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Abstract 
 

The research presented in this thesis investigates the elastic director field interactions between optical, 

spatial solitons and defect structures in frustrated chiral nematic liquid crystals.  I characterize 

experimentally the rich elastic interactions between torons, particle-like localized director field 

configurations with non-trivial topology, and spatial, optical solitons, which have been previously 

dubbed nematicons. By exploitation of the waveguide regime for the generation of stable thresholdless 

nematicons via the reorientational nonlinearity present in thermotropic liquid crystals, I characterize the 

elastic potential energy surrounding a stationary nematicon and a mobile toron via measurement of 

toron displacement as a function of time. I compare the resultant elastic potential energy contour map 

with direct optical characterization of the integrated elastic director perturbations within the 

nematicon. With knowledge of the underlying nematicon structure, I show that nematicon beam 

deflection from spatially fixed torons is possible. 
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1. Introduction 
Liquid crystals are a ubiquitous constituent of the information age. From smart phone screens to 

supercapacitors [1], the ordering caused by their proximate attractive interactions and repulsive steric 

ones among geometrically anisotropic particles extends to the meso- and even macro-scale to enable 

modern technological advancement. Of particular interest for this thesis is the characterization of novel 

liquid crystal systems and their enabling physics which allow the facile configuration of and control over 

all-optical interconnections and light-induced waveguides. While such systems have been realized with 

self-focusing optical beams called spatial, optical solitons (nematicons in nematic liquid crystals) and 

their control with external or embedded perturbations, these prior systems focus on the control of 

nematicons with finite dielectric perturbations [2], external voltages [3], external laser beams [4], 

interactions with other nematicons [5], interactions with interfaces [6] and cell boundaries [7], and self-

acceleration [8].  

I demonstrate control over nematicon propagation with elastic interactions between 

nematicons and topological solitons. I show that topological solitons may be written in arbitrary arrays 

in real time to cause nematicon deflection with unprecedented control, the potential for system 

miniaturization, and pre-engineered system self-configuration. First, I discuss liquid crystals in an 

introductory context (§1.1) with specialization to frustrated chiral nematic systems with topological 

solitons (§1.2). Next, I describe nematicons (§1.3)  with emphasis placed on my experimental system. In 

§2, I discuss the experimental methods that I employed to conduct my research. Specifically, I describe 

materials’ preparation (§2.1), the generation of topological solitons with laser tweezers (§2.2), 

experimental observation of nematicons and topological solitons with optical microscopy techniques 

(§2.3), and data analysis (§2.4). In §3, I show my experimental results which include arrays of topological 

solitons (§3.1), nematicons in homeotropically aligned frustrated chiral nematic liquid crystal (§3.2), 
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translation of particle-like topological solitons (torons) with a stationary nematicon (§3.3) thereby 

mapping the elastic potential energy of the toron near the nematicon, and deflection of nematicons 

from stationary torons and other topological solitons (§3.4).  

1.1 Liquid Crystal as a Phase of Matter 

While matter may be generally classified into the well-known five states, intermediate mesophases of 

matter can exist between these classical states. Liquid crystals, per their definition, exhibit this 

mesophase behavior as they are liquids with molecular ordering [9]. The reason for this anisotropic 

organization arises from the geometric anisotropies of liquid-crystal molecules. Because of van-der-

Walls-like interactions in thermotropic liquid crystals, whose organizational liquid phase is transformed 

principally through temperature, and charge-screening and steric interactions in lyotropic liquid crystals, 

whose phase behavior is primarily modified through molecular concentration of liquid crystal solute in 

solvent host, the geometric anisotropy of the constituent molecules can cause highly non-localized, 

ordered liquids [10]. As a general principle, order of these mesophases increases as temperature 

decreases, with classical crystalline solids and isotropic liquids representing terminal phases of liquid 

crystals at very low and very high temperatures, respectively.  

I immediately specialize to consider thermotropic, rod-shaped liquid crystals with chiral 

dopants—chiral liquid-crystal molecules which are added to a non-chiral host liquid crystal in order to 

induce helicoidal twisting in the mixture. As shown in Fig. 1, the nematic phase is one mesophase of rod-

shaped liquid crystals. Nematic liquid crystals have orientational ordering only; that is, the long axes of 

the molecules, on average, point in the same direction but their centers of mass are randomly 

distributed. This average orientation can be described by the nonpolar director field ࢔ ≡  One can   .࢔− 

define a scalar order parameter S which is a function of the angle between the director and the average 

deflection angle between the director and the long axis of the molecules on average [11]. (See Fig. 2.) 
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Upon reduction of temperature, the nematic phase may transition to the smectic phase, wherein 1D 

positional ordering, as well as orientational ordering, is achieved. Finally, of interest to this paper, the 

cholesteric (chiral nematic) phase may be described by two orientational degrees of freedom [12]. The 

nematic orientational ordering of the long axes of the liquid crystal molecules tends to twist about a 

chiral axis ߯, which is perpendicular to the long axes of the molecules. The degree of helicoidal twisting 

may be described by their pitch—the distance over which the molecules rotate by 2ߨ about the chiral 

axis. 

  

Figure 1:  Mesophases of liquid crystal.  (a) Nematic phase which is characterized by orientational 
but no positional order. (b) Smectic phase which has orientational order and 1D positional 

ordering. (c) Cholesteric phase which is characterized by two degrees of orientational ordering: 
orientational ordering as in the nematic phase and rotation about its chiral axis.  Adapted from 

[13] 

(a) (b) (c) 
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The director field of liquid crystal is highly nonlocal with orientational and, perhaps, positional 

ordering extending in spatial scales several orders of magnitude larger than the dimensions of the 

individual molecules. Because of the elastic attraction between neighboring molecules, there is an 

energetic cost for perturbations of the director.  Therefore, when nematic liquid crystal is placed 

between two boundaries with well-defined director conditions, it is energetically favorable for the liquid 

crystal in that region to align with those boundary conditions and maintain the director defined at the 

boundaries throughout the bulk of the liquid crystal. One may quantify the energetic cost of various 

director perturbations in a uniaxial nematic liquid crystal system through Euler-Lagrange minimization of 

the Frank-Oseen elastic free energy which is defined as ܨ =
ଵ

ଶ
׬ ܸ݀ ቄܭଵଵ(∇ ∙ ଶ(࢔ + ࢔ଶଶ൫ܭ ∙ ൯(࢔×∇)

