
DISPERSIVE SHOCK WAVE INTERACTIONS AND

TWO-DIMENSIONAL OCEAN-WAVE SOLITON

INTERACTIONS

by

DOUGLAS EUGENE BALDWIN

B.S., Colorado School of Mines, 2003

M.S., Colorado School of Mines, 2004

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fullfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2013



This dissertation entitled:

Dispersive shock wave interactions and two-dimensional ocean-wave soliton

interactions

written by Douglas Eugene Baldwin

has been approved for the Department of Applied Mathematics

Mark J. Ablowitz

Keith Julien

The final copy of this thesis has been examined by the signatories, and we

Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.



Baldwin, Douglas Eugene (Ph.D., Applied Mathematics)

Dispersive shock wave interactions and two-dimensional ocean-wave soliton

interactions

Dissertation directed by Professor Mark J. Ablowitz

Many physical phenomena are understood and modeled with nonlinear partial

differential equations (PDEs). Unfortunately, nonlinear PDEs rarely have analytic

solutions. But perturbation theory can lead to PDEs that asymptotically approximate the

phenomena and have analytic solutions. A special subclass of these nonlinear PDEs have

stable localized waves—called solitons—with important applications in engineering and

physics. This dissertation looks at two such applications: dispersive shock waves and

shallow ocean-wave soliton interactions.

Dispersive shock waves (DSWs) are physically important phenomena that occur

in systems dominated by weak dispersion and weak nonlinearity. The

Korteweg–de Vries (KdV) equation is the universal model for phenomena with weak

dispersion and weak quadratic nonlinearity. Here we show that the long-time

asymptotic solution of the KdV equation for general step-like data is a single-phase

DSW; this DSW is the ‘largest’ possible DSW based on the boundary data. We find this

asymptotic solution using the inverse scattering transform (IST) and

matched-asymptotic expansions; we also compare it with a numerically computed

solution. While multi-step data evolve to have multiphase dynamics at intermediate

times, these interacting DSWs eventually merge to form a single-phase DSW at large

time. We then use IST and matched-asymptotic expansions to find the modified KdV

equation’s long-time-asymptotic DSW solutions.

Ocean waves are complex and often turbulent. While most ocean-wave

interactions are essentially linear, sometimes two or more waves interact in a nonlinear
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way. For example, two or more waves can interact and yield waves that are much taller

than the sum of the original wave heights. Most of these nonlinear interactions look like

an X or a Y or two connected Ys; much less frequently, several lines appear on each side

of the interaction region. It was thought that such nonlinear interactions are rare events:

they are not. This dissertation reports that such interactions occur every day, close to low

tide, on two flat beaches that are about 2,000 km apart. These interactions are related to

the analytic, soliton solutions of the Kadomtsev–Petviashvili equation. On a much larger

scale, tsunami waves can merge in similar ways.
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Chapter 1

Introduction

Many physical phenomena are understood and modeled with nonlinear partial

differential equations (PDEs). Unfortunately, nonlinear PDEs rarely have analytic

solutions. But perturbation theory can lead to PDEs that asymptotically approximate the

phenomena and lead to analytic understanding. A special subclass of these nonlinear

PDEs have stable localized waves—called solitons—with important applications in

engineering and physics. This dissertation looks at two such applications: dispersive

shock waves and shallow ocean-wave soliton interactions.

J. S. Russell, a naval architect, made the first recorded observation of a solitary

wave in the Union Canal, Edinburgh in 1834: a stopping barge set off a solitary wave

that went along the canal for one or two miles without changing its speed or its shape

(Russell, 1844). He did experiments and found, among other things, that the wave’s

speed depends on its height; so he concluded that it must be a nonlinear effect.

Boussinesq (1877) and Korteweg and de Vries (1895) derived approximate nonlinear

equations for shallow water waves. They found both solitary and periodic nonlinear

wave solutions to these equations; they also found that the speed is proportional to its

amplitude — bigger waves move faster. So Russell’s observations were quantitatively

confirmed.
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Between 1895 and 1960, solitary waves were mostly studied by water wave

scientists, mathematicians, and coastal engineers. In the 1960s, applied mathematicians

developed robust approximation techniques and found that the Korteweg–de Vries

(KdV) equation appears universally when there is weak quadratic nonlinearity and

weak dispersion (Ablowitz, 2011). In 1965, Zabusky and Kruskal (1965) found that the

solitary waves of the KdV equation have remarkable elastic interaction properties and

termed them solitons. Gardner et al. (1967) then developed a method for solving the

KdV equation with rapidly decaying initial data; this method has been extended to

many other nonlinear equations and is called the inverse scattering transform (IST) (see

Ablowitz and Segur, 1981b; Novikov et al., 1984) — such equations are often called

integrable.

The IST method is the nonlinear analog of the Fourier transform method: the

initial data are transformed into scattering data; this scattering data are evolved in time;

and then the solution is recovered from this evolved scattering data. To get the scattering

data, the nonlinear PDE is associated with a linear Lax pair, a scattering equation and an

evolution equation. When we assume that the scattering equation is isospectral (the

eigenvalue doesn’t depend on time), then the compatibility condition is the original

nonlinear PDE. The scattering equation of the Lax pair transforms the initial data into

scattering data. Then the other linear equation of the Lax pair evolves the scattering

data. Finally, the solution is recovered using a linear integral equation, the

Gel’fand–Levitan–Marchenko (GLM) integral equation, at any time. There are also

elegant and powerful asymptotic methods based on Riemann–Hilbert problems for

recovering the solution, but using GLM integral equations are sufficient for our

purposes. We use the IST method to investigate dispersive shock waves along with the

dynamics of slowly varying waves, which is often referred to as Whitham theory, and

numerical simulations.

Dispersive shock waves (DSWs) are physically important phenomena that occur
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in systems dominated by weak dispersion and weak nonlinearity. The KdV equation is

the universal model for phenomena with weak dispersion and weak quadratic

nonlinearity. First we investigate the interactions of two DSWs, then a DSW and an

expansion or rarefaction wave (RW), and two RWs. The interaction of two DSWs lead to

transient two-phase dynamics; this suggests that the multiphase dynamics of general

step-like initial data will also be transient. To show that multiphase dynamics are

transient for general step-like initial data, we find the long-time asymptotic solution

using IST and matched-asymptotic expansions. We find that general step-like data go to

a single-phase DSW in the large-time limit for the KdV equation; this DSW’s shape is

determined by the boundary data and its position by the initial data. We also compare

our asymptotic solution with a numerically computed solution.

To investigate the interaction of DSWs and RWs, we evolved the two-step data

u(x < 0, t = 0) = h0, u(0 < x < L, t = 0) = h1, u(x > 0, t = 0) = h2

and find six canonical cases:

• one is the interaction of two DSWs which exhibit a transient two-phase solution,

but evolve to a single phase DSW for large time;

• two tend to a DSW with either a small-amplitude wave train or a finite number of

solitons, which can be determined analytically;

• two tend to a RW with either a small-amplitude wave train or a finite number of

solitons; and

• one tends to a pure RW.

There is a similar merging of shock waves for classical or viscous shock waves (VSWs),

but VSWs neither exhibit multiphase dynamics nor do they form solitons.
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The small-amplitude wave train and the transient two-phase dynamics can be

understood using Whitham theory. Whitham theory consists of looking for a fully

nonlinear single- or multi-phase solution whose parameters (amplitude, wave number,

and frequency) are slowly varying with respect to the phase(s) and then deriving new

equations for the evolution of the slowly varying wave properties.

Whitham theory alone cannot give the number of solitons because solitons are

solitary waves and Whitham theory describes periodic waves. We determine the

number, speed, and location of the solitons using IST theory: the solitons correspond to

the scattering data’s discrete spectra, which are the simple poles of the transmission

coefficient. For two-step data, the scattering data can be determined exactly for all time,

and so we can determine the exact number and speed of the solitons.

The IST theory for general, step-like initial data is more complicated. First, we

need that the initial data decay to the boundary data sufficiently rapidly. If we have

sufficiently rapid decay to the boundary data, then we can formulate GLM integral

equations to recover the solution from the evolved scattering data. The GLM integral

equations for step-like data for the KdV equation were found previously, but we derived

them in a different way. The GLM integral equation formulated from x to +∞ has a

kernel with three terms: one that depends on the reflection coefficient, one that depends

on the transmission coefficient, and one that depends on the simple poles of the

transmission coefficient. The simple poles of the transmission coefficient correspond to

the solitons that form from the initial data; they are also present for vanishing boundary

data. The term that depends on the reflection coefficient leads to a decaying oscillatory

structure; similar to that for vanishing boundary data. The term that depends on the

transmission coefficient does not have an analogue for vanishing boundary data: it

corresponds to the dispersive shock wave and comes from a branch cut in the scattering

data. The scattering data for vanishing boundary data do not have a branch cut.

To the DSW’s right, we can asymptotically solve this GLM integral equation for
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large time. In this large-time limit, we can asymptotically approximate the kernel and

then solve the GLM integral equation with a Neumann series. Far to the DSW’s right, the

reflection-coefficient term in the kernel dominates and gives an exponentially small

solution. Near the right-edge of the DSW, the transmission-coefficient term in the kernel

dominates and we can again sum the Neumann series; summing the Neumann series

gives a soliton-like train at the DSW’s front. When our asymptotic approximation

becomes disordered, we use the asymptotic form at the DSW’s right-edge to suggest a

variable change in the KdV equation. Introducing fast and slow variables in this

transformed KdV equation gives a multiple-scales perturbation problem; this

perturbation problem leads to a slowly varying cnoidal wave solution with three

parameters that are determined by three conservation equations. After a variable

change, these conservation equations reduce to Whitham’s equation for a single-phase

DSW. So while multi-step data evolve to have multiphase dynamics at intermediate

times, these interacting DSWs eventually merge to form a single-phase DSW at large

time. Finally, we use WKB-theory to find the small-amplitude tail left of the DSW.

This IST-matched-asymptotic method is then applied to the modified KdV

(mKdV) equation. For the mKdV equation, the GLM integral equations needed to be

found; while the scattering data for the KdV equation with step-like data has one branch

cut, the scattering data for the mKdV equation typically has two branch cuts — this

makes finding the GLM integral equations more complicated. The branch cut structure

of the scattering data for the mKdV equation, if we take limx→−∞ u > limx→+∞ u,

naturally divides into seven cases; of these seven cases, three are dominated by DSWs,

three are dominated by RWs, and one is the boundary between these. The

matched-asymptotic solution in the long-time limit is found for classes of initial data that

are dominated by DSWs. As with the KdV equation, the long-time asymptotic solution is

a single-phase DSW in these cases despite multiphase dynamics at intermediate times.

In addition to studying dispersive shock waves, ocean-wave observations were
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also carried out. Ocean waves are complex and often turbulent. While most ocean-wave

interactions are essentially linear, sometimes two or more waves interact in a nonlinear,

but coherent, way; for example, two or more waves can interact and yield waves that are

much taller than the sum of the original wave heights. Most of these nonlinear

interactions look like an X or a Y or two connected Ys; much less frequently, several lines

appear on each side of the interaction region. It was thought that such nonlinear

interactions are rare events: they are not. These interactions occur every day, close to low

tide, on two flat beaches that are about 2,000 km apart. These interactions are related to

the analytic, soliton solutions of the Kadomtsev–Petviashvili equation.

Kadomtsev and Petviashvili (1970) (KP) extended the KdV equation to include

transverse effects; this multi-dimensional equation, like the KdV equation, is integrable

(Ablowitz and Clarkson, 1991a). Our observations are related to soliton solutions of the

KP equation that do not decay at large distances; these interacting, multi-dimensional

line-soliton solutions can be found analytically (see Ablowitz and Segur, 1981b). Before

our observations, it was thought that such interactions are rare events because there was

only one well-known photograph of an interacting line-soliton in the ocean; it was taken

in the 1970s in Oregon (see Ablowitz and Segur, 1981b, fig. 4.7b). Since the KP equation

has other and more complex line-soliton solutions, which we refer to as X, Y, and H type

solutions, M. J. Ablowitz and D.B. sought and found ocean waves with similar behavior

at two relatively flat beaches, some 2,000 km apart. Surprisingly, these X, Y, H, and more

complex types of line-solitons appear frequently on these shallow water beaches. Such

freely propagating, interacting line-solitons are remarkably robust. While these

interactions are not stationary, and so only last a few seconds, a casual observer will be

able to see them if they know when and where to look. On a much larger scale, tsunami

waves can merge in similar ways.

In this dissertation: Chapter 2 discusses the interactions of DSWs and RWs for the

KdV equation and was published in Physical Review E with M. J. Ablowitz and M.
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Hoefer (Ablowitz et al., 2009). Chapter 3 looks at the long-time asymptotics of the KdV

equation’s solutions for general step-like data using IST theory and matched

asymptotics; these results were published with Mark J. Ablowitz in Physics Letters A

(Ablowitz and Baldwin, 2013b) and Physical Review E (Ablowitz and Baldwin, 2013a).

Chapter 4 first derives the GLM integral equations for the mKdV equation for general

step-like data, which is new, and then looks at the long-time asymptotics for general

step-like data with limx→−∞ q = qℓ > 0 and limx→+∞ q = 0, which is new and leads to a

DSW — these results have not been submitted for publication yet. Chapter 5 discusses

our observations of shallow ocean-wave soliton interactions on two flat beaches; these

results were published with M. J. Ablowitz in Physical Review E (Ablowitz and Baldwin,

2012). Finally, chapter 6 draws some conclusions.
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Part I

Dispersive shock wave interactions
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Chapter 2

Soliton generation and multiple phases

in dispersive shock and rarefaction wave

interaction

Many physical processes are dominated by weak dispersion and weak nonlinearity.

Shock waves in such processes have been experimentally observed in plasmas (Taylor

et al., 1970), fluids (e.g., undular bores) (Smyth and Holloway, 1988; Lighthill, 1978),

superfluids (e.g., Bose-Einstein condensates) (Dutton et al., 2001; Simula et al., 2005;

Hoefer et al., 2006; Chang et al., 2008), and optics (Wan et al., 2007; Jia et al., 2007;

Ghofraniha et al., 2007; Conti et al., 2009). These shock waves are called dispersive shock

waves (DSWs) and have yielded novel dynamics and interesting interactions. These

dynamics and interactions have only just begun to be studied theoretically (see El and

Grimshaw, 2002; Hoefer and Ablowitz, 2007) and there is still much to explore: the first

part of this dissertation looks at DSW interactions that are modeled by either the

Korteweg–de Vries (KdV) equation or the modified KdV equation, usually in the

large-time limit. In this chapter, we characterize the KdV equation’s solution for

9



large-time when the initial condition is

u(x, t = 0) =


h0, x < 0

h1, 0 < x < L

h2, x > L

and find six canonical cases: one is the interaction of two DSWs which exhibit a transient

two-phase solution, but evolve to a single phase DSW for large time; two tend to a DSW

with either a small amplitude wave train or a finite number of solitons, which can be

determined analytically; two tend to a rarefaction or expansion wave (RW) with either a

small wave train or a finite number of solitons; and, finally, one tends to a pure RW.

There is a similar merging of shock waves for classical or viscous shock waves (VSWs),

but VSWs neither exhibit multiphase dynamics nor do they form solitons. To better

understand this transient multiphase behavior, the KdV equation’s long-time

asymptotics solution for general, step-like data is explored in the next chapter using the

inverse scattering transform (IST) (see Ablowitz and Clarkson, 1991b) and

matched-asymptotic expansions.

A version of this chapter was published in Physical Review E with Mark J.

Ablowitz and Mark Hoefer (Ablowitz et al., 2009).

2.1 Background

Here we consider DSWs which are described by the Korteweg-de Vries (KdV) equation,

ut + uux + ε2uxxx = 0, 0 < ε≪ 1. (2.1)

Individual DSWs are characterized by a soliton train front with an expanding oscillatory

wave at its trailing edge; these waves have been well-studied (see Gurevich and

10



Pitaevskii, 1974; Kamchatnov, 2000; El, 2005) using wave averaging techniques, often

referred to as Whitham theory (Whitham, 1965, 1974).

When illustrative, we contrast DSW interaction with classical or viscous shock

waves (VSWs), which are dominated by weak dissipation and nonlinearity, using

Burgers’ equation

ut + uux − νuxx = 0, 0 < ν≪ 1. (2.2)

The interaction of VSWs is an entire field and has been extensively studied (see Courant

and Friedrichs, 1948; Lax, 1973), while little is known about DSW interactions.

In this chapter, we use analytic, asymptotic, and numeric methods to investigate

(2.1) and (2.2) using the step-like initial data

u(x, 0) = u0(x) =


h0, x < 0,

h1, 0 < x < L,

h2, x > L,

(2.3)

where h0, h1 and h2 are distinct, real and non-negative. This gives six canonical cases,

which we denote:

I ( ): h0 > h1 > h2, II ( ): h0 > h2 > h1,

III ( ): h1 > h0 > h2, IV ( ): h2 > h0 > h1,

V ( ): h1 > h2 > h0, VI ( ): h2 > h1 > h0,

where a symbol of the initial step data is shown in parentheses. When convenient, we

take hi to be 0, 0 < h∗ < 1, or 1; we can do this without loss of generality because both

(2.1) and (2.2) are Galilean invariant. El and Grimshaw (2002) studied the well (e.g.,

h0 = h2 = 0 > h1) and the box (e.g., h0 = h2 = 0 < h1) with vanishing boundaries and

constructed the asymptotic solution analytically.

11



This chapter is organized as follows: First we briefly discuss the methods we will

use. Then we discuss each of the six cases: Case I ( ), where two DSWs interact and

exhibit a two-phase region that evolves into a one-phase solution for large time. A DSW

with a small amplitude wave train develops in Case II ( ). In Case III ( ), the

interaction produces a DSW with a finite number of solitons. Cases IV ( ), V ( ),

and VI ( ) lead to RWs.

2.2 Methods

In this chapter we use Whitham theory, IST theory, and a fourth-order numerical

scheme. In this section, we give a very brief discussion of each method.

