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The effect of strip edge shape on conductor loss in planar transmission
lines, particularly microstrip, has been examined. The method of performing
a loss integration on the current density of an infinitely thin strip, originally
outlined by Lewin and Vainshtein, has been fully developed here and compared
with available published results. A table of integration stopping distances for
these calculations for various edge shapes is given. Another technique is pre-
sented to examine the relative effects of edge shape when only an inductance
expression is available. The approximations upon which these results are based
are discussed, and experimental verification is proposed with relevant measure-

ment techniques described.



CONTENTS

CHAPTER

1 INTRODUCTION ... .. it it i e e
1.1 Background...........: ................
1.2 Approximations and assumptions . . . ... ... ... . ...
1.2.1 Quasi-TEM assumption . ... .. R
1.2.2 Surface impedance boundary condition assumption . .
1.2.3 Perfectly conducting metal approximation . ... ...
1.2.4 Infinitely thin strip approximation. . . . . . ... ...
1.3 Overviewofthesis. . ... ... .. .. ... ... ...
2 INTEGRATION STOPPING POINTS . .. ... .. .. ... ...
2.1 Imtroduction . . . . . .« v v i v v i e e

2.2 Conformal mapping solutic;n of edge static field problem
221 Staticfields .. .. .. ... . . i
2.2.2 Schwarz-Christoffel conformal transformations . . . . .

2.3 Solution of the integration stopping point for the 60°
trapezoidaledge . . . . . .. .. ... L oL

9.4 Solution of the integration stopping points for the 45°, 30°,
and 90° trapezoidaledges . . . . ... ... ... ... ..

3 MICROSTRIP LOSS CALCULATIONS WITH THE CURRENT
INTEGRATION METHOD .. .. .............. ..

3.1 Introduction . . . . . o v v v b i i e e e
3.2 Microstrip current division . . . . ... ..o

3.3 Microstrip current profiles . . . .. ... ... oL

[va] (o> (=2} (%] L =]



3.4

Numerical results and comparisons . .. ..... ... . ...

3.4.1 A survey of microstrip conductor loss methods based
on the surface impedance condition . ... ... ..

3.4.2  Ground plane loss contribution . ............

3.4.3 Effect of edge shapeonloss . ... ...........

INCREMENTAL WIDTHMETHOD . . ... .. ..........

4.1
4.2

4.3

4.4

Introduction . . .. ............. .. ... ... ..

4.2.2 Relating the singular part of the current with the
expanded vector potential . . . . .. ... ... .. .

4.2.3 Relating the singular part of the current with the
inductance derivative . . ... ......... ...

43.1 Microstriplines .. ....................
4.3.2 Open coplanar waveguide . ...............

Comparison with the current integration method. . . . . . . .

VALIDITY OF LEONTOVICH CONDITION AND PERFECT
CONDUCTOR APPROXIMATIONS . . .............

5.1
8.2

3.3

9.4

Introduction . . . . ... ... .. ... ... ... . ...

5.2.1 Behavior of perfect conductor fields . . . ... .. . ..
9.2.2 Behavior of imperfect conductor fields . ... ... ..
Leontovich surface impedance approximation . . . . . . . . . .

5.3.1 Development of a nonlocal boundary condition for the

rectangularedge . . . . . ... ... ... ... ...
3.3.2 Published surface impedance studies . ... ... . .
Discussion . . .. ...... ... ... .. ... ... ..

vi

39

63
63
63
63
GG
67



vil

6 EXPERIMENTAL PROCEDURES . ......... e 78
6.1 Introduction . ... ........................ 78
6.2 Electromagneticscaling. . . .. ......... ........ 30
63 Otherlosses . ... ......... ... ... ......... 32

6.3.1 Dielectricloss . .. .................... 82
6.3.2 Other conductor loss factops . . .. ... .. ...... 82
6.3.3 Radiationlosses . . . ... ... ............. 83
6.4 Choice of type of resonator . . . . . .. .. ........... 84
6.4.1 Ring and linear resonators . . ... ........... 84
6.4.2 Shielding with a waveguide below cutoff . . ... ... 87
6.5 Reflection and transmission measurements . . . ... .. ... 88
6.6 Resonator feeding mechanisms . . . .. .. ... .... ... . 92
6.7 Other experimental observations . . . ... ... ........ 94

7 CONCLUSIONS AND FUTUREWORK . . ............. 97
71 Conclusions . . ................. ... ...... o7
72 Futurework . . .. ... .. ... ... ... 98

APPENDIX

A DERIVATION OF ATTENUATION CONSTANTS FROM Jzo(.X)

STRIP CURRENT PROFILES .. ............... . 100
A.1 Magnetic wall current model . . . .. .. ... ... 100
A.2 Maxwell'scurrentmodel . . . ... ... ...... ...... 100
A3 Kuester/Chang current model . . . .. ... .......... 101
A4 Kobayashi’s current profile . . . .. .. ... .. .. .. ..., 101

B ALTERNATIONS TO PUCEL'S FORMULAS TO EXTRACT
GROUNDPLANELOSS . . .. .. ... ... . ... ... 103



BIBLIOGRAPHY

................................



TABLE
2.1

2.2

2.3

3.1

3.2

5.1

6.1
6.2

TABLES

Values of the 60° trapezoid edge integration stopping point (Ago)
vs. microstrip width over thickness (II'V/T) ............
Asymptotic values of all known integration stopping points {A)
for strips with width W and metallization thick.ness T. ......
Values of the 45°, 30° , and 90° trapezoid edge integration stop-
ping points vs. microstrip width over thickness (W/T). . . . . ..
Percent difference in four different methods for total conductor
losses in microstrip (including ground plane) from the Pucel for-
mulas. H = 0254 mm, T =18.19 gm, e, =1, 0 = 4.9 x 10778,
and f=1GHz., ... .. ... . . . e
Percent difference in four different methods for strip conductor
loss in microstrip from the Pucel formulas. H = 0.254 mm, T =
1819 um, 6, =1,0=49%x107"8 and f=1GHz. .. ... ..

Normalized currents of perfect conductor for various trapezoidal

Theoretical and experimental comparison of resonator types. .

Comparison of Kajfez and Ginzton reflection @ .. ... ... ..

1X

20

26

43

44



FIGURE
1.1

2.1
2.2

2.3
3.1

3.2

3.3

3.4

3.5

FIGURES

Microstrip transmission line, with strip width W and thickness
T, and substrate height 5 and rela.ti've dielectric constant €,.. . .
Geometry of the solution of A for the 60° trapezoidal edge.
Geometry for solutions of A for the 45°, 30°, aﬁd 90° trapezoidal
edges. . ... ...
Geometries of the circular and elliptic edged strips. . . . . . . . .
(a) Nonzero-thickness strip with a rectangular edge, an example
of a general edge shape; (b) Zero-thickness strip with integration
stopping points A; and A, (here A,...) and Cartesian coordinates
(Zay)e
Geometry of the microstrip used in the Lewin/Vainshtein current
integrationmethod. . . . . . ... ... ... .. ...
Attenuation constants for a variety of strip current profiles J,,,
shown in difference from the Kobayashi result. . . . ... ... ..
Geometry of the incremental inductance rule. The lightly shaded
regions are the half skin depth recessions in the metallic walls. .
A comparison between the Lewin/Vainshtein current integration
method and Pucel’s formulas for the attenuation coefficient, shown

in % difference rom Pucel. . . ... ... .. ... . . . .

15

o
-]

=2
-]

31

39

41



3.6

3.7

4.1

4.2

4.3
44

4.5

5.1

(]}
[

Strip percentage of the total loss in a microstrip system as a func-
tion of % Obtained by an alteration of Pucel’s formulas for
attenuation constant. . . . .. ... ... ... ... . ... . ...
Differences in attenuation constant for various edge shapes, shown
in difference from a rectangular-edged strip. Obtained by the
Lewin/Vainshtein current integration. method. . . . . . ... ...
(a) First case, with strip of width W and cylindrical geometry
() ¢) centered at the left edge; (b) Perturbed case, having strip
width W + 6W and a new cylindrical geometry (r,8) centered at
thenewleftedge.. . . . ... ... ... .. ...........
Comparison of loss between rectangular, circular, and 45° trape-
zoidal microstrip edges using the incremental width method. Shown
in % difference from rectangular. . .. ............. ..
Geometry of the open coplanar waveguide. . . . . ... ... ...
Comparison of loss between rectangular and 45° trapezoidal edges
on open coplanar waveguide using the incremental width method.
Shown in % differencé from rectangular. . . ... ... ... .. .
Comparison of loss between rectangular, circular, and 45° trape-
zoidal microstrip edges for = = 0.01 using both (a) last chap-
ter’s current integration method and (b) the incremental width
method, Shown in % difference from rectangular. . ... ... ..
Magnitude of normalized currents near various edges against dis-
tance fromtheedges. . . . .. . ... ... L.
Magnitude of normalized currents for the 45° trapesoidal strip

against distance from theedges. . . . . .. .. .. .. . ..

X1

45

47

59

60
60

61



5.3

9.4

5.5
5.6

6.1

6.2

6.3

6.4

Conducting region S with boundary C and coordinates @,, 7.
and @,. Observation point = (z,y)isin S. . . ... .......
Coordinate system of 62 wedge, with source point (7,¢') and
observation point (5,¢). . .. ... .. ... ... ........
Coordinate system of 90° corner with faces 1 and 2. . . . . . . . .
Comparison of losses on rectangular-edged strip using Chapter 3
techniques on both A, and Zhurav's stopping point correction.
2-port linear and ring resonators for transmission measurements. .
(a) Typical S;; transmission measurement with resonance and
half-power frequencies, (b) Reflection measurement shown as T
ontheSmith Chart. . .. .. ....................
One-port linear resonators for reflection measurements: end-coupled
andside-coupled. . . . . ... ... ... ... ... ... ...
Final experimental choice: one-port linear resonator shielded in a

waveguide below cutoff (top not shown). . .. ... ... ... ..

xii

67

70
7l

75

85

89

93

95



CHAPTER 1
INTRODUCTION

1.1 Background .

As integrated and hybrid electronic circuits operate at higher frequen-
cies, even into the microwave region, effects such as radiation and reflections
due to mismatch become increasingly important, These problems can be al-
leviated by using a transmission line, which has a geometry of two (or more)
conductors separated in such a way as to have a constant electric field to
magnetic field ratio, or characteristic impedance. One such transmission line
which has become popular in microwave integrated circuits because of its case
of fabrication and use is commonly called microstrip. As seen in Figure 1.1,
it consists of a strip conductor as well as a ground plane separated by an
insulating substrate material.

As with any physical electronic system, microstrip has losses. These
losses are especially important near frequencies of resonance and in circuit
bandwidth considerations. The three types of loss in microstrip are dielectric,
radiation, and conductor loss, the latter of which is the focus of this thesis. Di-
electric loss is a physical property of the substrate, determined by its equivalent
conductivity. Radiation loss, which includes excitation of surface wave modes
along the substrate/air interface, is important mostly at discontinuities such
as gaps, open cnds, and bends. Both of tliese are discussed [urther in Chapter

6. Conductor loss is caused by nonideal (resistive) conductors. Similar to the



Figure 1.1. Microstrip transmission line, with strip width W and thickness T',
and substrate height H and relative dielectric constant e,.

definition of dissipated power in network theory P = [%R, the most general

form of power lost in a conductor volume V is [1]

]' 2
—— ' l.
o 2aj; vV, (1)

where o is the conductivity and |Jy| is the volume current density.

The solution to the wave equation in a good conductor occupying a
half-space y > 0 yields fields (and hence current density) which behave as ¢=¥,
where y is distance from the conductor surface and the propagation constant

7 is approximated by [2]

¥ 7 Jiwpo = (1+i),/‘i’f2£. (1.2)

Therefore, the fields, current density, and conductor loss (~ |J|*) decay ex-
ponentially away from the surface. At DC (f=0}, the current density will be
uniform throughout the conductor, but at higher frequencies, this skin effect

becomes more pronounced. Most of the current density, as well as loss, is



concentrated within a skin depth of the conductor surface. At the skin depth

1 1 .
6= — — = 5 (1.3)

the field magnitude has decayed by a factor 1 /e. Current density increases at

a conductor corner, becoming even larger as the corner gets sharper [3,[4). As
a result, a large amount of the conductor Joss occurs at the edges of the strip
in a microstrip configuration. This thesis makes a careful examination of the
skin effect and its associated increase in loss near various edges.

Currently, the formulas of Pucel [1], which were derived from Wheeler's
incremental inductance method {5, are commonly used to calculate conductor
loss for most microstrip applications, including computer-aided design (CAD)
applications. These results are in closed-form and are easily utilized, while the
effect of strip thickness is included in a correction term. However, the effect of
edge shape is neglected, even though it is believed to be a significant factor. On
the other hand, the rigorous- solution of {1.1) in a real situation would require
a full-wave analysis by computer, a very unreasonable, time-intensive proposi-
tion for computer-aided de;sig_n. This thesis examines the effect of edge shape
while, like Wheeler and Pucel, making some assumptions and approximations

to (1.1) to derive a conductor loss calculation process amenable to CAD.
1.2 Approximations and assumptions

1.2.1 Quasi-TEM assumption It can he shown ([6]) that in
any two perfect conductor cylindrical system with komogencous diclectric, a
purely transverse electromagnetic, or TEM, mode exists which has longitudinal

field components E, = H, = 0, where z is the direction of propagation. The



propagation constant v is the solution to
Y+ k=0, 4= ik = tiw/pe. (1.4)

Since (1.4) is true, the wave equations for the transverse field components
reduce to the two-dimensional Laplace’s equation, and as a result the field
distribution in the transverse plane is identical to the static field distribution.

When an imperfect conductor and the inhomogeneous dielectric envi-
ronment of a microstrip is introduced, however, longitudinal field components
E. and H, must result. Yet, at sufficiently low frequencies, there exists a
quasi-TEM mode which closely resembles the TEM mode, since the longitu-
dinal field components are very small compared to the transverse fields [7]. If
the wavelength corresponding to the operating frequency is large compared to
the transverse dimensions of the structure, this quasi-TEM assumption may
be taken, implying two factors which simplify loss calculations. First, from the

boundary condition on a perfect conductor 8]
J=3a, x H, (1.5)

where J is a surface current and @, is the outward unit normal vector from the
conductor surface, the longitudinal magnetic field at the surface is equivalent to
a transverse surface current. When H, is ignored, the transverse surface current
can also be ignored. The relative magnitude of the transverse surface current
is investigated further by Kobayashi [9]. Also, the quasi-TEM assumption
allows the problem to become two-dimensional, enabling static field analysis
of the transmission line fields. This permits transmission line quantities such
as inductance (L}, capacitance (C), voltage (V), current (/), characteristic

impedance {Z,) and cffective relative dielectric constant (€r.) to be reasonably
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defined. Therefore, when the quasi-TEM assumption is taken, the loss of a
section of line between = = 0 and z = z, reduces to a two-dimensional integral

on the longitudinal current

— i 2 . i 2 hid _ _Zi 2
Py= 5 [ 10vtav = oc LI [ dzds = 2 [npas. o)

By removing the longitudinal length z,, the dissipated power is expressed per

longitudinal unit length.

1.2.2 Surface impedance boundary condition assumption
The surface impedance boundary condition, which is often taken in good con-
ductors with thickness of at least a few skin depths, is assumed in the work of
Chapters 2-4. This boundary condition, often called the Leontovich boundary
condition [10], establishes a relationship between the fields at the surface of a
highly conductive, relatively flat conductor. It eliminates the need to calculate
internal fields and currents under the assumption that both decay exponen-
tially away from the surface in a known way, thus reducing the surface integral
of (1.6) to a contour integral around the conductor surface. If the current den-
sity |J.| is described by |J;| = |J,.|e~%/?, where |J,.| is the magnitude of the
current density on the surface and y the normal distance into the conductor,

then (1.6} becomes the contour integral around C

1 2 1 7 12.-2ufs 1 25 2
— [ L[S ~ — Jalewtidydi= 2§17 pa .
20’/5”' S 20'.%;:'./0 oxle y ‘20’%&” Id[é (L.7)

_ L 2 _ 2
= — fc |J,.|*d1 = B, j{: .. |2l

A more rigorous proof is given by Senior [11). Here, R, = ;lTs EENN .9

22

the surface resistance, the real part of the complex surface impedance 7, =

(1 + 1) R,, and the approximation of an infinitely thick metal is taken so



that the fields decay completely. Also assumed is that this derivation is valid
completely around the conductor surface. Of course, this derivation will be
inaccurate for thin strips, and of particular interest here, at points where the
radius of curvature of the surface is less than 2 or 3 skin depths, such as at
sharp edges. When the Leontovich condition is assumed throughout, as is
commonly done by many authors including Pucel, it seems clear that the error
in loss calculation will become worse as the edge shape gets sharper. Chapter

5 will further investigate its validity,

1.2.3 Perfectly conducting metal approximation A further
assumption which simplifies calculation of fields and currents is that the fields
at the surface, as required in (1.7), are approximately the same as when the
conductor has infinite conductivity [8]. This assumption is desirable because
it is easier to solve for the fields or transmission line characteristics of a sys-
tem with perfect conductors. This will also allow the next approximation of
an infinitely thin strip, since a perfect conductor has no field penetration. A
singularity in some field components is predicted at sharp edges in a perfect
conductor system ([3],{4]), and the error induced by this assumption will once
again be investigated in Chapter 5. But in the next three chapters, the longitu-
dinal current J,; is assumed to be the surface current of a perfectly conducting

strip.