ଶ
+௏

൯(࢔×∇)×࢔ଷଷ൫ܭ
ଶ

− ∇ଶସܭ ∙ ൫࢔ ∙ (∇ ∙ (࢔ + ࢔ ∙ ൯ቅ(࢔×∇) −
ଵ

ଶ
׬ ܸ݀ ቄߝ଴Δࡱ)ߝ ∙ ଶ(࢔ +

୼ఞ

ఞబ
࡮) ∙ ଶቅ(࢔ +௏

ଵ

ଶ ଴ܹ ׬ ݏ}ܵ݀ ଶ(ߠ − ଴)}ௌߠ , where the first volume integral on the right accounts for free energy from 

elastic perturbations of the director field, the second volume integral describes the free energy from 

Figure 2:  The scalar order parameter is defined as ܵ =
ଵ

ଶ
< 3 (ߠ)ଶݏ݋ܿ − 1 ൐ where 

 is the angle between the liquid crystal director and the individual long axis of each ߠ
liquid crystal molecule. The brackets indicate the average molecular value of 

orientation.  When the molecules are colder there will be fewer thermal fluctuations 
from the director, which will lead to a higher order parameter.  The order parameter 
will gradually decrease as temperature is increased until the critical temperature is 

reached at which all order disappears and the liquid crystal transitions from the 
nematic to the isotropic phase. Adapted from [11]. 
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electric (E) or magnetic field (B) interactions (if present) with the liquid crystal, and the final surface 

integral describes the free energy conditions imposed by angular alignment of the liquid crystal with 

boundary conditions (ߠ) [14]. The various Frank elastic constants ܭ௜௜ account for the energy differences 

required to form different elastic perturbations, namely, splay, twist, bend, as shown in Fig. 3, and 

saddle splay (not shown) while the anchoring energy ଴ܹ describes the difficulty of perturbing the 

equilibrium boundary-condition director. 

 

Another important feature of geometrically anisotropic liquid crystal molecules is their 

birefringence which results from differing electric susceptibilities along different directions of liquid-

crystal molecules [11].  For rod-like molecules, incident light experiences an ordinary index no when the 

polarization of the light is perpendicular to the molecules’ long axes. Additionally, when the polarization 

of incident light is parallel to their long axes, an extraordinary index ne may be defined. If the angle ߠ 

between the molecular long axis and the polarization of the light is between parallel and perpendicular, 

then the effective index of refraction will be governed by the equation ݊௘௙௙
ଶ =

௡೐
మ௡೚

మ

௡೐
మ ୡ୭ୱమ ఏା௡೚

మ ୱ୧୬మ ఏ
 [11]. 

In the next section, I show how considerations of director alignment and elastic energy costs of 

director perturbations play a crucial role in the enabling properties of topological solitons in my liquid 

crystal system. Subsequently, I explain the importance of birefringence for the generation of nematicons 

in liquid crystals. 

Figure 3: Common types of elastic director perturbations including splay, twist, and bend 
as indicated in the image. 
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1.2 Frustrated Chiral Nematic Liquid Crystal and Topological 
Solitons 

When chiral nematic liquid crystal is subjected to boundary conditions, the resulting bulk 

director structure is caused by the energetic balancing between alignment with the boundary conditions 

and alignment with the intrinsic helicoidal twist tendency within a chiral nematic liquid crystal. A 

frustrated chiral nematic liquid crystal exists when boundary conditions prohibit twist along the 

thickness between the boundaries d, as is the case of homeotropic alignment of the boundary 

conditions [14]. (See Fig. 4(a) below.) 

The equilibrium configurations of frustrated chiral nematic systems may be predicted through 

the minimization of the Frank-Oseen free energy for chiral nematic liquid crystal ܨ =
ଵ

ଶ
׬ ܸ݀ ൜ܭଵଵ(∇ ∙௏

ଶ(࢔ + ଶଶܭ ቀ࢔ ∙ (࢔×∇) +  
ଶగ

௣
ቁ

ଶ
+ ൯(࢔×∇)×࢔ଷଷ൫ܭ

ଶ
− ∇ଶସܭ ∙ ൫࢔ ∙ (∇ ∙ (࢔ + ࢔ ∙ ൯ൠ(࢔×∇) −

ଵ

ଶ
׬ ܸ݀ ቄߝ଴Δࡱ)ߝ ∙ ଶ(࢔ +

୼ఞ

ఞబ
࡮) ∙ ଶቅ(࢔ +

ଵ

ଶ ଴ܹ ׬ ߠ)ଶ݊݅ݏ}ܵ݀ − ଴)}ௌ௏ߠ  where we note that the twist (ܭଶଶ) 

term has been changed from ܭଶଶ൫࢔ ∙ ൯(࢔×∇)
ଶ

 to ܭଶଶ ቀ࢔ ∙ (࢔×∇) +  
ଶగ

௣
ቁ

ଶ
 in order to account for the 

intrinsic helicoidal twist tendency in chiral nematic liquid crystal [14]. By minimization of the free energy 

in the absence of external fields and with 0 <
ௗ

௣
≤ 1, it has been found that topologically complex field 

configurations will form within certain ௗ
௣

 regimes in order to form an equilibrium director ground energy 

state [15]. (See Fig. 4(b).) For example, if ௗ
௣

< ~0.8, then the minimum energy configuration is untwisted 

chiral nematic liquid crystal, i.e. the homeotropic nematic state wherein the liquid crystal molecules 

align with the homeotropic boundary conditions despite the presence of the chiral dopant. If ~0.8 ≤

ௗ

௣
< ~1, particle-like localized director-field configurations form with bend, splay, and saddle splay 

terms that are less energetically costly than twist deformations are. Finally, if ௗ
௣

 ~ 1, localized, 

translationally invariant director-field configurations with linear extent will form with maximized 
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contributions from bend and splay terms to minimize the energetically expensive twist term. The latter 

two cases are examples of topological solitons in liquid crystals. Particle-like localized field 

configurations are referred to as torons because of their double-twist toroidal cylinder director 

configuration while localized field configurations with linear extent are called cholesteric fingers [16].  

