounding galaxies

(panel 4 of Figure 1.5). Eventually, the LW background was likely strong enough to prevent the formation

of metal-free stars in halos across the Universe, except those isolated enough to have remained metal-free.

Galaxies, now composed primarily of PopII stars, could have sustained star formation at levels sufficient

to grow large ionized bubbles around themselves. The Epoch of Reionization (EoR) had begun, likely by

z∼ 10 (panel 5 of Figure 1.5).

The persistence of star formation meant galactic HII regions would in time grow large enough to

overlap with those associated with nearby galaxies, ultimately leading to the complete depletion of neutral

intergalactic hydrogen. Figure 1.6 shows an artists rendition of this process, beginning with the CMB (at

left) and ending with the present (at right).

Figure 1.6 Artists depiction of the evolution of structure in the Universe, from the CMB (far left), to reion-
ization (middle), to the present-day (far right).
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The simplest model of this Reionization process tracks the balance between photo-ionizations and

recombinations in a single volume element, i.e.,

dnH II

dt
= ΓHInH I−αHII(TK)nenH IIC (z) (1.8)

where nH = nH I + nH II is the number density of hydrogen atoms, ΓHI is the rate coefficient for photo-

ioniization, α(TK) is the rate coefficient for radiative recombination, ne is the number density of free elec-

trons, and C (z) is the “clumping factor.”

Taking nH I = xH InH, nH II = xH IInH, and assuming that ionizing photons are distributed uniformly in

space, we can write

dxH II

dt
= Q̇ion−αHII(TK)nexH IIC (z) (1.9)

where Q̇ion is the production rate of ionizing photons, i.e., the number ionizing photons produced by galaxies

per second per unit volume.

This simple equation highlights several important factors that could influence how rapidly the Uni-

verse becomes ionized. Clearly, if we turn a knob in our model that makes galaxies brighter, Q̇ion will

increase and bring Reionization to a close more rapidly (holding all other quantities fixed). Alternatively, in

a clumpy medium (i.e., one with C > 1), the recombination rate will be boosted and the progress of Reion-

ization will be slowed. Simulations suggest that 1 . C . 3 (Shull et al., 2012). X-rays, while busy heating

the IGM and thus reducing the recombination rate (through αHII), can also modify the other parameters of

this model. For example, even if the intrinsic UV luminosity of galaxies remains unchanged with time, X-

rays may act to reduce the neutral hydrogen content of galaxies and thus enhance the number of UV photons

which escape into the IGM (Benson et al., 2013). X-rays may also be responsible for raising the halo mass

threshold required for star formation (Gnedin, 2000), and reducing clumping in the high-z IGM.

The progression of events described in the previous three subsections is a plausible guess for how

galaxy formation occurred at z & 6, though it depends on many complex, inter-related, and difficult to

observe processes and thus remains poorly constrained. The next section is dedicated to a discussion of

current constraints on the EoR and high-z galaxies, to be followed with a detailed introduction to the 21-cm

background in §1.3.
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1.2 Established Probes of High-z Galaxies and Reionization

Though our focus will in large part remain on the global 21-cm signal throughout this thesis, it

would be short-sighted to omit mention of other independent probes of the high-z Universe. A discussion

of observations at shorter wavelengths is warranted both for historical reasons, given that studies of the

early Universe did not originate in the radio, and also so that the power of 21-cm observations becomes

apparent in contrast. This is not to say, however, that 21-cm observations will eventually usurp all other

techniques in the coming years. We will return to the possibility of bolstering the constraining power of

21-cm observations with current and near-future experiments in Chapter 7.

The following subsections are by no means a comprehensive census of all high-z probes. Most no-

tably, I will only focus on contemporaneous probes of high-z galaxies, i.e., those which provide information

coincident in time with the galaxies of interest. Observations of nearby galaxies (including our own) may

provide important clues about star-formation at high-z, e.g., via abundance patterns in low-mass stars (e.g.,

Salvadori et al., 2007, Rollinde et al., 2009) or the star-formation history of dwarf galaxies as inferred by

their present-day stellar populations (Weisz et al., 2014, Boylan-Kolchin et al., 2015). However, the obser-

vational and theoretical methods of such “galactic archeology” have little in common with our own, so we

neglect them in the interest of time and focus.

1.2.1 The Galaxy Luminosity Function

Perhaps the most intuitive approach to learn about the galaxy population is to simply count the number

of galaxies in different luminosity bins. The resulting function, often denoted φ(L,z), is known as the

galaxy luminosity function (LF), and describes the number density of galaxies as a function of both galaxy

luminosity and redshift. For example, the total number density of galaxies at redshift z with luminosities

greater than L is given by the integral

Ngal(L,z) =
∫

∞

L
φ(L′,z)dL′. (1.10)

Preliminary searches for high-z galaxies have commenced, primarily with the Hubble Space Telescope, and

have begun to reveal very bright galaxies at redshifts as high as z∼ 10 (Zheng et al., 2012, Ellis et al., 2013,
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Oesch et al., 2013). The galaxy LF is typically well-described by a Schecter function, i.e., a power-law with

an exponential cutoff

φ(L) = φ(L∗)
(

L
L∗

)α

e−L/L∗ , (1.11)

where φ(L∗) is the number density of galaxies with the characteristic luminosity L∗ and α is the “faint-end

slope” of the luminosity function.

The quantity most important for reionization is the luminosity density of high-z galaxies, i.e., a

weighted integral over φ(L),

ρL(z,Lmin) =
∫

∞

Lmin

φ(L,z)LdL (1.12)

where Lmin is the minimum galaxy luminosity. Figure 1.7 shows a recent fit to the z = 6 LF, with the cor-

responding cumulative luminosity density on the bottom panel. The brightest galaxies are exceedingly rare,

and thus contribute little to the total luminosity density. However, the individually faint but overwhelmingly

numerous galaxies with L< L∗ contribute a substantial fraction of the total luminosity density, and as a result

are likely required to ensure that reionization ends by z∼ 6 (e.g., Trenti et al., 2010, Wise et al., 2014).

Relating the galaxy LF to the dark matter halo mass function (HMF; see Figure 1.8) is one of the most

powerful probes of feedback processes. Assuming a 1:1 corresponding between galaxies and DM halos, the

abundance of galaxies should “match up” with the abundance of halos. For example,

∫
∞

L
φ(L′)dL′ =

∫
∞

m(L)
n(m′)dm′. (1.13)

where n(m) is the number density of halos of mass m. Note that this equality assumes independent knowl-

edge of the conversion between mass and light, m(L). If, for example, not all halos host galaxies, or if the

luminous component of galaxies is time variable, the above equality will not hold even if m(L) is known

exactly. To account for these possibilities, a correction factor is typically introduced,

∫
∞

L
φ(L′)dL′ = ε

∫
∞

m(L)
n(m′)dm′. (1.14)

which can either be interpreted as an occupation fraction (of galaxies in halos) or as a duty cycle, i.e., fraction

of the time galaxies are “on.” Numerous studies now indicate that ε< 1, especially at the low-luminosity end

of the galaxy LF (e.g., Trenti et al., 2010). We should expect feedback processes to be particularly strong in
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Figure 1.7 Empirical fit to the rest-frame 1500Å galaxy luminosity function at z∼ 6 (Oesch et al., 2012). Top
panel shows the galaxy luminosity function itself, while the bottom panel shows the cumulative luminosity
emitted by galaxies fainter than the corresponding value of L. Clearly, faint galaxies (i.e., those fainter than
L∗), are expected to dominate the volume-averaged luminosity, though exactly how much they dominate
depends on the faintest galaxy, Lmin (dotted, solid, dashed, and dash-dotted lines).
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low-mass galaxies, since their shallow gravitational potential wells should have a harder time retaining gas

than more massive galaxies. The properties of the faint galaxy population should thus contain a wealth of

information about the processes shaping the first galaxies.

1.2.2 The Ly-α Forest, Gunn-Peterson Troughs, and the Meta-Galactic UV Background

Given the effect galaxies have on intergalactic gas, it would of course be advantageous to both search

for galaxies directly (e.g., to determine the LF) and to measure properties of the IGM, which serve as an

independent, albeit indirect, probe of galaxy properties. This has been done for years in studies of the z . 6

Universe, providing constraints on the ionizing background (Weinberg et al., 1997) and the first evidence

for a z∼ 6 end to reionization (Fan et al., 2000, Becker et al., 2001).

Both of the aforementioned results are made possible by the absorption of Ly-α photons by neutral

hydrogen atoms. The optical depth of a cloud as seen in absorption against bright background source (e.g.,

a quasar) is

dτν = σνnH Idl, (1.15)

where σν is the frequency-dependent cross-section, nH I is the number density of neutral hydrogen atoms,

and dl is a differential line element. The measured flux in the vicinity of that absorption line (relative to the

continuum flux F0) is

Fν = F0e−τν . (1.16)

In practice, one is interested in the total optical depth of the line, since it encodes the column density of the

absorber, dN = nH Idl. Assuming absorption is sharply peaked near the Ly-α line center,

σν =
πe2

mec
fαφν =

πe2

mec
fαδD [ν−να] (1.17)

where δD is the Dirac delta function, and uniform absorbers, nH I = n̄0
H(1+δ)(1+ z)3, we can write

τα = 2.6×105× xH I(1+δ)

(
1−Y
0.76

)(
Ωb,0

0.0486

)(
Ωm,0

0.3089

)−1/2( h
0.68

)(
1+ z

7

)3/2

(1.18)

where Y is the primordial helium abundance by mass and H0 = 100h km s−1 Mpc−1.
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Figure 1.8 Dark matter halo mass function at z = 6,8 and 10. Assumes the Sheth and Tormen (2002) form
of the mass function and Planck cosmological parameters. Computed using the HMF code (Murray et al.,
2013b).
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Figure 1.9 Spectra of 19 quasars at 5.764 < z < 6.42 from (Fan et al., 2006) showing the emergence of the
Gunn-Peterson trough at z∼ 6.
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Equation 1.18 shows that even gas at the cosmic mean density (δ = 0) with a very small neutral

fraction can have a large optical depth. Because each observed frequency corresponds to a unique redshift,

ν = να/(1+ z), in principle one could get a census of neutral hydrogen gas as a function of redshift by

measuring the properties of each line in the “forest” of absorption lines in the spectrum of a distant quasar.

As the diffuse component of the IGM becomes increasingly neutral, individual absorbers will blend

together into a “trough,” i.e., one would measure flux consistent with zero (see Figure 1.9). Given the high

optical depth of Ly-α, any transmission at all implies a highly ionized medium with xH I . 10−4. Though

this provides a powerful constraint on the end of Reionization, it of course means that Ly-α absorption is not

a viable probe of the pre-Reionization IGM. This is one of the main reasons to seek out alternative probes

of the IGM at higher redshifts, such as the 21-cm line, to be discussed in §1.3.

Despite the waning utility of Ly-α absorption at z & 6, the Ly-α forest has provided a wealth of

information about the ionizing background at z . 6. Assuming that the absorbing gas is in photo-ionization

equilibrium, i.e.,

dxH I

dt
= ΓxH I−αHII(TK)(1− xH I)ne = 0 (1.19)

then one can relate the ionization state of absorbing gas (xH I in Equation 1.18) to the ionization rate, Γ. The

ionization rate is interesting as a probe of the meta-galactic background radiation, Jν,

Γ =
∫

Jνσνdν (1.20)

which is in turn related to the specific luminosity density of galaxies, εν, diluted by the cosmic expansion

and hardened by intergalactic absorption, i.e.,

Jν(z) ∝

∫
∞

z

εν′(z′)
H(z′)

e−τ
ν′dz′. (1.21)

Following this line of reasoning, the Ly-α serves as a probe of the galaxy population. An analogous argument

will resurface in Chapter 5 in the context of 21-cm measurements.

1.2.3 Thomson Optical Depth to the Cosmic Microwave Background

Though Ly-α absorption cannot probe redshifts far beyond z∼ 6, a crude measure of the duration of

the EoR is accessible to CMB experiments. In §1.1.1 I was careful to say that the CMB represents the time



23

when most photons scattered for the last time. The probability of this occurring between recombination and

present day is is related to the optical depth to Thomson scattering between z∼ 1100 and z = 0,

τe = σT Ne (1.22)

where σT = 6.65×10−25 cm−2 is the Thomson cross-section, and Ne is the column density of electrons.

In an expanding Universe, the electron column is an integral of the electron density, ne, along the

cosmological line-element, dl/dz,

τe = σT

∫ zrec

0
ne

dl
dz

dz (1.23)

where zrec corresponds to the redshift of cosmological recombination. This electron optical depth enters as

a damping term in the CMB power spectrum on small angular scales.

If we assume that all electrons were stripped from hydrogen atoms, such that ne = nH(z)xi = n̄0
H(1+

z)3xi, and that the endpoint of Reionization, zrei, is known, we can write

τe = σT n̄0
H

{∫ zrei

0
(1+ z)3 dl

dz
dz+

∫ zrec

zrei

xi(z)(1+ z)3 dl
dz

dz
}

(1.24)

since the ionized fraction is unity for all redshifts z < zrei.

Assuming Planck cosmological parameters, the first term on the left hand side is τe(z < zrei)' 0.04.

The value of τe, as inferred by CMB expriments has changed by a factor of ∼ 3 between the first release by

the Wilkinson Microwave Anisotropy Probe (WMAP) in 2003 and Planck in 2015 (see Table 1.1). WMAP

9 results and Planck Year 1 results are borderline discrepant, likely due to foreground contamination in the

WMAP maps. The recent Planck result (τe = 0.066± 0.012) suggests that about 40% of τe is due to free

electrons at z > 6.

τe is a fairly crude measure of the EoR given that it is a line-of-sight-integrated measure of the electron

content of the Universe. This means that any constraint it yields on the ionization history, xi(z), will be

model-dependent. It is common to translate τe into a “redshift of Reionization,” zrei, assuming the process

is instantaneous. The Planck results find translate to zrei ' 8.8, whereas previous constraints from WMAP

supported zrei ∼ 10.1. This shift, to lower values of τe and zrei, has alleviated tensions between previous

WMAP measurements of τe and the ionizing emissivity of the high-z galaxy population (Bouwens et al.,

2015, Robertson et al., 2015).
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Table 1.1. History of τe

Value Experiment Reference

0.170±0.04 WMAP-1 Spergel et al. (2003)
0.089±0.030 WMAP-3 Spergel et al. (2007)
0.084±0.016 WMAP-5 Komatsu et al. (2009)
0.088±0.015 WMAP-7 Komatsu et al. (2011)
0.089±0.014 WMAP-9 Hinshaw et al. (2013)
0.066±0.012 Planck Collaboration et al. (2015)

Note. — Constraints on τe, as determined from several
datasets over the last ∼ 12 years.

1.3 The 21-cm Background

In the early 1940s, H.C. Van de Hulst and Jan Oort realized that a hyperfine splitting in the ground

state of the hydrogen atom should produce radiation at 21-cm wavelengths. Indeed, first detection of the

21-cm line occurred in 1951 (Ewen and Purcell, 1951, Muller and Oort, 1951), and has continued to be

one of the most powerful tools in astronomy ever since. Given my focus on high-z applications, I will

neglect the overwhelming application at low-z and from this point henceforth only consider the 21-cm line

as a probe of galaxies in the early Universe, which was first considered by Sunyaev and Zeldovich (1972),

and subsequently by Sunyaev and Zeldovich (1975), Hogan and Rees (1979), Oort (1984), Baldwin (1986),

Swarup and Subrahmanyan (1987), Scott and Rees (1990).

The 21-cm line is an alluring probe of galaxy formation and cosmology for numerous reasons. For

example, the 21-cm line provides a direct probe of the properties of intergalactic gas, meaning it holds the

potential to map out the ionization history as a function of time. This is highly complementary to the integral

constraints on reionization provided by CMB experiments, and also to high-z galaxy surveys, which must

model the ionization history based on the galaxy population they constrain. The 21-cm line also offers the

ability to measure the thermal history of the IGM, as well as the emergence of the Ly-α background, neither

of which are accessible to high-z galaxy surveys or CMB experiments.

Additionally, campaigns to constrain the 21-cm background will improve the completeness of current

and near-future galaxy surveys. For example, though JWST may be able to detect clusters of Population III
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(PopIII) stars at 2 . z . 7 (Johnson, 2010), PopIII galaxies and proto-quasars at z ∼ 10− 15 (Zackrisson

et al., 2011, Johnson et al., 2012), and PopIII supernovae at z ∼ 15− 20 (Whalen et al., 2013a,b), it will

struggle to find normal galaxies, which are most important to reionization and in providing a statistical

sample of objects. If the galaxy luminosity function flattens considerably at the low-luminosity end, as

predicted by some recent models (O’Shea et al., 2015), or the formation efficiency of massive Population III

stars is low, JWST may struggle to find faint galaxies beyond redshifts z∼ 10 (Zackrisson et al., 2012).

A more thorough discussion of the synergies between 21-cm experiments and others will be presented

in Chapter 7. For now, we turn to the basic physics of the 21-cm background and early predictions for the

structure of the global 21-cm signal, in Sections 1.3.1 and 1.3.2, respectively.

1.3.1 Basic Physics

The 21-cm “spin flip” transition results from hyperfine splitting in the 1S ground state of the hydrogen

atom when the magnetic moments of the proton and electron flip between aligned (triplet state) and anti-

aligned (singlet state). The relative number of hydrogen atoms in each state depends sensitively on the

temperature and ionization state of the gas, since it is the temperature and ionization state that determine

the rate of hydrogen-hydrogen and hydrogen-electron collisions capable of inducing “spin exchange,” i.e.,

flipping from one hyperfine state to the other (Purcell and Field, 1956). Spin exchange can also be caused

by more subtle radiative processes, depending on the abundance of Ly-α photons (Wouthuysen, 1952, Field,

1958). In principle, then, it probes the radiation fields generated by the first luminous sources, since the Ly-α

and LW backgrounds are intimately related, heating is dominated by X-rays, and reionization is dominated

by LyC photons.

Madau et al. (1997) were the first to realize that the 21-cm line could be used to study the diffuse

IGM, deriving an equation for the brightness of intergalactic hydrogen relative to the CMB (their Equation

45). It is now often written as5

δTb ' 27xH I(1+δ)

(
Ωb,0h2

0.023

)(
0.15

Ωm,0h2
1+ z
10

)1/2(
1− Tγ

TS

)[
H(z)/(1+ z)

dv‖/dr⊥

]
mK, (1.25)

5 For a detailed derivation, see Appendix A.
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In this equation, xH I represents the hydrogen neutral fraction, δ the gas density relative to the cosmic mean,

Tγ the temperature of the CMB, and TS the spin temperature, which describes the relative abundance of

atoms in the hyperfine singlet and triplet states. The remaining quantities are cosmological parameters,

including the energy density (relative to the critical density) in baryons (Ωb,0), all matter (Ωm,0), and the

Hubble parameter H(z). The final term describes the effect of line-of-sight velocities imparting an apparent

shift in the 21-cm emission from one redshift to another, and is referred to as the “redshift-space distortions”

term.

The dependence of the 21-cm brightness on xH I is intuitive – there can be no 21-cm signal without

neutral hydrogen, meaning δTb approaches zero as reionization progresses, culminating in the complete

depletion of neutral hydrogen in the IGM. However, prior to reionization (when xH I ≈ 1), the behavior of

δTb is driven by evolution in TS, which depends on the background intensity of Ly-α photons, predominantly

produced by stars, and the IGM temperature, which is determined by X-ray sources like accreting BHs.

Evolution in δTb over cosmic time thus encodes the history of ionization (through xH I), the thermal history

(through TS), and Ly-α emission (also through TS), which in principle means that the 21-cm signal probes

the background radiation intensity at photon energies ranging from Ly-α to X-rays.

Early studies of HI signatures in the early Universe were exclusively geared toward spatially resolved

studies. For example, Madau et al. (1997) focused on the immediate vicinity of quasars, and found that

a non-zero HI signal should be visible within ∼ 10 Mpc of individual objects, and thus be potentially

detectable with the Giant Metrowave Radio Telescope (GMRT) in India. Theirs was the first to consider

structure in the HI emission arising due to spatial variations in the spin temperature and ionized fraction,

rather than the density, as in previous studies (Hogan and Rees, 1979, Scott and Rees, 1990). Recently,

it was realized that such measurements might actually reveal a wealth of information about the spectra of

quasars and galaxies (Kramer and Haiman, 2008, Thomas and Zaroubi, 2008), in addition to providing

strong evidence of a neutral IGM.

While the long term goal is to map the 21-cm fluctuations from the ground (a task on the horizon at

z . 10; via e.g., the Low Frequency Array (LOFAR), the Murchison Widefield Array (MWA), the Precision

Array for Probing the Epoch of Reionization (PAPER), the Giant Metrewave Telescope (GMRT), and the
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Square Kilometer Array(SKA); Harker et al., 2010, van Haarlem et al., 2013, Bowman et al., 2013, Parsons

et al., 2010, Paciga et al., 2013, Carilli et al., 2004, Mellema et al., 2013)) or space (e.g., the Lunar Radio

Array (LRA), the Radio Observatory on the Lunar Surface for Solar studies (ROLSS); Jester and Falcke,

2009, Lazio et al., 2011) using large interferometers, in the near term, the entire 10 . z . 40 window is

likely to be accessible only to global 21-cm experiments.

1.3.2 The Global 21-cm Signal

The global 21-cm signal was first “discovered” by Shaver et al. (1999), who realized that deviations

from TS = Tγ in the diffuse IGM would manifest as a spectral signature on very large scales, and thus

potentially be detected by modest radio telescopes with poor angular resolution. This was in stark contrast

to prior studies, which focused on measuring HI from individual sources using resolved observations.

Considering HI only on very large scales, we can take δ = 0 (i.e., gas at the cosmic mean density),

and assume the redshift-space distortions term in Equation 1.25 is unity (i.e., the line-of-sight velocities are

simply the Hubble flow), leaving6

δTb ' 27xH I

(
Ωb,0h2

0.023

)(
0.15

Ωm,0h2
1+ z
10

)1/2(
1− Tγ

TS

)
mK. (1.26)

Given that, at the time, Ly-α coupling was thought to be immediately followed by efficient heating (via

resonant scattering of Ly-α photons; Madau et al., 1997), the initial focus was on the global 21-cm emission

signature. With early and efficient heating, TS ≈ TK� Tγ and Equation 4.8 becomes

δTb,sat ' 27xH I

(
Ωb,0h2

0.023

)(
0.15

Ωm,0h2
1+ z
10

)1/2

mK (1.27)

where we have added the subscript ‘sat’ to indicate that this is the differential brightness temperature in the

saturated (TS� Tγ) limit. Clearly, in this limit, a measurement of the δTb provides a direct measure of the

volume-averaged neutral fraction, xH I, and thus an important constraint on Reionization. However, note also

that the emission signal has a known maximal amplitude (as a function of redshift) in the saturated regime.

Figure 1.10 shows the early models of the global 21-cm signal from Shaver et al. (1999), in addition

to two more recent physically- and empirically- motivated models. While clearly these deviations are small
6 Note that density fluctuations could in principle still affect the global 21-cm signal if there are strong correlations between xi,

TS, and δ. We neglect this complication for the duration of this work.
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Figure 1.10 Left: Early models for the global 21-cm signal from Shaver et al. (1999), including a toy “step”
model of reionization (a) and two models from the numerical simulations of Gnedin and Ostriker (1997) and
Baltz et al. (1998) (b and c, respectively). Right: Re-produced step model of Shaver et al. (1999) (black)
compared with more recent physically motivated models, including a tanh model of reionization with zrei = 8
and ∆zrei = 1 (blue), and an empirically constrained model of reionization from Robertson et al. (2015) (red).
The physical models assume TS� Tγ, i.e., they use Equation 1.27. Note that the y-axis in the right panel has
been re-normalized relative to the CMB, and re-expressed in units of mK, rather than K. The dotted black
line shows the maximum allowed amplitude of the signal, i.e., the saturated limit with xi = 0.
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relative the cosmic background, they are even smaller compared to the galactic foreground, which we show

at 40, 80, and 120 MHz in Figure 1.11. Even in quiet patches of the sky, the brightness temperature exceeds

∼ a few hundred Kelvin at the high frequencies (bottom panel), with the galactic plane typically exceeding

∼ 103 K in brightness temperature at all frequencies between 40 and 120 MHz.

We will soon see that the Shaver et al. (1999) models for the global 21-cm signal are only a small piece

of most models in the literature today (e.g., Furlanetto, 2006, Pritchard and Loeb, 2010). Most notably, the

Shaver et al. (1999) models were pure emission signals because at the time, heating by resonant scattering of

Ly-α photons was thought to efficiently heat the IGM temperature above the CMB temperature almost im-

mediately following the emergence of a Ly-α background. Many years later, several authors independently

found (Chen and Miralda-Escudé, 2004, Hirata, 2006, Furlanetto and Pritchard, 2006, Chuzhoy et al., 2006)

that the initial calculations (Madau et al., 1997) of Ly-α heating were too simplistic, and resulted in heating

rates factors of ∼ 103 too high.

With the Ly-α heating issue resolved, and updated calculations for the rate of spin exchange at low

temperatures (Zygelman, 2005), models for the global 21-cm signal began to resemble those common in the

literature today. For example, the models of Furlanetto (2006) had rather deep absorption features whose

depth and position varied with the efficiency of X-ray production in the first galaxies. Figure 1.12 shows a

set of models that span a large range of currently viable parameter space.

Though the global 21-cm signal can in principle be studied with single-element receivers, several

challenges in the field persist, in both observational and theoretical arenas. For example, the Earth is a

sub-optimal platform for observations at the relevant frequencies (ν . 200 MHz) due to radio-frequency

interference and ionospheric variability (Vedantham et al., 2013, Datta et al., 2014), making the lunar far-

side7 a particularly appealing destination for future observatories (e.g., LRA, ROLSS, the Dark Ages Radio

Explorer; Burns et al., 2012). Some foregrounds, however, cannot be escaped even from the lunar farside.

Synchrotron emission from our own galaxy is 105-106 times stronger than the global 21-cm signal, while

extragalactic point sources appear as another diffuse foreground to single-element receivers. Both must be

7 The Moon is not completely devoid of an ionosphere – its atmosphere is characterized as a “surface-bounded exosphere,”
whose constituents are primarily metal ions liberated by interactions with energetic particles and radiation from the Sun (e.g.,
Stern, 1999). However, it is tenuous enough to be neglected at frequencies ν & 1 MHz.
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Figure 1.11 Maps of the galactic foreground at 40 MHz (top), 80 MHz (middle), and 120 MHz (bottom)
computed using the de Oliveira-Costa et al. (2008) sky model.
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Figure 1.12 The evolution of a slice of the Universe (upper panel; compare to Figure 1.6), from early times
at left to late times at right as well as the corresponding sky-averaged 21-cm signal relative to the CMB
(lower panel). The first stars form at z ∼ 30 in the fiducial model simulation (labeled B on black curve)
and “turn on” the 21-cm signal in absorption against the CMB (light blue in top panel). The fiducial model
assumes the first sources are similar to those in nearby galaxies. At z∼ 20 (Turning Point C), accreting black
holes heat the gas, transforming the signal from absorption to emission (z∼ 12; Turning Point D, red in top
panel). At later times, ionized bubbles (black, upper panel) grow to fill the universe by z ∼ 8. The bottom
panel illustrates the current theoretical uncertainties in first star and black hole parameters. Blue curves vary
the UV flux from the first stars by a factor of 100 while green curves vary the X-ray heating rate by a factor
of 100. Figure adapted from Pritchard and Loeb (2010) using the new reference model from Mirocha et al.
(2015).
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removed in post-processing using sophisticated fitting algorithms (e.g., Harker et al., 2012, Liu et al., 2013).

Because of these challenge, the only constraints obtained to date come from EDGES, which placed lower

limits on the duration of reionization (∆z & 0.06; Bowman and Rogers, 2010).

On the theoretical side, though the global 21-cm signal is undoubtedly rich in the information it

encodes, it has so far been unclear to what extent that information can be extracted reliably even with a

precision measurement. This is largely due to computational restrictions that limit the accuracy of theoretical

models, as well as strong degeneracies between model parameters of interest. Advancing theoretical models

for the global 21-cm signal, and illuminating the degeneracies between their input parameters are among the

chief goals of this thesis, among many, to be introduced in the next Section.

1.4 Motivation and Outline for Subsequent Chapters

Given its sensitivity to the hydrogen ionized fraction, the gas kinetic temperature, and the Ly-α back-

ground intensity, the global 21-cm signal is in principle a powerful probe of the rest-frame UV and X-ray

spectra of high-z galaxies over time, as it is the LyC photons which ionize hydrogen, X-rays which heat

the IGM, and soft UV photons which ultimately redshift or cascade through the Ly-α line and give rise to

Wouthuysen-Field coupling. Though these dependencies have been explored on numerous occasions via

forward modeling, i.e., models that predict that structure of the global 21-cm signal as a function of the star

formation efficiency, mass of star-forming halos, etc., there has been little work dedicated to the prospects

for inverting future 21-cm measurements. That is, given a measurement of the global 21-cm signal, δTb(ν),

what would we infer about the properties of the Universe’s first galaxies, having taken into account degen-

eracies between the most fundamental parameters of interest and expectations for measurement uncertainty?

The goal of this thesis is to address the inversion problem through development of a framework for

interpreting measurements of the global 21-cm signal. Such a tool will ultimately become the final stage

of data analysis pipelines, but in the meantime, it will (i) uncover the mapping between features of the

global 21-cm signal and properties of the high-z IGM and high-z galaxies, (ii) determine how simultaneous

fits to the signal and foreground complicate this mapping, thus providing an important test of foreground

removal algorithms, (iii) help optimize the design of next-generation facilities and their observing strate-
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gies through parameter forecasting, and (iv) identify the most problematic uncertainties and persistent de-

generacies among model parameters, which will help determine the independent measurements of highest

degeneracy-breaking value, and also motivate efforts to both improve theoretical models and reduce uncer-

tainty in the models themselves. Subsequent chapters will follow the basic progression outlined above.

In Chapter 2, we start with a simple analysis of an arbitrary realization of the global 21-cm signal

characterized by the locations of its extrema (i.e., points B-D in Figure 1.12). This was motivated by the

work of Furlanetto (2006) and Pritchard and Loeb (2010), who showed that while the range of expected

realizations for the global 21-cm signal vary dramatically in structure, they consistently exhibit three main

spectral features. What properties of the IGM do these features encode, and what assumptions must we

make to draw robust inferences from the locations of these features?

Having laid the groundwork for interpreting a generic realization of the global 21-cm with a simple

analytical model, we then shifted our attention to more concrete examples. How well can the features

of the global 21-cm actually be extracted from the foregrounds? Much of this work, to be presented in

Chapter 3, was conducted in a larger collaboration of which I was not the lead author, so I have extracted

my contributions and those most pertinent for understanding subsequent material.

With reasonable estimates for errors on extrema in the global 21-cm signal yielded by near-future

experiments, in Chapter 4 I turned to the prospects of constraining a physically-motivated galaxy formation

model from measurements of the turning points of the global 21-cm signal. Can we expect to constrain, for

example, the characteristic mass of star-forming halos at high-z? Could we rule out models for PopIII star

formation or models for BH formation? Do we need to measure all three features of the signal, or should

we expect narrow-band experiments to have success deciphering the epoch of the first stars and galaxies?

The next two chapters are focused on detailed frequency-dependent solutions to the radiative transfer

equation, first on the large scales relevant to the global 21-cm signal (Chapter 5), and then on smaller scales

relevant to numerical simulations of reionization and potentially models for the 21-cm power spectrum

(Chapter 6).

In Chapter 7, I offer a general set of conclusions and a path for building upon this thesis in future

work.
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Chapters 2-6 closely mirror a series of published papers (Mirocha et al., 2012, 2013, Mirocha, 2014,

Mirocha et al., 2015, Harker et al., 2015). An additional product of this thesis is a publicly available software

package that can be used to model the global 21-cm signal, ionized bubbles around stars and BHs, and the

meta-galactic radiation background generated by an entire population of such objects. Though over the

years it has evolved considerably, through many organizational structures, user-interfaces, and names8 , it

now exists in its entirety in a single PYTHON package: the Accelerated Reionization Era Simulations (ARES)

code9 . Many of the results presented throughout can be reproduced in fairly short order using ARES.

8 https://bitbucket.org/mirochaj/rt1d, https://bitbucket.org/mirochaj/glorb
9 https://bitbucket.org/mirochaj/ares

https://bitbucket.org/mirochaj/rt1d
https://bitbucket.org/mirochaj/glorb
https://bitbucket.org/mirochaj/ares


Chapter 2

Model-Independent Constraints from the Sky-Averaged Global 21-cm Signal

Reproduced with permission of the AAS.

Reference:

“Interpreting the Sky-Averaged 21-cm Signal from High Redshifts. I. Model Independent Constraints”

Mirocha, J., Harker, G. J. A., & Burns, J. O. 2013, ApJ, 777, 118

2.1 Context

The sky-averaged (global) 21-cm signal is a powerful probe of the intergalactic medium (IGM) prior

to the completion of reionization. However, so far it has been unclear whether, even in the best case scenario,

in which the signal is accurately extracted from the foregrounds, it will provide more than crude estimates

of when the universe’s first stars and black holes formed. In contrast to previous work, which has focused

on predicting the 21-cm signatures of the first luminous objects, we investigate an arbitrary realization of

the signal, and attempt to translate its features to the physical properties of the IGM. Within a simplified

global framework, the 21-cm signal yields quantitative constraints on the Ly-α background intensity, net

heat deposition, ionized fraction, and their time derivatives, without invoking models for the astrophysical

sources themselves. The 21-cm absorption signal is most easily interpreted, setting strong limits on the

heating rate density of the universe with a measurement of its redshift alone, independent of the ionization

history or details of the Ly-α background evolution. In the next two chapters we extend these results,

focusing first on the expected accuracy of signal extraction (Chapter 3) and subsequently, the constraints on

the properties of the IGM and the first galaxies offered by near-future experiments (Chapter 4).
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2.2 Introduction

Even if the astrophysical signal is perfectly extracted from the foregrounds, it is not clear that one

could glean more than gross estimates of the timing of first star and black hole formation. While simply

knowing the redshift at which the first stars and black holes form would be an enormous achievement, it is

ultimately their properties that are of interest. Were the universe’s first stars very massive? Did all SMBHs

in the local universe form via direct collapse at high-z? Could the global 21-cm signal alone rule out models

for the formation of the first stars and black holes? What if independent measurements from JWST and/or

other facilities were available?

Motivated by such questions, we turn our attention in this chapter to the final stage of any 21-cm

pipeline: interpreting the measurement. Rather than formulating astrophysical models and studying 21-

cm realizations that result, we focus on an arbitrary realization of the signal, and attempt to recover the

properties of the universe in which it was observed. We defer a detailed discussion of how these properties

of the universe (e.g., the temperature, ionized fraction, etc.) relate to astrophysical sources to the next

chapter.

The outline of this chapter is as follows. In Section 2, we introduce the physical processes that give

rise to the 21-cm signal. In Section 3, we step through the three expected astrophysical features of the signal,

focusing on how observational measures translate to physical properties of the universe. A discussion and

conclusions are presented in Sections 4 and 5, respectively.

We adopt a cosmology with Ωm,0 = 0.272, Ωb,0 = 0.044, ΩΛ,0 = 0.728, and H0 = 70.2 km s−1 Mpc−3

throughout.

2.3 Evolution of the Global 21-cm Signal

As outlined in the introduction and Appendix A, the brightness temperature of HI gas relative to the

CMB is given by

δTb ' 27(1− xi)

(
Ωb,0h2

0.023

)(
0.15

Ωm,0h2
1+ z
10

)1/2(
1− Tγ

TS

)
, (2.1)
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where h is the Hubble parameter today in units of 100 km s−1 Mpc−1, and Ωb,0 and Ωm,0 are the fractional

contributions of baryons and matter to the critical energy density, respectively. Whether the signal is seen in

emission or absorption against the CMB depends entirely on the spin temperature, which is determined by

the strength of collisional coupling and presence of background radiation fields,

T−1
S ≈

T−1
γ + xcT−1

K + xαT−1
α

1+ xc + xα

, (2.2)

where Tγ = Tγ,0(1+ z) is the CMB temperature, TK is the kinetic temperature, and Tα ≈ TK is the UV color

temperature. See Appendix A for a more thorough description of these equations.

Models for the global 21-cm signal generally result in a curve with five extrema1 , three of which

are labeled in Figure 2.1, roughly corresponding to the formation of the first stars (B), black holes (C), and

beginning of the EoR (D). Due to the presence of strong (but spectrally smooth in principle; see Petrovic

and Oh, 2011) foregrounds, the “turning points” are likely the only pieces of the signal that can be reliably

extracted (e.g., Pritchard and Loeb, 2010, Harker et al., 2012). Our primary goal in Section 2.4 will be to

determine the quantitative physical meaning of each feature in turn.