1.2.4 Infinitely thin strip approximation In a typical mi-
crostrip system, the strip thickness T' is much smaller than its width W, and
the approximation of an infinitely thin strip can be taken. This docs not
change the fields much, except at the edges. According to [3], [1], the fields

of an infinitely thin strip have an inverse square root singularity {r—}/2, where



-1

r is distance from the edge), while, for example, a square edge has the sin-

~13, 1t is considerably easier to find the fields and currents of an

gularity r
infinitely thin strip than for a strip with nonzero thickness, and closed-form
expressions are available for the longitudinal current of a infinitely thin strip
in the literature ([9],[12)).

A problem arises when this approximation is used in the loss calcula-
tion around the edges. First, since the field behavior changes there, accuracy
will be lost in the solution. Second, because of the inverse square root singu-
larity in J,,, integrating the current squared |J,,|* will resuit in a logarithmic
divergence. Both problems have been solved by Lewin [13] and Vainshtein [14],
who independently came up with the idea of a distance, dependent only on lo-
cal edge geometry, by which to avoid the edge singularity in the loss calculation
on the infinitely thin strip. This distance A eliminates the divergence while
maintaining the accuracy of the nonzero strip by virtue of its solution. It is
found by comparing the loss of the actual, nonzero thickness strip with the loss
of the infinitely thin strip, while maintaining all of the above assumptions. Of
course, the loss calculation of the latter will diverge, and so by proposing to
stop the loss integral some distance A short of the singularity and equating
the two loss integrals, an appropriate value of A which depends only on local
edge parameters is obtained. Because of the small dimensions around the edge,
where the thickness is very much smaller than the free-space wavelength, the
fields near the edge can be examined by quasi-static analysis. This statement
should be true for a larger range of frequencies than the quasi-TEM assump-
tion above. Obtaining the correct current profiles for various edge shapes, and

finding the stopping distance for the edges is a task investigated in Chapter 2.
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1.3 Overview of thesis

In this thesis, the effects of edge shape in microstrip are examined,
and many of the concepts can be extended to other similar planar transmission
lines.

In Chapter 2, a quasistatic examination of the fields near the edges
of both the actual nonzero thickness strip and the infinitely thin strip is done.
This is achieved by the method of conformal transformations, specifically the
Schwarz-Christoffel transformation. By comparing the losses of each for various
edge shapes, a table of integration stopping points is obtained.

In Chapter 3, an expression for the attenuation constant in microstrip
is obtained from the simplifications of (1.1} and the integration stopping points.
The total strip current is separated by Green’s function technique into its
components on the top and bottom of the strip. A comparison of various
strip current models is done, and the closed-form expression by Kobayashi
[9] is chosen. Other numerical and analytical results based on the surface
impedance boundary condition, especially Pucel’s formulas, are surveyed and
compared with results obtained with this newly developed Lewin/Vainshtein
current integration technique. Ground plane loss has been ignored in this
procedure, and a justification is attempted. Finally, 2 comparison of losses of
strips with different edges is shown.

In Chapter 4, an alternative formulation to examine the effect of edge
shape on loss is developed. Instead of requiring an expression for the total
current on an infinitely thin strip, a simple result is obtained by perturba-
tion techniques which requires only an expression for the inductance of the

transmission line having infinitely thin strips. What results becomes an analog
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of Wheeler's incremental inductance rule. This method is demonstrated on
a transmission line which does not have available closed-form current expres-
sions, the open coplanar waveguide. Then, this technique is compared with the
current integration technique of Chapter 3 to ensure that both predict similar
edge effects for microstrip lines.

In Chapter 5, a careful examination of two of the assumptions is done,
namely, the surface impedance boundary condition and the perfect conductor
approximation. Extra losses due to sharp trapezoidal edges, as predicted in the
previous chapters, seem too high, and it is believed that these assumptions fail
to some degree. An examination of the current distributions of various edges
is done for perfect conductors, and these results are compared with available
distributions in the literature. A thorough modified surface impedance condi-
tion is formulated, and a qualitative discussion is given on its use with actual
current distributions.

In Chapter 6, a proposal for experimental verification of this theory
is presented. A survey of undesirable experimental losses is given. An electro-
magnetic scaling experiment is outlined. Ring and linear resonator measure-
ments are contrasted, and it is shown that a linear resonator in a waveguide
below cutoff is preferable. Extraction of the unloaded resonator quality factor
(o is demonstrated for beth transmission (two-port) and reflection (one-port)
measurements, and the various choices in resonator feeding mechanisms are
mentioned. Finally, results of a study of experimental repeatability are dis-

cussed.



CHAPTER 2
INTEGRATION STOPPING POINTS

2.1 Introduction .

In the previous chapter, a method to quickly calculate the strip por-
tion of microstrip conductor loss was outlined, based on a series of assumptions,
approximations, and perturbations. The longitudinal current density of an in-
finitely thin strip can be squared and integrated over the strip width, excluding
small distances from each edge known as integration stopping points. In mi-
crostrip circuitry, the ground plane also contributes to the conductor loss, but
this loss, as discussed in Chapter 3, will be ignored for practical microstrip cir-
cuits. The present emphasis is on the strip only, and so the described technique
may be applied to similar planar lines.

In this chapter, the calculation of these integration stopping point
distances (A) will be done. The loss in the vicinity of the edge of an actual
strip will be equated with the loss of an infinitely thin strip for which the in-
tegration stops short of the edge by a small distance A. The result should be
in terms of local edge parameters, such as shape of the edge and strip metal-
lization thickness T, since the error incurred by taking the infinitely thin strip
approximation occurs only locally at the strip edges, where the actual current
deviates from the infinitely thin strip’s 7~'/2 behavior. Near the strip edges, as
described before, the fields behave quasi-statically, and can be approximated

by static fields. Because of this, the local edge field examination can be done
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by the method of conformal mapping.

2.2 Conformal mapping solution of edge static field problem

2.2,1 Static fields In the case of a static field, both the electric
field £ and the magnetic field H satisfy Laplace’s equation in rectangular

coordinates [6]

o FY P U
2 — 2 _
VE=VE=0, G+55+5m

where W is any of the z, y, or 2 components of the fields. Since each compo-

=0, (2.1)

nent satisfies Laplace’s equation, each is said to be a harmonic function [15].
Excluding the longitudinal variation of all fields e=*2, there is field variation
only in the transverse plane, and (2.1) becomes a two-dimensional Laplace’s
equation. Due to the fact that the tangential electric field E,, and the nor-
mal magnetic field B, are continuous at a boundary, which makes them both
equal to zero at the boundary of a perfect conductor, the field solutions to E
and H are orthogonal to each other [6], and are called harmonic conjugates.
The same orthogonality relation exists between the scalar harmonic electro-
static (®) and magnetostatic () potentials. From these potentials the fields
can be defined by [6]

E=-V®, H=-Vd,. (2.2)
Hence, at a general perfect conductor surface, the nonzero field components are
E., = —(0%/0n)a, and Hyy, = —(0®,,/01)a;, where @, is the unit normal
vector away from the conductor, and @ is the unit tangential vector along the
surface. From H ., the longitudinal current can be obtained by the boundary

condition at a perfect conductor [8]

3P _

Sime
ar

Js =Ty X H= Hyna, =
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Thus the solution of the static fields near the edge can be used to
obtain the local longitudinal currents. The approximation of the quasi-static
nature of the edge fields should remain valid over a large range of frequencies,
unlike the quasi-TEM approximation of Chapter 1. When the quasi-TEM
approximation is accurate, however, the transverse field distribution is identical
to the static field distribution [6]. Because of this, the transverse static field
distribution obtained by conformal mapping could also be used to describe the
fields of the entire strip, if it were an isolated strip. Due to the ground plane
in the microstrip configuration, however, the field distribution is different than
in the isolated strip, and the fields are concentrated between the bottom of the

strip and the ground plane.

2.2.2 Schwarz-Christoffel conformal transformations By
complex variable theory [15], & harmonic function, transformed from one do-
main to a second by an analytic function, is also harmonic in the second do-
main. In fact, both the real and imaginary parts of an analytic function are
harmonic in the second domain. Consider the w-plane and z-plane, where
w=1u+wand z = z+1iy. Ifauniform field is established in the upper
half of the w-plane, with a perfect conductor on the u-axis, the equipotential
contours are ¢ = v and &, = u, and they both satisfy Laplace’s equation by
being harmonic. If an analytic function transforms these coordinates to a z-
plane, the w-plane orthogonal equipotential contours will be correctly mapped
with their boundary conditions to 2-plane equipotential contours satisfying
Laplace’s equation and possessing orthogonality. The gradients of the trans-
formed magnetostatic potential function will yield the required longitudinal

current functions, which can be squared and integrated along the strip surface
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contour to obtain a quantity proportional to the conductor power lost. Two
separate analytic mapping functions must be obtained to map the upper half
of the w-plane onto both a semi-infinite nonzero-thickness strip and the cor-
responding infinitely thin strip. Equating the powers dissipated on both will
result in the desired value of the small integration stopping distance A.

The Schwarz-Christoffel transformation [15] is the desired analytic
mapping function. It maps the u-axis and the upper half of the w-plane onto
a simple closed polygon and either its interior or exterior. In the present
application, it is desired to map the region v > 0 onto the degenerate polygon

of a semi-infinite strip and its exterior. The function

F'(w) = C, nf[(w - uj)"kf, (24)

i=1
where n is the number of sides of the polygon and ;= is the exterior angle at the
vertex z; corresponding to u; on the u-axis, has its argument jump by the angle
ki to a different constant value at each point ;. In this way, as one traverses
in the positive direction along the u-axis, a side of the polygon is traversed. At
each argument discontinuity point u;, the polygon side reaches a vertex, and
begins a new side. The multiplicand with the vertex at infinity can be ignored,
and so, for example, the F'(w) for a trapezoidal edge strip of three sides will
be a product of two terms. The integral of F*(w) is analytic, continuous, and
single-valued everywhere in the upper half-plane » > 0, and it is the desired
transformation. The constant C, controls the scaling and orientation of the
polygon, while the integration constant C; controls the position of the polygon
in the z-plane.
The technique of rounding a vertex is thoroughly discussed by Henrici

[16]. Tt involves splitting the multiplicand term of the vertex of interest into a



1
sum of two terms, or

(w—u;)™% = a(w—u})""’+b(w—u;)"k’, a+b=1, uj =uj—¢, U] = u;+e.
(2.5)
This technique has been implemented by Vainshtein [14] to obtain the integra-

tion stopping point A, for the circular edge.

2.3 Solution of the integration stopping point for the 60°
trapezoidal edge

The first step in finding the stopping point for a specific edge shape
is to find the Schwarz-Christoffel transformations for both the zero-thickness
strip and the actual nonzero-thickness strip. This technique is performed on
the trapezoidal edge with a 60° corner as shown in Figure 2.1, where T is
the strip thickness and d is a distance far from the edge. The transformation
mapping the outside of the strip to the upper-half plane v > 0 is given by

w
2e0(w) = Cha jo w3 (w - 1)dw + Cpa (60°). (2.6)
For region R(w) > 0, which includes the top and side surfaces of the strip, the

substitution a, = %=1 can be made, and the integral becomes

o [ 3adda, .
zeo(w) = Clq j;w m + Cae, §R(w) > 0. (2.7)
By applying reduction formulas{17], the transformation becomes
_ Qq a, 1 e day
o S A .0 ey
o) = 36, lﬁ(l Zady TR =) = T - 1] * G

(2.8)
By dividing the region of integration of the last term of (2.8) into —co to 0 and

0 to a, and returning back to the w variable for all but the last term of (2.9),

= ofw—1 ﬁ_g w_ 1711 —2/3,,~ 113 9
z(w) = Cul (2 6) lo :3/0 3(10—1) w” Pdw (2.9}

w
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Figure 2.1: Geometry of the solution of A for the 60° trapezoidal edge.

1 fae da,
ik moql+Ow

When a factor of (—1)~2/3 = ¢—2ri/3

the result is the Beta function B(:

21
330

is extracted from the first integral term,

which evaluates to Z% [15]. The last

term of (2.9) can be factored according to ([18])

tQ‘P—l 1 q-1

-1 ¢

v=0

Z B = e?mil, (2.10)

The integration of the separate terms is done with the arbitrary integration

constant set to — In(—t,),

¢ di
0 t—ty

= In(t —

t,) + constant =

In(1 — —), (2.11)

so that the integral is zero when ¢ = 0. Thus the transformation becomes

Jw—1{w? w
Z(ID) = C]a{ ' (?-—3

2W:LL'.

—_——— 3 1P
Vi (2.12)

1 im 111 im e '
9 [ln(l — ) + e In(l —e5'a,) +e% (1 — ea"i'cv,,)]} + .
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To solve for the constants according to Figure 2.1, use the transformation pairs

w=0—>z=0andw=1—)z=§5+iTtoﬁnd Cl,,:%and Ca, = 0. The

final transformation for the region R(w) > 0 is
2Aw) = T jw=1 (v’ w T o
| B 2 6/ 3

T

(2.13)
7 w
+ - [ln(l —a,)+ 5 In(1 - e%a,) + et In(1 — e;é:':aa)] .

For a point on the side or top strip surface, which transforms into
w=(u,0), u>0 (au= f‘/!ﬁ‘), the logarithms can be combined, with

the real parts being equal to

1-—- 1-
In e —In Yot (2.14)
\/i - e“’“'/:’aat\/l — e27i/30,, 1+ aee+al

and the imaginary parts being equal to

_ ATmif3 oat 4 ;V3ag
z‘—‘/—gln(}-—f—-—ﬂ) = z'—\?-ln(1+ T ) (2.15)

— p2mif3 a - &
2 1 — e?mil3q,, 1+ % — 13/5_211
_ -1 aat_\/g
= V3 tan (a Y 2) .
Thus for a point on the side or top strip surface, the transformation is
9T Jui—1 fu? T
0) = —f——= (2 -2 +=+1 2.1
z(u > 0) - " (2 6)+\/3__+2T (2.16)

T —
2t ) 6 s (28]
L \V1+au+e2 ot + 2

The transformation of the region R(w) < 0 uses the substitution
Bs = Y225 on (2.6) to give
L e s
0

ﬂ’ (1- 8%
Again the integral can be reduced to

2T [ B . Bi
)= 2 e e

z{w) R(w) < 0. (2.17)

3 B 4.d3,
27 Ju :3.:!_1 '



17

Since the lower limit of integration is now 0 instead of —co. there is no Beta
function term which results. By (2.10) and (2.11), the last term is converted

to logarithms. The final transformation for the region R(w) < 0 is

9T W (w2 w1 |
) = 7(—?—1) (-5+3) 219

[ln(l — Bo) + R In(1 — e¥3B,) 4 e2M/3 (1 — (2mi/3 [JL)] i

For a point on the bottom strip surface, which transforms into w =

(#,0), up <0 (B = k1), the logarithms are again combined, with

the real parts being equal to

( 1= B )_1 ( 1~ B ) (2.20)
\/1 — emif3g, b\/l —etm3g, ] \/1 + Bap + B2,

and the imaginary parts being equal to

z"/—QIn L= e _ —In 1+é§h_i&?@ (2.21)
2 \1=emhg,) ~ "2 U \1 e 4wl -

2 )
_ -1 ﬁab\/§
- \/3_ tan (/Bab + 2) -
The final transformation for a point on the bottom strip surface is then
_ 9T ¢ owy N\ ful 2y 1
<) = T (0)" (3 -G (222)

+ Z ln . I_Baﬁ +\/_t (ﬁab\/;) )
T \f1+ﬂab+ﬁa2b dab+~
The corresponding equation for the infinitely thin strip is found from

another Schwarz-Christoffel transformation integral,

2(w) = C3,,/0 wdw + Cy,. (2.23)
'This also becomes the limiting form of (2.13) and (2.19) when Ca, = Clas
9T w*
z(w) = -3 (2.24)
T

z(u)

il

?‘

-~
H -



where the second equation is true on the strip.