2.2.1 Whitham theory

One-phase Whitham theory

Whitham theory consists of looking for a fully nonlinear single- or multi-phase solution

whose parameters (amplitude, wave number, and frequency) are slowing varying with

respect to the phase(s) and then deriving new equations for the evolution of the slowly

varying wave properties. The one-phase Whitham equations for (2.1) are

∂ri

∂t
+ vi(r1, r2, r3)

∂ri

∂x
= 0, i = 1, 2, 3, (2.4a)

where

v1 = V − 2
3
(r2 − r1)

K(k)
K(k)− E(k)

,

v2 = V − 2
3
(r2 − r1)

(1− k2)K(k)
E(k)− (1− k2)K(k)

,

v3 = V +
2
3
(r3 − r1)

(1− k2)K(k)
E(k)

,

(2.4b)
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L

v−1 = 0

→ v+1 = 1
v−2 = −h0 ←

→ v+2 = 2h0/3
h0

1

0
r1

r2

r3

Figure 2.1: The initial data regularization of Case II ( ) for h0 > 1, h1 = 0 and h2 = 1;
the dashed line is the initial condition, u0(x), and the solid lines are r1, r2, and r3. The
figure also gives the speed of the front and back of the DSW and RW at t = 0.

V = (r1 + r2 + r3)/3, k2 = (r2 − r1)/(r3 − r1) (Gurevich and Pitaevskii, 1974). Here, K(k)

is the complete elliptic integral of the first kind and E(k) is the complete elliptic integral

of the second kind (see, for example, Olver et al., 2010). Then, the asymptotic solution is

ua(x, t) ∼ r1 + r2 − r3 + 2(r3 − r1)dn2 (θ − θ0, k) ,

where θx = κ, θt = −ω = −κV, κ =
√
(r3 − r1)/(6ε2), and ri are slowly varying

functions of x and t. We can make a global dispersive regularization for the initial value

problem (2.1) and (2.3) by choosing appropriate initial data for the ri that result in a

global solution (Hoefer et al., 2006; Kodama, 1999; Biondini and Kodama, 2006). A global

dispersive regularization of Case II ( ) is shown in figure 2.1; the ri are taken to be

nondecreasing, ri(x, 0) < ri+1(x, 0) and ūa(x, 0) = u(x, 0) for all x ∈ R.

In order to study the interaction we evolve the ri numerically. A simple and

effective method for evolving the ri is to discretize the initial data regularization along

the dependent variable, ri, and then compute the shift in x of each data point using (2.4).

Figure 2.2 compares a numerically evolved Whitham approximation with direct

numerics for Case II ( ); the Whitham approximation does not capture the small

quasi-periodic modulations in the tail.
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Figure 2.2: Plot (a) shows the Whitham approximation and (b) direct numerics of the
solution of (2.1) for Case II ( ) with the same initial condition as in figure 2.4.

Multiphase Whitham theory

Multiphase Whitham theory is more complicated than one-phase Whitham theory and

dates back to 1970 (Ablowitz and Benny, 1970); multiphase Whitham equations were

developed for the KdV equation in (Flaschka et al., 1980). The interaction of two DSWs

from certain step-like data was recently analyzed in (Hoefer and Ablowitz, 2007) for the

nonlinear Schrödinger equation. The one- and two-phase regions and the averaged

solution in Case I ( ) are found by numerically evolving the two-phase Whitham

equations for the KdV (see Levermore, 1988),

∂ri

∂t
+ vi(r1, . . . , r5)

∂ri

∂x
= 0, i = 1, 2, . . . , 5, (2.5)

where vi = (2r3
i − χr2

i − β1ri − β2)/(r2
i − α1ri − α2), χ = ∑5

j=1 rj, and α1, α2, β1 and β2 are

solutions of I1
1 I0

1

I1
2 I0

2


α1

α2

 =

I2
1

I2
2

 ,

I1
1 I0

1

I1
2 I0

2


β1

β2

 =

2I3
1 − χI2

1

2I3
2 − χI2

2

 ,

with

Ik
j =

∫ r2j

r2j−1

ξk√
∏5

i=1(ξ − ri)
dξ. (2.6)
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2.2.2 IST theory

In this chapter, we use IST theory to determine the number of solitons that correspond to

the time-independent number of zeroes of a(k) (which is the number of poles of the

reflection coefficient R ≡ b(k)/a(k)) in the upper half k-plane. Associated with (2.1), the

data a(k) is defined by

ϕ(x; k) ≡ a(k)ψ̄(x; k) + b(k)ψ(x; k),

ϕ̄(x; k) ≡ ā(k)ψ(x; k) + b̄(k)ψ̄(x; k),

corresponding to the eigenfunctions,

ϕ(x; k) ∼ e−ik0x, ϕ̄(x; k) ∼ eik0x, as x → −∞,

ψ(x; k) ∼ eik2x, ψ̄(x; k) ∼ e−ik2x, as x → +∞,

which satisfy the Schrödinger scattering problem,

wxx + w{u/6 + k2}/ε2 = 0. (2.7)

The solution of (2.7), at t = 0, is

w(x) =


Aeik0x + Be−ik0x, x < 0,

Ceik1x + De−ik1x, 0 < x < L,

Eeik2x + Fe−ik2x, x > L,

where k0 =
√

h0/6 + k2/ε, k1 =
√

h1/6 + k2/ε, and k2 =
√

h2/6 + k2/ε. The

eigenfunctions, ϕ, ϕ̄, ψ and ψ̄ are determined by requiring that w and w′ are continuous

across x = 0 and x = L. Indeed, ϕ is found by taking A = 0 and B = 1 and then solving
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for C, D, E ≡ b(k), F ≡ a(k), so that

a(k) = eik2L k0 + k2

2k2

{
cos(k1L)− i

k2
1 + k0k2

k1(k0 + k2)
sin(k1L)

}
.

Note that the branch cut in a(k) corresponds to the DSW in Case III ( ) and the RW in

Case V ( ). Since eik2L(k0 + k2)/(2k2) ̸= 0, the zeroes of a(k) occur when

tan(k1L) = ik1(k0 + k2)/(k2
1 + k0k2). It can be shown that the zeroes of a(k) are purely

imaginary; thus, we let k = iκ (where κ ∈ R and κ > 0).

2.2.3 Numerical scheme

We numerically solve (2.1) and (2.2) using an adaptation of the modified

exponential-time-differencing fourth-order Runge-Kutta (ETDRK4) method (see Cox

and Matthews, 2002; Kassam and Trefethen, 2005). We use this (sophisticated) numerical

method because (2.1) is stiff and standard numerical methods require the time step to be

O(ε3), while for ETDRK4 the time step need only be O(ε) (since the period in the

oscillatory tail is O(ε)). When this numerical scheme was used to evolve a multi-soliton

initial condition where the analytic solution was known, it was accurate to more than six

decimal digits when compared with the analytic solution. We do not expect or require

such accuracy in our numerically computed DSW solutions, since we are interested in

the solution’s qualitative rather than quantitative behavior. A significant source of error

when numerically computing DSW solutions is the small-amplitude linear-wave tail to

the DSW’s left: while small-amplitude, it is much larger than the machine-epsilon and

we apply reflectionless dampening at the computational domain’s left edge to keep it

from affecting the DSW’s shock-front. To mitigate the effects of dampening this

small-amplitude linear-wave tail near the computational domain’s edge, we use a

domain that is four times the DSW region’s width. Most of our calculations only took a

few minutes on a desktop computer, and we typically used five times the Nyquist rate of
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the linear-wave tail and a time step of 10−3 to 10−4.

For spectral accuracy in space when using the ETDRK4 method, the initial data

must be both smooth and periodic. Therefore, we differentiate (2.1) with respect to x and

define v ≡ ux to get

vt + (uv)x + ε2vxxx = 0.

Transforming to Fourier space gives

v̂t = iε2k3v̂− ikûv ≡ Lv̂ + N(v̂, t),

where we define (Lv̂)(k) ≡ iε2k3v̂ and

N(v̂, t) = N(v̂) ≡ −ikF
{[

h0 +
∫ x

−∞
F−1(v̂)dx′

]
F−1(v̂)

}
.

It is important that the integral in N is computed using a spectrally accurate method.

Moreover, we approximate the initial step data with the analytic function

v(x, 0) =
h2 − h1

2w
sech2[(x− L)/w] +

h1 − h0

2w
sech2(x/w),

where w is small. See (Cox and Matthews, 2002; Kassam and Trefethen, 2005) for details

about how this L and N are used to numerically compute the solution of (2.1).

2.3 The dispersive shock wave cases

2.3.1 Two-phase DSW case

In Case I ( ), two one-phase DSWs form and propagate to the right (see fig. 2.3a).

When the shock front of the left DSW reaches the expanding oscillatory tail of the right

DSW, they interact and form a quasi-periodic two-phase solution (see fig. 2.3b). The
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Figure 2.3: Plots (a)–(d) show the numerically computed solution of (2.1) and (e) the
boundary of the one- (light gray) and two-phase (dark gray) regions computed using
Whitham theory. The averaged solution, ū, is computed using Whitham averaging (see
Levermore, 1988) and shown as dotted lines in (a)–(d); the solution of (2.2) is shown as
dashed lines in (a)–(d). In all plots, ε2 = 0.001, h0 = 1, h1 = 0.4, h2 = 0 and L = 8. The
vertical axis in (e) is log-time and the horizontal axis is −t ≤ x ≤ t + 8 (and matches the
domain in (a)–(d)).
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shock front of the left DSW subsequently overtakes the shock front of the right DSW and

forms a one-phase solution to the right of the two-phase region (see fig. 2.3c). To the left

of the two-phase solution, an essentially one-phase DSW tail emerges (see fig. 2.3c);

although the tail is weakly modulated by a quasi-periodic wave, its behavior is

essentially one-phase. For large time, the two-phase region closes and a one-phase DSW

remains (see fig. 2.3d–e); Whitham theory indicates that the amplitude of the two-phase

modulations decrease with time and result in an effectively one-phase DSW. This closing

of the two phase region is suggested by the rigorous (Whitham theory) results in Grava

and Tian (2002), though the authors studied smooth initial data. The computation of the

boundaries of the one- and two-phase regions using multiphase Whitham theory is

discussed later in this chapter.

Although the (initial) shock front speed is different for DSWs and VSWs (2h0/3

and h0/2, respectively), the averaged DSWs are similar in behavior to VSWs (see

fig. 2.3a–d); in both, two shock waves merge to form a single shock wave.

2.3.2 DSW with oscillatory tail

For Case II ( ), a large DSW forms on the left and a small RW forms on the right (see

fig. 2.4a). The front of the DSW then interacts with the trailing edge of the RW; the

interaction decreases the DSW’s speed and height (see fig. 2.4b). The front of the DSW is

faster than the front of the RW and overtakes it (see fig. 2.4c). The size of the interaction

region continues to expand with a DSW emerging in front with a small amplitude wave

train behind, whose amplitude is proportional to t−1/2 (see fig. 2.4d). As in Case I ( ),

the averaged DSW and the VSW (see fig. 2.4) both tend to a single DSW (VSW) once the

front of the DSW (VSW) passes the front of the RW.

We can use the one-phase Whitham equations to characterize the interaction of

the DSW and RW in Case II ( ) (figs. 2.1 and 2.2). Both direct numerics and the

Whitham approximation agree and show that for large enough time, the amplitude of
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Figure 2.4: Plots of the numerical and averaged Whitham solutions of (2.1) for Case II
( ) where ε2 = 0.001, h0 = 1, h1 = 0, h2 = 0.5 and L = 5.

the tail in Cases II ( ) is proportional to t−1/2; this is typical of a uniform linear wave

train when the total energy remains constant (see Whitham, 1965) and was observed by

El and Grimshaw (2002) in the context of a well with vanishing boundaries (e.g.,

h0 = h2 = 0 > h1).

2.3.3 Using IST to find the number of solitons

In Case III ( ), a small RW forms on the left and a large DSW forms on the right. The

front of the RW then interacts with the tail of the DSW and reduces the amplitude of the

waves—essentially cutting off the top of the box. Since the front speed of the RW is less

than the front speed of the initial DSW, a finite number of solitons can escape the

interaction (see fig. 2.5). These solitons have no analogue in the VSW solution of Case III

( ). We can compute the precise number, height, and speed of these escaping solitons

for all time using IST theory.

For Case III ( ), where h1 = 1 > h0 = h∗ and h2 = 0, the zeroes of a(iκ) occur
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Figure 2.5: Plots of Cases (a) & (b) III ( ) with h0 = 0.5, h1 = 1, h2 = 0 and (c) & (d) V
( ) with h0 = 0, h1 = 1, h2 = 0.5, where ε2 = 0.001 and L = 2. There are six solitons in
both cases, see (2.8).

when

tan
(√

1/6− κ2L/ε
)
=

√
1/6− κ2

(√
κ2 − h∗/6 + κ

)
1/6− κ2 − κ

√
κ2 − h∗/6

. (2.8)

If we denote the zeros determined using (2.8) as κ1, κ2, . . . , κN, then the corresponding

solitions in Case III ( ) have height 12κ2
i and speed 4κ2

i . The number of periods for
√

h∗/6 ≤ κ ≤
√

1/6 of the RHS of (2.8), L
√

1− h∗/(επ
√

6), is an estimate of the number

of solitons. The number, height and speed of the solitons determined using (2.8) exactly

corresponds to the solitons observed using direct numerics (for various values of h∗, L

and ε).

2.4 The expansion wave cases

In Case IV ( ), a small DSW forms on the left and a large RW forms on the right (see

fig. 2.6a). As in Case II ( ), the front of the DSW interacts with the trailing edge of the

RW and decreases the DSW’s amplitude and speed. Unlike Case II ( ), the front of the
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Figure 2.6: Plots of the solution of (2.1) for Case IV ( ) where ε2 = 0.001, h0 = 0.5,
h1 = 0, h2 = 1 and L = 5.

DSW does not overtake the front of the RW. The DSW becomes a small amplitude tail on

the left of the RW and decreases in amplitude proportional to t−1/2 (see fig. 2.6b).

For Case V ( ), a large RW forms on the left and a small DSW forms on the

right; the front of the RW interacts with the tail of the DSW and results in a RW and a

finite number of solitons. The solitons corresponds to the number of zeroes of (2.8)

where where h0 = 0 and h1 = 1 > h2 = h∗.

In Case VI ( ), two rarefaction waves form; the small amplitude oscillatory tail

(see for instance the RW in fig. 2.6a) of the right RW interacts with the front of left RW;

the tail of the right and left RWs then interact to form a small amplitude, modulated,

quasi-periodic tail; this modulation decreases with time and Case VI ( ) tends to a

pure RW for large time.

2.5 Conclusion

For large time Case I ( ) and II ( ) go to a single DSW, while Case IV ( ) and VI

( ) go to a single RW; this is consistent with VSW theory. However, unlike VSW

theory, Case III ( ) and V ( ) form a finite number of solitons in addition to the

DSW or RW, respectively. Moreover, unlike VSW theory, Case I ( ) exhibits a transient

two-phase region and Case II ( ) and IV ( ) have a small amplitude tail that decays

at a rate proportional to t−1/2.
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Chapter 3

Dispersive shock wave interactions and

asymptotics — the Korteweg–de Vries

equation

Dispersive shock waves (DSWs) have been seen in plasmas (Taylor et al., 1970), fluids

(e.g., undular bores) (Smyth and Holloway, 1988; Lighthill, 1978), superfluids (Dutton

et al., 2001; Simula et al., 2005; Hoefer et al., 2006; Chang et al., 2008), and optics (Wan

et al., 2007; Jia et al., 2007; Ghofraniha et al., 2007; Conti et al., 2009). DSWs occur when

weak nonlinearity and weak dispersion dominate the physics and there is step-like data.

For many weakly dispersive, weakly nonlinear systems, the Korteweg–de Vries (KdV)

equation is the leading-order asymptotic equation (Ablowitz, 2011). Here we find the

long-time-asymptotic behavior of the KdV equation with general, step-like data using

the inverse scattering transform (IST) and matched-asymptotic expansions. We show

that general, step-like data go to a single-phase DSW for the KdV equation in the

long-time, fixed-dispersion limit. Our results show that while multi-step data evolve to

have multiphase dynamics at intermediate times, these interacting DSWs eventually

merge to form a single-phase DSW: each sub-step in well-separated, multi-step data
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forms its own DSW (fig. 3.1a); these DSWs then interact and develop multiphase

dynamics at intermediate times (figs. 3.1b and 3.1c); and, in the long-time limit, these

DSWs merge to form a single-phase DSW (fig. 3.1d). The boundary data determine this

single-phase DSW’s form; the initial data determine its position. This is similar to

interacting viscous shock waves (VSW), where only the single, largest possible VSW

remains after a long time (Ablowitz and Baldwin, 2013a). Grava and Tian (2002) and

Ablowitz et al. (2009) suggested this merging of multiphase to single-phase by their

two-phase to one-phase results — they used Whitham theory, which applies to slowly

varying periodic wavetrains. We apply this IST and matched-asymptotic procedure to

another important, nonlinear integrable system — the modified KdV (mKdV) equation

— for general, step-like data in chapter 4; we anticipate that this procedure will also be

applied to the nonlinear Schrödinger (NLS) equation.

A version of this chapter was published with Mark J. Ablowitz in Physics Letters A

(Ablowitz and Baldwin, 2013b) and Physical Review E (Ablowitz and Baldwin, 2013a).

3.1 Introduction

A shock wave is an abrupt change in the medium that propagates; it often moves faster

than the local wave speed. If dissipation and dispersion are ignored, then breaking

occurs in finite time; since this is not usually physical, most models include weak

dissipation or weak dispersion. When dissipation dominates dispersion, a VSW forms

that is smooth but changes rapidly from one value to another; VSWs form in

compressible gases and other classical fluids. When dispersion dominates dissipation, a

DSW forms that is smooth but has an additional modulated wavetrain that allows

transitions from one value to another; DSWs form in cold plasmas, superfluids (like

Bose–Einstein condensates), and nonlinear electromagnetic waves in suitable optical

materials.

