MIMICAD TECHNICAL REPORT NO. 7

Electromagnetic Modeling of Microstrip Circuit
Discontinuities and Antennas of Arbitrary Shape

by
Jian-Xiong Zheng

Department of Electrical and Computer Engineering
University of Colorado
Boulder, Colorado 80309-0425

Work described in this report has been supported by the
MIMICAD Center and the National Science Foundation.

January 1991




Zheng, Jian-Xiong (Ph.D., Electrical Engineering)

Electromagnetic Modeling of Microstrip Circuit Discontinuities and Antennas
of Arbitrary Shape

Thesis directed by Professor D. C. Chang

In this thesis, a spatial-domain mixed-potential integral equation al-
gorithm is developed for the analysis of microstrip discontinuities and antennas
of arbitrary shape. The algorithm is based upon roof-top basis funcfions on a
rectangular and triangular mixed-grid, polynomial éurve-ﬁtting of the Green’s
functions and analytical evaluation of the resulting quadruple moment inte-
grals.

A microstrip structure of arbitrary shape is first broken up into a
group of small rectangular cells and triangular cells with the rectangular cel]’s
- 1n the regular region and triangular cells to fit the non-regular boundary. The
current density distribution is expressed linearly in terms of the normal current
components across cell boundaries, which are constrained to be continuous
across and ‘constant along each cell boundary. |

An mixed-potential integral equation is formulated and then solved
by the Galerkin method to yield a matrix equation. The resultant matrix
elements contain quadruple moment integrals, whose integrands are known only
in terms of so-called Sommerfeld integrals and are singular. The singularities in
these integrals are first extracted and the remainder terms are then numerically
evaluated and curve-fitted into polynomials.

The quadruple integrals are solved analytically to save computational
time and improve numerical accuracy.

An accurate and efficient de-embedding technique is developed to



iv

solve the network S-parameters and the complex wave propagation constants
‘by detecting the standing waves in microstrip structures at three uniformly
spaced points.

A general network connection algorithm is introduced to accomplish
network connection among elementé after the S-matrices of these elements are
evaluated from the electromagnetic simulation.

The algorithm is well implemented into a general FORTRAN pro-
gram. And.a graphic-aided gridding program is developed to construct the
geometry files of describing the microstrip structures being analyzed.

The code is used to analyze various kinds of passive microstrip cir-
cuits. Good agreement with experimental results is observed. It is found that
the metallic loss, reflections from junctions and coupling between striplines are
the dominant factors of affecting the performance of a microstrip circuit. The
radiation loés is negligibly small for a typical MMIC microstrip circuit.

Some bandwidth broadening mechanisms for microstrip patch anten-
nas are discovered from numerical simulation. Multi-loadeéresonant frequency

concept is applied to achieve significant bandwidth improvement.
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CHAPTER 1
INTRODUCTION

1.1 - Background

The rapidly advancing technology in microwave/millimeter-wave in-
tegrated circuits (MMICs) has made it possible to fabricate complicated com-
ponents, such as amplifiers, transceivers and radiators with both active devices
and passive elements, into a single chip. such circuits generally have very com-
plicated geometry (see Fig. 1.1). But their basic elements are planar structures
such as microstrip patches and lines, configured in such a way as to act as res-
onators, couplers, and transmission lines interconnecting active devices and

passive elements.

Basically, there are three commonly-used planar transﬁission—line
structures: (1) microstrip lines; (2) co-planar waveguides; (3) slotted-lines
[45]. Compared to traditional microwave cireuits with waveguide structures
of hollow metallic waveguides and coaxial-lines, the MMIC monolithic circuits
have the advantage of smaller size, higher functionality, better performance and
reliability, and last but not least, more manufacturability. However, unlike con-
ventional waveguide systems, MMICs lack tuning capability once ai circuit is
fabricated. Accurate EM modeling is therefore necessary in order to minimize

the number of design iterations or even achieve a first pass design.



Vo es o b

*
£y
S

A C-band 3-watt, 2-stage amplifier [1].

Figure 1.1



The dominant mode of wave propagation for many of these guided-
wave structures is quvasi-TEMbat low frequencies. At higher frequencies, it con-
sists of both transverse and longitudinal field components and has no cut-off
frequency. Unlike in conventional waveguide structures, analytical determina-
tion of the characteristics of the quasi-TEM mode and higher order modes is not
available. Furthermore, because they are also open wave-guiding structures,
radiation as well as reflection of incident Wav_es occurs at circuit junctions and
bends, in a manner not predictable by conventional transmission-line theory.
In addition, parasitic couplings among the closely packed circuit elements have
pronounced effects on circuit performance at high frequency range.

In this thesis, a versatile, accurate and efficient electromagnetic simu-
lation algorithm is developed for the analysis of this kind of circuit. Emphasis
is on microstrip circuits.

Before we proceed to the detailed theoretical derivation in the follow-
ing chapters, we shall provide first a review on the analysis methods for MMICs
in Sections 1.2 and 1.3. The configuration of the chapters, the assumptions and
some frequently used notations in this thesis will be discussed in Sections 1.4

and 1.5, respectively.

1.2  Microstrip Circuit Analysis Methods

The simplest and most efficient method for analyzing microstrip cir-
cuits is the quasi-static analysis. There are basically two types'of quasi-static
analyses: (1)two-dimensional analysis for the transmission-line parameters [2];
and (2)three-dimensional analysis for the discontinuity parameters [3]-[6]. In
quast-static analyses, it is assumed that the dominant effect associated with a

circuit discontinuity can be obtained from the solution of the Laplace equation.



This technique ignores the longitudinal field components and is valid usually
for low frequency microstrip circuits [7]-[9]. The dispersive effects obviously
can not be modeled in the quasi-s{:atic analyses.

Another commonly-used approximate rnethod in analyzing microstrip
circuits at low frequencies is the so-called 2-D planar circuit analysis in which
microstrip circuits are replaced by parallel-plate waveguides with magnetic
walls (see Fig. 1.2) so that the dynamic nature of a microstrip discontinuity
can be analyzed by a combination of mode and point-matching techniques [10]-
[14]. By using the known properties for closed waveguides of specific geometries
such as rectangular, triangular and circular sections, complex geometries can
be handled using the segmentation techniques [15]-[17). Some empirical or
analytical formulas are utilized to calculate the equivalent width of a nﬁérostrip
and the effective dielectric constant of the structure. The radiative coupling
among discontinuities is then taken into account in the multi-port model [17]
by adding some equivalent magnetic ;:urrents on magnetic walls. Although
dispersive and coupling effects can be taken into consideration in this manner,
it will be demonstrated in Chapter 6 that such a method is still frequency
limited.

Full-wave methods in principle numerically solve the exact Maxwell’s
equations without the use of appfoximations in the mathematical model. They
can generally be catagorized into two basic groups: (1) Finite difference and
finite element methods in either time or fr-equency domain [19]-[22]; (2) Integral
equation methods [29] - [39].

In time-domain finite difference approaches, the partial derivatives
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Figure 1.2: The waveguide equavalence of the waveguide methods.
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both in fime and spatial directions in the Maxwell’s equations are approxi-
mated by the finite differences and the resulting equation is solved to find the
field distribution as a function of space and time [19]. The advantage of finite
difference approaches is that the algorithm is very straight-forward to imple-
ment and there is no need to invert large matrices. However, because they
solve electric and magnetic fields in a three-dimensional space, the number of
‘unknowns is substantially larger than that in integral equation methods, in
which two-dimensional current density distribution on a microstrip structure
is evaluated. They also encounter difficulty in modeling structures other than
that can be divided into a group of rectangular shapes. Generally, very fine
gridding has to be used when some non-rectangular structures are analyzed [22]
(see Fig. 1.3). In addition, absorbing boundary conditions are typically used
"to reduce an open-system problem to a finite-region problem. These however
are only approximate conditions and often may lead to unstable solutions [22].
Furtherﬁlore, a considerable time history has-to be established before one can
extract the solution at a given frequency with-a reasonable degree of resolution.
Henceforth, it may be computationally more intensive than a frequency-domain
‘solution if only a small number of frequency points is desired.

Finite element frequency-domain method is similar to the finite dif-
ference in that they both deal directly with the differential-form of the Maxwell
equation for vector electric and magnetic fields in space [23,24]. The difference
is that finite element method uses a tetrahedral division instead of a cubic
division so that it can more easily be used to analyze arbitrary structures.

Spurious solutions occassionally can occur as a result of over-specifying the



continuity condition of the field components at the interface of any two differ-
ent materials. Besides, large even though sparse matrices are encountered in
finite element method.

Similar solution of electric and magnetic fields in space is also found
in the method of lines algorithm [26,25]. It has the same disadvantage as the

finite element method.

1.3 *Frequency-Domain Integral Equation Methods

‘ The algorithm developed in this thesis is based upon an integral equa-
tion formulation, and we seek the solution of the electric or magnetic current
density distribution on a guiding structure instead of electric and magnetic
field components in a volume outside of the structure. In microstrip circuits, a
guiding structure is generally a thin metallic strip and, therefore, the solution
process is concerned only with the current density distribution over a two-
dimensional region and as a result involves much smaller number of unknowns
than finite difference and finite element methods. An electric field integral

equation (EFIE) is typically in the form:

LGy y) I y)da' dy' = ~Ei(a,) 11
where G(z,y; z',y') is the dyadic Green’s function; E;(z, y) is the incident field;
J(z',y') is the unknown surface current density distribution on S as shown in
Fig. 1.4. In a microstrip structure, S is the metallic strip.

To solve the electric field integral equation, it is typical to expand the
two dimensional current density distribution into some complete set of basis

functions (see (1.2)).



Figure 1.3: A rectangular grid for a microstrip structure.



J—(:I:, y) = E In Bn(x’ y) ’ (12)
: nx=l
where B, (z,y), n = 1,2,3,..., and I, are the basis functions and the corre-

sponding coefficients.

Substitution of (1.2) into (1.1) yields the following equation

E I, /é’(m,y; z',y") - B,(z',y') d2' dy' = —Ei(z,y) (1.3)
n=1 s

A matrix equation 1s subsequently obtained if we multiply both sides
of (1.3) by a set of test functions Tr,(z,y), m = 1,2,3, ..., integrate them over
the surface of the structure and then truncate the infinite number of basis

functions and test functions into finite number of them.

M
Z InIln = Vpym=1,2,...,. M (1.4)
na=l

where M is the number of basis functions or test functions after truncated,
Zmm = / dz dy /dm' dy' T (z,y) - é(:z:, y;2',y') - Ba(z',y) (1.5)

Vi = — /sd:z: dy Ei(z,y) - Tn(z,y) (1.6)

The method is commonly referred to as thé Galerkin method when
Twm(2z,y) = Bn(z,y). Clearly, the efficiency of the above described procedure
depends upon the choice of basis functions and evaluation of the moment in-
tegrals involved. A set of basis functions in which (1.2) converges rapidly can
reduce the size of the matrix and, therefore, the number of integrals.

Basis functions can be full-domain basis functions or sub-domain basis

functions. Full-domain basis functions are generally very efficient, but can only
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be found in regular regions, such as a rectangle or a circle. Therefore, they can
only be used for structures of regular shape. Sub-domain basis functions are
more versatile. They can be used to fit complicated geometries. But, generally,
we have to use a large number of them even for simple structures.

Integral equation methods can also be sub-divided into two groups:
spectral-domain methods and spatial-domain methods. They differ in thé way
they evaluate the momeﬁt integrals in (1.5). In spectral domain methods [34]-
[40], the Green’s function in (1.5) is expressed in terms of a double Fourier
transform with respect to z and y. The two-surface integrals are evaluated

.analytically in the transform domain resulting in only the inverse transform

of known, but complex integrands, to be performed numerically. Spectral-
domain methods are efficient when few basis functions, in the form of full
domain functions, can yield convergent results.

When a complicated microstfip structure, such as a patch with a slot
or a corner cut, is considered, sub-domain basis functions on cells appear to
be the only logical choices. The microstrip structure in this case is divided
into rectangular and/or triangular cells. Generally, sirﬁple sub-domain basis
functions, such as pulse functions and roof-top functions, are employed in or-
der to simplify the evaluation of the moment integrals. Even so, many basis
functions result from the process and spectral-doman methods can no longer

be used efliciently.

1.4 Configuration of the Chapters
The algorithm developed in this thesis is a spatial-domain mixed po-
tential integral equation (MPIE) method [29]-(32], [41]-[44]. It is based upon

the roof-top basis functions over a rectangular and triangular mixed-grid and
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analytical evaluation of the resulting quadruple moment integr;als with static
singular integrands.

| In. Chapter 2, we will derive the mixed-potential equation for mi-
crostrip structures from the fields of a horizontally-placed current density dis-
tribution over a grounded dielectric slab. The roof-top basis functions over
a rectangular and triangular mixed-grid are introduced in Chapter 3. The
pseudo-mesh ( or P-mesh ) concept will also be discussed in Chapter 3. Appli-
cation of the roof-top basis functions and test functions to the mixed-potential
equation results with a large number of quadruple moment integrals. An
analytical integration technique will be illustrated in Chapter 4 to evaluate
these integrals. A comparison between the analytical and numerical integra-
tion schemes will also be provided in Chapter 4.

For microstrip structures, especially circuit problems, we are ulti-
mately more interested in network parameters than in current distributions.
Several de-embédding techniques have been developed and they will be dis-
cussed in Chapter 5. |

Since the P-mesh algorithm makes use of rectangular cells for the reg-
ular region and triangular cells for irregular region of & microstrip structure of
‘general shape, planar structures of. general shape can be analyzed efficiently
using the P-mesh code. The applications of P-mesh in analyzing microstrip cir-
cuits of different structures will be discussed in Chapter 6. Chapter 7 discusses

the use of the P-mesh code in analyzing microstrip antennas.

1.5 Assumptions and Notations
The Physical world is a very complicated system. Mathematics is de’

veloped to model the physical world and the modeling can never be exact. In
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the P-mesh algorithm, some approximations have to be made in order to sim-
plify the analysis of encountered problems. The first approximation we make
is that the dielectric slab and the ground plane of a microstrip structure are
infinitely extended. This assumption is commonly accepted since the radiation
as well as the reactive fields decays rapidly away from the strips and since the
surface-wave field is usually very weak when the substrate thickness is much
smaller than the wavelength in the substrate material. The second approxima-
tion we have made is that we assume that the microstrip can be modeled by a
perfectly conducting and infinitely-thin conductor. As we will demonstrate in
Section 2.4, such an assumption can be remedied by introducing an equivalent
surface impedance on the microstrip surface.

Time convention e’“* and metric system are adopted in this thesis.
Some commonly used notations will be defined in the following. They will
be used consistently in the thesis except in Chapter 4. In Chapter 4, a very
complicated analytical integration techniques will be discussed and a lot of
notations will be used in the intermediate procedures. The following defined

notations will not be valid and some of them will be used for other purposes

in Chapter 4.
€ — permittivity;
€0 — pei‘mittivity in air;
€, — substrate relative permittivity;
u — permeability;

to — permeability in air;



{1, — substrate relative permeability;

h — substrate thickness;

o — conductivity of a microstrip;

Ay — waveguide wavelength;

v = a+ j B — complex propagation constant;
w — angular frequency;

k, — wave propagation constant in substrates;

ko — wave propagation constant in free space or air.

14
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CHAPTER 2

MIXED-POTENTIAL INTEGRAL EQUATION FORMULATION OF
MICROSTRIP STRUCTURES

2.1 Introduction

The formulation of mixed-potential integral equation (MPIE) can be
traced back to the well-known work of Harrington [1]. It has been widely used
in solving scattering problems [2,3]. Basically, it transforms the expression
for the induced electric field given in (1.3) in terms of the dot product of
a dyadic Green’s function G' with the unknown current J , to one involving
two scalar Green’s functions, one associated with the current and the other
with the charge distribution on the structure. The detailed derivation of such
an equation as applied to microstrip structure will be given in the following
sections.

For planar structures, the MPIE formulation has at least two dis-
tinctive advantages when compared with a typical electric field integral equa-
tion(EFIE): one is that the Green’s functions involved in the kernel of a MPIE
are scalar functions of electric and magnetic types and they usually can be
represented by one-dimensional Sommerfeld integrals. The other is that the
singularity in the Green’s functions of both types is of the order of 1/R, where
R = |[F—r'| is the distance between the source and observation points; We will
show in Chapeter 4 that the moment integrals associated with this singular

term are in fact known analytically in a closed-form for both rectangles and
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triangles.

To find the Green’s functions of electromagnetic boundary problems,
one usually starts by seeking solutions that satisfy all the necessary boundary
conditions in the spectral or the Fourier transform domain, which are often re-
ferred to as the Sommerfeld integrals. For an #-directed dipole over a ground
plane as shown in Fig. 2.1, the electric vector potential IT = I, of free space
case was first expanded into a spectral-integral of cylindrical waves in Sommer-
feld’s derivation [4]. Then, the plane wave reflection concept is used to include
the half-space dielectric medium by enforcing the field continuity conditions
on the boundary between air and the dielectric medium. The electric field and

‘magnetic field are finally expressed in terms of two components II, and II, of
the eletric vector potential. Alternatively, one can also use a pair of scalar
functions, or the Whittaker potentials U and V to represent the fields [7].

In Section 2.2, we will find the Green’s functions, or the Whittaker
potentials U and V for a horizontal electric current source over a grounded
dielectric slab. Then, in Section 2.3, we will discuss how a representation
can be casted into the form of a scalar magnetic potential and a scalar electric
potential for the mixed-potential integral equation. Finally, we will develop the
formulation of the mixed-potential integral equation for an arbitrary metallic

strip on the dielectric slab in Section 2.4.

2.2 The Green’s Functions of a Horizontally-Placed Current Den-
sity Distribution over a Grounded Dielectric Slab

For a horizontal current density distribution J(z’,y’) of arbitrary

shape located at z = 2’ as shown in Fig. 2.2, the horizontal field components

at (z,y, z) can be written as [7]



é//////
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Figure 2.2. A horizontally-placed current density distribution over a grounded

dielectric slab.
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_ oV ) R
E, = vta—z = jwp Vi x(zU) (2.1)
_ ou ) .
Ht = vta—z + ]wa Vt X(ZV) (2.2)

where E; and H; are the horizontal electric and magnetic fields, respectively;

€0 in the air region;
€= ’ (2.3)
€o€r 1n the dielectric slab region.

Ko  1n the air region;

Koltr in the dielectric slab region.

L0 .0

z
The Whittaker potentials satisfy the wave equation in the two regions,

or

U
(V2 + k%) =0;z+#7 (2.6)
A v

where k is the wavenumber in both media

ko; z>h

k= . (2.7)
k,; z<h

k2 = wuoeo (2.8)

krzz = kcz)ﬂrar ' | (2.9)
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h is the substrate thickness (see Fig. 2.2);

vV=vV:+ 2;% (2.10)

To solve the boundary problem, we have to express the field quantities

U, V, E; and H, in terms of their double Fourier transforms with respect to
z and y. We use uppercase calligraphic letters U, V, &, and H; to denote the
corresponding Fourier transforms of the fields. The double Fourier transform

and the inverse transform are defined as

U(a, B, 2) oo (z,y,2) .
dr dy efle=thby)  (2.11)
V(e 5,2) <2”) [t (2,9, %)
Vi, / da / ag L 4@ B s (2.12)
‘/ .’L‘ Yy 2 a ﬁs )

Then, we have
ay . ~ .
b=V 52 — Jwp(V, X 2)U (2.13)

- ~ou .~
H, = Vig, + jwe(y, X 2)V (2.14)
where {7} is the corresponding operator of 57, in the Fourier transform domain,

and it is

V. = —j(ad + i) (2.15)

The continuity conditions on z = 2’ plane are



N = gt
5 x Br=t =0

z=z'

Z X E’tizzz’*' =<j($,,y,)

z=2z'—

In the Fourier transform domain, we have

. 3 ypmglt
ngglzz =0

z=2z!—

2 x H)=0 = T (e, B)

or,

gt lz:z'+ —_ 0

zz=z'—

H|7=2E = (o, B) % 2
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(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21) -

where J(a,B) = 2J. + J, is the Fourier transform of the current density

distribution J(z,y) = 2J; + §J,.