The loss of the actual, nonzero-thickness strip is found by integrating
(du/dl)? around the z-plane strip surfaces shown in Figure 2.1. This can be
reduced to an integration of du/dl along the u-axis [13]. The parametric equa-
tions for these surfaces are z = z + iT for the top, z = = for the bottom, and,
for the side, z = j’s + iy = 723«3“"/37, since z = :55 on the side strip surface,
and 7 is used to parameterize the equation. Thus the power lost on the actual

strip is proportional to

o { du\? T 2 . du\? d du\?
= — (- =™ = - — 2.2
Fre /d (dﬂf) ( dz)+/ \/_e (d'Y) ar T/V3 (dx) 42(2.25)

0 du
:x/3 f —
- d:z:du+./ \/— v du + Iz du Ps + Py + Py,

I

where du/dz = du/dy = Z(u — 1)~1/34=%? from the reciprocal of dz/du, the
derivative of (2.6). Using the same substitutions as before, the first and third

terms are reduced to

up ks /3 - Bap d[)’d
= / (w = 1) ou o = = 7o (2.26)
and
T T —T (%7 a,da
= — 1)~y gy = 2 2.2
PSa -/1 QT(U ) U= 3T ad_l ( . 7)
where ay = 13/31';—1 and Bg = /2. Except for a change of variables,

these terms are identical to the last terms in the expressions (2.9) and (2.18),
respectively, which have already been solved. Since these integrals are along
the strip surfaces, the purely real expressions in (2.14), (2.15) and (2.20), {2.21)

can be used, so

- -~ A, 3.5V
P3¢.=_—; In 1 e — )—\/é tan™! (’; B‘/‘i) (2.28)
9 Jl-*—ﬁaB"‘i“‘(jnB /ﬂB+-—-
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and
P, = I 1~ Car + 3 tan™! (Q“T\/i) . {2.29)
9T \/1 + Gar + &2 Aot + 2
The second term is simply a beta function and reduces to
1 2r¢ . 2r T 4r?
Py = "y — 1) Py oy = =——. (230
4 .[:. oV R U V= T3 sin(nf3) - o 230)

The corresponding loss calculation on the infinitely thin strip is

Ago { du z d {du 2 .
_ du)”, _ du 2.31)
Paa [1 (dz) (-dz) + Ago (dz) (2:31)
_ [%8eo du T dy T urup
- -[-ua dmdu '/"Aso d-'b'du ng ( 'U.Am ) !
where du/dz = g7 is obtained by differentiating (2.24) and ua,, = /225 is

the transformed value of the integration stopping point Ag. When the two

values P, and P,, are set equal,

7 2
lT[In (\/l +O!aT+O!aT) o (\/1+ﬁaﬂ+ﬂaﬂ) . 4n (2.32)

l—a,r 1 - B8 3
1 BBV3 L4 a T\/_ T uTUR
2t 1 faB vy 1 ~a —_ —
+v3 ( an Bup o+ 2 tan po— ] 1 Z )

and rearranging to solve for Ago,

gz: uTﬂB(l - ﬂaB)(.]- - aaT)
2 \/1 + BaB + ﬁza\/l + a,r + acst
exp [\/?:ta.n“1 ( “T‘/_) V3tan (ﬁmﬁ) + “?] }.

aﬂT+2 BaB‘l‘Z

A = (2.33)

When the magnitudes of the variables ur and ug are taken to be very
large, corresponding to a nearly infinitely wide strip, the asymptotic value of

the variable Ag is found to be Ag = UTE This is the desired stopping point



20

Table 2.1. Values of the 60° trapezoid edge integration stopping point {Ngo)
vs. microstrip width over thickness (W/T)

[ Strip W/T | z in 8¢ = T/z || Strip W/T [z in Ago=T/z |
I 2 1193.93 |  200]  1242.99
4 1231.09 100 1242.99
8 1239.89 800 1242.99
20 | 1242.47 2000 1243.00
40 1242.86 | . 4000 1242.99
80 1242.96 10000 1242.99

in terms of the actual strip thickness, a local edge parameter only. To find the
value of Agg in actual finite width strips, the z-plane coordinates of the strip
surface midpoints, zp = 1’21 and zr = ‘;’ +iT (so d = %), can be used with
transformations (2.16) and (2.22) to iteratively find values of u7 and up, and
hence, a,r and G,5. These values can be used in (2.33) to obtain the altered
values of Agg. In actual strips, the value of Agy does not deviate significantly
from the asymptotic value, as seen in Table 2.1. This is true even in the
case of a thick strip with a very small width, but in that situation, however,
other assumptions upon which this loss formulation is based begins to break
down. Therefore, using the value of the asymptotic Aeg for all cases, instead
of finding the slightly altered Agg for each geometry, can be considered a valid
approximation for the 60° trapezoid case. This will also be shown to be true

for the 45°, 30°, and 90° cases.

2.4 Solution of the integration stopping points for the 45°, 30°,
and 90° trapezoidal edges
The A stopping points for the sharper trapezoids with corners of 45°

and 30°, shown in Figure 2.2, were also found using similar techniques. The

90° edge, or rectangular edge, was done by this method in order to verily the



results obtained by Lewin[13] and Vainshtein[14].
The first step in each of these edges is to derive the Schwarz-Christoffel
transformation mapping the outside of each of the strips to the upper-half plane

v 2 0. The transformations are given by

21s(w) = Cy fo W (w~ )Widw + Cpy (45°), (2.34)
z30(w) = Cy. /0 WMo — 1)Yedw + Gy, (30°), (2.35)
20(w) = Cia /0 Y w2 (w — 1) 2w 4 Cyy (90°). (2.36)

As was done for the 60° edge, the integrals are simplified by a substitution
for both the R(w) > 0 and R(w) < 0 regions. For the R(w) > 0 region.
these are a; = \*/-‘*’?, a, = \7‘—”?, and g = “’—;1- for the 45°, 30°, and 90°
edges, respectively. For the R(w) < 0 region, the substitutions are §, = VE,
B = VE, and §; = \/% Using these substitutions, as well as setting the
constants Cp, Cze, and Cyy to zero as in the previous case, and using the same

general reduction formulas as before, the transformations become

7 _ _ o o o 3 e doy
walu>0) = 40“[(8(1—0:2)2 3501 - )) e *3‘>fma-g-1]’

245(U <0) = 401,5 [( ( ﬂg 333 ) B 3_9 By ﬁgdﬂb},

8(1- 4 3201- 5} g -1
(2.37)
4 43 Q. oe i e dﬂ‘c
zo(u>0) = 6Ci. [(12(1 T o8 T Ta(l = af)) e +7" L. ag — 1} ’
- g 58\ 5 o BB
z(u<0) = 60 [(12(1 —FE Ti-g9) ot 7‘3 o JE-1

(2

290(u > 0) = ?.C]_d [(

(2 ¥} Oy + ad Jord
41-ad)?  8(1-al) SJoxxaj—1|"



I~
[ BN

290(“<0) = 201.1[( Ba g L [P dBy ]

B L1
-5 81-432)° "8b g1
(2.39)
Once again, the region of integration of each of the R(w) > 0 last terms is

divided into —oo to 0 and 0 to a. If the region of —oo to 0 is converted back

to the w variable and a phase term extracted, Beta functions can be obtained

by

0 day _ ( 1 _3/4 (1- ) 3/4 Ly =E-‘-T:B § 1 - r\/ie%
—woaf — 1 — 4wt/ 4 T \4"1 4

0 da, sl =w)dy e /5 1 T in
/_ma§—1 - fo("l) e =TB(E’E)=§“’

0 day _ 1 ~1/2 (1- u’)—llzd‘w _ e7 (1 1) . i o
./.ma§—1 B ./0(_1) e -3 Blya)= g+ (240)

By (2.10) and (2.11), the last terms of (2.37)-(2.39) are converted to logarithms.
The constants of these equations are solved using Figure 2.2. For the 45° edge,
the transformation w = 1 — 2 = T+iT leads to Cp= % The transformation
w=1- z=Tv3+iT makes C,, = % for the 30° edge, and the rectangular
edge constant C,; = %rl from w = 1 — z = iT. The final transformation for

the 45° edge is

— 2
2s(u>0) = 3—32;‘9—1(%—%)+T+ﬂ‘ (2.41)

¢ 2l (Ee) s ()
+ 1—za4
zis(u < 0) = ?2—T-( st )3/4 w_ 2124_1
* T 3r \w-1 28 '3
T 1 -3, — 15
+ —|ln|{—= .
W[n(1+ﬁb) ( Mb)}
The transformation for the 30° edge is

T Jw—1 fw?
zp0(u>0) = i.—— had (fu__’_v)q-T\/_-{—:T-i——[ln( ﬂr)

aT w 2 1 + o,




17T 1 M el iL.d g c
+ e?ln _____+e:”a +e¥hn ______1+e:ra ]
l—e3a l—e3q,

: 72T w \® fw? Tw 1 Be
2o(u<0) = (w—l) (7'T§+12)+'U (1+ﬁc)

ir 1-— C%’Eﬂc iz 1—e ﬂc
+ eslp|——5—|+es In| ——F5— 242
° 11(1+ef‘ﬁ,.-) : I1(1+e‘n"‘ﬂc ] (242)
and for the 90° rectangular edge is
ST 'w2 w T o4
— (= _= b 2.
zgo(u > 0) - = (2 4)+3T-!- ln(1+a4) (2.43)
8T w? 3w 1 1 -5y
#ou <0) = T w—l(_.?-_T+4)+_I (1+ﬂ4)

For a point on the any of the strip surfaces (v = 0), the logarithm
terms of (2.41),(2.42) can be combined into purely real terms, as was done in

(2.14),(2.15). The resulting transformations for points on a strip surface are

2
2s(u>0) = 332: Lo (“2‘ - %) +T+iT (2.44)
T 1 e -1 . ]
+ - [ln (1 n Q‘bt) 2tan™" oy
32T ¢ uy \*M[(u@ 5uy 1
0) = — - t3
z45(u < 0) 3r (ub—l) (2 8 +8

z l“ﬂbb 9 =1
+ - [ln(1+ﬁbb)+..ta_n B | -

for the 45° edge,

3 72T/ ur . T 1 — a,
z3p(u>0) = ———-(2 —-12)+\/§T+1T+;[ln(1+ac‘)

1—aq +QL¢) \/5 tan—] (act\/{j )]

1+act+a 1—051

5/6 m(, 1 T ]-_",dcb
zo(u < 0) = T (ub ) ( 12 +1—3) +;[In(1+ﬁ~‘b)

1= fo+5% = 1 f B3 5 ix
) + V3 tan™! (1 ) ] (2.45)

|-.| tvp.—-

l\JI'—‘ o

1+ﬂcb+



for the 30° edge, and

1 /2 _
mo(u>0) = [ 1("—‘-3)+5T+§m(1 ““‘) (2.46)

T Uy 2 4 1+ ay
8T up uf 3uy, 1 T 1- B

0) = — - ——+- -
zoo(u < 0) T u5—1(2 4 +4 +7rln 14 B

for the rectangular 90° edge.

The corresponding equation for the infinitely thin strip in each of these

three cases is identical in form to (2.24), but in each case the constant Cj, = &L
is replaced with the appropriate constant, either Cy, = %Z;T, Cie = ‘523, or

Cu=%¥

The power lost on the actual, nonzero-thickness strips is once again
found by integrating (du/dl)? around the z-plane strip surfaces as shown in
Figure 2.2, and this can be reduced to an integration of du/dl along the u-axis.

The power lost on the strips with 45°, 30°, and 90° edges are

0 d T g
P, = j du+f \/56’““ La jx ey = Pay + Py + Py,

—-upg dm d
0 du du T du

Pc = nif34% au -

! j_ugdmdu+./ e du+[ 7704 = Pact Pac + Pec,

0 ! du

Py = 7 du +j ——du +/ -—~du = Pag + Py + Psa, (2.47)
—up QT

respectively, where du/dz = dufdy = du/dy = (u ~1)"u" from the

reciprocal of dz/du, as before, and the appropriate constants 7 is used and
Cus, Cie, or Cy4 is used for C;. When the appropriate 8 and « substitutions
are made in the bottom strip (Fs) and top strip (P;) terms, respectively, the
integrals obtained are identical to the last terms of (2.37)-(2.39). Tlhe solutions
of these integrals, found as logarithmic terms in (2.41)-(2.43), can be converted
into their purely real forms since these power integrals are along strip surfaces.

These terms are found in (2.44)-(2.46), and so the components of the power



-
o

due to the top and bottom strip surfaces are

—3x (P 4dfyp 3r 1+ Bim 94an=1 T
_ _ 2 2.4
Fa 32T Jo Bi5—1 32T {ln(l—ﬁm) +2tan” G| (243)
37 foer 4a§TdabT 3r [ (1 + Q’bT) 1 ]
= = - -2 a
Po = 557 ) o=t - a7 [P0, 2t
for the 45° edge,
—5r [ 1 + ,BcB 1 + ﬂ.cB + ﬂzB - ( ﬁcB\/g )-
p = =5 | Lt Pt B o
3 72T | (l—ﬁc3)+ \l—ﬁcs+ﬂ33+ AT, ]
-5 [ 1 + acT) 1 + o.r + aET ‘ -1 acT\/g ]
- e e’ AR Y
P, T In(l_ad_ +ln\ = aq + ol V3 tan - o, |
(2.49)
for the 30° edge, and
—7 ffam 2dByp T 1+ fus
Pu = — — = n | —== 2.50
“ T 8T Bp-1 8T “(1—ﬂda) (2:50)
— paer 2dogr T 14 aqgr
Pu = T [ Ham 1 (1tan)
5 8T Jo oip—~1 8T 1 —ayr

for the 90° rectangular edge. The Py terms, representing power on the strip
sides, are all Beta functions, and are found from (2.40).

For the infinitely thin strip, the corresponding loss calculation is

—ua dy ur du 1 urlpg
= = —dy = — - (2.
P /—u.g dzdu+ a dmdu c ln( 2 ), (2.51)

where the appropriate C, is used. The desired variables u, are related to the
stopping points A by ua,, = \/3’1'%, Uy, = \/%, and up,, = /232 from
(2.24).

When the two power values P, and P; are sct equal for cach of the
three strips, the values of the variable A can be obtained. In the case of a nearly

infinitely wide strip, the variables uy and up can be taken to be very large,
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Table 2.2. Asymptotic values of all known integration stopping points (A) for
strips with width W and metallization thickness 7.

[ Geometry of Strip Edge | Integration Stopping Point A |

Rectangular (90°) Edge Agy = Areee = T/290.8
60° Trapezoidal Edge Agy = T/1243
45° Trapezoidal Edge Ays = T/20187.3
30° Trapezoidal Edge Azg = T'/54052000
Circular Edge ([14]) Acire = T/124.77
Elliptic Strip ([13]) C A = T*16W

leading to the asymptotic values of A. The values obtained. are Ays = g5:5=,
Aso = 535050 and Ago = 32, all in terms of the strip thickness T. Table 2.2
lists all known asymptotic A distances. Figure 2.3 shows circular and elliptic
strips. It should be noted that the stopping point for the elliptic strip is still a

local parameter, since W is used to define the radius of curvature at the edge.

To find the stopping points in actual strips, once again the technique
of transforming the z-plane coordinates of the strip surface midpoints, zg = %
and zr = ¥ +iT (d = %), and using the resultant values of ur, ug, ar,
and fr, can be performed on each of the strips. As with the case of the 60°
edge, the asymptotic values of A are good approximations. Their ranges of
validity definitely will surpass the ranges of other assumptions, especially the
statement that the fields of the infinitely thin strip approximate the fields of
the actual strip away from the edges, which is true only for a strip width much
larger (W > 107) than the metallization thickness. Table 2.3 lists values for
Ays, Aso, and Ago for a variety of W/T ratios.

The stopping point for the rectangular edge, A,,,, is in agrecment

with the results obtained by Lewin[13] and Vainshtein[14], who used slightly
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Table 2.3. Values of the 45°, 30° , and 90° trapezoid edge integration stopping
pomts s vs. microstrip width over thickness !W /T).

Strip W/T || Tin Agy = T/:z [ zin A;,o =T/z [zin Ag=T/z |
Impossible " Impossible "325.07
4 17309.1 49638000 309.80
8 19191.7 52526000 301.02
20 19899.5 53518000 295.14
80 20138.3 53925000 291.93
200 20171.3 " 54001000 291.25
800 20184.3 54039000 290.91
2000 20186.4 54046000 290.84
10000 20187.4 54050000 ' 290.80
100000 20187.3 54052000 290.78 |

different Schwarz-Christoffel transformations. Lewin used the transformation

z(w) = C'l,g'[)w\/w—1\/'w+1ciw+C'2c (2.52)
= v =T - la (w+ vaF =)

which transforms the points w =1 - 2z =0 and w = =1 — z = —iT. As
expected, both integral transformations result in an identical stopping point,

Aveet = 5L
The results obtained for the integration stopping distances agree with
.intuition. At sharper edges, the current density should be larger, and as a result
of squaring the current, the conductor loss should also be larger. For similar
microstrips with geometries differing only in edge shape, the loss calculations
will be performed on identical infinitely thin strips with identical current dis-
tributions. The only difference will be the integration stopping points. As seen

in Table 2.2, the strips with sharper edges have smaller stopping distances, and

as a result, will have more loss. As the trapezoidal corner becomes sharper,
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however, the validity of approximations such as the surface impedance bound-
ary condition, which is based on the assumption of a flat boundary, are subject
to question. This issue will be investigated in Chapter 5. The next chapter
will focus on the actual use of the stopping points in loss calculations, with

comparison to other published results.