24



-20 0 20
x

-6

0

6
u

HaL
t=0 & t=1

-120 -20
x

-6

0

6
u

HbL
t=10

-240 -40
x

-6

0

6
u

HcL
t=20

-2400 -400
x

-6

0

6
u

HdL
t=200

Figure 3.1: Numerical simulations (using the scheme in (Ablowitz et al., 2009)) of three
well-separated steps (at t = 0, with ε2 = 0.1 and c = 1). Here we see: (a) three single-phase
DSWs at t = 1; (b) and (c) strong interaction and multiphase dynamics; and (d) eventual
merging to form a single-phase DSW.
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The KdV and NLS equations are universal models: they are the leading-order

asymptotic equations for a wide class of physical phenomena (see Ablowitz, 2011). The

KdV equation is the leading-order asymptotic equation for systems with weak

dispersion and weak, quadratic nonlinearity; it has important applications in shallow

water waves, plasmas, lattice dynamics, and elasticity among others. The NLS equation

is the leading-order asymptotic equation for quasi-monochromatic, weakly nonlinear

systems; it has important applications in nonlinear optics, deep water waves,

Bose–Einstein condensates, and magnetic-spin waves among others.

Here we consider the DSWs that the KdV equation describe; the KdV equation,

written in dimensionless form, is

ut + uux + ε2uxxx = 0, (3.1)

where subscripts denote partial derivatives. We will consider the boundary conditions

lim
x→−∞

u = 0 and lim
x→+∞

u = −6c2. (3.2)

Here, ε and c are real, positive constants, and ε corresponds to the size of the regularizing

dispersive effects. We require that u goes to these limits sufficiently rapidly; so we

assume that ∫ ∞

−∞

∣∣∣u(x, t) + 6c2H(x)
∣∣∣ (1 + |x|n)dx < ∞, (3.3)

for n = 1, 2, . . . and where H(x > 0) = 1 and H(x ≤ 0) = 0 is the Heaviside function.

Since the KdV equation is Galilean invariant, we can transform any constant boundary

conditions where limx→−∞ u > limx→+∞ u to (3.2). We use the IST method (see Ablowitz

et al., 1974; Deift and Trubowitz, 1979; Ablowitz and Segur, 1981a; Ablowitz and

Clarkson, 1991b) and matched-asymptotic expansions (see Ablowitz and Segur, 1977;

Segur and Ablowitz, 1981) to find a long-time-asymptotic solution.
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3.1.1 IST method

The IST method is the nonlinear analog of the Fourier transform method: we transform

the initial data into scattering data; we evolve this scattering data in time; and we then

recover the solution from the evolved scattering data. First we associate the nonlinear

partial differential equation (PDE) with a (linear) Lax pair. Then we use the scattering

equation of the Lax pair to transform the initial data into scattering data. Then we use

the other linear equation of the Lax pair to evolve the scattering data. Finally, we use a

linear integral equation, the Gel’fand–Levitan–Marchenko (GLM) integral equation, to

recover the solution at any time.

Elegant and powerful asymptotic methods based on Riemann–Hilbert problems

can also be used to recover the solution at any time. They have been used to find the

asymptotic solution for large time with vanishing boundary conditions (see Deift and

Zhou, 1993; Deift et al., 1997); see (Buckingham and Venakides, 2007) for a NLS shock

example. For our purposes, the GLM integral equation and our matched-asymptotic

method is sufficient.

Hruslov (1976) and then Cohen (1984) and Cohen and Kappeler (1985) studied

the IST theory for step-like initial data; we state the IST results that we need to find our

asymptotic solution in section 3.2. Hruslov (1976), based on (Buslaev and Fomin, 1962),

presented the GLM integral equations and investigated the soliton train at the DSW’s

right. Cohen (1984) and Cohen and Kappeler (1985), using the methods of (Deift and

Trubowitz, 1979; Buslaev and Fomin, 1962), rigorously studied some scattering-data

properties, rederived the GLM integral equations, and analyzed existence for

piecewise-constant initial conditions. We derive the GLM integral equations in a

different way in section 3.2.3.

27



3.1.2 Long-time asymptotic solution

Our long-time-asymptotic-analysis results are new. We find the long-time-asymptotic

solution for non-vanishing boundary conditions (where c ̸= 0) by using and suitably

modifying the methods in (Ablowitz and Segur, 1977; Segur and Ablowitz, 1981).

Ablowitz and Segur (1977) and Segur and Ablowitz (1981) developed these IST and

matched-asymptotic methods to find the long-time-asymptotic solution for vanishing

boundary conditions (where c = 0). We show, for large time, that u(x, t) goes to a

single-phase DSW that has three basic regions (fig. 3.2):

• an exponentially small solution for x ≥ O(t) (region A in fig. 3.2a);

• a slowly varying cnoidal-wave solution for |x| ≤ O(t) (region B in fig. 3.2a), which

has a soliton train on its right and an oscillatory wave on its left; and

• a slowly varying oscillatory solution for (−x) ≥ O(t) (region C in fig. 3.2a).

3.1.3 Comparison with vanishing boundary conditions

The long-time-asymptotic solution of the KdV equation when c ̸= 0 is quite different

from when c = 0 (see fig. 3.2): the strong nonlinearity when c = 0 is only over

|x| ≤ O[t1/3(log t)2/3], but when c ̸= 0 it is over |x| ≤ O(t). Ablowitz and Segur (1977)

showed that the long-time-asymptotic solution when c = 0 has four basic regions:

• an exponentially small solution for x ≥ O(t) (region I in fig. 3.2b);

• a growing similarity solution for |x| ≤ O(t1/3) (region II in fig. 3.2b), which is

related to Painlevé II’s solution;

• a collisionless-shock solution for (−x) = O[t1/3(log t)2/3] (region III in fig. 3.2b),

which is a slowly varying cnoidal wave analogous to a DSW; and

• an oscillatory similarity solution for (−x) ≥ O(t) (region IV in fig. 3.2b), which has

the same form as region C in figure 3.2a.
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Figure 3.2: Numerically computed solutions of the KdV equation for the initial conditions
shown in gray. (a) Non-vanishing boundary conditions, c ̸= 0. This solution has three
basic regions: rapid decay in region A, right of the DSW; strong nonlinearity of width
O(t) in region B; and an oscillating tail in region C, left of the DSW. (b) A vanishing
boundary conditions, c = 0. Here, the solution that has four basic regions (see Ablowitz
and Segur, 1977). Region III has strong nonlinearity with height O[(log t)1/2t−2/3] and
width O[t1/3(log t)2/3].

The amplitude for all these regions when c = 0 decays in time at least as O(t−1/2); the

amplitude when c ̸= 0 is O(1).

3.1.4 Comparison with the linear problem

The long-time-asymptotic solution of the KdV equation is also quite different from the

linear problem (ũt + ε2ũxxx = 0). Both problems have three basic regions; but the middle

regions have different widths: the linear KdV equation has a middle region with strong

nonlinearity over |x| ≤ O(t1/3), while the nonlinear KdV equation has a middle region

(region B in fig. 3.2a) over |x| ≤ O(t). The linear problem’s solution in the middle region

is

ũ(x, t) ∼ U0(0)
∫ η

−∞
Ai(η′)dη′, η =

x
(3ε2t)1/3 ,

where Ai(x) is the Airy function and U0 is the Fourier transform of ũx(x, 0).
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3.1.5 Comparison with viscous shock waves

In the long-time limit, both DSWs and VSWs merge to form a single shock wave. For

shock waves where dissipation dominates dispersion, Burgers’ equation is the

leading-order asymptotic equation. Burgers’ equation, in normalized form, is

wt + wwx − νwxx = 0, (3.4)

where ν > 0 is a measure of dissipation and is typically small. If we take initial data that

go rapidly to the boundary conditions limx→−∞ w(x, t) = 0 and limx→+∞ w(x, t) = −h2,

then the long-time-asymptotic solution is

w(x, t) ∼ −h2

2

{
1 + tanh

[
h2

4ν

(
x− x0 +

h2

2
t
)]}

,

where x0 is a real constant that depends on the initial data — see below for details. Thus,

for both Burgers’ and the KdV equation, well-separated step data go to a single shock

wave in the long-time limit: the boundary conditions determine its form, and the initial

data determine its location. But unlike with Burgers’ equation, the solution of the KdV

equation can also have a finite number of solitons, which move to the DSW’s right in the

long-time limit.

To see this, we can transform (3.4) into the heat equation (ϕt = νϕxx) using the

Cole–Hopf transformation,

w = −2ν
ϕx

ϕ
. (3.5)

For simplicity, we take

w(x, t = 0) = w0(x) =


0, x ≤ xℓ

f (x), xℓ ≤ x ≤ xr

−h2, x ≥ xr

,
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where h is real and f is bounded. So, from (3.5),

ϕ(x, t = 0) = ϕ0(x) = exp
(
−1
2ν

∫ x

−∞
w0(x′)dx′

)

=


1, x ≤ xℓ

exp
[
−1/(2ν)

∫ x
xℓ

f (x′)dx′
]

, xℓ ≤ x ≤ xr

exp
[
h2(x− x̃0)/(2ν)

]
, x ≥ xr

,

where x̃0 ≡
∫ xr

xℓ
f (x′)/h2 dx′. Solving the heat equation gives

ϕ(x, t) =
1√

4πνt

(∫ xℓ

−∞
+
∫ xr

xℓ
+
∫ ∞

xr

)
ϕ0(x′)e−(x−x′)2/(4νt) dx′ ≡ I1 + I2 + I3.

And, in the long-time limit,

I1 ∼
1
2

, I2 → 0, and I3 ∼ exp
[

h2

2ν

(
x− x̃0 +

h2

2
t
)]

.

Therefore, from (3.5),

w(x, t) ∼ −h2

2

{
1 + tanh

[
h2

4ν

(
x− x0 +

h2

2
t
)]}

,

where x0 ≡ x̃0 + (2ν/h2) log 2.

3.1.6 Relation to previous work

Single-step data, such as a Heaviside function, have been studied extensively (see

Gurevich and Pitaevskii, 1974; Kamchatnov, 2000; El and Grimshaw, 2002; El, 2005)

using wave-averaging techniques, which are often called Whitham theory (Whitham,

1965, 1974). Whitham theory averages over suitable, slowly varying periodic waves to

get reduced equations; these reduced equations are a quasi-linear, first-order, hyperbolic
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system that describes how the periodic wave’s parameters slowly evolve.

The evolution of multiphase DSWs to a single-phase DSW was investigated in the

two-phase case by Grava and Tian (2002) using Whitham theory in the zero-dispersion

limit (ε→ 0) for finite time and in chapter 2 using numerical and asymptotic methods in

the fixed-dispersion, long-time limit. Both zero-dispersion and long-time are important,

but different, limits. Here we study the long-time limit with fixed dispersion. By using

the IST method, we find the asymptotic solution directly: we can investigate general,

step-like initial data and DSW interactions without having to find the solution at

intermediate times. On the other hand, Whitham theory in the zero-dispersion limit

requires that the solution is found at intermediate times through a nonlinear hyperbolic

system.

The IST method also gives the behavior to the left and right of the DSW; it’s

nontrivial to get such behavior from the Whitham theory results. For example, it’s useful

to compare (Grava and Klein, 2008) with (Ablowitz and Segur, 1977; Segur and

Ablowitz, 1981) to see how each matches the solution (for vanishing boundary

conditions) in region III (fig. 3.2b) to that in region IV. Also compare (Claeys and Grava,

2010) with (Ablowitz and Segur, 1977) to see how each matches the solution in region II

to that in region III.

The key result for the fixed-dispersion, long-time limit is that DSWs from

well-separated multi-step data merge to form a single-phase DSW.

To find the KdV equation’s long-time-asymptotic solution: We give the IST results

that we need in section 3.2. Then we asymptotically solve the linear GLM integral

equation to find the exponentially small solution right of the DSW (sec. 3.3.1); use

matched asymptotics to get the DSW (sec. 3.3.2), which is a slowly varying cnoidal wave

that has a soliton train on its right and an oscillatory tail on its left; and find the small,

decaying, oscillatory solution left of the DSW (sec. 3.3.3) that matches into the DSW.
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Finally, we draw some conclusions (sec. 3.4).

3.2 IST and the GLM integral equations

The IST method first associates a Lax pair with the nonlinear PDE. Using the Lax pair’s

scattering equation, we transform the initial data into the scattering data. We then evolve

the scattering data in time using the associated linear equation. The GLM integral

equation, a linear integral equation, provides the inversion at any time, and so we can

recover the solution at any time.

3.2.1 Direct problem

The Lax pair associated with (3.1) is

Lv = vxx +
u

6ε2 v = −λ2

ε2 v, (3.6a)

vt = Mv =
(ux

6
+ γ

)
v +

(
4λ2 − u

3

)
vx, (3.6b)

where λ is the spectral parameter and γ is a constant. This linear pair is compatible

(vxxt = vtxx) when u = u(x, t) satisfies (3.1) and λ is isospectral (∂λ/∂t = 0). That is,

requiring nontrivial eigenfunctions gives Lax’s equation

Lt + [L, M] = Lt + LM−ML =
1

6ε2

(
ut + uux + ε2uxxx

)
= 0.

We use (3.2) to define the eigenfunctions that satisfy (3.6a) (for notational

simplicity, we often suppress the time dependence):

ϕ(x; λ) ∼ exp(−iλx/ε), ϕ̄(x; λ) ∼ exp(iλx/ε), as x → −∞ (3.7a)

ψ(x; λr) ∼ exp(iλrx/ε), ψ̄(x; λr) ∼ exp(−iλrx/ε), as x → +∞, (3.7b)
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where λr ≡
√

λ2 − c2. From (3.7), we also have the identities

ϕ(x;−λ) = ϕ̄(x; λ) and ψ(x;−λr) = ψ̄(x; λr).

We take the branch cut of λr to be λ ∈ [−c, c], and the branch cut of λ to be

λr ∈ [−ic, ic]; then Im(λr) ≷ 0 when Im(λ) ≷ 0. This branch cut is one of the main

differences between vanishing and non-vanishing boundary conditions: vanishing

boundary conditions give eigenfunctions that do not have a branch cut.

The Wronskian, W( f , g) ≡ f gx − fxg, is constant (in x) for (3.6a) by Abel’s

identity; so, from (3.7), W(ϕ, ϕ̄) = 2iλ/ε and W(ψ, ψ̄) = −2iλr/ε. Note that when

|λ| < c, λr(λ) is pure imaginary; this implies that ψ is real valued and so W(ψ, ψ̄) = 0.

Therefore, ϕ and ϕ̄ are linearly independent solutions for |λ| > 0 and ψ and ψ̄ are

linearly independent solutions for |λ| > c.

The scattering eigenfunctions and scattering data a and b associated with (3.6a)

satisfy

ϕ(x; λ) = a(λ, λr)ψ̄(x; λr) + b(λ, λr)ψ(x; λr) (3.8)

for λr ̸= 0, λr ∈ R (or, equivalently, |λ| > c, λ ∈ R). The scattering data can be written as

a =
ε

2iλr
W(ϕ, ψ) and b =

ε

2iλr
W(ψ̄, ϕ). (3.9)

We can use this to extend a to |λ| < c, λ ∈ R (where λr is pure imaginary); when |λ| < c,

λ ∈ R, ψ is real and exponentially decaying. This also gives that a = −b for |λ| ≤ c,

λ ∈ R and |a|2 − |b|2 = λ/λr for |λ| > c, λ ∈ R.
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3.2.2 Time evolution

It’s convenient to define the transmission coefficient T ≡ 1/a and the reflection

coefficient R ≡ b/a. Then (3.8) can be written as

T(λ, λr)ϕ(x; λ) = ψ̄(x; λr) + R(λ, λr)ψ(x; λr). (3.10)

Recall that the time-dependent scattering equation (3.6b) is

vt =
(ux

6
+ γ

)
v +

(
4λ2 − u

3

)
vx.

First consider the change of variables v(x; λ; t) = M(x; λ; t)e−iλx/ε; then

Mt =

[
γ− iλ

3ε
(12λ2 − u) +

ux

6

]
M +

1
3
(12λ2 − u)Mx. (3.11)

From (A.2) in appendix A, the asymptotic behavior of M(x; λ, λr; t) is given by

M(x; λ; t) ∼ 1, as x → −∞,

M(x; λ; t) ∼ a(λ, λr; t)ei(λ−λr)x/ε + b(λ, λr; t)ei(λ+λr)x/ε, as x → +∞.

Using the limits of u as x → ±∞, (3.11) goes to

Mt =
(

γ− 4iλ3/ε
)

M + 4λ2Mx, as x → −∞,

Mt =
[
γ− iλ(4λ2 + 2c2)/ε

]
M + (4λ2 + 2c2)Mx, as x → +∞;

substituting in the asymptotic expressions for M(x; λ; t) we find that

γ = 4iλ3/ε,

at = (4iλ3 − 4iλ2λr − 2ic2λr)a/ε,
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bt = (4iλ3 + 4iλ2λr + 2ic2λr)b/ε,

and so

T(λ, λr; t) = T(λ, λr; 0) exp[i(4λ2λr − 4λ3 + 2c2λr)t/ε]

and

R(λ, λr; t) = R(λ, λr; 0) exp[i(8λ2λr + 4c2λr)t/ε].

For vanishing boundary conditions (c = 0), the transmission coefficient T does not

depend on time. But here, where c ̸= 0, the transmission coefficient does depends on

time; this dependance when |λ| < c, λ ∈ R is not pure phase.

3.2.3 Derivation of GLM integral equation

The associated GLM integral equation — which is not new but is derived differently

below — is

G(x, y; t) + Ω(x + y; t) +
∫ ∞

x
Ω(y + z; t)G(x, z; t)dz = 0, (3.12)

where

Ω(ξ; t) =
1

2επ

∫ ∞

−∞
Reiλrξ/ε dλr + ∑

j
cje−κ̃jξ/ε +

1
2επ

∫ c

0
|λT/λr|2e−

√
c2−λ2ξ/ε dλ,

the constants {iκj}N
j=1 are the (simple) poles of T(iκj, λr(iκj); t), κ̃j =

√
κ2

j + c2,

cj = −iµj/[ε∂λr a(iκj)], ϕ(x; iκj, t) ≡ µj(t)ψ(x; iκj, t), and 0 < κ1 < · · · < κN are real. The

kernel Ω has contributions from the reflection coefficient, from the poles, and from the

branch cut (the |λT/λr|2 term) — there is no branch-cut contribution in the c = 0 case.