Considering the continuity condition of the tangential electric field on

z = 2', and the wave nature of the fields, we can intuitively assume

Au(a’ 16) e el + Bu(aa IB) e—uo(z+z’-2h)

U =
Cu(a, ﬂ) Sinh(unz) e—uo(z'—h)

Sgn(z — 2') Ay(a, B) e»=%| 4 B (a, B) evo(=+z'~2h)

V =
Cy(e, B) cosh(uynz) e—wo(z'=h)

(2.22)

;2> h

i z2< h

(2.23)



27

where A, ,, By, and C,, are the coefficients to be solved;

+1 ;z2>2
Sgn(z—2') = (2.24)
-1 ;2<2 '

up = y/a?+ %2 — k& , Re(ug) >0 (2.25)
un, = \Ja? + p2— k2 (2.26)

The tangential electric and magnetic fields must be continuous across

the dielectric surface z = h. Then, we obtain from (2.13) and (2.14),
-~ oV . ~ vy ta=2
Vt'—a‘; _JW#O(Vt X Z)L{ Iz;z't =0 (227)

~ou . ~ RO = .
Vig + jweo(Ve x 2)V 250 = T (e ) x £ (2:28)
Condition (2.27) is automatically satisfied from the assumption of the

U and V in (2.22) and (2.23). From (2.22), (2.23) and (2.28), we write

— 2uoV,Au(@, B) + j2weo(V, X 2)Au(e, B) = T (a, B) X 2 (2.29)

Taking dot product of 57, with (2.29) yields

J (. B) x 2)

Au(a’ﬂ)=vt'(

(2.30)
—2uo ¥V, * V4
Taking dot product of (7, x 2) with (2.29) yields
7. % 2)- | T(a,B) x 3
Aag) = Fex D) [T(@h) x| 2.1)

B ]'2‘-050(6t X %) - (%t X £)
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The following two vector formulas are utilized to simplify (2.31).

ax(bxé)=(a-e)b—(a-b)c (2.32)

a-(bxée)=(axb)-¢ (2.33)

Finally, we obtain

Ay(a,f) = YT (0B) (2.34)

J2weoV¢
The B,, Cy, B, and C, in (2.22) and (2.23)_ have to be found by
invoking the tangential electric and magnetic field continuity conditions across
the dielectric surface z = h. From (2.13) and (2.14), the continuity conditions

for & and H, result in that pid, eV, U and V! are also continuous at z = h.

We obtain

A, + B, =y, C, sinh(u,h) (2.35)
— A, + B, = ¢, C, cosh(unh) | (2.36)
uo(Ay — By) = un C,, cosh(uyh) (2.37)
uo(—Ay = B,) = tn Cy sinh(unh) (2.38)

B,, Cy, B, and C, are easily solved from (2.35) - (2.38).

B, =T, A, (2.39)
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1+T,
= % A 2.4
Cu PR A (2.40)

B, = Ty, A, (2.41)

-1+4T,

C = e, cosh(unh)

A, (2.42)

where

firtio sinh(unh) — u,, cosh(u,h)
= : 4
L prtug sinh(uph) + u, cosh(u,h) : (243)

up sinh(u,h) — €,uy cosh(u,h)

. =
v Uy, sinh(u,h) + €,up cosh(u,h)

(2.44)

We will establish the integral equation by enforcing the boundary con-
dition on the tangential electric field in the source region. Only the horizontal
electric field in the air region will be involved and it will be discussed next.

From (2.22), (2.23), (2.39) and (2.41), we write

U= A, F,(a,B,2) (2.45)
V = A, [Sgn(z — 2')e k=7l 4 T, emwl+=-20)) (2.46)

and
%}:‘ = —U Av Fv(aaﬂVz) (247)

where
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‘Fu'u(a, ,6, Z) - e-uolz-z'l + I‘u’u e—uo(z+z’—2h) (248)

Substituting (2.45) and (2.47) into (2.13) gives the horizontal electric

field in the air region.

&/ = Ve[—uo Ay Fu(, 8, 2)] = jwpo(V X 2) [Au Fu(e, B, 2)] (249)

where the A, and A, are given in (2.30) and (2.31), respectively.
The spatial-domain horizontal electric field can be obtained from the

double inverse Fourier transform of &;.

2.3 The Scalar Magnetic and Electric Potentials for the Miérostrip
Structure

We have solved the horizontal electric field of a horizonta.lly-pla.ced

electric current distribution (see (2.49)) in Section 2.2. We can re-organize

(2.49) into a mixed-potentia.lk form. It is noticed that the vector operation in

the second term of the right-hand side of (2.49) can be simplified as follow:

(Ve x 2) [T (e, 8) - (7, x 2)]
= (Ve % 2) X [(Ve x 2) x T (0, )] + (W x 2) - (V, x )T (e, )

(2.50)

The first term on the left-hand side of (2.50) is

~ _

(%txf)x[(@x»f)xﬂ = (6tx‘§)x[(Vt°J)é“(é’j)%t]
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(Ve T (Ve x 2) x 2

= _(ét ’ j) %t
(2.51)
The second term on the left-hand side of (2.50) is
(Tex 2)- (Ve x 2)T = (v, V)T (2.52)

Substituting (2.51) into (2.50) and, then, (2.30), (2.34), (2.50) and
(2.52) into (2.49) yield

2 1.2 :
uOFv+k0Fu ~ oot
- — ,  J (e, B 2.53
J2wegUo \y - Ty (. 8) (2.53)

) . woF, - .
&= —jw #Ouo J(O‘aﬁ) - Vt[

Therefore, the horizontal electric field from a current density distribu-
tion on a horizontal patch s at z = 2’ is obtained by taking the inverse Fourier

transform of (2.53).

E, = —jWAt - Vié (2.54)

where
6= — /ds'[-i LI Gulps ) (2.55)
- 47(60 A jw Vi » Y e\P 2, . '
, .8 .0
vt - $a$, + yay, (2.56)

and G, . are the magnetic and electric potentials, respectively; ds' = dz' dy'.

Gm(p;2,2') = 51'“ / o / —dp 51 eelem= b=l (2.57)
o0 -0 0

T J-
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WBF 4 B Fe _jateme)tbismy
G.(p; 2,2 / da [~ gpBottBcs o e (2.58)
p=1/(z— )+ (y—y)? (2.59)

The horizontal part of the dyadic Green’s function corresponding to

that in (1.1) is easily obtained as

Gy = G(82 +59) + Ve Ve [Ge(22 +§9)] (2.60)

The double Fourier transforms in (2.57) and (2.58) can be further
reduced to single Fourier-Bessel type integrals with the following change of

variables:

A=/e? + B2 (2.61)

0y = arctan(g) (2.62)

The integration with respect to 8, can be expressed in terms of the

zero-th order Bessel function Jo(Ap). We finally have

© . AF |
m(p;2,2') = dA = .
Gnlpi =) = [ A Jo(h) - (2.63)
2
J(p; 2,7 / D Jo(Ap) Y +A’” Fy (2.64)

where,
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up = /A2 — k%; Re(up) <0; Im(ug) <0. (2.65)

up = /A2 — k2; Re(u,) <0; Im(u,) < 0. (2.66)
For the case ¢, = 1 and p, = 1, or there is no dielectric slab, the

Gm.e(p; z,2") can be solved analytically in a closed form

e-—jkoR e-jkoR’

Gm,c(p; 2, zl) = R - R (267)

where

R=\/p*+(z2—2')? (2.68)

R =/p?+ (z + 2')? (2.69)
For most of the microstrip structures, thin metallic strips are etched
on the dielectric slab. The integral equation is established based upon the

tangential field on the strips. Therefore, we can just consider the case with

2=z =h. The Gm.e(p; z,2") are functions of p only, or

[ 2, A
Gnlp) = [ A Jo(30) 5 (2.70)
[ 2)\[uo + prug, tanh(unh)] | .
Ge(p) - A d)‘ Jo()\/?) Dte Dtm (271)

where

Dy = pr uo + up, coth(u, h) ‘ (2.72)



34

D, = €, up + u, tanh(u, h) (2.73)

2.4 Mixed-Potential Integral Equation

When we assume that the metallic strip in a microstrip structure s
(see Fig. 1.4) is a perfect conductor, we can establish the integral equation
straight-forwardly. An impressed electric field E* induces a scattered current
density distribution J(z,y) on the metallic strip, and the J(z,y) creates scat-
tered field £. The integral equation is established by enforcing the boundary

condition that the total tangential electric field vanishes on the microstrip, or

Efz,y) + Ei(z,y) = 0; (z,9) € 5 (2.74)

where E,(z,y) is expressed in (2.54) and Ef(é:,y) is the tangential irﬁpressed
electric field [1].

In fact, metallic stfips can no lohger be approximated as perfect con-
ductors at high frequency range of microwave or at millimeter-wave raﬁge. As
we will demonstrate in Chapter 6, metallic loss is significant beyond 10GHz
for MMIC circuits. From the plane wave incident analysis, we can take the
conductor loss into consideration by imposing an equivalent surface impedance
on the metallic strips. This surface impedance has a non-trivial dependence
on the conductivity, the shape of the cross section and the edge of a metallic
strip, as well as the operation frequency for a finite dimensional microstrip line.
[10]-[12].

When the approximate impedance boundary condition is introduced,

(2.74) becomes
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Efz,y) + Ei(z,y) = Z,(z,y) J(z,9); (z,9) € s (2.75)

Zs is the surface impedance of the metallic strip. It is a function
of position and frequency, etc. A simplified formula is obtained in [13] by
neglecting the shape dependence of the Z, and assuming negligible skin depth

compared to strip thickness.

Ko
s =y [ —— N
z ,/eo_Ja/w (2.76)

Strictly speaking, (2.75) should be applied to the whole surface, in-

. where o is the conductivity.

cluding the top and bottom and the édge surface of the microstrip structure
under investigation [14]. But, it will increase the computational effort substan-
tially without increasing \accuracy much. The formula is applied to microstrip
problems in [15] by just taking the s as either the top surface or the bottom
surface.

A more general and accurate formula is derived for position not very

close to the edge of a strip [16].

_ Ko 1 4 e 7kt
Z, =, /60 S (2.77)

where k, is the wave number of the strip material; ¢ is the strip thickness.

Obviously, (2.77) can be reduced to (2.76) only when k,t << 1, or the strip
thickness is much less than the skin depth.
A more rigorous formula is being derived for implementation in MPIE

formulation [17]. The detail is beyond the topic of this thesis.
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In fact, the imperfection in the ground plane can also be modeled

using the impedance boundary condition in (2.76).
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CHAPTER 3

ROOF-TOP FUNCTIONS ON A RECTANGULAR AND TRIANGULAR
‘ MIXED GRID

3.1 Introduction
In Chapter 2, we have established the mixed-potential integral equa-
tion in (2.75). As mentioned in Section 1.3, a set of complete basis functions

is used to expand the current density distribution.

J@,9) = 3 InBulz,y) (3.1)

m=1

where I, are the unknown coeflicients.

To solve the unknown coeflicients I, from (2.75), we have to take the
inner product of a set of complete test functions T, (z,y),m = 1,2,... with
(2.75). The procedure creates an infinite-dimensional problem and can not
be solved exactly. Finite truncation of the basis functions and test functions

yields a matrix equation

M
S Zi Iy = Vs m=1,2,.., M " (3.2)

mi=1

where Z,, ¢ is obtained from (2.54), (2.75) and (3.1).

Z = / ds T (2, y) - [jw At + Vi + Zs B(z, )] (3.3)



Vm = ‘/stTm(xay) E—‘;(:L',y)

ds =dz dy

/ 1 ' B 1 . '
[ 48 =55 Vi-Bre(@ )] Gulpi 2,2

The first term in (3.3) is

jwﬁo ! ' > ro
20 [ds [ ds' Ta(z,y) - Bue(&,4') Gim(p)

The second term is expanded as

/sds Tm(z, y) - Vidm
= [ds {7 [Tn(,0) bm] = T To(2,4) b}

= f;dl‘fle(.’E,y) (]5ml '—/sds Vi 'Tm(xay) ¢m'
1

j47rw€o

last step of (3.9).

The matrix elements in (3.3) can be simplified as

- Lds /st’ Vi 'Tm(x’y) \V/ -Bm:(i',y') Ge(p)

40

(3.6)

(3.7)

(358)

(3.9)

where c is the edge of the microstrip structure s and 7 is the outer-going normal
component of the edge on the plane of the strip. The condition that the normal
component of the test functions or T;,(z,y) is continuous across cell boundaries

and vanishes on the boundary of the structure has been used in deriving the
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- Jwio s Bz o _ |
Znm = L2 [ds [ 4/ [Tn(2,9) - Bur(@',y") Gm(p) (3.10)

1 - ‘ ' E = =
k—g Vi 'Tm(x, y) Vi ’Bm’(may) Ge(P)] + 2, /sds Tm(x’y) ' Bm'(z’ y)

~ Now, the matrix equation is established. The remaining prob}em is to
_ choose the basis functions B,.(z,y) and test functions Trm(z,y), and to evaluate
the quadruple moment integrals in (3.10).

For a microstrip structure of arbitrary shape, full-domain functions
obviously are difficult to apply. Consequently, the issue reduces to what type
of sub-domain basis functions are most effective in representing the current
density distribution on a microstrip structure.

A wire-mesh model was developed in [1] for solving scattering prob-
lems, in which the solid conducting surface is physically replaced by mesh of
thin wires conforming to the contour of the original surface. Such a model
however is not suitable for antenna and circuit problems, in which accurate
current distributions and therefore input impedances are desired [2].

Rectangular cells used in conjunction with the MPIE formulation have
been adopted previously to model current density distribution on microstrip
patch antennas and microstrip circuit discontinuities [3] - [6]. For instance, in
[3], the microstrip structure is divided into two sets of rectangular cells and
pulse basis-functions are used to approximate the charge and current distribu-

“ roof-top” basis functions is used to

tion separately. A special form of linear
approximate the current distribution in [4]-[7], again for a set of rectangular
cells. These basis functions obviously are most appropriate when the structure

under investigation can be in fact nafura.lly divided into rectangular cells, but

would not be efficient when cells of reasonable size can not be fitted into the
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boundaries of a structure.

An implicit requirement in choosing basis and test functions is that
the normal current density component is continuous on cell boundaries to avoid
a possible é-function in the integrand of (3.10) from v, - Tn(z,y) or 7, -
B.(z',y"). An interesting exception to this is the so-called constant current/
constant charge method in which thé T., and ¢+ T, are treated as independent

-quantities first. They are then related back to each other by shifting the z-
component and y-component current cells by half with respect to the charge
cells in the z-direction and the y-directions, respectively [3].

In addition to rectangular cells, triangular cells with roof-top basis
function expansion has been tried in [11]. The current distribution in this case
is expressed iﬁ terms of the nodal currents at its vertices. Boundary conditions
at the edges of a microstfip structure are difficult to enforce in this case, par-
ticularly when non-rectangular corners are encountered. Furthermore, it has
been demonstrated in [11] that for a given structure, the rate of convergence for

such a scheme may depend upon the particular orientation of the cells selected.

As stated in [13], what distinguishes the new algorithm we developed
here from other similar use of roof-top basis functions to approximate the cur-
rent density distribution on a microstrip structure isb that we are able to use
a combination of rectangular and triangular cells in a self-consistent manner
in order to take into account the regularity in shape over major portidn of a
microstrip structure, while still preserving the flexibility to model junctions
of arbitrary shape locally (see Fig 3.1 ). This self-consistency is derived from
the observation that in order to avoid the unphysical Aoccura,nce of a é-function

charge density in the numerical process, only the normal component of the



Figuré 3.1: A rectangular and triangular mixed-grid.
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current density, but not the entire current density, is required to be contin-
uous across a cell boundary. Thus, instead of expressing the current density
distribution in terms of vector nodal currents at the three vertices of a tri-
angular cell {11}, we can implement a modified version in which the current
density distribution is expressed in terms of the normal components on the
three sides. In order to solve for the current uniquely, we further imiaose an
additidnal requirement that these normal components have to remain constant
across their respective boundaries. In the case of a rectangular cell, two of the
four additional conditions can be shown to be redundant and thus the number
of equations 1s again reduced to six for the six unknown coefficients.

The roof-top functions on rectangular cells and triangular cells will
be introduced in Sections 3.2 and 3.3, respectively. Section 3.4 will discuss the
Pseudo-mesh concept. The expansion of the vector current on a microstrip
structure in terms of the pseudo-mesh currents will be provided in Section 3.5.
The matrix equation will be re-stated in Section 3.6 with matrix elements

expressed in terms of the roof-top functions.

3.2 Roof-Top Functions on Rectangular Cells

Denote the side formed by nodes ¢ and j by side (Z,7) (see Fig. 3.2).
We can express the current density distribution J,(z,y) in rectangle « in terms
of the normal components I’ on the sides, where the subscript a and the

superscripts i, j mean the side (z,7) of cell .

4
Jo(z,y) = I D5 (z,y) ; (2,y) € rectangle o (3.11)

i=1
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where Di**! is the expression for the corresponding roof-top function to the
side (4,7 + 1) of cell @ (see Fig. 3.2). The direction of D%**! is always defined
to be incoming. Since a rectangular cell has four vertices or nodes, we can
consider i as a cyclic number so that i =i —4ori >4 andi=:+4 fori < 1.

D1 should be parallel to side (i + 1,7 + 2) and side (¢ — 1,7) as

shown in Fig. 3.2. Therefore, we can write

(Tie1 — 20)ZT + (Yio1 — ¥:)Y

Di*(z,y) = :
1—1,0

(a+ bz +cy) (3.12)

where the a, b and c are yet unknown constants and the d;_; ; is the distance

between nodes (z — 1) and 1, or

di1,i = \/(33;—1 ~zi)? + (Yi-1 — ¥:)? (3.13)
Expression for a, b and ¢ are determined by the requirement that the

D%+ has a magnitude of 1 on side (4,7 + 1) and vanishes on the opposite side,
o g

ie side (¢ 4+ 2,74 3):

a+bziy+cyi-1=0
a+bz;+cy; =1 ) (3.14)
a+ b.’L','+1 -+ ClYiv1 = 1

Equation (3.14) can easily be solved using Cramer’s rule.

a (Tig1 — 23:')?/;_1 - (yi+1 - yi)xi—l
b I e y,-+l — y,- (3.15)

c Ti— Tiy1
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2 ell o I \___.\
a
4 1

'Figure 3.2: The roof-top function on a rectangular cell.
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where
1 zio1 yiaa
A;-1,i,i+1 =11 z Yi (3.16)
1 ZTiyr ¥
Substituting (3.15) into (3.12) yields
Diitl(z y) = [(yi+r — y»,-)(z — Ti1) = (Tip1 — ) (Y — ¥i-1))] .
& (@) Dis1iv1
(2im1 = z')z t (im1 = 3i)Y ; (z,y) € rectangle . (3.17)
i-1,
The divergence of the cell current density distribution can be written
as
- 4 .. .
V Julz,y) =D IQL 5 (2,y) € rectangle (3.18)
i=1 .
where
Qi =—— (3.19)
“T disy '

3.3 Roof-Top Functions on Triangular Cells
As in the case of a rectangular cell, the current density and its diver-

gence on a triangular cell & can also be expressed as

3
Jo(2,y) =D L' Di*Y(2,y) 5 (2,y) € triangle (3.20)
=1
- 3 .« . .
V Julz,y) = D IDQL 5 (z,y) € triangle o (3.21)

i=1



Figure 3.3: The roof-top function on a triangular cell.
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and, similarly,t=¢—3 forz>3,ori =7+ 3 forz < 1.