In preparation, we differentiate Equation (2.1),

d
dν

[
δTb

]
' 0.1

(
1− xi

0.5

)(
1+ z
10

)3/2{(Tγ

TS

)[
1+

3
2

d logTS

d log t

]
− 1

2(1− xi)

(
1− Tγ

TS

)[
1− xi

(
1−3

d logxi

d log t

)]}
mK MHz−1, . (2.3)

making it clear that at an extremum, the following condition must be satisfied:

d logTS

d log t
=

1
3(1− xi)

(
TS

Tγ

−1
)[

1− xi

(
1−3

d logxi

d log t

)]
− 2

3
. (2.4)

We can obtain a second independent equation for the spin-temperature rate of change by differentiating

Equation (2.2),

d logTS

d log t
=

[
1+ xtot

(
Tγ

TK

)]−1{ xtot

(1+ xtot)

d logxtot

d log t

[
1−
(

Tγ

TK

)]
+ xtot

d logTK

d log t

(
Tγ

TK

)
− 2

3

}
, (2.5)

1 We neglect the first and last features of the signal in this paper. The lowest redshift feature marks the end of reionization,
and while its frequency derivative is zero, so is its amplitude, making its precise location difficult to pinpoint. The highest redshift
feature is neglected because it is well understood theoretically and should occur well before the formation of the first luminous
objects (though exotic physics such as dark-matter annihilation could complicate this, e.g., Furlanetto et al., 2006b).
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Figure 2.1 Example global 21-cm spectrum (top), its derivative (middle), and corresponding thermal evo-
lution (bottom) for a model in which reionization is driven by PopII stars, and the X-ray emissivity of the
universe is dominated by high-mass X-ray binaries.
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where xtot = xc + xα, such that

d logxtot

d log t
= x−1

tot

[
∑

i
xi

c
d logxi

c

d log t
+ xα

d logxα

d log t

]
. (2.6)

Expanding out the derivatives of the coupling terms, we have

d logxα

d log t
=

d log Ĵα

d log t
+

d logSα

d logTK

d logTK

d log t
+

2
3

(2.7)

and

d logxi
c

d log t
=

d logκi
10

d logTK

d logTK

d log t
± d logxe

d log t
− 4

3
, (2.8)

where the second to last term is positive for H-H collisions and negative for H-e− collisions.

As in Furlanetto (2006) and Pritchard and Furlanetto (2007), we adopt a two-zone model in which

the volume filling fraction of HII regions, xi, is treated separately from the ionization in the bulk IGM,

parameterized by xe. The mean ionized fraction is then xi = xi +(1− xi)xe. This treatment is motivated2

by the fact that δTb = 0 in HII regions, thus eliminating the need for a detailed treatment of the temperature

and ionization evolution, but beyond HII regions, the gas is warm and only partially ionized (at least at

early times) so we must track both the kinetic temperature and electron density in order to compute the spin

temperature.

2.4 Critical Points in the 21-cm History

From the equations of Section 2.3, it is clear that in general, turning points in the 21-cm signal probe

a set of eight quantities, θ = {xi,xe,TK, Ĵα,x′i,x
′
e,T
′

K, Ĵ
′
α}, where primes represent logarithmic time deriva-

tives. Given a perfect measurement of the redshift and brightness temperature, (z,δTb), at a turning point,

the system is severely underdetermined with two equations (Equations (2.1) and (2.4)) and eight unknowns.

Without independent measurements of the thermal and/or ionization history and/or Ly-α background in-

tensity, no single element of θ can be constrained unless one or more assumptions are made to reduce the

dimensionality of the problem.
2 Our motivation for the logarithmic derivative convention is primarily compactness, though the non-dimensionalization of

derivatives is convenient for comparing the rate at which disparate quantities evolve. For reference, the logarithmic derivative of a
generic function of redshift with respect to time, d logw/d log t = b, implies w(z) ∝ (1+ z)−3b/2 under the high-z approximation,
H(z)≈ H0Ω

1/2
m,0(1+ z)3/2, which is accurate to better than ∼ 0.5% for all z > 6. For example, the CMB cools as d logTγ/d log t =

−2/3.



40

The most reasonable assumptions at our disposal are as follows.

(1) The volume filling factor of the HII regions, xi, and the ionized fraction in the bulk IGM, xe, are

both negligible, as are their time derivatives, such that xi = d logxi/d log t = 0.

(2) There are no heat sources, such that the universe’s temperature is governed by pure adiabatic cool-

ing after decoupling at zdec ' 150 (Peebles, 1993), i.e., d logTK/d log t =−4/3.

(3) Ly-α coupling is strong, i.e., xα & 1, such that TS→ TK, and the dependencies on Ĵα no longer need

be considered.

These assumptions are expected to be valid at z & 10, z & 20, and z . 10, respectively, according to typical

models (e.g., Furlanetto, 2006, Pritchard and Loeb, 2010). However, since it may be impossible to verify

their validity from the 21-cm signal alone, we will take care in the following sections to state explicitly how

each assumption affects inferred values of θ. We will now examine each feature of the signal in turn.

2.4.1 Turning Point B: End of the Dark Ages

Prior to the formation of the first stars, the universe is neutral to a part in ∼ 104 (e.g., RECFAST,

HYREC, COSMOREC; Seager et al., 1999, 2000, Ali-Haı̈moud and Hirata, 2010, Chluba and Thomas, 2011),

such that a measurement of δTb probes TS directly via Equation (2.1),

TS ≤ Tγ

[
1− δTb

9 mK
(1+ z)−1/2

]−1

(2.9)

where the≤ symbol accounts for the possibility that xi > 0 (a non-zero ionized fraction always acts to reduce

the amplitude of the signal). For the first generation of objects, we can safely assume xi� 1, and interpret

a measurement of the brightness temperature as a proper constraint on TS (rather than an upper limit). We

will relax this requirement in Section 2.4.2.

If TS and TK are both known, Equation (2.2) yields the total coupling strength, xtot. However, the

contribution from collisional coupling is known as a function of redshift for a neutral adiabatically-cooling

gas, and can simply be subtracted from xtot to yield xα, and thus Ĵα (via Equation (A.14)). The top panel of

Figure 2.2 shows lines of constant log10(Jα/J21), where Jα = hναĴα and J21 = 10−21erg s−1 cm−2 Hz−1 sr−1,
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given the redshift and brightness temperature of turning point B, δTb(zB). From Equations (2.4) and (2.5),

we can also constrain the rate of change in the background Ly-α intensity (Equation (2.7)), as shown in the

bottom panel of Figure 2.2.

In the event that heating has already begun (rendering TK(z) unknown), interpreting turning point B

becomes more complicated.3 Now, xα will be overestimated, given that a larger (unknown) fraction of xtot

is due to collisional coupling. Uncertainty in TK propagates to Sα, meaning xα can only be considered to

provide an upper limit on the product SαĴα, rather than Ĵα alone. The interpretation of the turning point

condition (Eq. 2.4) becomes similarly complicated if no knowledge of TK(z) is assumed.

2.4.2 Turning Point C: Heating Epoch

In the general case where Hubble cooling and heating from astrophysical sources must both be con-

sidered, the temperature evolution can be written as

d logTK

d log t
=

τH

τX
−C (2.10)

where we have defined a characteristic heating timescale τ
−1
X ≡ εheat/eint, where eint is the gas internal

energy, εheat and C are the heating and cooling rate densities, respectively, and τ
−1
H = 3H(z)/2 is a Hubble

time at redshift z in a matter-dominated universe.

In a neutral medium, the solution to Equation (2.10) for an arbitrary εheat is

TK(z) = C−1
1

∫
∞

z
εheat(z′)

dt
dz′

dz′+Tγ,0
(1+ z)2

1+ zdec
(2.11)

where C1 ≡ 3n̄0
H(1+ y)kB/2, kB is Boltzmann’s constant, n̄0

H is the hydrogen number density today, y is the

primordial helium abundance (by number), and the second term represents the adiabatic cooling limit.

To move forward analytically, we again adopt the maximal cooling rate, C = 4/3. Detailed calcula-

tions with COSMOREC indicate that such a cooling rate is not achieved until z . 10 in the absence of heat

sources, which means we overestimate the cooling rate, and thus underestimate TK at all redshifts. This

3 We deem such a scenario “exotic” because it requires heat sources prior to the formation of the first stars. Heating via dark
matter annihilation is one example of such a heating mechanism (Furlanetto et al., 2006b).
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Figure 2.2 Values Jα = hναĴα and d logJα/d log t that give rise to turning point B at position (zB,δTb(zB)).
The color scale shows the value of Jα (top panel, in units of J21 = 10−21 erg s−1 cm−2 Hz−1 sr−1), and
d logJα/d log t (bottom panel) required for turning point B to appear at the corresponding position in the
(zB,δTb(zB)) plane, under the assumptions given in Section 3.1. The gray shaded region is excluded unless
heating occurs in the dark ages. For reference, the highlighted black contours represent Ly-α fluxes (as-
suming a flat spectral energy distribution at energies between Ly-α and the Lyman-limit, hνα ≤ hν≤ hνLL),
corresponding to Lyman-Werner band fluxes of JLW/J21 = {10−2,10−1,2× 10−1} (from top to bottom),
which roughly bracket the range of fluxes expected to induce negative feedback in minihalos at z ∼ 30
(Haiman et al., 2000).
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lower bound on the temperature is verified in Figure 2.3, in which we compare three different solutions for

the cooling rate density evolution.

In order for the 21-cm signal to approach emission, the temperature must be increasing relative to

the CMB,4 i.e., τH/τX > 4/3, meaning the existence of turning point C, at redshift zC, alone gives us a

lower limit on εheat(zC). The detection of the absorption signal (regardless of its amplitude) also requires

the kinetic temperature to be cooler than the CMB temperature. If we assume a ‘burst’ of heating, εheat→

εheatδ(z− zC), where δ is the Dirac delta function, and require TK < Tγ, we can solve Equation (2.10) and

obtain an upper limit on the co-moving heating rate density. The bottom panel of Figure 2.4 shows the upper

and lower limits on εheat as a function of zC alone.

A stronger upper limit on εheat(zC) is within reach, however, if we can accurately measure the bright-

ness temperature of turning point C. Given that δTb(zC) provides an upper limit on TS for all values of xi

(Equation (2.9)), and an absorption signal requires TK < TS < Tγ, we can solve Equation (2.11) assuming

TK < TS, and once again assume a burst of heating to get a revised upper limit on εheat(zC).

In general, turning point C yields an upper limit (again because we have assumed C = 4/3) on the

integral of the heating rate density (Equation (2.11)), which is seen in the top panel of Figure 2.4.5 This

upper limit is independent of the ionization history, since any ionization reduces the amplitude of TS, thus

lessening the amount of heating required to explain an absorption feature of a given depth. The only obser-

vational constraints available to date are consistent with X-ray heating of the IGM at z & 8 (Parsons et al.,

2013).

2.4.2.1 From Absorption to Emission

If heating persists, and the universe is not yet reionized, the 21-cm signal will eventually transition

from absorption to emission. At this time, coupling is expected to be strong such that at the precise redshift

of the transition, ztrans, Equation (2.3) takes special form since TS ' TK = Tγ,

d
dν

[
δTb

]
' 0.1

(
1− xi

0.5

)(
1+ ztrans

10

)3/2[
1+

3
2

d logTK

d log t

]
mK MHz−1. (2.12)

4 Though see Section 2.4.2.2 for an alternative scenario.
5 We express our results in units of erg cMpc−3 to ease the conversion between εheat and the X-ray emissivity, εX (see Section

2.5.2). For reference, 1051 erg cMpc−3 ' 10−4 eV baryon−1.
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Figure 2.4 Top: constraints on the cumulative energy deposition as a function of the redshift and brightness
temperature of turning point C. The gray region is disallowed because it requires cooling to be more rapid
than Hubble (adiabatic) cooling. Bottom: Constraints on the co-moving heating rate density (cMpc−3 means
co-moving Mpc−3) as a function of zC alone. The blue region includes heating rate densities insufficient
to overcome the Hubble cooling, while the red region is inconsistent with the existence of an absorption
feature at zC because such heating rates would instantaneously heat TK above Tγ. The triangles, plotted in
increments of 50 mK between δTb = {−250,−50} mK show how a measurement of δTb(zC), as opposed to
zC alone, enables more stringent upper limits on the heating rate density.
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That is, if we can measure the slope at the absorption-emission transition, we obtain a lower limit on the

heating rate density. Our inferred heating rate density would be exact if xi were identically zero, but for

xi > 0, the slope provides a lower limit. This is illustrated in the Figure 2.5.

2.4.2.2 Could the Absorption Feature be Ionization-driven?

The absorption feature of the all-sky 21-cm signal is generally expected to occur when X-rays begin

heating the IGM (e.g., Ricotti et al., 2005, Ciardi et al., 2010). However, this feature could also be produced

given sufficient ionization, which similarly acts to drive the signal toward emission (albeit by reducing the

absolute value of δTb rather than increasing TS). We now assess whether or not such a scenario could produce

turning point C while remaining consistent with current constraints from the Thomson optical depth to the

CMB (τe; Dunkley et al., 2009, Larson et al., 2011, Bennett et al., 2012).

We assume that coupling is strong, TS ' TK, and that the universe cools adiabatically (i.e., the extreme

case where turning point C is entirely due to ionization), so that a measurement of δTb is a direct proxy for

the ionization fraction (via Equation (2.1)). If we adopt a tanh model of reionization, parameterized by the

midpoint of reionization, zrei, and its duration, ∆zrei, we can solve Equation (2.1) at a given δTb(zC) for

xi(zC). Then, we can determine the (zrei, ∆zrei) pair, and thus entire ionization history xi(z), consistent with

our measure of xi(zC). Computing the Thomson optical depth is straightforward once xi(z) is in hand – we

assume HeIII reionization occurs at z = 3, and that HeII and hydrogen reionization occur simultaneously.

At a turning point, however, Equation (2.4) must also be satisfied. This results in a unique track

through (z,δTb) space corresponding to values of zC and δTb(zC) that are consistent with both xi(zC) and its

time derivative for a given tanh model. Figure 2.6 shows the joint ionization and 21-cm histories consistent

with WMAP 9 constraints on τe (Bennett et al., 2012).

This technique is limited because it assumes a functional form for the ionization history that may be

incorrect, in addition to the fact that we are only using two points in the fit – the first being zrei, at which point

xi = 0.5 (by definition), and the second being xi(zC) as inferred from δTb(zC). However, it does show that

reasonable reionization scenarios could produce turning point C, although at later times (lower redshifts)

than typical models (where turning point C is a byproduct of heating) predict.
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where turning point C would be a produced by ionization and also be consistent with the CMB constraint.
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facing triangles, respectively). The values of ∆zrei ≤ 7.9 are consistent with the most conservative (model-
dependent) constraints from South Pole Telescope (via the kinetic Sunyaev-Zeldovich (SZ) effect; Zahn
et al., 2012), which assume no prior knowledge of angular correlations in the cosmic infrared background
and thermal SZ power.
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2.4.3 Turning Point D: Reionization

In principle, turning point D could be due to a sudden decline in the Ly-α background intensity, which

would cause TS to decouple from TK and re-couple to the CMB. Alternatively, turning point D could occur

if heating subsided enough for the universe to cool back down to the CMB temperature. However, the more

plausible scenario is that coupling continues between TS and TK, heating persists, and the signal “saturates,”

i.e., 1−Tγ/TS ≈ 1, in which case the brightness temperature is a direct proxy for the volume filling factor of

HII regions6 .

If saturated, Equation (2.4) becomes

xi

1− xi

d logxi

d log t
'
(

Tγ

TK

)
d logTK

d log t
− 1

3
. (2.13)

Even in the saturated regime, the first term on the right-hand side cannot be discarded since we have assumed

nothing about d logTS/d log t.

Many authors have highlighted the 21-cm emission signal as a probe of the ionization history during

the EoR (e.g., Pritchard et al., 2010, Morandi and Barkana, 2012). Rather than dwell on it, we simply note

that if 21-cm measurements of the EoR signal are accompanied by independent measures of xi, in principle

one could glean insights into the thermal history from turning point D as well.

2.5 Discussion

2.5.1 A Shift in Methodology

The redshifted 21-cm signal has been studied by numerous authors in the last 10-15 years. Efforts

have concentrated on identifying probable sources of Ly-α, Lyman-continuum, and X-ray photons at high-

z, and then solving for their combined influence on the thermal and ionization state of gas surrounding

individual objects (e.g., Madau et al., 1997, Thomas and Zaroubi, 2008, Chen et al., 2008, Venkatesan

and Benson, 2011), or the impact of populations of sources on the the global properties of the IGM (e.g.,

Choudhury and Ferrara, 2005, Furlanetto, 2006, Pritchard and Loeb, 2010). It has been cited as a probe of

the first stars (Barkana and Loeb, 2005a), stellar-mass black holes and active galactic nuclei (e.g., Mirabel
6 If the signal is not yet saturated, a measurement of turning point D instead yields an upper limit on xi.
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et al., 2011, Mcquinn, 2012, Tanaka et al., 2012, Fragos et al., 2013, Mesinger et al., 2013a), which primarily

influence the thermal history through X-ray heating, but could contribute non-negligibly to reionization (e.g.,

Dijkstra et al., 2004, Pritchard et al., 2010, Morandi and Barkana, 2012). More recently, more subtle effects

have come into focus, such as the relative velocity-difference between baryons and dark-matter, which

delays the formation of the first luminous objects (Tseliakhovich and Hirata, 2010, McQuinn and O’Leary,

2012, Fialkov et al., 2012).

Forward modeling of this sort, where the input is a set of astrophysical parameters and the output is

a synthetic global 21-cm spectrum, is valuable because it (1) identifies the processes that most affect the

signal, (2) has so far shown that a 21-cm signal should exist given reasonable models for early structure

formation, and (3) that the signal exhibits the same qualitative features over a large subset of parameter

space. However, this methodology yields no information about how unique a given model is.

We have taken the opposite approach. Rather than starting from an astrophysical model and com-

puting the resulting 21-cm spectrum, we begin with an arbitrary signal characterized by its extrema, and

identify the IGM properties that would be consistent with its observation. The advantage is that (1) we have

a mathematical basis to accompany our intuition about which physical processes give rise to each feature

of the signal, (2) we can see how reliably IGM properties can be constrained given a perfect measurement

of the signal, and (3) we can predict which models will be degenerate without even computing a synthetic

21-cm spectrum.

2.5.2 An Example History

In our analysis, we have found that the 21-cm signal provides more than coarse estimates of when

the first stars and black holes form. Turning points B, C, and D constrain (quantitatively) the background

Ly-α intensity, cumulative energy deposition, and mean ionized fraction, respectively, as well as their time

derivatives, as summarized in Table 2.1. For concreteness, we will now revisit each feature of the signal

for an assumed realization of the 21-cm spectrum, and demonstrate how each can be interpreted in terms of

model-independent IGM properties.

We will assume the same realization of the signal as is shown in Figure 2.1, with turning points B, C,
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Table 2.1. Features of the global 21-cm signal

Feature Measurement Assumptions Yield § Equations Figures

B zB ... lower limit on redshift of first star formation 2.4.1 ... ...
B δTb(zB) xi = εheat = 0 Ĵα(zB), Ĵ′α(zB) 2.4.1 2.1-A.14, 2.4-2.8 2.2
C zC ... upper limit on εheat(zC) 2.4.2 2.11 2.4
C zC xi = 0 lower limit on redshift of first X-ray source formation 2.4.2 ... ...
C zC xi = 0 lower limit on εheat(zC) 2.4.2 2.10 2.3, 2.4
C δTb(zC) ... improved upper limit on εheat(zC) 2.4.2 2.1, 2.4, 2.10, 2.11 2.4
C δTb(zC) εheat = 0 rule out reionization scenario? 2.4.2.2 2.4 2.6

transition ztrans TS = TK upper limit on
∫
εheatdt 2.4.2.1 2.11 2.5

transition d
dν

[δTb] (ztrans) TS = TK lower limit on εheat(ztrans) 2.4.2.1 2.12 2.5
D zD ... start of EoR 2.4.3 ... ...
D δTb(zD) ... upper limit on xi(zD) 2.4.3 2.1 ...
D δTb(zD) TS = TK� Tγ xi(zD), joint constraint on x′i(zD), TK(zD), and T ′K(zD) 2.4.3 2.1, 2.4, 2.13 ...

Note. — Constraints on IGM properties from critical points in the global 21-cm signal. Each block focuses on a single feature of the signal (denoted
in column #1) and from left to right reports how a given measurement (column #2; e.g., the feature’s redshift, z) under some set of assumptions (column
#3) would be interpreted (column #4). The corresponding section of the text, as well as any equations and figures relevant to the given feature are listed
in columns 5, 6, and 7, respectively. Within each block, elements appear in order of increasing complexity (in terms of the measurement difficulty and
number of assumptions) from top to bottom.
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and D at (z,δTb/mK) of (30.2,−4.8), (21.1,−112), and (13.5,24.5), respectively, and absorption-emission

transition at ztrans = 15, d(δTb)/dν = 4.3 mK MHz−1. At a glance, the 21-cm realization shown in Figure

2.1 indicates that the universe’s first stars form at z & 30, the first black holes form at z & 21, and that

reionization has begun by z & 13.5. Global feedback models such as those presented in Tanaka et al. (2012)

are inconsistent with this realization of the signal, as they predict TK > Tγ at z & 20.

More quantitatively, from Figure 2.2 we have an upper limit on the Ly-α background intensity of

Jα(zB)/J21 ≥ 10−1.8 and its time rate-of-change, d logJα/d log t ' 11.2. Moving on to turning point C

(Figure 2.4), the kinetic temperature is constrained between 9 . TK/K . 16, meaning that the cumulative

energy deposition must be
∫
εheatdt ≤ 1051.9erg cMpc−3. In the absence of any ionization, a minimum

heating rate density of εheat ≥ 1036.1erg s−1 cMpc−3 is required to produce turning point C, and a maximum

of εheat ≤ 1038.2erg s−1 cMpc−3 is imposed given the existence of the absorption feature.

The slope of the signal as it crosses δTb = 0 is δT ′b = 4.3mK MHz−1, corresponding to a lower limit on

the heating rate density of εheat ≥ 1037.6erg s−1 cMpc−3 (Figure 2.5). Finally, at turning point D, the ionized

fraction must be xi ≤ 0.24 (Equation (2.1) when TS >> Tγ). An ionization-driven turning point C can be

ruled out by Figure 2.6, since the amount of ionization required to produce (zC,δTb(zC)) = (21.1,−112)

leads to τe values inconsistent with Wilkinson Microwave Anisotropy Probe (s) at the > 3σ level, for tanh

models with 8≤ zrei ≤ 12.

With limits on Ĵα, εheat, xi, and their derivatives, the next step is to determine how each quantity

relates to astrophysical quantities. Typically, models for the global 21-cm signal relate the emissivity of the

universe to the cosmic star-formation rate density (SFRD) via simple scalings of the form ε̂i,ν(z) ∝ fi
.
ρ∗(z)Iν

(e.g., Furlanetto, 2006, Pritchard and Loeb, 2010), in which case the parameters of interest are fi, which

converts a star formation rate into a bolometric energy output in band i (generally split between Ly-α, soft-

UV, and X-ray photons), the SFRD itself,
.
ρ∗, and the spectral energy distribution (SED) of luminous sources

being modeled, Iν.

Given that soft-UV photons have very short mean-free-paths in a neutral medium, a determination

of d logxi/d log t is likely to be an accurate tracer of the soft-UV ionizing emissivity of the universe, ε̂ion.

However, the same is not true of photons emitted between Ly-n resonances and hard X-ray photons, which
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can travel large distances before being absorbed, where they predominantly contribute to Wouthuysen-Field

coupling and heating, respectively. Because of this, translating Ĵα and εheat measurements to their corre-

sponding emissivities, ε̂α and εX , is non-trivial. In general, the accuracy with which one can convert Ĵα

(εheat) to ε̂α (εX ) depends on the redshift-evolution of the co-moving bolometric luminosity and the SED of

sources, Iν.

For a zeroth order estimate, we will assume that sources have a flat spectrum between the Ly-α

resonance and the Lyman limit, and neglect “injected photons,” i.e., those that redshift into higher a Ly-n

resonance and (possibly) cascade through the Ly-α resonance. If ε̂α ∝ Nα

.
ρ∗, where Nα is the number of

photons emitted between να ≤ ν≤ νLL per baryon, then

.
ρ∗(z)≈ 10−5

(
9690
Nα

)(
Jα

J21

)(
1+ z
30

)−1/2

M� yr−1 cMpc−3 (2.14)

where we have scaled Nα to a value appropriate for low-mass PopII stars (Barkana and Loeb, 2005a).

Similarly, if we assume that a fraction fX ,h = 0.2 of the X-ray emissivity is deposited as heat (appro-

priate for the E & 0.1 keV limit in a neutral medium; Shull and van Steenberg, 1985), and normalize by the

local LX -SFR relationship (e.g., Mineo et al., 2012a, who found L0.5−8keV = 2.61×1039 erg s−1 (M� yr−1)),

we have

.
ρ∗(z)≈ 2×10−2 f−1

X

(
0.2
fX,h

)
×
(

εheat

1037 erg s−1 cMpc−3

)
M� yr−1 cMpc−3 (2.15)

where we subsume all uncertainty in the normalization between LX and
.
ρ∗, the SED of X-ray sources, and

radiative transfer effects into the factor fX .

If these approximate treatments are sufficient, then measures of Jα provide two-dimensional con-

straints on
.
ρ∗ and Nα, and measures of εheat constrain

.
ρ∗ and fX .7 However, given the long mean free paths

of X-rays and photons in the να ≤ ν≤ νLL band, the estimates above are likely to be inadequate. This is the

subject of Mirocha (2014) (Chapter 5).

7 Here we have assumed that high-mass X-ray binaries are the only source of X-rays, when in reality the heating may be induced
by a variety of sources. Other candidates include X-rays from “miniquasars” (e.g., Kuhlen and Madau, 2005), inverse Compton
scattered CMB photons off high energy electrons accelerated in supernovae remnants (Oh, 2001), or shock heating (e.g., Gnedin
and Shaver, 2004, Furlanetto and Loeb, 2004).
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2.5.3 Synergies with Upcoming Facilities

The prospects for synergies are most promising for turning point D, which is predicted to occur at

z. 15, coinciding with the JWST window and current and upcoming campaigns to measure the 21-cm power

spectrum. JWST will probe the high-z galaxy population even more sensitively than HST (e.g., Robertson

et al., 2013), which may allow degeneracies between the star-formation history and other parameters to

be broken (e.g., the fi normalization factors). However, our focus in this paper is on model-independent

quantities – the issue of degeneracy among astrophysical parameters will be discussed in Paper II.

In terms of model-independent quantities, current and upcoming facilities will benefit global 21-cm

measurements by constraining the ionization history. For example, one can constrain xi(z) via observations

of Ly-α-emitters (LAEs; e.g., Malhotra and Rhoads, 2006, McQuinn et al., 2007, Mesinger and Furlanetto,

2008), the CMB through τe and the kinetic Sunyaev-Zeldovich effect (Zahn et al., 2012), or via measure-

ments of the 21-cm power spectrum, which reliably peaks when xi ' 0.5(Lidz et al., 2008). However, like

the global signal, power spectrum measurements yield upper limits on xi, since they assume TS� Tγ, which

may not be the case. Constraints from LAEs require no such assumption, and instead set lower limits on

xi, since our ability to see Ly-α emission from galaxies at high-z depends on the minimum size of an HII

region required for Ly-α photons to escape. Limits on xi(z) out to z ∼ 10− 15 would yield a prediction

for the amplitude of turning point D, which, in conjunction with a global 21-cm measurement could vali-

date or invalidate the TS� Tγ assumption often adopted for EoR work. In addition, one could determine if

ionization-driven absorption features are even remotely feasible (Section 2.4.2.2).

2.5.4 Caveats

Simple models for the global 21-cm signal rely on the assumption that the IGM is well approximated

as a two-phase medium, one phase representing HII regions, and the other representing the bulk IGM. As

reionization progresses, the distinction between these two phases will become tenuous, owing to a warming

and increasingly ionized IGM whose properties differ little from an HII region. Even prior to reionization

the global approximation may be inadequate depending on the distribution of luminous sources. If exceed-
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ingly rare sources dominate ionization and heating, we would require a more detailed treatment (a problem

recently addressed in the context of helium reionization by Davies and Furlanetto, 2012).

Eventually, simple models must also be calibrated by more sophisticated simulations. This has been

done to some extent already in the context of 21-cm fluctuations, with good agreement so far between semi-

analytic and numerical models (Zahn et al., 2011). However, analogous comparisons for the global signal

have yet to be performed rigorously. The limiting factor is that a large volume must be simulated in order

to avoid cosmic variance, but the spatial resolution required to simultaneously resolve the first galaxies

becomes computationally restrictive.

Finally, though we included an analysis of the absorption-emission transition point, ztrans, in truth,

the slope measured from this feature will be correlated with the positions of the turning points. The most

promising foreground removal studies rely on parameterizing the signal as a simple function (e.g., spline),

meaning the slope at ztrans is completely determined by the positions of the turning points and the function

used to represent the astrophysical signal.

2.6 Conclusions

In this paper we have addressed one tier of the 21-cm interpretation problem: identifying the physical

properties of the IGM that can be constrained uniquely from a measurement of the all-sky 21-cm signal.

Our main conclusions are as follows.

• The first feature of the global signal, turning point B, provides a lower limit on the redshift at which

the universe’s first stars formed. However, more quantitatively, its position in (z,δTb) space mea-

sures the background Ly-α intensity, Ĵα, and its time derivative, respectively, assuming a neutral,

adiabatically-cooling medium.

• The absorption feature, turning point C, is most likely a probe of accretion onto compact objects

considering the τe constraint from the CMB. As a result, it provides a lower limit on the redshift

when the first X-ray emitting objects formed. Even if the magnitude of the absorption trough

cannot be accurately measured, a determination of zC alone sets strong upper and lower limits on
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the heating rate density of the universe, εheat(zC). If the absorption feature is deep (δTb(zC).−200

mK) and occurs late (z . 15), it could be a byproduct of reionization.

• The final feature, turning point D, indicates the start of the EoR, and traces the mean ionized fraction

of the universe and its time derivative. In general, it also depends on the spin-temperature evolution,

though it is expected that at this stage the signal is fully saturated. Without independent constraints

on the thermal history, δTb(zD) provides an upper limit on the mean ionized fraction, xi.

In general, the relationship between IGM diagnostics (such as Ĵα and εheat) and the properties of the

astrophysical sources themselves (like
.
ρ∗, Nα, and fX ) is expected to be complex. This will be the subject

of Chapter 4.



Chapter 3

Signal Extraction for All-Sky 21-cm Experiments: Dependence on the Assumed

Parameterization of the Global 21-cm Signal

Reproduced in part, with permission of the RAS and the authors.

Reference:

“Parametrizations of the Global 21-cm Signal”

Harker, G. J. A., Mirocha, J., Burns, J. O., & Pritchard, J.R., 2015, submitted to MNRAS (arXiv:1510.00271)

3.1 Context

In the previous chapter, we found that model-independent constraints are within reach of 21-cm mea-

surements, for example the temperature and ionization state of the IGM can be constrained quite well without

invoking models for astrophysical sources at all. This conclusion requires only that the IGM is reasonably

well-described as a two-phase medium. Before we proceed, and determine the model-dependent constraints

offered by a detection of the global 21-cm signal, we need estimates for measurement errors given a par-

ticular instrument, observing strategy, and assumed model for the global 21-cm signal. In this chapter, we

will detail this procedure using a new approach to extracting the signal, in which all contributions to the sky

brightness are parameterized and their parameters simultaneously fit using a Markov Chain Monte Carlo

scheme.
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3.2 Introduction

Shaver et al. (1999) were the first to investigate both the expected strength of the global 21-cm signal

and the prospects for extracting it from the galactic foreground. Considering a simple “step” 21-cm signal

superposed on the galactic and extragalactic foreground, Shaver et al. (1999) presented several candidate

techniques for detecting the global 21-cm signal, including: (1) a simple foreground subtraction procedure,

in which one fits for all known foregrounds and subtracts them from the data, leaving the global 21-cm

signal as a residual, (2) an analysis of variations in the spectral index, i.e.,

αS(ν)≡
d logT
d logν

, (3.1)

which should reveal any abrupt spectral signatures like a step, and (3) analyzing the “trend ratio,” which is

the ratio of observations at ν < 200 MHz, over which the reionization step is expected to occur, to observa-

tions at ν > 200 MHz extrapolated below 200 MHz. In the latter cases, the authors showed that the global

21-cm emission signal was in principle detectable given the clear deviations from a smoothly varying αS(ν)

and trend ratio of unity, respectively.

The methods proposed by Shaver et al. (1999) are not too dissimilar from those employed more

recently by Bowman and Rogers (2010), who set the first lower limit on the width of the Reionization “step”

(∆z > 0.06 at 95% confidence). Several authors have attacked the signal extraction problem more recently,

performing Fisher matrix forecasting for the entire signal (i.e., not just the Reionization step; Pritchard et al.,

2010, Liu et al., 2013, Presley et al., 2015), studies of how imperfections in 21-cm instruments affect the

signal extraction process (Harker et al., 2012, Bernardi et al., 2015), and the implementation of Markov-

Chain Monte Carlo algorithms (Harker et al., 2012, 2015) that can simultaneously fit an arbitrary set of

contributions to the 21-cm sky brightness.

There are numerous shortcomings of the aforementioned work, including:

(1) Use of simplified phenomenological form for the global 21-cm signal. For example, adoption of

a Gaussian for the absorption trough (Liu et al., 2013, Bernardi et al., 2015), a tanh reionization

model for xi(z) and assumption of a saturated signal at ν & 100 MHz (Bowman and Rogers, 2010),

or a cubic spline connecting the Turning Points (Pritchard and Loeb, 2010, Harker et al., 2012).
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(2) The assumption that the (phenomenological) functional form of δTb(z) is known a-priori.

(3) The traditional “foreground removal” techniques are most susceptible to biases. For example, if the

foreground fit is imperfect, subtracting it from the data may remove part of the global 21-cm signal

as well. MCMC methods allow one to simultaneously fit for the foreground and signal, and thus

mitigate biasing effects to some degree.

(4) MCMC is more general than the Fisher matrix analyses, which assume Gaussian likelihoods and

perfect recovery of the maximum likelihood point.

To address these issues, we will here build on the work of Harker et al. (2012), who developed an MCMC

approach to extracting the global 21-cm signal from the galactic foreground. In particular, we will focus on

the assumed parameterization of the global 21-cm signal itself, and how it affects one’s ability to fit data

and draw meaningful inferences about the properties of the IGM. Details of our implementation will be

presented in the next section.

3.3 Signal Extraction Methodology

To put signal extraction algorithms to the test, we must first generate a synthetic database containing

foregrounds and the global 21-cm signal. We use the global sky model (GSM) presented in de Oliveira-

Costa et al. (2008) to determine model foreground spectra, as it was derived from datasets extending down

to 10 MHz. It will also contain more spectral structure than the 408 MHz Haslam et al. (1982) GSM, since

the Haslam et al. (1982) map would require extrapolation to lower frequencies. For a given pointing of

the telescope, we convolve the GSM and beam power pattern to obtain a model spectrum for the galactic

foreground. Because our focus is on the effects of global 21-cm signal parameterizations in this work, we

assume for simplicity an idealized Gaussian antenna power pattern with full-width half-max of 50◦. This

has the additional benefit of enabling use of routines within the HEALPY1 package, which is based on the

1 https://github.com/healpy/healpy

https://github.com/healpy/healpy


60

HEALPix (Górski et al., 2005) package2 . We add noise following the radiometer equation,

σ = Tsys/
√

2tobs∆ν. (3.2)

We assume Tsys = 100 K, though our results are insensitive to this choice, and spectral channels of width

∆ν = 1 MHz. We will investigate tobs = 100 and 1000 hours.

It is very common to model the galactic foreground spectrum as a polynomial in logν-logT space,

i.e.,

logTfg =
Npoly

∑
i=0

ai log
(

ν

ν0

)i

(3.3)

where ν0 is an arbitrary pivot point, and ai are the polynomial coefficients. In general, however, the fore-

ground spectra derived from the de Oliveira-Costa et al. (2008) sky model are not log polynomials. Several

authors have attempted to determine the order of polynomial required to adequately subtract the foreground

and recover the global 21-cm signal. Early studies suggested Npoly ≥ 3 (Pritchard and Loeb, 2010) for

ν > 100 MHz, though recently Bernardi et al. (2015) found that Npoly = 5 is required, even under idealized

circumstances (i.e., perfect instrument). In a more general case, in which the antenna has significant angular

and frequency structure, Npoly = 7 is likely required to adequately remove the foreground. If one uses more

sophisticated statistical approaches, one might actually be able to determine the appropriate value of Npoly

from the data itself (Harker, 2015b).

Because our focus is not on the determining the optimal functional form of the galactic foreground,

we make another simplifying assumption: rather than using the “raw” foreground spectrum derived by

convolving an idealized beam with the de Oliveira-Costa et al. (2008) GSM, we use a logν-logT fit to the

GSM spectrum. Then, we take as free parameters in our model the logν-logT polynomial coefficients,

meaning in principle our foreground model could perfectly fit foreground spectra in our synthetic dataset.

We do not, however, make the analogous assumption for the global 21-cm signal. Physically-motivated

models for the global 21-cm signal are not in general well-modeled as Gaussians, cubic splines, or Reion-

ization step functions. As a result, we take the “true” global 21-cm signal to be the default model produced

by the ARES code (i.e., the black curve in Figure 1.12, reproduced in Figure 3.2 below). We will test in the

2 http://healpix.sourceforge.net/

http://healpix.sourceforge.net/
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Figure 3.1 Structure in the de Oliveira-Costa et al. (2008) global sky model, shown via the residual between
the spectrum in a single (representative) pixel in the de Oliveira-Costa et al. (2008) map and a logν-logT
polynomial fit to that spectrum. The dotted horizontal marks a residual of 10 mK.
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§3.4 a few different parameterizations for the global 21-cm used in the actual fitting, to be introduced below.