CHAPTER 3

MICROSTRIP LOSS CALCULATIONS WITH THE CURRENT
INTEGRATION METHOD

3.1 Introduction
Microstrip conductor loss in a quasi-TEM planar transmission line
using the standard Leontovich surface impedance boundary condition can be

expressed by [1]

R, |
a, = 27, Jo 117 dl, (3.1)

where . is the attenuation constant in 22=* and C is the boundary of the
nonzero-thickness strip cross section as in Figure 3.1a. Here R, is the surface
skin resistance, Z, is the characteristic impedance of the transmission line, J, is
the z-directed surface current density on the longitudinally invariant (8/3z =
0) strip, and [ is the total current of the strip. This formulation ignores
the ground plane loss contribution, and this will be discussed later in this
chapter. According to Lewin [13] and Vainshtein [14], this contour integral
can be replaced by a line integral using an infinitely thin, perfectly conducting
strip with its correspondingly simpler total longitudinal current distribution
J;o. This total current function includes the surface currents on both sides of
the infinitely thin strip, and can not be used directly. Dividing this current into

Jzoop a0 J2050¢, the top and bottom surface currents of the strip, respectively,

the loss becomes

Q@ = 7P

R, s F-a, |
[ J:zo,bot(z)('"dr) + ];_HM J:.u.tap(m)‘l‘l"]
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Figure 3.1. (a) Nonzero-thickness strip with a rectangular edge, an example of
a general edge shape; (b) Zero-thickness strip with integration stopping points
A and A, (here A,.;) and Cartesian coordinates {z,y).

R,
22,12

F-be . N
/ﬂ_l_m [J-’D'fop(z) + Jzo.bot(m)] dx (32)

where A; and A, are the integration stopping points for the left and right
edges, respectively (see Figure 3.1b), and W is the strip width. The contour
integral has been converted into a line integral by summing the top and bottom
strip current components.A I a line integration of J,, had been incorrectly
performed instead, the resulting loss would have been higher, in fact, twice as
high for the case of a transmission line in which J, is equally divided such that
Jzogop = Jzobot = %Jzo. The division of the ideal total current J., into J.,
and Jyo40¢ is dependent on the planar transmission line configuration. As an
.example, the currents of the microstrip line of Figure 3.2 will be scparated by
a Green’s function technique. Qualitatively, the presence of the ground plane
causes more of the field to concentrate between the strip and the ground plane,

and so J,, 40 should exceed J,o10p throughout the width of the strip.
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Figure 3.2. Geometry of the microstrip used in the Lewin/ Va.mshtem current
integration method.

3.2 Microstrip current division

Assuming the geometry for the microstrip as in Figure 3.2, the mag-

netic vector potential A can be expressed by the integral [8]

A = e (7)) dl'. 3.3
(z,y) quwG ) (3.3)
An appropiate Green's function G for this microstrip configuration is
(z—z')2 4+ (y+2H)?
G(p,p") = -—ln \/ , 34
(#:7) =5 [ Je-oriy (34)

where the denominator of the logarithmic function is due to the strip, and the
numerator is due to its image below the approximately perfectly conducting
ground plane. This is a transverse, quasistatic function, which can be used
according to the quasi-TEM assumption. When this Green’s function is used
and only the longitudinal component of surface current, J:0, is considered, the

single vector potential component A, is

zr— + 21
As(z,y) = £ f (') In iz =)+ (v + 207 dl. (3.5)
2n Jow \/(:r — _,,;:)2 +32

The transverse variation of the magnetic field 71 of a quasi-TEM mode

in the quasi-static limit can be expressed in terms of the Lorents potential as
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(8]

—H— = VT p 4 X, (36)

-~ B

where the subscript ' indicates transverse variation only, or 2 = 0. Using

(3.6) with A = A,q., the magnetic field in Cartesian coordinates is

o104 104,

H(E,y) = ax; 6y ‘— av.ua—m. (3.7)

This expression for the magnetic field can be used to find the surface currents

on both sides of the infinitely thin strip by the boundary condition

Jeo=Tn x H|s. (3.8)

Here @, is the outward unit normal vector from the surface S, which is the
surface of the strip in Figure 3.2. On the top of the strip, @, = @, y approaches

zero from the positive direction (y = 0%), and
Tz Jrop0p(T) = By X Tz [—Hz(2,y) ly=0+], (3.9)

&0

Jzop0p(2) = —Ha(z,07). (3.10)

Thus only the z-component of the magnetic field needs to be considered. Like-
wise, on the bottom of the strip, @, = —a,, y approaches zero from the negative

direction (y =07},
E-~.’-Jzo,bc‘!(z) = "'Ey X @, [Hr(m$ y) |y=0‘] 3 (311)

50

Joopot{Z) = Ho(2,07). (1.12)
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Solving for H, from (3.5) and (3.7),

z—z')? 2H)?
Holz,y) = 'a% [2% [ @) ( VA e i ;)iy:y: ) ) dl’] (3.13)

1 , 2(y + 2H) 2y ,
- 41rfosz°($)[(m—x’)2+(y—2H)2 (z —2')? +y? al

Since J.o = Jzot0p + Jzopot, the current on each side of the strip can
be subdivided as '
Teoton(®) = 3o(2) = 81.o(z) (3.14)
and

1
Jzo.bot(x) = §Jzo($) + 6Jzo(l'), (315)

where

§J.0(3) = %(J,o,bo,(z) — Toatopl)) = %(Hz(x, 07)+ Ha(z,0%))  (3.16)

is a nonsingular difference term which approaches zero near the edges. If (3.13)

is rewritten by the change of variable —y — y as

_ = 4§ J(@) 2(—y +2H) —2y dr
He(z,-y) = f;w dx [(:r ~ ) 4 (—y - 2H)? . (z — z)? + (—y)? it
' (3.17)
then the sum of (3.13) and (3.17) is
Mol )+ Haley) = o f Tt )
2(—y + 2H) ]d!l'
(z—2)?+ (—y—=2H)?"

In the limit as y approaches zero from the positive direction, or y — 0% and
—y — 07, half the sum (3.18) becomes 6J,, from (3.16), and since J., is the
total current of both sides of the strip, the contour integral for &J., becomes

the line integral

b/ fwn Jo(z')da’

8eolz) = T : 3.
J., (..L‘) J w2 (J: _ :l,f)z EVIE (; 19)

T
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In terms of J,, and éJ,,, the integral (3.2) is then

1
- 2
a, 22 = s [ T2 (z) + 267 (:c)] dz (3.20)
R, ’-‘i-A. * )
——-—22012 [ s l- dm+j 28J%,( ]

The approximation is possible since 6J,, ~ 0 near the edges. The integration
(3.20) can now be done with an expressidn for the total current Jzo(z) on an
infinitely thin strip in a microstrip system.

In the most general case of two similar strips, having the same widths
but different edge shapes, the unperturbed current distribution J,o(z) will be

the same for both. However, due to the different edge shapes, the losses are

R, %0 |
Gen = 971 ./_&;.’.,.A“ Totop(®) + Tt por(2)] d (3.21)
R, l;:"An

- ; 2
T 2ZIt ~¥ian [2 zo(z)+26']zo( )]

where n = 1 and n = 2 for the first and second strip, respectively. The

difference in attenuation constants becomes

R’ —"at-l'-ﬁu i}
Qe — Qg = 27 Iz('[—ﬁ-{-Aﬂ Jzzo,:ap(x) 20, bot( )]dm - (322)

f_-A,. (2, 4ap () + T2 pu(2)d)

N 2212([;:; "[2 () + 26 ()]da:—

e [5722) + 2672, (2)] )

¥_a,,

The éJ., terms can be ignored since they are very small in the range of inte-
gration, and this will simplify the calculation significantly. (3.22) is the result
used to employ the Lewin/Vainshtein current integration technique on the loss

clfect of differcnt edge shapes.
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3.3 Microstrip current profiles
Various formulas for the total longitudinal current distribution of an
infinitely thin microstrip can be used in the calculations above. Of course, all

have the characteristic that they must integrate to the total current / , or
I= [ ). (2)d 3.2
= : 23
./_ W) -o(x) L ( )

According to the Meixner condition ([3],[4]), these currents should display a
r~1/? dependence approachil‘lg the edge, where r is distance from the edge.

The simplest of all J,, current profiles is given by the magnetic wall
model, which assumes that the total strip current J,,(z) is constant over the
strip width, or

I

Jromw (T) = W (3.24)

Such a distribution would be obtained if a fictitious magnetic wall, the dual
of a perfect conductor, were placed from the edges of the strip down to the
ground plane. This would eliminate all fringing fields and result in a uniform
field (and current) between the bottom of the strip and the ground plane. From

Appendix 1, the final form of (3.20) is

AMW = S W2

(W —2A), (3.25)

assuming identical edge shapes on the left and right edges of the strip. If the
magnetic model includes the ground plane, which would alse have the current
distribution of (3.24), the attenuation constant would double. To be consistent,
however, the quantity (3.25) will be retained.

A second current distribution is the Maxwell’s current distribution

for an isolated strip [9]. This neglects the effect of the ground plane, and the
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curve remains the same for all aspect ratios of microstrip width over substrate
height (W/H). This distribution is given by

1
7rI/V\/1 2;!:/W w\/Az — 27’

Jzo.MX (-7") (326)

where A = W/2 and I = 1. From Appendix 1, the J2, term of (3.20) becomes

F-a 2 W-A
z T = 2
[ RACEEE (= ), (3.27)
while the 6J2, term must be numerically integrated.

Another distribution is the current distribution obtained by Kuester

and Chang [12], which is given by

Sl () - (. o
J”‘Kc(x)_SHk’K(k)[ o (ggr) -’ (TF)] . @2m)

where C,V = I is the total charge, (k) is the complete elliptic integral of
the first kind, k = tanh ("'W) and &' = +/1 — k2. This result was obtained by
Green’s function technique, using the two dimensional Green’s function (3.4)
containing the image term below the ground plane, and setting y = 0 to find
the charge (current) density for a given potential difference V. From Appendix

1, the J2, term of (3.20) becomes

x/8H tanh ((A-—A)ﬁ)

I? /——— ::)d:c - k2K (k)\Je(a—1) tanh” [ V 1- ﬁ ] ’

x _, [tanh ((A - A)l—';l)
(3.29)

where ¢ = cosh? (%), and simplification has been done using cosh() —

sinh?(z) = 1.



A normalized closed form expression by Kobayashi [9] is

Jzok(z) _ _ 2z M(z) -1
Tox©®) ~ 11 (1 w) Mz) -1 (3.30)
where
N 1 |

and z,, given by Kobayashi, is a function of the microstrip geometry w/h.
Similar to Kuester and Chang, Kobayashi’s result was obtained by a Green’s
function technique, but the parameter z. is used to vary the closed form ex-
pression according to the aspect ratio. Using Kobayashi’s current profile, once
again the integral (3.20) can be reduced to closed form (see Appendix 1) except

for the 6J2, term, which must be approximated numerically. The J2, term is

/ %,‘A Jz)dr = 2(1—r)*(A—A) (3.32)
-5 +4

. A W—-A
. — 1 _1 bl -2
+ 4A(1 — k)xsin (1 _A) + Ax*In ( ) .

The current I, found in Appendix 1 to be

I=(1-gw+ W x:lo(l_if)"m—x‘%, (3.33)
2 A—\/A2—$§

is also normalized, but in the ratio J2,/I?, the normalizations cancel. This
will be considered the most accurate current profile, and will be used in all
subsequent calculations.

In Figure 3.3, a plot of the attenuation constants using the given
current profiles is shown for a wide range of aspect ratios. The results are
shown in percentage difference from the Kobayashi result, or

Uother — AR ;
G = Zether Z AN o 100%, (3.34)
ap .
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Figure 3.3. Attenuation constants for a variety of strip current profiles J,,,
shown in difference from the Kobayashi result.

since Kobayashi's profile is taken for J,, in this thesis. As can be seen from
the graph, Kuester’s current profile is relatively close to Kobayashi’s, as is the
magnetic wall model over much of the range, which is surprising. If the ground
plane is included in the magnetic wall model losses, the result would have been
higher by at least 100%. Maxwell’s distribution yields significantly higher loss

results, especially for wider strips.
3.4 Numerical results and comparisons

3.4.1 A survey of microst_:rip conductor loss methods based
on the surface impedance condition Various methods may be used

to find a., such as numerical computation, accurate experinient, or analyti-

cal approximations. A comparison of those theoretical methods based on the
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Figure 3.4. Geometry of the incremental inductance rule. The lightly shaded
regions are the half skin depth recessions in the metallic walls.

surface impedance boundary condition is done here for a rectangular-edged mi-
crostrip. Among those are the Lewin/Vainshtein current integration method
of this chapter, using the integration stopping point of A, = %; approx-
imate analytical loss formulas of Pucel [1], Schneider [19], and Kaden [20];
and numerical results given by Spielman [21] and Wiesbeck [22]. All assume
rectangular-edged strips.

Pucel’s commonly accepted results are based on Wheeler’s incremen-
tal inductance rule {5}, which is derived from the surface impedance condition,
and on approximate closed form expressions for the inductance of nonzero-
thickness, rectangular-edged microstrips. The surface impedance Z, = R,+iX,
has equal real and imaginary parts, and X, = wL;, where L;, the internal induc-
tance, is much smaller than the external inductance. The internal inductance
can be obtained by finding the increase in the inductance when all metallic
boundaries are recessed by half of a skin depth §/2 (see Figure 3.1). This lcads
to a result for the total resistance R, power lost = /2R, and eventually the

attenuation constant from a. = RI*/(2Z,1%). The formulas in Pucel’s paper
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Figure 3.5. A comparison between the Lewin/Vainshtein current integration
method and Pucel’s formulas for the attenuation coefficient, shown in % dif-
ference from Pucel.

include ground plane loss but can be altered to consider only the strip conduec-
tor by not receding the ground plane wall. Figure 3.5 thoroughly compares the
altered Pucel’s results with those obtained by the current integration method
for a wide range of normalized widths (¥) and thicknesses (£). All data is

given in the form of a percentage difference from Pucel

% — e Lewin — Qg Pucel » 100%. (335)
Qe Pucel

Generally, the Lewin/Vainshtein current integration method predicted higher
strip loss than Pucel for narrow strips and lower strip loss for wider strips.

The method of Schneider [19] is similar to Pucel’s in that it also is
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based on Wheeler’s rule, and the ground plane loss contribution can be ex-
tracted. However, Schneider’s formulas use different closed formed results, in
this case approximations for the microstrip characteristic impedance. Kaden
[20] uses the conformal transformation technique on thin microstrips, and de-
rives loss formulas for both the ground plane and the strip from approximations
of the resulting hyperelliptic integrals. A.program for moment method solu-
tion of a general microstrip configuration with ground plane loss is given in
Spielman (21] (errors exist in the program listing in [21], and were corrected by
H. George Oltman of Tecom Industries in a private communication). Another
numerical method by Wiesbeck [22] implementing the moment method is used
to give results with and without ground plane loss for three specific microstrip
substrate heights.

All of the other techniques were compared for one of the specific
microstrip configurations used by Wiesbeck. Computation with these methods
was done over a range of strip width from 0.1 < W < 1.8 mm, while all
other parameters were held constant at H = 0.254 mm, T = 18.19 pm, e, =1,
o =4.9x 10‘7%, and f =1 GHz. Results of the total conductor loss including
the ground plane are given in Table 3.1 for the methods of Pucel, Schneider,
Kaden, Spielman, and Wiesbeck. Table 3.2 compares strip loss only for Pucel,
Schneider, Kaden, Wiesbeck, and Lewin/Vainshtein. Once again, all entries
are given in the form of a percentage difference from Pucel.

Several observations can be made from the results. F irst, as the width
gets narrower to 0.1 mm, the thin strip approximation upon which each of the
analytical formulas is founded starts to fail. This results in larger differences

from Pucel, one of those analytical methods, at that width. Second, there is a
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Table 3.1. Percent difference in four different methods for total conductor
losses in microstrip (including ground plane) from the Pucel formulas. H =
0.254 mm, T =18.19 pm, & =1,0=49x 10778 and f = 1 GHz.

Width Loss calculation method

(mm) | Schreider | ... Kaden [ .Spielman | .Wiesbeck
0.1 220 -29.5 0.9 143
0.2 10.9 -20.0 -3.3 9.0
0.2540 9.1 -16.9 -3.0 11.5
0.2541 18.2 -16.9 -3.0 11.5
0.3 10.5 -14.9 -2.5 8.9
0.4 7.7 -9.1 1.6 11.2
0.5 15.2 -0.5 9.5 18.7
0.5080 16.2 0.4 10.6 19.6
0.5081 4.0 -10.2 1.0 7.0
0.6 3.8 -9.9 -1.6 6.3
0.8 3.9 9.1 -1.3 4.2
1.0 3.3 -8.4 -1.2 2.3
1.2 2.5 -T.7 -0.5 1.4
14 1.7 -7.2 -0.1 0.4
1.6 1.2 -6.6 0.1 0.2
1.8 0.9 -6.0 0.3 0.3

sharp discontinuity in Pucel’s loss at -‘g— = 2, or W = 0.508 mm. This is where
the two closed formed inductance approximations used by Pucel meet, result-
ing in a discontinuity of 9.0% for T — 0 and slightly worse for the nonzero
thickness here. Judging from the comparisons, it appears that the % < 2
approximation is at fault, giving losses which are relatively too low. A sim-
ilar discontinuity appears for Schneider at the junction of two closed form
approximations of characteristic impedance, % =1or W = 0.254 mm. The
third analytical result, by Kaden, appears to be consistently lower than other
results, but improves as the strip width becomes wide. Spielman’s numerical

code shows excellent agreement with Pucel, but the issue of discretization error

should be mentioned. In this application, the finite substratc and ground plane
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Table 3.2. Percent difference in four different metheds for strip conductor loss
in microstrip from the Pucel formulas. H = 0.254 mm, T = 18.19 pm, €, = 1,
0=49x10""8 and f =1 GHa.