The difference is that the Di*! for a triangle changes direction at
different location of the cell. For the triangle o shown in Fig. 3.3, the roof-top
function for side (7,7+1) is a vector parallel to side (i —1,?) at node ¢, parallel
to side (1 — 1,74 1) at node (i +1) and vanished at node (: — 1). The incoming
normal component is defined as 1 on side (¢,i+1). Obviously, the total current
density over the normal éurrent density at node 7 is d;_1;/h: 41, Where h; ;41
is the height of the triangle on side (7,7 + 1) (see Fig. 3.3). The d;_;; is the

distance between nodes (z — 1) and . Then, we can write

dicy,i (Tic1 — 20) + (yi-1 — ¥i)7

hijita dio1,i

(zic1 — 2:0)T + (yio1 — ¥:)¥ (3.22)
hii+1

DZH—l(xi’ yi) =

Similarly,

(Tim1 = Tig1)Z + (Yi-1 — Yis1)7
hi,i+1

D§£+1($5+1, Yip1) = (3.23)

From (3.22), we can assume

Ditl(z,y) == {l(mici—z)+s(z—z:)+t(y—w)ld +

hiis1

(yic1 — i) +u(z—zi)+o(y —w)g}  (3.24)

where s, t, u and v are some constants to be determined.
Setting (z,y) = (zi-1,¥i-1) and (31, ¥it1) in (3.24) and equating its

values at the two points to zero and (3.23) respectively, we obtain
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s§=—1
t=0
(3.25)
u=0
ﬁ = —1
and therefore, )
i i1 di,i+1 2 5
Dyt (z,y) = —m[(fv = zio1)2 + (y — yi-1)7] (3.26)
; 2d; i1
P 3.27
Qe |Dio1it] (3.27)

where h; 41 = d;i41/| Dic14:41 | 1s made use of in deriving (3.26).

3.4 Pseudo-Mesh Current Distribution Representation

Since, for both rectangular and triangular cells, we can express the
current density in a cell by the normal current density across its boundary and
since each of these normal current densities is assumed to be constant along
the boundary, we can now characterize the current in the cell by the total
current flow into and out of each of the sides of the cell. Topologically, this
is the same as replacing the microstrip structure by equivalent meshes, and
the current distribution on the surface area of a cell by the current flow along
corresponding meshes as shown in Fig. 3.4.

Unlike a real mesh structure, however, the net amount total current
flows into and out of a “junction” does not follow the conventional Kirchhoff’s
law. In fact, the difference between the incoming current and the outgoing

current contributes to the charge distribution on the cell. The requirement
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Figure 3.4: Current flow in a wire mesh.
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that the normal component of current must vanish at the edges of a microstrip
circuit can be easily implemented by “opening” the corresponding meshes con-
nected to the edges. We should note that the use of triangular “ meshes ”

captures fully the physical phenomenum of a current flow round the corner of

a bend. Thus, one of the advantages for the P-mesh representation is that it

can be constructed according to the physical intuition a designer has, and such
intuition usually results in fast convergence of the computational process.
3.5 The Global Expression for Current Distribution
In Sections 3.2 and 3.3, we have discussed the roof-top basis functions
on individual cells. To complete the P-mesh development, we still need to
integrate the individual current unknowns, i.e. I:**! for the cell « into a global
set of “mesh” currents I,,, m = 1,2,..., M where M is the total number of
interconnecting “meshes”. As we mentioned earlier, “meshes” at the boundary
of a microstrip structure are “disconnected” since the normal current at the
edge of a boundary cell is zero. For adjacent cells & and ¢/, at the common
boundary describable either by (e;¢,24 1) or (e';7',7" + 1) (see Fig. 3.5), the
unknown current across this boundary is now expressed in terms of the mesh
current I,, so that
I, = I+l = [+ (3.28)
The roof-top basis function corresponding to this unknown current is
H,, = D+t — p¥i+ - (3.29)

The divergence of the roof-top basis function is

‘-



node i+1 of cella node i' of cell o'

\ Ii',i'+1

node i of cell node i'+1 of cell o'

Figure 3.5: The side current for two adjacent cells.
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P, =Qi — QL (3.30)
Therefore, the P-mesh current distribution on a structure can finally

be expressed as

M
H@) = 3 In Fin(a,0) (3:31)

The H,,, m = 1,2,... are the corresponding B, and T),, m = 1,2, ...

discussed in Section 3.1.

3.6 Matrix Solution to the MPIE
The H,, in (3.29) are used as both the basis functions B,, and the
test functions 7}, of a microstrip structure. We have established the matrix

equation in (3.2) and we write down it again here.

o .
Z Zm,ml Iml = Vma m = 1,2,...,M (332)

m'=1

Substituting (3.31) into (3.10) yields

ot = ]::0/ ds/ ds' Konmi(z,y52',y") + 2, / ds Hm(m,y) . Ir_[m,(v:c,y)
(3.33)

7 d ot 1
I{m,m’(za y;xlay ) = Gm(p)Hm(ma y) : Hm’(x y Y ) - Ge(p) Pm Pm’ (334)

12
kg

V, = /s,,, ds Ho(z,y) - Bi(z,y) © (3.35)
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p=1(z~2)+(y-y) (3.36)

The surface integration on s, has to be carried out over the two
adjacent cells, s, and s, which share a common boundary or “mesh” m, i.e.
m = (1,0 + 1) = (o;7,4' + 1). It is noticed that the matrix element Z,,

consists of quadruple integrals of the form

/ ds/ ds'G o o (p) zhy ey )V > 08& 0 < ptv, 4+ <1
cell « cell o ’ .

(3.37)

For planar structures, the Gy, in (3.37 ) are Sommerfeld integrals

as we derived in Chaptér 2. They can not be evaluated analytically. Some

semi-analytical expressions of G,, . have to be found for efficient evaluation of

the quadruple integrals.
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CHAPTER 4

ANALYTICAL EVALUATION OF THE QUADRUPLE MOMENT
INTEGRALS IN MATRIX ELEMENTS

4.1 Introduction

The matrix elements have been expressed in terms of some quadruple
integrals with integrands involving the Green’s functions and linear basis and
test functions (see (3.37)). As mentioned in Chapter 3, the Green’s functions
are Sommerfeld integrals and can not be evaluated analytically. When the
source point and the field point are both on the dielectric slab, the Green’s

functions are of the form

Y e 20, A
Gulp) = [ dAJo(40) F (41)
N 2A[uo + prup, tanh(ugh)]
Ge(p) = [ drJo(Ap) B (42)

All the parameters have been defined in Chapter 2 and will not be
repeated here. Let’s first see the large argument behaviour of the integrands.

When A — oo,

Ug OF Up ~ A (4.3)

tanh(u,h) ~ 1 (4.4)
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and,
Dy ~ (pr + 1)X (4.5)

Die ~ (e, + 1) (4.6)
Therefore, the asymptotic behaviour of the integrands in (4.1) and

(4.2) is of the order of Jy(Ap), integration of the term results in 1/p [1], or

/0 “ A Jo(Ap) = % (4.7)

Equation (4.7) corresponds to the direct (not including the image)
field of a static source and has a singularity at p = 0. In order to avoid
difficulty in numerical computation of these integrals, we first extract the term

from the integrands of (4.1) and (4.2) to obtain [5]

Gme=G3 . +GT, (4.8)
where
2u, 1
Y= — 4.9
G = / 2 dO) L = 4 (4.10)
™ 0 Dim  pr+1
2 1
G = - 4.1
¢ =1, (4.11)

om _ [® Muo + pruy tanh(ugh)] 1
G = /0 25201 Dim Dy B e +1

}dA (4.12)
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For p = 0, the integrals in (4.10) and (4.12) are evaluated along the
real axis of the complex A plane with a deformation to avoid the singularities
between A = kg and A = kn. For p > 0, however, we found it more convenient
to first transform the integfation from 0 to oo to that from —oco to co with
the Jo(Ap) replaced with 1 HZ(Ap) [4]. And then, the integration contour is
deformed onto both sides of a branch cut defined by Re(uo) = 0, in the lower
half plane [5] (see Fig. 4.1). Since G, are smooth functions of p [5], we

can first compute a number of them with different p, and then curve-fit them

piecewise into some range-dependent polynomial of finite order.

My
Gmelp) = D C*(a,a’)p?. (4.13)

p=-1

where C7" are the coefficients from the curve-fitting; M, is the order of the
polynomials; the o and ¢ are the indices of two cells, within the range of which
the polynomial is valid.

The process is easily done since G, are functions of p only. In
practical programing, we assume g, = 1 and there is no dielectric loss. It must
be noted that the assumptions are not an inherent limitation of the algorithm.

Based upon the expression in (4.13), we can re-express the quadruple
integrals in the matrix elements (see (3.32) - (3.37) of Chapter 3) by individual

integrals of the following form:

Q(a’al,u’y,#l’yl’p) =-/

C

d_/ ds' Pty ™ " p = —1,0.....N..
oll o & Jeell o BV 5P =210,
(4.14)

where



A
Im(.)
deformed path for p =0.
/ » original integration path
e . v >
ko Kn Re(}.)

Al deformed path for p 0.

__—— branch cut.

Figure 4.1: The deformed integration contours.
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p=\(e P +@w-v) (4.15)

When the two cells are rectangular cells and p = v = p' = v/ = 0,
the integral has been evaluated in [6]. In this chapter, we will show that the
integrals for all the cases can be solved analytically [9]. Unfortunately, since no
explicit recurrence relations among different combinations of p, v, ¢/, v’ and p
are found, we have to solve each case individually. Only the cases with p < 4
will be included, even though in principlé, other cases can be derived as well.

The quadruple integration in (4.14) involves two triangular or rect-
angular cells, and the integration process is closely related to the evaluation
of the area of an arbitrary polygon. The process evaluating the area of or an
integral over an arbitrary polygon will be demonstrated first in Section 4.2. -

For the cases with even p in (4.14), the terms related to p can be
broken up into some terms with separable z, y, z’ and y’, and the quadruple
integrals can be reduced to the sum:ﬁation and product of some double integrals
with integrar;ds of power functions of z and y or z’ and y’. The integrals with
even p in (4.14) will be solved in Section 4.3.

For odd p cases, the integrals can be evaluated in a similar way, but the
two-double integralé have to be solved simutaneously. The final process involves
change of integration variables and is very complicated. We will discuss such
process in Sections 4.4-4.5. In the final section, we will include a comparison

between the analytical technique and a numerical technique;

4.2 The Evaluation of Double Integrals over an Arbitrary Polygon
Let’s first consider evaluating the area of an arbitrarily oriented tri-

angle @ or AABC as shown in Fig. 4.2. The area is defined as
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SAABC = AABC dz dy (4.16)

We can break the triangle into two smaller triangles AABD and
ABCD, where point D has the same z-coordinate as point B. The integration

with respect to y is evaluated first.

— Fa2 y=ya,1+($—$a,l)(ya,2_ya,l)/(xa,Z"l'a,l)

SAABD - ‘/-’;a 1 d.’l? y !y=ya,s+($-—$a,s)(ya,1—ya,s)/(za,l-—za,s) (4’17)
[T Y=Ya,2+H(T~20,2)(Ya,3=Va,2)/(Ta,3—Ta,2)

Sapcp = /I 0T gl o —ars) (e —vars)/ (Ea — ) (4.18)

The sum of SAABb and Sapep is the area of triangle AABC or

SaABC-
3 ZTa,i+l .
Saasc =3 / dzy(z, 1) (4.19)
i=1"Fari i
Where
(@, 1) = g+ 2L T Vel p g (4.20)

Za,itl — Tayi
and o4 = To,1 a0d You = Yai1-

The final integral in (4.19) can easily be done. It is noticed that the
nodal index goes clockwise in Fig. 4.2. When the nodal index goes counter-
clockwise, we have a sign- difference between the area and the summation in
(4.19). Therefore, we have to define that the nodal index is in a clockwise order

whenever the above integration schemeis used. A special case with z,; = z4,41
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Y B (Xa,3’ Ya,a)

(Xa,h Ya,T) or (Xa,4v Ya.4)

(Xa,O’ Ya,O) c
» X
Xo,0= Xa,3 ,
Ya2"Ya,1
Yo, 0= Yo, 1t -—————"(Xa,a - Xa,1)
Xe,2" X 1

Figure 4.2: An arbitrary triangle.
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in (4.19) may be encoutered. In this case, either AABD or ABCD vanishes
and the corresponding term can be dropped.
Obviously, we can extend the technique to the integration of an inte-

grand over an arbitrary polygon.

D[f(z,y)] = /polygon af(x,y)dxdy (4.21)

After the integration with respect to y, we obtain

Z /3 j":“ £,(z)dz (4.22)

where M, is the number of sides in the polygon;

= [ #(@.v)dy. (4.23)
The only requirement for the procedure is that the integral in (4.22)

and (4.23) can be solved analytically in a closed-form.

4.3 The Evaluation of Q(a,,1,j,V,j’,p),p=0,2,4
We have learned from Section 4.1 that the quadruple integrals of even
p cases over two arbitrarily oriented cells @ and o' shown in Fig. 4.3 can be

reduced to the summation and product of some double integrals of the form

S(ayi,j) = /C o dseY | (4.24)

Following the procedure discussed in Section 4.2, we obtain

S(Cl, 2,_’] = xa,k,ya,k,ma,k+1, Z/a,k+1,0,i,j + 1) (4‘25)

uME



xa,2

‘ xa’1 Of'Xu’4

Xa,S

Figure 4.3: Two arbitrarily oriented cells.
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where

ZTa,2

C(Za1, Yo Ta2 Va2, Py 6 J) = /z . AT PP T Y |ymya 1+ (0,2 ) (=201 (50 2= 1)
’ (4.26)
The C(T0,1,Ya1s Ta2s Yo2: P55, 7 ), P = —1, 4,7 = 0 can be solved ana-

lytically and are listed in Appendix B.
By expanding the integrands of Q(«,<¢’,1,7,7,7',p) with p = 0,2,4

into power series of z,y,z’ and y’, and making use of (4.24), we can obtain

Q(a, oy1,5,7,5',0) = Sp(e, &4, 4,7, ') (4.27)
Q(aa a,aza.ﬁzlajl’ Z( 1 9 ) S (av a',z,],z',]',Q,r) (428)
r=0 =T

Q(a7 al’ i’ j’ i,’ j,’ 4) = Ql(a’ al’ i’j’ i,’ j,) + Qz(a7 a,’ 2.’ j’ il’ j,) (4'29)

where

Sy, i, 5,4, 5") = S(ei,5) S(ef, 7', 5) (4.30)

Ss(a,a'y4,4,1,7 r,t) = Sp(e, &y i4r—1t, 7,3' 44, §')+Sp(a, &/, 4, j+r—1,7', j'+1)
(4.31)

. 4 .4
Qi(a,oy4, 5,4,y =D (-1)

rl (4 — T.)gSS(a’ o\i,5,4,5,4,r) (4.32)
r=0 . .
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2!
QZ(aa 7’)]3 3.7 ”22( 1

W Sp(a,a'yi+2—r,j4+2~1t,3'+7r, ' +1)
r=0

(4.33)

4.4 The Evaluation of the Integrations with Respect to y and y’ in
Q(a,'\i,3,1,i,p),p = -1,1,3

As discussed in Section 4.1, the analytical evaluation of the quadruple

integrals for odd p cases is very complicated. The difficulty arises from the fact

that the integrands are not separable into two independent double integrals.

The two double integrals have to be solved simutaneously. But, the same

téchnique in Section 4.2 can be applied to solve the integrations with respect

to y and y’ first. The process yields

Ty M° M ! rza k+1 ;ta’,k’-H ’ e g ey
Q(Q’,Q,Z,],Z,] 3p) / / d.’E F(ZMY’?"] 7p)]y(k),y’(k')'
1 k'=1"Y%a,k Zal k!
(4.34)
where
Y(k) = Yok + (Yoakt1 — Yok (T = Tak) [ (Takt1 = Tayk) (4.35)

Y (K) = yargr + (Yarprt1 = Yoo ) (&' = Zargr) [ (Zat prb1 — Tar i) (4.36)

F(i,,¢',5'p) = / dy [ dy'paiyay? (4.37)
F(i,j,7,5', p) are functions of z, y, z’ and y’. For conciseness, the vari-.

ables are not included in F(7,7,7',7',p). The process to obtain the F(z, 7,7, ;')
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' is similar to what described in Section 4.2. We will use the F(0,0,0,0,-1) as

an example of illustration.

F(0,0,0,0,—1) = /dy/dy'%
= /dyln(p-i-y’—y)
= (y=y)In(p+y' —y)+»p (4.38)

In fact, there should be some additional analytic functions of z and z’,
or constants with respect to y and y’, in F(0,0,0,0,—1) as well as all the other
F(j,k,m,n,p). But, the remaining double integrations of these additional
functions in (4.34) vanish and will not affect our ﬁﬂal solutions. Therefore,
the additional functions are neglected. The final expressions of F(z,4,%,7',p),

p = —1,1,3 are listed in the following:

F(0,0,0,0,-1)=(y—y")n(p+y —y)+p (4.39)
F(0,0,1,0,—1) = z' F(0,0,0,0,—1) (4.40)
F(1,0,0,0,—1) = z F(0,0,0,0,—1) (4.41)

F(0,0,0,1,—1) = y' F(0,0,0,0,—1) + FA(0,1,-1) (4.42)

where

1 ! ! Ik
FA(0,1,-1) = ;1-[3(y—y)p+2(y—y)21n(p+y—y)+
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(z—2'Y(p+y —y")] (4.43)
F(0,1,0,0,-1) = ' F(0,0,0,0,—1) + FA(1,0,-1) (4.44)
where
L
FAQ1,0,-1) = Z[(y—y’)p+2(y—y’)21n(p+y’—y)—
(z—2'hn(p+y—v)) (4.45)
F(1,0,1,0,—1) = zz' F(0,0,0,0, —1) (4.46)
F(0,1,1,0,-1) =z’ F(0,1,0,0,~1) (4.47)
F(1,0,0,1,-1) = z F(0,0,0,1,—1) (4.48)
F(0,1,0,1,-1) = y'*F(0,0,0,0,—1) +y'[FA(0,1,-1) +
FA(1,0,-1)] + FA(1,1,-1) (4.49)
where

1 :
FAQLL-1) = skly—-y)r+(z-2)p+

3y —v)In(p+y —y)] (4.50)



1 ! !
F(0,0,0,0,1) = 2{3(z — 'Y’y —¢) In(p + v = y) + p] - p°}
F(0,0,1,0,1) = 2’ F(0,0,0,0,1)

F(1,0,0,0,1) = z F(0,0,0,0,1)

F(0,0,0,1,1) = 4 F(0,0,0,0,1) + FA(0,1,1)

where

‘ 1 | 7 !
FA(0,1,1) = =[18(z =) (y-y)r-
2 -y )Pp+3z—2Y In(p+y—vo)+

12(y —y")*(z —2')’ In(p + v — y)]

F(0,1,0,0,1) = 3’ F(0,0,0,0,1) + FA(1,0,1)

FAL0,1) = —[z—2)—v)r—20w—-y)r+

16
4y—y)(z—2V In(p+y' +y)—

(z—2) In(p+y — )]

F(1,0,1,0,1) = zz’ F(0,0,0,0,1)

71

(4.51)

(4.52)
(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)
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F(0,1,1,0,1) = 2’ F(0,1,0,0,1) (4.59)

F(1,0,0,1,1) = z F(0,0,0,1,1) (4.60)

F(0,1,0,1,1) = 4'* F(0,0,0,0,1) + y'[FA(0,1,1) + FA(1,0,1)] + FA(1,1,1)

(4.61)
where
1 / / v/
FA(1,1,1) = -9—0—[—3(y—y)4p+14(y——y)2(:c——:c)2p+
20y —y)p+15(y — )Pz —2')’ In(p+ ¢y —y)] (4.62)
F(0.0.003) = (—201—v)p—9(z — 22y — /)2
(0,0,0,0,3) = —[-2(y~y)'p—9(—2")(y—v)p+

40
8(z —2')'p +15(z — ') (y — ¢') In(p + ¢ — y)}(4.63)

F(0,0,1,0,3) = z’ F(0,0,0,0,3) (4.64)
F(1,0,0,0,3) = z F(0,0,0,0,3) (4.65)
F(0,0,0,1,3) = y' F(0,0,0,0,3) + FA(0,1,3) (4.66)

where



FA(0,1,3) =

where

FA(1,0,3) =

F(0,1,0,1,3) =

where
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L_ RN I a3 W2 -
480[ 4y—y)’p—-28(y—y )Yz —-2)p+

81(y — v')(z — 2')p + 90(y — y")*(z — ') In(p + ¢ — ¥) +

15(z — 2')° In(p +y — y")] (4.67)
F(0,1,0,0,3) = ¢ F(0,0,0,0,3) + FA(1,0,3) (4.68)

515[-4(.1/ —y)’p—16(z — 2" (y —y')°p +

3(z—2) y—v)p+18(z -2V (y—v') ln(p+y —y) -

3(z —2')° In(p +y — ¢/)] | (4.69)

F(1,0,1,0,3) = zz' F(0,0,0,0,3) (4.70)

F(0,1,1,0,3) = 2’ F(0,1,0,0,3) (4.71)

F(1,0,0,1,3) = z F(0,0,0,1,3) (4.72)

y* F(0,0,0,0,3) +y' [FA(0,1,3) + FA(1,0,3)] + FA(L, 1,3)
(4.73)
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1

FALL3) = o5l-6(y—y)°r —249(y —¢)*(z — =')’p +
10(y — ¥/)*(z — o')*p + 148(z — 2')°p +
105(y — y')*(z — 2')* In(p + ¢’ — y)] (4.74)

It is clear from (4.34) the basic elements in the remaining double

integrals are over the z-z' plane as shown in Fig. 4.4 and are of the form

g . Ta,k+1 ZTal k41 ey .
I(i,4,7,5',p) =/ dﬂv/x T A2 F (3,5, 8 7 P) ) e (4.75)

Ta,k a’ k! .
where y(k) and y'(k’) are defined in (4.35) and (4.36), respectively.
The evaluation of the integrations with respect to z and z’ will be

discussed in the next section.