The first studies to attempt broad-band extraction of the global 21-cm signal modeled the signal as a

cubic spline passing through three extrema in the signal (turning points B, C, and D in Figure 1.12); Pritchard

and Loeb, 2010, Harker et al., 2012). This model, being purely phenomenological, cannot be readily related

to properties of the IGM. This precludes one from immediately interpreting constraints on the turning points

and from incorporating priors on, e.g. τe, since the cubic spline knows nothing of the ionization history.

Here, we use instead a series of tanh functions to model the Ly-α intensity, IGM temperature, and

IGM ionization state as a function of time. That is, we model quantity A = Jα,TK,xi as

A(z) =
Aref

2
{1+ tanh[(z0− z)/∆z]} , (3.4)

where Aref is a normalization, z0 is the redshift at which Ly-α emission, heating, and ionization “turn on,”

and ∆z is the duration of each respective epoch. For physical histories, the normalization of xi is fixed

to unity (i.e., Reionization is guaranteed to end), and the peak temperature is set to 104 K. This leaves 7

parameters to be fit in each MCMC calculation. Note that the thermal history actually contains a second

term to account for the initial adiabatic cooling, TK ∝ (1+ z)2, of the IGM before heating begins.

In computing the likelihood, we assume all the frequency channels in all sky regions are independent,

i.e. the probability density for obtaining the value T i
meas(ν j), where i indexes the sky region, for a vector of

parameters θ, is

pi j =
1√

2πσ2
i (ν j|θ)

e−[T
i

meas(ν j)−T i
mod(ν j|θ)]2/2σ2

i (ν j|θ) , (3.5)

where σi(ν j|θ) is the rms noise in the channel, computed from T i
mod(ν j|θ), the bandwidth and the integration

time using the radiometer equation, and the likelihood is just the product over all the channels,

L(T meas|θ) =
Nsky

∏
i=1

nfreq

∏
j=1

pi j . (3.6)

In practice, we work with the log-likelihood, so this product is computed as a sum. We adopt broad, Gaussian

priors for the foreground parameters, which have little impact since the data generally constrain them quite

well. For the signal parameters we adopt broad uniform priors, which occasionally appear in constraints as
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well-defined edges but for good reason: arbitrarily broad priors could lead to unphysical realizations of the

signal, e.g., realizations with xi > 1.

3.4 Results

We first compare the recovered global 21-cm signal obtained assuming the turning points model to

that recovered using the tanh approach. From Figure 3.2, it is clear that the tanh model provides a substantial

improvement over the turning points parameterization. Most notably, there is a large systematic offset in the

normalization of the recovered signal (solid blue curve) compared to the input signal (solid black curve).

This is because the turning points parameterization has no knowledge of even simple physics, which in

reality restrict both the minimum and maximum allowed amplitude of the signal (dashed lines in Figure

1.12). Without such prior knowledge, it is difficult to pinpoint the overall normalization of the signal, since

constant offsets can be almost perfectly absorbed by the foreground (the zeroth order terms in the logν-logT

polynomial).

Though the global 21-cm signal recovered by the tanh model is a dramatic improvement over that

yielded by the turning points model, there are still noticeable differences. For example, the shape of the

recovered signal is offset from the input model at the highest frequencies (dotted cyan compared to solid

black in Figure 3.2). In addition, the initial descent into absorption at ∼ 50 MHz is biased toward higher

frequencies, and the absorption minimum is shallow relative to the input model. We will examine the

significance of these biases momentarily.

Interestingly, the tanh model seems to do a better job constraining the turning points of the global

21-cm signal than a model whose free parameters are the turning points themselves! In Figure 3.3 we show

a “triangle plot” of constraints on the frequencies and amplitudes of turning points B, C, and D. Though

Figure 3.2 showed a bias in the depth of turning point C, panel (d) Figure 3.3 illustrates that this bias is

of questionable statistical relevance, as the “true” value of δTb(νC) falls within 1σ of the recovered value.

Some biases, however, are more significant. For example, the recovered frequency of turning point C is

discrepant at the ∼ 2σ level.

Given the visually apparent discrepancy between the input signal and recovered signal at the highest
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Figure 3.2 The ability of different parameterizations to fit the input global 21-cm signal, which was generated
with ARES. The solid black line shows the input model, which also assumes foregrounds modelled as third-
order polynomials in logν-logT , an idealized instrument model in which the antenna has flat 85% sensitivity
between 35 and 120 MHz, and an experiment which observes four independent sky regions for 250 hours
each. The recovered signal using the turning points parametrization is shown in the solid blue line; if we
shift this down so that the temperature of turning point C agrees with the input signal, we have the dashed
red line. If we use the actual positions of the maxima and minima of the ARES signal as the parameter values
in our turning points model, we produce the magenta dot-dashed curve. Finally, if the synthetic dataset is fit
using the tanh model, the signal we recover is shown as the cyan, dotted curve.
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Figure 3.3 We show how the constraints on the δTb history from the tanh fit translate into constraints on the
turning points. In each panel, the dotted lines show the input parameter value. The dashed vertical line in
panel (e) shows the upper end of the frequency range, while the nearly horizontal line shows the path the
signal would follow in a hot, completely neutral Universe for which the emission signal saturates. The dark
blue and green contours show 1- and 2-σ confidence regions.
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Figure 3.4 A comparison of the 68% confidence regions for constraints on the positions of the turning points
for three different datasets: the same as that used in Fig. 3.3 (black); a dataset where the upper limit of
the frequency range is set to 100 MHz instead of 120 MHz (blue); and a dataset where the foregrounds are
fourth-order polynomials in logν–logT rather than third-order (green).
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frequencies in Figure 3.2, we suspected that a shortcoming of our model at ν & 100 MHz could be respon-

sible for biases at lower frequencies. To test this hypothesis, we re-ran fits with (1) a bandpass truncated at

100 MHz, and (2) a foreground with Npoly = 4. The results are shown in Figure 3.4. Indeed, both techniques

reduced the bias in the position of turning point C (see panel (n)). However, of course any constraints for

turning point D are meaningless if one only includes ν≤ 100 MHz data in the fit. A more appealing option

is the use of a 4th order polynomial for the foreground (green contours). In this case, the bias in turning

point C is mitigated and the constraints on turning point D are still meaningful, though broader than those

of the 3rd order foreground fit because we have made the model more complex.

Up until this point we have focused only on the accuracy with which the turning points can be ex-

tracted from the galactic foreground. In Figures 3.5 and 3.6, we move on to an issue that could not be

addressed by the turning points model: how well are properties of the IGM constrained by measurements of

the global 21-cm signal? In Figure 3.5 we focus only on IGM properties to which turning point C is most

sensitive. To begin, address only the black contours, which correspond to our reference calculation with

Npoly = 3. In this case, all constraints on IGM properties are biased relative to their input values, which we

should expect given that our constraint on the position of turning point C in this case was also biased. Given

that a more complex Npoly = 4 foreground model unbiased the constraints on the position of turning point

C, we might have expected to unbias the IGM constraints in a similar fashion. However, the Npoly = 4 (blue

contours) constraints on the IGM properties remain biased.

The persistent biases in properties of the IGM in spite of accurate recovery of the turning points is an

unexpected, but theoretically allowed, result. Because turning point C encodes both the IGM temperature

and heating rate density, the solution for its position is not unique: one could imagine two subtly different

thermal histories that both manage to arrive at the same combination of TK,εheat at the same redshift (in our

case, that of turning point C), but whose evolution is distinct beforehand and afterward. This scenario is pos-

sible because the input global 21-cm signal being fit uses a different parameterization of the thermal history

(one tied to the history of star formation, to be discussed in the next chapter) than the tanh model (which is

phenomenological). Our first test of this hypothesis was to perform a “second stage fit,” in which we fit a

tanh model directly to the recovered turning points, thus eliminating all possibility that shape information is
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Figure 3.5 The constraints on the IGM parameters for which the constraining power comes mainly from
turning point C. These parameters are the kinetic temperature of the gas (colder than the CMB at this point),
the heating rate density, and the Ly-α flux. The dataset assumes 1000 hrs of data split between four sky
regions, though the results are qualitatively similar for fewer sky regions and for shorter integrations. The
black lines show constraints (1D posterior distributions and 1-σ contours) coming directly from the tanh fit to
the dataset, while the blue lines show the results obtained with a more complex foreground model. The green
lines assume that only the positions of the turning points and the covariances between the turning points are
known, whereas the red lines assume that only the turning point positions are known (nothing about the
shape of the signal in between) and that the errors on the turning points are independent and Gaussian, with
the positions and the size of the errors coming from the tanh fit. Dotted vertical and horizontal lines show
the true values.
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Figure 3.6 The constraints on the IGM parameters for which the constraining power comes mainly from
turning point D. These parameters are the kinetic temperature of the gas (hotter than the CMB at this point),
the heating rate density, the volume filling factor of H IIregions, QHII, and the volume-averaged ionization
rate, ΓHI. The colors have the same meaning as those shown in Figure 3.5.
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used to guide the fit.

This exercise is repeated in Figure 3.6 for turning point D, which now provides constraints on the

ionization history as well as the thermal history. The same general behavior is seen here: constraints on the

IGM are insensitive to the choice of Npoly. Interestingly, while the second stage fit reduces biases on QHII,

ΓHI, and εheat, the constraints on TK are actually more biased than in the single-stage fit.

A final test of the shape-mismatch hypothesis is shown in Figure 3.7. Here, we extracted the recovered

curvature of all turning points and compared them to the curvature of the input model at the turning points.

The tanh model does indeed seem to prefer a signal with a slightly different shape than that of the ARES

model: with turning points positions consistent with those of the ARES model, the tanh model seems to

systematically produce turning points B and C that are less sharp (i.e., smaller curvature in absolute value)

than those of our input ARES model. The curvature of turning point D is consistent with the input model.

This seems to indicate that the tanh model is a better model for the ionization history than it is for the Ly-α

or thermal histories.

The entire suite of calculations is shown in Figure 3.8. Clearly, the biases in the turning points persist

in all cases (for Npoly = 3), and increases in integration time have a stronger effect than viewing more sky

areas. We have performed Npoly = 4 fits for all combinations of {Nsky, tint} and find comparable biases in the

IGM quantities in all cases.

3.5 Discussion & Conclusions

In the previous section, we found that the tanh model outperforms the turning points model in ex-

tracting the positions of the turning points, despite the fact that the turning points are not parameters of the

tanh model. We attribute this to two primary factors: (1) the tanh model is more flexible than the turning

points model in the variety of shapes it can produce and as a result is more easily able to match the shape

of a physically-motivated model, and (2) the tanh model has implicit knowledge of the maximum and min-

imum allowed amplitude of the signal, which allow it to more easily pinpoint the overall normalization of

the global 21-cm signal. This second point may explain why the precision with which the turning points are

extracted (Figure 3.8) depends mostly on the integration time and only weakly on the number of indepen-
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Figure 3.7 Constraints on the curvature, indicated by δ′′ (in units of mK MHz−1), of the signal at the turning
points. Blue and green regions are 68% and 95% confidence regions, respectively.
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Figure 3.8 Constraints on the turning point positions as a function of the number of sky regions and integra-
tion time. Green, black, and blue points correspond to constraints on turning points B, C, and D, respectively,
and are slightly offset in the x-direction for clarity. The top row shows errors in the frequency of the turning
points, relative to their input values, while the bottom row shows errors in the amplitude of each turning
point. All error-bars shown are 68 per cent credible intervals. Note that the y range for the panels on the
right has been zoomed in.
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dent sky regions observed. This has implications for the optimal 21-cm observing strategy, as it has been

assumed for years that observations of many independent sky areas were needed primarily to help constrain

the normalization of the global 21-cm signal.

Though at first glance the tanh model seems to provide a dramatic improvement in the ability to extract

the global 21-cm signal from the galactic foreground, there are subtle issues that require further attention.

For example, degeneracies between the global 21-cm signal and the foreground at frequencies ν & 100 MHz

bias constraints on features of the signal at low frequencies. One crude solution is to simply discard data at

ν > 100 MHz, though of course in doing so, one removes all hope of constraining the position of turning

point D, and the ionization and thermal state of the IGM it encodes. Alternatively, one might employ a more

complex model for the galactic foreground spectrum, and thus increase its ability to cope with the spectrally

smooth turn-over in the global 21-cm signal, which occurs at ∼ 112 MHz in our reference model.

Perhaps more interestingly, the physical ARES model seems to produce turning points that are slightly

sharper than those of the tanh model. This led to biases in the tanh model’s inference of IGM properties at

turning points C and D, despite the fact that the turning point positions of the best-fit recovered signal were

consistent with the input model. Given the persistence of this finding independent of Nsky and tint, it seems

most likely that in fact we are seeing a mismatch in the shape between the tanh and ARES models.

These findings highlight the need for the development of a model selection pipeline, i.e., one that

can derive quantitative evidence for one parameterization over another from the data itself. The obvious

first test for any global 21-cm experiment is a null test, i.e., fit the data with signal-less model and then

again with including a model for the global 21-cm signal. Is there quantitative evidence that the model

including the global 21-cm signal is required by the data? The present work suggests a more advanced test

that likely requires very accurate measurements: can we derive evidence that the data requires an ARES

model instead of the tanh? Given that we have assumed an idealized instrument (with a flat response), it is

possible that first-generation instruments will yield constraints on the turning points that are broader than

those presented here, and thus may not need to grapple with this issue. It will of course be vital once global

21-cm measurements enter a “precision era,” an advance recently seen in the CMB community which led to

the development of improved physical models (e.g., COSMOREC; Chluba and Thomas, 2011) and statistical
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inference tools (e.g.,POLYCHORD; Handley et al., 2015).

Both the null test and the tanh vs. ARES test are computationally prohibitive in the high-dimensional

parameter spaces surveyed in most MCMC fits presented here. A direct fit of the ARES model is difficult, but

not prohibitively so (∼ few seconds per likelihood evaluation). To date, the only study of model selection

for the global 21-cm signal was performed for a single pointing, with an idealized instrument, foreground,

and signal model (Harker, 2015b). Adoption of recent methods employed in the CMB community (e.g.,

POLYCHORD; Handley et al., 2015) will be required to scale to higher dimensional parameter spaces and

more realistic signal models, but we will revisit such ideas in more detail in Chapter 7.



Chapter 4

Parameter Estimation for Global 21-cm Experiments: Prospects for Constraining Simple

Galaxy Formation Models

Reproduced with permission of the AAS.

Reference:

“Interpreting the Sky-Averaged 21-cm Signal from High Redshifts. II. Parameter Estimation for Models of

Galaxy Formation”

Mirocha, J., Harker, G. J. A., & Burns, J. O. 2015, accepted for publication in ApJ (arXiv:1509.07868)

4.1 Context

Following our previous work, which focused on relating generic features in the sky-averaged (global)

21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining

a simple galaxy formation model with current and near-future experiments. This approach has yet to be

employed in global 21-cm parameter estimation forecasts, which have instead attempted to constrain phe-

nomenological models that can capture the basic structure of the signal at little computational cost, but

cannot be readily related to physical models of galaxy formation. Markov-Chain Monte Carlo fits to our

synthetic dataset, which includes a realistic galactic foreground and a plausible model for the signal, suggest

that a simple four-parameter model that links the meta-galactic Lyman-α, Lyman-continuum, and X-ray

backgrounds to the growth rate of dark matter halos, can be well-constrained (to ∼ 0.1 dex in each dimen-

sion) in only 100 hours so long as all three spectral features expected to occur between 40 . ν/MHz . 120

are detected. Several important conclusions follow naturally from this basic numerical result, namely that
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measurements of the global 21-cm signal can in principle (i) identify the characteristic mass threshold for

star formation formation at all redshifts z & 15, (ii) extend z . 4 upper limits on the normalization of the

X-ray luminosity star-formation rate (LX -SFR) relation of fX ∼ a few out to z ∼ 20, and (iii) provide the

first constraints on stellar spectra and the escape fraction of ionizing radiation at z & 10, degeneracies be-

tween which can be mitigated in 100 hours of integration split between two independent sky regions, and/or

use of a more complex model for the galactic foreground. Though our approach is general, the power of

a broad-band measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer,

which will have a clean view of the global 21-cm signal from∼ 40−120 MHz from its vantage point above

the radio-quiet, ionosphere-free lunar far-side.

4.2 Introduction

Given that the global 21-cm signal is an indirect probe of high-z galaxies, some modeling is re-

quired to convert observational quantities to constraints on the properties of the Universe’s first galaxies.

Though numerous studies have performed forward modeling to predict the strength of the global 21-cm sig-

nal (Furlanetto, 2006, Pritchard and Loeb, 2010), few have attempted to infer physical parameters of interest

from synthetic datasets. Such forecasting exercises are incredibly useful tools for designing instruments and

planning observing strategies, as they illuminate the mapping between constraints on observable quantities

and model parameters of interest. Both Fisher matrix and Markov-Chain Monte Carlo (MCMC) approaches

have been employed by the power spectrum community (e.g., Pober et al., 2014, Greig and Mesinger, 2015),

the latter providing a powerful generalization that does not require the assumption of Gaussian errors or per-

fect recovery of the maximum likelihood point.

Most work to date has instead focused on forecasting constraints on phenomenological parameters

of interest, e.g., the timing and duration of reionization (Liu et al., 2013), the depth and width of the deep

minimum expected near ∼ 70 MHz prior to reionization (Bernardi et al., 2015), or all three spectral features

predicted to occur between 40 . ν /MHz . 120 (Pritchard and Loeb, 2010, Harker et al., 2012). These

spectral “turning points” in the global 21-cm spectrum provide a natural basis for parameter forecasting,

as they persist over large ranges of parameter space (Pritchard and Loeb, 2010), can be extracted from the
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foreground with realistic instruments and integration times (at least under the assumption of a negligible

ionosphere; Harker et al., 2012, Presley et al., 2015, Bernardi et al., 2015), and are relatively impervious to

degeneracies between the cosmological signal and the galactic foreground (Harker et al., 2015). They can

also be interpreted fairly robustly in terms of the physical properties of the IGM, at least in simple two-phase

models (Mirocha et al., 2013, hereafter Paper I). Given the viability of the turning points as “products” of

global 21-cm signal extraction pipelines, we will use them as a launching point in this paper from which to

explore the prospects for constraining astrophysical parameters of interest with observations of the global

21-cm signal. Importantly, we will consider all three turning points simultaneously, rendering our findings

particularly applicable to DARE, whose band extends from 40 ≤ ν/MHz ≤ 120 in order to maximize the

likelihood of detecting all three features at once.

This chapter is organized as follows. In Section 2 we outline our methods for modeling the global

21-cm signal and parameter estimation. Section 3 contains our main results, with a discussion to follow in

Section 4. In Section 5, we summarize our results. We use the most up-to-date cosmological parameters

from Planck throughout (last column in Table 4 of Planck Collaboration et al., 2015).

4.3 Numerical Methods

In order to forecast constraints on the properties of the first galaxies, we will need (1) a model for

the global 21-cm signal, (2) estimates for the precision with which this signal can be extracted from the

foregrounds, and (3) an algorithm capable of efficiently exploring a multi-dimensional parameter space to

find the best-fit and uncertainties on the model parameters. The next three sub-sections are devoted to

describing these three pieces of our pipeline in turn.

4.3.1 Physical Model for the Global 21-cm Signal

Our approach to modeling the global 21-cm signal is similar to that presented in several other pub-

lished works (e.g., Barkana and Loeb, 2005b, Furlanetto, 2006, Pritchard and Loeb, 2010, Mirocha, 2014),

so we will only discuss it here briefly. The primary assumption of our model is that the radiation back-

grounds probed by the turning points are generated by stars and their byproducts, which form at a rate
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proportional to the rate of baryonic collapse into dark matter haloes. That is, we model the star-formation

rate density (SFRD) as

.
ρ∗(z) = f∗ρ̄0

b
d fcoll

dt
, (4.1)

where fcoll = fcoll(Tmin) is the fraction of matter in collapsed halos with virial temperatures greater than

Tmin, ρ̄0
b is the mean baryon density today, and f∗ is the star formation efficiency. We use a fixed Tmin rather

than a fixed Mmin because it provides physical insight into the processes governing star-formation, as one

can easily identify the atomic and molecular cooling thresholds of ∼ 500 and ∼ 104 K. Note that a fixed

value of Tmin results in a time-dependent mass threshold, Mmin.

In order to generate a model realization of the global 21-cm signal, we must convert star-formation to

photon production. Given that the three spectral turning points probe the history of ionization, heating, and

Ly-α emission, we will split the production of radiation into three separate bands: (1) from the Ly-α reso-

nance to the Lyman-limit, hνα ≤ hν/eV≤ hνLL, which we refer to as the Lyman-Werner (LW) band despite

its inclusion of photons below 11.2 eV, (2) hydrogen-ionizing photons, with energies hνLL ≤ hν/eV≤ 24.4,

and (3) X-rays, with energies exceeding 0.1 keV. Each radiation background is linked to the SFRD, i.e.,

Q̇ion ∝ ξion
d fcoll

dt
(4.2)

Q̇LW ∝ ξLW
d fcoll

dt
(4.3)

where the ξ’s have units of photons / baryon. The rate of X-ray production is more sensibly cast in terms of

an energy per unit star-formation, i.e.,

LX ∝ cX ξX
d fcoll

dt
(4.4)

where cX is the normalization of the LX -SFR relation, which we take to be cX = 3.4×1040 erg s−1 (M� yr)−1
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following Furlanetto (2006)1 . Note that we have absorbed f∗ into the ξ parameters, i.e.

ξLW = NLW f∗ (4.5)

ξion = Nion f∗ fesc (4.6)

ξX = f∗ fX (4.7)

NLW and Nion are the number of LW and ionizing photons emitted per stellar baryon, and fesc is the escape

fraction of ionizing radiation.

Given LX , Q̇ion, and the Ly-α background intensity, Ĵα ∝ QLW, we can evolve the ionization and

thermal state of intergalactic gas in time, and compute the sky-averaged 21-cm signal via (e.g., Furlanetto,

2006)

δTb ' 27(1− xi)

(
Ωb,0h2

0.023

)(
0.15

Ωm,0h2
1+ z
10

)1/2(
1− Tγ

TS

)
, (4.8)

where xi is the volume-averaged ionization fraction,

xi = QHII +(1−QHII)xe (4.9)

where QHII is the volume-filling factor of HII regions, and xe is the ionized fraction in the bulk IGM. TS is

the excitation or “spin” temperature of neutral hydrogen, which quantifies the number of hydrogen atoms in

the hyperfine triplet and singlet states, Tα ' TK (Field, 1958),

T−1
S ≈

T−1
γ + xcT−1

K + xαT−1
α

1+ xc + xα

(4.10)

where TK is the gas kinetic temperature and h and the Ω’s are take on their usual cosmological meaning. We

compute the collisional coupling coefficient, xc, by interpolating between the tabulated values in Zygelman

(2005) with a cubic spline, and take xα = 1.81× 1011Ĵα/(1.+ z). We perform these calculations using the

Accelerated Reionization Era Simulations (ARES) code2 , which is the union of a 1-D radiative transfer code

developed in Mirocha et al. (2012) and uniform radiation background code described in Mirocha (2014).

See §2 of Mirocha (2014) for a more detailed description of the global 21-cm signal modeling procedure.

1 Furlanetto (2006) computed this value by extrapolating the 2-10 keV LX -SFR relation of Grimm et al. (2003) above 0.2 keV,
assuming an unabsorbed α = 1.5 power-law spectrum. Our reference value of fX = 0.2 is chosen to match recent analyses in the
0.5-8 keV band, which find cX = 2.6×1039 erg s−1 (M� yr)−1 (Mineo et al., 2012b).

2 https://bitbucket.org/mirochaj/ares;revision7ba0d80

https://bitbucket.org/mirochaj/ares; revision 7ba0d80
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Figure 4.1 Illustration of the basic dependencies of the global 21-cm signal. The black line is the same in
each panel, representing our reference model (see Table 4.1), while all solid green (blue) lines correspond to
a factor of 2 increase (decrease) in the parameter noted in the upper left corner, and dashed lines are factor of
10 changes above and below the reference value. The right half of the figure is qualitatively similar to Figure
2 of Pritchard and Loeb (2010), though our reference values for the ξ parameters are different, as are our
cosmological parameters, leading to quantitative differences. The dotted lines show the maximum allowed
amplitude of the signal (i.e., the amplitude of the signal when xi = 0 and TS >> Tγ), and the minimum
allowed amplitude of the signal (set by assuming TS = TK = Tad(z), where Tad is the gas temperature in an
adiabatically-cooling Universe). Because we refer to the spectral features as turning points B, C, and D
throughout the paper, we annotate them in the lower left panel for reference.
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Table 4.1. Reference Model Properties and Simulated Constraints

Quantity Reference Value EM1 EM2 Description

νB [MHz] 47.4 46.99±0.74 47.08±0.60 Onset of Ly-α coupling
νC [MHz] 71.0 70.95±0.20 70.96±0.15 Onset of heating
νD [MHz] 111.4 110.9±5.0 109.2±3.5 Beginning of reionization
δTb(νB) [mK] -4.4 n/a n/a Depth when Ly-α coupling begins
δTb(νC) [mK] -124.8 −122.6±5.0 −121.7±3.7 Depth of absorption trough
δTb(νD) [mK] 19.2 17.20±4.5 19.88±1.7 Height of emission feature
zrei 9.25 n/a n/a Midpoint of reionization
τe 0.066 n/a n/a CMB optical depth

Note. — Observational properties of our reference model (solid black lines in Figure 4.1), and the best-fit
and uncertainties for each extraction model (EM) we consider. Subscripts indicate different turning points, i.e.,
the cosmic dawn feature when the Wouthuysen-Field effect first drives TS to TK (B), the absorption trough,
which indicates the onset of heating (C), and the beginning of reionization (D). EM1 and EM2 differ in the
number of independent sky regions assumed (1 vs. 2), and in the complexity of the foreground model (3rd vs.
4th order polynomial), which leads primarily to a more robust detection of turning point D for EM2. All errors
are 1−σ, and correspond directly to the diagonal elements of the turning point covariance matrix.
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Figure 4.1 shows our reference model (properties of which are listed in Table 4.1), and the modula-

tions in its structure that occur when varying Tmin, ξX , ξion, and ξLW. It is immediately clear that Tmin affects

the locations of all three turning points, whereas each ξ parameter affects at most two. We should therefore

expect that in principle, an observation containing all three features will have the best chance to constrain

Tmin, though this will be complicated at the lowest redshifts where d fcoll/dt becomes a weaker function of

Tmin (see bottom panel of Figure 4.2).

Figure 4.1 also shows that ξion will be difficult to constrain using global signal data at these frequen-

cies, as even factor of 10 changes lead only to small changes in the signal (at ν & 100 MHz), whereas factor

of 10 changes in ξX and ξLW are ∼ 50 mK effects. There are also clear degeneracies between Tmin and the

ξ parameters. Exploring those degeneracies and determining the prospects for constraining each parameter

independently are our primary goals in this work. The results will in large part depend on how accurately

the signal can be recovered from the foregrounds, which we discuss in the next subsection.

Before moving on to signal extraction, it is worth reiterating that we do not model the normalization

of the SFRD explicitly, instead absorbing the star-formation efficiency into the ξ parameters. However,

we do treat the rate-of-change in the SFRD explicitly. It is illustrative to quantify this using an effective

power-law index

αeff(z)≡
d log

.
ρ∗(z)

d log(1+ z)
, (4.11)

which enables a straightforward comparison with empirical models, which are often power-laws, i.e.,
.
ρ∗(z)∝

(1+ z)α, in which case α = αeff = constant. The αeff(z) values of our fcoll model are independent of f∗ so

long as d f∗/dt = 0, and generally fall within the (broad) range of values permitted by observations of high-z

galaxies (Oesch et al., 2013, Robertson et al., 2015), as shown in the top panel of Figure 4.2.

4.3.2 Signal Extraction

In order to fit a physical model to the turning points of the global 21-cm signal, we require best-fit

values for the turning point positions and estimates for uncertainties. To do this, we build on the work

of Harker et al. (2012) and Harker et al. (2015), who introduced a Markov-Chain Monte Carlo (MCMC)

technique for fitting global 21-cm signal data. The basic approach is to simultaneously fit a model for the
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4-parameter SFRD model used in Robertson et al. (2015).
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galactic foreground, the global 21-cm signal, and in general, parameters of the instrument (e.g., its response

as a function of frequency), assuming some amount of integration time, tint, and the number of independent

sky regions observed, Nsky. The foreground is modeled as a polynomial in logν− logT space, while the

astrophysical signal is modeled as a either a spline (Harker et al., 2012) or series of tanh functions that

represent Jα(z), TK(z), and xi(z) (Harker et al., 2015).

The tanh approach to modeling the global 21-cm signal was chosen for numerous reasons. First

and foremost, it was chosen as a computationally efficient substitute for more expensive, but physically-

motivated models like those investigated in this paper. Some alternative intermediaries include the ‘turning

points’ parameterization (Pritchard and Loeb, 2010, Harker et al., 2012) or models that treat the absorption

feature as a Gaussian (Bernardi et al., 2015). Both are comparably cheap computationally, but cannot

capture the detailed shape of physical models. Perhaps most importantly, the spline and Gaussian models

are purely phenomenological, making them difficult to interpret in terms of IGM or galaxy properties and

thus incapable of incorporating independent prior information on e.g., the ionization or thermal history. The

tanh approach, on the other hand, can mimic the shape of typical global 21-cm signal models extremely

well, and can be immediately related to physical properties of the IGM.

Harker et al. (2015) presented a suite of calculations spanning the 2-D parameter space defined by

Nsky = {1,2,4,8} and tint = {100,1000}. A small subset of the calculations were repeated with more com-

plex foreground models or a bandpass limited to ν ≤ 100 MHz rather than the standard 120 MHz upper

cutoff. Limitations of the tanh model emerged in the tint = 1000 hr calculations, which narrowed confidence

contours for the turning points well enough to reveal subtle biases in their positions, which led to biases

in constraints on physical properties of the IGM as well. Harker et al. (2015) also found that biases in the

turning point positions can be eliminated given a more sophisticated foreground model. Alternatively, if one

is only interested in turning points B and C, truncation of the band at ν ∼ 100 MHz also works since the

biases arise primarily due to signal-foreground degeneracies at high frequencies. However, even with unbi-

ased constraints on the turning point positions, biases in the IGM properties persist in the 1000 hr multiple

sky region calculations because the tanh is not a perfect match in shape to the physical model injected into

the synthetic dataset. To avoid such biases in the present work we focus on the tint = 100 hr cases, which
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provide broader, but unbiased, constraints on the turning points. We also only analyze cases using one and

two sky regions, for which model selection will be more immediately tractable computationally (Harker,

2015a).

Now, back to the simplest model of Harker et al. (2015) (EM1 in Table 4.1). This calculation assumed

a single sky region, 100 hours of integration, and a third-order logν− logT polynomial for the galactic

foreground. Harker et al. (2015) investigated the generic case of an idealized instrument (i.e., a flat 85%

response function), though this could easily be modified to enable forecasting for non-ideal instruments.

The foreground and astrophysical signal were simultaneously fit using the parallel-tempering sampler in the

publicly available EMCEE code3 (Foreman-Mackey et al., 2013), a PYTHON implementation of the affine-

invariant Markov Chain Monte Carlo sampler of Goodman and Weare (2010), from which constraints on the

positions of the turning points followed straightforwardly. The errors are in general not Gaussian, though

for the purposes of our fitting, we approximate the errors as 1-D independent Gaussians, since covariances

carry shape information and are thus known to induce biases in inferences of IGM properties (Harker et al.,

2015). Table 4.1 summarizes the different signal extraction models, which are shown graphically in Figure

4.3.

4.3.3 Parameter Estimation

With a physical model for the global 21-cm signal (§4.3.1) and a set of constraints on the turning

point positions (§4.3.2), we then explore the posterior probability distribution function (PDF) for the model

parameters, θ, given the data, D . That is, we evaluate Bayes’ thereom,

P(θ|D) ∝ L(D|θ)P (θ). (4.12)

The log-likelihood is given by

logL(D|θ) ∝−∑
i

[x(θ)−µi]
2

2σ2
i

(4.13)

where µi is the “measurement” with errors σi (i.e., the values listed in columns 3 and 4 of Table 4.1), and

x(θ) represents a vector of turning point positions extracted from the model global 21-cm signal generated

3 http://dan.iel.fm/emcee/current/

http://dan.iel.fm/emcee/current/
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Figure 4.3 Comparison of EM1 and EM2 for turning point D, the point at which they differ most substantially
(see Table 4.1). In blue and red, solid (dashed) contours denote 68% (95%) confidence regions for EM1 and
EM2, respectively. The dotted black line shows the saturated limit, in which xi = 0 and TS ≈ TK� Tγ, while
the dashed vertical line denotes the position of turning point D in our reference model (solid black curve).
Note that the EM1 error ellipse for turning point D extends to ∼ 130 MHz, beyond the edge of the bandpass
considered in Harker et al. (2015), though the 2−σ upper limit for EM2 is within the assumed band, at
νD ∼ 117 MHz.



87

Table 4.2. Parameter Space Explored

Parameter Description Input Min Max

Tmin (K) Min. virial temp. of star-forming haloes 104 100 105.7

ξLW Ly-α efficiency 969 10 106

ξX X-ray efficiency 0.02 10−4 106

ξion Ionizing efficiency 40 10−4 105

Note. — Parameter space explored for results presented in §4.4. The first two
columns indicate the parameter name and a brief description, the third column is the
“true value” of the parameter in our reference model, while the last two columns
indicate the bounds of the priors for each parameter, all of which are assumed to
be uninformative, i.e., modeled as uniform distributions between the minimum and
maximum allowed values.

with parameters θ. This “two-stage approach” to fitting the global 21-cm signal – the first stage having been

conducted by Harker et al. (2015) – is much more tractable computationally than a direct “one-stage” fit to

a mock dataset using a physical model. Note that the brightness temperature of turning point B, δTb(νB), is

tightly coupled to its frequency, so we are effectively only using 5 independent data points in our fits.

To explore this four-dimensional space, we use EMCEE. We assume broad, uninformative priors on all

parameters (listed in Table 4.2), but note that our physical model implicitly imposes three additional priors

on the astrophysical signal:

(1) We neglect exotic heat sources at high-z, which confines turning point B to a narrow “track” at

ν . 50 MHz.

(2) We assume that the Universe cannot cool faster than the Hubble expansion, which sets a redshift-

dependent lower limit on the strength of the absorption signal (lower dotted curve in all panels of

Figure 4.1).

(3) We assume the mean density of the IGM we observe is the universal mean density, i.e., it has δ = 0,

which prevents the signal from exceeding the “saturated limit,” in which TS� Tγ and xi = 0 (upper

dotted curve in all panels of Figure 4.1).

Our code could be generalized to accommodate exotic heating models, though this is beyond the scope

of this paper. Bullets 2 and 3 above are manifestly true for gas at the cosmic mean density (via Equation
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4.8), though imaging campaigns will likely see patches of IGM whose brightness temperatures exceed (in

absolute value) these limits, owing to over-densities δ > 0.

For all calculations presented in this work, we use 384 walkers, each of which take a 150 step burn-in,

at which point they are re-initialized in a tight ball centered on the region of highest likelihood identified

during the burn-in. We then run for 150 steps more (per walker), resulting in MCMC chains with 57,600

links. The mean acceptance fraction, i.e., the number of proposed steps that are actually taken during our

MCMC runs, is ∼ 0.3. The runs are well-converged, as we see no qualitative differences in the posterior

distributions when we compare the last two 10,000 element subsets of the full chain.

4.4 Results

Each MCMC fit yields 57,600 samples of the posterior distribution, which is a 4-dimensional distri-

bution in {Tmin,ξLW,ξX ,ξion} space. However, we also analyze each realization of the global 21-cm signal

on-the-fly as the MCMC runs, saving IGM quantities of interest every ∆z = 0.1 between 5≤ z≤ 35, as well

as at the turning points. To build upon the analytical arguments presented in Paper I, which provided a basis

for interpreting the turning points in terms of IGM properties, we start with an analysis of the inferred IGM

properties at the turning points in §4.4.1, deferring a full analysis of the IGM history to future work. Readers

interested only in the constraints on our four-parameter model can proceed directly to §4.4.2.

4.4.1 Constraints on the Intergalactic Medium

We begin by showing our mock constraints on properties of the IGM at the redshifts of turning points

B, C, and D in Figures 4.4, 4.5, and 4.6, respectively.

Because turning point B primarily probes the Ly-α background, we focus only on its ability to con-

strain Jα in Figure 4.4. The input value is recovered to 1−σ, with relatively tight error-bars limiting Jα to

within a factor of 2. Use of EM2 has little effect on this constraint as its main improvement over EM1 is at

frequencies ν & 100 MHz.

Figure 4.5 shows constraints on the Ly-α background and thermal history at the redshift of turning

point C. In the ∼ 90 Myr separating turning points B and C, the Ly-α background intensity, Jα, has risen by



89

0.
01

0.
01
2

0.
01
4

0.
01
6

0.
01
8

0.
02

0.
02
2

Jα/J21

0.0

0.2

0.4

0.6

0.8

1.0

P
D
F

Figure 4.4 Constraints on the background Ly-α intensity at the redshift of turning point B, in units of J21 =
10−21erg s−1 cm−2 Hz−1 sr−1. Dotted vertical line shows the input value, which occurs at z = 29 in our
reference model. The black histogram is the constraint obtained if using EM1, while the analogous constraint
for EM2 is shown in green.
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a factor of∼ 350, though we still constrain its value to within a factor of∼ 2 (panel f). The IGM temperature

is limited to 9 . TK/K . 11, and would otherwise be ∼ 7.4 K at this redshift in the absence of heat sources.

There are noticeable degeneracies in the 2-D PDFs, which are not necessarily obvious intuitively.