Width | Loss calculation method
(mm) | Schneider ] ....Kaden [ ...Lewin | -Wiesbeck |
0.1 _ BT 415 29.4 204 |
0.2 12.0 -32.7 19.3 19.3
0.2540 10.2 -29.7 17.5 23.6
0.2541 19.3 -29.7 17.7 23.7
0.3 11.5 -27.5 15.6 22.0
0.4 8.5 -22.0 15.0 26.4
0.5 16.1 -13.9 20.6 36.7
0.5080 17.0 -13.2 21.6 37.7
0.5081 4.6 -22.4 8.6 23.1
0.6 4.5 -21.4 3.7 234
0.8 4.3 -19.8 -2.4 21.9
1.0 3.6 -18.3 -4.7 20.1
1.2 2.8 -17.0 -6.0 19.1
14 2.0 -15.8 -7.2 174
1.6 14 -14.6 -8.2 16.6
(18 10| _-137] 86 15.6

width was assigned a value of L = 10W. When this ratio was changed, con-
ductor loss was altered significantly, especially for very large % ratios. Thus,
discretization in numerical methods can drastically alter results. Wiesbeck also
compared reasonably with Pucel in tota! loss, particularly for wider strips, but
the contribution of strip loss varied much differently with substrate height H

than Pucel.

3.4.2 Ground plane loss contribution The contribution of
the ground plane conductor loss to the total conductor loss has been quantified

by the alteration of Pucel’s formulas mentioned previously. These changes are

listed in Appendix 2. Intuitively, microstrips with a very narrow strip (r<1)

should have very high current concentration, and hence dominant loss, in the
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Figure 3.6. Strip percentage of the total loss in a microstrip system as a
function of % Obtained by an alteration of Pucel’s formulas for attenuation

constant.

strip. As the strip becomes wider, the current concentration becomes more
spread out. In the limit of a very wide strip, it will almost approximate the
magnetic wall model, for which the loss is equally divided between the strip and
the ground plane. This is indeed true, as seen from the results of F igure 3.6.
For practical microstrip, strip loss definitely dominates, although ground plane

loss may be significant enough to calculate for a higher degree of accuracy.

3.4.3 Effect of edge shape on loss The effect of edge shape
on loss has been investigated by using the various edge stopping points from
Table 2.2 with equation (3.20) and Kobayashi’s current profile. The results are
given for a wide range of widths and thicknesses in Figure 3.7 in the formn of
percentage difference from the Lewin/Vainshtein prediction for a rectangular

edge.
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As the edge corner gets sharper, the loss increases, as predicted in
Chapter 2. For the sharper edges, the predicted increase in loss seems to be
quite high, especially for narrower width strips. Although the tendency of
increasing loss with increasing sharpness is probable, the actual increase may
be too large, due to the possible breakdown of some assumptions. First, the
surface impedance condition is based on a smooth interface between metal and
dielectric. The sharp edges might requir;a a modification of the Leontovich
condition. Also, in the calculation of integration stopping distances A, the
fields on a perfectly conducting strip are used. The actual current approached
a finite value instead of blowing up with a singularity depending on the edge
corner angle. These effects will be discussed in Chapter 5.

When the thickness of the strip becomes larger compared to the width,
the increase in loss due to edge shape rises dramatically, as seen from the graph.
This is not attributed to an invalid A, since the stopping point does not increé.se
much in the thick strip limit, but besides the factors already mentioned, the
result can be explained by the inaccuracy of the infinitely thin perturbation.
However, for practical micfostrip configurations, where the strip thickness is
very small compared to the width, the assumption is valid, and the effect of
edge shape is seen to be important. The results here compare favorably with a
quasi-static moment method study by Chryssomallis et. al.[23], who found that
for the specific case of W/ H = 0.101 and T/H = 0.011, the microstrip with a
circular-edged strip will have 15% less conductor loss than the microstrip with
rectangular edges. For the same configuration, the present technique predicts

a 10.7% decrease in loss for a circular cross section.
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current integration method.



CHAPTER 4
INCREMENTAL WIDTH METHOD

4.1 Introduction
In some quasi-TEM transmission line configurations similar to mi-
crostrip, where a relatively small strip conductor forms the major component
of loss, expressions for the infinitely thin strip current distribution J,, are not
available yet. As discovered in the previous chapter, the use of Maxwell’s
current distribution for an isolated strip is not acceptable, since the other con-
ductor surfaces change the current distribution enough to significantly affect
loss. As a result, the Lewin/Vainshtein current integration method can not be
used to calculate loss or the effect of various strip edge shapes. For that reason,
a method has been developed to find the edge shape effect on conductor loss
from only the strip width inductance derivative dL/0W and other quasi-TEM
transmission line parameters. Once a value for the loss with a certain strip edge
shape (usually rectangular) is obtained by other means, the loss of a similar
strip differing only in edge shape can be obtained from an expression for the
inductance of the corresponding infinitely thin strip. This inductance is sig-
nificantly easier to obtain than the inductance which includes strip thickness.
All of the assumptions used in the previous chapters continue to apply here.
The technique, termed the incremental width method, is developed in
this chapter by a perturbational method. The resufts will be applied to both

the microstrip and open coplanar waveguide configurations, and comparison to
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results from the Lewin/Vainshtein current integration method will be done for

microstrip.

4.2 Development of the incremental width method

4.2.1 Loss difference formula from a current model The

total current distribution J,, of the strip near the left edge can be modelled as
[9]

K I

Jza(xl) = E

as &; — 0, where K is a constant, Fi(z;) is a function of z; which is bounded

+ F(z) . (4.1)

as ; — 0, and z; is distance from the left edge (see Figure 3.1). Similarly, J,,

near the right edge is
K. I

Jzo(zr) = ‘/—

as =, — 0, where K,, F.(z,), and z, are analogously defined. Since the stopping

(z.) (4.2)

points A are in general very near the edge, J;,4p and J,. .. can each be
approximated as -;—J,a there, that is, 5&‘/:—{—‘- or ﬁﬁ Since z; = = + % and

z, = % — z from the geometry of Figure 3.1, (3.22) becomes

R, Ay 2K,2I2 far 2K 212
- = dr; — f o
Gz — Aot 2Z.I? [Lz, 4z, o Ay 4z, de, (4.3)

A A
2 1 2 Sir
i (3) + K70 (32)]

The constants K; and K, the singularity terms in the current mod-

els J,, = —‘i—! and J,, = \[-, must be determined. Of course, when J., is
integrated over the entire strip, the result is the current I, but the A" terms
are different for each geometry and configuration. In the following, K will be
related to the inductance of the zero-thickness case, so that a modified incre-

mental inductance rule, called the incremental width method, will be developed
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without thickness corrections. Eventually, the separate terms K and A, will
combine into the derivative of inductance with respect to width, 2% aw= so the

subscripts will be dropped for brevity.

4.2.2 Relating the singular part of the current with the
expanded vector potential  From (3.6), the quasi-static magnetic field

can be expressed as

H==Vr x4, (4.4)

®i-

where the potential A satisfies
V34, =0, (4.5)

in the source-free cross-sectional region surrounding the strip as in Figure 4.1a.
If A, is expanded in a sine series near the edge z = —-—— (p = 0 in Figure 4.1a),

the potential becomes

Asp, ) = Ao + i Azm(p)sin (de’) \ (4.6)

m=1

where A,, is the arbitrary constant value of the potential on the strip (at angles
of ¢ = 0 and 2r). In this two-dimensional, source-free environment around the

edge, the scalar Laplace equation (4.5) becomes, upon substituting (4.6),

13 @ (m/2)2)
——— — Azm =0, 4.7
(22,2 - 12E) 40t (47)
which is solved by
Azm(P) = 6mp%1 (18)

where £, is an amplitude constant. The other solution p~™/? js disallowed due
to the Meixner edge condition of finite field energy in any finite volume [24].

From (4.8), (4.6) becomes

Ad(p, @) = Awo + Z £np¥ sin ('"f) : (1.9)

m=1
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The transverse magnetic field components H, and H, are found from (3.6),

using only A,. In terms of the expanded potential A,,

Hy(p,¢) = -;1‘- g:) =—- mz_:l B tnp®1sin ( 2¢) (4.10)
and
1 gA, 1 & m_ me
H,(p, ¢) = TR ! cos (—2') - (4.11)

From the magnetic field, the surface current on both sides of the
infinitely thin strip can be found from the boundary condition (3.8). On the

top surface, the outward unit normal vector @, = @4 = G,, 8, = G, and ¢ =0,

so
- _ — _ _ 1 & m m_
Jzo'top(f’) = @, X (H,8; + Hyty) lo=o= —8:H, |y=0= _; Z E p?
" (4.12)
On the bottom surface, @, = —@y = —@y, @, = @, and ¢ = 27, s0
—jzo,bot(P) = __ (H a. + Héay) I¢=21r= Esz |¢=2'1!' (413)
= = Z —£np7 ! cos(mn)a,.
I m=1
Thus, the total surface current is
3
Jio(p) = —— Z l;'m (1 — cos(mm)) = —E—lp-% - ép% +- e (4.14)
ﬂ‘m”‘l ] I I

Since on the strip surface p = z;, (4.14) can be compared with the current

expression from (4.1) to find that
Kl =—->, (4.15)

where the [ subscripts have been omitted from K and ;. A similar derivation
using the vector potential expansion about the right edge yiclds

- 61‘1
N.I=22, 1.16
p (4.16)
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The relation (4.15) will be compared with another derivation based on induc-
tances in order to eliminate £; and determine K in terms of an incremental

inductance.

4.2.3 Relating the singular part of the current with the
inductance derivative  Figure 4.1 illustrates two cases of an infinitely

thin strip surrounded by a perfectly conducting surface, both invariant in the z-
direction. The first case has associated with it the vector potential A,, magnetic
field H, width W, and a cylindrical geometry (p, #) with origin at the left strip
edge. The second, perturbed, case has an extra length §W to the left of the
first edge, so its width is W + 6W. It has a different cylindrical geometry (r, 8)
centered at the new left edge, as well as quantities A,; and Hs. In the first, the
vector potential expansion near the edge is (4.9), and in the perturbed case, it
is

o m 0
Aus(r,0) = Apos + ) Emsr? sin (-n;—) . (4.17)

m=1

The first term, A,.s, the arbitrary constant potential of the strip, is set equal
to A.,, the potential of the first strip. The outer perfect conductors in each
case are assigned potentials of A, = 0.

Starting with the integral
fs B; - HdS, (4.18)

where S is the enclosed area in Figure 4.1a excluding the strip, and using the

definition

F,s = .VT X Ig (119)

along with the vector identity

(VrxC)-D=Vp-(Cx DY+ C-(Vy x D), (-1.20)



the integral becomes
[, B TS = [(Vrx o) Has = Sz (A x )+ B (Vo x B)ldS. (4:21)

The region S has no sources, so Vo x H = 0 can be used to simplify the integral

by eliminating the last term. Also, the divergence theorem

fs (Vr-Fr)dS = f}: Fr-a,dl, (4.22)

where @, is the outward unit normal vector, is applied. In this case, the

transverse vector Fr is (A x H) = (Asos8; x H). Thus,

]S B;-HdS = fc (A5 x H) -a,dl = f (uoi@, x ) -Tdl,  (4.23)

Cw+Co
where C, is the outer conductor on which A, = 0 and Cyy is the closed loop
around the strip in Figure 4.1a, on which the potential A4,; is always the con-

stant A,,5. From the identity

A-(BxC)=C-(AxB) (4.24)

and defining @ as the unit vector tangential to the strip contour Ciy such that

@, X @, = @, the integral (4.23) reduces to
=4 Hiz a)dl=¢ H Q)dl=¢ A, sH-dl = A. 5] (4.25
$ H-@nx A )l = § H(Awm)dl I3 Ay cos] (4.25)

since the contour integral

ﬁ'ﬁ-d?: 1 (4.26)

is defined as the conductor current 7. From the definition of inductance, the
strip potential A,, can be expressed as A,, = LI, Similarly, A..s = LsI;. Since

the potential of the strips in both cases were set equal,

js Bs-HdS = Apsl = LIl = AT = LI*. (1.27)



Now, if the permeability u is linear throughout,
/s B;-HdS = fs B.HdS (4.28)
is true, and from a derivation similar to (4.18)-(4.24) before,

/ B-HdS = }( A{p, VH; - dl. (4.29)
s Cwisw

Previously, the magnetic field of the first case, H, was integrated around the
contour of the first width W. Now, H; is being integrated over the perturbed
width W + §W. The difference will arise because A,; was constant, A5, over
a larger region W + §W than what the previous integration was carried over,
specifically W. In the present integral, A, is constant, A,,, over width W only
and has the behavior given by the expansion in (4.9) beyond that. If A, is

approximated by

A:(p,$) % Aso + 617 sin (g) (4.30)
in the region 0 < r < W, 8 = 0, which is also W > p > 0, ¢ = 7, and it is

the constant A,, over the remainder of the strip, then

_ = - - sW -
$  ApOHed=§  AHd+2 [a\/ﬁsin (f)] [Hs - ap| .
Cwiew Cwyisw 0 2_
(4.31)
Here the factor of two arises from integration of the top and bottom of the
extra length of strip §W. Recognizing the right-hand side contour integral as
A, times the current I;, and substituting from a first term approximation for

H.; analogous to (4.11),

- 1 AN
H; =8, H,5(r,0) ~ %‘E—r'z cos (5) @y, (1.32)
and since @, - @, = —1 on the extra length §W, the expression becomes

. 5W . - 0
fcwﬂw Alp,¢)Hs - dl = Aol + ‘2/0 [{1\/,55111 (%)] [2;'/61_. cos (5)] dp.
(4.33)



In the region of integration, ¢ ==, § = 0, and r = 6W — p, so [17]

W &1b1s =&l TF5W)
- { = ). (434

From the definition A,, = LI,

=&1€ysmdW

] B-H;dS = LII; + (4.35)
s 2u
Equating the integrals (4.27) and (4.35) by (4.28),
LIIs+ M = LI, (4.36)
and rearranging, the result is
)
If(Ls— L) = —&f;iﬂ (4.37)

Taking the limiting case 6W — 0, I; — I, &5 — £, and LEWL — %, the

constant {; in terms of the inductance derivative is then
I2 8L

_9
g = (4.38)

Using (4.15) in (4.38), it is found that
8L
K= W (4.39)
pr
the desired expression of K in terms of an incremental inductance. When
the right edge is incremented in a similar derivation, then, using (4.186), the

identical result (4.39) is obtained. Therefore,

—93L
Ki=K?= K? = ——8% (4.40)
ur
Substituting back into (4.3), the final result for two general strips is
—REE 1 /Ay Ay
2 Q= T 1( ) ( r)]
Qez — (g 2, [ﬂ A +In 3, (-1.41)

This amounts to a kind of incremental width method analogous to Whecler’s

[5] for the change in e, due to edge shape.
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4.3 Results from the incremental width method

4.3.1 Microstrip lines Formula (4.41) has been applied to mi-
crostrip lines of varying geometries comparing losses from the rectangular, cir-
cular, and 45° trapezoidal edges using the conductor loss a. of the rectangular-
edged strip from the Lewin/Vainshtein current integration method. The mi-
crostrip inductance for an infinitely thin strip was taken from [1], with the
thickness correction terms set equal to zero. Finally, the stopping points for
those edges, Arort = 7z, Dcire = o, and Agse = Z5ig73: Were taken from
Table 2.2.

An approximate expression for the inductance of the microstrip [1] is

Ho ifi) L(E)r
T or [ln(w ta\E/) ] (442)
for % <2, and
-1
L= %% +-In [2“ (E +0. 94)] (4.43)

for W > 2. The required derivative 2% aw is found to be

aL uo [H W

W~ "wB W 6H (4.44)
for %’— < 2, and
0L=_ Ko 2”+W7ﬁ4-?-m (4.45)
OW — 2rH (% + 2In[2me( & + 0.94))) '

W9
forHZH.

In Figure 4.2 the results of the loss comparison over a large range of
strip widths and thicknesses are given. The results are very close to those of

the current integration method of Chapter 3. As the corner gets sharper, the
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loss increases. Also, as expected, edge shape becomes unimportant for very
wide strips, since less of the total current is concentrated in the edges of the
strip. Again, in that extreme, ground plane loss grows significantly and can no
longer be ignored. Another observation is that as the strip grows thicker, the

dependence on edge shape increases as well.