4.5 The Evaluation of the Integrations with Respect to x and %’ in
Q(a, a',1,3,1,§', P),p = —1,1,3

We have solved the integrations with respect to y and ¥’ in last section.

The basic elements in the remaining double integrations with respect to z and

z' are listed in (4.75). The integrand in (4.75) contains functions of p,

p=Vst+t? | (4.76)

where

s=z—1 ' (4.77)

t=y—y (4.78)



xci',k‘ﬂ

Xo' k'

O Xak Xa k1 X

Figure 4.4: The integration domain in the z-z’ plane.
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It is pretty difficult to solve the double integrals in (4.75) without
any integration domain transform since the p has a very complicated function
dependence on the integration variables z and z’.

We first define some intermediate variables,

y(k) = a+ b (4.79)
yY(KY=c+da' (4.80)
or
@ = Yoi — Taxb » (4.81)
p = Yokl T Yok (4.82)

Tak+1 — Lok

CcC = ya’,k’ -— maI,kI d (483)

k1 T Yol K
d = Yolk+1 = Vo | (4.84)
Tol k'+1 — To! k!

The a, b, ¢ and d are obtained directly from (4.35) and (4.36).

There are two cases we have to consider: (a) b = d, or the two lines
(Zasks Yook )~ (Tak+1s Yo b+1) a0d (Tarpr s Yor k')~ (Tt k141, Yar k141) are parallel, or s
and ¢ in (4.77) and (4.78) are linearly dependent; (b) b # d, or the two lines
are not parallel, or s and ¢ are linearly independent. We will discuss the two

cases in the following two sub-sections, respectively.
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4.5.1 The evaluation of the double integrals I(i,j,i’,j’,p),
- p=-1,1,3 with linarly dependent (x — x’) and (y —y’) As mentioned
earlier, we have to transform the integration domain in the z-z’ plane to another
domain with simpler function dependence of the integrands on the integration
variables. It is noticed that s = z — 2’ and ¢t = y — ¥’ can be used to simplify
the expressions of F(3,j,7',j',p) ( see Section 4.4). We can use s as one of the
integration variable in the transformed integration domain. But ¢ can not be
used as the other integration variable since it is linearly depeﬁdent on s in this

case. Therefore, we define the transform as

s=z—2z
(4.85)
v=z+z' ‘
‘We can obtain from b= d and (4.79)-(4.84)
z = T(v+s)
z = tv—s
2 (v =) (4.86)

y = a+%bs+%bv

y . = c—%bs+%bv
The integration domain of a rectangle (see Fig. 4.4) in the z-z' plane
1s transformed to a rotated rectangle in the s-v domain as shown in Fig. 4.5.

The absolute value of the Wronskian is

oz 0z’ Oz Oz’

0s Ov Ov Os

From (4.39)-(4.74), we can see the integrands have very simple func-

1
=3 o (8)

tion relations, such as z, =, y, ¥/, zz', y'%, 2’y and z ¢/, to v. When v = A s+¢,
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xa', K+1

ml_________
-~ /\ <

Sy S3 Sy4

Figure 4.5: The integration domain in the s-v plane.
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where A and £ are constants, the integrations with respect to v of such functions

yield

/m'dv=i[(1—2/\)32+2§(x\-—1)s+€2] (4.88)

/mdv-—-—

[(14+20) 2+ 26X +1) s+ €7 (4.89)

el

[y dv= i[(élc L)+ 22N e—bE+AbE)s+B(1—2))s7]  (4.90)

/mm' dv = -11—2 [—2X 8%+ 31 €% s + €7 (4.91)

[vrdv = Tli (6122 + 6chE +82€%) +3[bE(N — 1)(b€ +4) + 4 X] s+

6 b[c(1 — 2)) + bE(1 — A)]s? + % (4) — 3) s°} - (4.92)

/m’y'dv = ,"11_2{6(4)‘ —3)P +3[2b6(1 = M)+ c(1 —2))]s2+

3E(A—1)(bé +2c)s +£2(bé +30)} (4.93)

./xy’dv = 11—2-{—26)\33+3c(2)\+1)32+'
3E[2c(A+1) +5AE+£7(Be+bE)} (4.94)

(4.86) has been used in deriving (4.88) and (4.94) and the a, b and ¢
are defined in (4.81)-(4.83).
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The double integration technique discussed in Section 4.2 is, again,

used to yield after the integration with respect to v

1(0,0,0,0,~1) = % )> /s:"“ ds[t In(p — t) + plo(m) (4.95)

where the 7 is from the Wronskian [3] and,

v(m) = An s+ €m (4.96)

A, = Jmtl T Um (4.97)
Sm+1 — Sm

ém = Um41 — )\m Sm41 (498)

The s,,, t,, and v, are defined as

810r 5 = Tak = Ta' k', 1107 5= Yok — Yo'k' s V10T 5= Tak + Tar ks
S2 = Tok — To' k'+1 t2 = Yo,k — Yo' k'+1 5 Vg = T,k -+ Tt k41

83 = Tak+1 — Ta'k'+1 5 13 = Yak+1 = Yo' k'+1 5 U3 = Tok41 + Tal k'+1

84 = Tok+1 — Lok 5 14 = Yakt+1 — Yo' k! » V4 = Tokt1 + Tar gt

(4.99)

\

They are the physical coordinates of the parallelogram’s vertices in
the s-v plane as shown in Fig. 4.5.

We can write from (4.95)

4
I(O)O)O)O)—l) = % Z[’\m G(Sm)tm)5m+l)tm+l)1) +
' m=1

é'm G(Sm,tm, Sm+1,tm+1,0)] (4.100)
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where
G(Smatma3m+15tm+ly TI,) = CL(Smatm,sm-{—l’tm-{—l’"’lanal) +
C(Smatm’5m+latm+lalana0) (4101)
- Sm+1. v
‘CL(Sm,tma5m+l’tm+1a7aHaV) = / ds s* ln(p+ 7t)lt=tm+(s—sm)tmi‘1-tm
. Sm Sm41—Sm
vy=-1orl (4.102)

C(Sm»tmySm+1,tm+1,7, 4, V) 1s defined in (4.26). Both integrals in
(4.26) and (4.102) are solved analytically in Appendix B.

Similarly, the integrals I(z,7,7', 7', p) of other combinations are solved
in the same way by making use of the integrals in (4.88)-(4.94). The final
results are listed in Appendix F.

4.5.2 The evaluation of the double integrals I(i,j,i’,j,p),
p = —1,1,3 with linear independent (x — x') and (y —y’) Whenb#d
in (4.82) and (4.84), the (z — 2’) and (y — ¢’) are linear independent. We can
transform the integration domain in the z-z’ plane, which is a rectangle(see
Fig. 44), into a parzﬂlelogram in the s-t plane as shown in Fig. 4.6. s and ¢

are defined as
(4.103)

We can obtain
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AN

QX
/
'__.
| —
\ X%

0 xaN:.kn X S5 sy Sz S,

Figure 4.6: The integration domain in the s-¢ plane.
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z = [t—ds—(a=0)]/(b—d)=a1+Pis+mt
g = [t—‘bs—-(a—-c)]/(b——d)=a2+,823+72t (4.104)
y = atbr=az+ B35+ 3t

y = c+dz' =as+ Bys+ 74t

\

a;, B; and 4; are explicitly given in (4.104).
To eliminate the sign confusion in the integration process (see Sec-

tion 4.2), we have to define the vertex indices in the following way.

Skk! = Tak — Tol ks ek = Yook — Yo' &'
Skki+1 = Tok — Tarkitls  Lhk+1 = Yok — Yol i+l
(4.105)
CSk41,k4+1 = Tok+1 — Tol k41 tk+1,k'+1 =VYak+1 — Yo' k' +1
Sk+1,k = Tok+1 — Talk's  Lht1h = Yak+1 = Yo' k!
Sg = MIN(Sk k', Sk k/+1s Sk+1,5+1> Skt+1,k') (4.106)

Sq4 = ma.r(sk,kr, Skk'+15s Sk+41,k'+1 3k+1,k’)

t, and t4 are the corresponding ¢ coordinates. Upon the definition of

(s2,t2) and (sa,t4), (s1,t1) and (ss,t3) are defined such that

t; < ta + m(sl — 32)

442 (4.107)

i3 >ty + %3%922-(33 -— 82)

The physical meaning of the definition is clearly shown in Fig. 4.6.

The Wronskian for the transformation is defined as

dz 92' Oz Oz

ds Ot Ot 8s

_ Sign|(Tars1 = Tak)(Tar k41 = Tor k)]
— b d . (4.108)

A = Sign[(Tap+1 — Tok)(Tarkier = Torp)]
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We have from (4.39)

F(0,0,0,0,—1) =t ln(p —t) + p C (4.109)

Integration of the term over the domain in the s-t plane yields

7 4 Sm41
©1(0,0,0,0,=1) = A Z/ " ds[D(s,t,1,0) + DL(s,t,—1,1)]tsm)

m=1"vS
4
= A Z GD(Sm’tm’Sm-{-la.tm+13030) ‘ (4110)
m=1 :
‘where
tm+1 - tm
t(s,m) =ty + ————=(s — sp,) (4.111)
3m+1 — Sm
D(s,t,p,v) = /dtt" PPt (4.112)
DL(s,t,p,v) = /dt t In(p+ pt)
p=-1orl (4.113)
GD(Sm,tm>3m+1,tm+la v, 7) = E(sm,tma Sm+41stm+1, 1, V>7) +

EL(STIHtm) Sm+1, tm+1a _l> v+ 1>7)

(4.114)

- it ,
E(Smytmy Sma1s tmt1s My Uy ) =/ ds s” D(s,t,u,v) (4.115)
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Sm
EL(Smytmy Smt1s tma1s s Vs Y) = / s s DL(s,t,p,v) (4.116)
. _ Sm

D(s,t,y,v) and DL(s,t, g, v) can be solved analytically and are listed

in Appendix A. E(Sm,tmsSma1stma1s Vs ¥) a0d EL(Spy tomy Sma1s tmats s ¥, Y)

can also be solved. They are expressed in terms of C(Sm,tm, Smt1,tma1, &, ¥y 7Y)

and CL(Smytm,Smt1stmt1, ¥, 7Y), Which are defined in (4.26) and (4.102), in
Apf)endix C.

- Similarly, the integrals I (z,7,7,7',p) of other combinations are eval-

uated in the same way. The final results are listed in Appendix F.

4.6 Comparison between the Analytical Integration Scheme and a
Numerical Integration Scheme

The complexity in the analytical integration of the quadruple integrals
raises a question whether numerical integration schemes will do a better job
for the smooth terms in the Green’s functions.

No matter what scheme we use, the current algorithm should be used
in a not very low frequency. ‘The reason for this is that the size of cells in
the de-embedding regions (see the next chapter) is chosen to be proportional
to the waveguide wavelength A, in order to reduce the number of cells in the
de-embedding arms, which are about 0.5), long, at low frequency. The ratio of
cell size over substrate thickness might be very large at low frequency and the
image term of the Green’s functions on .long,er varies slowly over the same cell.
Hence, the smooth term requires more higher-order terms in the polynomials,
which further compounds the complexity in deriving an analytical expression.

The other choice is to extract the static parts of the image terms and solve
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the >whole or part of the corresponding quadruple integrals analytically. Again,
this will increase computational time.

In practical programming, a 6-term (the highest order of the polyno-
mials is 4) analytical schemeAis used to yield stable results as long as h/A; >
0.001, where h and A, are the substrate thickness and the waveguide wave-
length, respectively.

Since the effect of a junction discontinuity decrease as the operating
frequency also decreases, the constraint that h/A, > 0.001 does not appear to
to a serious one.

A four-point numerical scheme was successfully used in {8] when the
two cells are rectangular cells and the basis functions are pulse functions. Sim-
ilar formulation is not found for arbitrary triangular cells. A numerical inte-
gration scheme is developed based upon the idea of dividing a cell into some
smaller cells with sampling points at the center of the smaller cells as shown iﬁ
Fig. 4.7. Comparison shows that the 6-term analytical scheme is computation-
ally equivalent to the 9-£>oint numerical scheme. The 9-point scheme generally
can provide network s- parameters of reasonable accuracy when the substrate
thickness is not very small ( > 1/100), ). But, accurate determination of
current distribution, especially the phase, on a structure needs a scheme of at
least 25 sampling points, which is about (25/9)* — 1 ~ 6.7 times slower than
the analytical scheme.

The analytical scheme is a better choice in considering stability, ac-
curacy and efficiency.

In practical programing, 6-term curve-fitting is only used for cells

that are close to each other. When the two cells are far away, fewer terms



Sampling points at the center of each small cell

Figure 4.7: 9- point numerical integration scheme.
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are used to save computational time. Also, the quadruple integrals of different
combinations are evaluated simutaneously, instead one by one, to make use of

the fact that they have many common terms.
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CHAPTER 5
DE-EMBEDDING OF NETWORK PARAMETERS

5.1 Introduction

The bulk of the P-mesh algorithm has been discussed in Chapters 2,
3 and 4. Using the formulas, we can solve the current distribution induced on a
microstrip structure by an excitation. But, the current distribution is not the
final result we need. What we need are the network parameters, such as the
impedance or admittance or scattering matrices. When any one set of these
parameters are known, the performance of a network is defined.

In microstrip antenna problems, a current dipole is usually used to
approximate the actual probe feed or edge feed [1]. Input impedance or ad-
mittance can be found once the voltage across the source dipole is computed
from the solved current distribution on the patéh. De-embedding in such a
problem is relatively straight-forward. However, the accuracy associated with
the use of a source dipole with an assumed current distribution can not be
easily assessed. Alternatively, we can assume a constant electric field across
a break in a microstrip structure as a “voltage source” to induce the current.
Input admittance of the structure can then be obtained from the current of
the gap [2,10]. Unfortunately, the admittance obtained in this manner con-
tains a capacitance of unknown nature, due to the physical nature of a gap.
This leads to the conclusion that characterizing a microstrip structure by input

impedance in the case of a known current source or by input admittance in the
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case of a known voltage source is not very satisfactory in any event.

One way to avoid this problem is to characterize a microstrip disconti-
nuity by the reflection and transmission waves, or the scattering parameters on
the microstrip. There are two fundamental methods of measuring S-parameters
in experimental environments [3]. One is to detect the standing-wave distri-
bution along the transmission line of a port as shown in Fig. 5.1 (slotted line
technique); the other is to calculate both magnitude and phase of the incident
and reflected waves by measuring power at some different positions (reflec-
tometer).

In a CAD program, it is not straight-forward to calculate the power
of the incident wave and reflected wave at a point along a strip-line since it
involves evaluation of the field around the strip-line from the solved current
distribution. The “ slotted-line technique ” is rather simple for CAD purposes
since the standing-wave feature is possesed by the current distribution.

Numerical results reveal that the solved current distribution along
the feed-line of a typical microstrip circuit or antenna is very close to a si-
nusoidal function just 0.1-0.2 waveguide wavélength away from junctions and
other discontinuities [4] (see Fig. 5.2). Therefore, we can assume the current

distribution as

I(z)=ae™™ —be”* (5.1)

where a and b are the incoming wave and outgoing wave in a port; v = a + j 8
is the complex propagation constant; z is the port linear coordinate.
The process solving the a, b and +, in turn, the S-parameters of

~ a network is called de-embedding. Some techniques have been introduced to
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Figure 5.1: A network and its de-embedding arms.
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Figure 5.2: The current distribution along an open-end structure.
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cast the current distribution on a de-embedding arm into thé sinusoidal form of
(5.1) before solving the matrix equations [5,6]. These methods require accurate
determination of the wave propagation constant before thé matrix solution.
Three de-embedding techniques have been developed for the P-mesh algorithm.
They will be discussed in Section 5.2.

For an N-port network, we need to detect the incoming wave and
outgoing wave on each port in N-different excitation states. Section 5.3 will
demonstrate the solution process for the S-matrix from the solved incoming
waves and outgoing waves.

When a large circuit is considered, we have to break it into small pieces
for efficient analysis. The solved S-parameters of each piece are then used to
construct the S-matrix of the whole circuit. A general network connection
algorithm will be discussed in Section 5.4.

Aécuracy is the other important consideration than efficiency and
versatility in developing an algorithm. The convergence characteristics of
a de-embedding technique affects the accuracy of an algorithm very much.
Some convergence study has been done for the P-mesh algorithm and the de-
embedding techniques. An example will be provided in Section 5.5.

In the processes, we alway use 5 voltage gap source at the far end of
the de-embedding arm of a port as shown in Fig. 5.1. In fact, the de-embedding
techniques developed here only require an excitation no matter what kind of

excitation it is as long as the excitation is far from de-embedding regions.
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5.2 De-embedding of Incoming and Outgoing Waves and Propaga-
tion Constants of a Network

It has been mentioned that three de-embedding techniques have been
develoﬁed for extraction of the incoming wave a, outgoing wave b and propa-
gation constant 7 along a microstrip. To identify them, we will call them: (1)
zero-crossing method; (2) additional strip method; (3) curve-fitting method.
They will be illustrated in the following subsections.

The common feature of the three de-embedding techniques is that
all of them extract the standing waves and w&veguide wavelength along the
de-embedding arm of a port. It is also possible to solve the input impedance
at a sour.ce by first defining .an equivalent characteristic impedance, and then
transform it back to S-parameters [10]. This technique will not be included
here.