While topological solitons may be free energy ground states for certain thickness-to-pitch 

regimes, a significant energy barrier much larger than ݇஻ܶ often exists between the untwisted and 

solitonic states. In order to generate topological solitons, a stimulus which perturbs the director must be 

provided, as indicated in Fig. 4(c). In my research, I considered two possible methods to induce this 

distortion.  The first was to heat the sample so that the energy barrier is ~݇஻ܶ.  When the sample’s 

temperature is increased, the order parameter decreases. When the order parameter is low enough, the 

induced distortion becomes large enough to reorder the system to the ground-state director structure.  

The other possible method is to apply an electric field to the liquid crystal.  This can be done either by 

applying a voltage across liquid crystal with capacitive plates or by inserting a light beam into the liquid 

crystal where the electric field direction is determined by the polarization of the wave.  This induces a 

reorientation by induced polarization of liquid crystal molecules and subsequent electric torque. 

 

Figure 4: (a) Depiction of frustrated chiral 
nematic liquid crystal. The intrinsic helicoidal 
twist competes with the homeotropic 
boundary conditions during the formation of 
various field configurations. (b) A plot of 
elastic free energy density as a function of 
twist. For ݌ → ∞ (untwisted) and ݌~݀, 
energy minima exist. (c) A localized stimulus, 
such as a laser beam, perturbs the liquid 
crystal through heating and electric torque 
to form topological solitons such as a toron. 
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 In the next subsection, I will discuss the optical counterpart to topological solitons and provide 

background understanding, in addition to that provided in this subsection, for the elastic interactions 

between topological solitons and nematicons. 

1.3 Nematicons 

A quasi-stable, localized director-field perturbation analogous to topological solitons in an unwound 

chiral nematic liquid-crystal far field is the structure known as a spatial, optical soliton or nematicon.  As 

is the case for all optical solitons regardless of the nonlinear self-focusing mechanism or transverse 

dimensionality, their existence hinges on the exact balancing of self-focusing and diffraction within the 

medium through which they propagate [17].  If not for the effects of the self-focusing reorientational 

nonlinearity in liquid crystal, the beam would diffract as it propagates through its host medium as shown 

in Fig. 5(a) [16]. However, because a higher index of refraction, proportional to optical intensity, is 

experienced by the beam as liquid-crystal molecules are rotated in response to the torque from the 

light’s electric field, a lensing effect which causes self-focusing occurs as shown in Fig. 5(b).  

 

Figure 5: The effects of diffraction (a) and self-focusing (b) in liquid crystal cells. The curving arrows 

above and below the z axis are the edge of the beam.  

 

z z 

(a) Diffraction (b) Self Focusing 
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One may gain insight into the behavior of nematicons by the consideration of the equations of 

motion for nematicons in homeotropically aligned liquid-crystal systems. From Karpierz [18], I assume 

the experimental configuration as shown in Fig. 6. For a linearly polarized incident beam, the pure TM 

mode causes no reorientation of the liquid crystal and no solitonic beam. With a pure TE mode, which is 

the polarization condition for causing a perturbation of the liquid crystal only beyond the Freedericksz 

threshold [14], it is reported that such nematicons are unstable with “undulation, filamentation, and 

break-up of the light beam” [18] in homeotropically aligned nematic liquid crystal [19-21].  

 

Figure 6: The experimental configuration for launching nematicons in homeotropically aligned liquid 

crystal. Adapted from [18]. 

 Interestingly, experimentally observed stable nematicons in the literature propagating in the 

geometry of Fig. 6 with sufficiently small d were the thresholdless type whose incident polarization was 

a superposition of TM and TE modes [18, 22-24]. As a starting point for theoretical analysis, one may 

consider the perturbative regime wherein weak reorientation of the liquid crystal director occurs to 

form a nematicon with no threshold intensity. The equations of motion found in [18] and [22] 

incorporate TM and TE modes of the confining glass waveguide used to define the homeotropic 

boundary conditions for the nematic liquid crystal. Even with neglecting the surface energy contribution 

from the confining homeotropically aligned substrates, the correct distribution of undulating light 

intensities among the modes along their propagation axis is predicted. For homeotropic waveguided 
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nematicons, the simple relationship that describes the undulation in intensity and director configuration 

along the propagation axis is ܮ஻ =
ఒ

ே೐ିே೚
≥  

ఒ

௡೐ି௡೚
, where ܮ஻ beat length of the periodic undulation, ߣ is 

the wavelength of the CW laser used to form the nematicon, ௜ܰ  are the effective extraordinary and 

ordinary indices of refraction experienced by the nematicon, and ݊௜ are the extraordinary and ordinary 

indices of refraction for the liquid crystal [22]. 

For the purposes of this paper, an important consequence of the director perturbation caused 

by the self-focusing effect of the nematicon is that the perturbation of the director does not 

immediately disappear at the edge of the beam but has a rather long transverse decay length. This is 

because elastic deformations of the director structure are a spatially nonlocal effect.  Hence, the elastic 

interactions between nematicons and topological solitons are long-range and extend beyond the visible 

birefringence present in nematicons and topological solitons under polarizing optical microscopy. 

In the next section, I will discuss the experimental methods that I used to prepare materials, to 

generate topological solitons with laser tweezers, to observe topological solitons and nematicons with 

optical microscopy techniques, and to perform data analysis techniques which enabled the mapping of 

the toron-nematicon interaction potential energy and observation of the deflection of nematicons from 

topological solitons. 

2. Experimental Methods 

In this section, I will discuss the way that the experiment was carried out.  First, I will talk about 

the procedure used to prepare the samples. Next, I will discuss the way that I induced topological 

solitons in the sample and the equipment used to do this.  I will then cover the equipment and methods 

used to observe and record video of the interaction.  Finally, I will explain the video-analysis techniques 
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and the mathematical methods used to evaluate the forces at play in the elastic interaction between the 

nematicon and the toron.  