4.3.2 Open coplanar waveguide Formula (4.41) has also been
applied to the problem of open coplanar waveguides, shown in Figure 4.3, to
investigate the theoretical increase in loss when trapezoidal edges are used
instead of rectangular edges. From the expressions for characteristic impedance

of that transmission line [7]

i, 30r K(K)
Y=o = 7= K®’ (4.46)

capacitance
_ K(k) e-1K(k)
C; = de, [K(k’) + 2 K] (4.47)
and effective dielectric constant
.—1 K(K) K(k
€e=1+- (F) K(k) (4.48)

2 Kk K(&)

where k = =5, & = T — k2, and &, = sinh{Z3)/ sinh[M], the induc-
Svaw 4H ]

tance [, is found to be

K(F)
lh=22,=F L
=28 =T Xm

The required inductance derivative would not be simply %Sﬂ, where S is now

(4.49)

the strip width. Instead, the ground plane edges can now be considered and
incremented. These changes will cause a decrease of gap width 1V on each

side of the gap. If all the edges are the same for each respective structure, the



58

correct form of (4.41) is

— &, (.3.1; B 53'#') a9
ez — Qg = 2unZ, [ln (A_z)] . (4.50)

One of the required derivatives, 2%, is found by the chain rule to be

aly _ po [K (k)L — K(k')2E0K o1
s 4 K*(k) ,

(4.51)

-~ WS

JKUCJ — EE)~(K3R(K) 17
where 3% = WEtWi (S42W )2 5% S+2W)5’ and = =wr - [17)

Blg Bk 52
The other derivative, 5%, is found analogously, where W = TSR

and % = (ST‘;‘SW—);. The rectangular-edged loss is read. although not very

precisely, from a graph [25] for a wide range of the normalized parameters a
and % The stopping points A are once again obtained from Table 2.2. The
results of the comparison are given in Figure 4.4. It is seen that the trapezoidal
edges increase the loss, as expected, and the difference increases with decreasing

width S while maximizing at small gap size W.

4.4 Comparison with the current integration method

The effect of edge shape on microstrip loss was examined according
to the incremental width method in Figure 4.2. To compare the results from
this method with the Lewin/Vainshtein current integration results, the current
integrations were carried out for the edges of interest and compared. Results
for a single normalized thickness, % = (.01, are shown in Figure 4.5, along
with the results from (4.41) in Figure 4.2 for the same thickness. An analysis
of the results indicates that the two contrasting methods have roughly the same
edge shape dependence over a wide range of strip widths. Thus, cither of {he
two methods can be used for transmission lines in which both the infinitely
thin inductance and current profile J,, are known, while the incremental width

method could be used in situations in which only the inductance is known.
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Figure 4.1. (a) First case, with strip of width W and cylindrical geometry {p, ¢)
centered at the left edge; (b) Perturbed case, having strip width W + 6 and
a new cylindrical geometry (r,#) centered at the new left edge.
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Figure 4.3: Geometry of the open coplanar waveguide.
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CHAPTER 5

VALIDITY OF LEONTOVICH CONDITION AND PERFECT
CONDUCTOR APPROXIMATIONS

5.1 Introduction

The results of the previous three chapters have been based on the
assumptions listed in Chapter 1. It has been briefly mentioned that two of
them, the surface impedance (Leontovich) boundary condition and the perfect
conductor approximation, are particularly important and may be subject to
question near the edges. Since it has been shown that the effect of edge shapes
can drastically change conductor loss results, a further examination of these
assumptions is necessary. Both of these assumptions will be reviewed and

compared with relevant results, mostly numerical in nature, from the literature.

5.2 Perfect conductor approximation

5.2.1 Behavior of perfect conductor fields The approxima-
tion that the fields (and currents) at the surface of the finitely-conducting strip
being equal to the fields of the perfectly conducting strip is described in Chap-
ter 1. According to Meixner [3],[4], the perfectly conducting strip will have a
surface tangential magnetic field H,,, and hence a longitudinal current singu-
larity at the edge. This singularity is of the order r*~!, where r is the distance
from the edge and t depends on the edge angle vx by t = ,—}; The orders of

the singularity for the various edges are listed in Table 5.1. Far from the edge,

the total strip current J,, should approach the r~1/2 hchavior of an infinitely
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thin strip. However, the top and bottom strip current components J. ., and
Jzo,b0t should be distorted from that behavior in the presence of a ground plane.

The Schwarz-Christoffel transformations of Chapter 2 have been used
to derive and integrate expressions for the current near the various edges.
Since all of the singularities encountered in the actual strips are weaker than
' the r=1/2 singularity that leads to a logarithmic divergence for the infinitely
thin strip, the integration of the current squared |J|?* were all bounded. The
currents, given by :—:, the inverse of the derivatives of (2.6) and (2.34)-(2.36),
have been plotted for distances away from the various edges in Figures 5.1
and 5.2. Figure 5.2 demonstrates, for the isolated strip, how the current tends
toward the r~1/? behavior sufficiently far from the edge. Assuming the current
near the edge can be expressed by |J,| r*~1, asymptotic values of the constant
|Jo| have been found from numerical results for the various trapezoidal strips
from the transformations of the coordinates and currents. These values are
listed with the ]J,| thickness dependences in Table 5.1. For the rectangular
and 45° strip edges, approximations to first order in distance from the edges

were obtained and are compared with the results below. For the 90° edge:

T 2/3 2 23
|J,,'90.|_(ﬁ;) Vi © 0468577, (5.1)

which is very close to the numerical value, and for the 45° and 135° edges

encountered in the 45° strip:

37 \YT 5\YT
Vogse| = (-_) (-) ~ 0.4066 T~4/7 (5.2)
! 32T 8
3r \ V5 T\ 1/5
,Jo,l35°| = (“32—T) (g) =5 0.3662 T_‘lls..

which are relatively close to the values in the table.
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Table 5.1. Normalized currents of perfect conductor for various trapezoidal
edges.

Strip edge shape | z of |[J|/r* [ y of TV in |J,| [ |Jolr=
Rectangular edge 1/3 -2/3 | 0.4684
60° edge 2/5 -3/5 | 0.4334
120° edge 1/4 -3/4 | 0.4225
45° edge 3/7 -4/7 | 0.3912
l| 135° edge 1/5 -4/5 | 0.3593
30° edge 5711 4 6711 | 0.3308
150° edge 1/1 -6/7 | 0.2652

5.2.2 Behavior of imperfect conductor fields In the actual
case of an imperfect conductor, these singularities do not exist, according to
various authors [26])-[29]. As a result, the importance of edge shape would
decrease, if the surface impedance condition is still maintained.

Chisholm [26] expands the longitudinal components of the fields both
inside and outside a circular wedge waveguide in a power series in r, the distance
from the edge. After examining the resulting eigenvalues, he concludes that a
coupled mode must exist in the finitely conducting case, and that the coupled
tangential magnetic field H¢ is large only near the edge. In fact, at the edge, H
is the negative of the perfectly conducting HY?, so the total H, and longitudinal
current is zero at the edge. An expression and graph of the total H, are given,
showing how near the edge H, peaks before Hf becomes large and decreases H,
to zero at the edge, but unfortunately the expression depends on the diameter
of the wedge waveguide. This is not correct, and the effect of a peak in H,
before a decrease near the edge should be an edge effect only.

Faraji-Dana and Chow [27] use a separation of variables method and
the moment method to demonstrate that as the normalized frequency, which

depends on the conductivity as well as the actual frequency, becomes larger, the
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Figure 5.3. Conducting region 5 with boundary C and coordinates @,, @, and
@.. Observation point = (z,y) is in S.

growth of the tangential magnetic field near a rectangular edge tends toward
the predicted r~*/2 variation. However, this behavior ceases at small enough r
and J, is not singular.

Fawzi et al. [28] use an integral equation and boundary elements
technique to graphically demonstrate the same non-singular behavior of Hy,,
and J,, even predicting a nonzero, finite result for Hy,, at the edge. Numerical
results show that Hi,, peaks between 0.5 — 0.8 é (skin depths) from the edge,
while the longitudinal current J, peaks around 0.1 é and surface power density
somewhere in between. The deviation of Hian from the perfectly conducting
case is mainly in the region r < 26, and this is demonstrated in each of the

above. Similar numerical results are given by [29].
5.3 Leontovich surface impedance approximation

5.3.1 Development of a nonlocal boundary condition for the
rectangular edge Suppose that a conducting region S with boundary
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C' and parameters €y, o, and pm, as seen in Figure 5.3, operates under quasi-
TEM conditions so all fields have only a dependence of e~*?*. Let a Green’s

function G (5,7') satisfy

(V*+¢%) G=-6(-7P) (5.3)
with a boundary condition £$ = 0 on the surface (7' € C). Since a two-

dimensional Green’s function is relevant, V — V_, only, and ¢? = 2 — 47,
where
2 2 . Tm
ki =wun, (em -1 —-) (5.4)
w
is the conductor wavenumber. If E,, and H,, satisfy Maxwell’s equations in

the metal, and so the Helmholtz equation
(V*+¢?) Eme =0 (5.5)
is satisfied, then for the Green's function G and from Green’s theorem,

Eni(p) = §,6(.7) 22220 (56)

inside the metal. On the surface C, the boundary conditions require continuous
tangential E, normal D, and tangential H. Dropping the subscript m for all
fields and parameters outside the conductor, the boundary conditions on the

surface C are

Emz = Ez'p Hml = Hl’ (5-7)

and, for the case of high conductivity of the metal,

€
Eppn=———— E, x0. (5.8)

m — 1 O fw
From the ! component of Faraday’s law in the metal,

oF dF, . . : —0E .
L 2L = i mHpmy = — m = — mdaz R = .
5 n IR i twit, H Wt J. o (5.9)
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where J,; = H, is the equivalent surface current on the surface C. Letting the

observation point be on the surface C (7 — C), (5.6) is simplified to

E(B)lc % iwpm $ G (7,7) Jos (7) dI'. (5.10)
C

If the conductor S were infinite in extent, then the Green’s function

G would be the two-dimensional infinite Green’s function

G (7,7) =~ HO (15~ 7). (5.11)

If the space S were the upper half-plane y > 0 and C is the z-axis, then from
image theory G, = 2G,, for 7 € C. This would remain approximately true for
an arbitrary region § if there are no corners in C so that (a) it is locally flat
on the scale of [(|~1, or roughly a skin depth, and (b) the "diameter” of $ is
large compared to a skin depth. If these conditions are true, then J,, is slowly

varying, and, like {26], the Leontovich surface impedance can be derived:

=\ o PEm — @ (/5 t _ CEm = [ @ (F g
E(plo ~ “5% Ju(p) § HP (o -71) & =22 0. p) [~ O it ar.
(5.12)
If an approximation to the Hankel function
- —_ 2 7] .
HP (-7 = cs=n (5.13)
is made, then
m - 2 -
E,(p) = U-Jg— 2(P) i Z,J5:(P), (5.14)
where
= YWHm _ Hm =
Zy = ¢ P (5.15)

is the standard Leontovich surface impedance.
If C' does have corners, the Leontovich surface impedance is invalid

because both J,, is not slowly varying and the Green’s function G, is an



Figure 5.4. Coordinate system of 62 wedge, with source point (7,¢') and
observation point (7, ¢).

inadequate approximation near the corner. If S is the interior of a wedge
of angle 0,, as shown in Figure 5.4, the proper Green's function G can be
calculated by Sommerfeld’s technique. For a corner with angle 8, = %, the

Green’s function is

Gy (3,7) = —i [H® (c\/p" + 0% — 2pp’ cos(¢ — ¢’)) (5.16)
+ P (/o + 0+ 200 cos(é ~ )
+ HP (¢ + 7 200 cos(g + 9))
+ B (/7 + 7+ 200 cos(6+ )

which can be interpreted as two-dimensional free space Green’s functions from
the source point 7’ and its three image terms in the other three quadrants.

When the source point is on the z-axis (¢’ = 0), the Green’s [unction becomes.

' =t ’ - : - p :
G2 (7, 8ex’) = o HY (C\/ z—z') 4+ 2‘12) — 2 HP (t, (@ +2)2 + y") ,
(5.17)
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Figure 5.5: Coordinate system of 90° corner with faces 1 and 2.

and when it is on the y-axis (¢’ = %), it becomes

Gon (p.7) = 5 HO (¢ + w—v7) - 3 B (/5 ¥ 0P

(5.18)

The conductor loss near a square (90°) corner, as shown in Figure 5.4,

may be found with more accuracy by using this Green’s function to calculate

the complex power into the segments from y=Rtoy=0and fromz =0

to = R, where R is some distance from the edge where the Leontovich

condition is valid. It is desired that the result will be a modified, nonlocal

surface impedance condition with two terms. The first term would be the
Leontovich term, while the second would be a correction term.

The complex power into this corner is given by

P= [ B0 do + [ B2 a, (5.19)

where J,; = H; on the surface. The portion from the bottom segment r = 0

to r = R is given by

R
P = /0 E.(z)J\(z) dz = P + P + P (5.20)
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R R
= 2 [ i) [f., J,‘i’(z’)[H,E”(CIz—z’I)+H£2’(Clw+x'l)]dw’] da

2

R R
+ wln _L J=(z) [ /(; JA(y) HY (C vzl + y“) tly'] dr.

If the first term is rewritten letting u = z/ — z, and allowing R — oo in the

inner product, then

m _ WHm (R % o @)
PI 2 ./0 Jsz (1")['/0 J.lz (.‘E+U)Ha (Cu)du

+ [ IO — u)HD (Cu)duldz.

If the second term is similarly rewritten with « = ' + z, then

R .
P ==52 [ IRG) / " IO(u - 2) HP (Cu)du d.
0 x

From (5.13), the Leontovich terms would come from

M _ Wn R o v [P 1) (z) H)
Py : /0 JO(z) 2 f JO () H® (Cu)du

Wik 2
= e PGP 2 =2 [ e

2

So, by adding and subtracting this term,

P4 = 2, [M s+ 2 [ 00

(5.21)

(5.22)

(5.23)

(5.24)

jo [Tz +v) + IO (|2 — uf) - 2J§:>(x)] H®(Cu)du dz.

In this way, the power obtained can be expressed as a Leontovich term and a

correction term consisting of the remaining components. Further simplification

of the correction term was attempted at this point using the perfectly conduct-

ing current J)(z) = |J,|z71/3. The result included many Gamma functions

and reduced to

p(l)

Correction

= L193Twp,p |J,|2e~ /6 —4/3,
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where J, = 0.4684 T-%/ from Table 5.1. This correction term has correct
dependences on thickness T and ¢, and has argument of 150°, so, as anticipated,
there is a decrease in power from the standard Leontovich condition. However,
this cannot be used, since the currents do not behave as in a perfect conductor.
Therefore, a numerical integration would most likely have to be performed once
an acceptable solution of the current J{!)(z) is obtained.

The derivation developed here can be applied to the general edge
angle, although computation becomes significantly more difficult. The correct
Green’s function must be obtained for each angle, and then similar edge power

correction terms may be found.

5.3.2 Published surface impedance studies Chisholm [26]

derived a modified surface impedance condition,
E, = Z,(H; + H}), (5.26)

which he claimed could be utilized throughout a surface to an edge. The
first term, where H is the magnetic field of the perfect conductor, is exactly
the condition used in the first three chapters. The second term, containing
the coupled magnetic field H, is used to correct the total magnetic field and
longitudinal current in an imperfect conductor. Actually, Chisholm uses the
Leontovich impedance Z, throughout, and his work is simply a correction to the
longitudinal current. Unfortunately, that correction depends on the diameter
of the wedge waveguide.

The numerical results by Fawzi et al. [28] included a scalar multipli-
cation factor for the Leontovich impedance Z, for a particular skin depth and
set of aspect ratios with a rectangular edge. This factor increases from one far

from the edge to just above two at the edge.
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Deeley [30] has examined the surface impedance for both TE and TM
modes, and for the latter case has developed curve-fitted empirical formulas
from numerical results. The TM results, whick are applicable here, demon-
strate an exponential increase in the surface impedance Z = Fff:: up to two at
the edge.

Zhurav [31] also recognized the failure of the Leontovich impedance
near a rectangular edge. After expanding the fields inside a periodic lattice
waveguide in the eigenvalues and outside the waveguide in a Fourier series,
and by utilizing the boundary conditions, the complex roots of the character-
istic equation are derived. Zhurav used this to add a correction term to the

rectangular edge integration stopping point, A, so that

T 25\"/*
Arect,zh.ur = '29T8' [1 + 0.32 (‘1'.,“) ] - (527)

A comparison of losses in a rectangular-edged strip using the two stopping
points is given in Figure 5.6. In both, the Leontovich surface impedance Z, is
used on the entire infinitely thin strip, but the extra stopping distance length,
due to a correction for the surface impedance, decreases the loss. In effect,
Zhurav predicts a decrease in the Leontovich impedance near the edges, but in
[32], as in [28] and [30], numerical results indicate that the impedance actually
increases near the edge.

An application of a modified surface impedance condition using the
previously developed integration stopping points has been developed by Slepyan

[33),[34]. The Slepyan surface impedance is given by
Z = R, — iwp A, (5.28)

where the real part retains the dissipative properties of the conductor and the
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Figure 5.6. Comparison of losses on rectangular-edged strip using Chapter 3
techniques on both A,..; and Zhurav’s stopping point correction.

imaginary part provides the correct current density near the edge for an in-
finitely thin strip. To obtain the imaginary part of the impedance, a technique
similar to the derivation of A in Chapter 2 is used. The current squared of
an infinitely thin strip, as obtained with the variable Z, is equated with the
current squared of an actual strip, as obtained by conformal transformation.
This impedance might be useful as a surface impedance for the entire length
of infinitely thin strips in numerical codes, but, as in Chapter 3, the top and
bottom components of current on the strip must be separated. This problem of
division of the total current into its components has up to this point prevented

the correct use of Slepyan’s impedance to account for loss in those numerical

codes.
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5.4 Discussion

From the derivation of the integration stopping points A, the two ap-
proximations of a perfect conductor and the Leontovich surface impedance Z,
were examined. The currents of the perfect conductor, obtained near the vari-
ous edges by the Schwarz-Christoffel transformation, were shown to agree with
the Meixner edge singularities. According to various published results, there
is indeed no singularity in the longitudinal current of the imperfect conductor.
The current agrees with the perfect conductor current until within approxi-
mately two skin depths in a rectangular edge. Closer to the edge than that,
the current peaks before reaching a finite value. Since much of the importance
of edge shapes is in this range, it would seem that the current nonsingular
behavior would decrease both the loss and the importance of edge shape.