5.2.1 Zero-crossing de-embedding technique  The technique
can only handle lossless cases (or y = j3 ).

In (5.1), we express the current distribution in a wave form. When

we expand the exponential terms, we obtain

I.(2) = A sin[f(z — 2,)] (5.2)

Ii(2) = B sin[f(z — z)] (5.3)
where A and B are the maximum values of the real part I,(z) and imaginary
part I;(z) of I(z).

Comparing (5.1) with (5.2) and (5.3), we obtain




A sin[f(z — z,)] = |a| cos(Bz — 6,) — |b| cos(Bz + 6;)

B sin[f(z — z;)] = —la| sin(fz — 0,) — |b] sin(Bz + 65)

where

a=|a|elf

b=|ble’%

It is not difficult to find

1
la] = 5 \/AZ + B? + 2 A B sin[B(z, — )]

A cos(Bz,) — B sin(B2;)
—A sin(fBz,) — B cos(Bz;)

tanf, =

1 T — ‘
6] = 5 \/,42 + B? — 2 A B sin[B(z, — 2))

A cos(Bz,.) + B sin(Bz;)
A sin(Bz,) — B cos(Bz;)

tan, =

96

(5.4)

(5.11)

Obviously, a and b can be evaluated if the magnitude A and zero-

crossing z, of the real part, the magnitude B and zero-crossing z; of the imagi-

nary part of the current distribution and the wave propagation constant [ are

solved.
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To evaluate the 3, we can detect two consecutive zero-crossings of the
real part and/or the imaginary part of the current. Their distance is A,/2.

Then,

B =2/ (5.12)

A, B, 2. and z; are easily obtained by matching both the real and
the imaginary parts of the éomputed current distribution along the center of a
microstrip de-embedding arm. The method was previously studied in (8] and
was found to be relatively sensitive to the higher order modes from junctions
and excitation regions. Typically, we need some isolation sections> and the
de-embedding arms require at least 1.5 Ag long.

The method is found to be more accurate when both I, and I; should
be comparable.

5.2.2 Additional strip method Generally speaking, the com-
putational effort for modeling a microstrip structure comes from two major
parts. The first is the time it takes to compute the matrix elements and the
so-called ﬁllin”g timé is proportional to N2, where N, is the number of cells.
The second part is from the inversion of the matrix equation and it is propor-
tional to N3. When the number of cells is less than about 1000, the filling time
typicallhy dominate the inversion time. The second portion becomes the most
important part after the number of cells exceeds about 1000. For a simple
junction, bend or resonator problem, the number of cells is generally much les's
than 100.

No matter which portion is the dominant part, computational time

increases much faster than N,. For a given problem, reducing the number of
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cells, or even breaking a large size problem into several small size problems
means saving in computational resource.

Our experience with the de-embedding technique discussed earlier is
that only 10-20% of the cells are actually required in the junction region with
the rest in the de-embedding arms. Generally, since we can not reduce the
number of cells in a junction region without sacrifiing accuracy, the question
becomes whether we can shorten.the length of a de-embedding arm.

We know from (5.1) that we can solve a and b by detecting the current
distribution at two or more different points from the least square curve-fitting
algorithm when the « is known. An alternative to the first method is then to
introduce an additional strip of sufficient length and use it to determine the
waveguide wavelength A, using the zero-crossing method. The real part of v
is obtained by comparing the a and b solved at two different positions. In this
way, only a de-embedding arm of about 0.5), is needed to attach to each port
of a network.

5.2.3 Curve-fitting technique A curve-fitting technique has
been developed in [8], in which the current distribution on a long section of
a de-embedding arm is curve-fitted using a least-square algorithm. But, it is
noticed that there are only three complex unknowns in (5.1) — a, b and 7.
These unknowns in principle can be determined analytically if we sample the
current values at three equally spaced points. Assuming the separation of two

consecutive points of the three is 29, we obtain

2z = —2p : 1 =ae’® — be™ 7™ (5.13)
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z= 0:L=a-1% (5.14)

z = 2o : h=ae " — pe® (5.15)

Summation of (5.13) and (5.15) yields

2(a — b)cosh(yz) = (L + L) - (5.16)
Substituting (5.14) into (5.16) gives
L + I
21, ’
A unique v -can be solved from (5.17) as long as Bz < 5. Then, the

cosh(vzp) = (5.17)

incident and reflected wave can be obtained from either two of (5.13), (5.14)
and (5.15) provided we avoid the situation where |I;| << |I;| and |I3|. This

technique is in general more efficient than the first two methods.

5.3 Multi-Port Network De-embedding

Obviously, the process discussed in Section 5.2 can be directly used
to give the reflection coefficient of a one-port network. For an N-port hetwork
problém, however, we have to provide N different excitation stateé for the
network and detect the a, b and 4 for each port in each state in order to
extract the S-matrix.

Using a] and &) to denote the incoming wave and outgoing wave at

port ¢ in the j-th state. We have

. N .
b =3 Sikd};i;=12,..,N. (5.18)

k=1
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We have N? equations and N? unknowns — Six,7,k =1,2,...,N. It
is a linear equation and alway has unique solution as long as the N-number of
states are linear independent. In fact, (5.18) can be reduced to N-number of
N x N-matrix equations different only in the right-hand sides.

It should be noted that (5.18) works only when the N-ports have the
same transverse geometry. When the ports don’t have the same transverse

geometry, we have to do the following process

S,{,j = S,',j Sj,,' (5.19)

The reason is that the solution of (5.18) is the pre-normalized S-
matrix. Generally, normalization involves the characteristic impedances of the
ports. The need to define a characteristic impedance, however, can be avoided

by invoking the condition S} ; = S} ; for passive and isotropic networks.

5.4 A General Network Connection Algorithm

Network connection formulas can be found in many books [9]. Here,
a general network connection formulation will be introduced. The most im-
portant features for this algorithm are its simpleness and its application in
network synthesis.

To simplify our discussion, we will consider an N-port network [S]
with its ¢-th port and j-th port connected to a 2-port network [S¢] (see Fig. 5.3).
More complicated conﬁections can be done in the same way. |

The S-matrices of the N-port network and the two-port connection

network are given by



Q
1-st port (i-1)-th port
N-th port i-th port
(@ N— Q.
: [S] : [S°]
o — ] @)
jth port
(j+1)-th port
@] O

Figure 5.3: A network connection.
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511 512 Sl,,' 51,_7'. 51,]\7 '
52 1 522 Sg,' .es Sg,j Sg N

Six Siz e Sii e Sy . S
[s]=1| " ’ N (5.20)
Sjl Sjg Sj,,‘ Sj,j SjN
i SNJ SN'Q SN,; SN,J’ SN,N ]
S5 S
s = | M (5.21)
Sii 55

We can write

5 = [S][d (5.22)

where [a] and [b] are the incoming wave and outgoing wave vectors.
We still know |
a; b; :
=-[59] (5.23)
a; b;

We can put (5.23) into (5.20) to get the new S-matrix. For such a
simple connection, the above process is easily done. But, it is very sophisti-
cated for complicated connectioﬁs such as [S¢] is a multi-port network and the
connection is among several big networks. It is very important to find an easy
way to simplify the process.

Let’s re-write (5.23) in a global form.



[0 0 .. a;

a;

0] =151
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(5.24)

where the superscript ¢ means transpose; [S¢], is the global form of the con-

nection matrix,

00

Se.

1,1

Se

Jit

0

Se

1]
se

Y

0

0

If we fill the zeros on the left-hand side of (5.24), we have to add the

corresponding elements in the right-hand side. The process yields

[a) =[5, [6] + [T)]a]

(5.26)

where the [T] matrix is the unit matrix [/] with the 1’s in (z,7)-th and (j, j)-th

elements replaced with 0’s, or
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A .
10 0 0 0
01 0 0 0
00 .. 0 .. 0 .. 0 :

=1 . . . . (5.27)
0 0 0 0 0
00 .. 0 ..0 .. 1

) = [$)[a) (5.29)

where [S’] is the new S-matrix,

(8 = (1] = [S}[S%),) 7" [S]1T) (5.29)

The ¢-th column and _;'-th column of [S'] vanish. The outgoing waves
at ¢-th port and j-th port are, in fact, explicitly expressed in terms of the i-th
row and j-th row of [S’] and the incoming waves at ports other than z-th port
and j-th port.

‘Obviously, for other connections, we can just change the correspond-
ing [5°], matrix in (5.25) and the [T] matrix in (5.27). And the modification
is alway simple no matter how complicated the connection is.

Another important feature is that the formulation can be used in
network synthesis. When an [S] is known, what kind of [S¢], should we u-se to

achieve the desired [S]7 The problem can be solved under some conditions.
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The discussion will not be included since it is beyond the subject of this thesis.

5.5 Accuracy in the P-mesh Computation

In this section, a microstrip of finite length is used to study the con-
vergence of the P-mesh algorithm.

We have three parameters to adjust: (1) N; — number of cells in the
transverse direction; (2) N,, — number of cells per waveguide wavelength; (3)
L — length of the de-embedding arms.

‘The longer a de-embedding arm is, the less effect the higher-order
‘modes would have on the network parameter solution. But, a longer de-
embedding arm will not necessarily yield a better result. This is because'we
always solve the incoming wave a and outgoing wave b in the de-embedding
region and transfer them back to the network reference plane (see Fig. 5.1).
When we have a longer de-embedding arm, the a and b in the de-embedding
region should be more accurate, but the a and b at the reference plane will be

affected more by the error in .

An actﬁal grid with N; = 3 is shown in Fig. 5.4. Narrower cells are
used on the edge to simulate the edg¢ condition. The magnitude and phase
of the reflection coefficient I' are shown in Fig. 5.5 as a function of frequency
using different values of N;, N,, and L, while the guided wavelength and at-
tenuation constant are shown in Fig. 5.6. Because of the memory limitation in
a workstation, the maximum number of cells used in this study is about 300.
Generally speaking, a 4-digit accuracy in the complex value of " and 4 can be
achieved even for Ny = 1, N, = 20 and L = 0.5);. While we have not yet
performed a more exhaustive convergenée study, it is sufficent to stéte that

the various limitations we place on the numerical integration of the Green’s
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h=0.100 mm
Er =129

o =4.55E7 s/m

Figure 5.4: An actual grid of an open-end structure.
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functions G, and G, the nature of curve-fitting them by polynomials of finite
order, the size placement and aspect ratio of the cells, truncation error as well

contribute to the ultimate accuracy of the P-mesh algorithm.

As mentioned in Section 4.6, the length of a de-embedding arm is
adjusted to be proportional to the waveguide wavelength in order to obtain
consistent accuracy. The question is whether we should keep the aspect ratio
of the cell size over the substrate thickness unchanged or we should keep the
number of cells in the de-embedding arm unchanged. If we keep the aspect
ratio unchanged, we can reduce the error at low frequency resulting from large
aspect ratio. But, we need large number of cells in a de-embedding arm, which
is proportional to waveguide wavelength, at low frequency. If we keep the
number of cells unchanged and change the size of the cells in a de-embedding
arm in a whole frequency range, we will not have the memory problem. But,
the low frequency solution will be affected by the numerical error resulting
from large aspect ratio.

| Furthermore, the present model relies upon the use of the equivalent
surface impedance to account for the finite conductivity and finite cross-section
of the metallic strips, which itself is only an dpproximation of the actual phys-
ical model. This leads us to conclude that the attempt to establish an error
bound using a direct comparision with the measured results is indeed desired.

Radiation has been suspected to be one of the causes why transmission
line theory and other equivalent methods don’t work well for the analysis of
typical MMIC circuits at high frequency ranges. It is found that the radiation
loss is so small that we can hardly detect it. As we will demonstrate later,

the metallic loss and the dynamic reactances associated with junctions and
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Figure 5.6. The waveguide wavelength and attenuation constant of the struc-

ture.
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Table 5.1: The error-bounds of the parameters.

parameter small value | large value
Ag < 0.5% < 0.5%
resonant frequency | < 0.5% < 0.5%
|Si,j| < 2.0dB < 1.5%
LS <0.2° < 1.5%

bends play much more important roles in performance degradation at high
frequencies.

For microstrip circuits of those dimensions typically used in MMICs,
the effect of higher order mode is always very small just 0.1 ~ 0.2 A, away
from junctions. In fact, we de-embed all the parameters 0.25); away from the
discontinuities and very accurate results are obtaind. To give an idea of the
accuracy of the P-mesh code with N; = 1 and N, = 20 when the strip width is

less than 5%, we list the error-bounds for the main parameters in Table 5.1.

In the analysis of microstrip circuits and antennas in the following

chapters, we always use N; =1 and N, = 20.
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CHAPTER 6
MICROSTRIP CIRCUITS

6.1 Introduction
The most direct application of the P-mesh algorithm introduced in
Chapter 2, 3 and 4 is on the analysis of microstrip circuits. Although very
much has been done on modeling microstrip discontinuities [1]-[19], most work
deals with simple discontinuities, such as open-end, gap, step or straight bend
structures, a.ﬁd some with large strip width to substrate thickness ratios. In
this chapter, we will be concentrated on industrial MMIC circuits and our
aim is to start with relatively simple structures, and then proceed to treat the
more complicated ones in order to demonstrate the importance of including not
only the junction reactances but also parasitic couplings in modeling circuit
behaviour in an accurate manner.

In what follows, we divide microstrip passive elements or circuits into
t.hree catagories: (1) bends and junctions in Section 6.2; (2) resonant structures
in Section 6.3; (3) and composite structures in Section 6.4. The notations
 defined in Section 1.5 and Section 5.5 will be used.

Although the examples we use in this chapter assume no dielectric
loss, it would be relatively straight-forward either by replacing the current
subroutines for computing Green’s functions with the one including loss, or by
analytic continuation of real permittivity into a complex one where change in a

physical quantity of interest, say the scattering matrix [S] due to dielectric loss
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can be obtained from computing its first derivative with respect to ¢,, when
the structure is not close to resonances [27].

All the computations are performed in the HP /350 workstation envi-
roment. It takes about 10 minutes to fill the matrix and 0.5 minutes to solve
the matrix for a 100 cell problem. An additional 0.7 minutes is used to evaluate
the Green’s functions. It has been mentioned in Chapter 5 and now is repeated
here that the computational time is almost proportional to the square of cell
number when we have much less than 1000 cells. When the number of cells
exceeds 1000 very much, the computational time increases as N2. Generally,
Jess than 100 cells are used for most junctions, bends-and other simple two-port

or three-port network problems.

6.2  Microstrip Bends and Junctions

6.2.1 ¢-bends Right-angle bends (see Fig. 6.2) have been well -
analyzed, but they are not often used in circuit design. A bend with an arbi-
trary bending angle ¢ (see Fig. 6.1), on the other hand, has not been analyzed
before, even though they .are much more frequently encountered. Because P-
mesh can fit a structure of general shape with a combination of triangles and
rectangles, computation for a ¢-bend is, in fact, straight-forward and the re-
sults for various bending angles are shown in Fig. 6.1 for the two quantities of
interest |Sy1| and £S,,;. Because |S2,] is very close to 1 and £S;, is very close
to —90°, they will not be shown here. Clearly, for typical MMIC dimensions,
little radiation is observed for all angles and reflection from the junction is
negligibly small for bending angles ¢ less than 45° even at the high end of the

microwave spectrum.
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6.2.2 Right-angle, chamfered or double-bends For many
non-MMIC applications, such as those encountered in printed-circuit antenna
feed networks, radiation from a right-anglé bend ( Fig. 6.2a) could become
more significant. In such an event, a chamfered-bend ( Fig. 6.2b) can signifi-
cantly reduce radiation as well as reflection losses. One can further speculate
that a double-bend ( Fig. 6.2c) could produce evén higher performance than a
chamfered corner. Fig. 6.3 and 6.4 seem to conﬁrrn. this and more. Reflection
from a bend can be in fact optimized in a given frequency fange by adjusting
the length of the double-bend section. Due to the cancelation of the reflected
waves from the two junctions of about A /4 in separation, the total reflection
|S11] from the junctions reaches its minimum value at 24 GHz and is below

—44 dB over the entire range from 0 - 27 GHz.

6.2.3 U-bends U-bends are often used to achieve desirable phase |
shift between two ports in MMICs. Fig. 6.5 shows a typical U-bend structure.
The comparison among our numerical result and the result obtained from the
conventional transmission line theory is shown in Fig. 6.6 and 6.7. The value
of |S11| reaches a minimum at 37 GHz due to the cancellation of reflections at

the junctions, what could not be caught in the transmission line analysis.

It is noticed that accumulation of the reflection from each bend can
produce noticeable resonances in fhe circuit (see Fig. 6.9 ) when three U-
bends are cascaded together (see Fig. 6.8) to form a serpentile line structure.
At resonance, the total loss, as computed from the expression 1 — |S;;]* —
|S21]%, is about 12.5% of the incident power. Part of this loss is due to finite
conductivity of the strip (our calculation indicates that even at 10 GHz, the loss

is still as high as 6.5%). Fig. 6.9 shows the comparison between the results of
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layout connection ( analyzing the set of cascaded U-bends in its entirety) and
network connection ( analyzing one U-bend and connecting them together).
The difference between them accounts for the coupling effect between the U-
bends, which is very significant when the circuit is at resonance.

The above example clearly demonstrates that the reflection from
bends, the metallic loss and the coupling effect among different parts of a

circuit can have great impact on the performance of a MMIC circuit.

6.2.4 Y-junctions T-junctions can be handled by many theories
and willlnot be discussed here. Fig. 6.10 shows a symmetric Y-junction. It is
not surprising that we get |S;;| = 0.333 and |S;;| = 0.667, ¢ # j over the whole
frequency range since very little radiation is expected. However, the reactive
stored energy at t.he junction could in fact produce phase shift of a few degrees
in 511 and 5,1, which is not expected in a typical transmission-line analysis by
which £5;,; = 180° and £S5;; = 0° are predicted ( Fig. 6.10). Non-symmetric
Y-junctions and T-junctions can be modeled easily using the P-mesh code, as

well.

6.3 Resonant Structures .

6.3.1 Double-stub band-stop filter A double-stub band-stop
structure shown in Fig. 6.11 was previously fabricated and measured for the
purpose of determining the parasitic coupling of two parallel stubs [22]. The
interesting phenomenon is that two local minima are observed in the response
of |Sz1| (see Fig. 6.11). It happens even the stub separation is as large as
Ag/4. Static theory and all the commercial softwares predict only one local
minimum [22]. In fact, since the two stubs are identical in length, only one

minimum is expected if we break the structure into two single-stub structures
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Nc = 184

Figure 6.8: The structure of three cascaded U - bends.
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Figure 6.10: A symmetric Y-junction and its frequency responses.
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and connect them without considering the coupling effect. This is indeed the
situation when we use the P-mesh to simulate the two stubs individually even
though radiation from the end of the stub and from the junction are included
implicitly. This leads us to the conclusion that for many applications, parasitic
coupling could be a major factor in limiting a designer’s ability to compact the
circuit layout, unless some form of circuit compensation is provided. In addition
to the numerical result generated by P-mesh, also shown in Fig. 6.11 are the
measured result [23] and results produced by other numerical and/or circuit
analysis methods [20,24]. Although a more comprehensive test program f(.)l’
the validation of the P-mesh code is beyond the scope of this thesis, Fig. 6.11

nevertheless provides a good indication regarding the kind of accuracy involved.

6.3.2 A band-pass structure A band-pass structure is shown
in Fig. 6.12. A high-(Q) resonance occurs at 24.3 GHz. Comparison between
the perfect conductor case and the actual copper strip case is also available
in Fig. 6.12. Surprisingly, 37% of the power is lost at the resonant frequency
for the copper strip case, whereas only 1 — (|S11|* + [Sz|?) = 1% is observed
in the case of a perfect conductor. It means that the radiation loss for this
structure is about 1%. This again confirms the notion that for circuit dimen-
sions typically encountered in MMICs, metallic loss often dominates, and by
comparision, radiation loss usually is very insignificant. It is also noticed that,
even though the loss in the copper strip case is much higher than that in the

perfect conductor case, the bandwidth doesn’t change very much, however.