Let us first focus on the anti-correlations in the Jα-εX and Jα−TK planes (panels a and d in Figure

4.5). For this exercise – and those that follow – it will be useful to consider slight excursions away from our

reference model. We can see from the lower right panel of Figure 4.1 that a small increase in ξLW will shift

turning point B to slightly higher redshifts (lower frequencies) holding all other parameters fixed. Turning

point C will also occur earlier than in our reference model (since a stronger Ly-α background can couple

TS to TK more rapidly ) and be deeper, since there has been less time for X-rays to heat the IGM, leading

to increased contrast between the IGM and the CMB. Panels (a) and (d) in Figure 4.5 now make sense: the

anti-correlations in the Jα-εX and Jα−TK planes arise because measurement errors permit slight excursions

away from the reference model, which if achieved through enhancements to ξLW, shift turning points B and

C to slightly earlier – and thus cooler – times.

One could also counteract a mild increase in ξLW with a corresponding increase in ξX , which enhances

heating and thus leads to shallower absorption troughs. However, increasing ξX shifts turning point C to

shallower depths and lower frequencies, thus exacerbating the leftward shift caused by larger values of ξLW.

As a result, Tmin would also need to be increased in order to delay the onset of Wouthuysen-Field coupling

and heating. Indeed, we will find this series of positive correlations among the physical parameters of our

model in the §4.4.2.

Before moving on to the IGM constraints associated with turning point D, we note that the correlation

between TK and εX (panel b) is simply because TK ∝
∫
εX dz, and εX is monotonic. Also, apparently the

improvement at the highest frequencies offered by EM2 also acts to slightly bias constraints on Jα and εX

relative to their input values. Referring back to Figure 4.3, we do see a slight bias in the EM2 PDF for

turning point D toward larger amplitude, which would require more rapid heating at earlier times. In fact,

this is precisely the sense of the bias we see in Figure 4.5: slightly larger values of εX at turning point C,

and a corresponding downward shift in Jα as described above.

And finally, Figure 4.6 shows constraints on the ionization and thermal histories at the redshift of



91

3.
0

4.
0

5.
0

6.
0

7.
0

Jα/J21

36
.4

36
.5

36
.6

lo
g 1

0ǫ
X

(a)

9.
8
10
.0
10
.2
10
.4

TK/K

(b)

36
.4

36
.5

36
.6

log10ǫX

(c)
9.
8

10
.0

10
.210
.4

T
K
/K

(d) (e)

P
D
F

(f)

Figure 4.5 Constraints on the IGM temperature, heating rate density, and Ly-α background intensity at the
redshift of turning point C. The heating rate density, εX , is expressed in units of erg s−1 cMpc−3, while Jα

is once again expressed in units of J21 = 10−21erg s−1 cm−2 Hz−1 sr−1. Dotted vertical lines show the input
values, which occur at z = 19 in the reference model. Open contours are those obtained with EM1 (68% and
95% confidence regions in solid and dashed curves, respectively), while filled contours are the constraints
obtained by EM2 (68% and 95% confidence regions in blue and green, respectively). The color-scheme
along the diagonal is the same as in Figure 4.4, with EM1 (EM2) curves in black (green).
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turning point D, which occurs at z = 11.75 in our input model. The behavior here is complex, as the

signal is not yet saturated (i.e., TS � Tγ is a poor approximation) and the mean ionized fraction is non-

zero (i.e., QHII ∼ 0.2). This means the global 21-cm signal depends on both the ionization history and

the thermal history, which we may parameterize in terms of the volume filling factor of ionized gas, QHII,

the IGM temperature, TK , and their time-derivatives4 ΓHI and εX . We may, however, neglect the Ly-α

history at this stage, since TS ≈ TK is accurate to high precision, rendering any constraints on Jα completely

parameterization-dependent (i.e., Jα can be anything, so long as it is large enough to drive TS→ TK).

It is once again useful to consider excursions away from the reference model. At fixed thermal history,

a slight increase in ξion will act to decrease the amplitude of turning point D and shift it to slightly higher

redshift. With less time to heat the IGM between turning points C and D, the IGM is cooler at the redshift

of turning point D in this scenario and as a result, the emission signal is weaker than that of our reference

model. This line of reasoning explains the anti-correlations between the ionization and thermal history

parameters in Figure 4.6. As in Figure 4.5, positive correlations occur by construction, since state quantities

like QHII and TK are just integrals of ΓHI and εX , which are both monotonically increasing with decreasing

redshift.

The advantages of EM2 over EM1 are also clear in Figure 4.6. This improvement occurs because

EM1 does not detect turning point D with significance away from the saturated limit or within the assumed

band (ν≤ 120 MHz), whereas the EM2 fit does both at the > 2−σ level. Perhaps most notably, this leads

to a strong detection of the early stages of reionization (0.12≤ QHII ≤ 0.29 at 2−σ; green PDF in panel j).

Lastly, we note that although the amplitude of the signal is set by xi, a volume-averaged ionized

fraction, we only show constraints on QHII, as xe never reaches values above ∼ 10−2 at z & 10 in any of

our calculations. As a result, it has a negligible direct effect on δTb. However, even mild ionization of the

bulk IGM enhances the efficiency of heating rather substantially, as the fraction of photo-electron energy

deposited as heat (as opposed to ionization or excitation) is a strong function of the electron density (e.g.

4 Although we use the symbol Γ, we caution that our values should not be compared to extrapolations of constraints on ΓHI from
the Ly-α forest at z . 6. The latter is a probe of the meta-galactic ionizing background (i.e., large-scale backgrounds), whereas our
values of Γ probe the growth rate of ionized regions, and thus should be considered a probe of radiation fields near galaxies. A
more detailed cosmological radiative transfer treatment could in principle reconcile the two tracers of ionizing sources.
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Figure 4.6 Constraints on the IGM temperature, volume-filling factor of ionized gas, QHII, heating rate
density, and volume-averaged ionization rate, Γ, at the redshift of turning point D, which occurs at z = 11.75
in our reference model. Open contours are 68% (solid) and 95% (dashed) confidence regions for EM1, while
filled contours show the results from EM2, with 68% and 95% confidence regions shown in blue and green,
respectively. Input values are denoted by black dotted lines in each panel.
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Shull and van Steenberg, 1985, Furlanetto and Johnson Stoever, 2010). Our choice of a mean X-ray photon

energy of hνX = 0.5 keV, in leu of a detailed solution to the radiative transfer equation, drives this result.

More expensive calculations that solve the RTE in detail (e.g. Mirocha, 2014) could enable scenarios in

which the bulk IGM is ionized substantially prior to the overlap phase of reionization, which could have

interesting observational signatures. We defer a more detailed treatment of this effect and others associated

with proper solutions to the RTE to future work.

4.4.2 Constraints on the Physical Model

Our main results are illustrated in Figures 4.7, 4.8, and 4.9, which analyze the full 4-D constraints

on our reference model and the implications for UV and X-ray sources, respectively. In this section, we’ll

examine each in turn.

It is perhaps most intuitive to begin with the panels along the diagonal of Figure 4.7, which show the

marginalized 1-D constraints on the parameters of our reference model. As predicted, given its broad-band

influence on the signal, Tmin (panel d) is most tightly constrained, with 1σ error bars of order ∼ 0.05 dex.

Therefore, an idealized instrument observing a single sky region for 100 hours can rule out star-formation in

molecular halos (onto which gas collapses more slowly; see Figure 4.2), at least at levels sufficient to affect

all three turning points. Errors on ξX and ξLW are comparable (panels i and j), though the positive error-bars

are larger at ∼ 0.1 dex. The errors on ξion are more asymmetric, at +0.1/−0.2 dex (panel g).

Strong degeneracies are also apparent, particularly in panels (a), (b), and (h), which show 2-D con-

straints in the Tmin–ξLW, Tmin–ξX , and ξLW–ξX planes, respectively. The first two are straightforward to

understand. An increase in ξLW means an enhancement in Ly-α production per unit star-formation, so to

keep turning point B fixed, a reduction in the star-formation rate density is required. In our modeling frame-

work, a reduction in the SFRD is achieved by increasing Tmin, confining star formation to more massive and

thus more rare halos. If f∗ were allowed to vary, it too could limit the SFRD, though the change would

be systematic, whereas varying Tmin affects the normalization and the redshift evolution. The same line of

reasoning explains the relationship between Tmin and ξX .

The ξLW–ξX degeneracy is slightly more complex. An increase in ξLW seeds a stronger Ly-α back-
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Figure 4.7 Constraints on our 4-parameter reference model. Filled contours in the interior panels are 2-D
marginalized posterior PDFs with 68% confidence intervals shaded blue and 95% confidence regions in
green. Panels along the diagonal are 1-D marginalized posterior PDFs for each input parameter, with 1-σ
asymmetric error-bars quoted, as computed via the marginalized cumulative distribution functions. Dotted
lines denote the input values of our reference model (Table 4.1). Bins of width 0.05 dex are used in each
panel. Annotated best-fit values and error bars along the diagonal are those associated with EM2.
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ground (holding Tmin fixed), which in turn shifts turning point B to lower frequencies (see the lower right

panel of Figure 4.1), which measurement error permits to some degree. This will result in a deeper (and

earlier) absorption trough unless ξX is increased, causing a shallower trough (see upper right panel of Fig-

ure 4.1). Once again, measurement error sets the degree to which an increase in ξX can compensate for

an increase in ξLW. In the limit of very large error-bars, these contours would not close, and instead we

would have large “bands” through parameter space, signifying an insurmountable degeneracy between two

parameters. Our results indicate that observations of a single sky region for 100 hours, albeit with an ide-

alized instrument, are precise enough to close these contours, and recover all input values to within 1−σ

confidence. We will revisit this claim in §4.5.

At this stage it may seem like we have just traded constraints on one set of phenomenological param-

eters (the tanh parameters) for another (Tmin and the ξ’s). However, if we assume that ξLW and ξion probe

the same stellar population, their ratio is independent of the star-formation history, and thus constrains the

spectral energy distribution (SED) of galaxies modulo a factor of the escape fraction5 , i.e.,

ξion

ξLW
=

Nion

NLW
fesc. (4.14)

To compute Nion/NLW, we take model spectral energy distributions directly from Leitherer et al. (1999).

We focus on those assuming an instantaneous burst of star-formation with nebular emission included (their

Figures 1, 3, and 5). We find the cumulative number of photons emitted in the LW and hydrogen-ionizing

bands, which typically reaches its maximum around ∼ 20 Myr after the initial burst. The results, as a

function of metallicity and stellar initial mass function (IMF), are shown in the left panel of Figure 4.8.

While the values of Nion and NLW vary by factors of ∼ 2 over the metallicity range 0.001 ≤ Z/Z� ≤ 0.04,

their ratio changes by only ∼ 5% over this same interval in metallicity. The more important dependence is

on the stellar IMF: a standard Salpeter IMF, with αIMF = 2.35 and an upper mass cutoff of Mcut = 100 M�,

yields 0.25 . Nion/NLW . 0.3 for all 10−3 ≤ Z/Z� ≤ 0.04 (blue circles in the left panel of Figure 4.8),

whereas mass functions with fewer massive stars, whether that be achieved with steeper power-law indices

(αIMF = 3.3; green squares in Figure 4.8) or by reducing the upper cutoff (Mcut = 30M�; red triangles in

5 We assume the escape fraction of LW photons is 100%, though in reality this is only likely to be true in the smallest halos
(e.g., Kitayama et al., 2004). For simplicity, we neglect this complication and defer a more thorough treatment to future work.
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Figure 4.8), yield 0.07 . Nion/NLW . 0.12.

In the right panel of Figure 4.8, we compare our constraints in the ξLW− ξion plane with the Z =

0.04 Z� stellar population models described above. The red, green, and blue bands in the right panel

correspond to the stellar population models denoted by filled points of the same color in the left panel. We

also show the case of a pure 50,000 K blackbody spectrum in the cross-hatched region. The width of each

band corresponds to a factor of two change in the escape fraction, 0.1≤ fesc ≤ 0.2.

Our mock constraints on ξLW/ξion given 100 hours of integration on a single sky region (EM1) can

only rule out rather extreme cases. For example, this scenario rules out the 50,000 K toy stellar population

with fesc & 0.2 at one extreme, and bottom-heavy IMFs with escape fractions below fesc . 0.1 at the other

extreme. A stronger detection of turning point D, achieved by EM2, tightens these constraints considerably.

The pure 50,000 K stellar population would require fesc . 0.01, while a stellar population with a prevalence

of lower mass stars would require fesc & 0.2. Note that the surface temperatures of PopIII stars are expected

to be ∼ 105 K, which only strengthens our limits quoted for the 50,000 K population. Our reference model

assumes a typical PopII stellar population, so it is reassuring to see that our constraints coincide with the

blue diagonal band, which represents a standard Salpeter IMF.

Synthesis models for black hole populations are growing in maturity, though still only loosely con-

strained by observations, especially at low metallicities (e.g., Belczynski et al., 2008). An immediate in-

terpretation of a measurement of ξX apart from the star-formation history, as we have done above for

constraints on the stellar IMF and fesc, will thus be very challenging barring progress on this front in the

coming years. For simplicity, we assume an α = 1.5 power-law spectrum above 0.2 keV consistent with the

findings of Mineo et al. (2012b), and f∗= 0.1. The 1-D marginalized PDF for ξX for EM’s 1 and 2 are shown

in Figure 4.9. Such enhancements are allowed out to z . 4 (Dijkstra et al., 2012, Basu-Zych et al., 2013),

though the redshifts probed by the global 21-cm signal are far beyond the reach of the techniques used to

establish such limits (the cosmic X-ray background and image stacking, respectively). All signal extraction

models considered here rule out factor of 2 enhancements to fX at the ∼ 3σ level assuming f∗ = 0.1. We

will revisit this type of constraint in §4.5.

Our reference model is seemingly inconsistent with star formation in molecular halos and a stellar
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IMF that yields more high-mass X-ray binaries than average (per unit star formation). This does not rule out

star formation in molecular halos or a top-heavy IMF, it just rules out such sources as important drivers of

the turning points. If we assume that PopIII stars have NLW = 4800, a SFRD of≈ 3×10−7 M� yr−1 cMpc−3

would be required to match the constraint on Jα provided by turning point B (following Eq. 17 of Mirocha

et al., 2013), which corresponds to f∗ ≈ 0.1 in Tmin = 300 K halos. Such a population would have to die

out rapidly in order for turning point C to be unaffected. Put another way, if PopIII stars do form relatively

efficiently at z∼ 30, and continue to do so for more than∼ 100 Myr, we should expect the position of turning

point C to change (relative to our reference model) due to a stronger Ly-α background and potentially a

stronger X-ray background, depending on the properties of PopIII remnants.

4.5 Discussion

Our results suggest that simultaneous fits to the three spectral turning points of the global 21-cm signal

can yield powerful constraints on the properties of the Universe’s first galaxies. A simple 4-parameter model

can be constrained quite well in only 100 hours of integration on a single sky region, provided an idealized

instrumental response function. The ξ parameters place interesting constraints on the properties of the first

generations of stars and black holes, while constraints on the characteristic redshift-dependent mass of star-

forming galaxies follows immediately from constraints on Tmin. In this section, we discuss these findings

within a broader context, focusing in particular on how our results depend on the assumed measurement

(§4.5.1) and model (§4.5.2), and how improvements to our fitting procedure might be improved to maximize

the return from ongoing and near-future observing campaigns (§4.5.3).

4.5.1 Are all three points necessary?

Our forecasts have so far assumed that all three spectral features in the 40 . ν/ MHz . 120 window

are detected and characterized reasonably well, apart from the EM1 detection of turning point D which was

only marginal. Given practical limitations in constructing an instrument with a broad-band response, the

ionospheric challenges at low frequencies, and a weak emission feature potentially plagued by terrestrial

radio frequency interference (RFI), it is worth asking: must we detect all three features at once to constrain
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even the simplest of galaxy formation models?

Figures 4.10 and 4.11 show the constraints on our 4-parameter model assuming only a subset of the

turning points are detected. We consider all possible cases, except a scenario in which only turning point B

is detected, as it seems unlikely that one could recover this feature from the foreground without help from

neighboring spectral structure, given its amplitude of . 5 mK. Note that the black contours in each plot are

identical to the 95% confidence regions in Figure 4.7, though the x and y scales of each individual panel here

are much broader than those in Figure 4.7 due to worsening constraints. Blue contours denote fits including

two turning points, while green cross-hatched regions correspond to fits including only a single turning

point. Because the PDFs for the one- and two-point fits are broad, they tend to become noisy. This behavior

is expected: by design, walkers spend less time in low-likelihood regions. If those regions of parameter

space are large (which they are for the one- and two-point fits), it will take a long time to properly explore

them.

In Figure 4.10, we focus on the case in which the emission maximum, turning point D, is not used

in the fit. In the most optimistic case, both turning points B and C are still detected, and give rise to the

constraints shown in blue. As expected, constraints on ξion are virtually nil except for a weak upper limit

(panel g). However, constraints on ξLW, ξX , and Tmin remain largely intact. The subtle excursion away

from the black contours in panels b, h, and f toward small values of ξX are real: they indicate scenarios

in which heating is negligible and turning point C is induced by ionization (see §3.2.2 in Paper I). Such

models would likely lead to an early end to the EoR, and a large value of the Thomson optical depth, τe,

though without a detection of turning point D or a prior on τe such scenarios remain allowed. In a more

pessimistic scenario in which only the absorption minimum, turning point C, is detected, 2−σ constraints

span∼ 3 orders of magnitude (green contours and cross-hatched regions), though still rule-out large regions

of currently permitted parameter space.

In the event that the lowest frequency feature, turning point B, is not detected, we instead arrive at the

constraints shown in Figure 4.11. Provided that turning points C and D are still detected, we obtain the blue

contours, which are broader by ∼ 1 order of magnitude in each dimension except for ξion, though they still

close within the broad space defined by our priors. If only the emission maximum is detected, we instead
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derive the contours in green. Tmin is unconstrained in this scenario, and only limits are available for each

parameter when marginalizing over the others.

The results shown in Figures 4.10 and 4.11 are almost certainly optimistic, since it is the spectral

structure which makes signal extraction possible in the first place. With a narrow-band measurement of the

global 21-cm signal that only includes two features, we should then expect the errors on the positions of

those turning points to be larger than those quoted in Table 4.1. Even so, such constraints would still be a

big step forward, ruling out large regions of currently permitted parameter space and providing priors for

next-generation experiments.

4.5.2 Assumptions Underlying the Physical Model

Our constraints on the four-parameter model of course assume that this model is “correct,” i.e., its

parameters are assumed to be physically meaningful. In this section, we describe the assumptions and

approximations at the heart of this model and the circumstances in which they may deteriorate. This will

provide a basis for our final discussion section, regarding the use of independent constraints and model

selection techniques in §4.5.3.

4.5.2.1 The Star Formation History

Our fcoll-based recipe for the global 21-cm signal is certainly not unique in its ability to model the

first galaxies and the high-z IGM. For example, it would not be unreasonable to employ a more flexible

“multi-population” model (e.g., Furlanetto, 2006) in which the Ly-α, soft UV, and X-ray backgrounds are

produced by distinct sources, whose redshift evolution, photon production rates, and/or spectral energy

distributions are allowed to be different. This approach may be warranted, given that the radiative properties

and formation efficiencies (with time) of PopII and PopIII stars are expected to be different.

Some recent work has instead used empirical constraints on the SFRD at high-z to model the global

21-cm signal (Yajima and Khochfar, 2015). While in principle such models are capable of more varied

star-formation histories than our own, and can more seamlessly be compared to pre-existing empirical con-

straints on the SFRD in the post-EoR Universe (from which such SFRD models were first born), they have



101

more free parameters and potentially obfuscate the dominant mode of star formation, which is of primary

interest in this study. It would be straightforward to generalize our code to test empirically-calibrated pa-

rameterizations, which have the greatest strength at the lowest redshifts (z . 10), thus complementing the

fcoll approach, which is likely most accurate at the highest redshifts.

Such changes to the underlying model would prevent some of the analysis so far presented. For

example, our constraints on the stellar IMF and escape fraction relied on the assumption of a single popu-

lation well-described by time-independent values of f∗, the IMF (which we model implicitly through NLW

and Nion), and fesc. Such analyses could still be applied for a single-population model with an empirical

SFRD, but for any kind of multi-population model, Equation 4.14 no longer applies. In addition, the value

of Nion/NLW may take on a new meaning, since it could probe NLW of PopIII stars that induce turning point

B, and the Nion of more ordinary PopII star-forming galaxies responsible for driving turning point D.

4.5.2.2 Stellar Population Models

Even with perfect knowledge of the SFRD, properly interpreting Nion/NLW in terms of the stellar

population requires robust predictions from synthesis codes, which aim to generate a model SEDs as a

function of time. Despite a long history (Leitherer et al., 1999) and plenty of observational datasets to

compare against, such codes are still being revised to account for updates in e.g., stellar atmosphere models,

evolutionary tracks (Leitherer et al., 2014), stellar rotation (Leitherer et al., 2014, Topping and Shull, 2015),

and nebular emission (Zackrisson et al., 2011).

4.5.2.3 Stellar Remnants and X-ray Emission

A “complete” stellar synthesis code would model the remnants of stars, in addition to stars them-

selves, if a comparison to datasets in the X-ray band were desired. This is because neutron stars and black

holes, when in binary systems, are known to dominate the X-ray luminosity of star-forming galaxies (with-

out active nuclei; Grimm et al., 2003, Gilfanov et al., 2004, Mineo et al., 2012b), while supernovae can

provide yet another source of X-rays, either via inverse Compton scattering off hot electrons in the remnant

(Oh, 2001), or indirectly by heating the interstellar medium (ISM) which then emits thermal bremsstrahlung
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radiation (Mineo et al., 2012). While we are not in the business of comparing model and measured X-ray

spectra, we are concerned with modeling the X-ray SED of galaxies insofar as it affects the thermal history

of the IGM.

The modeling compact object populations has become a larger industry in recent years, motivated in

large part by the development of gravitational wave observatories, continued interest in ultra-luminous X-ray

sources (Belczynski et al., 2002, Belczynski et al., 2008), and the likely importance of compact objects in

reheating of the high-z IGM (Power et al., 2013, Fragos et al., 2013). As in the case of pure stellar population

modeling, the number of compact objects and their mass distribution is expected to depend strongly on the

metallicity. Unfortunately, the observational data is sparse, especially at low metallicities, making it difficult

to calibrate the models to local analogs of high-z galaxies.

Whereas our forecast for the stellar IMF and escape fraction relied on the assumption of time-

independent (but free to vary) values for f∗ and Tmin, our ability to constrain fX was intimately linked

to the precise value of f∗. Without more robust predictions for the X-ray yields of stellar populations,

interpretation of fX will hinge on assumptions, or hopefully independent constraints, on the efficiency of

star formation in high-z galaxies. Even if LX -SFR does not evolve much with redshift, spectral evolution

will affect the global 21-cm considerably (Mirocha, 2014), likely requiring independent measurements of

the 21-cm power spectrum to disentangle constraints on the normalization and spectral shape of the X-ray

background (Pritchard and Furlanetto, 2007, Pacucci et al., 2014).

4.5.2.4 Cosmology and the Mass Function of Dark Matter Halos

We have fixed cosmological parameters as well as parameters governing the halo mass function,

adopting the most up-to-date values from Planck and the Sheth-Tormen form of the mass function through-

out. Variations in the cosmological parameters alone should be a secondary effect to all astrophysical

processes we consider, but potentially discernible with observations of dark ages (ν ∼ 20 MHz), prior to

first-light. Variations in the cosmological parameters will also influence the abundance of halos, though

discrepancies in halo abundances in the literature are known to be primarily due to differences in calibration

of the fitting functions rather than uncertainties in cosmological parameters (Murray et al., 2013a), at least
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at low redshifts (z . 2). Calibration of the mass function at high redshifts and for low-mass halos in which

the first objects form is limited, given the dynamic range needed to resolve small halos in large volumes. If

the mass function at z & 20 deviates significantly from the Sheth-Tormen form, it would certainly affect the

way we interpret Tmin, and thus should be considered an important avenue for future work.

4.5.2.5 The Two-Zone IGM Formalism

Our entire procedure hinges on the ability to rapidly generate model realizations of the global 21-cm

signal, which has led us to a simple two-phase IGM formalism rather than more detailed (and expensive)

numerical or semi-numerical simulations. Whereas simple models have been compared to numerical sim-

ulations in the context of the 21-cm power spectrum (Zahn et al., 2011), and found to agree quite well, no

such comparison has been conducted for global models. As far as we can tell, this is because there has yet

to be a single numerical simulation capable of self-consistently generating a synthetic global 21-cm signal.

Doing so will require high dynamic range, capable of resolving the first star-forming halos, the radiation

backgrounds they seed, in a volume large enough to be considered a global volume element.

Without a suite of numerical simulations to calibrate against, we have not attempted to attach any

intrinsic uncertainty associated with our model, as was done recently by Greig and Mesinger (2015) in the

context of the 21-cm power spectrum. However, we do expect this formalism to be accurate over nearly the

entire redshift range covered by our calculations (i.e., we do not use it solely out of computational necessity).

The two-zone formalism operates best when HII regions are distinct and have sharp edges, and the heating

and Ly-α is well-modeled by a uniform background. At turning point D, overlap between bubbles is likely

minimal given that the volume filling factor of HII regions is small (Q ∼ 0.2). In addition, their edges are

likely sharp since fX is at most ∼ a few. As a result, we do not have reason to suspect a breakdown in the

formalism, at least for the reference model we have chosen.

4.5.3 Priors and the Prospects for Model Selection

Changes to the physical model, like those discussed in the previous section, generally fall into two

categories: they either (1) change how we interpret the constraints on model parameters of interest, or (2)
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fundamentally change the characteristics of the modeled signal. For example, improvements to synthesis

models of stars and black holes will change how the ξ parameters relate to the stellar IMF and properties of

stellar remnants, but so long as we still employ the four-parameter model, our constraints on the values of

ξ will not change. If instead we introduced new parameters that allowed ξ or Tmin to evolve with redshift,

we have then enhanced the flexibility of the model enough that we may now be capable of generating

realizations of the global 21-cm that our previous approach simply could not have.

A “double reionization” scenario, which could lead to two emission features rather than our single

“turning point D,” is an unrealistic (Furlanetto, 2006) but illustrative example of a model with enhanced

flexibility. Our four-parameter model simply could not produce two emission features. One could imag-

ine less drastic changes that might still have new and potentially discernible effects on the signal through

modulations of its shape, such as redshift-dependent ξ and Tmin, feedback, and/or multiple distinct source

populations.

We should expect that more complex model parameterizations will only have an easier time fitting

the turning points, and thus a fit to the turning points alone may not enable one to constrain additional

parameters. Use of a more complex parameterization may still be warranted, however, provided independent

constraints on one or more of the model parameters, to be used as priors in the fit. However, if we do a

“single-stage” fit, in which we fit a physical model directly to the data rather than using a computationally

inexpensive intermediary to extract the turning points, we may find that a more complex model is required

by the data. In order to justify the additional parameters rigorously, more advanced inference tools are

required (e.g., MULTINEST,POLYCHORD; Feroz et al., 2009, Handley et al., 2015) to compute the Bayesian

evidence.

To date, there has only been one paper on model selection for global 21-cm datasets (Harker, 2015a).

This work investigated performed a simple null test, as well as a more complex fit testing the necessity of an

emission signal. Computing the evidence is expensive enough that Harker (2015a) was limited to relatively

low-dimensional spaces and simplistic signal models. In the future, such tests will be required in order to

test whether or not more complex models are required by the data. This presents a unique and challenging

problem for ongoing and upcoming experiments and their associated signal extraction pipelines.
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4.6 Conclusions

This work represents the first attempt to forecast constraints on astrophysical parameters of interest

from mock observations of the global 21-cm signal. There is clearly much still to be learned, even from

synthetic datasets, about how observations in (ν,δTb) space translate to constraints on the properties of the

IGM and/or the properties of high-z galaxies. Assuming an idealized instrument, signal recovery consistent

with the numbers quoted in Table 4.1, and the validity of our four-parameter model for the global 21-cm

signal, we find that:

(1) Constraints on the turning points constrain the parameters of a simple 4 parameter model well (to

∼ 0.2 dex each, on average), with factor of∼ 2 improvements within reach of experiments viewing

multiple sky regions and employing more complex foreground parameterizations (Figure 4.7). Such

measurements would simultaneously constrain the ionization and thermal state of the IGM (Figures

4.5-4.6), perhaps most notably providing strong evidence for the beginning of the EoR at z∼ 12.

(2) Our fiducial realization of the signal is inconsistent with star-formation in halos with virial tem-

peratures below ∼ 103.5 K at the 2-σ level for the most pessimistic signal extraction scenario we

consider. Such constraints are enabled in large part by a broad-band measurement of the signal,

since Tmin affects all three turning points in the∼ 40−120 MHz interval (Figures 4.1, 4.2, and 4.7).

(3) In the simplest case, in which all model parameters are assumed to be constant in time, we can

provide limits on both the escape fraction and the stellar IMF, primarily ruling out scenarios in

which UV photons originate in extreme environments with very top-heavy IMFs or very high escape

fractions (Figure 4.8).

(4) Our constraints on X-ray sources are comparable to those achieved at z . 4 via stacking and the

cosmic X-ray background, though at z∼ 20 to which the aforementioned techniques are insensitive

(Figure 4.9). In the absence of independent information, this constraint requires an assumption

about the star formation efficiency and X-ray SED of galaxies.

(5) With only a subset of the turning points, constraints on our reference model are considerably worse
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(Figures 4.10 and 4.11). The lowest frequency features (turning points B and C) hold the most

power to constrain Tmin, which will make it difficult to constrain Tmin and ξion with observations

confined to the highest frequencies. Isolated detection of the absorption feature is the most valuable

single-point measurement, as it leads to confidence contours which close over the prior space,

except in the case of ξion.
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Figure 4.8 Left: Ratio of yields in the ionizing (hν > 13.6 eV) and LW (10.2 ≤ hν/eV ≤ 13.6) bands per
stellar baryon as a function of metallicity and stellar IMF. Symbols represent model SEDs generated with
STARBURST99 (those shown in Figures 1, 3, and 5 of Leitherer et al., 1999), while the horizontal lines show
the values one obtains for pure blackbodies at 10,000, 30,000, and 50,000 K from bottom to top. The filled
symbols are investigated in more detail in the right panel. Right: Constraints on the stellar population and
the escape fraction of ionizing radiation. The solid contour is the 2-σ constraint on our reference model,
i.e., identical to the green area of panel (e) in Figure 4.7, while dashed contours correspond to turning point
constraints from EM2 (see Table 4.1), which has a tighter constraint on the emission maximum (turning
point D). The blue, green, and red bands have the same value of Nion/NLW as the filled plot symbols in
the left-hand panel, while the cross-hatched band instead adopts a pure 50,000 K blackbody spectrum for
the stellar population. The width of each band corresponds to a factor of 2 change in the escape fraction,
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Chapter 5

Signatures of Accreting Black Holes at Redshifted 21-cm Wavelengths

Reproduced with permission of the RAS.

Reference:

“Decoding the X-ray Properties of Pre-Reionization Era Sources”

Mirocha, J. 2014, MNRAS, 443, 1211

5.1 Context

Evolution in the X-ray luminosity – star formation rate (LX -SFR) relation could provide the first evi-

dence of a top-heavy stellar initial mass function in the early universe, as the abundance of high-mass stars

and binary systems are both expected to increase with decreasing metallicity. The sky-averaged (global)

21-cm signal has the potential to test this prediction via constraints on the thermal history of the inter-

galactic medium, since X-rays can most easily escape galaxies and heat gas on large scales. A significant

complication in the interpretation of upcoming 21-cm measurements is the unknown spectrum of accreting

black holes (BHs) at high-z, which depends on the mass of accreting objects and poorly constrained pro-

cesses such as how accretion disk photons are processed by the disk atmosphere and host galaxy interstellar

medium. Using a novel approach to solving the cosmological radiative transfer equation (RTE), we show

that reasonable changes in the characteristic BH mass affects the amplitude of the 21-cm signal’s minimum

at the ∼ 10−20 mK level — comparable to errors induced by commonly used approximations to the RTE

— while modifications to the intrinsic disk spectrum due to Compton scattering (bound-free absorption) can

shift the position of the minimum of the global signal by ∆z ≈ 0.5 (∆z ≈ 2), and modify its amplitude by
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up to ≈ 10 mK (≈ 50 mK) for a given accretion history. Such deviations are larger than the uncertainties

expected of current global 21-cm signal extraction algorithms, and could easily be confused with evolution

in the LX -SFR relation.

5.2 Introduction

In this work, we focus on the minimum of the global 21-cm signal and how its position could be

used to probe the properties of accreting BHs in the early universe. The 21-cm minimum is well known

as an indicator of heating (e.g., Furlanetto, 2006, Pritchard and Furlanetto, 2007, Mirabel et al., 2011), and

from its position one can obtain model-independent limits on the instantaneous heating rate density and

cumulative heating in the IGM over time (Mirocha et al., 2013). The 21-cm maximum is also a probe of the

IGM thermal history (e.g., Ripamonti et al., 2008), though because it likely overlaps with the early stages

of reionization, one must obtain an independent measurement on the ionization history in order to constrain

the IGM temperature and heating rate density (Mirocha et al., 2013). In either case, extracting the properties

of the heat sources themselves from the 21-cm signal is fraught with uncertainty since the number density

of X-ray sources and their individual luminosities cannot be constrained independently by volume-averaged

measures like the global 21-cm signal.

Despite such degeneracies among model parameters, accurate enough measurements could still rule

out vast expanses of a currently wide-open parameter space. What remains could be visualized as a two-

dimensional posterior probability distribution that characterizes the likelihood that any given pair of model

parameters is correct, having marginalized over uncertainties in all additional parameters. Two likely axes

in such analyses include (1) the characteristic mass (or virial temperature) of star-forming haloes and (2) the

X-ray luminosity per unit star formation. However, a third, and often ignored axis that will manifest itself

in such posterior probability spaces is the spectral energy distribution (SED) of X-ray sources. The reason

for this expectation is simple: soft X-ray sources will heat the IGM more efficiently than hard X-ray sources

(at fixed total X-ray luminosity) due to the strong frequency dependence of the bound-free absorption cross

section (σ ∝ ν−3 approximately).

High-mass X-ray binaries (HMXBs) are often assumed to be the dominant source of X-rays in models
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of high-z galaxies. This choice is motivated by X-ray observations of nearby star-forming galaxies (see

review by Fabbiano, 2006), as well as theoretical models of stellar evolution, which predict the formation of

more massive stellar remnants and more binaries in metal-poor environments (e.g., Belczynski et al., 2008,

Linden et al., 2010, Mapelli et al., 2010). Indeed, observations of star-forming galaxies are consistent with

a boost in high-mass X-ray binary populations (per unit SFR) in galaxies out to z∼ 4−6 (Basu-Zych et al.,

2013, Kaaret, 2014), as is the unresolved fraction of the cosmic X-ray background (Dijkstra et al., 2012).

Though direct constraints on the z & 4 population are weak, local analogs of high-z galaxies exhibit a factor

of ∼ 10 enhancement in the normalization of the X-ray luminosity function (XLF) in metal-poor galaxies

relative to galaxies with ∼ solar metallicity (e.g. Kaaret et al., 2011, Prestwich et al., 2013, Brorby et al.,

2014).

Even if HMXBs are the dominant sources of X-rays in the early universe, there are various remaining

uncertainties that may affect the global 21-cm signal and inferences drawn from the position of its mini-

mum. Our focus is on modifications of the 21-cm signal brought about by variation in the characteristic

mass of accreting objects and the reprocessing of their intrinsic emission spectrum by intervening material.

Theoretical investigations of this sort can provide vital information to upcoming 21-cm experiments that

seek to detect the absorption trough, such as the Dark Ages Radio Explorer (DARE; Burns et al., 2012),

the Large Aperature Experiment to Detect the Dark Ages (LEDA; Greenhill and Bernardi, 2012), and the

SCI-HI experiment (Voytek et al., 2014). For instance, how accurately must the 21-cm absorption trough be

measured in order to distinguish models for the first X-ray sources?

The challenge for such studies is solving the cosmological radiative transfer equation (RTE) in a way

that 1) accurately couples the radiation field from sources to the thermal and ionization state of the IGM,

and 2) does so quickly enough that a large volume of parameter space may be surveyed. Recent studies

have taken the first steps toward this goal by identifying SEDs likely to be representative of high-z sources

(e.g., Power et al., 2013). Some have applied semi-numeric schemes to predict how these SEDs contribute

to the ionizing background (Power et al., 2013, Fragos et al., 2013), while others have studied the influence

of realistic X-ray SEDs on the sky-averaged 21-cm signal and the 21-cm power spectrum (Ripamonti et al.,

2008, Fialkov et al., 2014). Our focus is complementary: rather than calculating the ionizing background
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strength or 21-cm signal that arise using “best guess” inputs for the SED of X-ray sources, we quantify how

reasonable deviations from best guess SEDs can complicate inferences drawn from the signal.

The outline of this paper is as follows. In Section 2, we introduce our framework for cosmological

radiative transfer and the global 21-cm signal. In Section 3, we describe our implementation of the Haardt

and Madau (1996) method for discretizing the RTE and test its capabilities. In Section 4, we use this scheme

to investigate the impact of SED variations on the global 21-cm signal. Discussion and conclusions are in

Sections 5 and 6, respectively. We adopt WMAP7+BAO+SNIa cosmological parameters (ΩΛ,0 = 0.728,

Ωb,0 = 0.044, H0 = 70.2 km s−1 Mpc−1, σ8 = 0.807, n = 0.96) throughout (Komatsu et al., 2011).