We will omit any contributions from poles in our asymptotics. These poles relate to the

solitons, which move to the right of the DSW, and so do not affect the DSW in the

long-time limit.
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From G, we recover u(x, t) using

u(x, t) = −6c2 + 12ε2 d
dx

G(x, x; t). (3.13)

To find (3.12), the GLM integral equation, we need to know the eigenfunctions’s

and the scattering data’s analyticity; see appendix A and (Cohen and Kappeler, 1985) for

more details. Using Green’s functions, we can write eiλx/εϕ, eiλx/εϕ̄, eiλrx/εψ, and eiλrx/εψ̄

as Volterra integral equations, which can be solved using Neumann series. From these

Neumann series, we find that

• eiλx/εϕ is analytic for Im(λ) > 0,

• e−iλx/εϕ̄ is analytic for Im(λ) < 0,

• e−iλrx/εψ is analytic for Im(λr) > 0, and

• eiλrx/εψ̄ is analytic for Im(λr) < 0.

From (3.9), we have that a is analytic for Im(λ) > 0. If n = 1, 2, . . . , N in (3.3), then:

eiλx/εϕ and e−iλx/εϕ̄ are N-fold differentiable (with respect to λ) on Im(λ) = 0, λ ̸= 0 and

(N − 1)-differentiable at λ = 0; e−iλrx/εψ and eiλrx/εψ̄ are N-fold differentiable (with

respect to λr) on Im(λr) = 0, λr ̸= 0 and (N − 1)-differentiable at λr = 0. Likewise, if

u(x, t) satisfies

∫ ∞

−∞
|u(x, t) + 6c2H(x)|ed|x| dx < ∞, 0 < d ∈ R,

then eiλx/εϕ and e−iλx/εϕ̄ are analytic in −d < Im(λ) < d, e−iλrx/εψ and eiλrx/εψ̄ are

analytic in −d < Im(λr) < d, and b is analytic, from (3.9), in −d < Im(λ) and

Im(λr) < d.

Using the eigenfunctions’s and the scattering-data’s analyticity, we find the GLM

integral equation by: assuming that ψ and ψ̄ have triangular forms; substituting these

forms into (3.10); and operating on this equation with (2επ)−1
∫ ∞
−∞ dλr to get (3.12).

Following Ablowitz and Clarkson (1991b), we assume that ψ and ψ̄ have the triangular
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forms
ψ(x; λr; t) = eiλrx/ε +

∫ ∞

x
G(x, s; t)eiλrs/ε ds,

ψ̄(x; λr; t) = e−iλrx/ε +
∫ ∞

x
G(x, s; t)e−iλrs/ε ds,

(3.14)

with G(x, s; t) ≡ 0 when s < x. Substituting (3.14) into (3.10) gives

Tϕ = e−iλrx/ε +
∫ ∞

x
G(x, s; t)e−iλrs/ε ds + R

{
eiλrx/ε +

∫ ∞

x
G(x, s; t)eiλrs/ε ds

}
;

multiplying by eiλry/ε and rearranging gives

(
Tϕeiλrx/ε − 1

)
eiλr(y−x)/ε =

∫ ∞

x
G(x, s; t)eiλr(y−s)/ε ds

+ R
{

eiλr(x+y)/ε +
∫ ∞

x
G(x, s; t)eiλr(y+s)/ε ds

}
. (3.15)

Now we operate on (3.15) with (2επ)−1
∫ ∞
−∞ dλr, interchange integrals, and use

δ(x) = (2επ)−1
∫ ∞
−∞ eiλrx/ε dλr. So, for example,

1
2επ

∫ ∞

−∞

∫ ∞

x
G(x, s; t)eiλr(y−s)/ε ds dλr

=
∫ ∞

x
G(x, s; t)

(
1

2επ

∫ ∞

−∞
eiλr(y−s)/ε dλr

)
ds

=
∫ ∞

x
G(x, s; t)δ(y− s)ds = G(x, y; t)

and

1
2επ

∫ ∞

−∞
R(λ, t)

∫ ∞

x
G(x, s; t)eiλr(y+s)/ε ds dλr

=
∫ ∞

x
G(x, s; t)

(
1

2επ

∫ ∞

−∞
R(λ, t)eiλr(y+s)/ε dλr

)
ds

=
∫ ∞

x
G(x, s; t)F(y + s; t)ds,
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where

F(z; t) ≡ 1
2επ

∫ ∞

−∞
R(λ, t)eiλrz/ε dλr. (3.16)

Thus,

G(x, y; t) + F(x + y; t) +
∫ ∞

x
F(y + z; t)G(x, z; t)dz = I,

where

I ≡ 1
2επ

∫ ∞

−∞

(
Tϕeiλrx/ε − 1

)
eiλr(y−x)/ε dλr.

We find I by closing in the upper-half λr-plane because ϕeiλrx/ε is analytic in

Im(λ) > 0. We find I ≡ −Ib − Ip, where Ib is the contribution from the branch cut and Ip

is the contribution from the zeros of a.

To find Ib, we recall that the branch cut of λ is λr ∈ [−ic, ic], and the branch cut of

λr is λ ∈ [−c, c]. Therefore,

Ib =
1

2επ

(∫ ic−0−

0−0−
−
∫ ic+0+

0+0+

){
ϕeiλrx/ε

a
− 1

}
eiλr(y−x)/ε dλr

=
1

2επ

∫ ic

0

{(
ϕ

a

)
λ=−|λ|

−
(

ϕ

a

)
λ=|λ|

}
eiλry/ε dλr.

Now we define α and β — the scattering data from the left — such that

ψ ≡ αϕ̄ + βϕ, λ ̸= 0; (3.17)

then

α =
ε

2iλ
W(ϕ, ψ) =

λra
λ

and β =
ε

2iλ
W(ψ, ϕ̄).

For λr ∈ [0, ic], ϕ∗ = ϕ̄, ψ = ψ∗ = ψ̄, and α∗ = β from (3.7), where ∗ denotes the complex

conjugate. So

Ib =
1

2επ

∫ ic

0

{(
ϕ

λα

)
λ=−|λ|

−
(

ϕ

λα

)
λ=|λ|

}
eiλry/ελr dλr.
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Using (ϕ/α)λ=−|λ| = (ϕ∗/α∗)λ=|λ|, from (3.7a), and noting λ’s sign change, gives

Ib = −
1

2επ

∫ ic

0

(
ϕ

λα
+

ϕ∗

λα∗

)
λ=|λ|

eiλry/ελr dλr

= − 1
2επ

∫ ic

0

[
1

λα∗

(
ϕ∗ +

α∗

α
ϕ

)]
λ=|λ|

eiλry/ελr dλr.

Using the identities ψ∗ = ψ̄ and α∗ = β for λr ∈ [0, ic] and then using (3.17) gives

Ib = −
1

2επ

∫ ic

0

[
1

λα∗

(
ϕ̄ +

β

α
ϕ

)]
λ=|λ|

eiλry/ελr dλr

= − 1
2επ

∫ ic

0

[
1

λ|α|2 ψ

]
λ=|λ|

eiλry/ελr dλr.

Making the change of variable from λr to λ and using that T ≡ 1/a gives

Ib =
1

2επ

∫ c

0
|λT/λr|2ψe−y

√
c2−λ2/ε dλ.

To find Ip, we use the residue theorem to get

Ip = − i
ε ∑

j
Res

(
ϕeiyλr/ε

a
, λ = λj

)

= ∑
j

cjψ(x; iκj, t)e−κ̃jy/ε,

where the constants {iκj} are the simple zeros of a(λ, t), κ̃j =
√

κ2
j + c2,

cj = −
iµj

ε[∂λr a]λ=iκj

, ϕ(x; iκj, t) ≡ µj(t)ψ(x; iκj, t),

and 0 < κ1 < · · · < κN are real.

Using (3.14) again gives (3.12),

G(x, y; t) + Ω(x + y; t) +
∫ ∞

x
Ω(y + z; t)G(x, z; t)dz = 0,
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where

Ω(ξ; t) =
1

2επ

∫ ∞

−∞
Reiλrξ/ε dλr + ∑

j
cje−κ̃jξ/ε +

1
2επ

∫ c

0
|λT/λr|2e−

√
c2−λ2ξ/ε dλ.

To get u from G: we differentiate (3.14) twice with respect to x; multiply (3.14) by

λ2
r /ε2; and substitute these into (3.6a) (using λ2 = λ2

r + c2) to get

eiλrx/ε

(
u(x, t)

6ε2 +
c2

ε2 − 2
d

dx
G(x, x; t)

)
+
∫ ∞

x

[
∂2

∂x2 G(x, s; t)− ∂2

∂s2 G(x, s; t)

+

(
u(x, t)

6ε2 +
c2

ε2

)
G(x, s; t)

]
eiλrs/ε ds = 0.

Therefore,

u(x, t) = −6c2 + 12ε2 d
dx

G(x, x; t)

and
∂2

∂x2 G(x, s; t)− ∂2

∂s2 G(x, s; t) +
(

u(x, t)
6ε2 +

c2

ε2

)
G(x, s; t) = 0.

3.3 Long-time asymptotics

For large time, we use (3.12) to asymptotically compute the behavior right of the DSW

(sec. 3.3.1). When this asymptotic solution breaks down, we use the matched-asymptotic

method introduced in (Ablowitz and Segur, 1977) to find the DSW’s slowly varying

elliptic-function solution (sec. 3.3.2). This naturally leads to Whitham’s equations, which

Whitham (1965) originally found by an averaging method; Luke (1966) later developed a

perturbative method (and Grimshaw (1979) used such a method on the KdV equation).

Then we use the method in (Segur and Ablowitz, 1981) to determine the

small-amplitude, slowly varying, oscillatory solution to the left of the DSW (sec. 3.3.3);
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this matches the slowly varying elliptic-function solution in the middle region.

3.3.1 Shock front

On the immediate right of the DSW: we asymptotically compute Ω(ξ; t) for large time,

use Ω to compute G using a Neumann series, and use G in (3.13) to find u. When our

asymptotic expansion for Ω breaks down, the Neumann series for G becomes

disordered: this gives us the boundary condition for the DSW’s right edge.

Far right of the DSW, where x≫ −2c2t, the reflection coefficient’s contribution to

Ω dominates. Using the steepest-descent method (see Ablowitz and Fokas, 2003;

Bleistein and Handelsman, 1986) gives

Ω(ξ; t) = −R+(λ∗)e−2t[ξ/(6t)+2c2]3/2/ε

8
√

επ[ξ/(6t) + 2c2]1/4
√

t

[
1 + O(t−1/2)

]
+ cc,

where λ∗ =
√

c2/2− ξ/(24t) and cc is the complex conjugate. We can then find G using

the Neumann series from the iterates G(0)(x, y; t) = −Ω(x + y; t) and

G(n)(x, y; t) = −Ω(x + y; t)−
∫ ∞

x
Ω(y + z; t)G(n−1)(x, z; t)dz.

Using (3.13) then gives the exponentially small solution

u(x, t) = −6c2 +
Re {R+(λ∗)} e−2t[x/(3t)+2c2]3/2/ε

4
√

επ[x/(3t) + 2c2]1/4
√

t

[
1 + O(t−1/2)

]
,

for x ≫ −2c2t.

Near the DSW’s right, the transmission coefficient’s contribution to Ω dominates.

The contribution from λ = 0 dominates: the contribution from λ∗ =
√

c2/2− ξ/(24t) is

asymptotically zero in comparison and the contributions from λ = c exactly cancels with

the reflection-coefficient contribution from λ = c. The contribution from λ = 0 is

42



Ω(ξ; t) = − e−ct(ξ/t+4c2)/ε
√

ε

16
√

πη3/2

[
H2(0)t−3/2

+
ε[2c2ηH4(0)− 15(η − 24c)H2(0)]

16c2η2 t−5/2 + O(t−7/2)

]
,

where η = 6c− ξ/(2ct) and

Hj(λ∗) ≡
[

∂j

∂λj |T(λ, λr(λ); 0)|2
]

λ=λ∗

.

The first few terms in the Neumann series are

G(1) − G(0) =
e−c[8c2t+3x+y]/εε2H2

2(0)

512cπ
[
6c− x

ct
]3/2

[
6c− x+y

2ct

]3/2
t3

[
1 + O(t−1)

]

and

G(2) − G(1) =
e−c[12c2t+5x+y]/εε7/2H3

2(0)

16384c2π3/2
[
6c− x

ct
]3 [6c− x+y

2ct

]3/2
t9/2

[
1 + O(t−1)

]
.

Thus, the terms in the Neumann series become disordered when

[x + 2c2t + 3ε/(4c) log(6c2t− x)] = O(1).

This is the DSW’s right edge. (See the asymptotic principles discussed in (Kruskal,

1962).) When we sum the Neumann series, we find that

u(x, t) = −6c2 + 12ε2 d
dx G(x, x; t),

= −6c2 + A0e2cζ/ε − 1
24c2

(
A0e2cζ/ε

)2
(1 + O(t−1))

+
1

768c4

(
A0e2cζ/ε

)3
(1 + O(t−1)) + · · · ,

∼ −6c2 + 12c2 sech2
[ c

ε
(ζ − ζ0)

]
, (3.18)
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where

ζ0 =
ε

2c
log
{

32
√

π

H2(0)c1/2ε3/2

}
,

ζ = −x− 2c2t− 3ε

4c
log(6c2t− x) + A1(x/t)t−1 + · · · , (3.19)

and

A1(x/t + 6c2) =
3ε2

8c2x/t
+

135ε2

16(x/t)2 +
3c2ε2H4(0)

8(x/t)2H2(0)
.

This provides the boundary condition on the DSW’s right edge.

This procedure gives the DSW’s phase, ζ0. This phase only depends on H2(0)

(since H0(0) = H1(0) = 0). In the vanishing case, (Ablowitz and Segur, 1977, Eq. (2.25c))

found a similar phase term: r′′(0)− [r′(0)]2/r(0), where r is the corresponding reflection

coefficient. Burgers’ equation’s long-time-asymptotic solution also has a phase term that

depends on the initial data in a similar way (see sec. 3.1.5).

3.3.2 DSW

For the DSW, we find the slowly varying, cnoidal-wave solution using matched

asymptotics. First we make a variable change in (3.1) based on (3.18). Then we use the

multiple-scales method (see Ablowitz, 2011) to determine how its solution slowly varies:

the secularity and compatibility conditions lead to three conservation laws, which we

can transform into Whitham’s equations (Whitham, 1965). Matching to (3.18) and

assuming a similarity solution determines the DSW’s long-time-asymptotic solution.

Analogous to (Ablowitz and Segur, 1977), we look for a solution of the form

u(x, t) = −6c2 + g(ζ, t),

based on (3.18), where ζ is defined in (3.19). We substitute this into (3.1). Then we

introduce the slow-variables Z ≡ δζ and T ≡ δt, where δ = O(t−1) is a small parameter.
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Grouping terms in like powers of δ gives

ε2gζζζ + ggζ − 4c2gζ − gt = δ

{
3ε(3ε2gζζζ + ggζ − 12c2gζ)

4c(8c2T + Z)

}
+ · · · . (3.20)

To leading order, (3.20) is

ε2gζζζ + ggζ − 4c2gζ − gt ∼ 0

and has the special solution

g(ζ, t) ∼ 4c2 −V + 4ε2κ2(1− 2k2) + 12k2ε2κ2 cn2 [κ(ζ − ζ0 −Vt), k] , (3.21)

where cn(z, k) is the Jacobian elliptic ‘cosine’ (see Olver et al., 2010); it can be found

using the methods in (Baldwin et al., 2004). If we neglect the right-hand side of (3.20), κ,

k, and V are arbitrary constants but vary slowly in general. In the special case

k = 1, κ =
c
ε

, and V = 0, then g(ζ, t) = 12c2 sech2
[ c

ε
(ζ − ζ0)

]
,

which exactly matches (3.18).

As in (Luke, 1966), we use the multiple-scales method — with a fast variable θ —

to determine how κ, k, and V vary with the slow-variables Z and T. This leads to three

conservation laws from a compatibility condition and two secularity conditions; we can

transform these conservation laws into a convenient diagonal system of quasilinear,

first-order equations, which were first found by Whitham (1965).

To get the compatibility condition, we introduce the rapid-variable θ(ζ, t) with

θζ ≡ κ(Z, T) and θt ≡ −ω(Z, T) ≡ −κV. (3.22)
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This leads to the compatibility condition (θζ)t = (θt)ζ or

κT + ωZ = 0, (3.23)

which is a conservation law.

To get the secularity conditions: we rewrite (3.20) in terms of θ, and then require

that the leading-order solution is periodic in θ. Thus, we use

∂

∂t
= −ω

∂

∂θ
+ δ

∂

∂T
,

∂

∂ζ
= κ

∂

∂θ
+ δ

∂

∂Z
,

∂2

∂ζ2 = κ2 ∂2

∂θ2 + δ

(
κZ

∂

∂θ
+ 2κ

∂2

∂θ∂Z

)
+ O(δ2),

∂3

∂ζ3 = κ3 ∂3

∂θ3 + 3δ

(
κκZ

∂2

∂θ2 + κ2 ∂3

∂θ2∂Z

)
+ O(δ2),

to transform (3.20) into

ε2κ3gθθθ + κggθ + (ω− 4c2κ)gθ

= δ

[
3εκ

4c(8c2T + Z)

(
3ε2κ2gθθθ + ggθ − 12c2gθ

)
+ gT −

(
3ε2κ(κgθθ)Z + ggZ − 4c2gZ

)]
+ · · · . (3.24)

Then we expand

g(θ, Z, T) = g0(θ, Z, T) + δg1(θ, Z, T) + δ2g2(θ, Z, T) + · · ·

and group the terms in like powers of δ. The O(1) equation is

ε2κ3g0,θθθ + κg0g0,θ + (ω− 4c2κ)g0,θ = 0; (3.25)
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the O(δ) equation is

ε2κ3g1,θθθ + κ(g0g1)θ + (ω− 4c2κ)g1,θ

=
3εκ

4c(8c2T + Z)

(
3ε2κ2g0,θθθ + g0g0,θ − 12c2g0,θ

)
+ g0,T − 3ε2κ(κg0,θθ)Z − g0g0,Z + 4c2g0,Z ≡ F. (3.26)

To eliminate secular terms (that is, terms that grow arbitrarily large), we enforce the

periodicity of g0(θ, Z, T) in θ:

∫ 1

0
F dθ = 0 and

∫ 1

0
g0F dθ = 0.