6.4 Composite Structures
Directional couplers are often used in detecting signals from one strip-

line to another. The structure of a directional coupler is shown in Fig. 6.13
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for two sets of parameters. As shown in Fig. 6.14, for the coupler wi;ch a
longer length, up to —10dB of signal can be transmitted from port 1 to port 3,
while the transmission to port 4 is always below —20dB. Almost the same
|S31] is obtained when we reduce the gap width from 0.074mm to 0.020mm.
Instead, the |Sy;| and |S4| increase a lot. One way to increase |Sx| is to
increase the strip width in the coupling sections to create a stronger resonant-
type coupler. However, both the directional property and bandwidth will be
reduced. Fig. 6.15, on the other hand, shows that a very short coupler can
achieve significant coupiing and reasonable isolation. The direction of the

coupler, is no longer from 1 to 3, but from 1 to 4.

6.5 Conclusions
We have demonstrated some apflications of P-mesh algorithm in ana-

lyzing microstrip circuit discontinuities. They are far from exhaustive. Two ad-
ditional structures are shown: one represents an inter-digitated capacitor with
6 fingers (Fig. 6.16 and 6.17), and the other is a five-port junction (Fig. 6.18
- 6.20). These figures serve to demonstrate that provided the memory and
computation time are allowed for, P-mesh can in fact simulate circuit configu-
rations of more complex nature. In the next chapter, the use of P-mesh as a
numerical test bed for new microstrip antenna structures will be discussed in
some detail. Insofar as MMICs are concerned, the following conclusions appear
to be in order:

(a) Radiation is negligible;

(b) Coupling between elements may signiﬁcantly alter the circuit behaviour

of a passive MMIC element.
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A long directional coupler:
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Figure 6.13: Directional couplers.
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L1 =0.260 mm
L2 = 0.037 mm
wi= 0.050 mm

w2= 0.015 mm
w3= 0.050 mm
w4= 0.0325mm
gl =0.005 mm
g2 =0.017 mm
Nc =176

Figure 6.16: The configuration of an inter-digitated capacitor.
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Figure 6.18: A complex matching network.
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(c) Metallic loss is an important loss factor whenever resonance is encoun-
tered.

(d) Accumulation of small reflections from junctions and bends may result
in resonances and the resonances may cause a significant insertion loss

In circuits.
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CHAPTER 7
MICROSTRIP PATCH ANTENNAS

7.1 Introduction

Microstrip patch antennas have received extensive attention because
of their advantages of light weight, low profile, small size, ease of fabrication
and comformality, etc. [1]. Many algorithms and theories have been developed
for the analysis of micfostrip patch antennas and dipoles. Among them are
the transmission-line theory [3], cavity model [4]-[6], Weiner-Hopf method (9],
multi-port network method [10,11], moment methods [12] - [18] and finite-
elément method [19]. Except in [4], most of them are designed for structures
of regular shape, such as rectangularkpatches, circular patches and elliptical
. patches. As a result, they have difficulty in analyzing irregularities such as
a rectangular patch with a corner cut or a slot (see Fig. 7.1). Obviously,
the P-mesh algorithm has no problem in analyzing this kind of structure. In
fact, the P-mesh algorithm can, at the expense of more computational time,
provide much more accurate results than the ordinary spectral-domain moment
methods [14,15] since the small cells can accomodate more rapid variation of
current distribution on the antenna structure.

The major disadvantage of microstrip antennas is narrow bandwidth
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rectangular patch circular patch

=

elliptical patch square patch with a slot

Figure 7.1: Microstrip antennas.
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[1]. The reason for narrow bandwidth can be explained either from the view-
point of small radiating aperture around the antenna perimeter, or the view-
point that any radiation from the current on the patch is offset by the corre-
sponding image current on the ground plane. Attempts to broaden the band-
width by increasing the substrate thickness [15,18,20,21] have been partially
successful, primarily because it is accomplished at the expense of a stronger
surface-wave excitation. |

An alternative to a thicker substrate is to introduce additional para-
sitic elements [22] - [28] by either placing them on the same planar surface or
stacking them on different layers (see Fig. 72) In both cases, a wider band-
width is achieved when individual resonances are coupled strongly together.
Unfortunately, the horizontal parasitic element E’erangement is often diffiéu]t
fo realize because of the space constraint in an array configuration. The vertical
arrangement, ;)n the other hand, is difficult to fabricate and has an impedance
matching problem [29]. It is noticed that a broad-band gap coupled microstrip
antenna made of strongly coupled narrow strips was reported to realize an 8

times bandwidth broadening compared to the solid patch of same size [30].

Electromagnetically-coupled microstrip antennas (see Fig. 7.3) have
been shown to possess a wider bandwidth [29]. The patch antenna is typically
placed on a superstrate which is, generally, madé of honeycomb or other low
dielectric constant materials to reduce the surface waves. A tuning stub is
typically added to match the input impedance of the antenna to that of the
feed-line [21]. Electrofnagnetic modeling of such a structure with a closely-
spaced stub is given in Section 7.3. We will demonstrate in the same section

how the inductive coupling between the tuning stub and the patch antenna
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Figure 7.2: Microstrip antennas using parasitic elements.
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ground plane

Figure 7.3: Electromagnetically-coupled microstrip antennas.
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can be utilized to broden the antenna bandwidth. Another wide-band scheme
with two closely-coupled 45° - 45° - 90° triangles on the same substrate will be
discussed in Section 7.4. |
Corporate feed nefworks are commonly used in the design of mi-
crostrip arrays [31] (see Fig. 7.4). Metallic loss caused by the feed network
ié often a prohibiting factor at high frequency. A series-fed microstrip antenna
array, as shown in Fig. 7.5, has the advantage of smaller conduction loss. How-
ever, because the width may vary from element to element, the beam-pointing
direction of such an array is often very sensitive to the change in the operating
frequency. In Section 7.5, we will discuss how one can avoid such difficulty by

using identical patches in a coupled series-fed configuration.

7.2 Numerical Consideration

In Section 5.5, we demonstrated that accurate results can be obtained
using about 20 cells per waveguide wavelength in the ldngitudinal direction
(N, = 20) and 1 cell in the transverse direction (N; = 1) along a typical
MMIC microstrip line.

To determine whether the same criterion is suitable in analyzing mi-
crostrip patch antennas in which much lower dielectric constant substrates are
used, we have included a comparative study of several commonly used methods
for microstrip patch antennas. The dimensions of the microstrip patch antenna
fed at the radiating edge by a narrow microstrip is shown in Fig. 7.6. Good
agreement is obtained when the criterion of N,, = 20 and N; = 1 is used (see
Fig. 7.7, frequency beginning at 1.197GHz with step of 0.01GHz ). We found
a higher degree of accuracy can be achieved when we use some narrow cells on

the edges of both the patch and the feed-line to simulate the edge effect. This
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Figure 7.4: A power division network in microstrip arrays.



Figure 7.5: A series-fed microstrip antenna array.
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becomes important particularly when the patch is edge-coupled to a feed-line

( Section 7.5) ahd/or to a tuning element ( Section 7.3).

7.3 Wide-Band Microstrip Patch Antennas

The current P-mesh code can directly be applied to planar microstrip
ante'nna,s with a single layer, or to vertically-stacked antennas with an air-
substrate (extensAion to a multiple-layer dielectric substrate will not be included
in this thesis because of the lack of a suitable Green’s function progra;n). The
objective of this section is to demonstrate how wide-band patch antennas can
be derived using strongly coupled resonances.

Fig. 7.9 shows the typical frequency response of a microstrip patch
with dimensions as shown in Fig. 7.8. The bandwidth, defined as VSWR < 2,
of such a structure is about 1%, due to the fact that the substrate thickness is

usually small in this case.

To increase the bandwidth, a superstrate i$ added, the antenna is
now placed on the superstrate and electromagnetically, or more precisely ca-
pacitively coupled to the feed-line which remains on the substrate surface (
Fig. 7.10 ). Fig. 7.11 shows a substantial amount of power is reflected back
even at resonace since the antenna is no longer impedance-matched to the
feed-line.

To provide a better impedance match, a tuning stub is added to the
feed-line of the antenna (see Fig. 7.12). The tuned frequency responses with
optimal stub locations (distance from the end of the patch) based upon the
transmission-line theory are shown in Fig. 7.13. It is noticed that the farther
the stub is from the patch, the narrower the bandwidth is. The question is

whether the transmission-line theory works for closely placed stubs.
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Figure 7.6. A direct line-fed microstrip patch antenna and its grided structure
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Figure 7.8: A one-layer microstrip patch antenna.
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The patch is on the second substrate.
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The stub is also optimized using the P-mesh code and the optimized
dimensions of the configuration is shown in Fig. 7.12. The P-mesh code pre-
dicts that the location of the stub is 33.8mm away from the end ( see Fig. 7.12
) of the feed-line compared to 35.2mm based upon traﬁsmission—line theory.
The frequency response based upon the P-mesh code compared with the cor-
responding one based upon the transmission-line theory is shown in Fig. 7.13.
It is noticed that the EM modeling predicts a narrower bandwidth ( 5% ) than
the transmission-line theory ( 8% ). The strong coupling between the patch
and the stub is clearly seen from the non-symmetric y-directed current density

distribution in the 3-direction as shown in Fig. 7.14.

In fact, 5% bandwidth is not the best we can do for such a double-
layer antenna. A slotted patch antenna and its frequency response are shown in
Fig. 7.15 and 7.16. Surprisingly, the impedance Ba_ndwidth is doubied to about
10%. It is explained that the two stubs, including the one under the patdl, serve
as two different feeds. The stub under the patch is more a capacitive feed from
the end. The stub parallel to the edge of the patch is more an inductive feed
along the stub. The two feeds form two different loaded resonances and each of
the stubs serves as the matchiné network of the other. It was suspected that the
two minima could be from two different resonances in the two directions. But,
the current distributions tell that both Z and g-directed current have almost
the same amplitude in the whole frequency range, and there is no indication of
two resonant frequenéies in two different directions. Fig. 7.17 shows a typical
x and y-directed current distribution. It is very clear the current is forced to
orient itself in the slot direction.

A typical E-plane (defined as parallel to the slot) radiation pattern
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Figure 7.14. The current distribution of the double-layer electromagnetically-
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at three different frequencies is dipicted in Fig. 7.18. The cross-polarization
is lower than —19dB for both E-plane and H-plane patterns in the whole
frequency range. The advantage of such a configuration is that the slotted

patch doubles the bandwidth apparently without sacrificing anything.

.Since the antenna and the tuning stubs are placed in different layers,
a question naturally arises as to whether the antenna performance is sensitive
to alignment error. A sensitivity analysis was consequently performed and the
result is dipicted in Fig. 7.19. The dz and dy in the figure are the offsets
of the feeding network with respect to the location of the patch in Fig. 7.15.
Obviously, the location error between the patch and the feeding network has
little effect on the frequency response. But the error in the feeding network,
such as the length and the location of the stubs do have.substantial effect on

the frequency response.

7.4 A Microstrip Antenna with two Triangular Patches

Another example of wide-baﬁd microstrip antennas is a composite
structure consisted of two 45° - 45° - 90° triangular patches on the same sub-
strate (see Fig. 7.20). We know such a triangular patch has approximately the
same ()-factor as the corresponding square patch [32], and therefore it should
have the same bandwidth as a square patch. A coupled resonance phenomenon
occurs when two triangular patches of slightly different dimensions are facing
~ each other. For comparision, a rectangular patch of somewhat larger size is also
’shown in Fig. 7.20. Their frequency responses are compared in Fig. 7.21. It is
of interest to note that the impedance bandwidth of the double-patch structure

is increased substantially (to about 2.5% ) compared to the rectangular patch
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Figure 7.17: The current distributions of the slotted patch.
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(about 1.5%) even the rectangular patch has a larger size. The E-plane pat-
terns are shown in Fig. 7.22. Good radiation patterns are also obtained over
the whole frequency range, but the cross-polarization appears to be somewhat
higher than the slotted patch discussed earlier. However, we should note that

the impedance bandwidth is quite sensitive to the gap width in this case.

7.5 An Edge-Coupled Microstrip Antenna Element

As mentioned in Section 7.1, metallic loss associated with a corporate
feed network sometimes can be a lirﬁiting factor in array applications. On the
other hand, a series-fed antenna array consisted of elements of different sizes
can have a very limited beam-pointingvbandwidth. In this section, an edge-
coupled configuration using identical elements will be analyzed (see Iig. 7.23).
The question we need to address is whether a significant amount of power can
be coupled to a radiating antenna in this fashion.

As we pointed out in Section 7.2, more cells near the edge of the feed-
line and the edge of the patch are needed in order to model more accurately
the effect of coupling between the strip-line and the patch. A comparison is
provided in Fig. 7.24 for different N, values ( number of cells on the trans-
verse direction of the feed-line) and the Multi-port model [11]. The difference
between the result using N; = 1 and other values of N; can indeed be quite
significant because the edge condition is very important in this case. In the
analysis follows, we consistently use N; = 3.

Typical frequency responses of such a radiating edge coupled-fed an-
tenna for different values of feed-line to patch gap width are shown in Fig. 7.25
and 7.26. The transmitted, reflected, and radiated power as a function of gap

width are shown in Fig. 7.27. It is of interest to note that as much as 45% of
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Figure 7.20. Patches of different shapes on one-layer substrate microstrip an-
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the incident power can bé lost. In this case, the dissipated power is very small
and, therefore, we can consider the lost power is the radiated power. kExcept
for the last one or two elements, the edge-coupled antenna can indeed be used
effectively to design a series-fed array. It is also of interest to note that the
phases of 5,1 and S;;, measured at the symmetry plane of the antenna, are
always about 180° and 0° at resonances. This feature might be helpful in array
consideration.

It should be mentioned that the gap width can control the amount
of power coupled to the patch only when it is a radiating-edge coupled-feed,
w.hich is capacitive, and it doesn’t work well when it is a non-radiating edge

coupled-feed.

7.6 Conclusions
We have demonstrated the application of the P-mesh code in the
analysis and design of microstrip patch antennas. We can conclude:

(a) The edge condition of the current density distribution may be very
important to the numerical accuracy of microstrip patch antennas with
strong edge coupling.

(b) Multi-loaded resonances of a microstrip structure can be used to in-
crease the bandwidth of the antenna.

(c) A configuration of two 45° - 45° - 90° triangular patches facing each
other on the same substrate can increase the bandwidth substantially
without occupying more space.

(d) Radiating-edge coupled antennas can be used effectively to design a

series-fed array.
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CHAPTER 8
CONCLUSIONS

The thesis has introduced a mixed-potential integral equation algo-
rithm for the analysis of microstrip passive circuits and antennas. The primary
goal is to develop an accurate and efficient CAD tool that can handle arbitrarily
shaped microstrip circuits and antennas in a wide frequency range.

The algorithm began with the establishment of the mixed-potential
integral equation by enforcing the boundary condition of the tangential electric
field, which was expressed in terms of the current density distribution and its
divergence, on the surface of a microstrip structure.

The distinguishing feature of the algorithm was the introduction of
the roof-top basis functions on a combination of rectangular cells and triangular
cells as the basis functions of current density distribution and the test functions
for the tangential electric field. This feature makes it very eflicient to use
rectangular cells in the regular region and triangular cells to fit the irregular
boundary of a microstrip structure.

Semi-analytical expressions for the Green’s functions were obtained
from extraction of the static singular p@rts and overlapped polynomial curve-
fittings of the smooth parts of the Green’s functions. The data-base for the
polynomials was set up for repeated use in the evaluation of the double surface

integrals or the quadruple integrals. An analytical technique was developed to
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solve the quadruple integrals accurately and efficiently based upon the semi-
analytical expressions of the Green’s functions and the piece-wise linear current
density distribut}ion.

Other major accomplishments were the three-point curve-fitting S-
parameter de-embedding scheme and efficient S-parameter de-embedding of
multi-port networks. In the three-point de-embedding scheme, the current
distribution along a microstrip line was detected at three uniformly spaced
points for accurate determination of the complex wave propagation constant,
the incoming wave and the outgoing wave. The symmetry characteristics of
a passive microstrip circuit were employed to determine the S-matrix of a
multi-port network of different port parameters without solving the somewhat
ambiguous characteristic impedances of the ports.

A general network connection program was formulated to accomplish
network inter-connections. The most important feature is its simplicity for any
complicated network connection. |

The algorithm was well adapted to a FORTRAN program. The pro-
gram can accept cells of different sizes and orientations, and realizes true arbi-
trariness.

To demonstrate the versatility of the P-mesh algorithm and the P-
mesh code, several structures, simple or complex, were provided for the analysis
of microstrip circuit discontinuities. Good agreement between our calculated
results and experimental results and results from other methods was observed.
It was found that the metallic loss, mutual couplings among circuit elements
and reflections from junctions are the important factors in microstrip circuit

designs. On the other hand, radiation from discontinuities in a typical MMIC
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circuit is generally negligibly sméll.

Application of the algorithm in microstrip antenna analysis was also
demonstrated in the thesis. Some wide-band mechanisms were discovered from
the electromagnetic simulation. It was shown that multi-loaded resonances
could be used to improve the bandwidth of an antenna significantly.

Some assumptions were adopted in the algorithm developed in this
thesis. It was assumed that the ground plane and substrate of a microstrip
structure were infinitely extended. But, this can never be ‘true. There is no
easy way to take into consideration the finite ground plane and substrate of
a microstrip structure. Fortunately, the edges of the ground planes and sub-
tractes are generally far enough from the strips to have little effect on the field
distribution. The finite thickness of the metallic strip can be approximated
using the equivalent impedance boundary condition. More accurate consider-
ation involves vertical current and is fnuch more difficult.

The roughness or the imperfection of the ground plane can be mod-
elled as an equivalent impedance boundary. Incorporation of an impedance
boundary condition of the ground plane is non-trivial. Implementation of the
P-mesh algorithm for analysis of other planar structures such as co-planar
waveguides and sloted-lines can also be achieved by simply replacing the Green’s
functions.

A micréstrip circuit generally contains not only planar structures.
Some three-dimensional structures such as air-bridges and via-holes and some
active elements such as transistors have to be used for circuit arrangement.
Incorporation of three-dimensional elements and active elements into the P-

mesh code is necessary for a layout simulation.
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In this kind of integral equation methods using sﬁb~domain basis func-
tions, large number of basis functions are needed. Many quadruple integrals
and large matrix are encounterd. Improvement has to be made to speed up
the calculation. A perturbation method can be used to reduce the solution
of a large structure into the solution of several small structures. An iteration
method can be used to solve large matrices. It is noticed that the quadruple
integrals solved in Chapter 4 are independent of frequency, substrate thick-
ness and dielectric constant, etc. Only the coefficients in the polynomials are
functions of those parameters. This characteristics can be used to significantly

reduce the computational effort.
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APPENDIX A

THE CLOSED-FORM SOLUTION OF THE D(S,T, M, N) AND
DL(S,T,M,N)

The integrals D(s,t,m,n) and DL(s,t,m,n) are defined in Chapter 4

and are repeated here.

D(s,t,m,n) = /dtt"p’” ;m = —1,0,... (A
DL(s,t,m,n) = /dtt" In(p+mt);m=—-1or1l (A.2)

where
p= Vs + 12 (A.3)

The solutions of the integrals should contain some arbitrary functions
of s. But, these arbitrary functions of s don’t affect the solution in Chapter 4
and will not be included here.

The procedure of solving the integrals is not provided here. Only the

final result will be listed.