5.3 Theoretical Framework

As in Furlanetto (2006), we divide the IGM into two components: 1) the “bulk IGM,” which is mostly

neutral and thus capable of producing a 21-cm signature, and 2) HII regions, which are fully ionized and

thus dark at redshifted 21-cm wavelengths. This approach is expected to break down in the late stages of

reionization when the distinction between HII regions and the “neutral” IGM becomes less clear. However,

our focus in this paper is on the pre-reionization era so we expect this formalism to be reasonably accurate.

There are three key steps one must take in order to generate a synthetic global 21-cm signal within this

framework. Starting from a model for the volume-averaged emissivity of astrophysical sources, which we

denote as εν(z) or ε̂ν(z), further subdivided into a bolometric luminosity density (as a function of redshift)

and SED (could also evolve with redshift in general), one must

(1) Determine the mean radiation background pervading the space between galaxies (the so-called

“metagalactic” radiation background), including the effects of geometrical dilution, redshifting,

and bound-free absorption by neutral gas in the IGM. We denote this angle-averaged background

radiation intensity as Jν or Ĵν.

(2) Once the background intensity is in hand, compute the ionization rate density, ΓHI, and heating rate

density, εX , in the bulk IGM.

(3) Given the ionization and heating rate densities, we can then solve for the rate of change in the
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ionized fraction, xe, and temperature, TK , of the bulk IGM gas. The rate of change in the volume

filling fraction of HII regions, xi, is related more simply to the rate of baryonic collapse in haloes

above a fixed virial temperature, Tmin, at the redshift of interest.

Once the thermal and ionization state of the IGM and the background intensity at the Ly-α resonance are

known, a 21-cm signal can be computed. In this section, we will go through each of these steps in turn.

5.3.1 Astrophysical Models

We assume throughout that the volume-averaged emissivity is proportional to the rate of collapse,

ε̂ν(z) ∝ d fcoll/dt, where

fcoll = ρ
−1
m (z)

∫
∞

mmin

mn(m)dm (5.1)

is the fraction of gas in collapsed haloes more massive than mmin. Here, ρm(z) is the mean co-moving mass

density of the universe and n(m)dm is the co-moving number density of haloes with masses in the range

(m,m+dm). We compute n(m) using the hmf-calc code (Murray et al., 2013a), which depends on the Code

for Anisotropies in the Microwave Background (CAMB; Lewis et al., 2000). We choose a fixed minimum

virial temperature Tmin ≥ 104 K corresponding to the atomic cooling threshold (Eq. 26; Barkana and Loeb,

2001), which imposes redshift evolution in mmin.

Our model for the emissivity is then

εν(z) = ρ̄
0
bci fi

d fcoll

dt
Iν, (5.2)

where ρ̄0
b is the mean baryon density today, ci is a physically (or observationally) motivated normalization

factor that converts baryonic collapse into energy output in some emission band i (e.g., Ly-α, soft UV, X-

ray), while fi is a free parameter introduced to signify uncertainty in how ci evolves with redshift. The

parameter Iν represents the SED of astrophysical sources, and is normalized such that
∫

Iνdν = 1. We

postpone a more detailed discussion of our choices for ci, Iν, and what we mean by “astrophysical sources”

to Section 5.5.
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5.3.2 Cosmological Radiative Transfer

Given the volume-averaged emissivity, εν, the next step in computing the global 21-cm signal is to

obtain the angle-averaged background intensity, Jν. To do so, one must solve the cosmological RTE,(
∂

∂t
−νH(z)

∂

∂ν

)
Jν(z)+3H(z)Jν(z) =−cανJν(z)+

c
4π

εν(z)(1+ z)3 (5.3)

where H is the Hubble parameter, which we take to be H(z) ≈ H0Ωm,0(1 + z)3/2 as is appropriate in

the high-z matter-dominated universe, and c is the speed of light. This equation treats the IGM as an

isotropic source and sink of radiation, parameterized by the co-moving volume emissivity, εν (here in units

of erg s−1 Hz−1 cMpc−3, where “cMpc” is short for “co-moving Mpc”), and the absorption coefficient, αν,

which is related to the optical depth via dτν = ανds, where ds is a path length. The solution is cleanly

expressed if we write the flux and emissivity in units of photon number (which we denote with “hats,” i.e.,

[Ĵν] = s−1 cm−2 Hz−1 sr−1 and [ε̂ν] = s−1 Hz−1 cMpc−3),

Ĵν(z) =
c

4π
(1+ z)2

∫ z f

z

ε̂ν′(z′)
H(z′)

e−τνdz′. (5.4)

The “first light redshift” when astrophysical sources first turn on is denoted by z f , while the emission fre-

quency, ν′, of a photon emitted at redshift z′ and observed at frequency ν and redshift z is

ν
′ = ν

(
1+ z′

1+ z

)
. (5.5)

The optical depth is a sum over absorbing species,

τν(z,z′) = ∑
j

∫ z′

z
n j(z′′)σ j,ν′′

dl
dz′′

dz′′ (5.6)

where dl/dz= c/H(z)/(1+z) is the proper cosmological line element, and σ j,ν is the bound-free absorption

cross section of species j = HI,HeI,HeII with number density n j. We use the fits of Verner and Ferland

(1996) to compute σ j,ν unless stated otherwise, assume the ionized fraction of hydrogen and singly ionized

helium are equal (i.e., xH II = xHe II), and neglect HeII entirely (i.e., xHe III = 0). We will revisit this helium

approximation in Section 5.6.
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The Ly-α background intensity, which determines the strength of Wouthuysen-Field coupling (Wouthuy-

sen, 1952, Field, 1958), is computed analogously via

Ĵα(z) =
c

4π
(1+ z)2

nmax

∑
n=2

f (n)rec

∫ z(n)max

z

ε̂ν′(z′)
H(z′)

dz′ (5.7)

where f (n)rec is the “recycling fraction,” that is, the fraction of photons that redshift into a Ly-n resonance that

ultimately cascade through the Ly-α resonance (Pritchard and Furlanetto, 2006). We truncate the sum over

Ly-n levels at nmax = 23 as in Barkana and Loeb (2005b), and neglect absorption by intergalactic H2. The

upper bound of the definite integral,

1+ z(n)max = (1+ z)

[
1− (n+1)−2

]
1−n−2 , (5.8)

is set by the horizon of Ly-n photons – a photon redshifting through the Ly-n resonance at z could only

have been emitted at z′ < z(n)max, since emission at slightly higher redshift would mean the photon redshifted

through the Ly(n+1) resonance.

Our code can be used to calculate the full “sawtooth” modulation of the soft UV background (Haiman

et al., 1997) though we ignore such effects in this work given that our focus is on X-ray heating. Preservation

of the background spectrum in the Lyman-Werner band and at even lower photon energies is crucial for

studies of feedback, but because we have made no attempt to model H2 photo-dissociation or H− photo-

detachment, we neglect a detailed treatment of radiative transfer at energies below hν = 13.6 eV and instead

assume a flat UV spectrum between Ly-α and the Lyman-limit and “instantaneous” emission only, such that

the Ly-α background at any redshift is proportional to the Ly-α emissivity, ε̂α, at that redshift. Similarly,

the growth of HII regions is governed by the instantaneous ionizing photon luminosity, though more general

solutions would self-consistently include a soft UV background that arises during the EoR due to rest-frame

X-ray emission from much higher redshifts.

5.3.3 Ionization & Heating Rates

With the background radiation intensity, Jν, in hand, one can compute the ionization and heating this

background causes in the bulk IGM. To calculate the ionization rate density, we integrate the background
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intensity over frequency,

ΓHI(z) = 4πnH(z)
∫

νmax

νmin

Ĵνσν,HIdν, (5.9)

where nH = n̄0
H(1+z)3 and n̄0

H is the number density of hydrogen atoms today. The ionization rate in the bulk

IGM due to fast secondary electrons (e.g., Shull and van Steenberg, 1985, Furlanetto and Johnson Stoever,

2010) is computed similarly,

γHI(z) = 4π∑
j

n j

∫
νmax

νmin

fionĴνσν, j(hν−hν j)
dν

hν
, (5.10)

and analogously, the heating rate density,

εX(z) = 4π∑
j

n j

∫
νmax

νmin

fheatĴνσν, j(hν−hν j)dν, (5.11)

where hν j is the ionization threshold energy for species j, with number density n j, and νmin and νmax are

the minimum and maximum frequency at which sources emit, respectively. fion and fheat are the fractions

of photo-electron energy deposited as further hydrogen ionization and heat, respectively, which we compute

using the tables of Furlanetto and Johnson Stoever (2010) unless otherwise stated.

5.3.4 Global 21-cm Signal

Finally, given the ionization and heating rates, ΓHI, γHI, and εX , we evolve the ionized fraction in the

bulk IGM via

dxe

dt
= (ΓHI + γHI)(1− xe)−αBnexe (5.12)

and the volume filling factor of HII regions, xi, via

dxi

dt
= f∗ fescNionn̄0

b
d fcoll

dt
(1− xe)−αAC(z)nexi (5.13)

where n̄0
b is the baryon number density today, αA and αB are the case-A and case-B recombination coef-

ficients, respectively, ne = nH II + nHe II is the proper number density of electrons, f∗ is the star-formation

efficiency, fesc the fraction of ionizing photons that escape their host galaxies, Nion the number of ionizing

photons emitted per baryon in star formation, and C(z) is the clumping factor. We average the ionization

state of the bulk IGM and the volume filling factor of HII regions to determine the mean ionized fraction,
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i.e., xi = xi +(1− xi)xe, which dictates the IGM optical depth (Eq. 5.6). We take C(z) = constant = 1 for

simplicity, as our focus is on the IGM thermal history, though our results are relatively insensitive to this

choice as we terminate our calculations once the 21-cm signal reaches its emission peak, at which time the

IGM is typically only ∼ 10−20% ionized.

The kinetic temperature of the bulk IGM is evolved via

3
2

d
dt

(
kBTkntot

µ

)
= εX +εcomp−C (5.14)

where εcomp is Compton heating rate density and C represents all cooling processes, which we take to

include Hubble cooling, collisional ionization cooling, recombination cooling, and collisional excitation

cooling using the formulae provided by Fukugita and Kawasaki (1994). Equations 5.12-6.5 are solved using

the radiative transfer code1 described in Mirocha et al. (2012).

Given TK , xi, xe, and Ĵα, we can compute the sky-averaged 21-cm signal via the Equations presented

in Chapter 1 and Appendix A.

5.4 The Code

The first step in our procedure for computing the global 21-cm signal – determining the background

radiation intensity – is the most difficult. This step is often treated approximately, by truncating the inte-

gration limits in Equations 5.4 (for Jν) and 5.11 (for εX ) (e.g., Mesinger et al., 2011), or neglected entirely

(e.g., Furlanetto, 2006) in the interest of speed. In what follows, we will show that doing so can lead to large

errors in the global 21-cm signal, but more importantly, such approaches preclude detailed studies of SED

effects.

Other recent works guide the reader through Equations 5.4 and 5.11, but give few details about how

the equations are solved numerically (e.g., Pritchard and Furlanetto, 2007, Santos et al., 2010, Tanaka et al.,

2012). Brute-force solutions to Equation 5.11 are accurate but extremely expensive, while seemingly in-

nocuous discretization schemes introduced for speed can induce errors in the global 21-cm comparable in

magnitude to several physical effects we consider in Section 5.5. The goal of this Section is to forestall con-

1 https://bitbucket.org/mirochaj/rt1d

https://bitbucket.org/mirochaj/rt1d


119

fusion about our methods, and to examine the computational expense of solving Equation 5.11 accurately.

5.4.1 Discretizing the Radiative Transfer Equation

Obtaining precise solutions to Equation (5.4) is difficult because the integrand is expensive to calcu-

late, mostly due to the optical depth term, which is itself an integral function (Equation 5.6). One approach

that limits the number of times the integrand in Equation (5.4) must be evaluated is to discretize in redshift

and frequency, and tabulate the optical depth a-priori. Care must be taken, however, as under-sampling the

optical depth can lead to large errors in the background radiation intensity. This technique also requires one

to assume an ionization history a-priori, xi(z), which we take to be xi(z) = constant = 0 over the redshift

interval 10≤ z≤ 40. We defer a detailed discussion of this assumption to Section 5.6.

The consequences of under-sampling the optical depth are shown in Figure 5.1, which shows the

X-ray background spectrum at z = 20 for a population of 10 M� BHs with multi-color disk (MCD) spectra

(Mitsuda et al., 1984) and our default set of parameters, which will be described in more detail in Section

5.5 (summarized in Table 5.1). Soft X-rays are absorbed over small redshift intervals – in some cases over

intervals smaller than those sampled in the optical depth table – which leads to overestimates of the soft

X-ray background intensity. Overestimating the soft X-ray background intensity can lead to significant

errors in the resulting heating since soft X-rays are most readily absorbed by the IGM (recall σν ∝ ν−3

approximately). For a redshift grid with points linearly spaced by an amount ∆z = {0.4,0.2,0.1,0.05},

the errors in Jν as shown in Figure 5.1 correspond to relative errors in the heating rate density, εX , of

{1.1,0.44,0.15,0.04}. Errors in εX due to frequency sampling (128 used points here) are negligible (relative

error < 10−4).

To prevent the errors in εX associated with under-sampling τν, we must understand how far X-rays

of various energies travel before being absorbed. We estimate a characteristic differential redshift element

over which photons are absorbed by assuming a fully neutral medium, and approximate bound-free photo-

ionization cross-sections (σ ∝ ν−3), in which case the optical depth (Eq. 5.6) can be written analytically
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Figure 5.1 X-ray background intensity, Jν, at z = 20 assuming a population of 10 M� BHs. The IGM optical
depth, τν, is sampled at 128 logarithmically spaced frequencies between 0.2 and 30 keV, and linearly in
redshift by ∆z = 0.4 (red), 0.2 (green), 0.1 (blue), and 0.05 (cyan). Poor redshift resolution always leads
to overestimates of the background intensity at soft X-ray energies (hν . 0.5 keV) since the integrand is a
rapidly evolving function of redshift. The solid black line is the full numerical solution obtained by integrat-
ing Equation 5.4 with a Gaussian quadrature technique, and the dashed black line is the same calculation
assuming the optically thin xi(z) = constant = 1 limit as opposed to xi(z) = constant = 0. In order to pre-
vent errors in Jν at all energies hν ≥ 0.2 keV, the redshift dimensions of τν must be sampled at better than
∆z = 0.05 resolution.
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as

τν(z,z′)'
(µ

ν

)3
(1+ z)3/2

[
1−
(

1+ z
1+ z′

)3/2
]
, (5.15)

where

µ3 ≡ 2
3

n̄0
Hσ0c

H0
√

Ωm,0

(
ν

3
HI + yν

3
HeI

)
. (5.16)

Here, σ0 is the cross-section at the hydrogen ionization threshold, hνHI and hνHeI are the ionization threshold

energies for hydrogen and helium, respectively, y is the primordial helium abundance by number, H0 the

Hubble parameter today, and Ωm,0 the matter density relative to the critical density today.

The characteristic energy hµ' 366.5 eV may be more familiar as it relates to the mean-free paths of

photons in a uniform medium relative to the Hubble length, which we refer to as “Hubble photons,” with

energy hνHub,

hνHub ' hµ
[

3
2

]1/3

(1− xi)
1/3(1+ z)1/2

' 1.5(1− xi)
1/3
(

1+ z
10

)1/2

keV. (5.17)

The characteristic differential redshift element of interest (which we refer to as the “bound-free hori-

zon,” and denote ∆zb f ) can be derived by setting τν(z,z′) = 1 and taking z′ = z+∆zb f in Equation 5.15. The

result is

∆zb f ' (1+ z)


[

1−
(

ν/µ√
1+ z

)3
]−2/3

−1

 . (5.18)

That is, a photon with energy hν observed at redshift z has experienced an optical depth of 1 since its

emission at redshift z+∆zb f and energy hν[1+∆zb f /(1+ z)]. Over the interval 10 . z . 40, this works out

to be 0.1 . ∆zb f . 0.2 assuming a photon with frequency ν = µ.

In order to accurately compute the flux (and thus heating), one must resolve this interval with at least

a few points, which explains the convergence in Figure 5.1 once ∆z ≤ 0.1 for hν . 350 eV. We discretize

logarithmically in redshift (for reasons that will become clear momentarily) following the procedure outlined

in Appendix C of Haardt and Madau (1996), first defining

x≡ 1+ z, (5.19)
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which allows us to set up a logarithmic grid in x-space such that

R≡ xl+1

xl
= constant (5.20)

where l = 0,1,2, ...nz−1. The corresponding grid in photon energy space is

hνn = hνminRn−1, (5.21)

where hνmin is the minimum photon energy we consider, and n = 1,2, ...nν. The number of frequency bins,

nν, can be determined iteratively in order to guarantee coverage out to some maximum emission energy,

hνmax.

The emission frequency, νn′ of a photon observed at frequency hνn and redshift zl , emitted at redshift

zm is then (i.e. a discretized form of Eq. 5.5)

νn′ = νn

(
1+ zm

1+ zl

)
(5.22)

meaning νn′ can be found in our frequency grid at index n′ = n+m− l.

The advantage of this approach still may not be immediately obvious, but consider breaking the

integral of Equation 5.4 into two pieces, an integral from zl to zl+1, and an integral from zl+1 to znz−1. In

this case, Equation 5.4 simplifies to

Ĵνn(zl) =
c

4π
(1+ zl)

2
∫ zl+1

zl

ε̂νn′ (z
′)

H(z′)
e−τνn (zl ,z′)dz′+

(
1+ zl

1+ zl+1

)2

Ĵνn+1(zl+1)e−τνn (zl ,zl+1). (5.23)

The first term accounts for “new” flux due to the integrated emission of sources at zl ≤ z ≤ zl+1, while the

second term is the flux due to emission from all z > zl+1, i.e., the background intensity at zl+1 corrected for

geometrical dilution and attenuation between zl and zl+1.

Equation 5.23 tells us that by discretizing logarithmically in redshift and iterating from high redshift

to low redshift we can keep a “running total” on the background intensity. In fact, we must never explicitly

consider the case of m 6= l +1, meaning Equation 5.22 is simply νn′ = Rνn = νn+1. The computational cost

of this algorithm is independent of redshift, since the flux at zl only ever depends on quantities at zl and zl+1.

Such is not the case for a brute-force integration of Equation 5.4, in which case the redshift interval increases

with time. The logarithmic approach also limits memory consumption, since we need not tabulate the flux
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or optical depth in 3-D — we only ever need to know the optical depth between redshifts zl and zl+1 — in

addition to the fact that we can discard the flux at zl+2, Jν(zl+2), once we reach zl . A linear discretization

scheme would require 3-D optical depth tables with nνn2
z elements, which translates to tens of Gigabytes of

memory for the requisite redshift resolution (to be discussed in the next subsection).

Finally, linear discretization schemes prevent one from keeping a “running total” on the background

intensity, since the observed flux at redshift zl and frequency νn cannot (in general) be traced back to rest

frame emission from redshifts zl′ or frequencies νn′ within the original redshift and frequency grids (over

l and n). The computational cost of performing the integral in Equation 5.4 over all redshifts z′ > z is

prohibitive, as noted by previous authors (e.g., Mesinger et al., 2011).

5.4.2 Accuracy & Expense

The accuracy of this approach is shown in Figure 5.2 as a function of the number of redshift bins in

the optical depth lookup table, nz. Errors in the heating rate density (top), and cumulative heating (middle),

∆
∫
εX dt, drop below 0.1% at all 10 ≤ z ≤ 40 once nz & 4000, at which time errors in the position of the

21-cm minimum (bottom) are accurate to∼ 0.01%. Given this result, all calculations reported in Section 5.5

take nz = 4000. For reference, errors of order 0.1% correspond to ∼ 0.1 mK errors in the amplitude of the

21-cm minimum in our reference model, which we will soon find is much smaller than the changes induced

by physical effects.

Many previous studies avoided the expense of Equation 5.4 by assuming that a constant fraction of the

X-ray luminosity density is deposited in the IGM as heat (e.g., Furlanetto, 2006). A physically-motivated

approximation is to assume that photons with short mean free paths (e.g., those that experience τν ≤ 1) are

absorbed and contribute to heating, and all others do not (e.g., Mesinger et al., 2011). This sort of “step

attenuation” model was recently found to hold fairly well in the context of a fluctuating X-ray background,

albeit for a single set of model parameters (Mesinger and Furlanetto, 2009).

An analogous estimate for the heating caused by a uniform radiation background assumes that pho-

tons with mean free paths shorter than a Hubble length are absorbed, and all others are not. We define ξX as
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Figure 5.2 Accuracy of presented algorithm. Top: Relative error in the heating rate density, εX , as a function
of the number of redshift points, nz, used to sample τν, as compared to a brute-force solution to Equation 5.11
using a double Gaussian quadrature integration scheme. Middle: Relative error in the cumulative heating as
a function of nz. Bottom: Relative error in the position of the 21-cm minimum, in redshift (black crosses)
and amplitude (blue crosses). Dotted and dashed lines indicate 0.1% and 1% errors, respectively.
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Figure 5.3 Testing the approximation of Equations 5.24 and 5.25. Dashed lines represent the approximate
solutions, while solid lines represent the full solution for the global 21-cm signal using the procedure out-
lined in Section 5.4. Left: X-ray sources are assumed to have power-law (PL) SEDs with spectral index
α, extending from 0.2 to 30 keV. Right: X-ray sources are assumed to have multi-color disk (MCD) SEDs
(Mitsuda et al., 1984). All sources have been normalized to have the same luminosity density above 0.2 keV
(3.4×1040erg s−1 (M� yr−1)−1), and all calculations are terminated once the emission peak (12 . z . 14)
has been reached. For the hardest sources of X-rays considered (left: α = −0.5, right: M• = 10 M�), the
global 21-cm minimum is in error by up to ∼ 15 mK in amplitude and ∆z' 0.5 in position when Equation
5.24 is used to compute εX .
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the fraction of the bolometric luminosity density that is absorbed locally, which is given by

ξX(z)≈
∫

νHub

νmin

Iνdν

(∫
νmax

νmin

Iνdν

)−1

, (5.24)

where hνHub is given by Equation 5.17. There are approximate analytic solutions to the above equation for

power-law sources (would be exact if not for the upper integration limit, νHub), though ξX must be computed

numerically for the MCD spectra we consider. We take hνmin = 200 eV and hνmax = 30 keV for the duration

of this paper. The heating rate density associated with a population of objects described by ξX and Lbol is

εX(z) = ξX(z)Lbol(z) fheat (5.25)

where fheat is the fraction of the absorbed energy that is deposited as heat. Because there is no explicit

dependence on photon energy in this approximation, we use the fitting formulae of Shull and van Steenberg

(1985) to compute fheat.

The consequences of using Equations 5.24 and 5.25 for the global 21-cm signal are illustrated in

Figure 5.3. Steep power-law sources can be modeled quite well (signal accurate to 1-2 mK) using Equations

5.24 and 5.25 since a large fraction of the X-ray emission occurs at low energies. In contrast, heating by

sources with increasingly flat (decreasing spectral index α) spectra is poorly modeled by Equations 5.24 and

5.25, inducing errors in the global 21-cm signal of order ∼ 5 mK (α = −1.5) and ∼ 15 mK (α = −0.5).

The same trend holds for heating dominated by sources with a MCD spectrum, in which case harder spectra

correspond to less massive BHs. We will see in the next section that these errors are comparable to the

differences brought about by real changes in the SED of X-ray sources.

5.5 Accreting Black Holes in the Early Universe

Using the algorithm presented in the previous section, we now investigate the effects of varying four

parameters that govern the SED of an accreting BH: (1) the mass of the BH, M•, which determines the

characteristic temperature of an optically thick geometrically thin disk (Shakura and Sunyaev, 1973), (2)

the fraction of disk photons that are up-scattered (Shapiro et al., 1976) by a hot electron corona, fsc, (3)
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the power-law index2 of the resulting emission, α, (using the SIMPL model; Steiner et al., 2009), and (4)

the column density of neutral hydrogen that lies between the accreting system and the IGM, NH I. Because

we assume xH II = xHe II, the absorbing column density actually has an optical depth of τν = NH Iσν,HI(1+

yσν,HeI/σν,HI), where y is the primordial helium abundance by number, and σν is the bound-free absorption

cross section for HI and HeI. A subset of the spectral models we consider are shown in Figure 5.4. Note

that more efficient Comptonization (i.e., increasing fsc) and strong neutral absorption (increased NH I) act

to harden the intrinsic disk spectrum (top panel), while increasing the characteristic mass of accreting BHs

acts to soften the spectrum (bottom panel).

To compute the X-ray heating as a function of redshift, εX(z), we scale our SED of choice to a

co-moving (bolometric) luminosity density assuming that a constant fraction of gas collapsing onto halos

accretes onto BHs, i.e.,

.
ρ•(z) = f•ρ̄0

b
d fcoll(Tmin)

dt
. (5.26)

Assuming Eddington-limited accretion, we obtain a co-moving bolometric “accretion luminosity density,”

Lacc = 6.3×1040×
(

0.9
ξacc

)( .
ρ•(z)

10−6 M� yr−1 cMpc−3

)
erg s−1 cMpc−3, (5.27)

where

ξacc =
1−η

η
fedd (5.28)

and η and fedd are the radiative efficiency and Eddington ratio, respectively. To be precise, fedd represents

the product of the Eddington ratio and duty cycle, i.e., what fraction of the time X-ray sources are actively

accreting, which are completely degenerate. This parameterization is very similar to that of Mirabel et al.

(2011), though we do not explicitly treat the binary fraction, and our expression refers to the bolometric lu-

minosity density rather than the 2-10 keV luminosity density. Our model for the co-moving X-ray emissivity

is then

ε̂ν(z) = Lacc(z)
Iν

hν
, (5.29)

2 We define the spectral index as Lν ∝ να, where Lν is a specific luminosity proportional to the energy of a photon with frequency
ν, per logarithmic frequency interval dν.
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Figure 5.4 Subset of SEDs used in this work. Top panel: Assuming M•= 10 M�, varying the fraction of disk
photons scattered into the high energy power-law tail, fsc, and the spectral index of the resulting high energy
emission, α, using the SIMPL model (Steiner et al., 2009). Solid, dashed, dotted, and dash-dotted black
lines represent neutral absorption corresponding to NH I/cm−2 = 0,1020,1021, and 1022, respectively. Solid
and dashed lines of different colors correspond to high energy emission with power-law indices of α =−2.5
and α =−1.5, respectively, with the color indicating fsc as shown in the legend. Bottom panel: Pure MCD
SEDs for M• = 10− 104 M�, with no intrinsic absorption or Comptonization of the disk spectrum. The
solid black line is our reference model, and is the same in both panels.
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where Iν once again represents the SED of X-ray sources, and is normalized such that
∫

∞

0 Iνdν = 1. Power-

law sources must truncate the integration limits in this normalization integral so as to avoid divergence at

low energies, though MCD models do not, since the soft X-ray portion of the spectrum is limited by the

finite size of the accretion disk (which we take to be rmax = 103 Rg, where Rg = GM•/c2).

It is common in the 21-cm literature to instead relate the co-moving X-ray luminosity density, LX , to

the star formation rate density,
.
ρ∗, as

LX = cX fX
.
ρ∗(z), (5.30)

where the normalization factor cX is constrained by observations of nearby star forming galaxies (e.g.,

Grimm et al., 2003, Ranalli et al., 2003, Gilfanov et al., 2004), and fX parameterizes our uncertainty in

how the LX −SFR relation evolves with redshift. The detection of a 21-cm signal consistent with fX > 1

could provide indirect evidence of a top-heavy stellar initial mass function (IMF) at high-z since fX encodes

information about the abundance of high-mass stars and the binary fraction, both of which are expected to

increase with decreasing metallicity.

However, assumptions about the SED of X-ray sources are built-in to the definition of fX . The stan-

dard value of cX = 3.4×1040erg s−1 (M� yr−1)−1 (Furlanetto, 2006) is an extrapolation of the 2−10 keV

LX −SFR relation of Grimm et al. (2003), who found L2−10 keV = 6.7× 1039erg s−1 (M� yr−1)−1, to all

energies hν > 200 eV assuming an α = −1.5 power-law spectrum. This means any inferences about the

stellar IMF at high-z drawn from constraints on fX implicitly assume an α = −1.5 power-law spectrum at

photon energies above 0.2 keV. Because our primary interest is in SED effects, we avoid the fX parameter-

ization and keep the normalization of the X-ray background (given by
.
ρ•/ξacc) and its SED (Iν) separate.

We note that if one adopts a pure MCD spectrum (i.e., fsc = NH I = 0) for a 10 M� BH and set f• = 10−5

(as in our reference model), the normalization of Equation 5.27 corresponds to fX ≈ 2× 103 assuming

cX = 2.61×1039erg s−1 (M� yr)−1 (Mineo et al., 2012a). Despite this enhancement in the total X-ray lumi-

nosity density, our reference model produces an absorption trough at z≈ 22 and δTb ≈−100 mK, similar to

past work that assumed fX = 1. This is a result of our choice for the reference spectrum, a multi-color disk,

which is much harder than the α =−1.5 power law spectrum originally used to define fX .
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Figure 5.5 Evolution of the 21-cm brightness temperature for different BH SED models. Left: Effects of
coronal physics, parameterized by the fraction of disk photons up-scattered by a hot electron corona, fsc, and
the resulting spectral index of up-scattered emission, α, using the SIMPL Comptonization model of Steiner
et al. (2009). The colors correspond to different values of fsc, while the width of each band represents models
with −2.5≤ α≤−0.5 (the upper edge of each band corresponds to the softest SED at fixed fsc, in this case
α =−2.5). Right: Effects of BH mass and neutral absorbing column. Colors correspond to NH I, while the
width of each band represents models with 10 ≤M•/M� ≤ 103 (the upper edge of each band corresponds
to the softest SED at fixed NH I, in this case M• = 103 M�). The dashed black line is our reference “pure
MCD” model with M• = 10 M�. The black and blue regions overlap considerably, indicating that absorbing
columns of NH I & 1020 cm2 are required to harden the spectrum enough to modify the thermal history.
Every realization of the signal here has the exact same ionization history, Ly-α background history, and BH
accretion history. As in Figure 5.3, all calculations are terminated once the peak in emission is reached.
Coronal physics influences the global 21-cm minimum at the . 10 mK level, while M• is a 10-20 mK effect
and NH I is potentially a ∼ 50 mK effect.



131

Our main result is shown in Figure 5.5. The effects of the coronal physics parameters fsc and α are

shown in the left panel, and only cause deviations from the reference model if fsc > 0.1 (for any −2.5 ≤

α ≤ −0.5). Increasing fsc and decreasing α act to harden the spectrum, leading to a delay in the onset of

heating and thus deeper absorption feature. With a maximal value of fsc = 1 and hardest power-law SED

of α = −0.5, the absorption trough becomes deeper by ∼ 10 mK. In the right panel, we adopt fsc = 0.1

and α = −1.5, and turn our attention to the characteristic mass of accreting BHs and the neutral absorbing

column, varying each by a factor of 100, each of which has a more substantial impact individually on the

21-cm signal than fsc and α. The absorption trough varies in amplitude by up to∼ 50 mK and in position by

∆z≈ 2 from the hardest SED (M•= 10 M�, NH I = 1022 cm−2) to softest SED (M•= 103 M�, NH I = 0 cm−2)

we consider. The absorbing column only becomes important once NH I & 1020 cm−2.

Our study is by no means exhaustive. Table 5.1 lists parameters held constant for the calculations

shown in Figure 5.5. Our choices for several parameters in Table 5.1 that directly influence the thermal

history will be discussed in the next section. While several other parameters could be important in deter-

mining the locations of 21-cm features, for instance, Nion is likely� 4000 for Population III (PopIII) stars

(e.g., Bromm et al., 2001, Schaerer, 2002, Tumlinson et al., 2003), we defer a more complete exploration of

parameter space, and assessment of degeneracies between parameters, to future work.

5.6 Discussion

The findings of the previous section indicate that uncertainty in the SED of X-ray sources at high-

z could be a significant complication in the interpretation of upcoming 21-cm measurements. Details of

Comptonization are a secondary effect in this study, though still at the level of measurement errors predicted

by current signal extraction algorithms (likely ∼ 10 mK for the absorption trough; Harker et al., 2012).

The characteristic mass of accreting BHs, M•, and the amount of absorption intrinsic to BH host galaxies,

parameterized by a neutral hydrogen column density NH I, influence the signal even more considerably. In

this section, we examine these findings in the context of other recent studies and discuss how our methods

and various assumptions could further influence our results.
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Table 5.1. Parameter Space Explored

Parameter Value Description

hmf PS Halo mass function
Tmin 104 K Min. virial temperature of star-forming haloes
µ 0.61 Mean molecular weight of collapsing gas
f∗ 10−1 Star formation efficiency
f• 10−5 Fraction of collapsing gas accreted onto BHs
NLW 9690 Photons per stellar baryon with να ≤ ν≤ νLL
Nion 4000 Ionizing photons emitted per stellar baryon
fesc 0.1 Escape fraction
rin 6 Rg Radius of inner edge of accretion disk
rmax 103 Rg Max. radius of accretion disk
η 0.1 Radiative efficiency of accretion
fedd 0.1 Product of Eddington ratio and duty cycle
hνmin 0.2 keV Softest photon considered
hνmax 30 keV Hardest photon considered

Note. — Parameters held constant in this work. Note that PS in the first
row refers to the original analytic halo mass function derived by Press and
Schechter (1974). Our reference model adopts this set of parameters and
a pure MCD spectrum (i.e., NH I = fsc = 0) assuming a characteristic BH
mass of M• = 10 M�.
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5.6.1 An Evolving IGM Optical Depth

Central to our approach to solving Equation 5.4 is the ability to tabulate the IGM optical depth (Eq.

5.6). This requires that we assume a model for the ionization history a-priori, even though the details of

the X-ray background will in general influence the ionization history to some degree3 . Because we focus

primarily on 21-cm features expected to occur at z> 10, we assume xi = xe = 0 at all z> 10 when generating

τν(z,z′).

The effects of this approximation are shown in Figure 5.6, in which we examine how different ion-

ization histories (and thus IGM opacities) affect the background flux, Jν. Because we assume a neutral

IGM for all z ≥ 10, we always underestimate the background flux, since an evolving IGM optical depth

due to reionization of the IGM allows X-rays to travel further than they would in a neutral medium. The

worst-case-scenario for this xi(z) = 0 approximation occurs for very extended ionization histories (blue line

in top panel of Figure 5.6), in which case the heating rate density at z = {10,12,14} is in error by factors of

{1.2,0.5,0.2}. Because the 21-cm signal is likely insensitive to εX once reionization begins4 , we suspect

this error is negligible in practice. As pointed out in Mirocha et al. (2013), the 21-cm emission feature can

serve as a probe of εX so long as independent constraints on the ionization history are in hand. In this case,

we would simply tabulate τν using the observational constraints on xi(z), and mitigate the errors shown in

Figure 5.6. Our code could also be modified to compute the optical depth on-the-fly once xi exceeds a few

percent, indicating the beginning of the EoR.

5.6.2 Neutral Absorption

Our choice of NH I is consistent with the range of values adopted in the literature in recent years

(e.g., Mesinger et al., 2013b), which are chosen to match constraints on neutral hydrogen absorption seen

in high-z gamma ray burst spectra (which can also be explained if reionization is patchy or not complete

3 Evolution of the volume filling factor of HII regions, xi, is the same in each model we consider because we have not varied the
number of ionizing photons emitted per baryon of star formation, Nion, or the star formation history, parameterized by the minimum
virial temperature of star-forming haloes, Tmin, and the star formation efficiency, f∗. X-rays are only allowed to ionize the bulk IGM
in our formalism, whose ionized fraction is xe . 0.1% at all z & 12 in our models, meaning xi ≈ xi. The midpoint of reionization
occurs at z' 10.8 in each model we consider.

4 Though “cold reionization” scenarios have not been completely ruled out, recent work is inconsistent with a completely
unheated z≈ 8 IGM (Parsons et al., 2014).
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Figure 5.6 Consequences of the xi = constant = 0 approximation on the background radiation field for our
reference model (see Table 5.1). Top: tanh ionization histories considered, i.e., xi(z) ∝ tanh((z− zr)/∆z).
Bottom: Angle-averaged background intensity, Jν, at z = 10,12 and 14 (black, blue, green) assuming a
neutral IGM for all z (solid), compared to increasingly early and extended reionization scenarios (dotted
and dashed). Errors in the background intensity due to the xi = constant = 0 could be important at z . 14,
assuming early and extended reionization scenarios (e.g., zr = 12, ∆z = 4), though by this time the global
21-cm signal is likely insensitive to the thermal history.
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by z ≈ 7; Totani et al., 2006, Greiner et al., 2009). If we assume that the absorbing column is due to the

host galaxy ISM, then it cannot be used solely to harden the X-ray spectrum – it must also attenuate soft

UV photons from stars, and thus be related to the escape fraction of ionizing radiation, fesc. In the most

optimistic case of a PopIII galaxy (which we take to be a perfect blackbody of 105 K), an absorbing column

of NH I = 1018.5 cm−2 corresponds to fesc ' 0.01, meaning every non-zero column density we investigated

in Figure 5.5 would lead to the attenuation of more than 99% of ionizing stellar radiation, thus inhibiting the

progression of cosmic reionization considerably.