Using ∫ 1

0

∂ig0

∂θi dθ = 0,
∫ 1

0
g0

∂jg0

∂θ j dθ = 0,

for i = 1, 2, 3, . . . and j = 1, 3, 5, . . . , and

∫ 1

0
g0g0,θθ dθ = −

∫ 1

0
g2

0,θ dθ,

we get from
∫ 1

0 F dθ = 0 that

∂

∂T

∫ 1

0
g0 dθ +

∂

∂Z

(
4c2

∫ 1

0
g0 dθ − 1

2

∫ 1

0
g2

0 dθ

)
= 0 (3.27)

and from
∫ 1

0 g0F dθ = 0 that

∂

∂T

∫ 1

0
g2

0 dθ +
∂

∂Z

(
4c2

∫ 1

0
g2

0 dθ − 2
3

∫ 1

0
g3

0 dθ + 3ε2κ2
∫ 1

0
g2

0,θ dθ

)
= 0. (3.28)

The solution of (3.25) (using ω = κV) is

g0(θ, Z, T) = a(Z, T) + b(Z, T) cn2[2(θ − θ0)K, k(Z, T)], (3.29)
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where K ≡ K(k(Z, T)) is the complete elliptic integral of the first kind,

κ2 =
b

48ε2k2K2 , and a = 4c2 −V − 2
3

b +
b

3k2 . (3.30)

Note that cn2(z, k) has period 2K(k) and so g0(θ, Z, T) is periodic in θ with period 1. We

can use these to rewrite the conservation law (3.23) as

∂

∂T

(
1

4
√

3εK

√
b
k2

)
+

∂

∂Z

(
V

4
√

3εK

√
b
k2

)
= 0.

We can also use (3.29) to rewrite the conservation laws (3.27) and (3.28) in terms

of b/k2, V, and k. From (3.29) and the properties of elliptic functions (see Byrd and

Friedman, 1971, formulas 312 and special values 122), we find that

∫ 1

0
g0 dθ = (4c2 −V) +

1
3

(
3

E
K
+ k2 − 2

)
b
k2 ,

∫ 1

0
g2

0 dθ = (4c2 −V)2 +
2(4c2 −V)

3

(
3

E
K
+ k2 − 2

)
b
k2 +

1
9

(
1− k2 + k4

)( b
k2

)2

,∫ 1

0
g3

0 dθ = (4c2 −V)3 + (4c2 −V)2
(

3
E
K
+ k2 − 2

)
b
k2

+
(4c2 −V)

3
(1− k2 + k4)

(
b
k2

)2

+
1
5

[
E
K
(1− k2 + k4)− 1

27
(22− 33k2 + 21k4 − 5k6)

](
b
k2

)3

,

ω2
∫ 1

0
g2

0,θ dθ =
1

45ε2

[
2
(

1− k2 + k4
) E

K
−
(

2− 3k2 + k4
) ]( b

k2

)3

,

where K ≡ K(k) and E ≡ E(k) are the complete integrals of the first and second kind.

Using these identities in (3.27) and (3.28) give the conservation laws

∂

∂T

[
(4c2 −V) +

1
3

(
3

E
K
+ k2 − 2

)
b
k2

]
+

∂

∂Z

[
1
2
(4c2 −V)(4c2 + V) +

V
3

(
3

E
K
+ k2 − 2

)
b
k2 −

1
18

(1− k2 + k4)

(
b
k2

)2
]
= 0
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and

∂

∂T

[
(4c2 −V)2 +

2(4c2 −V)

3

(
3

E
K
+ k2 − 2

)
b
k2 +

1
9

(
1− k2 + k4

)( b
k2

)2
]

+
∂

∂Z

[
2
3
(4c2 −V)2(2c2 + V) +

2V
3
(4c2 −V)

(
3

E
K
+ k2 − 2

)
b
k2

− 2
9
(2c2 −V)(1− k2 + k4)

(
b
k2

)2

+
1

81
(2− k2)(1 + k2)(2k2 − 1)

(
b
k2

)3
]
= 0.

These three conservation laws determine b, k, and V.

We can transform these conservation laws into Whitham’s equations. Make the

variable changes

b
k2 = 2(r3 − r1), k2 =

r2 − r1

r3 − r1
, V = 4c2 − r1 + r2 + r3

3
.

Simplifying then gives the convenient diagonal system

∂ri

∂T
+ vi(r1, r2, r3)

∂ri

∂Z
= 0, i = 1, 2, 3, (3.31)

where

v1 = 4c2 − r1 + r2 + r3

3
+

2
3
(r2 − r1)

K
K− E

= V +
b
3

K
K− E

,

v2 = 4c2 − r1 + r2 + r3

3
+

2
3
(r2 − r1)

(1− k2)K
E− (1− k2)K

= V +
b
3

(1− k2)K
E− (1− k2)K

,

v3 = 4c2 − r1 + r2 + r3

3
− 2

3
(r3 − r1)

(1− k2)K
E

= V − b
3k2

(1− k2)K
E

,

and

g0(θ, Z, T) = r1 − r2 + r3 + 2(r2 − r1) cn2 [2(θ − θ0)K, k] .

Whitham first found (3.31) in (Whitham, 1965) (see also Gurevich and Pitaevskii, 1974;

Ablowitz et al., 2009). Here, θ is found through integrating with (3.22).
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Figure 3.3: The value of r2(χ) found numerically for 0 < χ < 10c2, where χ ≡ ζ/t. For
comparison, we include −r2(χ) as a dashed line and a numerical simulation of u(x, t) in
gray (inside the envelope of r2 and−r2) for a single-step at (a) t/ε = 10 and (b) t/ε = 200.
Note that χ = 0 corresponds to x ∼ −2c2t and χ = 10c2 to x ∼ −12c2t.

For large time, the solution tends to a self-similar solution. We assume that

ri = ri(χ) with χ ≡ Z/T = ζ/t. Taking r1 = 0 and r3 = 6c2 satisfies the boundary

conditions; so (3.31) reduces to (v2 − χ)r′2(χ) = 0 or

v2 = 2c2 − r2 +
2
3

r2E
(√

r2
6c2

)
E
(√

r2
6c2

)
−
(

1− r2
6c2

)
K
(√

r2
6c2

) = χ.

We can numerically solve this implicit equation for r2 (fig. 3.3). We can also directly

compute the DSW’s left- and right-edge speed: At the right edge, we take the limit

r2 → r3, and get that v2 → 0 or x ∼ −2c2t — the leading soliton’s speed. At the left edge,

we take the limit r2 → r1, and get that v2 → 10c2 or x ∼ −12c2t. Moreover, at the left

edge where 0 < (10c2 − χ)≪ 1, we have that r2 = 2(10c2 − χ)/3 + O[(10c2 − χ)2];

using this and taking x→ −12c2t gives u = (2/3)(10c2 − χ) cos[16c3t/ε + O(log t)].

3.3.3 Trailing edge

The solution left of the DSW has the same form for both vanishing (c = 0) and

non-vanishing (c ̸= 0) boundary conditions. In both cases, the GLM integral equation

formulated from −∞ to x has the same form.
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The scaling symmetry of (3.1) — (u, x, t)→ (γ2u, γ−1x, γ−3t) — leads to a

similarity solution. Indeed, we seek a similarity solution of the form

u(x, t) =
Z1/4
√

τ
f (χ, τ) , χ ≡ 2

3ε
τZ3/2

based on the first few terms of Neumann series solution of the GLM integral equation

formulated from −∞ to x. Using this in (3.1) gives τ fτ + ∆(χ, f , fχ, . . . , fχχχ) = 0 and

this suggest that

u(x, t) =
Z1/4
√

τ
g
[

2
3ε

τZ3/2 + c1,1(Z) log τ + c1,0(Z)
]

.

When we substitute this into (3.1), we find g′′′(θ) + g′(θ) = 0 at order O(τ−1/2) and this

implies that

u(x, t) =
Z1/4
√

τ

{
A0 + A1 cos(θ) + B1 sin(θ)

}
+ O(τ−1),

where

θ = τ

(
2
3ε

Z3/2 + c1,1(Z)
log τ

τ
+

c1,0(Z)
τ

+ O(τ−2)

)
.

Substituting this into (3.1) gives terms with cos(2θ) and sin(2θ) at the next order, O(τ−1),

and cos(3θ) and sin(3θ) at the following order, O(τ−3/2), and so we now consider

u(x, t) =
Z1/4
√

τ

{
A0 + A1 cos(θ) + B1 sin(θ) +

A3

τZ3/2 cos(3θ) +
B3

τZ3/2 sin(3θ)

}

+
1

τ
√

Z

{
A00 + A2 cos(2θ) + B2 sin(2θ)

}
+ O(t−2);

after substituting this into (3.1) and equating the coefficients of τ−1 and τ−3/2 to zero we

get that the slowly varying, asymptotic similarity solution is

u(x, t) = 2A
X1/4
√

τ
cos(θ)− A2(1− cos 2θ)

3τ
√

X
+ O(τ−3/2), (3.32)
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where X = −x/(3t), τ = 3t, and

θ =
τ

ε

[
2
3

X3/2 − A2

18
log(τX3/2)

τ
+

θ0

τ
+ O(τ−2)

]
.

We can use several methods to find A and θ0 in terms of the scattering data.

One method for finding A and θ0 is to use the GLM integral equation formulated

from −∞ to x. Following the same procedure as section 3.3.1 requires that we sum the

whole Neumann series: that is, unlike section 3.3.1, we cannot get A and θ0 from the

Neumann series’s first few terms. But the first few terms are sufficient to show our main

result: the long-time limit of general, step-like data is a single-phase DSW.

While we don’t need expressions for A and θ0 to show our main result, we can

use the method as (Segur and Ablowitz, 1981) to find A and θ0. We find that

A2(X) ∼ −9ε

π
log
(

1−
∣∣∣R (√X/2

)∣∣∣2) , (3.33)

where R(
√

X/2) ≡ R(λ =
√

X/2, λr(λ), t = 0), and

θ0

ε
∼ π

4
− arg{r̃(λ)} − arg

{
Γ
(

1− iA2(4λ2)

18ε

)}
− c2A2(4c2)

9ελ2 log
(

c− λ

c + λ

)
− A2

6ε
log 2

− 1
9λ2ε

∫ λ

c

(
ξ2A2(4ξ2)

)
ξ

log
(

ξ − λ

ξ + λ

)
dξ, (3.34)

where λ =
√

X/2, r̃ ≡ b̃/ã, and ϕ→ ã(λ)e−iλx/ε + b̃(λ)eiλ(x+8λ2t)/ε as x → −12c2t. This

r̃ can be related to a and b through the GLM integral equation formulated from −∞ to x.

To determine A and θ0, we do the following: We substitute (3.32) into (3.6a) and

use the boundary values v→ ϕ as x → −∞ and v→ ãe−iλx/ε + b̃eiλ(x+8λ2t)/ε as

x → −12c2t. Here, ã and b̃ can be found through the GLM integral equation from the left

or by relating them to a and b through the asymptotic forms of u for −12c2t≪ x≪ ∞.

52



Then we asymptotically solve for the eigenfunction ϕ; this is a WKB-type problem that

leads to a matched-asymptotic problem. From the asymptotic form of ϕ, we get A and θ0

in terms of r̃ ≡ b̃/ã.

To get a WKB-type problem for the eigenfunctions: we substitute (3.32) and

v = ϕ = ϕ1eiλx/ε + ϕ2e−iλx/ε into (3.6a), break it into two consistent relations, and keep

only the leading-order terms. This gives

∂ϕ1

∂x
∼ i

AX1/4

12λε
√

τ

(
ei(θ−η) + e−i(θ+η)

)
ϕ2,

∂ϕ2

∂x
∼ −i

AX1/4

12λε
√

τ

(
ei(θ+η) + e−i(θ−η)

)
ϕ1,

(3.35)

where η ≡ 2λx/ε. This has two rapidly varying phases, (θ + η) and (θ − η). Then we

expand ϕ1 and ϕ2 as

ϕi = ϕi,0(θ, η, X) + τ−1/2ϕi,1(θ, η, X) + τ−1ϕi,2(θ, η, X) + · · · ,

substitute this into (3.35), and group terms with like powers of τ. At O(τ−1/2), we find a

resonance or turning-point region near

1± ηx

θx
= 0 or X ∼ 4λ2,

where secular terms appear. This gives three regions to consider: X ≫ 4λ2, X ∼ 4λ2, and

4λ2 ≫ X ≫ 4c2.

In the left-most region, where 4λ2 ≪ X < ∞, perturbation theory gives

ϕ1,0(X) = 0,

ϕ2,0(X) ∼ exp
{

i
144λ2ε2

∫ ∞

X
A2(z)

√
z
(

1
θx(z)+ηx

− 1
θx(z)−ηx

)
dz
}

,
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after matching to ϕ1 → 0 and ϕ2 → 1 as x→ −∞. In the limit as X → 4λ2, we get that

ϕ2,0(X) ∼ (X− 4λ2)ν(4λ)−2νeI(λ),

where ν ≡ iA2(4λ2)/(18ε) and

I(λ) ≡ i
18λ2ε

∫ ∞

λ

(
ξ2A2(4ξ2)

)
ξ

log
(

ξ − λ

ξ + λ

)
dξ.

In the middle region, where X ∼ 4λ2, we can represent the solution in terms of

parabolic cylinder functions:

w1,0(Y) = e−Ỹ2/4
(

c1U
(

1
2 − ν, Ỹ

)
+ c2U

(
1
2 − ν,−Ỹ

))
,

w2,0(Y) = eỸ2/4
(

c3U
(
−1

2 − ν, Ỹ
)
+ c4U

(
−1

2 − ν,−Ỹ
))

,

where U is the parabolic cylinder function (see Olver et al., 2010),

Y ≡ (X− 4λ2)
√

τ ≡ −x− x0√
3t

, Ỹ ≡ Yeiπ/4
√

4λε
,

and

c1 = c3
A(4λ2)

3
√

2ε
exp

{
i
(

π

4
− 2λx0 + θ̃0

ε

)}
,

c2 = −c4
A(4λ2)

3
√

2ε
exp

{
i
(

π

4
− 2λx0 + θ̃0

ε

)}
.

Matching wi as Y → +∞ to ϕi as X → 4λ2 gives

c3 = e−iπν/4
(

ε

(4λ)3τ

)ν/2

eI(λ) and c4 = 0.
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Taking the limit in the other direction, Y → −∞, then gives

ϕ1,0(Y) =
√

2πν

Γ (1− ν)
(4λ2 − X)−νe−iπν/2(4λτ)−νεν

× exp

{
− i

2λx0 + θ̃0

ε
+ I(λ)

}
+ O(|Y|−1),

ϕ2,0(Y) = (4λ2 − X)νe−iπν(4λ)−2νeI(λ) + O(|Y|−1).

For 4λ2 ≫ X ≫ 4c2, perturbation theory and matching to ϕ1 → b̃(λ)e8iλ3t/ε and

ϕ2 → ã(λ) as x → −12c2t gives

ϕ1,0(X) ∼ b̃(λ)ei8λ3t/ε+J(X;λ) and ϕ2,0(X) ∼ ã(λ)e−J(X;λ),

where

J(X; λ) ≡ i
144λ2ε2

∫ X

4c2
A2(z)

√
z
(

1
θx(z)+ηx

− 1
θx(z)−ηx

)
dz.

Matching the limits of ϕ2 as X → 4λ2 and as Y → −∞ gives

ã(λ) ∼ exp

{
c2

λ2
iA2(4c2)

18ε
log
(

c− λ

c + λ

)
+

i
18λ2ε

∫ ∞

c

(
ξ2A2(4ξ2)

)
ξ

log
∣∣∣∣ξ − λ

ξ + λ

∣∣∣∣ dξ

}
.

So, after contour integration,

A2(X) ∼ 9ε

π
log
∣∣∣ã(√X/2)

∣∣∣2 = −9ε

π
log
(

1−
∣∣∣R (√X/2

)∣∣∣2) ,

since X = 4λ2, r̃(λ, t) ≡ b̃(λ, t)/ã(λ) and |r̃(λ, t)| = |R(λ, t)|. Likewise, matching the

limits of ϕ1 as X → 4λ2 and as Y → −∞ gives

b̃(λ) ∼
√

2πν

Γ(1− ν)
eiπν/2εν exp

{
− i

θ0

ε
− 3ν log 2− c2

λ2
iA2(4c2)

18ε
log
(

c− λ

c + λ

)

+
i

18λ2ε

(
−
∫ λ

c
+
∫ ∞

λ

)(
ξ2A2(4ξ2)

)
ξ

log
(

ξ − λ

ξ + λ

)
dξ

}
.
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Using r̃ ≡ b̃/ã gives (3.34).

This matches the DSW’s left boundary since taking the limits x → −12c2t and

r2 ∼ 2(10c2 − χ)/3 ∼ 2AX1/4τ−1/2 gives u ∼ 2
√

2c/(3t) cos[16c3t/ε + O(log t)].