Most numerical results show that the surface impedance Z = ?f::
increases from the Leontovich impedance Z, within two skin depths of the edge
to a value around 2Z,. Zhurav, on the other hand, finds that the impedance
decreases. The increase in the surface impedance would cause an increase in
loss around the edges, but coupled with the significant decrease in current
magnitude in this range, the net total effect would still probably decrease
the conductor loss and the edge shape importance from results predicted in
Chapters 3 and 4.

What is needed is a numerical formulation, possibly continuing the
work in Section 5.3.1, to incorporate a nonlocal surface impedance condition
with a correct expression, although probably not closed-form, of the longitu-
dinal current. This seems necessary since an analytical attempt to solve the

problem has proven extremely difficult, if not impossible. From this should
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come a new table of integration stopping points (A) as a function of edge
shape and other factors such as skin depth and strip thickness. These points,
once tabulated, could be used with any of the formulations developed in Chap-
ters 2, 3, and 4 to accurately describe the effect of edge shape on conductor

loss.



CHAPTER 6
EXPERIMENTAL PROCEDURES

6.1 Introduction

In order to verify some of the results above describing the effect of
microstrip edge shape, careful experimentation was planned. Although the
experiment in this project was not performed in the end, this chapter will
describe some of the techniques and investigations done in preparation for the
experiment.

A first guess at the method to measure microstrip conductor loss
might be a direct two-port measurement of a uniform microstrip line. If there
were a perfect match condition on this line (1 = Sy = 0), the quantity
1—|8% | could be directly attributed to loss, although not exclusively conductor
loss. The problem is that the loss occurring in practical-sized circuits would be
too small to measure accurately. The signal-to-noise ratio of this measurement
would be unacceptable, so a different measurement must be performed. That
measurement is a )-measurement of a coupled microstrip resonator circuit.

In a microstrip resonator, a wave continues to reflect between two
open-ended gaps, one or both of which being coupled to a feed line, and this
establishing a standing wave. In this way, electromagnetic energy is stored,
except for that energy lost in each cycle due to dielectric, conductor, and
radiation losses. A resonator can be characterized by its resonant frequency f,

and its quality factor Q. The Q is a measure of the power lost per cycle and
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can be related to the 3-dB bandwidth of the resonator by [35]

—op B _ fr
Q=25 = pr (6.1)

where E, is the energy stored, and P, is the power lost per cycle. Individual
values of Q) can be given to dielectric (Qq), conductor (Q.), and radiation (Q,)

losses, and these combine into the total Q; by [35]

1_1.1 .1
Qt - Qd Qc Qr.

The total @ is also called the unloaded Q, Q. When the resonator is coupled

(6.2)

by one or more feed lines, the @ lowers to a value called the loaded Q, Q;.
The relationship between Qg and Qp, will be investigated in Section 1.5.

The dielectric loss is the best understood of the three components
of loss, while the radiation loss, which will here include losses due to excited
surface waves, is the least understood. Conductor loss has been widely mea-
sured, but the experimental effect of edge shape has not been reported in the
literature. The goal here is to eliminate radiation loss, including surface wave
loss, and account for dielectric loss. That which remains should be conductor
loss. The elimination of radiation has been accomplished in [36],[37] by shield-
ing the resonator in a waveguide in which the resonant frequency f, is below
the cutoff frequency f,we. In this way, the excited radiation modes should be
evanescent,

A preliminary investigation of this technique was performed using a
ground plane backed duroid substrate and copper tape for the strip. This
was done to study the various coupling schemes and (7-measurements, as well
as experimental factors affecting reliability and repeatability, A study of a

method to accurately control edge shape for the necessary comparisons was



30

done, and it was determined that the sizes of normal circuitry would not allow
such control with the facilities available. As a result, an electromagnetic scaling
experiment was proposed, in which the sizes involved would increase by a factor
of 100, while the frequencies would decrease by that same factor. This idea
is described further in the next section, but it was cancelled due to a lack of

suitable materials. : ,

6.2 Electromagnetic scaling

According to [38], an electromagnetic scale model experiment can be
designed in order to make a certain configuration more manageable in the
laboratory. Size and frequency are the parameters most often changed from
the full-sized system by the factors &; and k., respectively. Similarly, kg and
ky are the scaling factors for the original electric and magnetic fields. All other
parameter scaling factors can be determined from these four scaling factors.
When only the ratio kg/kg is specified, the model is called a geometric model,
but when kg and ky are both specified, it is an absolute model. In a geometric
model, in contrast to an absolute model, not all parameters can be exactly
specified, such as voltage, current, and power, but the ratio of powers necessary
to calculate attenuation constant can be obtained. Because of this, a geometric
model was planned.

Other scaling factors which directly affect materials are the perme-
ability factor k, = FH%E’ the permittivity factor k, = Ff’e’fﬁ’ and the metal
conductivity factor k, = k—ff; In both the original and the model, nonmagnetic
materials are desired, so k, = 1. Also in both, the region above the microstrip
should be air, and so the dielectric scaling factor k, should be one. From these

factors, the ratio kg/ky must equal one, and the size and frequency factors
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are related by k, = 1/k. As a result, the model transmission line parameters
resistance R and characteristic impedance Z remain the same, but capacitance
C and inductance L are divided by the factor k.

The original problem was an attempt to model a gallium arsenide
MMIC transmission line. The circuit considered had a substrate height and
strip width of approximately 5 mils and a-metallization of gold or copper with
thickness 4 pm, operating at a frequency of approximately 100 GHz. Since
careful control of the strip edge shape was desired, a metallization thickness
that was accurately machinable for the hardness of that material was the pri-
mary consideration. It was determined that a thickness of 16 mils = 400 um
was barely acceptable, and so & = 100. The other dimensions of the model
would be W ~ H = 0.5 in, while the frequency becomes 1 GHz. The loss
tangent of the dielectric remains the same, and so does its fraction of total
loss. A substrate with as low a loss tangent as possible was desired to ensure
that the conductor loss was dominant. A glass-like substrate (& = 4.25) of low
loss (tan § < 0.0005) and correct height was donated by Schott America. The
problem in the model was to find a material with conductivity in the range of
5 x 105;%, approximately 1% that of gold. No suitable, machinable material
was found anywhere in that range. The model ground plane could have been
copper or some other metal with conductivity much greater than the strip, and
that would have eliminated most of the model's ground plane conductor loss.
The same is true with the shielding of the waveguide below cutoff. Using that
high of a conductivity on the strip, however, would have prevented much of
the strip conductor loss as well, and thus the accuracy of the conductor loss

measurement would have suffered. Although it is the relative effect of a change
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of edge shape which was being studied, a significant conductor loss was still

necessary. As a result, the scaling experiment was cancelled.
6.3 Other losses

6.3.1 Dielectricloss As mentioned previously, other losses con-
tribute to the total Q; of the resonator, and must be removed to obtain the
conductor loss. Dielectric loss is well known and can be readily calculated

([39]). The dielectric attenuation constant is given by

Ef ere - 1 ta.Il 6d d_Bi

=27 , 6.
=213 — = == (6.3)
where ¢,., the effective relative dielectric constant, is given by
e+1 -1 ( 10H)‘°-~"
.= — , 6.4
€r 3 + 5 1+ W (6.4)

and ), is a free-space wavelength. The attenuation constant (in dB/m) is

related to Qg as well as an effective loss tangent tan 847, by [25]

;w31
- QA - tan&d,,”’

Qa (6.5)

where the effective loss tangent is related to the dielectric loss tangent by

tan 65_,1'! = t‘a_n 6¢ M (66)

Ere(er - l) )

6.3.2 Other conductor loss factors In thin-film fabrication,
often an adhesive layer of a metal different than the strip material must be
deposited between the substrate and the strip conductor [25]. This adhesive
layer, nominally between 0.02 — 0.1 pm thick, is usually a metal of lower
conductivity than the gold or the copper of the strip, for example, chrome

or tantalum. This fact, although this layer is very much thinner than the
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strip thickness, leads to an increase in conductor loss for the strip. Results
of that increase are given in Figure 6.2 of [25], but in commonly used circuit
dimensions, the increase in loss is small.

Another effect contributing to conductor loss is surface roughness of
the substrate. Metal is deposited onto the substrate surface, and so it takes
the shape of that surface. If the roughness is characterized by an effective
roughness o5, which is the root mean square of the roughness o(z), a further
increase in attenuation constant can be found from Figure 6.3 of [25]. Duroid
is a fairly rough substrate, and this was found to cause a significant increase in
loss, but other common substrates such as alumina and gallium arsenide have
relatively smooth surfaces, diminishing the magnitude of the increased loss.

A final contributing factor to increased conductor loss is the deviation
of the conductivity from the bulk conductivity value. In general, processes such
as electroplating and depositing will reduce the conductivity of the metal [37),

sornetimes to a significant extent.

6.3.3 Radiation losses Radiation due to the open ends of the
resonator contributes a large fraction of the total power lost per cycle. It
tends to increase with decreasing characteristi¢ impedance, thicker substrates,
lower relative dielectric constants, and higher frequencies. An expression for

radiation power from an open end is given by Lewin [40], [41] as

P, = 60(k,h)*Fi(ere), Fi(z)= z 1-1 _ (32;1-15) In (ﬁt i) . (6.7)

The radiation conductance is given by Sobol [42],[41] as

re 2
gr Je_ F2 (‘\/E: —1r ]ch) L] (6.8)

= 24072 X
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where the equivalent strip width is W,, = zﬁ\}'gg and F(z) = = Si(z) —
2sin*(2/2) + ﬂr@ — 1. When two open ends are combined into a resonator of
length nX/2, an easily utilized formula for Q which takes into account mutual
coupling ([35),[41)) is

_ nZ,
- 4801!'(H/Ao)2(} + m)Fl(Cre) ’

Q- (6.9)

where m, the mutual coupling factor, is given in Figure 5 of [41] as a function
of electrical length between the open ends when k,p = Je=. Van der Pauw [43]
gives somewhat more difficult expressions for a half-wave linear resonator and
a full-wave ring resonator. Equation (6.9) will be used, despite the fact that
at least one of the resonator ends is coupled to a feed line, and so is not a true
open end. When the feed line is end-coupled, the open-end approximation is
even less valid.

Another component of radiation loss is surface wave excitation. The
lowest order surface wave modes are TM, and TE;. The T'M, mode, which
does not have a cutoff frequency but increases with frequency, has significantly
less power than the other radiation modes, and can be neglected. The TE,

mode, however, is more prominent and can be avoided by operating below its

cutoff frequency [41]

c

fc,TEl = m-

The surface wave power becomes appreciable when H/), > 0.09 for ¢, ~ 2.3

and HfA, > 0.03 for €, = 10 ([44],[41]).

(6.10)

6.4 Choice of type of resonator

6.4.1 Ring and linear resonators In preparation for the ex-

periment, a decision had to be made about whether to use a ring or linear



85

Linear
Ring

Figure 6.1: 2-port linear and ring resonators for transmission measurements.

resonator (see Figure 6.1). A ring resonator resonates when the circumference
of the middle of the strip equals an integral number of guide wavelengths.
The feed lines are coupled to the resonator by small gaps, causing a resonator
voltage maximum to be at these locations. There is a minimum of radiation
from these gaps, but the curvature of the resonator causes a large surface wave
excitation. The linear resonator, on the other hand, radiates considerably at
its open ends, one or both of which may be coupling gaps from the feed lines.
Since there is no curvature, surface wave excitation is minimized. The reso-
nances occur when the resonator length, including fringing effects, is an integral
multiple of a half guide wavelength.

To study the differences between the two types of resonator, three
circuits were designed, fabricated, and tested at 5 GHz. The first two were
linear resonators of length A—G';—‘””-i and AgsgH:, while the third was a ring res-
onator of mean circumference 3Ag sgy.. Using microstrip synthesis formulas
([39]), 2 50 Q line was designed on a duroid (¢, = 2.5) substrate with loss

tangent tanés = 0.002 and surface roughness g.;; = 2.54 pm. Copper is the



Table 6.1: Theoretical and experimental comparison of resonator types.
Circuit Qd Qc.sm Qc.ro Qr Qc‘d Qiou Qo.the Qa.ezp
Linear 3¢ | 568 | 798 | 400 [120 [ 235 | 227 79| 83

Linear Ag || 568 798 | 400 | 501 || 235 | 226 160 147
l Ring 3\g || 568 | 798 | 400 ? (235 | 223 ? 170

metallization, and no adhesive layer was used. The circuits were analyzed with
the EESof Touchstone simulation software, as well as the theoretical formulas
of Section 6.3. Theoretical radiation @ (Q,) for the ring resonator was not
obtainable, although relevant measurements were done by Van Heusen [37).
Finally, experiment was performed with the HP8510 network analyzer. All
three circuits had two ports, and so transmission measurements were done ac-
cording to the procedure of Section 6.5, with results for the unloaded Q, Q.,
being found. These are compared in Table 6.1, where Q; and Qr, the theo-
retical dielectric and radiation @, are obtained from (6.3),(6.5), and (6.9); the
smooth surface conductor @, Q. ym, is obtained from Pucel’s corrected formu-
las [1]; and an estimated roughness factor of 2 yields Q. ,,. The combination of
theoretical conductor and dielectric Q, Q.q, is calculated for comparison with
the result from Touchstone, Q... The total theoretical unloaded @, @sthe, can
be compared to the experimental result, Q, ;.

A similar set of calculations and measurements were done with the
same circuits at 10 GHz, so that each electrical length is multiplied by two.
In this case, the theory for the linear resonators predicted 15 — 30% more loss
than was obtained in experiment.

Some observations can be made from these results. First, in these cir-

cuits, the conductor loss of interest is lower than both dielectric and radiation
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loss, which is undesirable. Second, this is a very rough surface, which drasti-
cally increases the conductor loss, and the factor of two is a large guess which
plays an important role. Also, lengthening the resonator seems to change the
@, only by its effect on radiation. In addition, Touchstone seems to ignore the
radiation from the gaps, considering them only as a m-network of capacitors
instead of including a radiation conductance, and because it can not simulate
a ring physically, it also ignores surface wave excitation by the ring. It seems
to have been a relative stroke of luck that the experimental results at 5 GHz
so closely matched theoretical predictions, since the results at 10 G Hz differed
significantly. It is encouraging to note that excluding radiation, both the ring

and linear resonators predict the same loss.

6.4.2 Shielding with a waveguide below cutoff Obviously,
the elimination of radiation is important, as is choosing a better substrate. The
solution of shielding the resonator in a waveguide below cutoff [36], [37],[45]
shows promise. For the reason that a linear resonator could easily be shielded
in such a way, but the ring resonator, due to its larger two-dimensional size,
could not, it has been decided that a linear resonator in a waveguide below
cutoff is the optimal means of measurement.

This technique was attempted with the two linear resonators used
before. Both transmission and reflection measurements were attempted, the
latter being accomplished by removing the SMA connector of one port.

The transmission measurements suffer from some problems which pre-
vent the waveguide from eliminating much of the radiated power, and so the

shielded @ values do not increase much from the unshielded values. First, due



o
o

to the circuit sizes, the radiating gaps are not far from the ends of the waveg-
uide, and the radiation modes are not fully attenuated. Second, due to the
SMA connectors, contact between the waveguide and the ground plane could
not be obtained, establishing a kind of TEM waveguide from which radiation
can escape. As a result, the positioning of the circuit in the waveguide resulted
in significant changes in the §,. Another factor, which will be discussed in
Section 6.6, is that the feedline itself acts as a transmission line for the gap
radiation.

As discussed in Section 6.5, reflection measurements should produce
the same unloaded @ for a given resonator. The reflection measurements cor-
rected for the problem of good ground plane to waveguide contact. Also, a
longer waveguide section could be used, so the truly open end of the res-
onator was deep inside the waveguide. As a result, unloaded @ values of up to
Qo = 210 were obtained, which is closer to the theoretical value around 230,
This indicates that a good portion of the radiated power is being eliminated.
According to Van Heuven [37], this value would not be affected by losses in
the waveguide shielding, since those conduction losses are negligible and can

be ignored.

6.5 Reflection and transmission measurements

Reflection or transmission implies the method of measurement of
the resonator. Reflection measurements are done on resonators with a single
launcher. Quantities such as S); (T') and VSWR are measured. Resonators
with two launching ports are measured by transmission, since the second port
would alter reflection measurements. The quantities of interest are either Sy,

or Sy2. Typical measurements of each type are shown in Figure 6.2.