An alternative is to assume that the absorbing column is intrinsic to accreting systems, though work

on galactic X-ray binaries casts doubt on such an assumption. Miller et al. (2009) monitored a series of pho-

toelectric absorption edges during BH spectral state transitions, and found that while the soft X-ray spectrum

varied considerably, the column densities inferred by the absorption edges remained roughly constant. This

supports the idea that evolution in the soft X-ray spectrum of X-ray binaries arises due to evolution in the

source spectrum, and that neutral absorption is dominated by the host galaxy ISM.

For large values of NH I, reionization could still proceed if the distribution of neutral gas in (at least

some) galaxies were highly anisotropic. Recent simulations by Gnedin et al. (2008) lend credence to this

idea, displaying order-of-magnitude deviations in the escape fraction depending on the propagation direction

of ionizing photons – with radiation escaping through the polar regions of disk galaxies preferentially. Wise

and Cen (2009) performed a rigorous study of ionizing photon escape using simulations of both idealized

and cosmological haloes, reaching similar conclusions extending to lower halo masses. The higher mass

halos in the Wise and Cen (2009) simulation suite exhibited larger covering fractions of high column density

gas (e.g., Figure 10), which could act to harden the spectrum of such galaxies, in addition to causing very

anisotropic HII regions.

If there existed a population of miniquasars powered by intermediate mass BHs, and more massive

BHs at high-z occupy more massive haloes, then more massive haloes should have softer X-ray spectra

(see Figure 5.4) and thus heat the IGM more efficiently. However, if they also exhibit larger covering

fractions of high column density gas, the soft X-ray spectrum will be attenuated to some degree – perhaps

enough to mimic an intrinsically harder source of X-rays. This effect may be reduced in galaxies hosting
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an AGN, since X-rays partially ionize galactic gas and thus act to enhance the escape fraction of hydrogen-

and helium- ionizing radiation (Benson et al., 2013). Ultimately the 21-cm signal only probes the volume-

averaged emissivity, so if soft X-ray sources reside in high-mass haloes, they would have to be very bright

to compensate for their rarity, and to contribute substantially to the heating of the IGM.

Lastly, it is worth mentioning that the hardness of the radiation field entering the “neutral” bulk IGM

is not the same as that of the radiation field leaving the galaxy (whose edge is typically defined as its virial

radius) since our model treats HII regions and the bulk IGM separately. As a result, there is an extra step

between the intrinsic emission (that leaving the virial radius) and the IGM: of the photons that escape the

virial radius, what fraction of them (as a function of frequency) contribute to the growth of the galactic HII

region? The IGM penetrating radiation field is hardened as a result, and could become even harder and more

anisotropic based on the presence or absence of large scale structure such as dense sheets and filaments5 .

Additionally, sources with harder spectra lead to more spatially extended ionization fronts, whose outskirts

could be important sources of 21-cm emission (e.g., Venkatesan and Benson, 2011).

5.6.3 Accretion Physics

We have assumed throughout a radiative efficiency of η = 0.1, which is near the expected value for a

thin disk around a non-spinning BH assuming the inner edge of the disk corresponds to the innermost stable

circular orbit, i.e, rin = risco = 6Rg. The radiative efficiency is very sensitive to BH spin, varying between

0.05 ≤ η ≤ 0.4 (Bardeen, 1970) from maximal retrograde spin (disk and BH angular momentum vectors

are anti-parallel), to maximal prograde spin (disk and BH “rotate” in the same sense). While the spin of

stellar mass BHs is expected to be more-or-less constant after their formation (King and Kolb, 1999), the

spin distribution at high-z is expected to be skewed towards large values of the spin parameter, leading to

enhanced radiative efficiencies η > 0.1 (Volonteri et al., 2005).

5 In fact, the metagalactic background could be even harder than this, given that soft X-rays are absorbed on small scales and
thus may not deserve to be included in a “global” radiation background. Madau et al. (2004) argued for Emin = 150 eV since
150 eV photons have a mean-free path comparable to the mean separation between sources in their models, which formed in 3.5σ

density peaks at z ∼ 24. However, for rare sources, a global radiation background treatment may be insufficient (e.g., Davies and
Furlanetto, 2013). We chose Emin = 0.2 keV to be consistent with other recent work on the 21-cm signal (e.g., Pritchard and Loeb,
2012), but clearly further study is required to determine reasonable values for this parameter. At least for large values of NH I, the
choice of Emin is irrelevant.
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Our choice of fedd = 0.1 is much less physically motivated, being that it is difficult both to constrain

observationally and predict theoretically. For X-ray binaries, fedd should in general be considered not just

what fraction of time the BH is actively accreting, but what fraction of the time it is in the high/soft state

when the MCD model is appropriate. We ignore this for now as it is poorly constrained, but note that the

emission during the high/soft state could dominate the heating even if more time is spent in the low/hard

state simply because it is soft X-rays that dominate the heating.

While we don’t explicitly attempt to model nuclear BHs, Equation 5.26 could be used to model their

co-moving emissivity. Note, however, that this model is not necessarily self-consistent. We have imposed

an accretion history via the parameters f• and Tmin, though the Eddington luminosity density depends on

the mass density of BHs. For extreme models (e.g., large values of f•), the mass density of BHs required

to sustain a given accretion luminosity density can exceed the mass density computed via integrating the

accretion rate density over time. To render such scenarios self-consistent, one must require BH formation

to cease or the ejection rate of BHs from galaxies to become significant (assuming ejected BHs no longer

accrete), or both. The value of f• we adopt is small enough that we can neglect these complications for now,

and postpone more detailed studies including nuclear BHs to future work.

5.6.4 Choosing Representative Parameter Values

The results of recent population synthesis studies suggest that X-ray binaries are likely to be the dom-

inant source of X-rays at high-z. Power et al. (2013) modeled the evolution of a single stellar population that

forms in an instantaneous burst, tracking massive stars evolving off the main sequence, and ultimately the

X-ray binaries that form. Taking Cygnus X-1 as a spectral template, they compute the ionizing luminosity

of the population with time (assuming a Kroupa intial mass function) and find that high-mass X-ray binaries

dominate the instantaneous ionizing photon luminosity starting 20-30 Myr after the initial burst of star for-

mation depending on the binary survival fraction. Fragos et al. (2013) performed a similar study, but instead

started from the Millenium II simulation halo catalog and applied population synthesis models to obtain the

evolution of the background X-ray spectrum and normalization from z ∼ 20 to present day. They find that

X-ray binaries could potentially dominate the X-ray background over AGN (at least from 2-10 keV) at all
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redshifts higher than z∼ 5.

Though our reference model effectively assumes that HMXBs dominate the X-ray background at

high-z, supernovae (Oh, 2001, Furlanetto and Loeb, 2004), accreting intermediate mass black holes, whether

they be solitary “miniquasars” (e.g., Haiman and Loeb, 1998, Wyithe and Loeb, 2003, Kuhlen and Madau,

2005) or members of binaries, and thermal bremsstrahlung radiation from the hot interstellar medium of

galaxies could be important X-ray sources as well (Mineo et al., 2012, Pacucci et al., 2014). In principle,

our approach could couple detailed spectral models, composed of X-ray emission from a variety of sources,

to the properties of the IGM with time, and investigate how the details of population synthesis models,

for example, manifest themselves in the global 21-cm signal. Such studies would be particularly powerful

if partnered with models of the 21-cm angular power spectrum, observations of which could help break

SED-related degeneracies (Pritchard and Furlanetto, 2007, Mesinger et al., 2013b, Pacucci et al., 2014).

5.6.5 Helium Effects

The xHI = xHeI approximation we have made throughout is common in the literature, and has been

validated to some extent by the close match in HI and HeI global ionization histories computed in Wyithe

and Loeb (2003) and Friedrich et al. (2012), for example. However, recent studies of the ionization profiles

around stars and quasars (e.g. Thomas and Zaroubi, 2008, Venkatesan and Benson, 2011) find that more

X-ray luminous galaxies have larger HeII regions than HII regions. Given that the metagalactic radiation

field we consider in this work is even harder than the quasar-like spectra considered in the aforementioned

studies, the HI and HeI fractions in the bulk IGM may differ even more substantially than they do in the

outskirts of HII/HeII regions near quasars.

We have neglected a self-consistent treatment of helium in this work, though more detailed calcula-

tions including helium could have a substantial impact on the ionization and thermal history. Ciardi et al.

(2012) showed that radiative transfer simulations including helium, relative to their hydrogen-only counter-

parts, displayed a slight delay in the redshift of reionization, since a small fraction of energetic photons are

absorbed by helium instead of hydrogen. The simulations including helium also exhibited an increase in

the IGM temperature at z . 10 due to helium photo-heating. At z & 10, the volume-averaged temperature
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in the hydrogen-only simulations was actually larger due to the larger volume of ionized gas. It is difficult

to compare such results directly to our own, as our interest lies in the IGM temperature outside of ionized

regions. Because of this complication, we defer a more detailed investigation of helium effects to future

work.

5.7 Conclusions

Our conclusions can be summarized as follows:

(1) Approximate solutions to the cosmological RTE overestimate the heating rate density in the bulk

IGM, leading to artificially shallower absorption features in the global 21-cm signal, perhaps by

∼ 15−20 mK if sources with hard spectra dominate the X-ray background (Figure 5.3).

(2) Brute-force solutions are computationally expensive, which limits parameter space searches con-

siderably. The discretization scheme of Haardt and Madau (1996) is fast, though exquisite redshift

sampling is required in order to accurately model X-ray heating (Figure 5.2).

(3) More realistic X-ray spectra are harder than often used power-law treatments (Figure 5.4), and

thus lead to deeper absorption features in the global 21-cm signal at fixed bolometric luminosity

density. While the details of coronal physics can harden a “pure MCD” spectrum enough to modify

the global 21-cm absorption feature at the ∼ 10 mK level (in the extreme case of fsc = 1 and

α =−0.5), the characteristic mass of accreting BHs (amount of neutral absorption in galaxies) has

an even more noticeable impact, shifting the absorption trough in amplitude by ∼ 20 (∼ 50) mK

and in redshift by ∆z≈ 0.5 (∆z≈ 2) (Figure 5.5).

(4) Care must be taken when using the local LX − SFR relation to draw inferences about the high-z

stellar IMF, as assumptions about source SEDs are built-in to the often used normalization factor

fX . Even if the high-z X-ray background is dominated by X-ray binaries, the parameters governing

how significantly the intrinsic disk emission is processed influence the signal enormously, and could

vary significantly from galaxy to galaxy.



Chapter 6

Optimized Multi-Frequency Spectra for Applications in Radiative Feedback and

Cosmological Reionization

6.1 Context

The recent implementation of radiative transfer algorithms in numerous hydrodynamics codes has led

to a dramatic improvement in studies of feedback in various astrophysical environments. However, because

of methodological limitations and computational expense, the spectra of radiation sources are generally

sampled at only a few evenly-spaced discrete emission frequencies. Using one-dimensional radiative trans-

fer calculations, we investigate the discrepancies in gas properties surrounding model stars and accreting

black holes that arise solely due to spectral discretization. We find that even in the idealized case of a static

and uniform density field, commonly used discretization schemes induce errors in the neutral fraction and

temperature by factors of two to three on average, and by over an order of magnitude in certain column

density regimes. The consequences are most severe for radiative feedback operating on large scales, dense

clumps of gas, and media consisting of multiple chemical species. We have developed a method for opti-

mally constructing discrete spectra, and show that for two test cases of interest, carefully chosen four-bin

spectra can eliminate errors associated with frequency resolution to high precision. Applying these findings

to a fully three-dimensional radiation-hydrodynamic simulation of the early universe, we find that the H

II region around a primordial star is substantially altered in both size and morphology, corroborating the

one-dimensional prediction that discrete spectral energy distributions can lead to sizable inaccuracies in the

physical properties of a medium, and as a result, the subsequent evolution and observable signatures of

objects embedded within it.
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6.2 Introduction

Energy injection by radiative processes fundamentally changes the evolution of astrophysical systems,

whether it be in the context of star formation, galaxy evolution, or the growth of super–massive black holes

(SMBHs). For instance, ultraviolet photons from the universe’s first stars (Population III (PopIII) stars;

Abel et al., 2002) photo-dissociate the primary coolant (H2) that first enabled their formation. Very recent

radiation-hydrodynamic calculations of PopIII stars find that PopIII star masses may be limited by proto-

stellar radiative feedback, perhaps explaining the lack of evidence for exotic pair instability supernovae in the

early universe (Hosokawa et al., 2011). Conventional metal line cooling driven star formation can be affected

by radiative feedback as well. Krumholz (2006) showed that photo-heating around newly formed stars

can strongly suppress fragmentation in surrounding proto-stellar clouds, while Dale et al. (2005) see both

positive and negative feedback operating in radiation-hydrodynamic simulations of star cluster formation.

Radiative feedback could also be a barrier to efficient black hole (BH) growth in the early universe (Alvarez

et al., 2009), as X-rays from accreting BHs efficiently photo-heat surrounding gas, leading to smaller Bondi–

Hoyle accretion rates (Bondi and Hoyle, 1944).

The mere presence of ionizing/dissociating photons ensures a change in the chemical and thermal

state of a gas, though the magnitude of these changes hinges squarely on the number of photons propagating

through the gas and their spectral energy distribution (SED). Holding the bolometric luminosity of a radi-

ation source constant, even subtle changes in the SED can lead to noticeable differences in the properties

of the surrounding medium. For example, adjusting the X-ray power-law index of a BH accretion spectrum

results in ionization fronts which differ by factors of ≈ 2-3 in radius, and temperature profiles varying by

102-103K on scales of several hundred kpc (Thomas and Zaroubi, 2008). Simply truncating the emission of

identical X-ray SEDs at harder energies (0.4 keV rather than 0.2 keV) causes a drastic reduction in heating,

ionized fractions, and H2 fractions surrounding ‘miniquasars’ at high redshift (Kuhlen and Madau, 2005).

Unfortunately, not all radiative transfer algorithms are able to represent radiation sources with con-

tinuous SEDs, or perhaps cannot afford the additional computational expense associated with the frequency

dependence of the radiative transfer equation. The natural first step is to represent sources as monochromatic
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emitters, choosing an emission frequency characteristic of the full SED. Some authors have improved upon

the monochromatic treatment using ‘multi-group’ methods, which average SED properties and absorption

cross-sections over one or more frequency bandpasses (Gnedin and Abel, 2001, Aubert and Teyssier, 2008),

while others have sampled continuous SEDs at nν frequencies, which are generally evenly spaced bins (in

linear or log-space) between the hydrogen ionization threshold and an upper frequency cutoff. In either

case, there is no clear method of deciding how many frequency-averaged bandpasses or discrete emission

frequencies are required for a given problem, and though the standard multi-group treatment is physically

motivated, it does not guarantee that the photo-ionization and photo-heating rates are adequately reproduced

as a function of column density.

Frequency resolution has recently been studied in radiation-hydrodynamic settings by Wise and Abel

(2011) and Whalen and Norman (2008). Wise and Abel (2011) find that for the expansion of an H II

region around a 105 K blackbody source in a hydrogen-only medium, the density, temperature, velocity,

and ionization profiles are well converged for nν ≥ 4. Use of a monochromatic spectrum for this problem

introduces significant errors since all photons are absorbed at a characteristic column density, whereas multi-

frequency treatments achieve some column density dependent behavior and can thus mimic the behavior of

a truly continuous spectrum. Whalen and Norman (2008) studied the effects of frequency resolution in

the setting of I-front instabilities, and did not achieve convergence until nν ≥ 80 (logarithmically spaced

between 13.6 and 90 eV).

The convergence for the test of Wise and Abel (2011) using only four frequency bins is reassuring,

though the prospects for convergence are less clear if one were interested in the absorption processes of mul-

tiple chemical species, ionization and heating due to X-rays and their energetic secondary photo-electrons

(Shull and van Steenberg, 1985, Furlanetto and Johnson Stoever, 2010), or inhomogeneous media. Kramer

and Haiman (2008, hereafter KH08) briefly compared monochromatic and continuous treatments of ab-

sorbed power-law X-ray sources in a study of ionization front thickness around high-z quasars (the I-front

thickness is a potentially powerful indirect probe of the ionizing spectrum of high-z quasars). The hydro-

gen and helium I-front thickness is expected to grow over the lifetime of a quasar given the discrepancy in

evolution timescales between the largest and smallest scales. At small radii, photo-ionization equilibrium
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is reached quickly since ionizing photons are abundant, whereas geometrical dilution and attenuation of the

initial radiation field slow ionization evolution considerably on large scales, effectively ‘stretching out’ the

I-fronts of hydrogen and helium with time. A monochromatic representation of the quasar SED leads to

a reduction in this effect, but also leads to severe errors in the overall ionization structure (see Figure 3 of

KH08). These errors are of the same order of magnitude as those resulting from the neglect of physical ef-

fects, such as ionization via helium recombination photons (KH08, Figure 6), or ionization from secondary

electrons (KH08, Figure 7). These effects are likely important in studies of radiative feedback from stars

and active galactic nuclei (AGNs), and most certainly in efforts to simulate cosmological reionization. An

effort must be made to ensure that the SEDs used in numerical simulations accurately reflect the properties

of their continuous analogs, especially if it is spectrum-dependent effects in which we are most interested.

We will focus on the following questions in this paper. How significant are the errors in the tem-

perature and ionization state of a medium that arise solely due to the discretization of SEDs? How many

frequencies are required to minimize such errors, where must they be positioned in frequency-space, and

how should their relative luminosities be apportioned? For what numerical methods is it possible to rep-

resent sources with continuous SEDs, or are there perhaps advantages in discretizing SEDs, even when it

is not required by the algorithm of choice? Answers to these questions may lead to revised interpretations

of previous studies which used discrete radiation fields, but more importantly, will reduce the guesswork

involved in discretizing SEDs, and promote frequency resolution to the same status as spatial, temporal, and

mass resolution, which are more easily selected on a problem-by-problem basis.

In Section 6.3 we will introduce the one-dimensional radiative transfer framework used to obtain

the solutions presented in later sections. In Section 6.4, we quantitatively assess the accuracy with which

multi-frequency calculations reproduce the ionization and heating profiles of continuous SEDs. Section 6.5

is devoted to introducing a technique for optimally selecting discrete SED templates, and Section 6.6 will

present the results obtained with this method, including applications to one-dimensional and fully three-

dimensional radiation-hydrodynamic calculations. Discussion and conclusions can be found in Sections 6.7

and 6.8, respectively. Validation of the radiative transfer code used for this work and further details regarding

the optimization algorithm can be found in the Appendix.
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6.3 Radiative Transfer Framework

One dimensional radiative transfer calculations around point sources have been used to model cos-

mological reionization (Fukugita and Kawasaki, 1994), the thickness of quasar ionization fronts (KH08),

the time-evolution of ionization and heating around first stars, galaxies, and quasars (Thomas and Zaroubi,

2008, Venkatesan and Benson, 2011), and their associated observable signatures. Given that our focus is on

frequency resolution, it would be unnecessary to perform calculations in a more complex setting than this,

with additional unrelated physics. As a result, our one-dimensional methods strongly resemble those used

by previous authors, though for completeness, we will reiterate the aspects of these methods most pertinent

to the problem at hand.

In general, the chemical and thermal evolution of gas surrounding a radiation source is governed by

a set of differential equations describing the number densities of all ions and the temperature of the gas.

Assuming a medium consisting of hydrogen and helium only, we first solve for the abundances of each ion

via

dnH II

dt
= (ΓHI + γHI +βH Ine)nH I−αH IInenH II (6.1)

dnHe II

dt
= (ΓHeI + γHeI +βHe Ine)nHe I +αHe IIInenHe III

− (βHe II +αHe II +ξHeII)nenHe II (6.2)

− (ΓHeII + γHeII)nHe II (6.3)

dnHe III

dt
= (ΓHeII + γHeII +βHe IIne)nHe II−αHe IIInenHe III. (6.4)

Each of these equations represents the balance between ionizations of species H I, He I, and He II, and

recombinations of H II, He II, and He III. Associating the index i with absorbing species, i =H I, He I, He II,

and the index i′ with ions, i′ =H II, He II, He III, we define Γi as the photo-ionization rate coefficient, γi as

the secondary ionization rate coefficient, αi′ (ξi′) as the case-B (dielectric) recombination rate coefficients,

βi as the collisional ionization rate coefficients, and ne = nH II + nHe II + 2nHe III as the number density of

electrons.
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At each time step, we also solve for the temperature evolution, dTk/dt, which is given by

3
2

d
dt

(
kBTkntot

µ

)
= fheat ∑

i
niHi−∑

i
ζineni−∑

i′
ηi′neni′

−∑
i

ψineni−ωHe IInenHe II (6.5)

where Hi is the photo–electric heating rate coefficient (due to electrons previously bound to species i),

ωHe II is the dielectric recombination cooling coefficient, and ζi, ηi′ , and ψi are the collisional ionization,

recombination, and collisional excitation cooling coefficients, respectively. The constants in Equation (6.5)

are the total number density of baryons, ntot = nH + nHe + ne, the mean molecular weight, µ, Boltzmann’s

constant, kB, and the fraction of secondary electron energy deposited as heat, fheat. We use the formulae in

Appendix B of Fukugita and Kawasaki (1994) to compute the values of αi, βi, ξi, ζi, ηi′ , ψi, and ωHe II.

The most critical aspect of propagating the radiation field in our one-dimensional simulations is com-

puting the ionization (Γi, γi) and heating (Hi) rate coefficients accurately. In order to directly relate our re-

sults to fully three-dimensional radiative transfer calculations, we have chosen to adopt a photon-conserving

(PC) algorithm nearly identical to those employed by several widely used codes, like C2Ray (Mellema et al.,

2006, Friedrich et al., 2012), and Enzo (Wise and Abel, 2011). Our code is able to compute Γi, γi, and Hi

in a non-photon-conserving (NPC) fashion as well, to enable comparison with previous one-dimensional

work such as Thomas and Zaroubi (2008). The two formalisms are equivalent in the limit of very optically

thin cells, a condition that can be met easily in one-dimensional calculations but is rarely computationally

feasible in three dimensions. For NPC methods, if the optical depth of an individual cell is substantial, the

number of ionizations in that cell will not equal the number of photons absorbed for that cell, i.e., photon

number will not be conserved. This problem was remedied by Abel et al. (1999), who inferred the number

of photo-ionizations of species i in a cell from the radiation incident upon it and its optical depth,

∆τi,ν = niσi,ν∆r. (6.6)

It is most straightforward to imagine our one-dimensional grid as a collection of concentric spherical shells,

each having thickness ∆r and volume Vsh(r) = 4π[(r +∆r)3− r3]/3, where r is the distance between the

origin and the inner interface of each shell. The ionization and heating rates can then be related to the
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number of absorptions in any given shell (thus preserving photon number), as

Γi = Ai

∫
∞

νi

Iνe−τν

(
1− e−∆τi,ν

) dν

hν
(6.7)

γi j = A j

∫
∞

ν j

(
ν−ν j

νi

)
Iνe−τν

(
1− e−∆τ j,ν

) dν

hν
(6.8)

Hi = Ai

∫
∞

νi

(ν−νi)Iνe−τν

(
1− e−∆τi,ν

) dν

ν
, (6.9)

where we have defined the normalization constant Ai ≡ Lbol/niVsh(r), and denote the ionization threshold

energy for species i as hνi. Iν represents the SED of radiation sources, and satisfies
∫

ν
Iνdν = 1, such that

LbolIν = Lν.

Equation (6.8) represents ionizations of species i due to fast secondary electrons from photoioniza-

tions of species j, which has number density n j, and ionization threshold energy, hν j. fion is the frac-

tion of photo-electron energy deposited as ionizations of species i. In the remaining sections we only in-

clude the effects of secondary electrons when considering X-ray sources, which emit photons in the range

102eV < E < 104eV. In this regime, the values of fheat and fion computed via the formulae of Shull and

van Steenberg (1985) are sufficiently accurate, but for radiation at lower energies where fheat and fion have

a stronger energy dependence, the fitting formulae of Ricotti et al. (2002) or the lookup tables of Furlanetto

and Johnson Stoever (2010) would be more appropriate. The total secondary ionization rate for a given

species, γi, is the sum of ionizations due to the secondary electrons from all species, γi = fion ∑ j γi jn j/ni.

The optical depth, τν = τν(r), in the above equations is the total optical depth at frequency ν due to

all absorbing species, i.e.,

τν(r) = ∑
i

∫ r

0
σi,νni(r′)dr′

= ∑
i

σi,νNi(r) (6.10)

where Ni is the column density of species i at distance r from the source. We calculate the bound–free

absorption cross-sections using the fits of Verner and Ferland (1996) throughout.

The values of Γi, γi, and Hi are completely predetermined for a given radiation source, and as a result,

can be tabulated as a function of column density to avoid evaluating the integrals in these expressions nu-

merically ‘on-the-fly’ as a simulation runs (e.g., Mellema et al., 2006, Thomas and Zaroubi, 2008). Isolating



147

the frequency-dependent components of Equations (6.7)–(6.9), we can define the integrals

Φi(τν)≡
∫

∞

νi

Iνe−τν
dν

hν
(6.11)

Ψi(τν)≡
∫

∞

νi

Iνe−τνdν, (6.12)

allowing us to re-express the rate coefficients as

Γi = Ai
[
Φi(τν)−Φi(τ

′
i,ν)
]

(6.13)

γi j =
A j

hνi

{
Ψ j(τν)−Ψ j(τ

′
j,ν)−hν j

[
Φ j(τν)−Φ j(τ

′
j,ν)
]}

(6.14)

Hi = Ai
{

Ψi(τν)−Ψi(τ
′
i,ν)−hνi

[
Φi(τν)−Φi(τ

′
i,ν)
]}

, (6.15)

where τ′i,ν ≡ τν +∆τi,ν. Later references to “continuous SEDs” signify use of this technique, where the

integral values Φi and Ψi are computed over a column density interval of interest a priori using a Gaussian

quadrature technique, rather than on-the-fly via discrete summation.

Tabulating Equations (6.11) and (6.12) grants a significant speed-up computationally, but also forms

the basis of our frequency resolution optimization strategy (Section 6.5). Note, however, that in general

the dimensionality of these lookup tables is equal to the number of absorbing species (through ∆τi,ν), so

the tables for simulations including hydrogen only are one dimensional, while those including hydrogen

and helium are three dimensional. If we chose to adopt the secondary electron treatment of Ricotti et al.

(2002) or Furlanetto and Johnson Stoever (2010), our lookup tables would inherit an additional dimension,

as the secondary ionization and heating factors fion and fheat would depend both on photon energy and the

hydrogen ionized fraction, xH II. See Appendix E for a generalization of Equations 6.13-6.15 that includes

energy-dependent secondary ionization and heating.

Equations (6.13)–(6.15) are completely general for PC algorithms, whether the source SEDs are dis-

crete or continuous — the only difference being for discrete SEDs, the integrals in Equations (6.11) and

(6.12) become sums over the number of discrete emission frequencies, nν. In practice, computing Γi, γi, and

Hi is more straightforward for sources with discrete SEDs, as we can simply count the number of ioniza-

tions caused by photons at each individual frequency, and convert this into the amount of excess electron

kinetic energy available for further heating and ionization. When testing the accuracy of discrete solutions
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in later sections we employ this method, where radiation is emitted at nν frequencies, with each frequency

νn carrying a fraction In of the source’s bolometric luminosity. The photoionization and heating coefficients

can then be expressed as

Γi,n =
AiIn

hνn
e−τνn (1− e−∆τi,νn ) (6.16)

γi j,n = Γ j,νn(νn−ν j)/νi (6.17)

Hi,n = Γi,νnh(νn−νi). (6.18)

The total rate coefficients can be found by summing each of these expressions over all frequencies, n =

1,2,3, . . . ,nν. These equations are identical to Equations (6.13)–(6.15) for the discrete SED case, but are

perhaps more intuitive.

For simplicity, our current treatment neglects a few physical processes that are cosmological in origin,

or simply do not rely on the radiation field directly. These include cooling via free-free emission and

hydrogen and helium ionization due to helium recombination photons (which depend on the gas kinetic

temperature and electron density), and cosmological effects such as Hubble cooling, Compton cooling off

cosmic microwave background (CMB) photons, and photo-ionization by Wien-tail CMB photons (which

depend on kinetic temperature, redshift, and the Hubble parameter).

Two additional approximations are implicit in the remainder of this paper. They are (1) the infinite

speed-of-light approximation and (2) the on-the-spot approximation (we use the case-B recombination co-

efficients in Equations (6.1)–(6.4)). The former approximation could be dubious for very bright sources in

low-density media, while the latter is generally not a good assumption, as discussed at length in Cantalupo

and Porciani (2011). As a result, the absolute accuracy of our solutions is not guaranteed in regimes where

careful treatment of the speed of light and recombination photons is necessary, but this is acceptable since

we only care about the relative differences among our solutions. The optimized SEDs of Section 6.6 will

apply equally well to simulations including more ionization and/or heating/cooling processes, so long as

they do not depend directly on the radiation field (e.g., ionization of H I and He I by helium recombination

photons; Friedrich et al., 2012).
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6.4 Assessing the Consequences of Discrete Radiation Fields

To quantify the differences between the ionization and temperature profiles around sources with con-

tinuous and discrete SEDs, we will simulate two test problems. First, the standard case of a 105 K blackbody

in a hydrogen-only medium, and second, a power-law X-ray source in a medium consisting of both hydrogen

and helium.

6.4.1 105 K Blackbody

The 105 K blackbody problem has been studied extensively (e.g., Test Problem 2 in the Radiative

Transfer Comparison Project; Iliev et al., 2006, hereafter RT06) due to its simplicity, and perhaps also

because the surface temperatures of PopIII stars are expected to be ∼ 105 K (Schaerer, 2002). We adopt

nearly the identical setup as in RT06, i.e., a uniform hydrogen-only medium with number density nH =

10−3 cm−3, initial ionized fraction xH II = 1.2×10−3, initial temperature T0 = 102 K, and a 105 K blackbody

with an ionizing photon luminosity of Q̇ = 5×1048 s−1. The only difference between our simulations and

RT06 is that we use a domain Lbox = 10 kpc in size, rather than Lbox = 6.6 kpc, to allow for a comparison of

discrete and continuous solutions at slightly larger radii. We evolve the simulations for 500 Myr on a grid

of 200 linearly spaced cells between 0.1 < r/kpc < 10, ignoring the details of secondary ionization (i.e., all

photo-electron energy is deposited as heat).

In Figure 6.1, we compare the ionization and temperature profiles around two 105 K ‘blackbody’

sources of constant ionizing photon luminosity Q̇ = 5× 1048s−1 — one a true blackbody emitter with a

continuous SED spanning the range 13.6–100 eV (black lines), and the other with a monochromatic SED

at hν1 = 29.6 eV, the average energy of ionizing photons for this source (red lines). We can see the same

qualitative results that have been pointed out by previous authors, namely, that monochromatic sources of

radiation fail to ionize (top panels) and heat (lower panels) gas at large radii as significantly as continuous

sources, since all photons are absorbed near a single characteristic column density, representing the point

where τν1 ≈ 1, i.e., Nchar ∼ σ−1
ν1

. The relative error in the position of the ionization front, ∆rIF, where

rIF ≡ r(xH I = xH II = 0.5), is 8% after 10 Myr, 10% after 100 Myr, and 11% after 500 Myr. In the optically
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Figure 6.1 Comparison of ionization (top) and temperature (bottom) profiles around a 105 K blackbody
source after 10 Myr (left) and 100 Myr (right) using continuous (black) and monochromatic (red) SEDs.
Solid lines in the top panels correspond to the neutral fraction (xH I), while dashed lines correspond to the
ionized fraction (xH II). We apply these line color and line style conventions for all radial profiles presented
in this paper.
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thin regime, the monochromatic spectrum overestimates ionization by factors of two to three on average and

up to an order of magnitude at all times, though the latter effect is primarily because the neutral fraction is

a steeply declining function with decreasing radius, and the I-fronts of the two solutions are offset. Outside

the I-front, the situation is more interesting as the gas is mostly neutral. After 100 Myr of evolution, the

ionized fraction outside the I-front is underestimated by a factor of two on average, and by as much as a

factor of six.

The temperature evolution, shown in the bottom panels of Figure 6.1, is significantly more troubling.

The monochromatic source captures the temperature well within the ionization front where the gas is in

photoionization equilibrium, but quickly diverges from the continuous solution outside. Like the ionization

profiles, discrepancies grow with time. After 10 Myr of evolution, the monochromatic source underestimates

the temperature at large radii by a factor of two on average, and by a factor of seven at the point of greatest

discrepancy. After 100 (500) Myr, the discrete solution underestimates the temperature by up to a factor of

17 (41).

If considering the heating and ionization around a single PopIII star, the errors induced by monochro-

matic treatments may not be cause for concern upon first inspection since PopIII stars are expected to live

only a few Myr, and we can see that errors are less significant at early times. However, the intergalactic

medium (IGM) is subject to the ionization and heating caused by all sources, whose cumulative impact will

be substantial even though the ionization and heating caused by individual sources may be very small. Glob-

ally, then, the IGM is insensitive to individual stellar lifetimes, and instead evolves as it would if ionizing

photons originated from a single, very luminous, very long lived object.

This manner of thinking has already materialized in the realm of large volume cosmological simu-

lations, where ‘star particles’ are generally as luminous as one or more star clusters, and ‘galaxy particles’

behave in a way that is consistent with the integrated properties of an entire galactic stellar population (and

perhaps active nucleus). Such approximations are necessary with limited spatial resolution, but more than

adequate for studies of the IGM. Over time though, errors in gas properties due to poor frequency resolution

will accrue, as it is the combined properties of all radiation sources which affect IGM properties, however

short-lived each individual source may be.
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6.4.2 Power-Law X-Ray Source

To address the effects of discrete SEDs in environments where multiple chemical species are impor-

tant and large attenuating columns are possible, we now turn our attention to a power-law X-ray source

embedded in a 1 Mpc domain consisting of hydrogen and helium, with a primordial helium abundance (by

mass) of Y = 0.2477.

Our selection of parameters for this problem is motivated by studies of high-redshift quasars, and

particularly their role in the epoch of reionization (e.g., Venkatesan et al., 2001). X-rays have long mean

free paths, and as a result are capable of ionizing and heating gas on very large (∼Mpc) scales. Large-

scale heating is responsible for driving the high-redshift all-sky 21 cm signal toward emission, and inducing

fluctuations in 21 cm power spectra on large angular scales (for a review of 21 cm cosmology, see Furlanetto

(2006)). An early X-ray background may also be important in interpreting the optical depth to electron

scattering of the CMB (e.g., Ricotti et al., 2005, Shull and Venkatesan, 2008).

While supernovae and/or X-ray binaries could be important sources of hard photons in the early

universe, we assume the source of X-rays is persistent — an accreting SMBH with mass M• = 106M�

and radiative efficiency of ε• = 10%, which leads to a bolometric luminosity of Lbol = ε•Ledd ' 1.26×

1043 erg s−1. Here, Ledd = 4πGM•mpc/σT is the Eddington luminosity, where mp is the proton mass and

σT the Thomson cross-section. The mass (and thus luminosity) of the SMBH is allowed to grow as it

accretes,

M•(t) = M•(0)exp
[

1− ε•
ε•

(
t

tedd

)]
, (6.19)

where tedd = 0.45 Gyr is the e-folding timescale for SMBH growth (an Eddington, or Salpeter time). The

SED is taken to be a power law of the form

Iν ∝

(
hν

keV

)1−α

, (6.20)

where α is the spectral index. We adopt α = 1.5, over the energy range 102-104 eV. The surrounding

medium has a constant mass density of ρ = 5.4× 10−28 g cm−3 (cosmic mean at redshift z = 10), initial

ionized fractions xH II = xHe II = 10−4, xHe III = 0, and initial temperature T0 = 102 K. The domain for this
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problem is divided into 400 cells linearly spaced between 0.01 < r/Mpc < 1, and is evolved for ε•tedd = 45

Myr.

In Figure 6.2, we compare the hydrogen and helium ionization profiles for two X-ray sources having

the same bolometric luminosity. One, a continuous power-law source as described above, and the other a

monochromatic source of 0.5 keV photons (a fiducial monochromatic emission energy). The monochro-

matic source underestimates the radii of both the hydrogen and helium ionization fronts by a factor of∼ 2.3,

and overestimates the hydrogen neutral fraction on average by a factor of three, and at most by a factor of

20 within the hydrogen I-front. The same general picture applies to helium, where errors in the neutral he-

lium fraction are enormous since the He I-He II I-front is very sharp (as it was for hydrogen in the previous

section), and xHe II and xHe III are in error by factors of 2–20 depending on radius.

Errors in the temperature profile are less extreme, as shown in Figure 6.3. On small scales, the

monochromatic source captures the temperature quite well, but at large radii, the monochromatic source

overestimates temperatures by a factor of two on average.

The disparity in the magnitude of ionization and temperature errors is a reflection of the strong fre-

quency dependence of the bound–free absorption coefficients. Photo-ionization of hydrogen or helium by

0.5 keV photons is rare, but when it does occur, at least∼ 90% of the original photon energy is left to be de-

posited mostly as heat, unless the free electron density is very low. Because the ionization of hydrogen and

helium by the monochromatic source is very inaccurate, errors in the free electron density will substantially

alter the amount of secondary electron energy deposited as heat, rather than further ionization.

The consequences of miscalculating ionization and heating could affect efforts to model and interpret

current and future 21 cm measurements, since the primary 21 cm observable, the differential brightness

temperature (δTb), depends on the hydrogen neutral fraction, UV radiation field, electron density, and the

gas kinetic temperature (TK) (Furlanetto, 2006). Neglecting the presence of a Lyα background, the scaling

δTb ∝ T 0.4
K (1+δ)(1+ z)−1/2×

 xH Ine ,ne� nH I

x2
H I ,ne� nH I

(6.21)

holds approximately in regimes where TCMB� TK . 104 K.