3.4 Conclusion

DSWs appear when weak dispersion and weak nonlinearity dominate the physics; they

arise in many physical systems, including fluid dynamics, plasmas, superfluids, and

nonlinear optics. For systems with weak dispersion and weak, quadratic nonlinearity,

the KdV equation is the leading-order asymptotic equation. Here we showed that the

long-time-asymptotic solution of the KdV equation for general, step-like initial data tend

to a single-phase DSW; we found this long-time-asymptotic solution using the IST

method and matched-asymptotic expansions. Therefore, a single-phase DSW eventually

forms from well-separated, multi-step initial data, despite having more complex

multiphase dynamics at intermediate times. We anticipate that our IST and

matched-asymptotic procedure for general, step-like data will be applied to other

important nonlinear integrable systems.

The long-time-asymptotic solution of the KdV equation for general, step-like

initial data has three basic regions: an exponentially small region right of the DSW; the

main DSW region, which is a slowly varying cnoidal wave with a soliton-train on its

right and oscillatory behavior on its left; and a small, decaying, oscillatory region left of

the DSW. The DSW region is over |x| ≤ O(t) and has height O(1). Compare this with the

linear KdV equation with step-like data and the nonlinear KdV equation with vanishing

data: the linear KdV equation with step-like data has a middle region with strong

nonlinearity over |x| ≤ O(t1/3) and has height O(1); the nonlinear KdV equation with

vanishing data has a collisionless-shock region over (−x) = O[t1/3(log t)2/3] and has

height O[(log t)1/2t−2/3]. The merging of shocks from multistep data is similar for both
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the KdV and Burgers’ equations: in both, the boundary conditions determine its form

and the initial data determine its position — but the KdV equation can also have a finite

number of solitons.
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Chapter 4

Dispersive shock wave interactions and

asymptotics — the modified

Korteweg–de Vries equation

In this chapter, we look for a large-time asymptotic approximation of the mKdV

equation’s solution for non-vanishing boundary data. To find this solution, we use IST

theory and matched-asymptotic expansions—as we did in chapter 3.

Unlike chapter 3, we needed to develop the IST theory for the mKdV equation,

qt + 6q2qx + qxxx = 0,

with non-vanishing boundary data since it was not available in the literature. We will

assume that the initial data go rapidly to

lim
x→−∞

q(x, t) ≡ qℓ and lim
x→∞

q(x, t) ≡ qr.

As with the KdV equation, we use this boundary data and the scattering equation of the

mKdV equation’s Lax pair to define eigenfunctions as x → ±∞. From these
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.. ur.

uℓ

.

(A)
g = 0

.

(B) DSW
g = 1

.

(C) RW
g = 1

Figure 4.1: The three canonical cases for the KdV equations with constant boundary data
limx→∞ u(x, t) = ur and limx→−∞ u(x, t) = uℓ. Here, g is the genus of the scattering data;
that is, the number of branch cuts. Case A was first solved in Ablowitz and Segur (1977).
Case B is solved in chapter 3 and was also published in (Ablowitz and Baldwin, 2013b,a).
We expect to solve case C using IST in a future paper.

eigenfunctions, we define a transmission and a reflection coefficient—the scattering data.

Where the KdV equation has three canonical solution based on the boundary data

(fig. 4.1), the mKdV equation has seventeen (fig. 4.2) because it’s not Galilean invariant.

These canonical solutions and the scattering data’s analytic structure are inextricably

linked: in chapter 3 for uℓ > ur, the scattering data’s branch cut led to a contribution

from the transmission coefficient in the GLM integral equation formulated from x to +∞

and led to a DSW; likewise, when ur > uℓ, the scattering data’s branch cut leads to a

contribution from the transmission coefficient in the GLM integral equation formulated

from −∞ to x and this leads to a RW. In this chapter, we get a DSW when q2
ℓ > q2

r and a

RW when q2
r > q2

ℓ because the scattering data’s analytic structure lead to a contribution

from the transmission coefficient in the GLM integral equation when formulated from x

to +∞ and −∞ to x, respectively. Since the mKdV equation is invariant under q→ −q,

we can reduce these seventeen cases down to nine cases and take qℓ ≥ qr (we can

recover the other cases by taking q→ −q).

For the DSW-forming cases 2–4 (and 10–12 by symmetry) in figure 4.2, we will
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(8) RW
g = 2

.(7) RW
g = 1

.

(6) RW
g = 2

.

(5) g = 1

.

(4) DSW
g = 2

.

(3) DSW
g = 1

qℓ

.

(2) DSW
g = 2

.

(1) g = 1

.

(16) RW
g = 2

. qr. (15) RW
g = 1

.

(14) RW
g = 2

.

(13) g = 1

.

(12) DSW
g = 2

.

(11) DSW
g = 1

.

(10) DSW
g = 2

Figure 4.2: The seventeen canonical cases for the mKdV equations with constant bound-
ary data. Here, g is the genus of the scattering data; that is, the number of branch cuts.
Since the mKdV equation is invariant under q → −q, cases 9–16 can be mapped to cases
1–8 by taking q → −q. Cases 2–3 (and 10–12 by symmetry) are investigated in this chap-
ter. See Ablowitz and Segur (1981a, sec. 1.7.b) for case 0. We leave the other cases to a
future paper.
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look for the solution’s large-time asymptotic approximation. As for the KdV equation,

we approximate the GLM integral equation’s kernel to the DSW’s right in the large-time

limit; then we use a Neumann series to solve this asymptotic approximation of the GLM

integral equation. When this asymptotic approximation of the solution breaks down, it

gives us a boundary condition for the DSW. Using multiple-scales perturbation theory,

we find a slowly varying similarity solution that matches this boundary condition. This

slowly varying elliptic-function solution has three integration constants—since the

mKdV equation is third order—and multiple-scales perturbation theory gives three

conservation laws for determining these integration constants. With a variable change,

we can diagonalize these conservation laws and get a system for the solution’s Riemann

invariants; matching to the boundary condition on the DSW’s right implies that two of

these Riemann invariants are constant and gives an implicit algebraic equation for the

last. This completely determines the behavior in the DSW region.

4.1 IST theory

4.1.1 Direct problem

The mKdV equation, in dimensionless form, is

qt + 6q2qx + qxxx = 0, (4.1)

where subscripts denote partial derivatives. We will consider the boundary conditions

lim
x→−∞

q(x, t) = qℓ and lim
x→+∞

q(x, t) = qr. (4.2)

Here, qℓ and qr are real constants such that qℓ > qr; the solution for qℓ < qr can be found

using the symmetry q→ −q; the solution when qℓ = qr will not be considered. We
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require that q goes to these boundary conditions sufficiently rapidly; so we assume that

∫ ∞

−∞
|q(x, t)− qℓH(−x)− qrH(x)|(1 + |x|n)dx < ∞, n = 1, 2, . . . N, (4.3)

where H(x > 0) = 1 and H(x ≤ 0) = 0 is the Heaviside function.

The mKdV equation (4.1) has a (linear) Lax pair (see Ablowitz et al., 1974); the

Lax pair’s scattering equation is

(v1)x = −iζv1 + qv2,

(v2)x = −qv1 + iζv2.
(4.4)

From this scattering equation and q’s boundary conditions (4.2), we define the

eigenfunctions ϕ, ϕ̄, ψ, and ψ̄:

ϕ ∼

 1

i ζ−ζℓ
qℓ

 e−ixζℓ and ϕ̄ ∼

i ζ−ζℓ
qℓ

1

 eixζℓ as x → −∞, (4.5a)

ψ ∼

i ζ−ζr
qr

1

 eixζr and ψ̄ ∼

 1

i ζ−ζr
qr

 e−ixζr as x→ +∞, (4.5b)

where ζℓ ≡
√

ζ2 + q2
ℓ and ζr ≡

√
ζ2 + q2

r . If qℓ ̸= 0, then ζℓ has branch points at

ζ = ±iqℓ; likewise, if qr ̸= 0, then ζr has branch points at ζ = ±iqr. Since qℓ > qr, we

choose the following branch cuts for ζℓ and ζr to make the eigenfunctions single-valued

with respect to ζ:

• qℓ > qr > 0 (case 2) has the branch cuts ζ ∈ [−iqℓ,−iqr] and ζ ∈ [iqr, iqℓ],

• qℓ > qr = 0 (case 3) has the branch cut ζ ∈ [−iqℓ,+iqℓ],

• qℓ > −qr > 0 (case 4) has the branch cuts ζ ∈ [−iqℓ,−iqr] and ζ ∈ [iqr, iqℓ],

• qℓ = −qr (case 5) has the branch cut ζ ∈ [−iqℓ,+iqℓ],
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• −qr > qℓ > 0 (case 6) has the brach cuts ζ ∈ [−iqr,−iqℓ] and ζ ∈ [iqℓ, iqr],

• qr < qℓ = 0 (case 7) has the branch cut ζ ∈ [−iqr,+iqr], and

• qr < qℓ < 0 (case 8) has the brach cuts ζ ∈ [−iqr,−iqℓ] and ζ ∈ [iqℓ, iqr].

With these branch cut choices, Im(ζℓ) ≷ 0 and Im(ζr) ≷ 0 when Im(ζ) ≷ 0.

If q goes rapidly enough to (4.2) that N ≥ 1 in (4.3), then (except for branch cuts)

• eixζℓϕ is analytic for Im(ζℓ) > 0 and continuous on Im(ζℓ) = 0,

• e−ixζr ψ is analytic for Im(ζr) > 0 and continuous on Im(ζr) = 0,

• e−ixζℓ ϕ̄ is analytic for Im(ζℓ) < 0 and continuous on Im(ζℓ) = 0, and

• eixζr ψ̄ is analytic for Im(ζr) < 0 and continuous on Im(ζr) = 0;

see section 4.1.2 for details.

Using the Wronskian, W(u, v) = u1v2 − u2v1, we find

W(ψ̄, ψ) = 1 +
(ζ − ζr)2

q2
r

=
2ζr

ζ + ζr
and W(ϕ, ϕ̄) = 1 +

(ζ − ζℓ)
2

q2
ℓ

=
2ζℓ

ζ + ζℓ
. (4.6)

So ψ and ψ̄ are linearly independent except at ζr = 0 (or ζ = ±iqr). Likewise, ϕ and ϕ̄ are

linearly independent except at ζℓ = 0 (or ζ = ±iqℓ).

Since these eigenfunctions are linearly independent, we define the scattering

eigenfunctions and scattering data a, b, α, and β associated with (4.1) by

ϕ(ζ, x) ≡ a(ζ)ψ̄(ζ, x) + b(ζ)ψ(ζ, x) for ζr ̸= 0, (4.7a)

ψ(ζ, x) ≡ α(ζ)ϕ̄(ζ, x) + β(ζ)ϕ(ζ; x) for ζℓ ̸= 0. (4.7b)

From the properties of the Wronskian, we have that

a =
W(ϕ, ψ)

W(ψ̄, ψ)
, b =

W(ϕ, ψ̄)

W(ψ, ψ̄)
, α =

W(ψ, ϕ)

W(ϕ̄, ϕ)
, β =

W(ψ, ϕ̄)

W(ϕ, ϕ̄)
; (4.8)
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Figure 4.3: The contour C+.

it’s convenient to define

T− ≡
1
a
=

W(ψ̄, ψ)

W(ϕ, ψ)
, R+ ≡

b
a
= −W(ϕ, ψ̄)

W(ϕ, ψ)
,

T+ ≡
1
α
=

W(ϕ̄, ϕ)

W(ψ, ϕ)
, R− ≡

β

α
= −W(ψ, ϕ̄)

W(ψ, ϕ)
;

(4.9)

we refer to T± as the transmission coefficients and R± as the reflection coefficients. From

the analyticity of ϕ and ψ (see sec. 4.1.2), a and α are analytic in Im(ζ) > 0, except for the

branch cuts; b and β are not necessarily analytic in either the upper- or the lower-half

ζ-plane.

4.1.2 Scattering data analyticity

Theorem 4.1. • eixζℓϕ can be analytically extended to the upper half ζℓ-plane and tends to1

0

 as |λ| → ∞ (for Im(ζℓ) > 0);

• eixζr ψ̄ can be analytically extended to the lower half ζr-plane and tends to

1

0

 as

|λ| → ∞ (for Im(ζr) < 0).

Proof. To do this, we use an integral formulation of (4.4).

Let’s first consider the analyticity of eixζℓϕ: In (4.4), make the change of variables

v(x; ζ) = m(x; ζ)e−ixζℓ
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to get

(m1)x + i(ζ − ζℓ)m1 = q0(x)m2,

(m2)x − i(ζ + ζℓ)m2 = −q0(x)m1,

where q0(x) ≡ q(x, 0). In matrix form, this is

(m1)x

(m2)x

+

i(ζ − ζℓ) −qℓ

qℓ −i(ζ + ζℓ)


m1

m2

 =

(q0(x)− qℓ)m2

(qℓ − q0(x))m1

 .

So we consider the Green’s functions defined by

(G1)x

(G2)x

+

i(ζ − ζℓ) −qℓ

qℓ −i(ζ + ζℓ)


G1

G2

 =

δ(x)

δ(x)

 .

Taking the Fourier transform gives

i(p + ζ − ζℓ) −qℓ

qℓ i(p− ζ − ζℓ)


Ĝ1

Ĝ2

 =

1

1

 ;

solving for G and taking the inverse Fourier transform gives

G1(x; ζ)

G2(x; ζ)

 =
1

2πi

∫
C

p− ζ − ζℓ − iqℓ

p + ζ − ζℓ + iqℓ

 eipx dp
p(p− 2ζℓ)

,

where C+ is given in figure 4.3. We close C+ in the lower-half p-plane for G (since we’re

interested in x→ −∞ for eixζℓϕ), and so

G1(x; ζ)

G2(x; ζ)

 =
H(x)
2ζℓ

 1 e2ixζℓ

e2ixζℓ 1


 ζ + ζℓ + iqℓ

−ζ + ζℓ − iqℓ

 ≡ Gζ(x),
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Figure 4.4: The contour C−.

where H(x) is the Heaviside function. Thus,

eixζℓϕ(x; ζ) =

 1

i ζ−ζℓ
qℓ

+
∫ ∞

−∞

G1(x− y; ζ)(q0(y)− qℓ)ϕ2(y; ζ)

G2(x− y; ζ)(qℓ − q0(y))ϕ1(y; ζ)

 eiζℓy dy

or

eixζℓϕ1(x; ζ) = 1 +
1

2ζℓ

∫ x

−∞
(q0(y)− qℓ)

[
(ζ + ζℓ + iqℓ)

+ e2iζℓ(x−y)(−ζ + ζℓ − iqℓ)
]
eiζℓyϕ2(y; ζ)dy,

eixζℓϕ2(x; ζ) =
i(ζ − ζℓ)

qℓ
+

1
2ζℓ

∫ x

−∞
(qℓ − q0(y))

[
(−ζ + ζℓ − iqℓ)

+ e2iζℓ(x−y)(ζ + ζℓ + iqℓ)
]
eiζℓyϕ1(y; ζ)dy.

Likewise,

eixζr ψ̄(x; ζ) =

 1

i ζ−ζr
qr

+
∫ ∞

−∞

H1(x− y; ζ)(q0(y)− qr)ψ̄2(y; ζ)

H2(x− y; ζ)(qr − q0(y))ψ̄1(y; ζ)

 eiζry dy,

where H1(x; ζ)

H2(x; ζ)

 =
H(−x)

2ζr

 1 e2ixζr

e2ixζr 1


−ζ − ζr − iqr

ζ − ζr + iqr

 ≡ Hζ(x),

since here we closed C− (given in fig. 4.4) in the upper-half p-plane. Thus,

eixζr ψ̄1(x; ζ) = 1 +
1

2ζr

∫ ∞

x
(q0(y)− qr)

[
(−ζ − ζr − iqr)

+ e−2iζr(y−x)(ζ − ζr + iqr)
]
eiζryψ̄2(y; ζ)dy,
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eixζr ψ̄2(x; ζ) =
i(ζ − ζr)

qr
+

1
2ζr

∫ ∞

x
(qr − q0(y))

[
(ζ − ζr + iqr)

+ e−2iζr(y−x)(−ζ − ζr − iqr)
]
eiζryψ̄1(y; ζ)dy.

These are Volterra integral equations, and they can be solved using the Neumann

series

eixζℓϕ(x; ζ) =

 1

i ζ−ζℓ
qℓ

+
∞

∑
n=1

gn(x; ζ), (4.10a)

eixζr ψ̄(x; ζ) =

 1

i ζ−ζr
qr

+
∞

∑
n=1

hn(x; ζ), (4.10b)

where

gn(x; ζ) ≡
∫ yn≤···≤y1≤x

−∞
Gζ(x− y1) · · ·Gζ(yn−1 − yn)

× (q0(y1)− qℓ) · · · (q0(yn)− qℓ)dyn · · ·dy1,

hn(x; ζ) ≡
∫ ∞

x≤y1≤···≤yn
Hζ(x− y1) · · ·Hζ(yn−1 − yn)

× (q0(y1)− qr) · · · (q0(yn)− qr)dyn · · ·dy1.

For Im(ζℓ) ≥ 0, y ≥ 0 implies that |e2iζℓy| ≤ 1; so |Gj(y; ζ)| ≤ (1 + 2|qℓ|/|ζℓ|), for

j = 1, 2. Using this bound for Gζ(x) gives, for example,

∣∣∣eixζℓϕ1(x; ζ)
∣∣∣ ≤ 1 +

|ζ − ζℓ|
|qℓ|

(
1 + 2

|qℓ|
|ζℓ|

) ∫ x

−∞
|q0(y)− qℓ|dy

+

(
1 + 2

|qℓ|
|ζℓ|

)2 ∫ x

−∞

∫ y

−∞
|q0(y)− qℓ||q0(z)− qℓ|

∣∣∣eizζℓϕ1(z; ζ)
∣∣∣ dz dy.
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So using |ζ − ζℓ|/|qℓ| ≤ 1 gives

|gn(x; ζ)| ≤
(

1 + 2
|qℓ|
|ζℓ|

)n
(∫ x
−∞ |q0(y)− qℓ|dy

)n

n!

and ∣∣∣eixζℓϕ(x; ζ)
∣∣∣ ≤ exp

{(
1 + 2

|qℓ|
|ζℓ|

) ∫ x

−∞
|q0(y)− qℓ|dy

}
< ∞ (4.11)

for finite x.