2.1 Materials’ Preparation 

In order to observe elastic interactions between nematicons and topological solitons, I needed 

to construct a liquid-crystal cell—confining pieces of glass with defined boundary conditions and 

separation for a known thickness—that was amenable to both solitonic structures. To make the cell that 

was used for the interaction of a stationary nematicon and mobile torons, I cut pre-cleaned 1-mm-thick 

microscope slide glass into 25 mm x 12.5 mm rectangles and polished the long manufacturer’s edges as 

shown in Fig. 7 with a 9-µm coarseness polishing disk on a lapping machine (Buehler Ecomet 3) at 100 

rpm. (This was to ensure uniform liquid-crystal defect formation along the nematicon’s optical interface 

to guarantee a repeatable nematicon.) Next, the glass was treated with 1 wt. % aqueous 

dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP, Acros Organics) and washed 

with deionized water. As shown in Fig. 8, the first piece of glass was positioned on the curing stage with 

the polished edge facing up and toward the back of the curing stage. UV-curable optical adhesive 

(Norland Optical Adhesive 65, Norland Products, Inc.) was mixed with ~15.9-µm-thick silica spacers 

(Thermo Scientific) and placed as shown in Fig. 7. Subsequently, the top piece of glass was placed over 

the UV-glue dots with its polished edge facing down and toward the back of the curing stage. Both 

pieces of glass were gently pushed toward the back of the curing stage. I then waited for 30 minutes to 

allow the spacers to settle in order to obtain the most consistent distance between the two pieces of 

glass. Finally, I cured the cell by exposing it to UV light for about 30 minutes.   
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 Alternatively, ~200-µm-thick indium-tin-oxide (ITO) coverslips were cut in half so that the pieces 

measured 22 mm x 11 mm. Pre-cleaned coverslips and 25 mm x 12.5 mm slide glass were polished as 

described above. Both were treated with SE-1211 (Alpha Micron, Inc.) via spin coating (ramp to 700 rpm 

and hold for 1 s, ramp to 3000 rpm and hold for 30 s) and cured in an oven which was ramped to 185 °C 

over 30 min. and held at  185 oC for 1 hr. The slide glass was placed first in the curing stage, covered with 

UV-glue dots with silica spacers as shown in Fig. 7, and finished by placing the coverslip ITO-side down 

with its polished edge also down and toward the back of the curing stage. The cell was cured in the 

same manner as described above. 

After the glue was cured, I measured the distance between the two pieces of glass by optical 

interference. While the spherical silica spacers do provide a nominal separation of their average 

diameter, I needed a precise measurement of the thickness in order to formulate chiral nematic liquid 

crystal with an appropriate pitch. I used cholesterol pelargonate (Sigma Aldrich) as the chiral dopant 

with a helical twisting power (HTP) of 6.25 µm-1 for E7 liquid crystal (Shijiazhuang Chengzi Yonghua 

Display Material Co., Ltd.) and formulated the final pitch of the chiral nematic liquid crystal according to 

the relationship ܿ =
ଵ

ு்௉∙௣
, where c is the concentration of the chiral dopant and p is the desired pitch in 

µm. As the dopant’s host, I used E7 because of its high nematic-to-isotropic melting temperature (61.5 

oC) to ensure the robust generation of nematicons under focused laser light. For the generation of 

Polished 
edge 

Precut face 

Precut face 

Polished 
edge 

Glass spacers 
in UV-curable 
glue 

Figure 7:  Liquid crystal cell before being filled with liquid crystal. 
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torons, I used a thickness-to-pitch ratio of ~0.9 whereas for the generation of cholesteric fingers, I used 

a ratio of ~0.98 to 1. 

 

 

2.2 Generation of Topological Solitons with Laser Tweezers 

As discussed in §1.2, torons may be generated when a sufficient stimulus exists to overcome the energy 

barrier between the untwisted and solitonic states [24]. While the untwisted chiral nematic liquid crystal 

may be heated past the nematic-to-isotropic transition temperature and rapidly quenched back to room 

temperature, this method does not allow one to control the spatial positions of the resultant topological 

solitons. Also, because E7 has a positive dielectric anisotropy, the application of an electric field across 

capacitive ITO-glass plates through the thickness of the cell would cause no change in director 

alignment.  

To write precise arrays of torons and cholesteric fingers in frustrated chiral nematic liquid 

crystal, I used laser tweezers to perturb the liquid crystal director in a spatially controlled manner. (See 

Fig. 9.) Because the 1064-nm laser suffers absorption by the liquid crystal and the ITO substrate, both 

thermal fluctuations and electric torque reoriented the liquid crystal at the laser’s focal point within the 

Polished edge 

Figure 8: Position of bottom piece of glass in curing stage.  
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cell thickness. With a proper thickness-to-pitch ratio, distorting the director structure can induce a 

ground-state topological soliton at arbitrary lateral positions within the cell. 

For observation of the interaction between stationary nematicons and mobile torons, slide glass 

with DMOAP was used to construct the cell. The sample cell was placed on a heating stage and heated 

to ~50 oC during operation of the laser tweezers. With a 10x objective (see Fig. 9), the laser was focused 

into the liquid crystal with about 2 W of power to sufficiently distort the director to form torons in a cell 

with a thickness-to-pitch ratio of ~0.9. In a cell with a ratio of about ~1, cholesteric fingers were drawn 

with the same amount of power. 