In the immediate vicinity of radiation sources where gas is entirely ionized, δTb→ 0 due to the leading
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Figure 6.2 Comparison of hydrogen (top) and helium (bottom) ionization profiles around an α = 1.5 power-
law X-ray source after 45 Myr using continuous (black) and monochromatic (red) SEDs.

Figure 6.3 Comparison of temperature profiles around an α = 1.5 power-law X-ray source after 45 Myr
using continuous (black) and monochromatic (red) SEDs.
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xH I term, but at large radii where the ionizing flux is weaker, the δTb signatures of stars and quasars could

vary significantly solely due to miscalculations of xH I, ne, and TK. The above scalings have especially

strong consequences for gas within a few Mpc of strong X-ray sources, where hydrogen is weakly ionized,

temperatures are of order 102-103 K, and the free electron density is enhanced due to efficient ionization

of helium by the hard radiation field. In the earliest stages of reionization where TK < TCMB(z) and the

Ly-α background is important, errors in xH I, ne, and TK will lead to errors in δTb as well, though in a less

straightforward way, since the spin temperature, TS, must be computed carefully.

6.5 Optimization Strategy

To avoid errors of the sort described in the previous section, we have developed a technique for

optimally constructing discrete SEDs that preserves the ionization and heating properties of their continuous

counterparts. Although ray-tracing algorithms are capable of tabulating the relevant ionization and heating

quantities (Equations (6.11) and (6.12)), few codes have taken advantage of this, and have instead cast

monochromatic rays (e.g., state of the art reionization simulations with nν = 5; Trac et al., 2008). Monte

Carlo codes (e.g., CRASH; Maselli et al., 2003) have been used to simulate reionization with nν ≥ 20

multi-frequency photon packets (Ciardi et al., 2012), though such a large number of frequencies may be

computationally debilitating for some algorithms, or unnecessary depending on the problem of interest.

Even when the algorithm of choice is compatible with propagating continuous radiation fields via

tabulation of Equations (6.11) and (6.12), it may not be computationally advantageous. The overhead alone

can in fact be substantial, particularly in the case of source-dependent SEDs — for example, the SED of

a stellar population as a function of age, or BH accretion spectra that vary with mass or luminosity. Such

situations would require a separate lookup table for Equations (6.11) and (6.12) at each age/mass/luminosity

of interest for a given radiation source. In addition, there are algorithms for which propagating continuous

radiation fields in large volumes become completely intractable, yet large volumes are a necessity for the

science questions of interest (e.g., reionization). For more discussion on these issues, see Section 6.7.

As introduced in Section 6.3, our optimization strategy relies on the fact that the SED of a radiation

source appears only in the quantities Φi and Ψi (see Equations (6.11) and (6.12)). If we can construct a
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discrete SED that reproduces the values of Φi and Ψi to a high degree of accuracy over a column density

interval of interest, then the discrete radiation field is indistinguishable from its continuous counterpart, and

we have successfully preserved the true radiative properties of the source.

For sources with discrete SEDs, Equations (6.11) and (6.12) become

Φ
′
i(τνn)≡

nν

∑
n=1

In

hνn
e−τνn (6.22)

Ψ
′
i(τνn)≡

nν

∑
n=1

Ine−τνn , (6.23)

where we have used primes to indicate that these quantities are computed by direct summation over n =

1,2, . . . ,nν frequencies, rather than by a continuous integral.

Ensuring that Φi = Φ′i and Ψi = Ψ′i is a minimization problem of dimensionality 2nν, since each ad-

ditional frequency bin lends two degrees of freedom — its frequency (νn), and the fraction of the bolometric

luminosity assigned to that frequency (In). Our goal is to minimize the difference between continuous and

discrete solutions, i.e.,

Φi−Φ
′
i = 0

Ψi−Ψ
′
i = 0. (6.24)

These functions span several orders of magnitude over a broad range in column density, making it more

practical to seek solutions to

log
(

Φi

Φ′i

)
= 0

log
(

Ψi

Ψ′i

)
= 0 (6.25)

which place equal emphasis on all column densities. Preserving the high column density behavior of Φi

and Ψi is especially important for very luminous sources and/or environments with dense clumps in the

immediate vicinity of the source, since the actual photoionization and heating rates are a combination of Φi,

Ψi, and the normalization factor Ai ∝ Lbol/r2.

For a given nν and source SED, we solve Equation (6.25) using the optimization technique Simulated

Annealing (Kirkpatrick et al., 1983, Ĉerný, 1985), which traverses our 2nν dimensional parameter space in
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search of the frequency–normalization pairs (νn, In) that best reproduce the values of Φi and Ψi. We leave a

more detailed description of the algorithm and our implementation of it to the Appendix.

6.6 Results

6.6.1 Optimal Discrete SEDs

We have obtained optimal SEDs for a 105 K blackbody emitting in the range 13.6-100 eV, and an

α = 1.5 power-law X-ray source with emission spanning the interval 102-104 eV. In each case, we set the

upper column density limit for our optimization to be the column density of a fully neutral medium, i.e.,

Nmax
H I = nHLbox and Nmax

He I = nHeLbox, where we use Lbox to denote the size of the domain, as in RT06. For the

105 K blackbody simulations, this works out to be Nmax
H I = 3.1× 1019 cm−2, and for the power-law X-ray

simulations, Nmax
H I ' ×1022 cm−2 and Nmax

He I ' ×1021 cm−2. For cosmological simulations with periodic

boundary conditions, the upper column density limits would need to be chosen based on a maximum length

scale of interest, or for radiative feedback focused simulations, by the column density of the densest objects

of interest (damped Lyα systems, for example). Such choices are already made in ray-tracing calculations

to limit computational expense. Generally, rays are terminated once the emission has been attenuated by a

large factor.

The only situation in which we do not evaluate the full cost function is nν = 1, where we instead

optimize for the optically thin regime alone (i.e., only the first term of Equation G.2), where Φi and Ψi

are ∼ constant with column density. In this case, the optimal solutions are simply those that preserve the

bolometric luminosity of the source and the total number of ionizing photons, and can be verified analytically

(Equations (6.11) and (6.12)). For the case of a hydrogen and helium medium, we have found that neglecting

He II opacities mitigates the computational cost of the computation while resulting in no appreciable changes

in our optimal SEDs and thus negligible changes in Φ′ and Ψ′. The main results are summarized in Figures

6.6 and 6.7 and Tables 6.1 and 6.2, all results derived from K = 2×104 and K = 104 Monte-Carlo trials, for

the 105 K blackbody and α = 1.5 power-law source, respectively.

From Tables 6.1 and 6.2, it is clear that the optimal emission frequencies for both sources are not



158

Table 6.1. Optimal SEDs for 105 K Blackbody Sources

nν n = 1 n = 2 n = 3 n = 4

1 (29.61,0.89) . . . . . . . . .
2 (27.93,0.68) (62.04,0.21) . . . . . .
3 (20.58,0.39) (40.75,0.39) (69.23,0.11) . . .
4 (17.98,0.23) (31.15,0.36) (49.09,0.24) (76.98,0.06)

Note. — Each entry is the (hνn, In) pair for bin n. Energies are in
units of eV, and normalizations are expressed as fraction of the bolo-
metric luminosity.

Table 6.2. Optimal SEDs for α = 1.5 Power-Law X-ray Sources

nν n = 1 n = 2 n = 3 n = 4

1 (999.98,1.00) . . . . . . . . .
2 (255.87,0.17) (2553.6,0.83) . . . . . .
3 (171.93,0.08) (518.22,0.14) (3098.5,0.78) . . .
4 (146.11,0.05) (307.30,0.07) (704.56,0.14) (3564.2,0.73)

Note. — Same as Table 6.1 but for an α = 1.5 power-law X-ray source.
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evenly spaced above the hydrogen or helium ionization thresholds, either in linear or log-space. In each case,

the addition of a new frequency bin leads to a decrease in both the emission frequency and normalization

of all other bins. This signifies (1) the efficacy with which high energy photons photoionize and photoheat

gas at large column densities (a regime inaccessible to lower energy photons which become optically thick

at small columns), and (2) the increase in excess electron kinetic energy available for further ionization and

heating with increasing photon energy. The former effect is most important for the blackbody source, which

we can see in Figure 6.4. Not surprisingly, it is the lowest energy photons (hν1 = 17.98 eV) in the nν = 4

spectrum that are responsible for the ionization (through Φ) in the optically thin regime, while successively

higher frequency bins become the primary agents of ionization as we move to higher column densities. The

same trend does not hold completely in Figure 6.4b, as in this case it is the second and third energy bins that

provide the bulk of the heating (through Ψ) at low column densities.

For the X-ray source, the second effect dominates, as the optical depth at any column density is small

for most photons considered (102 < hν < 104 eV) over the entire domain. As shown in Figure 6.5, the

photons responsible for the majority of the heating (through Ψ) over all column densities are those in the

highest energy bin, the same photons which are the least effective at ionization. The trends and errors of

Figure 6.5 are the same for Φi and Ψ as a function of helium column density.

In Figures 6.6 and 6.7, we show the probability distribution functions (PDFs) for the position and

normalization of the optimal SED frequency bins obtained (drawn from Tables 6.1 and 6.2). Solutions are

less tightly constrained as nν is increased, as evidenced by a broadening in the distributions of frequency and

normalization for each bin. This behavior is expected, given that each new bin contributes to the magnitude

of Φ and Ψ in some region of column density space previously occupied by one or more other frequencies.

Holding In constant, a decrease in νn will cause a negative vertical shift in the contribution of bin n

to the magnitude of Φ, for example, but will simultaneously add power at larger column densities, since the

turnover point for bin n occurs at Nchar ∼ σ−1
νn

, and σνn ∼ ν−3. To avoid an increase in f , the power lost at

small column densities has to be compensated for, either by a decrease in νn−1, or an increase in In−1, where

n−1 denotes the bin with frequency νn−1 < νn. As a result, there are degeneracies between all bins, and the

magnitude of the degeneracy is greatest for bins positioned closest in frequency-space. In order to tighten
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the PDFs for each optimal frequency bin, one or more terms would need to be added to f , in order to assign

preference to one set of bins over another. For our purposes, any SED that minimizes f is just as good

as any other, but additional terms in the cost function are certainly justifiable in the case of a ray-tracing

calculation, where higher emission frequencies increase the computational cost of a calculation since their

mean free paths are long. Adding a term to f that scales with νn would encourage optimal SEDs with the

smallest emission frequencies possible, for example.

Optimization for nν > 4 is certainly possible, though unnecessary in our case. At a given frequency,

the transition from optically thin τ = 0 to optically thick (τ & 1) in the functions Φ and Ψ occurs over

an order of magnitude in column density (by definition, see Equation (6.10)). For both SEDs we have

investigated, the column density regime of interest spans fewer than four orders of magnitude, motivating

our choice of 1≤ nν ≤ 4. We have performed optimizations with nν > 4, but the addition of each additional

bin when nν > log10(Nmax/Nmin) reduces the error between Φ and Φ′, and Ψ and Ψ′ much less significantly

than additional bins when nν ≤ log10(Nmax/Nmin). For a given nν, increasing Nmax will simply increase

max|Φ−Φ′| and max|Ψ−Ψ′|.

6.6.2 Confirmation with One-dimensional Calculations

To verify the solutions of the previous section, we ran simulations identical to those of Section 6.4 but

with our optimal discrete SEDs. We compute Γi, γi, and Hi via Equations (6.16)–(6.18) “on-the-fly,” rather

than generating lookup tables of Φi and Ψi. As expected, accurate preservation of the quantities Φi and

Ψi over the column density ranges of interest renders ionization and temperature profiles around sources of

discrete radiation indistinguishable from their continuous counterparts.

In Figure 6.8, we compare ionization and heating around a 105 K blackbody after 100 Myr of evo-

lution as in Section 6.4, showing the solution obtained with our optimal monochromatic (red) and four-bin

(blue) SEDs. The continuous and four-bin solutions are indistinguishable.

In Figure 6.9, we perform the same analysis for the α = 1.5 power-law simulations. Our optimal four-

bin SED reproduces the hydrogen and helium ionization profiles (and thus electron density) and temperature

of a continuous SED to high precision. The most noticeable errors are in the hydrogen neutral fraction within
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the hydrogen ionization front, where errors between four-bin and continuous solutions are still only ∼ 1%.

Errors in xHe III are negligible, justifying our neglect of NHe II in the optimization process.

It should be noted that our optimal monochromatic SED for the X-ray source performs even more

poorly than the fiducial 0.5 keV SED. This signifies a general problem with monochromatic emission for

any spectrum with a hard component. Whereas the monochromatic optimization (τν = 0) works quite well

in the 105 K blackbody case since hydrogen absorbs UV photons readily, X-rays are not so readily absorbed

by hydrogen and/or helium. As a result, the characteristic column density where most 1 keV photons are

absorbed lies outside of our domain, leading to severe under-ionization (of all species) and under-heating.

The reason the 0.5 keV SED works better is because its characteristic absorption column is smaller, lying

within our domain. We have experimented with relaxing the optically thin requirement for monochromatic

optimization, and find that it is equally difficult to preserve ionization and heating profiles with emission at

a single frequency.

6.6.3 Three-dimensional Radiation-hydrodynamic Simulations with Enzo

To study the impact of spectral discretization in a more complex setting, we ran RT06 test problem

2 with hydrodynamics, as well as two fully three-dimensional cosmological radiation-hydrodynamic simu-

lations similar to those of Abel et al. (2007) and Alvarez et al. (2009), both with the Enzo code (Bryan and

Norman, 1997, O’Shea et al., 2004)1 . All analysis was performed with yt (Turk et al., 2011).

The results of the RT06 radiation-hydrodynamic test problem are shown in Figure 6.10, where we

compare the solutions obtained using the four-bin SED employed by Wise and Abel (2011) in addition to

our own (Table 6.1). The solutions are indistinguishable, which is expected given the relatively small range

of column density explored in this problem.

The cosmological simulations follow the formation of a 100M� PopIII star, its brief 2.7 Myr lifetime

in which it emits 1.2× 1050 ionizing photons per second, and the X-ray emission resulting from accretion

onto a remnant BH assumed to form via direct collapse after stellar death (as in Alvarez et al. (2009)). The

accretion rate, and thus luminosity assuming ε• = 10%, is the Bondi–Hoyle accretion rate of the cell in

1 Revision f4a8b5f5e6c5, modified to form only one star and use optimal SEDs.
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which the BH resides. The simulation volume is 0.25 Mpc h−1 on a side, with 1283 particles and cells on

the root grid. A single nested grid occupies the inner 1/8 of the volume at twice the root grid resolution,

where eight additional levels of adaptive-mesh refinement are allowed, yielding a peak spatial resolution of

0.23pc h−1.

We run two simulations, each identical to the other except for the choice of discrete SED. Our ‘con-

trol’ simulation uses monochromatic SEDs — the PopIII star is a monochromatic source of E = 29.6 eV

photons, while the X-ray source emits at E = 2 keV. The second simulation employs the optimal four-bin

SEDs found in Tables 6.1 and 6.2.

As shown in Figure 6.11, the magnitude of the errors between monochromatic and nν = 4 solutions

is even more significant in the cosmological problem than in the RT06 test problem, since the ionizing

luminosity of the blackbody source considered is nearly two orders of magnitude larger (1.2× 1050 ver-

sus 5× 1048 s−1). For very luminous sources, even small errors in Φ and Ψ will become noticeable as

characteristic timescales for photoionization and heating are short.

During the BH phase of evolution, there are more ways for the monochromatic and multi-frequency

solutions to differ aside from the SEDs being employed. The accretion luminosity depends on local gas

properties, which will be different in each simulation due to errors accrued during the PopIII star’s lifetime.

Properties of the broader medium will of course vary for the same reason, leading to changes in how far soft

X-rays are able to propagate before being absorbed. Throughout the 100 Myr of evolution after the PopIII

star’s death, the Bondi–Hoyle accretion rate and thus luminosity of the accreting BH is on average an order

of magnitude smaller in the nν = 4 simulation than for the monochromatic case. Errors in ionization and

temperature exceeding an order of magnitude persist throughout the BH phase as well. Rather than attempt

to disentangle the BH phase induced errors from the preexisting errors, we simply emphasize that SED-

induced errors will compound in feedback situations like this, since the initial conditions of each subsequent

generation of objects will have been contaminated by errors associated with the previous one.

We cannot comment on the relative errors between monochromatic and multi-frequency treatments

beyond the outermost column density contour, as our optimization extended only to NH I = 3.1×1019 cm−2.

Future work focused on larger cosmological volumes, more luminous sources, and harder radiation fields
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will need to construct optimal SEDs valid beyond NH I = 1020 cm−2, at least.

6.7 Discussion

Algorithms developed for the purpose of studying point-source radiation (e.g., ray-tracing) are in

principle capable of propagating continuous radiation fields, that is, tabulating Equations (6.11) and (6.12)

and computing ionization and heating rates via Equations (6.13)–(6.15). The reason many have not taken this

approach could be due to the additional computational overhead involved with using continuous SEDs — the

quantities Φi and Ψi must be tabulated over the complete column density interval of interest. This includes

column densities of all absorbing species, each of which must extend from the smallest expected column

(i.e., the column density of a “fully ionized” cell — we adopted a minimum species fraction of xmin = 10−5)

up to the largest expected column (i.e., the column density of a fully neutral medium). The dimensionality

of Φi and Ψi can be increased even further if for example energy-dependent secondary electron treatments

(e.g., Ricotti et al., 2002, Furlanetto and Johnson Stoever, 2010) or time-dependent SEDs are of interest.

For the simulations of Section 6.4.2, we generated three-dimensional lookup tables for Φi and Ψi

covering the column density range 1011 < NH I < 1021, and 1010 < NHe I,NHe II < 1020, sampling NH I at 200

points, and NHe I and NHe II with 100 points each, resulting in six three-dimensional tables, each consisting

of 2× 106 elements. We found that poorer sampling (e.g., tables of dimension 100 × 50 × 50) leads to

artificial “notches” in ionization and temperature profiles due to errors in the trilinear interpolation. In our

case, ΦH I = ΦHe I = ΦHe II and ΨH I = ΨHe I = ΨHe II since all emission occurs above 102 eV, making the

lower limit of integration for each quantity identical. In the general case, where emission extends all the way

to the hydrogen ionization threshold, all six quantities would be unique. Generating these tables can take

hundreds of CPU hours or more for a single SED depending on the number of column density elements. In

addition, the radiative transfer solver requires additional modules to read in the lookup table, and perform

interpolation four times per absorbing species per grid element (see Eqs (6.13)-(6.15)). For sources with

discrete SEDs, one can simply compute the photo-ionization rate for each neutral species, from which point

the secondary ionization and heating rate coefficients are obtained in a simple algebraic fashion (see Eqs

(6.16)-(6.18)).
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For high-resolution simulations focused on a single source of radiation (e.g., Kuhlen and Madau,

2005, Alvarez et al., 2009), the additional effort required to accommodate continuous radiation fields seems

well worth it to ensure that the ionization and thermal state of the gas is captured accurately. However, in

large-scale simulations of cosmic reionization, which may spawn hundreds of thousands or perhaps millions

of radiating ‘star particles’ (depending on the simulation volume, resolution, etc.), ray-tracing methods are

certainly not the most computationally advantageous algorithm. This is because the computational cost of

a ray-tracing calculation scales with the number of radiation sources and the number of frequency bins in

each source SED (though the former cost can be mitigated by merging nearby radiation sources; Trac and

Cen, 2007, Okamoto et al., 2012). If photons with long mean free paths are of interest, the simulation

will be even more expensive since rays must be followed to larger distances, i.e., more ray segments and

iterations of the numerical solver are required. An appealing option is to instead use moment-based methods

such as the Variable Eddington Tensor approach (e.g., Gnedin and Abel, 2001, Petkova and Springel, 2009),

flux-limited diffusion (e.g., Reynolds et al., 2009), or other variations (González et al., 2007, Aubert and

Teyssier, 2008, Finlator et al., 2009), as the computational cost of such algorithms is independent of the

number of radiation sources and the mean free paths of photons, scaling only with the number of frequency

bins in each source spectrum.

As discussed in Section 6.2, multi-group schemes common in the literature are an improvement over

fiducial discrete SEDs, though it is not generally clear how many bandpasses are required for a given prob-

lem, or where they should lie in frequency space. Moreover, multi-group radiation suffers from the same

problem as discrete polychromatic emission: photons at each frequency are absorbed near a characteristic

column density, Nchar. Computing new spectrum-weighted absorption cross-sections, σ̄n, for each frequency

group merely shifts the location of Nchar.

In principle, our minimization technique could be used to optimally select which bandpasses should

be used for a multi-group algorithm, though in practice it would be much more computationally expensive.

Rather than varying the location (νn) or normalization (In) of frequency bin n on each Monte Carlo step, one

would instead vary the position of bandpass edges, which would change the mean photon energy in each

bandpass (hν̄n) and spectrum-weighted cross section, σ̄n (e.g., Aubert and Teyssier, 2008). Because hν̄n and
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σ̄n are integral quantities, they would need to be computed numerically on each Monte-Carlo step, and thus

hundreds of thousands of times for a single optimization. See Appendix F for a more detailed analysis of

multi-group methods.

6.8 Conclusions

We have shown that the manner in which a discrete SED is constructed can induce substantial errors

in simulation results, both in the ionization and temperature profiles around stars and quasars. But, these

errors can be avoided to a large degree using only four discrete emission frequencies if source SEDs are

designed via the methods of Section 6.5. Discrete SEDs constructed in a simple way (e.g., bins linearly

spaced in frequency) will perform more poorly than optimally selected SEDs with the same number of bins,

since it is the column density interval of interest that dictates the range of photon energies required, and the

power to which each is assigned.

In general, discrete SED treatments fail to ionize and/or heat gas at large column densities, i.e., large

physical scales or environments with dense clumps of gas. This has strong implications for simulations

dedicated to understanding the magnitude and mode of radiative feedback on gas surrounding radiation

sources. Current questions of this sort include whether or not radiation stimulates or suppresses further star

formation in nearby proto-stellar clouds, and if radiative feedback can stifle the growth of SMBHs at high

redshift.

As expected, extending our one-dimensional work to three-dimensions produces ionized regions

around a first star and remnant BH that deviate significantly in ionized fraction, temperature, size, and

morphology. Such findings have implications in radiative feedback, but also in studies of both hydrogen

and helium reionization. Certainly miscalculations of the ionization state of gas surrounding galaxies in the

early universe will lead to errors in the volume averaged neutral fraction, volume filling factor of ionized

gas, and the optical depth of the CMB to electron scattering (τe). As we demonstrated in Section 6.4, such

errors also introduce uncertainties in the interpretation of future 21 cm measurements, since the primary ob-

servable quantity (δTb) depends directly on the hydrogen neutral fraction, electron density, and gas kinetic

temperature.
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Our optimizations in this work are by no means comprehensive, having selected two commonly used

radiation sources (UV blackbody and X-ray power law) as test cases to demonstrate the method. How-

ever, optimization for more complex spectra is straightforward, and any new optimizations run will be made

publicly available by the authors. The minimization code and one-dimensional radiative transfer codes are

both available upon request. We leave more detailed investigations of reionization and radiative feedback,

including multiple radiation sources and multi-frequency radiation transport, to future work.
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Figure 6.4 Top Panels: Comparison of ΦH I and Φ′H I (a) and ΨH I and Ψ′H I (b) as a function of H I column
density for a 105 K blackbody, showing the numerically computed continuous integral (solid black), best-fit
composite four-bin discrete sum (blue crosses), and the contribution from each individual discrete frequency
bin (dashed blue). Annotations represent the (hνn, In) pairs for each frequency group, drawn from Table 6.1.
Bottom Panels: Percent error between discrete and continuous solutions. The solid blue line is the error for
the four-bin optimal solution, while the errors induced by three-, two-, and one-bin solutions are shown in
magenta, green, and red, respectively.

Figure 6.5 Same as Figure 6.4 but for an α = 1.5 power-law X-ray source.
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Figure 6.6 Emission energy (a) and normalization (b) probability distribution functions (PDFs) of optimized
discrete 105 K blackbody spectrum using nν = 1,2,3,4 (from bottom to top). In each panel, the gray his-
togram denotes the initial guesses for all Monte-Carlo trials, and the black, blue, red, and green histograms
show the end point for the first, second, third, and fourth bins, respectively (ordered by increasing emission
frequency).

Figure 6.7 Same as Figure 6.6 but for an α = 1.5 power-law X-ray source.
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Figure 6.8 Comparison of ionization (top) and temperature (bottom) profiles around a 105 K blackbody
source after 100 Myr showing the solutions obtained using continuous (black), monochromatic (red), and
optimal four-bin discrete (blue circles/squares) SEDs.
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Figure 6.9 Comparison of hydrogen and helium ionization (a) and temperature profiles (b) around a power-
law X-ray source after 50 Myr showing the solutions obtained using continuous (black) and optimal four-bin
discrete (blue symbols) SEDs.

Figure 6.10 Comparison of the four-bin solutions of Wise and Abel (2011) (black) and our own (blue crosses)
in a radiation-hydrodynamic simulation using the Enzo code. The setup is the same as in RT06 Test Problem
2, except hydrodynamics is included.
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Figure 6.11 Ratio of slices of the ionized fraction (a) and temperature (b) obtained using our optimized
nν = 4 blackbody SED (xH II4 ,T4) and the standard monochromatic SED (xH II1 ,T1). Both slices are 2.25
Myr after the formation of a Population III star. Contours (from center outwards) correspond to hydrogen
column densities of NH I = 2 and 4×1019 cm−2.



Chapter 7

Conclusions and Future Work

The results presented in previous chapters have implications for observational campaigns as well as

theoretical models. In this final chapter, I will summarize my findings in a broader context and where

appropriate, include a discussion of future work that would address lingering issues or pave a new path

forward.

Let us begin with perhaps the most pertinent results for global 21-cm experiments. For many years,

the conventional thinking has been that global 21-cm experiments should seek observations in many inde-

pendent sky regions (Shaver et al., 1999, Pritchard and Loeb, 2010, Harker et al., 2012) since the galactic

foreground varies across the sky while the global 21-cm signal does not. There is a trade-off, however, be-

tween the angular resolution and sensitivity of an experiment. An experiment with high angular resolution

can observe many independent regions of the sky but each with rather poor sensitivity (Liu et al., 2013).

Alternatively, one may build an experiment with a very broad beam (Harker et al., 2012, Burns et al., 2012),

which will be very sensitive but limited to a small number of independent pointings.

The findings of Chapter 3 (Harker et al., 2015) suggest that even experiments with very broad beams

(∼ 50◦ FWHM) need not observe more than a few sky regions. This is a result of incorporating more

stringent priors on the global 21-cm signal than has been done in previous work. For example, though

Harker et al. (2012) used a model that assumed the global 21-cm signal had three turning points and thus

effectively imposed a prior on the allowed structure of the signal, the locations of these turning points were

not restricted (in general) by this assumption. This in principle allowed turning point B to occur at δTb > 0,

turning point C to occur at depths only possible in a Universe that cools more rapidly than is allowed by the
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Hubble expansion, and turning point D to occur in the “super-saturated” regime (see Figure 1.12). The latter

cases, at least, are exceedingly unlikely, as they would require significant deviations from well-understood

physics underlying models of the global 21-cm signal.

By instead employing the tanh model in fits to synthetic datasets, we were restricted to physically

realistic histories. This automatically guarantees that the overall normalization of the global 21-cm signal

is constrained quite well – a feat formerly accomplished by observing multiple independent sky regions.

Indeed, integration time played more of a role than the number of sky areas viewed (Figure 3.8). It seems a

proper time to determine the optimal observing strategy for pointed experiments (e.g., DARE; Burns et al.,

2012).

Unfortunately, but unsurprisingly, use of a more physically-motivated model like the tanh did not

solve every difficulty in the realm of signal extraction. Degeneracies between the global 21-cm signal and

the foreground are exceptionally strong at frequencies ν & 100 MHz where the signal is most spectrally

smooth. One can still recover the turning point positions accurately by using more complex foreground

models or truncating the band, but even then, the inferred properties of the IGM were biased relative to

those of the input model. This suggests that the choice of parameterization of the signal may be a limiting

factor in precision measurements of the global 21-cm signal, as the biases result from subtle mismatches

in the shape of the physical model for the global 21-cm signal and its best-fit tanh representation. This

would be a fantastic test for model selection algorithms: under what observing conditions can one derive

evidence that one signal parameterization fits the data better than another, when both can adequately recover

the turning points? Perhaps then it will be time to determine what new physical insights are to be had from

constraints on the curvature of the turning points (i.e., an extension of the analytical models presented in

Chapter 2).

Putting these issues aside for a moment, in Chapter 4 we investigated a “two-stage approach” to

extracting information from the global 21-cm signal. First, one uses a fast (but approximate) model like the

tanh to recover the turning point positions, and then follows up by fitting a more expensive but physically-

motivated ARES model to those turning point positions. Earlier work suggested that the turning points were

robust indicators of IGM properties (Chapter 2), so it was a natural next step to determine how well they
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constrained a simple galaxy formation model. It turns out that in this case the detection of all three turning

points is vital, as the timing of these features in large part encodes the characteristic mass of star-forming

halos at high-z, which we parameterize via the parameter Tmin. The emission maximum – turning point D –

is least sensitive to Tmin, but is the only feature that encodes the ionizing efficiency of the first galaxies. In

tandem with NLW, it is then an essential constraint on the stellar IMF in high-z galaxies (Figure 4.8).

It is unfortunate that the modest amplitude of the 21-cm emission signal and its spectral smoothness

completely counteract the fact that the galactic foreground grows weaker toward higher frequencies. The

detection of turning point D may be easier, if, for example, the true 21-cm emission signal is sharper than

that of our typical models. If not, we are surely to benefit from the incorporation of current constraints as

priors, e.g., measurements of τe from CMB experiments like Planck. In addition, if the emission maximum

of the global 21-cm signal occurs at z. 12, we could in principle leverage near-future constraints from JWST

and ground-based interferometers like PAPER, provided we develop models that simultaneously track the

galaxy population and their impact on the IGM.

Our initial parameter estimation exercise also used perhaps the simplest galaxy formation model that

can capture all features of the global 21-cm signal. In reality, feedback is likely to be important, though it has

been completely neglected in our model. One very realistic possibility is that Tmin evolves with time, most

likely increasing with decreasing redshift due to negative feedback. Perhaps it starts out at a few hundred

K at redshifts z & 30, at which time H2 cooling in the first halos leads to the formation of massive PopIII

stars. Once a substantial LW background emerges, however, the H2 cooling channel will be unavailable to

most halos, which will then need to wait until atomic cooling becomes efficient (at Tmin ∼ 104 K). Large-

scale heating may eventually drive Tmin & 2× 105 K (Gnedin, 2000). Allowing a time-variable Tmin is a

natural extension of our physical models that may lead to interesting signatures. In fact, it might provide

a physically-motivated way of modifying the shape of the signal, and thus be another interesting test for

model selection algorithms.

To make the parameter estimation problem more computationally tractable, all global 21-cm models

in Chapter 4 were generated neglecting detailed solutions to the radiative transfer equation. However, in

Chapter 5, it was shown that detailed frequency-dependent solutions can lead to large variations in the
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depth and timing of the 21-cm minimum – likely more than enough to be a complicating factor for first-

generation experiments. Crude approximations to the RTE tend to overestimate the importance of heating,

leading to artificially shallow 21-cm absorption troughs (perhaps by ∼ 20 mK). Coincidentally, adoption of

SEDs appropriate to HMXBs (MCD spectra rather than power-laws) induce modulations of similar order

(∼ 20−50 mK), depending on the neutral gas content of high-z galaxies and the masses of accreting BHs.

It was recently suggested that the 21-cm power spectrum may be a powerful degeneracy-breaking tool

with regards to the degeneracy between the shape and amplitude of the X-ray background at high-z (Pacucci

et al., 2014). Generating these models, even with a semi-numeric code like 21CMFAST, is rather expensive

computationally. Development of an even simpler approach would enable forecasting exercises analogous

to those presented in Chapter 4 but for the 21-cm power spectrum. In addition, this capability would allow

us to include measurements from ground-based interferometers as priors within our global 21-cm signal

procedure. Measurements at z∼ 8.4−8.8 with PAPER are already entering interesting regions of parameter

space (Ali et al., 2015, Pober et al., 2015), so this would be fairly timely work.

This issue naturally ties into Chapter 6, where we showed that discretization of the radiation field

near stars and BHs in numerical simulations can lead to sizable inaccuracies in the gas properties nearby.

Though originally our motivation for this work was in to prepare for large-scale cosmological simulations

of Reionization, the results certainly apply to models of the 21-cm power spectrum as well. For example,

if the X-ray background is dominated by sources with soft spectra we should expect stronger fluctuations

in the IGM temperature (and thus 21-cm background) on small scales since soft X-rays are absorbed more

readily by the IGM than hard X-rays. Crude radiative transfer calculations could then artificially shift power

to different characteristic scales and bias inferences of the 21-cm power spectrum. As a result, new power

spectrum models should go through the trouble of taking frequency-dependent effects into account.

In closing, a productive path forward seems to be one that enables disparate measurements of the

high-z Universe to be interpreted within a common framework. Because 21-cm cosmology is still in its ado-

lescence, even simple models are extremely valuable because they are inexpensive enough computationally

to be used in forecasting exercises and in directly fitting near-future datasets. Eventually, of course, simple

models will need to be tested and/or calibrated with more sophisticated calculations, ranging from semi-
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numeric codes to 3-D radiation-hydrodynamic simulations. Given the enormous dynamic range and suite of

physical solvers required to simulate the global 21-cm signal, an apples-to-apples comparison is likely still

several years away. As a result, I will continue with developing more general semi-analytic models until the

accuracy of the data exceeds that of my models.



Bibliography

T. Abel, M. L. Norman, and P. Madau. Photon-conserving Radiative Transfer around Point Sources in
Multidimensional Numerical Cosmology. ApJ, 523:66–71, September 1999. doi: 10.1086/307739.

T. Abel, G. L. Bryan, and M. L. Norman. The Formation of the First Star in the Universe. Science, 295:
93–98, January 2002. doi: 10.1126/science.295.5552.93.

Tom Abel, John H Wise, and Greg L Bryan. The H II Region of a Primordial Star. ApJ, 659:L87, April
2007.

Zaki S Ali, Aaron R Parsons, Haoxuan Zheng, Jonathan C Pober, Adrian Liu, James E Aguirre, Richard F
Bradley, Gianni Bernardi, Chris L Carilli, Carina Cheng, David R DeBoer, Matthew R Dexter, Jasper
Grobbelaar, Jasper Horrell, Daniel C Jacobs, Pat Klima, David H E MacMahon, Matthys Maree, David F
Moore, Nima Razavi, Irina I Stefan, William P Walbrugh, and Andre Walker. PAPER-64 Constraints on
Reionization: The 21cm Power Spectrum at z=8.4. arXiv.org, page 6016, February 2015.

Y. Ali-Haı̈moud and C. M. Hirata. Ultrafast effective multilevel atom method for primordial hydrogen
recombination. PRD, 82(6):063521, September 2010. doi: 10.1103/PhysRevD.82.063521.

A. C. Allison and A. Dalgarno. Spin Change in Collisions of Hydrogen Atoms. ApJ, 158:423, October
1969. doi: 10.1086/150204.

M. A. Alvarez, J. H. Wise, and T. Abel. Accretion onto the First Stellar-Mass Black Holes. ApJL, 701:
L133–L137, August 2009. doi: 10.1088/0004-637X/701/2/L133.

D. Aubert and R. Teyssier. A radiative transfer scheme for cosmological reionization based on a local
Eddington tensor. MNRAS, 387:295–307, June 2008. doi: 10.1111/j.1365-2966.2008.13223.x.

J E Baldwin. Searches for primordial pancakes. pages 333–339, 1986.

Edward A Baltz, Nickolay Y Gnedin, and Joseph Silk. Spectral Features from the Reionization Epoch. The
Astrophysical Journal, 493(1):L1–L4, January 1998.

J. M. Bardeen. Kerr Metric Black Holes. Nat, 226:64–65, April 1970. doi: 10.1038/226064a0.

Rennan Barkana and Abraham Loeb. In the beginning: the first sources of light and the reionization of the
universe. Physics Reports, 349(2):125–238, 2001.

Rennan Barkana and Abraham Loeb. Detecting the earliest galaxies through two new sources of 21 cen-
timeter fluctuations. ApJ, 626(1):1, 2005a.



178

Rennan Barkana and Abraham Loeb. Detecting the earliest galaxies through two new sources of 21 cen-
timeter fluctuations. ApJ, 626(1):1, 2005b.

Antara R Basu-Zych, Bret D Lehmer, Ann E Hornschemeier, Rychard J Bouwens, Tassos Fragos, Pascal A
Oesch, Krzysztof Belczynski, W. N. Brandt, Vassiliki Kalogera, Bin Luo, Neal Miller, James R Mullaney,
Panayiotis Tzanavaris, Yongquan Xue, and Andreas Zezas. THE X-RAY STAR FORMATION STORY
AS TOLD BY LYMAN BREAK GALAXIES IN THE 4 Ms CDF-S. ApJ, 762(1):45, December 2013.

Robert H Becker, Xiaohui Fan, Richard L White, Michael A Strauss, Vijay K Narayanan, Robert H Lupton,
James E Gunn, James Annis, Neta A Bahcall, and J Brinkmann. Evidence for Reionization at z˜ 6:
Detection of a Gunn-Peterson Trough in az= 6.28 Quasar. The Astronomical Journal, 122(6):2850, 2001.