This estimate (4.11) blows up for small ζℓ. So, for small ζℓ, we use

|Gj(y; ζ)| ≤ 1 + 2|qℓ|y, for j = 1, 2. Using this gives, for example,

∣∣∣eixζℓϕ1(x; ζ)
∣∣∣ ≤ 1 +

|ζ − ζℓ|
|qℓ|

∫ x

−∞
{1 + 2|qℓ|(x− y)}|q0(y)− qℓ|dy

+
∫ x

−∞

∫ y

−∞
{1 + 2|qℓ|(x− y)}{1 + 2|qℓ|(y− z)}

× |q0(y)− qℓ||q0(z)− qℓ|
∣∣∣eizζℓϕ1(z; ζ)

∣∣∣ dz dy;

using |ζ − ζℓ|/|qℓ| ≤ 1 again gives

|gn(x; ζ)| ≤

(∫ x
−∞{1 + 2|qℓ|(x− y)}|q0(y)− qℓ|dy

)n

n!
,

and summing gives

∣∣∣eixζℓϕ(x; ζ)
∣∣∣ ≤ exp

{∫ x

−∞
{1 + 2|qℓ|(x− y)}|q0(y)− qℓ|dy

}
< ∞

for finite x. Therefore, we find that eixζℓϕ is analytic in Im(ζℓ) > 0 and continuous in

Im(ζℓ) ≥ 0 if N ≥ 1 in (4.3).

Like the non-decaying KdV, it can be shown using the same techniques that

eixζℓϕ(x; ζ) is N-fold differentiable (with respect to ζℓ, for finite x) on Im(ζℓ) = 0 and

ζℓ ̸= 0 and is (N − 1)-fold differentiable at ζℓ = 0, where N is given in (4.3).
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Likewise, eixζr ψ̄(x; ζ) is analytic in Im(ζr) < 0 and continuous in Im(ζr) ≤ 0,

ζr ̸= 0 when N = 1 in (4.3); for N > 1, then eixζr ψ̄(x; ζ) is also continuous at ζr = 0.

Moreover, eixζr ψ̄(x; ζ) is N-fold differentiable (with respect to ζr, for finite x) on

Im(ζr) = 0 and ζr ̸= 0 and is (N − 1)-fold differentiable at ζr = 0.

Following the same techniques, if

∫ ∞

−∞
|q(x, t)− qℓH(−x)− qrH(x)|ed|x| dx < ∞,

then eixζℓϕ(x; ζ) is analytic for Im(ζℓ) > −d and eixζr ψ̄(x; ζ) is analytic for Im(ζr) < d.

4.1.3 Time evolution

The eigenfunctions evolve (see Ablowitz et al., 1974) as

vt =

A B

C −A

 v, (4.12)

where A = −4iζ3 + 2iζq2, B = 4ζ2q + 2iζqx − 2q3 − qxx, and

C = −4ζ2q + 2iζqx + 2q3 + qxx. If we take the limit x → −∞, so q→ qℓ, then

vt =

−4iζ3 + 2iζq2
ℓ 4ζ2qℓ − 2q3

ℓ

−4ζ2qℓ + 2q3
ℓ 4iζ3 − 2iζq2

ℓ

 v;

this is satisfied by ϕeA−t and ϕ̄e−A−t, where

A− ≡ 2i(q2
ℓ − 2ζ2)ζℓ.
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So we have that

ϕt =

A− A− B

C −A− A−

 ϕ and ϕ̄t =

A + A− B

C −A + A−

 ϕ̄.

Likewise, if we take the limit x → +∞ in (4.12), so q→ qr, then it’s satisfied by ψe−A+t

and ψ̄eA+t, where

A+ ≡ 2i(q2
r − 2ζ2)ζr.

From this time evolution of the eigenfunctions, we find how the scattering data

evolves from (4.7): we find

a(ζ, t) = a(ζ, 0)e(A+−A−)t = a(ζ, 0)ei[4(ζℓ−ζr)ζ2−2(q2
ℓζℓ−q2

r ζr)]t, (4.13a)

b(ζ, t) = b(ζ, 0)e−(A++A−)t = b(ζ, 0)ei[4(ζℓ+ζr)ζ2−2(q2
ℓζℓ+q2

r ζr)]t, (4.13b)

α(ζ, t) = α(ζ, 0)e(A+−A−)t = α(ζ, 0)ei[4(ζℓ−ζr)ζ2−2(q2
ℓζℓ−q2

r ζr)]t, (4.13c)

β(ζ, t) = β(ζ, 0)e(A++A−)t = β(ζ, 0)e−i[4(ζℓ+ζr)ζ2−2(q2
ℓζℓ+q2

r ζr)]t. (4.13d)

From the reflection coefficient definitions (4.9),

R+(ζ, t) = R+(ζ, 0)e4i(2ζ2ζr−q2
r ζr)t and R−(ζ, t) = R−(ζ, 0)e−4i(2ζ2ζℓ−q2

ℓζℓ)t. (4.13e)

4.1.4 Derivation of GLM integral equation

From the scattering data — which we have for all time t — we derive the GLM integral

equations, which can then be used to compute q(x, t). To derive the GLM integral

equations, we first derive some properties about the scattering data and eigenfunctions

(such as symmetries and connection formulas). Then we find a triangular representation

of the eigenfunctions and show that its kernel can be used to find q(x, t). We substitute

these triangular representations into (4.4), integrate over an appropriate contour, and,
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after simplification, get the GLM integral equations.

Scattering data symmetries

From (4.6) and (4.8), we have that

a =
ζℓ(ζ + ζr)

ζr(ζ + ζℓ)
α, ζr ̸= 0, ζℓ ̸= 0. (4.14)

From (4.4) and (4.5), we have that

ψ̄(x, ζ, ζr) =

 ψ2(x, ζ∗, ζ∗r )

−ψ1(x, ζ∗, ζ∗r )


∗

and ϕ(x, ζ, ζℓ) =

 ϕ̄2(x, ζ∗, ζ∗ℓ )

−ϕ̄1(x, ζ∗, ζ∗ℓ )


∗

, (4.15)

where ∗ denotes complex conjugate. We also have that

ψ̄(x, ζ, ζr) =

 ψ2(x,−ζ,−ζr)

−ψ1(x,−ζ,−ζr)

 and ϕ(x, ζ, ζℓ) =

 ϕ̄2(x,−ζ,−ζℓ)

−ϕ̄1(x,−ζ,−ζℓ)

 (4.16)

and

[ψ(x, ζ∗,−ζ∗r )]
∗ = i

ζ + ζr

qr

−ψ2(x, ζ, ζr)

ψ1(x, ζ, ζr)

 , (4.17)

[ϕ(x, ζ∗,−ζ∗ℓ )]
∗ = i

ζ + ζℓ
qℓ

 ϕ2(x, ζ, ζℓ)

−ϕ1(x, ζ, ζℓ)

 .

A triangular representations

We’ll assume that ψ, ψ̄, ϕ, and ϕ̄ have the following triangular representations:

ψ(ζ, x; t) =

i ζ−ζr
qr

1

 eixζr +
∫ ∞

x
K+(x, s; t)

i ζ−ζr
qr

1

 eisζr ds, (4.18a)
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ψ̄(ζ, x; t) =

 1

i ζ−ζr
qr

 e−ixζr +
∫ ∞

x
K̄+(x, s; t)

 1

i ζ−ζr
qr

 e−isζr ds, (4.18b)

ϕ(ζ, x; t) =

 1

i ζ−ζℓ
qℓ

 e−ixζℓ +
∫ x

−∞
K−(x, s; t)

 1

i ζ−ζℓ
qℓ

 e−isζℓ ds, (4.18c)

ϕ̄(ζ, x; t) =

i ζ−ζℓ
qℓ

1

 eixζℓ +
∫ x

−∞
K̄−(x, s; t)

i ζ−ζℓ
qℓ

1

 eisζℓ ds, (4.18d)

where K± and K̄± are 2× 2 matrices.

To find q(x) from K± or K̄±, we substitute (4.18) into (4.4), use

integration-by-parts, and group like terms. For example, let’s consider

ψ(ζ, x; t) = v+(ζ)eixζr +
∫ ∞

x
K+(x, s; t)eisζr v+(ζ)ds,

where

K+ ≡

K+
11 K+

12

K+
21 K+

22

 and v+(ζ) ≡

v+1

v+2

 =

i ζ−ζr
qr

1

 ;

differentiating with respect to x gives

∂ψ

∂x
= iζrv+(ζ)eixζr −K+(x, x; t)eixζr v+(ζ) +

∫ ∞

x

(
∂

∂x
K+(x, s; t)

)
eisζr v+(ζ)ds.

Substituting these into

(v1)x = −iζv1 + q(x)v2

gives

[
iζrv+1 − (K+

11v+1 + K+
12v+2 )

]
eixζr +

∫ ∞

x
(∂xK+

11v+1 + ∂xK+
12v+2 )e

isζr ds =

− iζ
(

v+1 eixζr +
∫ ∞

x
(K+

11v+1 + K+
12v+2 )e

isζr ds
)
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+ q(x)
(

v+2 eixζr +
∫ ∞

x
(K+

21v+1 + K+
22v+2 )e

isζr ds
)

or

[
i(ζ + ζr)v+1 − K+

11v+1 − K+
12v+2 − q(x)v+2

]
eixζr

=
∫ ∞

x

(
− ∂xK+

11v+1 − iζK+
12v+2 + q(x)K+

21v+1

− ∂xK+
12v+2 − iζK+

11v+1 + q(x)K+
22v+2

)
eisζr ds.

From integration-by-parts, we have that

K+
ij (x, x; t)v+j eixζr = −iζr

∫ ∞

x
K+

ij (x, s; t)eisζr v+j ds−
∫ ∞

x

(
∂

∂s
K+

ij (x, s; t)
)

eisζr v+j ds.

So adding (K+
11v+1 − K+

12v+2 )e
ixζr to both sides and using this identity gives

[
i(ζr + ζ)v+1 − 2K+

12v+2 − q(x)v+2
]

eixζr

=
∫ ∞

x

[
− (∂x + ∂s)K+

11v+1 + i(ζr − ζ)K+
12v+2 + q(x)K+

21v+1

− (∂x − ∂s)K+
12v+2 − i(ζr + ζ)K+

11v+1 + q(x)K+
22v+2

]
eisζr ds.

Using v+1 /v+2 = i(ζ − ζr)/qr and ζ2
r − ζ2 = q2

r , gives

[
qr − 2K+

12 − q(x)
]

v+2 eixζr =
∫ ∞

x

{ [
−(∂x + ∂s)K+

11 − qrK+
12 + q(x)K+

21
]

v+1

+
[
−(∂x − ∂s)K+

12 − qrK+
11 + q(x)K+

22
]

v+2
}

eisζr ds.

Therefore, we have that

q(x) = qr − 2K+
12,

(∂x + ∂s)K+
11 = −qrK+

12 + q(x)K+
21,
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(∂x − ∂s)K+
12 = −qrK+

11 + q(x)K+
22.

Likewise, for (v2)x = −q(x)v1 + iζv2, we get

[
i(ζr − ζ)v+2 − 2K+

21v+1 + q(x)v+1
]

eixζr

=
∫ ∞

x

[
− (∂x − ∂s)K+

21v+1 + i(ζ − ζr)K+
22v+2 − q(x)K+

11v+1

− (∂x + ∂s)K+
22v+2 + i(ζ + ζr)K+

21v+1 − q(x)K+
12v+2

]
eisζr ds.

Again, using v+1 /v+2 = i(ζ − ζr)/qr and ζ2
r − ζ2 = q2

r gives

[
−qr − 2K+

21 + q(x)
]

v+1 eixζr

=
∫ ∞

x

{ [
−(∂x − ∂s)K+

21 − q(x)K+
11 + qrK+

22
]

v+1

+
[
−(∂x + ∂s)K+

22 − q(x)K+
12 + qrK+

21
]

v+2
}

eisζr ds.

Combining this with what we had before, we get the Goursat problem

(∂x + ∂s)

K+
11

K+
22

 =

 −qr q(x)

−q(x) qr


K+

12

K+
21

 ,

(∂x − ∂s)

K+
12

K+
21

 =

 −qr q(x)

−q(x) qr


K+

11

K+
22

 ,

with the boundary conditions

q(x) = qr − 2K+
12(x, x) = qr + 2K+

21(x, x), (4.19)

lim
s→∞

Kij(x, s) = 0.

This implies that K+
12(x, x) = −K+

21(x, x) and K+
11(x, x) = K+

22(x, x). We can use (4.17) to
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show that K+ is real. Using (4.15) and (4.16) gives that K+ = K̄+.

Inverse problem from the right

For q2
ℓ > q2

r , ζ is pure imaginary and ζℓ is real when ζr ∈
[
0, i
√

q2
ℓ − q2

r

]
. So, from (4.4)

and (4.5),

ϕ∗ = i
ζ + ζℓ

qℓ
ϕ̄ and ψ = ψ∗ for ζr ∈

[
0, i
√

q2
ℓ − q2

r

]
; (4.20)

using these and (4.9) gives

R− = i
ζ + ζℓ

qℓ

α∗

α
for ζr ∈

[
0, i
√

q2
ℓ − q2

r

]
. (4.21)

Across the cut, we have — from (4.5), (4.8), and (4.20) — that

(
ϕ

α

)
ζℓ=−|ζℓ|

=

(
ϕ∗

α∗

)
ζℓ=|ζℓ|

for ζr ∈
[

0, i
√

q2
ℓ − q2

r

]
. (4.22)

Using (4.9) to rewrite (4.7) gives

T−(ζ, t)ϕ(ζ, x; t) = ψ̄(ζ, x; t) + R+(ζ, t)ψ(ζ, x; t).

Substituting (4.18) into this gives

T−(ζ, t)ϕ(ζ, x; t) =

 1

i ζ−ζr
qr

 e−ixζr +
∫ ∞

x
K+(x, s; t)

 1

i ζ−ζr
qr

 e−isζr ds

+ R+(ζ, t)


i ζ−ζr

qr

1

 eixζr +
∫ ∞

x
K+(x, s; t)

i ζ−ζr
qr

1

 eisζr ds

 .

Multiply this by eiyζr and consider
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T−ϕeixζr −

 1

i ζ−ζr
qr


 ei(y−x)ζr =

∫ ∞

x
K+(x, s; t)

 1

i ζ−ζr
qr

 ei(y−s)ζr ds

+ R+(ζ, t)


i ζ−ζr

qr

1

 ei(x+y)ζr +
∫ ∞

x
K+(x, s; t)

i ζ−ζr
qr

1

 ei(y+s)ζr ds

 . (4.23)

Operating on (4.23) with (2π)−1
∫ ∞
−∞ dζr, interchanging integrals, and using

δ(x) = (2π)−1
∫ ∞
−∞ eiζrx dζr gives

1
2π

∫ ∞

−∞

∫ ∞

x
K+(x, s; t)

 1

i ζ−ζr
qr

 ei(y−s)ζr ds dζr

=
1

2π

∫ ∞

x
K+(x, s; t)

∫ ∞

−∞

 1
−iqr
ζ+ζr

 ei(y−s)ζr dζr ds

=
∫ ∞

x
K+(x, s; t)

δ(y− s)

0

 ds =

K+
11(x, y; t)

K+
21(x, y; t)

 ,

where we’ve used that (ζ − ζr)/qr = −qr/(ζ + ζr), and

1
2π

∫ ∞

−∞
R+(ζ, t)

∫ ∞

x
K+(x, s; t)

i ζ−ζr
qr

1

 ei(y+s)ζr ds dζr

=
1

2π

∫ ∞

x
K+(x, s; t)

∫ ∞

−∞
R+(ζ, t)

i ζ−ζr
qr

1

 ei(y+s)ζr dζr ds

=
∫ ∞

x
K+(x, s; t)F(y + s)ds,

where

F(z; t) ≡ 1
2π

∫ ∞

−∞
R+(ζ, t)

i ζ−ζr
qr

1

 eizζr dζr. (4.24)
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Therefore,

K+
11(x, y; t)

K+
21(x, y; t)

+ F(x + y; t) +
∫ ∞

x
K+(x, s; t)F(y + s)ds = I,

with

I ≡ 1
2π

∫ ∞

−∞

T−ϕeixζr −

 1

i ζ−ζr
qr


 ei(y−x)ζr dζr ≡ Ib + Ip.

Since eixζℓϕ(ζ, x; t) is analytic in the upper-half ζr-plane and y > x, we can close I

in the upper-half ζr-plane. Here, Ib is the contribution from the branch cut (when

q2
ℓ > q2

r ) and Ip is the contribution from the zeros of a(ζ, t).

The branch points of eixζr ϕ in the ζr-plane are the branch points of ζ and ζℓ. The

branch points of ζ are ζr = ±qr; the branch points of ζℓ are ζr = ±q+, where

q+ ≡ i
√

q2
ℓ − q2

r ,

which is pure-imaginary when q2
ℓ > q2

r . Thus, we must integrate around ζr ∈ [0, q+] in

the upper-half ζr-plane.

The contribution from the branch-cut is

Ib = lim
ε→0

1
2π

(∫ q+−ε

0−ε
−
∫ q++ε

0+ε

) eixζr ϕ

a
−

 1

i ζ−ζr
qr


 eiζr(y−x) dζr

=
1

2π

∫ q+

0

{(
ϕ

a

)
ζℓ=−|ζℓ|

−
(

ϕ

a

)
ζℓ=|ζℓ|

}
eiyζr dζr.