In order to study the deflection of nematicons from fixed torons, one piece of the cell glass was 

composed from an ITO cover slip. Both cover slip and slide glass were treated with SE-1211 as described 

in §2.1. Because ITO absorbs infrared light very well, there was no need to use a heating stage during 

the operation of the laser tweezers. Also, because high temperatures could be reached at the ITO cover 

slip’s surface, localized melting of the bulk and mesogenic realignment of the substrate were used to 

bind the upper point singularity of the toron to the polymer-coated SE-1211 substrate, thereby 

immobilizing the diffusive motion of the toron. 
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2.3 Experimental Observation of Nematicons and Topological 
Solitons with Polarizing Optical Microscopy 
 

In order to image the solitonic director structures so that I could characterize their interactions, I 

used a homebuilt polarizing optical microscope (POM) shown in Fig. 10. The POM was specially designed 

to be capable of observing laser light introduced from the side of the cell, i.e. light introduced between 

the pieces of glass as shown below. Exceptional care was taken to ensure parallel alignment of the laser 

beam and its focal point in the sample with the optics table by calibration against irises of equal height 

along the beam path (not shown). The position of both the objective tube and the sample could be 

independently adjusted by two 3-axis micrometer stages. Additionally, the angle of the cell with respect 

Figure 9: Laser tweezer setup with the 2D position of the beam in the plane of the sample controlled by the angle 
of two scanning mirrors.  Lenses L1 and L2 direct the beam from the CW collimated ytterbium fiber laser into the 
back aperture of an objective.  The dichroic mirror (DM) makes it possible to safely scan the laser and generate 

director perturbations while simultaneously inspecting those perturbations via the CCD shown above. The crossed 
polarizer and analyzer are used to obtain polarizing optical microscopy textures. Image adapted from [24].  
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to the surface of the optics table could be carefully adjusted by optical mount screws in the sample 

stage. 

 After careful measurement of the laser light directly emitted from the diode laser’s aperture, I 

found that the light was elipically polarized. I found that the most robust nematicons formed with the 

elipical long axis at an angle ~60o from the vertical x-axis (Fig. 6) but that nematicons would form over a 

wide range of incident long-axis polarizations from nearly vertically polarized to nearly horizontal. 

Additionally, while stable nematicons could be generated with as little as ~20 mW of power at the 

sample, I found that a convenient working power was between 25 and 40 mW for the robust formation 

of stable, thresholdless nematicons. 

To observe the nematicons and topological solitons, the homebuilt POM as shown in Fig. 10 was 

used in a few different modes. First, direct observation of the nematicon’s green scattered light was 

accomplished by removing the wave plate and bandpass filter. However, because the intensity of the 

scattered light tended to saturate the CCD and obscure the white-light birefringence from topological 

solitons, a bandpass filter was added to let only red light reach the camera. In this way, both 

birefringence from the presence of the nematicon and topological solitons could be detected and 

analyzed. Finally, to understand the director orientation in the nematicon, a wave plate was added along 

with the bandpass filter.    
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 We may understand the resultant birefringence caused by the director perturbations from the 

nematicon or topological solitons with the following relationship: (࢘)ܫ =

ଶ݊݅ݏ((࢘)ߚ2)ଶ݊݅ݏ଴ܫ ቂ
గௗ

ఒబ
(݊௘((࢘)ߠ) −  ݊௢)ቃ where (࢘)ܫ is the birefringence intensity at each lateral point 

 is the polar angle that (࢘)ߚ ,଴ is the incident intensity on the liquid crystal sampleܫ ,across the cell ࢘

liquid crystal molecules make with either the polarizer or analyzer, ݀ is the thickness of the cell, ߣ଴ is the 

center wavelength for incident light, ݊௘((࢘)ߠ) is the effective refractive index caused by reorienting 

liquid crystal molecules by an azimuthal angle (࢘)ߠ, and ݊௢ is the ordinary index of refraction. (See Fig. 

11 below.) Because the primary mechanism behind optical birefringence in liquid crystal in this 

experiment is phase retardation, the addition of a wave plate allows the determination of the director 

Figure 10: Optical and polarizing optical microscopy observations of elastic interactions between 
torons and nematicons were obtained with the apparatus shown above. A 532-nm diode laser beam 
was introduced, as shown with the green arrow denoting the k vector, to a half-wave plate in order 

to attenuate the beam’s intensity after it passed through the polarizing beam splitting cube (PBSC). A 
second half-wave plate was used to adjust the incident polarization of the beam. Sufficient intensity 
to form a thresholdless nematicon was achieved by passing the few-mm wide beam through a 40x 

objective. Crossed polarizers were used to observe the birefringence of the nematicon with a 26-µm 
wide bandpass filter (center wavelength 625 µm) to filter out the 532-nm scattered laser light. With 

the addition of a waveplate, the orientation of the liquid crystal director could be inferred. 
Interactions were captured with video taken with a CCD. 
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orientation (Fig. 12) beyond director orientation down to orthogonal directions, as is possible with only 

crossed polarizers.   

 

 In the next subsection, I will discuss how I interpreted data collected using POM.  

2.4 Data Analysis 

Once I had realized and identified both topological solitons and nematicons in the liquid crystal cells, I 

attempted to characterize the elastic free energy interaction between the two by determining the force 

of the interaction between nematicons and torons.  The derivation used to determine this force used 

information from [27].  I start this determination with the Langevin Equation shown in Eq. 1:  

Figure 11: Schematic illustration of 
liquid-crystal molecular dependence 

on polar and azimuthal angles for the 
calculation of intensity from 

birefringence at the observer. 

Analyzer 

Polarizer 
x 

y 

z 

β 

θ 

Observer 

Figure 12: Illustration of the functional principles of a 
first-order wave plate that retards 532-nm light by 

 With no sample present, the wave plate (a) .ߨ2
(quartz plate) retards green light by 2ߨ such that the 

linearly polarized green light is blocked by the 
analyzer while components of the elliptically polarized 

blue and red light are allowed to pass. (b) The 
insertion of a birefringent sample causes the 

wavefront ellipsoids of both the sample and the wave 
plate to be parallel for red light, which causes the 

observation of second-order blue. (c) If the sample is 
rotated 90o, the wavefront ellipsoids are now 

perpendicular which causes blue light to be blocked 
for a first-order yellow. Adapted from [26]. 
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ሶ࢜݉  = ࢜ߛ− +  (1) .(ݐ)ࣈߪ

Where ݉࢜ሶ  is equal to the net force, −࢜ߛ is the drag force, and (ݐ)ࣈߪ is the force due to density 

fluctuations. I make the assumption in this case that |݉࢜ሶ | ≪  because of the viscosity of liquid |࢜ߛ|

crystal.  This means that I may approximate the acceleration as zero to yield 

࢜ߛ  =  (2) .(ݐ)ࣈߪ

In order to find the drag and density-fluctuation coefficients in terms of a known quantity, I can describe 

the diffusion coefficient in terms of the mean square displacement or variance. The variance may be 

written as in Eq. 3: 