D(s,t,—1,0) = In(p + t) | (A4)

D(S,t’—]-’l) =P (A5)
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1

n

D(s,t,~1,n) [t"”lpf(n— 1)s? D(s,t,—l,n—?)] n > 2 (A.6)

D(s,t,m,n) = nl? [t"“p + s? D(s,t,-—l,n)] in>0 (A7)

DL(s,t,~1,n) = ﬁi [ In(p ~ t) + D(s,t,~1,n +1)] ;n>0 (AS)

DL(s,t,1,n) = Z—jj [t""’l In(p+1t)+ D(s,t,—1,n + 1)] ;n>0  (A9)



APPENDIX B

THE CLOSED-FORM SOLUTION OF C(S1,T1,85,T5,M,N,K) AND

CL(S1, Ty, 87, s, M, N, K)

The integrals C(s;,t;,s;,t;,m,n, k) and CL(s;,t;,85,t;,m,n, k) are

defined in Chapter 4 and repeated here.

Yy
C(s;,t,-,sj',tj,m,n,k) = /J dSpmSntk
5

-1<m<1

CL(si,t;,sj,tj,m,n,k) = /j ds s™t* In(p + mt)

m= —lorl
where
p=,/32+t2
t=as+b
t: — 1,
a = -2
8; — &

b=t —as;

(B.2)

(B.4)

(B.5)
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The solution is

C(si,ti, s5,t5,—1,0,0) = In(V1+a?p+s+at)| (B.7)

1
V14 a?

1
l1+a

Clsirti, sirt;, 1,1,0) s [pl% — abClsiyti, 55,t5,-1,0,0)]  (B.8)

C(siytiy 85,t5,—1,n,0) = plsJ—

i
n(1 + a?)
(2n —1)abC(s;,tiy85,t5,—1,n—1,0) —

(n — l)b2 C(si, ti, 85,t,—1,n — 2,0)] n>2

(B.9)
C(s; t~.<s~t~OnO)=———1————s"+1 Ysn>0 (B.10)
BRI TRS PRLRLD) n+1 s 2 = .
C(si,ti,s5,t5,myn, k) = aCl(sit,s5,t;,mn+1,k—1)+
bC(s,-,t,-,sj,tj,m,n, k— 1)
m>-1;n>20;k>1 (B.11)

C(s,-,ti,sj,tj,m, n, k) = 'C(s,-,t,',.sj,tj,m -— 2,n + 2, k) -+
C(S,‘,ti, sj,tj,m -— 2,n, k + 2)

m>2;n>20;k>0 (B.12)
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n+1
CL(si,ti,Sj’t.‘iaman,O) = n+1 [ln(p+mt) - % |.§f +
mmC(s;,t;,sj,tj,—l,n,O)
m=-—lorl;n>0 (B.13)

CL(si,ti, 85,t5,myn, k) = aCL(s;,ti,85,t;,mn+1,k—1)+
CL(S;,t;,sj,tj,m,n,k - 1)

m=-lorl;n>0;k2>1 (B.14)



APPENDIX C

THE CLOSED FORM SOLUTION OF E(S;,T7,S;,T;,M,N,K) AND
EL(SIaThSJ,TJ,MyN,I{)

The integrals E(s,-,t;-,sj,tj,m,n,k) and EL(s;,t;,s;,t;,m,n, k) are

defined in Chapter 4 and repeated here.

E(si,ti,85,t;,m,n, k) = /sj ds s* D(s,t,m,n) (C.1)

EL(si,t,85,t;,m,n k) = /sj ds s* DL(s,t,m,n) (C.2)

where t is defined in (B.4); D(s,t,m,n) and DL(s,t,m,n) are defined in Ap-
pendix A.

The integrals can be expressed in terms of the result of Appendix B.

E(S,’,t{, S5y tJa _1’0’ k) = CL(Si, tia S5, tj’ ]-’ k, O) (CB)

E(S,‘, t,', Sj,tj, -—]., 1, k‘) = C(Si, t,‘, Sj, tj, 1, k, O) (C4)

1
E(s,',t,-,sj,tj,-—-l,n,k) = ;[C(S;,ti,Sj,tj,l,k,n—1)-——
(TL-—l)E(S;,t;,Sj,tj,-—l,'n—2,k+2)]

n>2 (C.5)
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1
m+n+1
mE(s,-,t,', sj,tj,m - 2,n, k+ 2)]

E(S,',t,', sj,tj,m,n, k) = [C(S;,t,',Sj,tj, m, k,n + 1)+

n>0 (C.6)

1
E(s,-,ti,sj,tj,m,n,k) = m[CL(S,‘,ti,Sj,tj,m,k,n—}-1)—-—
mE(s;,ti,sj,tj, ~-1,n+ 1,1\7)]

m=-lorl;n>0 (C.7)



APPENDIX D
THE EXPRESSIONS OF THE INTEGRALS INVOLVED IN APPENDIX F

The integrals G(sm,tm, Sm+1stm+1,1)s H(Smytms Smt1stme1, ), €tc.,
used in Section 4.5.1 and Appendix F are solved and expressed in terms of
the C(smytm,Smt1stmt1:7s 4 ¥) and CL(Spm, b,y Smt1stmt1,7, i, v) defined in

Appendix B. The solutions are listed next.

G(Smatma3m+1atm+1an) = CL(Sma m,3m+1, m+1y = 1 n, 1) +
C(sm,tm,sm+1,tm+1,l,n,0) (Dl)
H(Smatmvsm-f-latm«}-l,n) = 3C(3matma3m+latm+la1777',1) +

2 CL(sm,tma sm+1a tm+1, —'17 n, 2) +

CL(Smstms Sma1stme1s 1, n+2,0)  (D.2)

I{(smatmasm+17tm+1an) = C(smytm75m+l,tm+1,lan>l)+
2C'L(Smy m73m+1, m+1y 1 n 2)

CL(Sp,tmy Sma1stme1, 1, +2,0)  (D.3)

L(Smatma3m+1atm+1,n) = H(smvtm73m+1atm+17n)+

I{(sm,tm7sm+17tm+17n) (D4)
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M(Sm’tm’5m+1’tm+lan) = 4O(Sm,tm’5m+1atm+l, 1’n’ 2) +
O(Sm’tmasm+1’tm+1, lvn + 2-) 0) +

30L(Sm, m,5m+1, m41ly — 1 k12 2) (D5)

Ar(sm,tm,>5m+l’tm+1a n) = 2O(Sm’tm33m+latm+1a I,n+2, 0) -
O(Smatma5m+1’tm+la l,na 2) +

3CL(5ma ma5m+1a m+1y = -1 Tl+..,].)
(D.6)

P(Sm,tm,5m+latm+1,n) = 5[13C(Sm,tm,3m+1’tm+1’1,n+?‘$1)'—

2C(Smatm,sm+1’tm+1; lana 3) +
) 3 CL(Sm,tm, Sm+1,tm+1, 1, n + 4, 0) +

12 OL(Sm,tm, Sm+1,tm+1, —-1, n 4+ 2, 2)]
(D.7)

3
R(Smatma5m+1atm+lan) = 'Q_[C(Sm’tmvsm+1,tm+la1’n+2’1)_

2C(Smytmy Sma1y tmals lv,}:c, 3) —
CL(sm,tm,s,'ng, tm+1,1,n +4,0) +
4 CL(Smytmy Sma1s tma1s —-lv, n+2,2)]

(D.8)
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T(Smatm’3m+1,tm+1an) = P(Smatma5m+1,tm+lan)+

V(Sm, tm, Sm+13 tm-{-l, n) =

M/(Sma tm, Sm+1, tm+la TI,) =

X(sm, tma Sm41, tm+1an) =

R(smytms Smesty tms1s ) (D.9)
.
-5-[—3 C(Smstmy Sma1stme1,1,m,4) +
14 C(Smytmy Smt1,tmy1,1,n + 2,2) +
C(SmytmySma1stmi1, L, +4,0) +
15CL(Smytmy Sma1stme1, —1,n + 2,3)]

(D.10)

—~2CL(Smstmy Smats tma1s 1,0, 4) —

- 9C(Smytms Sma1stmtr, L,n +2,2) +
8C(Smytms Sma1stme1, 1, +4,0) +
15CL(Sm,tmy Smtts by, —1,n +4,1) |

(D.11)

1
g[”“i C(sm,tm, Sm+1stm+1, L,n, 5) -

28C(smytm, Sm+1stmt1, 1,0 +2,3) +
81 C(SmstmySma1rtme1, I,m +4,1) +
90 CL(Sm,tmy Smt1ytme1,—1,n +4,2) +
15 CL(Smytm, Smat1stmt1, 1,1 + 6,0)]

(D.12)
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5 .
Y(Sm,tmasm-i»l,tm-i»lan) = g[”4c(sm,tmasm+latm+la1ana5)""

IGC(Sm,tmasm+latm+l$1,n+2,3)""
3C($matma5m+l,tm+lvl,n+4,1)+
180L(5m, m,sm+1) m4+1y ™ 1 7’1.+4 2)

3 CL(sm,tm, 5m+l,tm+l, 1$ n + 6a0)]

(D.13)
Z(Sm,tm,5m+latm+l,n) = X(Smatm,sm+1,tm+l,n)+
Y(sm,tm,sm+1,tm+1,n) (D14)
: 3
A(smatm,5m+l,tm+1an) = 7{_6 C(Sm,tm’sm+l,tm+l$1$n,6)_

249 C(Smytmy Sma1s tma1, L, +2,4) +
10C(SmytmySma1stmar, L,n +4,2) +
148 C(Smy by Sm1s tms1s 1,1 + 6,0) +
105 CL(Sm,tmy Smt1s tms1, — 1,1 +4,3)]

(D.15)



APPENDIX E
THE EXPRESSIONS OF THE INTEGRALS INVOLVED IN APPENDIX G

Theintegrals GD(Sm,tm, Sm+1, tm+1: YY)y HD(Smy tmy Smats bmt1, ¥, 7),
etc., in Appendix G are expressed in terms of the E(sy, tm, Sm41,tme1, ¥, 77) and

EL(Smytm,Sm41, tmt1, ¥, Y) listed in Appendix C. The solutions are listed next.

GD(Smatma3m+latm+1’Va’7) = E(smatmasm+1$tm+lalaya7)+
EL(Sm$t'm’sm+la m+1y 1 V+1 7)

(E.1)

1 .
Z[3E(3m,tma5m+l3tm+l7 laV + 137) +

r)-E-L(Sma m,3m+1, m+1y T 1 V+‘-'a7) +

H.D(Sm,tm,sm+l,tm+131/37) =

EL(Smatm-a 3m+1atm+1a1ay’7 + -)] (E?‘)

1. -
I‘,D(smatmasm+latm+lay$7) = —[E(sm7tm73m+htm+l7lay+1a7)+
2EL(Sm, m33m+1, m+1y — -1 l/+2,’}’)

EL(Sm,tm, 3m+1atm+'lal3ya7 + 2)] (E3)

LD(Smatma3m+latm+laya7) = HD(sm3tma3m+l$tm+laV37)+
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KD(8m,tm, Sma1,tmt1, ¥, )

1
—[4 E(Smatma 3m+1’tm+1a 1’ v+ 2’ 7) +

MD(8m,tm, Smitytmi1, ¥,7) = 5
E(smytm,Smatstmers L,y + 2) +
B3EL(SmytmsSmt1,tme1, —1, v + 2,7)]
(E.5)

L 2,9) +

]\’D(Smatmasm+latm+lal/a7) = -6'[—-E(Sm,tm,$m+1,tm+1,l,l/+

2E(3matmasm+1atm+la 1’1/,7 + 2) +
-1Lv+1,7+2)
(E.6)

3EL($m’ m,3m+1a m+1y

1
PD(Sm,tm,3m+1atm+1aV’7) = _[13 E(Sm,tma3m+1atm+1,1,y+ 1’7+2)

2E(3ma tma Sm+1, tm+la 1a v+ 3)7) +

3EL($m,tm,3m+l’tm+1,1’1/’7 + 4) +
-1,v+2,v+2)]
(E.7)

12EL(Sm,tm, $Sma1> tme1, —

1
RD(Smatma5m+l)tm+1aya7) = 16
2E(3matma3m+l)tm+l’1ay+ 3a7) -

[E(Smatma3m+la m+1a1al/+1 7+9)
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EL(Sm,tm,Sm+1,tm+I,1 V’7+4) +
4EL(3m, m,3m+l, m+1s 1 v+ v7+9)]

(E.8)

TD(sm,tm,Sm+1,tm+1aV,7) = PD(3m7tm’3m+1,tm+1,Va7)+
. RD(Smatma3m+latm+laVa7)

(E.9)

1
%[”3 E(Sm’tmasm+latm+la la v + 4a7) +

14 E(Smatma3m+1atm+1a 1,1/ + 2a7 + 2) +

VD (8mytms Smats tma1s ¥ Y)

QEL(Smatm,3m+latm+l’131/37+4)+
15EL(3m, masm-}—l’ m+1y = -1 V+3a7+2)]

(E.10)

. 1.
M/D(Sm,tmasm+latm+1,Va’Y) = ~[“E(3matma3m+latm+la1al/+4a7)"

gE(Sm’ mySm+1, m+1a1 v+ 37+2)+
8E(3matm33m+1atm+lalaya7+4) +
15 EL(Sm,tm, 3m+1,tm+1"‘1,1/ + 3’7 + 2)]

(E.11)

.X'D(Sm,tm,sm_;_l,tm.}.l,l/,’)/) = [ 4E(8m, m,8m+1,tm+1,1,l/+5 ’7)

480



Y D(Smytmy Smt1, tmt1, 1Y) =
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28 E(SmytmySmatstmat, Ly + 3,7 +2) +

81 E(Smytmy Sma1stmar, Ly + 1,74+ 4) +

90 EL(sm,?m,sm+1, tmi1, =1, v+ 2,7+ 4)] +
15 EL(sm,tm,sm+1,tm+1_, 1,v,7+6))

(E.12)

516[—4 E(Smytmy Smt1ytmt1, L v+ 5,79) —

16 E(Sm»tms Smat> tma1, L, v + 3,7 + 2) +
3E(SmytmySmatstmer, Ly +1,7v+4) +
18‘EL(sm,tm, Smtlstmet, =L,V 4+ 2,7 +4) —
3 EL(Smytmy Smt1stma1, 1, v,y + 6)]

(E.13)

ZD(Sm,tm,5m+l,tm+l,V,7) = XD(Sm’tm,3m+17tm+1,V,7) +

AD(Sm, tm, 3m+1,tm+1, V’ 7) » =

YD(Sm,tm,3m+1,tm+1a v, 7)

(E.14)

L
840

249 E(Sm,tm,3m+1,tm+1,1,l/ + 4,7+ 2) +

[‘“6 E(Sm,tm,3m+1,tm+1s 1sV + 6,7) -

10EL(sm’t7;l'l’Sm+1,tm+l, 1,1/ + 2,7 + 4) +

148 EL(Smytm, Sm1stma1, 1, 0,7 + 6) +
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105 EL(Smy tm, Sma1, tmg1, —1, v + 3,7 + 4)]

(E.15)



APPENDIX F
THE DOUBLE INTEGRALS I(I,J,I',J',P), P = —1,1,3 WITH LINARLY

DEPENDENT (X —X’) AND (Y —-Y")
The double integrals I(i, 7,7, ', p) with linear dependent (z — z’) and
(y — y') are defined in Section 4.4 and the solution techniques are introduced

in Section 4.5.1.
The results of the integrals with all the combinations are expressed

in terms of the integrals listed in Appendix D.

4

1(0,0,0,0,-1) = %m—l)\ G(Smytms Sma1stma1s 1) +
é(sm, m»3m+1k, tmt1,0)] (F.1)

1.4

1(0,0,1,0,-1) = -é:;l[ (1 = 2Xn) G(Smstmy Sma1stme1, 2) +
26m( A — 1) G(Smytms Sma1,tms1, 1) +
2 G(SmytmsSma1stms1,0)] (F.2)
1 4

I1(1,0,0,0,-1) = -8—m= [(1 4 2X) G(Smstm, Sma1stma1,2) +
26m (A +1)G(3m’tm’3m+1,tm+1,1)+

(F.3)

52 (3m3 m33m+17tm+17 O)]



1(0,0,0,1,—1)
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4
l Z 6(1“2/\ G(Smatm33m+1)tm+132)+

8 m=1

2(2 >‘m c— bé‘m + /\m bém) G(Sma tma Sm+1» tm+1a 1) +

(46 + bém) fm G(Sm, tma 3m+1a tm+1 ’ 0) +
/\m H(sm)tma 3m+1a tkm+1a 1) +

. ém H(Smatmasm+latm+la 0)] (F4)

1{(0,1,0,0,—-1) = —Z[b(1~‘?/\) G(Smy tims Sma1s tma1, 2) +

1(0,1,1,0,—1).

2(2 )‘m c— b&m + )‘m bém) G(smatma Sm+1, tm+1a 1) +
(40 + bgm) ém G(Sma tm, 3m+1, tm+1a0) +
)\m I\,(Sma tma Sm+1, tm+l, 1) +

§m I((Sm,tm,3m+1,tm+1,0)] (F5)

1 4
1(1,0,1,0,~1) = 2—2 =2 G(8mstm, Sma1,tme1,3) +
3 )\m éyzn (S‘ma t‘ma Sm+1’tm+1’ 1) +

53 (Sma m33m+1,tm+1,0)] (F6)

E{b 4)‘ G(Sma mySm+1, m+1a3) +
3 [2b€m (1 - m) + C(l bt 2)‘m)] G(Sm,tm, Sm+1,tm+1,2) +
3§m (/\m - 1) (bfm + 26) G(Smatma 3m+1atm+1, 1) +

6;(36 + bfm) G(Sma tma 3m+1atm+1,0) +



3
Z[(l - 2/\m) I((sma tma Sm41s tm+1a 2) +

2€m(/\m - 1) I{(sm,tmasm+1atm+1a 1) +

Erzn. ]{(sm,tm, sm+1,tm+1a0)]} (F?)

1(1,0,0,1,—1) ‘= '212,;{“2“’" G50y by Smats tmsss 3) +
36(2Am + 1) GlSms s Smaans tmes, 2) +
361126 (A + 1) F bAm €] GSms s Smatstones, 1) +
€2 (Bc+bEm) G(Smytms Smatstme1s 0)+
Z[(l +20) H(Sms s Smat bogns2) +
2% O -+ 1) H (5 by Smats msns 1) +

fiH(smatmasm+1atm+1,0)]} . (FS) ‘

700,1,0,1,-1) = élzmil{bz(um —3) G5y tony Smsts sy 3) +
65(c(1 — 22m) + bm (1 — Am)] -
G(Smytm, Sm+1, tm+1, 2)+
3[66m (A — 1) (B€m + 4¢) + 46 A ] -
G(SmstmySmt1stme1,1) +
Em (126% 4 6ch & + B2 E2) G(Smytmy Sma1ytma1,0) +

3

Z[b(l bl 2/\m) L(Sm, tm, Sm+1, tm+1, 2) -+

22 Amc—b&n + A b&m) L(Smytmy Smttytmer, 1) +
(4c + bgm) ém L(sﬁatma Sm+1s Im+1s 0)] +

4
g[)‘m M(smatma3m+1atm+1’ 1) +



ém Al(Sm, tm, Sm+1, tm+1, O)]} (Fg)
1 4
I(0,0,0,0,l) = E [/\m N(Sm,tm,3m+1,tm+1,l)+
m=1
€m N(Sma >3m+1,tm+1,0)] (F.10)

1 & 4
1(0,0,1,0,1) = ZS‘Z[(l—2/\,§1)N(Sm,tm,3m+1,tm+1,2)+

m=1

2ém(/\m - 1)N(3m,tm73m+latm+1> 1) +

€2 (srm m33m+latm+la 0)] ) (Fll)

4
1(1,0,0,0,1) = —%Z[H-Z/\ N(smstmsSma1, tmt1,2) +
m=1

2m(Am + 1) (Smatm>3m+latm+lal) +

érzn N(Smytm,Smi1stm+1,0)) : (F.12)

N

1(0,0,0,1,1) = Z[b 1= 2X0) N(8mytmy Sty tma1,2) +
2(2/\mc——b€m+x\mb€m) N(Smstmy Sma1stme1, 1) +
(de+b€n) Em N(Smytmy Smt1,tms1,0) +
A P(Smytmy Smat1s bmt1, 1) +

ém (Sm, 93m+13tm+130)] (F13)

—
[N

5 1 _'2/\ N(3m>tm,3m+1atm+132)+

1(0,1,0,0,1)

m=1



22 Am e —=b&n + A b&m) N(Smytm, Smalstms1, 1) +
(4C+ bfm) ém N(smatms 3m+1atm+1a0) +
Am R(smstma Sm+1stm+1, 1) +

fm R(Sm, tm, Sm+1, tm+1, O)] ’ (F14)

1 4

1(1,0,1,0,1) = Tia [_2)‘"1Ar(sm’tmasm+1atm+1a3)+

1(0,1,1,0,1) =

1(1,0,0,1,1)

144 ~—
3 )‘m f; N(sm" tm,sm+1, tm+1, 1) +

51?;;, ]V(Sm, tm’ Sm4+1y tm+1’ O)] (F15)

144 Z{b (4hm = 3) N(Smstmy Smt1s tmy1,3) +

{Zbgm (L=2An)+ (1 =2A0)) N(Sm»tms Sma1s tma1,2) +
36 (O = 1) (B6m + 26) N(Sms by Smsts sy 1) +
E2(3¢c4 bEm) N(Smytm, Smatstme1,0) +
%{(1 —2Xm) R(smytmy Sma1, tma1,2) +
2m(Om = 1) R(Sm, tmy Sma1s tma1, 1) +

62 (sm, m,3m+l,tm+l,0)]} : ’ (F16)

. 1
= Z{ 26 A N(Smstmy Sma1y tmg1,3) +

144 fuyer
36(2’\?71 + 1) N(Sm,tma5m+1atm+1’ 2) +

3€m[zc()‘m + 1) + b)\m fm] N(sm,tm, Sm+1,tm+l, 1) +

fvzn (36 + bfm) N(smatm, 3m+1,tm+1,0) +



1(0,1,0,1,1)
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3
Z[(l + 2)\771) P(smatm>sm+1>tm+172) +

26 ()‘m + 1) P(Sm’tma3m+1,tm+17 1) +

52 (sm’ m’3m+1’tm+1,0)]} (Fl?)