S21 (dB)
0dB

-10 dB

-15 dB

Fb Fr Fa

Figure 6.2. (a) Typical Sz transmission measurement with resonance and

half-power frequencies, (b) Reflection measurement shown as " on the Smith
Chart.
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For a transmission measurement [25], the resonant frequency f, is at
the maximum transmission |S; maz|- The points Fa and Fb in Figure 6.2a
have a value of |Sy| 3 dB below the maximum, and they correspond to the
frequencies above (fiip.) and below (faups) the resonant frequency whose
difference is the 3 dB bandwidth. Thus, the loaded Q is defined from (6.1) to
be : y
3 ff = ff‘

BW  fap,. — faaBs
Coupling to the feed lines is measured by the coupling coefficient &, which will

QL (6.11)

be discussed further in Section 6.6. Assuming negligible losses in the system

(connectors, adapters, and feed lines), the coupling coefficient is found from

- |321,ma.r| i
T E R To— ¢12)

Once the coupling coefficient is determined, the desired unloaded Q can be

obtained from

QL

= 1 - ISzl.mar.l

Reflection measurements can be converted into Qg by one of two meth-

Qo = Qu(l +2). (6.13)

ods. A technique has been developed by Kajfez [46] and converted in Appendix
3 into easily utilized formulas. The method is based on the fact that the Smith
Chart T response of Figure 6.2b nearly forms a circle. It is applicable when
the feed gap is slightly undercoupled and is not too lossy, which is true when
point 4 is close to the I' = 1 border. Point 3 is at the resonance frequency f,
and its reflection coefficient there has magnitude || and angle ,. Points 1
and 2, not in general the 3 dB points, and their corresponding frequencies h

and f;, are found by finding the points on the curve closest to the following:

Col41Y) . r, -1\ .
I‘ﬂ = (__._l |2 )e'g"-}- (I l.) )e:(a,-w) (6.14)

-
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— II‘,.| +1 i0, IP,I —1 i(fe+2¢)
r 2 = ( ) e+ 2 € N
where ¢ is some arbitrary small angle, as seen in Figure 6.2b, nominally ¢ =

20°. Once these frequencies are obtained, the loaded Q is

= ff
fi—fa

The coupling coefficient &« can Be found from

QL

tan ¢. (6.15)

K_l—wnl_ D
T1+|| T 2-D°

(6.16)

where D =1 — || is the diameter of the approximate circle, or the distance

from point 3 to the outside [I'| = 1 border. From this, the desired unloaded Q
is

Qo = QL(1 + %). (6.17)

A different technique by Ginzton [47] examines the V SW R measure-

ments. By the same principles, the minimum VSWR, r,, occurs at resonant

frequency f,. If the gap is undercoupled, then 8 = 1/r,. The VSWR at point

4 in Figure 6.2b is called rpn, and o = 1/rp,;,. The parameter v is equal to

o r,

=—- = ) 6.18
. K ﬂ Tmin ( )
The 3 dB half-power points on the VSW R curve have values
24+ 82 (1+7%) + 4+ B4 (1 +4*) — 2962 (4 — 187) (6.19)

Tz = D) ﬁ (1 + 7) '
and the frequencies having these values are called f; and f,. The loaded and

unloaded @ are obtained by

__f _
C=5F Q’*‘Q°(

1++8
T 5 ) (6.20)



Table 6.2: Comparison of Kajfez and Ginzton reflection Q
” ] Kout l QL out l QO,out " Kin I QL in I QO in

|| Kajfez |0.2079 | 90.0 | 108.6 [] 0.405 | 198.0 | 275.3 |
| Ginzton zton | 0.2079 | 100.7 | 118.5 || 0.405 )5 | 210.9 | 289.8

|_.

d L3
(7=

L

A comparison of these two methods was done for a copper tape res-
onator measured both inside and outside-_a. waveguide below cutoff, and the
results are given in Table 6.2. Kajfez’s technique makes the approximation
that the I' curve forms a circle which is tangent to the |} = 1 border, thus
neglecting the coupling loss radiation. Still, that method predicts losses which
are greater than those predicted by Ginzton. The Kajfez method has been
chosen for these experiments.

Because Touchstone neglects radiation, a comparison of reflection and
transmission measurements shows that the ), of both should be equal in both
the ring and linear resonators. In actuality, experiments in which two-port
copper tape resonators were measured, and then measured as one-port devices
after one of their feed lines were removed, showed that transmission Qo was
slightly lower both inside and outside the waveguide shielding. Perhaps this
was due to losses in the system, since the measurement is dependent on the
magnitude of S3;. This will be investigated in Section 6.7. The reflection
Qo showed somewhat more stability in measured values, both shielded and

unshielded.

6.6 Resonator feeding mechanisms
For the case of a lossless coupling mechanism modelled by a 7-network
as in Touchstone, the resonator unloaded Q should be independent of the size

of the gap. In actuality, radiation should change with the size of the gap, thus
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1
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Figure 6.3. One-port linear resonators for reflection measurements: end-
coupled and side-coupled.

affecting Qo. A gap which is too large is called undercoupled (x < 1)} and
produces a reflection response such as in Figure 6.2b. On the other hand, an
overcoupled gap (x > 1) is too small and results in T' curves with diameters
D > 1. The optimal coupling for a resonator is called critical coupling (,=1),
where the resonator is perfectly matched to the input port at resonance. The
advantage of this type of coupling ([1], [47]) is that it suppresses spurious
resonances caused by mismatch. As would be expected, by decreasing the gap
size, which increases the coupling and «, the loaded @, Q,, decreases according
to both Touchstone and experiment. In addition, gap size changes seemed to
affect the Qo of transmission measurements more (20 — 25%) than the Qp of
reflection measurements (10 — 15%).

Further effects examined were the length of the feed lines and the
SMA connectors. According to experiment and Touchstone, the length of the
feed line has very little effect on Qp. If the SMA connectors are modelled as
0.2 nH inductors, the resonator Q does not change, but if radiation effects are

included, losses will increase.
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A final issue in the design of the experimental set-up was mentioned in
Section 6.4.2. The feed lines can act as TEM waveguides to transport the gap
radiation to the outside of the actual waveguide. The same can happen if good
contact does not exist between the circuit ground plane and the waveguide floor.
To correct these possible scenarios, first, good contact can be ensured by using
some sort of conductive paste between the two metal surfaces. An attempt to
reduce the feed line transport of radiation is to side feed the resonators instead
of end feeding, as shown in Figure 6.3. This method, which was adopted by
van Heuven [36],[37], assumes that most of the gap radiation is excited in the
direction of the resonator, rather than to the side. A side feed could possibly
reduce the amount of radiation transported to the outside, and instead allow
most of it to be attenuated in the waveguide. Although a shielding jig to test
this idea was not built, unshielded measurements were performed on copper
tape resonators using alternatively end and side feed mechanisms. The losses
when side feed lines were used averaged 5 — 10% lower than the end feeds.
Therefore, there was more radiation from the end gap than the side gap, which
seems to agree with the tendency of transmission measurements (two end gaps)
having more loss than reflection measurements (one end gap and one open end).
As a result, the side fed linear resonator shielded in a waveguide below cutoff,

as shown in Figure 6.4, was chosen, although not used.

6.7 Other experimental observations

During many of the above investigations, certain experimental effects
were observed and studied. Most of the time, copper tape resonators, designed
with very similar substrate material for 50 £, were utilized because of their

versatility and ease of alterations. It was discovered that the Q, of the copper
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Figure 6.4. Final experimental choice: one-port linear resonator shielded in a
waveguide below cutoff (top not shown).

tape resonators were slightly higher than the etched versions. This could not
be readily explained.

To investigate the system losses, relevant especially to transmission
measurements, a copper tape through line standard was built., The HP8510
calibrations were performed on its 7 mm connectors. This through line stan-
dard was a test of the 7 — 3.5 mm adapters, the radiation from the SMA
connectors and solder joints, and the copper tape, assumed to be 50 Q. The
resulting Sy; and S;; were around —23 dB, while the Si2 and S3 were about
—0.55 dB. These results are fairly good, but not spectacular. While some of
the transmission loss is expected from the copper tape strip, there apparently is
other loss, and these results could account for the larger losses in transmission
measurements.

It was found to be imperative to use the torque wrenches properly,
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or results drifted wildly. The dependence of Qg on new (proper) calibrations,
time (up to weeks), shaking of the circuit, and disconnecting and reconnecting
the SMA connectors was less than 5%, so repeatability should be high. The
SMA tab connections to the strip were more important, causing Qg to change
by 10% for various contact qualities. Finally, the orientation of the unshielded
circuit was very important. Turning the cjrcuit so that the ground plane faced
up resulted in differences in Qp of 20% or more.

In conclusion, although the experiment was cancelled, some valuable
techniques were learned. It was found that repeatability of resonator Q mea-
surements were fairly high as long as a few factors were kept constant. The
shielded, side-fed, linear resonator was found to be the best measurement of
loss available, and although reflection and transmission measurements were

fairly close, reflection measurements may be the best choice.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

It has been found that the shape of the strip edge in microstrip should
have a significant effect on conductor loss. In general, as the edge shape gets
sharper, the loss increases. Under a set of approximations listed in Chapter 1,
microstrip conductor loss can be easily calculated with some simple formulas
convenient for computer-aided design.

Schwarz-Christoffel transformations have been developed for various
trapezoidal edges in order to obtain the appropriate surface current distri-
butions, and these have the edge singularities predicted by Meixner. These
currents have been used to derive integration stopping points A, listed in Ta-
ble 2.2, for loss calculations on an infinitely thin strip. Given an infinitely thin
strip current distribution J,,, (3.2) can be used to perform the calculations.
The top and bottom strip current components are divided with a difference
term 6J,, given by (3.19), and J,, and 8J,, can be used to find loss in (3.20).
Figure 3.7 shows these results for the various edge shapes, although the effect
of edge shape seems larger than what would be expected.

An incremental width method has also been developed by a pertur-
bation method from the perfect conductor current model. This technique is
applicable when an inductance expression is available for a transmission line

with an infinitely thin strip, and it is especially useful for cases where current
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expressions are not readily available. The result (4.41) has been used to exam-
ine edge shape effect in open coplanar waveguide as well as microstrip. The
two formulas (3.20) and (4.41) are in close agreement for microstrip.

The validity of these results is somewhat suspect, since they are based
on a series of approximations which needed to be studied. Instead of having a
shape-dependent singularity at each sharp edge, the longitudinal surface cur-
rent actually peaks and then decreases in magnitude as it approaches the edge.
Using the local Leontovich surface impedance condition up to the edge is wrong,
and a nonlocal condition has been derived for a rectangular edge. From pub-
lished results, it is expected that the surface impedance will increase near the
edge.

A proposal for an experiment using the method of electromagnetic
scaling is outlined. A linear side-coupled resonator in a waveguide below cutoff
can be used to eliminate radiation loss so that conductor loss can be extracted.
Either reflection or transmission measurements may be performed to extract
the resonator quality factor Qg, and hence loss, with a reasonable degree of

repeatability.

7.2 Future work

The most important future direction of this project is the derivation
of integration stopping points which do not take the assumptions studied in
Chapter 5. Work on the rectangular edge can be extended beyond (5.20), and
other edge shapes can be studied. The approximations fail only near the edges,
so numerical techniques need be applied only to this area in order to tabulate
new integration stopping points. Once these are compiled, all work in Chapters

2, 3, and 4 may be used with confidence, probably in a computer-aided design
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environment. The results may be extended to other planar transmission lines
as well.

A very promising extension of this work is the use of the modified
surface impedance developed by Slepyan. If the top and bottom components
of total strip current can be divided, numerical codes on infinitely thin strips
could use these A points to correctly accoupt for edge shape. Possibly a closed-
form approximation of the division, based on the Chapter 3 results, can be
developed to enable this technique to be feasible.

Finally, experimental verification of these theories is possible. If either
suitable materials for a scaled experiment are found, or if precise, actual-sized
edge shapes could be reliably controlled in fabrication, the effect of edge shape

could be measured.



APPENDIX A

DERIVATION OF ATTENUATION CONSTANTS FROM Jzo(X)
STRIP CURRENT PROFILES

A.1 Magnetic wall current model
The infinitely thin strip current profile under the magnetic wall model
is given in (3.24). The integral of this distribution along the strip becomes the

current [. Squaring the current profile yields

2 I2
Jzo.MW(x) = WE (Al)

The integral of this quantity, excluding the stopping points, is

w/-a 2 I? Wiz-a I?
—dz=|—1z = — (W —24), A2
[W/2+A W2 [W2 ]—W/z +A w2 ( ) (A2)

which is the only quantity needed to derive (3.25) from (3.2), since Jzotop(T) =
0.

A.2 Maxwell’s current model

When the Maxwell’s current distribution of (3.26) is integrated along
the entire strip width, the current J = 1. The integral of this distribution
squared is given by

/W/'*‘-A dz 1 [1 |
-wiaa 72(A2 — 2?) 2 |24 8

T - A” W/z-a 2 (W-—A
In ) .

z+ A ~W/2+A = W A

(A.3)
Half of this quantity is the }J2, term of (3.20).
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A.3 Kuester/Chang current model
The current distribution (3.28) results in a total current of J = C,V.

To find the J?, term of (3.20), the integral of the current distribution squared,

Lo 550) v "
~-wir+a \8H¥K (k)] cosh? (L’V}_’) — cosh? ( %) ’ :
must be found. Removing constants and making the change of variable 2/ = o

the integral reduces to

dr 4H dz'
/= (&) -cot? ()~ 7= J atbeot’s  (AD)

where @ = cosh? (—2,’) and b = —1. From (2.458.2) of [17], this integral

. : p W/2-a
4— —=———— coth™! \/1 + ~ coth -T') ’ (A.6)
™ a(a + b) a

-W/2+A

becomes

since -1 < f < 0 and cosh*(z) < 32 = o. When this is evaluated and

constants included, the result is given by 3.29.

A.4 Kobayashi’s current profile

The normalized current distribution of Kobayashi is given by (3.30)

and can be rewritten as

Jeo(Z) A A

T oy =1 HEa | == 1) = 1= Ky + Ky, A.

T.0 “( A= g2 ) M TE— A
where

e 0(-%) 10(1-=)/F 2 (A8)
Ky = . .
744;‘_—4'? -1 4= \/A2 —z?
Integrating (A.7) over the strip width, the current J becomes
i . L rzNIWR
I = [(1- K", + K, [sm 1 (X)J_W,z (A9)
. ,,W

-u

= (I—I\A)W-f-
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The JZ, term is found by integrating (A.7) squared, or

w/z-a K3A%?  2AK,(1-K,)
/_w/2+A [(1 —Kay 4 Azt VAT =22 dz (A.10)
K3A? |z—A z\]""
o ok B s (]
[ A 2A z+ A A A ~W/2+A

and the result when evaluated is given in (3.32).



APPENDIX B

ALTERNATIONS TO PUCEL’S FORMULAS TO EXTRACT
GROUND PLANE LOSS

From {1], the formulas for normalized conductor attenuation constant

can be altered to extract the ground plane contribution to the loss. These

results are
o Z,H 8.68 wr\? H H W T
R 1‘(@)][X+W+m(ln Tt ED

w
for the range 7 <

TR @b G- e

for = < ¥ <2 and

ZH 8.68 w’ W,
- R, w2 w! ? [TI- * _W'—ﬂg_] (B.3)
R, (% + 2In (2re( % + 0.94))] ai +0.94
H H ( 2H T
[’”W*W( 7~ %)

for % 22 HereW' =W + AW, where AW is a thickness correction term to

the width such that

AW =

+1), %5— (B.4)

When the ground plane loss is included, as in the original formulas, the pa-
rameter y = 1, however, when the ground plane loss is extracted and only the

strip is considered, use y = 0.5.



APPENDIX C
DERIVATION OF REFLECTION Qo FORMULAS

According to [46], the I response jn Figure 6.2b nearly traces a circle,
with point 3 the resonance with magnitude |I',| and argument 6,. Point 4 has
the same argument 4,, and if it is approximated as being on the Smith Chart
border [I'| =1 at a point I'p = 1, then the diameter D is equal to 1 — IT, .
Therefore, the center of this approximate circle is at the midpoint between

point 3 and T’ = 1e¥, or

18, 10, .
I‘ccn _ le + Irrle - (1 + lrr,) e:ﬂ,-. (C.l)

2 2

Suppose, as in [46], that two points (1 and 2) on the T' curve exist, relatively
close to the resonance point, and that the lines between these points and I'j
form an angle of ¢ with the diameter along #,. Then, the radii to these points
form an angle of 2¢ with the radius along 6,. The length of the radius is equal
to half of the diameter, or

1- II‘rI

R = 5

(C2)

| D

The arguments of the rays between the center and points I and 2 are given by

—0, F 24, and so the locations of 1 and 2 on the I' plane are given by

(Irr] + 1) eiﬂ,-+ (1 —olrf,) ei(-ﬂ,:p?q#) = (Irrl + l) e:’ﬂ,__ (I . lrrl) ci(a,:;:u.)
¥ 9 .

2 2
(C3)

= 4
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Very near these locations should be actual points on the I' curve corresponding
to the frequencies f; and f;. Although Kajfez’s technique will work for over-
coupled resonators as well as undercoupled, these derived formulas will work

only for slightly undercoupled gaps.
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