ଶۧ࢘߂ۦ . = ׬ ,࢘)݌ଶ࢘߂ܸ݀ ;ݐ ,࢕࢘ (௢ݐ
௏ . (3) 

where ࢘߂ is the displacement, the brackets indicate averaging, p is the probability density of the 

displacement for an increment between (࢘, ,࢕࢘) and (ݐ  ௢), where the zero subscripts indicate theݐ

staring position and time, respectively, and the integral is taken over all space. I then take the time 

derivative of the variance: 

 ߲௧࢘߂ۦଶۧ = ׬ ,࢘)݌ܸ݀ ;ݐ ,࢕࢘ ଶ࢘߂௢)߲௧ݐ
௏ + ׬ ,࢘)݌ଶ߲௧࢘߂ܸ݀ ;ݐ ,࢕࢘ (௢ݐ

௏ . (4) 

The first term of this equation goes to zero to yield 

 ߲௧࢘߂ۦଶۧ = ׬ ,࢘)݌ଶ߲௧࢘߂ܸ݀ ;ݐ ,࢕࢘ (௢ݐ
௏ . (5) 

Invoking the Einstein Diffusion equation, 

 ߲௧࢘)݌, ;ݐ ,࢕࢘ (௢ݐ =
ఙమ

ଶఊమ ,࢘)݌ଶߘ ;ݐ ,࢕࢘  ௢), (6)ݐ

where ߪ and ߛ are the coefficients from the Langevin Equation (1).  Substituting Eq. 6 into Eq. 5, I find 

that 
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. ߲௧࢘߂ۦଶۧ =
ఙమ

ଶఊమ ׬ ,࢘)݌ଶߘଶ࢘߂ܸ݀ ;ݐ ,࢕࢘ (௢ݐ
௏ . (7) 

One can rearrange the integral into an easy-to-solve form by applying Green’s Theorem, 

׬ . ݒଶߘݑ)ܸ݀ − (ݑଶߘݒ = ׬ ݒߘݑ)ܣ݀ − (ݑߘݒ
ௌ௏ , (8) 

where I identify u to be ࢘߂ଶ and v as ࢘)݌, ;ݐ ,࢕࢘  ௢).  The surface integral on the right goes to zeroݐ

because the probability density is zero at infinity. Whence, 

. ఙమ

ଶఊమ ׬ ,࢘)݌ଶߘଶ(࢘∆)ܸ݀ ;ݐ ,࢕࢘ (௢ݐ =
ఙమ

ଶఊమ ׬ ,࢘)݌ܸ݀ ;ݐ ,࢕࢘ ଶ(࢘∆)ଶߘ(௢ݐ
௏௏ . (9) 

On the right side of Eq. 9, ߘଶ(∆࢘)ଶ is equal to 2d where d is the dimensionality of the position vector ࢘.  

Substituting Eq. 9 into Eq. 7, I find that 

. ߲௧࢘߂ۦଶۧ =
ఙమ

ଶఊమ 2݀ ׬ ,࢘)݌ܸ݀ ;ݐ ,࢕࢘ (௢ݐ
௏ . (10) 

Assuming that the probability density is a normalized quantity and that the volume integral in Eq. 10 is 

over all space, the integral goes to unity.  When I integrate both sides of the equation with respect to 

time, I find 

ଶۧ࢘߂ۦ . =
ఙమ

ଶఊమ 2݀Δ(11) .ݐ 

The ratio ఙమ

ଶఊమ is identified as the diffusion coefficient D.  Thus, I have written the variance in terms of the 

diffusion coefficient: 

ଶۧ࢘߂ۦ . =  (12) .ݐΔ݀ܦ2

When one considers the diffusion of a particle due to Brownian motion without any external applied 

force, the resulting diffusion can be described by a Wiener process.  This means that the total 

probability can be described by 
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,࢘)ܲ . ;ݐ ,࢕࢘ (௢ݐ = మ(࢘∆)ି݁ܣ

రವ౴೟ (13) 

where A is a constant. With substitution of Eq. 12 into Eq. 13, I find that 

,࢘)ܲ . ;ݐ ,࢕࢘ (௢ݐ = ݁ܣ
మ೏(࢘∆)ି

మൻ೩࢘మൿ . (14) 

Using Eq. 14, one can find the variance by observing a particle’s trajectory due to Brownian 

motion and by fitting the probability distribution of that particle’s trajectory with Eq. 14.  First, I took a 

video of an isolated toron with no external forces acting on it to capture its diffusive motion for ~10-30 

minutes. After tracking the toron’s lateral coordinates frame-by-frame with video analysis software [28, 

29], I then created two 1D histograms along each lateral axis of the displacement of the toron between 

consecutive frames. Because there is no correlation between motions along each axis, the 2D analysis 

problem may be simplified to two 1D problems. Because I know that each 1D probability distribution of 

this random walk motion can be modeled with Eq. 14, I then used least-squares fitting to fit the 

histogram with the function ܲ(ݎ) = ି݁ܣ
(ೝషಳ)మ

మಬೝమಭ , where B is another constant. (See Fig. 13 below.)  When 

completed, I obtained values for the mean square displacement along each lateral axis.  

Figure 13: (a) Examples of diffusion histogram steps along x axis (black points). Gaussian least-
squares fit (red line) provides the mean square displacement, a quantity which is used to 

calculate the elastic potential energy of the elastic interaction. (b) Histogram of diffusion steps 
along the y-axis. 