144 Z{bz 4)\ )N(3m>tm>3m+l>tm+l’3)+

6b[ (1 - 2)‘771) + bfm (1 - )‘m)] N(Smatm73m+latm+la2) +

- 3[bm (Am — 1) (bm + 4c) + 4P X)) -

N(Smytm, Sm1, tmt1,1) +

Em (1267 + 6cb & + B2 €2) NSy trns Smg 1 g1, 0) +
%[b(l = 2A) T(Sms by St g1, 2) +

22 e = bbm + A b)) T(‘sm,tm, Sm+1ytmt1,1) +
(dc+ bbm) €n T(Smytmy Sma1y tm1,0)] +

D0 V(s s St s 1)+

€m (sm, m7$m+1>tm+170)]} (FIS)

1 4

1(0,0,0,0,3) = - [/\mW(Sm,tm,Sm+1,tm+1,1)+

1(0,0,1,0,3)

80 m=1
ém W(smatnu $m+1,tm+l, 0)] . (Flg)

13 ~
= a0n Z [(1 - 2Am) W(Sm,tm, $m+17tm+17 2) +

ma=]

26771(/\m - 1) W(smatm53m+17tm+la 1) +

651 I/V'(Sm, tm, Sm+1) tm+17 0)] (FQO)



. 4
1(1,0, 0, 0, 3) = 320 Z (1 + 2/\ W(Sm,tm,sm+1,tm+1,2) +
m=1

2fm(/\m + 1) W(Sma m,sm+1atm+1) 1) +

52 (Sma masm+1atm+1a0)] (FQ]-)

1 4
320 &, |
2(2 /\m C - bﬁm —+ /\m bﬁm) W(Sm,tm,sm+1,tm+1, 1) —+

1(0,0,0,1,3) [B(1 = 2Xm) W (Sms tmy Smg1s tmga, 2) +

(46 + bém)ﬁm W(Smatma Sm+1atm+1’ 0) +

/\m X(Sm,tm, Sm+1,tm+1, 1) +

!
o
N
A

ém X(Smstmasm+latm+la0)] (

4
](0a150a0a3) = 320 Z W(sma ma5m+1atm+1a2)+

m=1
2(2 /\m c— bﬁm + /\m bém) W(Smatma5m+latm+la 1) +
(4C + bﬁm) fm VV(Smstma Sm+latm+la 0) +

/\ Y (Sma masm+latm+la1)+

£m Y(smatm,sm+1’tm+1a0)] (F23)

1 4
1(1,0,1,0,3) = '%'6 [‘2)\,” VV(Sm,tm,Sm+1,tm+1,3) —+
. m=1

3Am frzn M/(Smatma Sm+1stm+1, 1) +

gfn I/V(Sma tm, Sm41y tm+1a 0)] (F'24) |



1(0,1,1,0,3) =

1(1,0,0,1,3)

1(0,1,0,1,3)

o
[\~]
(o)

E {b(4/\ - 3) W(Sm, m73m+17tm+1,3) +

960 =

[2b§m (1 - )‘m) + C(]. - 2/\m)] W(Sm,tm,3m+1,tm+1,2) +
3¢m A — 1) (b€m + 2¢) W (Sms by Sma1s tma1, 1) +
frzn('?’c + bém) W(vatm’3m+17tm+170) +
3
Z[(l - 2’\m)y(3m7tm73m+17tm+1’2) +
2£m()\m - 1) Y(Sm,tm,3m+l,tm+l, 1) +

€~rzn Y(SM7tm7$m+1’tm+1’0)]} (F25)

4

== r)bA M/ Sm,tm,$m+l)tm+1’3)+

“6 =

3c (2;— 1) W(Smstm, Sm+1s tms1,2) +

3¢ [2¢ (/\m + D)+ 020 En] W(smstmy Sma1r tma1, 1) +
€2 (Bc+b&n) W(Sm, tmy Sma1r tme1,0) +

Z—[(l +2X2) X(Smstmy Sty tma1,2) +

2€m (/\m + 1) X(Sm,tmv S'm+1atm+1’ 1) +

672; X(Sm’tm’5m+l,tm+170)]} : (I.26)
{6 (40 = 3) W (Smstm, Sma1s tma1,3) +
960 mz_:l o imtd

6b{c(l — 2A,) + b (1 — An)] -
W (smstms Sma1y tmt1,2) +
3[b€m (A — 1) (bl + 4c) + 420, -

W(5m7 tmv sm+1’tm+1’ 1) +
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bm (1263 +6cb &, + B2 E2) W (St tms Smats tma1s 0) +
g (1 = 2m2) Z(Smms tomy Smas1y bt 2) +

22 € — b + A BEm) Z(Smy by Smasrs trmans 1) +
(de+b8n) bm Z(Sm>tms Sma1, tme1,0)] +

%[Am A(Smstmy Smatstma1, 1) +

fm A(Sm’ tm, Sm+1, tm-l-—la 0)]} (F27)



APPENDIX G

THE DOUBLE INTEGRALS I(I,J,T,J',P), P = —1,1,3 WITH LINEAR
INDEPENDENT (X —~ X') AND (Y = Y')

The double integrals I(z,j,%',7’,p) with linear independent (z — z')
and (y—y') are defined in Section 4.4 and the solution techniques are introduced
in Section 4.5.2.

The results of the integrals with all the combinations are expressed

in terms of the integrals defined in Appendix E.

4 .
](0$0a0$0’_1) =A Z GD(Sm,tm,sm+l,tm+1,070) (Gl)

m=1

4
I(O’O$1$O$_’1) = AZ[a2GD(Sm’tm$3m+l,tm+1$070)+ﬁ2G—D(Sm,tm$

m=1

Sm+1s tm+1, 0, 1) + 72 GD(Sma tmy Sm41s tmat1, 1, O)]

(G2)

4
A Z [al GD(Sm’tm,3m+latm+1, 0,0) + ﬁl GD(Smatm,

m=1

3m+1, tm+1, 0, 1) + 71 GD(Sma tm, 3m+l, tm+1, 1$ O)]

1(1,0,0,0, 1)

I

(G.3)

4
I(0.0,0,l,—l) = AZ[CY4GD(Sm,tm,Sm+1,tm+1,0,0)+[34GD(Sm,tm,

m=1 .



1(0,1,0,0,-1) =

1(1,0,1,0,-1)

1(0,1,1,0, 1)

3m+l,tm+1, 0, 1) + Y4 G-D(sm3tm3 3m+1,tm+l3 13 0) +

HD(Sm,tm,Sm+1,tm+1,0, 0)] (G4)

4
A Z [0s GD(Smytms Smt1stme1,0,0) + Bs GD (8 tm,
m=1

Sm+1; tm+1, 0, 1) + 74 GD(Sm,tm, Sm+1ytm+1, 1, 0) +

I{D(3m3tm33m+l3tm+l30a0)] (G5)

= A i [@100 GD (S, tmy Sma1s tma1,0,0) +
m=1
(182 + @281) GD(Spmytmy Sma1s tme1,0,1) +
B1B82 GD(Smytmy Smat1s tms1,0,2) +
(172 + @271) GD(Smytmy Smt1s b1, 1,0) +
‘7172 GD(Smytms Smt1stme1,2,0) +

(Br72 + Ban1) GD(Smytimy Smt1s Emt1, 1, 1)) (G.6)

= A 24: [@20s GD(Smytmy Sma1stme1,0,0) +
m=1
(02fs + 04f2) GD(Sm, tmy Smt1, tmt1,0,1) +
B2B1 GD(Smytmy Smt1,tm+1,0,2) +
(@274 + asv2) GD(8my tmy Sma1, tms1,1,0) +
Y274 GD(Smy tmy Smt15 tms1,2,0) +

(18274 + 18472) GD(smyt'my Sm+1, tm+13 1$ 1) +

Q2 I{D(Sm, tm3 Sm+1, tm+l, 03 0) +



1(1,0,0,1,-1) =

1(0,1,0,1,-1)
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,52 I{D(smatma3m+lstm+lsoa 1) +

Y2 I{D(sm,tm,sm+1,tm+1,1,0)] (G7)

A 24: 104 GD(Smytmy Smt1, tms1,0,0) +
m=1

(1B + @4f1) GD(Smytmy Sma1,tms1,0,1) +

B1Bs GD(Smytms Sma1stmsr, 0,2) +

(0174 + @471) GD(Smy timy Sma1s tma1, 1,0) +

7174 GD(Smytmy Sma1, tmt1,2,0) +

(Brvs + Bam1) GD(Smytmy Sm1s tme1, 1, 1) +

a1 HD($m,tmy Sma1, tmt1,0,0) +

B1 HD (S, tms Sma1s tm1,0,1) +

71 HD(Sm’tma$m+1atm+la1a0)] (GS)

= A i [a2 GD(8m,tm,s Smt1,tm+1,0,0) +
m=1
20484 GD(Smytmy Sma1stm+1,0,1) +
Bi GD(Smytmy Smt1, tmt1,0,2) +
20474 GD(Spny s Smt1, tmt1,1,0) +
Y2 GD(Smstmy Sma1stme1,2,0) +
28474 GD(Smstms Smt1s tmtr, 1, 1) +
ag LD(Smytmy Smt1,tme1,0,0) +

,34 LD(Sm, tm; Sm+1, tm+1, Oa 1) +

74 LD(Sm, tm, Sm+l’tm+1’ 1’ O) +



MD(Sm,tm,Sm+1,tm+1,0,0~)] (Gg)
4
1(0,0,0,0,1) = A > ND(SmytmsSmt1stms1,0,0) (G.10)
m=1

1(0,0,1,0,1)

I(1,0,0,0,1)

1(0,0,0,1,1)

1(0,1,0,0,1)

4
A Z [02 ND(Sm,tm,Sm+1,tm+1, 0, 0) + ﬂz ND(Sm,tm,

m=1

3m+15tm+1, 0’ 1) + Y2 ND(Sma tma 3m+1,tm+17 1’ 0)]

(G.11)

4
A Z [@1 ND($mytmsSma1,tms1,0,0) + B1 ND (8, tm,

m=1

3m+1atm+1, 0, 1) + T ND(Smatm’ 3m+17tm+15 1’0)}

(G.12)

4
A Z {a4 ND(Smatma Sm+l’tm+1’ O, O) + 134 -/V-D(Smatma

m=1

3m+1atm+1a 0, 1) + 74 ND(Sm’rtma 3m+1atm+1a 1’0) +

PD(Sm’tm’Sm+1’tm+l’07 0)] (G13)

4 .
A Z [a4 ND(Sm’tmv 3m+1atm+17 0’ 0) + ﬂ4 jVD(sm’tma

m=1

sm+17tm+1505 1) +74 ND(smatmaSm+1atm+la 1,0) +

RD(Sm,tm,Sm+1,tm+1,0, O)] (G14)

4
I(1,0,1,0,1) = AZ[a1a2ND(sm,tm,sm+1,tm+1,0,0)+

ma=1



1(0,1,1,0,1)

1(1,0,0,1,1)

3]
[
(&>}

(182 + a2f51) ND(sm,tm,sm+1,im+1,0, 1)+
Br1B2 ND(8mytmy Sma1stm+1,0,2) +
(1¥2 + @2v1) ND(Sm,tmy Sma1,tma1,1,0) +
Y2 ND(Smy tmy Smt1, tmt1,2,0) +

(B17z + Bor1) ND(smytm, Smt1, tme1, 1, 1)) (G.15)

A 24: [c20s ND(8mytm, Sma1,tme1,0,0) +
m=1 .

(a2f4 + a4f2) ND(Sm,tm, Sma1s tm150,1) +

B2Bs ND(8m,tm, Sm41stm+1,0,2) +

(¥4 + aa¥2) ND(Smytmy Sma1s b1, 1,0) +

Y2Y4 ND(Smytm,s Sma1, tmt1,2,0) +

(B2vs + Bav2) ND(Sm ;s tm, Sma1, tmet1, 1, 1) +

a2 RD(Sm,tm,y Smt1ytm+1,0,0) +

B2 RD(Smytmy Sma1stme1,0,1) +

Y2 RD(Smytmy Sm+1stm+1, 1, 0)] (G.16)

A 24: [1aq ND(sm,tm, Sma1,tm+1,0,0) +
m=1

(14 + a4f1) ND(8mytmy Smt1stme1,0,1) +

B1Bs ND(sm,tmy Sma1, tme1,0,2) +

(c1ya + @am1) ND(Smytm,y Sma1stms1,1,0) +

Y174 N-D(Smatma Sm41, tm+1’ 2a 0) +

' (B1vs + Bav1) ND(Smstmy Smt1ytms1, 1, 1) +



1251 PD(Smatma 3m+1atm+13070) +
Br PD(8mytmy Smt1,tme1,0,1) +

7 PD(Sm,tm,S;n+1,tm+1,1,0)] (G17)

1(0,1,0,1,1) = A i[aﬁ ND($m,tmy Sm+1stms1,0,0) +
QQTE:ND(sm,tm,sm+1,tm+1,0, 1)+
B2 ND(SmstmySmi1s tme1,0,2) +
20474 ND(Smytms Sma1stme1, 1,0) +
YEND(Smstms Smatstme1s2,0) +
2B47a ND(Spmytmy Sma1s tma1, 1, 1) +
a4 TD(Smytmy Smat1stme1,0,0) +

BsTD(8mytmySm+1, tms1,0,1) +

Y4 TD('Sme tmssm+l)tm+l) 1’0) +

VD(Sm,tm,Sm+1,tm+1,0,0)] (GlS)
4 ) .
1(0,0,0,0,3) = A 3= WD(mytmy Sma1s tme1, 0,0) (G.19)
m==1

o4 '
1(0,0,1,0,3) = AZ[Q’QM/D(Sm,tm,8m+1,tm+],0,0)+,32WD(Sm,tm,

m=1

3m+latm+1707 1) + 72 WD(sm)tma 3m+latm+la 130)]

(G.20)

4
A Z [al WD(Sm,tm,Sm+1,tm+1, 0, 0) + ,31 WD(Sm,tm,

m=1

1(1,0,0,0,3)



1(0,0,0,1,3) =

1(0,1,0,0,3) =

1(1,0,1,0,3)

1(0,1,1,0,3)
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Sm+1, tm+1, 0, 1) + 7 WD(Sﬁa tm,s 5m4-1,tm+1a’1’0)]

(G.21)

4 .
A Z [04 WD(Smatm’ Sm+1, tm+1a0a 0) + ,34 I/V-D(S'ma tma
m=1

Sm+1,tm+1,0, 1) + Y4 W/D(Sm,tm, Sm+1,tm+1, 1,0) +

XD(Sm,tm,3m+1,tm+1,0,0)] (G22)

4
A Z [04 I/VD(Sma tma 3m+1atm+1) 03 0) + /34 I/VD(Sma tma
m=1

3m+la tm+la Oa 1) + Y4 VVD(Smatmasm+latm+la 1,0) +

YD(Sm,tm,Sm+1,tm+1,0, 0)] (G23)

= A i 102 WD (Smytm, Smt1y tme1, 0,0) +
o ,
(1f2 + a2B1) WD (Smytmy Smt1s tme1,0,1) +
B1B2 WD(Sm,tmy Sma1s tme1,0,2) +
(o1v2 + c2V1) WD (S, tmy Smtts tma1, 1,0) +
N1Y2 WD (Smstm, Smet1, tmt1,2,0) +

(ﬂ172 + ,3271) WD(Sm’ tmy Sm+1s tmat1, 1, 1)] (G'24)

4
= A Z [0204 WD(Sm,tm, Sm+1,tm+1, 0,0) -+

m=1

(0‘2,34 + 04,32) VVD(Sma tm’ 3m+1)tm+1a Oa 1) +

ﬁZﬂ«i H/D(va tma 5m+1, tm+1 9 0) 2) +



1(1,0,0,1,3)

I

1(0,1,0,1,3)

o
o
Ne)

(c2vs + @472) WD (S, tiny Sma1, tmt1, 1,0) +
Y274 WD (S, tms Smt15tmt1,2,0) +

(B274 + Bs12) WD(Sms tm)y Sma1s tma1, 1, 1) +
@2 Y D(Smytmy Smt1s tmt1,0,0) +

B2Y D(Smytm, Sma1stm+1,0,1) +

Y2 YD(Sm,tm,Sm+1,tm+1, 1,0)] (G25)

A 24: [@104 WD(8m,tmy Sma1,tm+1,0,0) +
m=1

(14 + aaf1) WD(Smytm, Sms1,tm+1,0,1) +

B1Bs WD(Smytmy Sma1stms1,0,2) +

(174 + @411 WD (S, tmy Sma1s tmsi, 1,0) +

Y4 WD(8my tmy Sm41y tmt1,2,0) +

(B17a + Ban) WD(sm, tm, Sma1s tmar, 1, 1) +

a XD(sm,tm,sm+1,tm+1, 0,0) +

Br XD(Smytm, Sma1stme1,0,1) +

71 XD(sm,tm,sm+1,tm+1,1,O)] (GQG)

= A i: [@2 WD(Smytm, Sma1stms1,0,0) +
2a;nﬂ=41 WD(Sm,tmy Smt1stmt1,0,1) +
B2 WD (Smytmy Sma1stme1,0,2) +
204% WD(Sumy tiny Sma1s tma1, 1,0) +

'72 WID(Sma tmasm+13tm+la 2> 0) +



284 WD(Smytmy Sma1,tme1, 1,1) +
oy ZD(sm,tm,sm+1,tm+1,0, 0) +
Bs ZD(Smytmy Smt1stm+1,0,1) +
Y4 ZD (S tmy Sm+1, tmt1,1,0) +

AD(smatm,sm-i'latm-i-l)O) 0)] (G27)