M. C. Begelman, M. Volonteri, and M. J. Rees. Formation of supermassive black holes by direct collapse in
pre-galactic haloes. MNRAS, 370:289–298, July 2006. doi: 10.1111/j.1365-2966.2006.10467.x.

M. C. Begelman, E. M. Rossi, and P. J. Armitage. Quasi-stars: accreting black holes inside massive en-
velopes. MNRAS, 387:1649–1659, July 2008. doi: 10.1111/j.1365-2966.2008.13344.x.

K. Belczynski, V. Kalogera, and T. Bulik. A Comprehensive Study of Binary Compact Objects as Gravi-
tational Wave Sources: Evolutionary Channels, Rates, and Physical Properties. ApJ, 572:407–431, June
2002. doi: 10.1086/340304.

Krzysztof Belczynski, Vassiliki Kalogera, Frederic A Rasio, Ronald E Taam, Andreas Zezas, Tomasz Bulik,
Thomas J Maccarone, and Natalia Ivanova. Compact Object Modeling with the StarTrack Population
Synthesis Code. ApJS, 174(1):223–260, January 2008.

C L Bennett, D Larson, J L Weiland, N Jarosik, G Hinshaw, N Odegard, K M Smith, R S Hill, B Gold,
M Halpern, E Komatsu, M R Nolta, L Page, D N Spergel, E Wollack, J Dunkley, A Kogut, M Limon,
S S Meyer, G S Tucker, and E L Wright. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Final Maps and Results. preprint (astroph/12125225), December 2012.

Andrew Benson, Aparna Venkatesan, and J Michael Shull. THE ESCAPE FRACTION OF IONIZING
RADIATION FROM GALAXIES. ApJ, 770(1):76, May 2013.

G. Bernardi, M. McQuinn, and L. J. Greenhill. Foreground Model and Antenna Calibration Errors in the
Measurement of the Sky-averaged λ21 cm Signal at z˜ 20. ApJ, 799:90, January 2015. doi: 10.1088/
0004-637X/799/1/90.

H. Bondi and F. Hoyle. On the mechanism of accretion by stars. MNRAS, 104:273, 1944.

R. J. Bouwens, G. D. Illingworth, P. A. Oesch, J. Caruana, B. Holwerda, R. Smit, and S. Wilkins. Reioniza-
tion After Planck: The Derived Growth of the Cosmic Ionizing Emissivity Now Matches the Growth of
the Galaxy UV Luminosity Density. ApJ, 811:140, October 2015. doi: 10.1088/0004-637X/811/2/140.

J. D. Bowman and A. E. E. Rogers. A lower limit of ∆z > 0.06 for the duration of the reionization epoch.
Nat, 468:796–798, December 2010. doi: 10.1038/nature09601.

J. D. Bowman, I. Cairns, D. L. Kaplan, T. Murphy, D. Oberoi, L. Staveley-Smith, W. Arcus, D. G. Barnes,
G. Bernardi, F. H. Briggs, S. Brown, J. D. Bunton, A. J. Burgasser, R. J. Cappallo, S. Chatterjee, B. E.
Corey, A. Coster, A. Deshpande, L. deSouza, D. Emrich, P. Erickson, R. F. Goeke, B. M. Gaensler, L. J.
Greenhill, L. Harvey-Smith, B. J. Hazelton, D. Herne, J. N. Hewitt, M. Johnston-Hollitt, J. C. Kasper,



179

B. B. Kincaid, R. Koenig, E. Kratzenberg, C. J. Lonsdale, M. J. Lynch, L. D. Matthews, S. R. McWhirter,
D. A. Mitchell, M. F. Morales, E. H. Morgan, S. M. Ord, J. Pathikulangara, T. Prabu, R. A. Remillard,
T. Robishaw, A. E. E. Rogers, A. A. Roshi, J. E. Salah, R. J. Sault, N. U. Shankar, K. S. Srivani, J. B.
Stevens, R. Subrahmanyan, S. J. Tingay, R. B. Wayth, M. Waterson, R. L. Webster, A. R. Whitney, A. J.
Williams, C. L. Williams, and J. S. B. Wyithe. Science with the Murchison Widefield Array. Publications
of the Astronomical Society of Australia, 30:e031, April 2013. doi: 10.1017/pas.2013.009.

Michael Boylan-Kolchin, Daniel R Weisz, Benjamin D Johnson, James S Bullock, Charlie Conroy, and
Alex Fitts. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies.
arXiv.org, April 2015.

V. Bromm, P. S. Coppi, and R. B. Larson. Forming the First Stars in the Universe: The Fragmentation of
Primordial Gas. ApJL, 527:L5–L8, December 1999. doi: 10.1086/312385.

Volker Bromm, Rolf P Kudritzki, and Abraham Loeb. Generic Spectrum and Ionization Efficiency of a
Heavy Initial Mass Function for the First Stars. ApJ, 552(2):464–472, May 2001.

Matthew Brorby, Philip Kaaret, and Andrea Prestwich. X-ray binary formation in low-metallicity blue
compact dwarf galaxies. preprint (astro-ph/14043132), April 2014.

G. L. Bryan and M. L. Norman. A Hybrid AMR Application for Cosmology and Astrophysics. preprint
(astroph/9710187), October 1997.

J. O. Burns, J. Lazio, S. Bale, J. Bowman, R. Bradley, C. Carilli, S. Furlanetto, G. Harker, A. Loeb, and
J. Pritchard. Probing the first stars and black holes in the early Universe with the Dark Ages Radio
Explorer (DARE). Advances in Space Research, 49:433–450, February 2012. doi: 10.1016/j.asr.2011.
10.014.

S. Cantalupo and C. Porciani. RADAMESH: cosmological radiative transfer for Adaptive Mesh Refinement
simulations. MNRAS, 411:1678–1694, March 2011. doi: 10.1111/j.1365-2966.2010.17799.x.

C. L. Carilli, S. Furlanetto, F. Briggs, M. Jarvis, S. Rawlings, and H. Falcke. Probing the dark ages with
the Square Kilometer Array. New Astronomy Reviews, 48:1029–1038, December 2004. doi: 10.1016/j.
newar.2004.09.046.
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Appendix A

The Differential Brightness Temperature

Derivation of Equation 4.8 follows naturally from the radiative transfer equation (RTE), which de-

scribes the change in the specific intensity or radiation at frequency ν along a differential line element ds,

dIν

ds
= jν−ανIν. (A.1)

Here, jν is the “source term,” and the second quantity is the “sink term,” given by the product of the specific

intensity and the absorption coefficient αν. This equation is intuitive: the change in the intensity along a ray

is given by the difference between how many photons are injected and how many photons are absorbed.

Introducing the specific optical depth τν,

dτν = ανds (A.2)

and assuming a homogenous medium (in which jν and αν are independent of s), we arrive at a solution to

Equation A.1 in only a few lines upon adopting the integrating factor µ≡ e
∫

ανds:

Iν(τν) = Iν(0)e−τν +
jν

αν

(1− e−τν) (A.3)

This solution is generic for homogeneous media. However, in the context of the early universe (see

Figure A.1), the background light source is the cosmic microwave background, i.e.,

Iν(0)'
2ν2

c2 kBTγ (A.4)

where we’ve adopted the Rayleigh-Jeans approximation, hν� kBTγ. As is usually the case, c is the speed of

light, kB is Boltzmann’s constant, and Tγ = Tγ,0(1+ z) is the CMB temperature at redshift z, with the CMB

temperature today given by Tγ,0 = 2.725 K.
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Figure A.1 Cartoon of the radiative transfer problem of the 21-cm signal.
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Now, because we are radio astronomers, we will write the rest of the terms in Equation A.3 using the

blackbody formula as well. Because we are merely using the Rayleigh-Jeans approximation for dimensional

convenience, we will use the b subscript to indicate brightness temperatures, in contrast to the physically

meaningful electron, or kinetic temperature, TK. That is,

Iν(τν)≡
2ν2

c2 kBTb (A.5)

Similarly for the last term, whose brightness temperature we’ll refer to with foresight as the “spin tempera-

ture,” TS, such that Equation A.3 becomes

Tb = Tγe−τν +TS(1− e−τν) (A.6)

Note that we are working in the frame of an HI cloud, meaning the redshift dependence of each tempera-

ture is implicit at this stage. A brightness temperature at redshift z, Tb(z), will correspond to an observed

brightness temperature Tb,0 = Tb(z)/(1+ z).

If we make the ansatz that τν � 1, such that e−τν ≈ 1− τν via a Taylor series expansion, then our

solution simplifies further to

Tb ≈ Tγ +(TS−Tγ)τν (A.7)

The observable signature of the 21-cm line at the Earth is simply Tb,0 = Tb/(1+ z), which leaves

Tb,0 ≈
Tγ

(1+ z)
+

TS−Tγ

(1+ z)
τν. (A.8)

The first term on the right-hand side is the CMB temperature today, Tγ,0, meaning the brightness temperature

of an HI cloud relative to the CMB temperature is given by

δTb ≡ Tb,0−Tγ,0 ≈
TS−Tγ

(1+ z)
τν. (A.9)

The quantity δTb is the “differential brightness temperature” between HI and the CMB.

The optical depth depends on the cross-section for the 21-cm transition,

σ21 =
3c2A21

8πν2
21

(A.10)
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integrated along a line of sight. A detailed solution, including redshift-space distortions, yields (e.g., Furlan-

etto et al., 2006a)

τν0 ≈ 0.0092(1+δ)(1+ z)3/2 xH I

TS

[
H(z)/(1+ z)

dv‖/dv⊥

]
(A.11)

Whether the signal is seen in emission or absorption against the CMB depends entirely on the spin

temperature, which is determined by the strength of collisional and radiative coupling, characterized by the

coefficients xc and xα, respectively,

T−1
S ≈

T−1
γ + xcT−1

K + xαT−1
α

1+ xc + xα

, (A.12)

where Tγ = Tγ,0(1+ z) is the CMB temperature, TK is the kinetic temperature, and Tα ≈ TK is the UV color

temperature.

In general, the collisional coupling is a sum over collision-partners,

xc = ∑
i

niκ
i
10

A10

T∗
Tγ

, (A.13)

where ni is the number density of species i, and κi
10 = κi

10(TK) is the rate coefficient for spin de-excitation via

collisions with species i. In a neutral gas, collisional coupling is dominated by hydrogen-hydrogen collisions

(Allison and Dalgarno, 1969, Zygelman, 2005, Sigurdson and Furlanetto, 2006), though hydrogen-electron

collisions can become important as the ionized fraction and temperature grow (Furlanetto and Furlanetto,

2007). We neglect collisional coupling due to all other species.1

The remaining coupling coefficient, xα, characterizes the strength of Wouthuysen-Field coupling

(Wouthuysen, 1952, Field, 1958),

xα =
Sα

1+ z
Ĵα

Jα

, (A.14)

where

Jα ≡
16π2T?e2 fα

27A10Tγ,0mec
. (A.15)

1 Furlanetto and Furlanetto (2007) investigated the effects of hydrogen-proton collisions on TS and found that they could account
for up to ∼ 2% of the collisional coupling at z ≈ 20, and would dominate the coupling at z ≈ 10 in the absence of heat sources.
However, an early Ly-α background is expected to couple TS → TK prior to z = 20, and heating is expected prior z = 10, so
protons are generally neglected in 21-cm calculations. Collisions with neutral helium atoms in the triplet state could also induce
spin-exchange (Hirata and Sigurdson, 2007), though the cold high-z IGM lacks the energy required to excite atoms to the triplet
state. We also neglect hydrogen-deuterium collisions, whose rarity prevents any real effect on TS, even though κHD

10 > κHH
10 at low

temperatures (Sigurdson and Furlanetto, 2006). Lastly, we neglect velocity-dependent effects (Hirata and Sigurdson, 2007), which
introduces an uncertainty of up to a few % in the mean signal.
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Ĵα is the angle-averaged intensity of Ly-α photons in units of s−1 cm−2 Hz−1 sr−1, Sα is a correction factor

that accounts for variations in the background intensity near line-center (Chen and Miralda-Escudé, 2004,

Furlanetto and Pritchard, 2006, Hirata, 2006), me and e are the electron mass and charge, respectively, fα is

the Ly-α oscillator strength, and A10 is the Einstein A coefficient for the 21-cm transition.



Appendix B

Non-Equilibrium Chemistry in a Gas of Primordial Composition

This appendix serves as a reference for the equations of non-equilibrium primordial (i.e., hydrogen &

helium) chemistry, solutions to which are at the core of many results presented in this thesis.

Rate equations for hydrogen: ẋH I

ẋH II

=

 −(ΓHI + γHI,HI +βH Ine) αH IIne

ΓHI + γHI +βH Ine −αH IIne


 xH I

xH II



Rate equations for helium
ẋHE I

ẋHE II

ẋHE III

=


−(ΓHeI + γHeI +βHe Ine) +(αHe II +ξHeII)ne 0

ΓHeI + γHeI +βHe Ine −(ΓHeII + γHeII)− (βHe II +αHe II +ξHeII)ne αHe IIIne

0 ΓHeII + γHeII +βHe IIne −αHe IIIne




xHe I

xHe II

xHe III



Evolution of the (proper) electron number density:

ṅe =



nH(ΓHI + γHI +βH Ine)

−nHαH IIne

nHe(ΓHeI + γHeI +βHe Ine)

nHe {(ΓHeII + γHeII +βHe IIne)− (αHe II +ξHeII)ne}

−nHeαHe IIIne


(

xH I xH II xHe I xHe II xHe III

)



202
Term Description
Γi Rate coefficient for photo-ionization of neutral species i
γi, j Rate coefficient for collisional ionization of neutral species i due to fast secondary electrons previously bound to species j
βi Rate coefficient for collisional ionization of neutral species i due to thermal distribution of electrons
αi Rate coefficient for radiative recombination into species i

Table B.1 Description of terms in above equations.

Evolution of the kinetic temperature:

Start with the first law of thermodynamics:

dU
dt

=
dQ
dt
−P

dV
dt

(B.1)

For an ideal, monatomic gas, we can write

U =
3
2

nkBTK (B.2)

and

P = nkBTK (B.3)

Differentiating, we have

dU
dt

=
d
dt

[
3
2

nkBTK

]
=

3
2

kB

[
TK

dn
dt

+n
dTK

dt

]
(B.4)

We’ll take dQ/dt = H −Λ, which means we’ve got

3
2

kB

[
TK

dn
dt

+n
dTK

dt

]
= (H −Λ)−P

dV
dt

(B.5)

Solving for TK , we’ve got

dTK

dt
=

2(H −Λ)

3kBn
− TK

n
dn
dt
− 2

3
TK

dV
dt

(B.6)

The last term vanishes if we’re performing calculations on a static (physical) mesh, though in a cosmological

volume element it will be non-zero.
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Cosmological Radiative Transfer: Test Problem

In this section, we test our code with a double power-law form for the X-ray emissivity, ε̂ν(z) ∝

(1 + z)βνα−1, noted by Meiksin and White (2003) to yield analytic solutions in two important limiting

cases. In the optically-thin limit (e.g., the cosmologically-limited (CL) case of Meiksin and White, 2003, in

which xi = 1 at all redshifts), we find

Ĵν,CL(z) =
c

4π

ε̂ν(z)
H(z)

(1+ z)9/2−(α+β)

α+β−3/2
×
[
(1+ z f )

α+β−3/2− (1+ z)α+β−3/2
]

(C.1)

In the Ly-α literature it is common to accommodate the alternative “absorption-limited”(AL) case in which

τν > 0, by defining the “attenuation length,” r0, as exp[−τν(z,z′)]≡ exp[−lH(z,z′)/r0], where lH is the proper

distance between redshifts z and z′. Instead, we will adopt the neutral-medium approximation of Equation

5.18 (i.e., xi = 0), which permits the partially analytic solution

Ĵν,AL(z) =
c

4π

ε̂ν(z)
H(z)

(1+ z)9/2−(α+β)× exp
[
−
(µ

ν

)3
(1+ z)3/2

]
Aν(α,β,z,z f ) (C.2)

with

Aν ≡
∫ z′=z f

z′=z
(1+ z′)α+β−5/2 exp

[(µ
ν

)3 (1+ z)3

(1+ z′)3/2

]
dz′. (C.3)

The function Aν has analytic solutions (in the form of Exponential integrals) only for α+β = 3n/2 where n

is a positive integer, which represents physically unrealistic scenarios.

The metagalactic spectral index in this case works out to be

αMG ≡
d logJν

d logν
= α+3

(µ
ν

)3
(1+ z)3/2

[
1−Bν(1+ z)3/2

]
(C.4)
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where

Bν = A−1
ν

∫ z f

z
(1+ z′)α+β−4 exp

[(µ
ν

)3 (1+ z)3

(1+ z′)3/2

]
dz′. (C.5)

As ν→∞, the second term vanishes, leaving the optically-thin limit, αMG = α. As ν→ 0, Bν→ 0, meaning

αMG = α+3. The “break” in the cosmic X-ray background spectrum occurs when αMG = 0, corresponding

to a photon energy of

hν∗ = hµ(1+ z)
{

3
α

[
Bν∗− (1+ z)−3/2

]}1/3

(C.6)

which must be solved iteratively. Solutions are presented in Figure C.1 for α=−1.5, β=−3, ε̂ν(z0) = 10−2

for z0 = 10, z f = 15, and show good agreement between analytic and numerical solutions.
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Figure C.1 Cosmic X-ray background spectrum at z = 20 for α = −1.5 and β = −3. Normalization of the
y-axis can be scaled arbitrarily depending on the normalization of the emissivity. The deviation at high
energies is due to the fact that the analytic solution is not truncated by z f or Emax, meaning there are always
higher energy photons redshifting to energies hν≤ hνmax. The numerical solutions are computed with finite
integration limits and truncated at Emax, such that the emissivity at hν > hνmax is zero, resulting in no flux
at hν ≥ hνmax. Elsewhere, the agreement is very good, with discrepancies arising solely due to the use of
approximate bound-free photo-ionization cross sections in the analytic solution.
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1-D Radiative Transfer: Test Problems

Our one-dimensional radiative transfer code solves Equations (6.1)–(6.5) using the implicit Euler

method for integration and a Newton–Raphson technique for root finding. Each simulation is initialized

on a grid of Nc cells between L0 and Lbox, such that the finest resolution element is ∆x = (Lbox−L0)/Nc,

or simply ∆x = 1/Nc in code units. Gas inside of the start radius, L0, contributes no optical depth, and

Equations (6.1)–(6.5) are not solved. For the purposes of this section, we chose to use Nc linearly spaced

cells between L0 and Lbox, though our code allows arbitrarily structured grids.

In order to track the propagation of ionization fronts accurately, we limit the time-step based on a

maximum neutral fraction change as introduced in Shapiro et al. (2004),

∆ti = εion
ni

|dni/dt| , (D.1)

where we include all absorbing species, i =H I, He I, He II, and set ∆t = min(∆ti). We additionally require

that the time step increase by a factor of two at most, as in Wise and Abel (2011). For all simulations

presented in this work, we have set εion = 0.05.

The primary solver implemented in our code assumes the speed-of-light is infinite. Such an algorithm

is appealing for two main reasons, aside from the fact that it is a very good approximation for the problems

presented in this work. First, treating the speed-of-light explicitly introduces additional computational over-

head as “photon packages” must be launched from the radiation source at each time step and tracked until

they exit the domain. In the earliest stages of I-front propagation, the time step can be very small (as re-

quired by Equation (D.1)), meaning the total number of photon packages, Np, will be much larger than the
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total number of grid cells, Nc. Whereas c = ∞ treatments only require Equations (6.1)-(6.5) to be solved

once per cell, finite speed-of-light treatments require this system of equations to be solved for each photon

package. At later times, when Np <Nc, solving the ion and heat equations is cheaper for finite speed-of-light

treatments, though this offers no real advantage since the majority of the computational expense is at early

times when I-front propagation is fastest. We have also included a finite c solver to accommodate a broader

class of problems that may be of interest in future work.

The second advantage of assuming c = ∞ is that it allows the code to be efficiently parallelized. If

c = ∞, cells in the domain can be solved in arbitrary order by a single processor, or simultaneously by

a network of processors, since the radiation incident on any cell is predetermined at the outset of each

individual time step. Previous authors have ensured causality by solving cell k before cell k+ 1 at time t

(where increasing k corresponds to increasing r), but this is not in fact necessary — causality is ensured by

the monotonicity of column density with distance. In other words, when c = ∞, Ni does not change within

any given time step, and so the column density (and thus radiative flux) to cell k is less than the column

density (and flux) to cell k + 1, meaning the solution of Equations (6.1)-(6.5) in cell k + 1 is completely

independent of the properties of cell k at time t +∆t.

To demonstrate the functionality of the code, we repeat tests 1 and 2 from the Radiative Transfer

Comparison Project (Iliev et al. (2006, hereafter referred to as RT06)) on a grid of 200 linearly spaced cells.

Test 1 is the expansion of an H II region in a hydrogen-only, isothermal medium surrounding a monochro-

matic source of 13.6 eV photons. We adopt the same parameters used in RT06: constant temperature

T = 104 K, uniform hydrogen number density nH = 10−3 cm−3, ionized fraction xH II = 1.2× 10−3, in a

box Lbox = 6.6 kpc in size, and with photon luminosity Q̇ = 5×1048 s−1. The classical analytic solution for

the radius of an ionization front is

rIF(t) = rs(1− e−t/trec)1/3, (D.2)

where rs is the Strömgren radius,

rs =

(
3Q̇

4παH IIn2
H I

)1/3

, (D.3)
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and the recombination time, trec, is defined as

trec ≡
1

αH IInH I
. (D.4)

This solution is approximate even in isothermal media, given that it assumes a constant neutral hydrogen

density, nH I. More accurate analytic solutions exist (Osterbrock and Ferland, 2006), and predict a departure

from the classical solution at t/trec ' 1, which grows to a ∼ 5% difference by t/trec ' 4. Our numerical

solution (see Figure D.1a) captures this behavior very well. In Figure D.1b, we show radial profiles of the

ionized and neutral fractions at three stages of the I-front expansion, which are again in very good agreement

with the calculations presented in RT06.

Figure D.1 Test 1: (a) Comparison of the numerical (dashed) and analytic (solid) solutions for the position of
an expanding ionization front as a function of time in a hydrogen-only, isothermal medium (RT06 problem 1;
top), and the ratio of the calculated and analytic solutions as a function of time and grid resolution (bottom).
The numerical solution displayed in the top panel is from the highest resolution simulation (800 grid cells,
i.e., ∆x = Lbox/800). ((b)) Radial profiles of the neutral (solid) and ionized (dashed) fractions at t = 10, 100,
and 500 Myr.

Test 2 is the same as Test 1, except now the temperature is allowed to evolve according to Equation

(6.5), and the monochromatic radiation source is replaced by a 105 K blackbody spectrum. Radial profiles of

the neutral and ionized fractions and temperature can be seen in Figure D.2. Again, our numerical solutions

are in very good agreement with previous work.
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(a) (b)

Figure D.2 Test 2: (a) Radial profiles of the neutral (solid) and ionized (dashed) fractions at t = 10, 100,
and 500 Myr. (b) Radial profiles of the kinetic temperature at t = 10, 100, and 500 Myr (solid, dashed, and
dotted lines, respectively).



Appendix E

Secondary Ionization & Heating

In the previous section (and in all of Mirocha et al. (2012)), we considered the asymptotic limit

of Shull and van Steenberg (1985), in which the fractional energy deposition of secondary electrons as

heat, ionization, and excitation depends only on the hydrogen ionized fraction. Ricotti et al. (2002) and

Furlanetto and Johnson Stoever (2010) updated this work, providing (respectively) empirical fits and lookup

tables of deposition fraction as a function of both ionized fraction and electron energy. These effects are

most important at E . 102 eV.

To accommodate this model, we must redefine the quantities Φi and Ψi. We will use a tilde to denote

the new quantities related to secondary ionization,

Φ̃i j ≡
∫

∞

ν j

f ion
i j,(ν−ν j)

Iνe−τν
dν

hν
(E.1)

Ψ̃i j ≡
∫

∞

ν j

f ion
i j,(ν−ν j)

Iνe−τνdν, (E.2)

and a hat to denote the new quantities related to photo-electric heating,

Φ̂i ≡
∫

∞

νi

f heat
(ν−νi)

Iνe−τν
dν

hν
(E.3)

Ψ̂i ≡
∫

∞

νi

f heat
(ν−νi)

Iνe−τνdν. (E.4)

Now, our ionization and heating coefficients (formerly Eqs. 6.13-6.15) read

Γi = Ai
[
Φi(τν)−Φi(τ

′
i,ν)
]

(E.5)

γi j =
A j

hνi

{
Ψ̃i j(τν)− Ψ̃i j(τ

′
j,ν)−hν j

[
Φ̃i j(τν)− Φ̃i j(τ

′
j,ν)
]}

(E.6)

Hi = Ai

{
Ψ̂i(τν)− Ψ̂i(τ

′
i,ν)−hνi

[
Φ̂i(τν)− Φ̂i(τ

′
i,ν)
]}

. (E.7)



Appendix F

Multi-Frequency vs. Multi-Group Transfer

F.1 ‘Multi-Group’ Methods

The standard method of discretizing spectra has been to calculate the mean photon emission energy

in one or more bandpasses,

hνn ≡
∫

νn+1

νn

Iνdν

(∫
νn+1

νn

Iν

hν
dν

)−1

, (F.1)

and define a new, spectrum-weighted bound-free absorption coefficient as

σi,n ≡
∫

νn+1

νn

σν

Iν

hν
dν

(∫
νn+1

νn

Iν

hν
dν

)−1

, (F.2)

where n = 0,1,2, ...nν. Keep in mind that here, “spectrum-weighted” really means “weighted by photon

number.”

For reference, if we assume a single (very large) bandpass, these equations reduce to:

hνi ≡
∫

∞

νi

Iνdν

(∫
∞

νi

Iν

hν
dν

)−1

, (F.3)

and

σi ≡
∫

∞

νi

σi,ν
Iν

hν
dν

(∫
∞

νi

Iν

hν
dν

)−1

. (F.4)

F.2 Analytic Limits

F.2.1 Perfectly Optically Thin

The simplest case is the perfectly optically thin limit (i.e. τν = ∆τi,ν = 0), which is very uninteresting:

Γi = Hi = γi = 0. (F.5)
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Any other case with ∆τi,ν = 0 identically will be equally uninteresting.

F.2.2 Optically Thin Cells, Arbitrary τν

In this case,

(1− e−∆τi,ν)≈ (1− (1−∆τi,ν))

≈ ∆τi,ν

≈ σi,νNi. (F.6)

With this approximation, and recalling Ai ≡ Lbol/niVsh(r) (see §6.3), we have

Γi = Ai

∫
∞

νi

Iνe−τν

(
1− e−∆τi,ν

) dν

hν

≈ Lbol

niVsh(r)

∫
∞

νi

Iνe−τνσi,νNi
dν

hν

≈ Lbol

4πr2

∫
∞

νi

Iνe−τνσi,ν
dν

hν
. (F.7)

Similarly,

γi j ≈
Lbol

4πr2

∫
∞

ν j

(
ν−ν j

νi

)
Iνe−τνσ j,ν

dν

hν
(F.8)

Hi ≈
Lbol

4πr2

∫
∞

νi

(ν−νi)Iνe−τνσi,ν
dν

ν
. (F.9)

You may recognize the above equations as expressions for the rate coefficients in non-photon-conserving

form. This isn’t terribly useful, since we still have to do integrals (or use lookup tables) to compute the rate

coefficients.

F.2.3 Small Optical Depth

The only real analytic limit that exists occurs if 0 < τν � 1,0 < ∆τi,ν � 1, i.e. the limit where the

optical depth between source and cell and the optical depth of the cells themselves is non-zero but small. In

addition to Equation F.6, we have

e−τν ≈ (1− τν). (F.10)

We will now examine the ionization and heating rates for this limit in detail.
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F.2.3.1 Photo-Ionization Rate

Substituting the above approximation into Equation 6.7, we have

Γi = Ai

∫
∞

νi

Iνe−τν

(
1− e−∆τi,ν

) dν

hν

≈ Ai

∫
∞

νi

Iν(1− τν)∆τi,ν
dν

hν

≈ Ai

[∫
∞

νi

Iν (∆τi,ν− τν∆τi,ν)
dν

hν

]
. (F.11)

Neglecting the second order term (where Γi ∝ τν∆τi,ν), recalling Ai ≡ Lbol/niVsh(r), and the approximate

value of ∆τi,ν (Eq. F.6), we have

Γi ≈
Lbol

niVsh(r)

∫
∞

νi

Iνσi,νNi(r)
dν

hν
. (F.12)

Now, for r� ∆r,

Vsh(r)≈ 4πr2
∆r, (F.13)

but ni∆r ≡ Ni, so

Γi ≈
Lbol

4πr2

∫
∞

νi

Iνσi,ν
dν

hν
. (F.14)

The integral in this expression also appears in the definition for a ‘ “spectrum-weighted” cross-section (Eq.

F.4), allowing us to write

Γi ≈
Lbol

4πr2 σi

∫
∞

νi

Iν

hν
dν, (F.15)

and finally via Equation F.3,

Γi ≈
Lbol

4πr2
σi

hνi

∫
∞

νi

Iνdν. (F.16)

This tells us that a ‘multi-group’ treatment which averages over one large bandpass will compute the photo-

ionization rate accurately so long as τν and ∆τi,ν are very small.
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F.2.3.2 Photo-Heating Rate

Let’s apply the same approximation, ∆τi,ν� 1, to the heating rate coefficient.

Hi = Ai

∫
∞

νi

(ν−νi)Iνe−τν

(
1− e−∆τi,ν

) dν

ν

≈ Lbol

niVsh(r)

∫
∞

νi

(ν−νi)Iνσi,νNi(r)
dν

ν

≈ Lbol

4πr2

[∫
∞

νi

σi,νIνdν−hνi

∫
∞

νi

σi,νIν

dν

hν

]
(F.17)

Notice that the second term again contains the definition for a “spectrum-weighted” cross-section over one

large bandpass. Substituting in Equations F.4 and F.3, we find

Hi ≈
Lbol

4πr2

[∫
∞

νi

σi,νIνdν−σihνi

∫
∞

νi

Iν

hν
dν

]
≈ Lbol

4πr2

[∫
∞

νi

σi,νIνdν−σi
hνi

hνi

∫
∞

νi

Iνdν

]
. (F.18)

The second term is simply the photo-ionization rate (Eq. F.16), modulo a factor of hνi, i.e.

Hi ≈
Lbol

4πr2

∫
∞

νi

σi,νIνdν−hνiΓi (F.19)

The integral in the above expression is very similar to our expression for a “spectrum-weighted” cross-

section, but now instead of weighting σi,ν by the factor Iν/hν (which is proportional to photon number), it is

weighted by Iν itself (which is proportional to photon energy). Now it should be a little bit more clear why

I’ve been writing “spectrum-weighted” in quotes all this time – we really have two “spectrum-weighted”

cross-sections to worry about, the second being

σ̃i ≡
∫

∞

νi

σi,νIνdν

(∫
∞

νi

Iνdν

)−1

. (F.20)

With this definition, and using Equation F.16 to write the first term of Equation F.19 as a function of Γi, we

have

Hi ≈ Γih
[

νi

(
σ̃i

σi

)
−νi

]
. (F.21)

But wait a second. If we were to run a simulation with monochromatic emission at frequency given by

Equation F.3, we would compute the heating rate via

Hi = Γih(νi−νi). (F.22)
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Setting Equations F.21 and F.22 equal, we have a condition under which Γi and Hi will be simultaneously

accurate when ∆τi,ν� 1,

σ̃i

σi
= 1. (F.23)

For a 105 K blackbody spectrum,

σ̃i

σi
≈ 0.7, (F.24)

which (partially) explains why monochromatic emission cannot simultaneously capture ionization and heat-

ing accurately, even when cells are optically thin. Remember too that so far we have assumed all photo-

electron energy is deposited as heat.

So, in this limit, if we want to simultaneously capture ionization and heating, we should be computing

the heating rate via Equation F.21, not Equation F.22.

F.2.3.3 Secondary Ionization Rate

Finally, the secondary ionization rate (assuming asymptotic limit of Shull and van Steenberg (1985)

- i.e. deposition fraction is energy independent)

γi j = A j

∫
∞

ν j

(
ν−ν j

νi

)
Iνe−τν

(
1− e−∆τ j,ν

) dν

hν

≈ Lbol

n jVsh(r)

∫
∞

ν j

(
ν−ν j

νi

)
Iνσ j,νN j

dν

hν

≈ Lbol

4πr2

[
1

hνi

∫
∞

ν j

Iνσ j,νdν− hν j

hνi

∫
∞

ν j

Iνσ j,ν
dν

hν

]
. (F.25)

Substituting in our definitions for the spectrum weighted cross-sections (Equations F.4 and F.20), we have

γi j ≈
Lbol

4πr2

[
σ̃ j

hνi

∫
∞

ν j

Iνdν−σ j

(
hν j

hνi

)∫
∞

ν j

Iν

hν
dν

]
, (F.26)

and the photo-ionization rate (Eq. F.16)

γi j ≈ Γ j

(
hν j

hνi

)(
σ̃ j

σ j

)
− Lbol

4πr2

(
hν j

hνi

)
σ j

∫
∞

ν j

Iν

hν
dν. (F.27)

Lastly, we substitute the bandpass-averaged emission frequency (Eq. F.3) into the second term and find

γi j ≈ Γ j

[(
hν j

hνi

)(
σ̃ j

σ j

)
−
(

hν j

hνi

)]
. (F.28)
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F.2.4 General Case

The general case where τν & 1, ∆τi,ν & 1 has the opposite problem: we are stuck with Equations 6.13

and 6.15. Our task then is to find a set of nν (In,hνn) pairs that minimizes the difference between Φ and Φ′i,

and Ψ and Ψ′i, where

Φ
′
i(τνn)≡

nν

∑
n=1

In

hνn
e−τνn (F.29)

Ψ
′
i(τνn)≡

nν

∑
n=1

Ine−τνn . (F.30)

This requires numerical solutions, as discussed in Chapter 6.



Appendix G

Simulated Annealing

To solve Equation (6.25), we employ the Monte Carlo method of Simulated Annealing (Kirkpatrick

et al., 1983, Ĉerný, 1985). For a given source and nν, we run K Monte-Carlo trials, each consisting of L steps,

aimed at determining the optimal values of In and νn for nν frequency bins. We do not require the bolometric

luminosity of sources to be conserved (i.e., ∑
nν

n=1 In 6= 1 is allowed), since some photons may traverse the

entire one-dimensional “volume” without ionizing a single atom, or some fraction of the luminosity may be

emitted below the hydrogen ionization threshold. Inclusion of such photons would be computational effort

wasted in a fully three-dimensional ray-tracing calculation, for example, since their mean free paths are very

long, and once absorbed they may contribute negligibly to ionization and heating.

Each random walk begins with randomly generated values of νn distributed between the hydrogen

ionization threshold and the maximum emission frequency in the spectrum, and randomly generated values

of In that sum to unity. Subsequent steps vary the energy or normalization of (randomly chosen) frequency

bin n. In order to steer each random walk towards the global minimum, we first evaluate the quantity

P = exp [−( fk,l− fk,l−1)/TSA] (G.1)

where k = 0,1,2, . . . ,K represents the current step in the current random walk, l, where l = 0,1,2, . . . ,L,

and f is the “cost function,” a measure of how good our current solution is. We adopt a cost function

which is the sum of errors in Φi and Ψi over the column density range of interest. For each species (i), and

each integral quantity (Φ, Ψ), we add the maximum deviation from continuous and discrete solutions in the

optically thin limit (first term in Equation (G.2)), the maximum deviation over the entire column density
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range (second term in Equation (G.2)), and the average deviation over the entire column density range (final

term in Equation (G.2)), all in dex, i.e.,

fk,l =∑
i

∑
Λ=Φ,Ψ

{
max

[
log
(

Λi

Λ′i(νk,l, Ik,l)

)
τ=0

]
+max

[
log
(

Λi

Λ′i(νk,l, Ik,l)

)
τ>0

]
+

〈
log
(

Λi

Λ′i(νk,l, Ik,l)

)
τ>0

〉}
.

(G.2)

At each step in a given random walk, we also generate a random number, q ∈ [0,1], that will determine

whether we keep our current guess, (νk,l, Ik,l), or revert to our previous guess, (νk,l−1, Ik,l−1). The condition

for keeping our current guess is P≥ q.

The key aspect of this analysis is how we vary the control parameter TSA, which is called the tem-

perature in analogy with Boltzmann’s equation (we add the subscript SA to distinguish the gas kinetic

temperature from this unphysical Simulated Annealing temperature). Equation (G.1) tells us that regardless

of the value of TSA, if fk,l < fk,l−1 (i.e., our most recent guess is better than the last), then P ≥ 1, and we

have a 100% chance of keeping our current guess. In other words, our method of controlling the TSA only

effects how we deal with bad guesses — decreasing the temperature means we become less tolerant of bad

guesses. There are many ways of doing this (Press et al., 1992), but for simplicity we adopt the following

technique. Every s/nν steps per frequency bin, we take

T → λT, (G.3)

where λ is an experimentally determined quantity of order unity. For all results presented here, we have

adopted λ = 0.98, and s/nν = 10. We change the number of steps per random walk depending on the

dimensionality, 2nν. We have found through experimentation that a good rule of thumb is L = 5000 steps per

trial, K, per frequency bin nν for our choice of λ and s/nν. These control parameters are fairly conservative

— further experimentation with them may yield converged solutions for fewer trials, K, and steps, L.