(a) (b) 
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To find the elastic interaction force on the toron, I needed to invoke the Einstein-Smoluchowski 

Relation: 

௔௣௣ࡲ . =
௞್்࢜

஽
 (15) 

where kb is the Boltzmann constant, T is the ambient temperature, and v  is the drift velocity of the 

toron. Substituting Eq. 12, with ݀ = 1, into Eq. 15, I find for the 1D case that  

௔௣௣ܨ . =
ଶ௞್்୼௧

మۧ(௥∆)ۦ
 (16) .ݒ

In order to find the drift velocity, I tracked the position of the toron, using video analysis software, as it 

moved away from the nematicon. (See Fig. 14(a).) Though I did have a displacement step between each 

video frame, finding the velocity from the raw data by dividing the displacement by time step created an 

extremely noisy velocity signal because of the intrinsic Brownian motion of the toron.  I used least-

squares fitting to generate a polynomial fit of arbitrary order (less than 30th order) for my displacement 

data in both x and y dimensions as a function of time. (See Fig. 14 (b, c).)  I determined the order of the 

polynomial by inspection of the velocity curves and the agreement of their antiderivatives’ slopes with 

their fits to the raw position data. I took the derivative of that polynomial to find our velocity 

components.   
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Finally, I substituted the velocity components into the formula for elastic force to calculate the 

elastic force on the particle at each point along its trajectory.  By using the relationship ܷ =

∑ ௜|௜࢙௜||Δࡲ| , which is a discrete sum for the elastic potential energy, and starting the sum from the last 

coordinate point, I was able to calculate the work required to bring the toron to each point along the 

toron’s trajectory. (The force ࡲ௜ is always parallel to the displacement Δ࢙௜.) (See Fig. 15 below.)  I took a 

full population of nematicon trajectories where the toron started at several different points along the 

nematicon beam path and completed the process described above for each trajectory. The resultant 

contour maps are presented in §3. 

Figure 14: (a) The trajectory of the toron as determined from the fitted polynomials to the raw 
position versus time data in (b) and (c). The colors along the trajectory represent the various times at 

which the toron was at each point. The example image of a toron is not to scale. (b) Red raw x-
position data collected with video analysis software was fitted with a polynomial (green curve) of 

arbitrary order. (c) Y-position data was also fitted with a polynomial. 
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3. Experimental Results 

In this section, I will discuss the results achieved using the methods described in the previous 

section.  I will review my success in generating both cholesteric fingers and torons as well as undulating 

thresholdless nematicons.  After discussing the successful generation of both of these features, I will 

delve into their interaction.  I observed and analyzed the elastic interaction between a toron and a 

stationary nematicon as well as the deflection of a nematicon by a stationary or pinned toron. 

 

Figure 15: The trajectory of the toron as determined by polynomial fits of raw x- and y-data. The 
elastic potential energy at each point along the trajectory is given in multiples of kT. 
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3.1 Generation of Topological Solitons 

Using the experimental methods described in §2.2, I was able to generate arbitrary arrays of both torons 

and cholesteric fingers, as shown in Fig. 16 below.  I chose the shapes of the toron arrays and cholesteric 

fingers because of the potential for interesting interactions with nematicons. For example, in Fig. 16(a), 

a crystallographic defect exists in a 2D crystal of torons. I wanted to test if the nematicon would be split 

in two at the defect. Additionally, the curved linear array of torons and the fingers in Fig. 16 (b - d) have 

the potential to guide and deflect the nematicon via elastic interactions.  

 

 

Figure 16: Topological solitons. (a) Pinned arrays of torons configured in a 2D crystal with 
crystallographic defect and a curving linear array. Mobile torons exist above and below the pinned 
arrays. (b) Fingers with pinned terminal points. Mobile torons exist on either side. Both (a, b) were 

generated in a ~16-µm-thick cell. (c) Cholesteric finger with clockwise spiraling. (d) Cholesteric finger 
with anti-clockwise spiraling and center loop. Both (c, d) were generated in a cell ~30-µm thick. All 

images were taken with crossed polarizers as indicated with the arrows. 
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3.2 Generation and Analysis of Nematicons 
 
  I was also able to generate nematicons in a chiral nematic liquid crystal cell using the methods 

described in §2.3.  This is significant because, while nematicons have been generated in homeotropically 

aligned nematic liquid crystal before, this is the first work to generate nematicons in chiral nematic 

liquid crystal.  The scattered light image of this nematicon is shown in Fig. 17 (a).  There is a clear 

periodic beating pattern shown in this image.  It has been reported that a periodic beating pattern is 

both expected from theory and observed in thresholdless nematicons within homeotropically aligned 

nematic liquid crystal cells; however, the periodicity of the beat pattern observed in Fig. 17 (a) does not 

align with the predicted periodicity described in section §1.3. Observation of the birefringent texture of 

the nematicon, as is shown in Fig. 17 (b-c), provides evidence for a helicoidal twist of the director about 

the propagation axis of the nematicon. Upon rotation of crossed polarizer and analyzer (not shown), I 

observed that the bright spots along the propagation axis of the nematicon shown in Fig. 17 (b) translate 

along the propagation axis. Coupled with the thresholdless condition (a superposition of TE and TM 

modes) for generating the nematicon, translation of the bright birefringent texture indicates director 

distortion not only in the lateral plane of the sample but also in the vertical plane, i.e. a helicoidal twist 

about the propagation axis. Finally, Fig. 17 (c) provides sound evidence that the helicoidal twist 

periodicity is equal to the electromagnetic beat periodicity, as shown in Fig. 17 (a). Interestingly, neither 

electromagnetic beating nor birefringent texture periodicity agree with the simple beat periodicity 

relationship introduced in §1.3 for homeotropic nematic systems. In fact, I observed that the periodicity 

increases as beam power increases, an observation which disagrees with the homeotropic nematic beat 

relationship. I propose that the helicoidal twist tendency of frustrated chiral nematic liquid crystal 

modifies the behavior of nematicons launched in such systems to realize the behavior that I observed. 
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3.3 Elastic Interactions between Stationary Nemations and 
Mobile Toron 
 

Because it is energetically favorable for the director near, but not within, the toron to be 

homeotropically aligned, the system will try to move toward a state where this is the case.  Since the 

nematicon distorts the director away from this homeotropic alignment, and because the nematicon is 

stationary and stable (non-filamenting or -undulating), it is likely that the toron will translate its lateral 

position so that the director near it will once again be homeotropically aligned.  Additionally, transient 

beam deflection has been observed with this type of interaction. This type of interaction, in which a 

Figure 17: Nematicon in frustrated chiral nematic liquid crystal. All images were taken with 
~26 mW of nematicon power. (a) Scattered green light image of nematicon. Note 
undulating structure which is indicative of a superposition of TM and TE modes for 

thresholdless nematicons. (b) Birefringence of nematicon observed through a bandpass 
filter. The bright and dark beats correspond to the twisting of the chiral nematic liquid 

crystal along the propagation axis. (c) Wave plate analysis of nematicon with bandpass 
filter with slow axis of wave plate as indicated with the arrow. Dark and bright regions 

correspond to the alignment direction of the director within the nematicon. 
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toron will move away from a distortion in the director, has been observed when two toron are placed 

near one another [30]. This toron-nematicon interaction is shown in Fig. 18. 

 Using the particle tracking procedure described in §2.4 and connecting the points of equal 

elastic potential energy along the trajectories shown in Fig. 18, I produced the elastic potential energy 

contour plot that is shown in Fig. 19. Note the clear correspondence of scattered light beat periodicity 

(Fig. 17(a)) and director twisting periodicity (Fig. 17(c)) with the peaks in the potential energy contour 

map.    

Figure 18: Toron interaction trajectories plotted with color-coded elastic potential energy along 
nematicon propagation axis. 
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From this graphic, it is clear that the beating of the nematicon has an effect on the strength of 

the toron-nematicon interaction.  The toron moves much more slowly, and thus has a much lower 

potential energy, when it is near a region of destructive interference in the nematicon than it does when 

it is near a region of constructive interference (Fig. 17(a)).  Fig. 19 was generated using approximately 15 

different interactions.   

3.4 Nematicon Deflection with Stationary Topological Solitons 

Conversely, if a topological soliton is fixed in place, that is, torons are pinned on a glass 

substrate such that they cannot translate, steady-state beam deflection is observed.  This occurs 

because the addition of a new reorientational force changes the lensing near the toron. A minimization 

of the Frank-Oseen free energy for this interaction establishes a minimum when the nematicon is 

deflected from the toron, as shown in Fig. 20. I show the deflection of a nematicon beam in a cell with a 

Figure 19: Elastic potential energy contour plot constructed from interaction 
paths and equi-potential energies along toron trajectories. 
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Figure 20: Nematicon deflection from stationary topological solitons. (a, b) Nematicon deflected 
from a cholesteric finger pinned at its ends. (c) Nematicon deflected and guided by exterior of 2D 
toron crystal. (d) Guiding of the nematicon along a curved linear array of torons. All images taken 
with a bandpass filter and under crossed polarizers as indicated by the arrows with a cell thickness 

of ~16 µm. 

thickness-to-pitch ratio of ~0.9.  First, I deflected the nematicon beam using a cholesteric finger at 

multiple points along the finger (Fig. 20(a, b)). Additionally, I deflected the nematicon beam using arrays 

of torons identical to those in §3.1. The arrays of torons guided the nematicon along the curved paths 

which deviate from the unperturbed nematicon trajectory.  Because of this, I can see from Fig. 20 (c, d) 

that it is possible to provide very specific redirections of the nematicon using arrays of stationary torons.    

 

 

 

 

 

These results indicates that I can achieve very specific redirection of nematicons using 

topological solitons, with extension to the application as a possible tool for all-optical 

telecommunications. 

4. Conclusion 

The interaction between topological solitons and nematicons in chiral nematic liquid crystal is 

interesting on both theoretical and application levels.  In this work, I describe the two phenomena in 
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isolation, with introductory context. I then discuss the experimental methods that I used to create 

liquid-crystal cells in which we could test their mutual interaction via distortions of the director, the way 

that I realized both of these phenomena in those liquid-crystal cells, and the way that we imaged and 

analyzed each phenomenon and their interaction.  Finally, I discussed the conclusions we can draw from 

the results we gathered.  The first conclusion is that a helicoidal twist along the propagation axis of a 

thresholdless nematicon generated in a homeotropically aligned chiral nematic liquid crystal cell exists. I 

postulate that the twist alters the expected periodic beat structure of the nematicon.  Additionally, I 

determined that there is an interaction which causes diffusive topological solitons to move away from 

that same nematicon and that the strength of that interaction is correlated to the periodic beat 

structure of the nematicon.  Finally, I determined that pinned topological solitons in these cells will 

deflect the nematicon beam.   

The possible applications for real-time beam deflection of nematicons without the use of 

external voltages or control lasers are promising.  Other methods like the one described in [2-8] are 

promising, but it has the drawback of being power-intensive, in that it requires one or two control lasers 

to be inserted in the sample at all times, or permanent.  Other methods of nematicon deflection (§1) 

have different drawbacks.  With the new methods presented in this paper, it will be possible to achieve 

the goal of beam deflection using entirely erasable and non-power-intensive topological solitons.  

Possible applications of a stationary nematicon moving a toron also abound. Beyond the fact that this 

novel interaction has never before been observed, which makes its characterization interesting in its 

own right, the translation of torons by their deflection from nematicons may be pre-configured for 

transient nematicon guidance. The pre-configurability of this system opens up possibilities such as 

mobile logic gates which perform irreversible data manipulation, which may be useful as cryptographic 

keys, as one example.  
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Though this experiment did provide novel insight into nematicons in frustrated chiral nematic 

liquid crystals and their interactions with topological solitons, there are two major areas of 

experimentation that I would like to pursue further.  The first is that I would like to include a colloidal 

dispersion of ferromagnetic nanoplatelets in the liquid crystal to control the size of torons and 

cholesteric fingers with the application of an external magnetic field. By modulating the direction of the 

applied field, torons and cholesteric fingers can be pre-engineered to grow or shrink [31]. In this 

manner, the deflection of the nematicon from these structures can be controlled to form all-optical logic 

gates with facile pre-configurability. Beam deflection with nematicons has already been used to create 

all optical logic gates, but this method has the advantage, described earlier, of being impermanent and 

not power intensive[2-8].  Finally, I would also like to carry out simulations of the director structure 

during both the optical and elastic interactions to better understand our empirical data.  The Smalyukh 

Group has already created in-depth simulations of the director structure of topological solitons which 

minimize the free energy in a frustrated chiral nematic cell [15].  It will be possible to alter this 

simulation so that it can also include a free energy minimization for a stationary nematicon and the 

interaction between a nematicon and a topological soliton. 
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