Using (4.14) gives

Ib =
1

2π

∫ q+

0

{(
ζ + ζℓ

ζℓ

ϕ

α

)
ζℓ=−|ζℓ|

−
(

ζ + ζℓ
ζℓ

ϕ

α

)
ζℓ=|ζℓ|

}
eiyζr

ζr dζr

ζ + ζr
.
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Using (4.22) gives

Ib =
1

2π

∫ q+

0

(
ζℓ − ζ

ζℓ

ϕ∗

α∗
− ζ + ζℓ

ζℓ

ϕ

α

)
ζℓ=|ζℓ|

eiyζr
ζr dζr

ζ + ζr

=
1

2π

∫ q+

0

[
1

ζℓα∗

(
(ζℓ − ζ)ϕ∗ − (ζ + ζℓ)

α∗

α
ϕ

)]
ζℓ=|ζℓ|

eiyζr
ζr dζr

ζ + ζr
.

Using (4.20) and (4.21) gives

Ib =
1

2π

∫ q+

0

[
iqℓ

ζℓα∗
(ϕ̄ + R−ϕ)

]
ζℓ=|ζℓ|

eiyζr
ζr dζr

ζ + ζr
.

Using (4.7) gives

Ib =
1

2π

∫ q+

0

(
iqℓ

ζℓ|α|2
ψ

)
ζℓ=|ζℓ|

eiyζr
ζr dζr

ζ + ζr
.

Making the variable change from ζr to ζℓ gives

Ib = −
1

2π

∫ √q2
ℓ−q2

r

0

iqℓ
ζ + ζr

|T+|2ψe−y
√

q2
ℓ−q2

r−ζ2
ℓ dζℓ.

Note that both ζ and ζr are pure-imaginary when ζℓ ∈
(

0,
√

q2
ℓ − q2

r

)
.

The contributions from the zeros of a(ζ, t) are

Ip = −i ∑
j

Res
(

ϕeiyζr

a
, ζ = ζ j

)
= −∑

j
Cj(t)ψ(ζ j, x; t)eiyζr(ζ j),

where the constants {ζ j}M
j=1 are the simple zeros of a(ζ, t) (multiple roots are obtained as

a limiting case of coalescing simple zeros) and

Cj(t) = i
b(ζ j, t)

[∂ζr a(ζ, t)]ζ=ζ j

.
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Using (4.18a) then gives

K+
11(x, y; t)

K+
21(x, y; t)

+ Ω(x + y; t) +
∫ ∞

x
K+(x, s; t)Ω(y + s)ds = 0, (4.25a)

with

Ω(z; t) ≡ F(z; t) + G(z; t) + H(z; t)

≡ 1
2π

∫ ∞

−∞
R+(ζ, t)

i ζ−ζr
qr

1

 eizζr dζr + ∑
j

Cj(t)

i ζ−ζr
qr

1

 eizζr


ζ=ζ j

+
1

2π

∫ √q2
ℓ−q2

r

0

iqℓ
ζ + ζr

|T+(ζ, t)|2

i ζ−ζr
qr

1

 e−z
√

q2
ℓ−q2

r−ζ2
ℓ dζℓ (4.25b)

and

K+ =

K+
11 −K+

21

K+
21 K+

11

 ,

since K+
12 = −K+

21 and K+
22 = K+

11.

4.2 Long time asymptotic approximation

In this section, we use (4.25) to asymptotically compute the behavior at the front of the

DSW for case 3 in figure 4.2, where qℓ > 0 and qr = 0; the other cases will be considered

in subsequent publications. We omit any contributions from the poles, since these move

to the right of the DSW in the long-time limit, and so they do not affect the DSW in this

limit. When this asymptotic solution breaks down, we use matched asymptotics to find

the DSW’s slowly varying elliptic-function solution; this method naturally leads to

Whitham-like equations. Finally, we show that the solution to the DSW’s left decays.
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4.2.1 Shock front

Approximation to the far right of the shock front

For large x/t≫ 1, we can use a linear approximation of (4.1):

qt + q3x + O(q3) = 0.

The ansatz q = exp{i(λx−ωt)} gives the dispersion relationship q(λ) = −λ3. So

q(x, t) ∼ 1
2π

∫ ∞

−∞
ŵ0(λ)eiλ(x/t+λ2)t dλ,

where ŵ0(λ) = q̂0(λ) + 2πqℓδ(λ). For large t and x ≫ 4q2
ℓt, we can use the

steepest-descent method to find

q(x, t) =
q̂0

(
i
√

x/(3t)
)

e−2t[x/(3t)]3/2

4
√

3π[x/(3t)]1/4
√

t

(
1 + O(t−1/2)

)
, (4.26)

where we have assumed that q decays rapidly enough that q̂0(iκ) is defined.

Higher-order contributions from the nonlinear terms are exponentially small compared

with (4.26). Thus, the solution is asymptotically zero for x/t≫ 1 (except, perhaps, for

solitons).

The GLM integral equation

To find the behavior near the shock front, we use the GLM integral equation from the

right (4.25); using that qℓ > 0 and qr = 0 gives

K+
11(x, y; t)

K+
21(x, y; t)

+

0

1

Ω(x + y; t) +
∫ ∞

x

−K+
21(x, s; t)

K+
11(x, s; t)

Ω(y + s)ds = 0,
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with

Ω(z; t) ≡ F(z; t) + G(z; t) + H(z; t)

≡ 1
2π

∫ ∞

−∞
R+(ζ, 0)eiζ[z/t+8ζ2]t dζ + ∑

j

[
Cj(t)eizζ

]
ζ=ζ j

+
1

2π

∫ qℓ

0

iqℓ
2ζ
|T+(ζ, 0)|2 e−[z/t+8ζ2]t

√
q2
ℓ−ζ2

ℓ dζℓ, (4.27)

where we’ve used the time dependence in (4.13). The contribution from the poles,

G(z, t), correspond to solitons in the solution; since these move to the DSW’s right in the

long-time limit, we omit their contributions in our asymptotics.

Contribution from F(z, t)

From (4.16) we have that

R+(−ζ, 0) = (R+(ζ, 0))∗ ,

so

F(z, t) =
1

2π

∫ ∞

0
R+(ζ, 0)eiζ[z/t+8ζ2]t dζ + cc.

This is a Fourier-type integral that we can approximate in the long-time limit. This

integral has both a stationary-phase and an end-point contribution.

For the stationary-phase contribution, we define χ(ζ) ≡ ζ(z/t + 8ζ2). The

stationary-phase points are where χ′(ζ) = 0; so here, ζ = ±i
√

z/(24t) since we assume

that z/t≫ 1. Using the stationary-phase method, we find that this contribution is

F1 = −R+(i
√

z/(24t), 0)
exp

{
−2t[z/(6t)]3/2}

8
√

3π[z/(6t)]1/4
√

t

(
1 + O(t−1/2)

)
.

If K+
21 ∼ −F1 in this region, and since q(x) = 2K+

21(x, x), then

u(x, t) = R+

(
i
√

x/(12t), 0
)

e−2t[x/(3t)]3/2

4
√

3π[x/(3t)]1/4
√

t

(
1 + O(t−1/2)

)
;
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this matches (4.26) if q̂0

(
i
√

x/(3t)
)
= R+

(
i
√

x/(12t), 0
)

.

We also have an end-point contribution at ζ = 0, but it is exactly canceled by one

of the end-point contributions from H(z, t).

Contribution from H(z, t)

Using ζ2 = ζ2
ℓ − q2

ℓ , we have that

H(z, t) =
1

2π

∫ qℓ

0

qℓ

2
√

q2
ℓ − ζ2

ℓ

|T+(ζ, 0)|2 eχ(ζℓ)t dζℓ,

where χ(ζℓ) ≡ −[z/t + 8ζ2
ℓ − 8q2

ℓ ]
√

q2
ℓ − ζ2

ℓ in this subsection. This is a Laplace-type

integral in the long-time that has three critical points: the end point ζℓ = 0, the

stationary-phase point where χ′(ζℓ) = 0, and the end point ζℓ = qℓ.

For the contribution from the end point ζℓ = 0, we find that

H0(z, t) = −
q3/2
ℓ T2(0)
32
√

π

exp
{
−2qℓt[z/(2t)− 4q2

ℓ ]
}[

12q2
ℓ − z/(2t)

]3/2 t3/2

[
1 + O(t−1)

]
, (4.28)

where we define

Tj(ζ∗) ≡
[

∂

∂ζ
j
ℓ

|T+(ζ, 0)|2
]

ζℓ=ζ∗

.

We used T0(0) = 0 from (4.6) and that Tj(0) = 0 for j odd.

The stationary-phase point is ζ∗ = ±
√

q2
ℓ − z/(24t) since then χ′(ζℓ = ζ∗) = 0.

The contribution from this stationary-phase point is

H1(z, t) ∼ i
e−tz3/2/(3

√
6)

8
√

6π
√

t

(q2
ℓ − ζ∗)1/4

ζ∗
T0(ζ∗) + cc,

which is asymptotically zero compared with H0. So we’ll neglect this contribution.

The contribution from the end point at ζℓ = qℓ exactly cancels the contribution

from F(z, t) at ζ = 0. Intuitively, these contributions cancel because they both correspond
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to the point ζ = 0 and both integrals come from (4.23).

Using the GLM integral equation to find K+
21

Recall that (4.25) is

K+
11(x, y; t)

K+
21(x, y; t)

+

0

1

Ω(x + y; t) +
∫ ∞

x

−K+
21(x, s; t)

K+
11(x, s; t)

Ω(y + s)ds = 0.

We can solve this with a Neumann series,

v(0)1 (x, y; t)

v(0)2 (x, y; t)

 = −

0

1

Ω(x + y; t),

v(n+1)
1 (x, y; t)

v(n+1)
2 (x, y; t)

 = −

0

1

Ω(x + y; t)−
∫ ∞

x

−v(n)2 (x, s; t)

v(n)1 (x, s; t)

Ω(y + s)ds.

Then, v(n)2 (x, y; t)→ K+
21 as n→ ∞, and we can use q(x) = 2K+

21(x, x; t).

Previously, we found asymptotic approximations for Ω(z, t). Near the shock

front, we found that the asymptotic approximation of Ω(z, t) is dominated by (4.28), the

end-point contribution from H(z, t) near ζℓ = 0. Using this, the first term in the

Neumann series solution of (4.25) is

v(0) ≡

v(0)1 (x, y; t)

v(0)2 (x, y; t)

 = −

0

1

Ω(x + y; t) = A0eqℓξ(x+y)

0

1

 ,

where

A0 ≡
q3/2
ℓ

32
√

π
T2(0)

and

ξ(z) ≡ −z + 8q2
ℓt− 3

2qℓ
log
(

12q2
ℓt− z/2

)
+ O(t−1). (4.29)
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Now we asymptotically approximate

v(1) − v(0) = −
∫ ∞

x

−v(0)2 (x, s; t)

v(0)1 (x, s; t)

Ω(y + s)ds

= A2
0

−1

0

 ∫ ∞

x
eqℓ[ξ(x+s)+ξ(y+s)] ds

in the long-time limit; here, the end point contribution from s = x dominates and

v(1) − v(0) ∼
A2

0eqℓ[ξ(2x)+ξ(x+y)]

−qℓ[ξ ′(2x) + ξ ′(x + y)]

−1

0


∼

A2
0eqℓ[ξ(2x)+ξ(x+y)]

2qℓ

−1

0

 ,

since ξ ′(z) = −1 + O(t−1).

Now we repeat this procedure two more times, so we have an asymptotic

approximation for the first four terms in the Neumann series. The next two terms in the

Neumann series are

v(2) − v(1) =
A3

0
2qℓ

 0

−1

 ∫ ∞

x
eqℓ[ξ(2x)+ξ(x+s)+ξ(y+s)] ds,

which is

v(2) − v(1) ∼
A3

0eqℓ[2ξ(2x)+ξ(x+y)]

4q2
ℓ

 0

−1


in the long-time limit. Likewise,

v(3) − v(2) =
A4

0

4q2
ℓ

1

0

 ∫ ∞

x
eqℓ[2ξ(2x)+ξ(x+s)+ξ(y+s)] ds ∼

A4
0eqℓ[3ξ(2x)+ξ(x+y)]

8q3
ℓ

1

0


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and

v(4) − v(3) =
A5

0

8q3
ℓ

0

1

 ∫ ∞

x
eqℓ[3ξ(2x)+ξ(x+s)+ξ(y+s)] ds ∼

A5
0eqℓ[4ξ(2x)+ξ(x+y)]

16q4
ℓ

0

1

 .

Since q(x) = 2K+
21(x, x), this asymptotic Neumann-series solution approximation

gives

q(x, t) = 2A0eqℓξ(2x) − 1
2q2

ℓ

(
A0eqℓξ(2x)

)3
(1 + O(t−1))

+
1

8q4
ℓ

(
A0eqℓξ(2x)

)5
(1 + O(t−1)) + · · ·

∼ 2qℓ sech [qℓ(ξ − ξ0)] , (4.30)

where ξ, from (4.29), is

ξ = −2x + 8q2
ℓt− 3

2qℓ
log
(

12q2
ℓt− x

)
+ O(t−1). (4.31)

and

ξ0 =
1
qℓ

log

(
32
√

π

T2(0)q3/2
ℓ

)
;

note how, like the KdV equation, the phase only depends on T2(0). This gives the

boundary condition on the DSW’s right.

Traveling wave solution

Let’s suppose that the DSW’s front has a traveling wave solution locally. Then we can

make the variable change q(x, t)→ q(θ), with θ = x−Vt; then (4.1) becomes

−Vq′ + 6q2q′ + q′′′ = 0.
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If we integrate, then multiply by q′, and then integrate again, we get

(q′)2 = −q4 + Vq2 + Bq + A = (a− q)(q− b)(q− c)(q− d), (4.32)

where A, B, a, b, c, and d are constants with a + b + c + d = 0. Thus, we get the elliptic

integral ∫ dq√
(a− q)(q− b)(q− c)(q− d)

= θ − θ0;

from Byrd and Friedman (1971, eq. 257), we can evaluate this integral when

a > q ≥ b > c > d and get
2F(ϕ, k)√

(a− c)(b− d)
= θ − θ0,

where

ϕ = arcsin

√
(b− d)(a− q)
(a− b)(q− d)

, k2 =
(a− b)(c− d)
(a− c)(b− d)

=
(a− b)(a + b + 2c)
(a− c)(a + 2b + c)

,

and F(ϕ, k) is Legendre’s incomplete integral of the first kind (see also Olver et al., 2010,

Chap. 19). Solving for q gives

q(x, t) = −(a + b + c) +
(2a + b + c)(a + 2b + c)

(a + 2b + c) + (a− b) sn2
[√

(a−c)(a+2b+c)
2 (θ − θ0), k

] ,

where sn(z, k) is the Jacobian elliptic ‘sine’ function (see Olver et al., 2010, Chap. 22). It’s

convenient to define

r3 =
a + b

2
, r2 =

a + c
2

, r1 =
b + c

2
,

so r3 > r2 > r1 and

q(x, t) = r3 − r2 + r1 +
2(r2 − r1)(r3 + r1)

{
1− sn2

[√
r2

3 − r2
1(θ − θ0), k

]}
r3 + r1 + (r2 − r1) sn2

[√
r2

3 − r2
1(θ − θ0), k

] , (4.33)
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where

k2 =
r2

2 − r2
1

r2
3 − r2

1
.

Taking the limit r2 → r3 so k→ 1 gives

q(x, t) = r1 +
2(r2

3 − r2
1)
{

1− tanh2
[√

r2
3 − r2

1(θ − θ0)
]}

r3 + r1 + (r3 − r1) tanh2
[√

r2
3 − r2

1(θ − θ0)
] ; (4.34)

here q→ r1 as x→ ∞ and q(θ0) = 2r3 − r1, which gives a solitary-wave height of

2(r3 − r1).

To match (4.34) with (4.30), we take

r3 = qℓ, r2 = qℓ, and r1 = qr = 0,

and note that V = 4q2
ℓ + O(t−1 log t).

4.2.2 The DSW

First we change variables based on (4.30) and (4.31). Then we use multiple-scales

perturbation theory to find three conservation laws. After some algebra, these

conservation laws can be written as a diagonal system. This diagonal system describes

how the slowly varying parameters change in the DSW region.

Variable changes

Equation (4.30) suggests the variable change

q(x, t) = g(ξ, t),

where ξ is space-like and defined in (4.31) and t is time-like. It’s convenient to introduce

the slow-variables X = δξ and T = δt, where δ = O(t−1). Substituting this into (4.1)
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gives

gξξξ + 6g2gξ − 4q2
ℓgξ − gt = δ

{
9
[
gξξξ + 2g2gξ − 4q2

ℓgξ

]
4qℓ(8q2

ℓT + X)

}
+ · · · .

Now we introduce the rapid-variable θ(ξ, t), such that

θξ ≡ κ(X, T) and θt ≡ −ω(X, T) ≡ −κ(X, T)V(X, T);

this gives the compatibility condition (θξ)t = (θt)ξ or

κT + ωX = 0, (4.35)

often called the conservation of waves. Using

∂

∂t
= −ω

∂

∂θ
+ δ

∂

∂T
and

∂

∂ξ
= κ

∂

∂θ
+ δ

∂

∂X

gives

κ3gθθθ + κ(6g2 + V − 4q2
ℓ)gθ = O(δ).

Expanding

g(θ, X, T) = g0(θ, X, T) + δg1(θ, X, T) + δ2g2(θ, X, T) + . . .

and grouping terms with like powers of δ gives

κ3g0,θθθ + κ
(

6g2
0 + V − 4q2

ℓ

)
g0,θ = 0 (4.36)

and

κ3g1,θθθ + 6κ(g2
0g1)θ + κ

(
V − 4q2

ℓ

)
g1,θ
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=
9κ
[
κ2g0,θθθ + (2g2

0 − 4q2
ℓ)g0,θ

]
4qℓ(8q2

ℓT + X)
+ g0,T − (6g2

0 − 4q2
ℓ)g0,X − 3κ(κg0,θθ)X ≡ Θ (4.37)

Solving for g0

We need to solve (4.36)

κ3g0,θθθ + κ
(

6g2
0 + V − 4q2

ℓ

)
g0,θ = 0

for g0. There are several methods that we can use. As before, we can integrate with

respect to θ, multiply by g0,θ, and then integrate again to get

κ2g2
0,θ = −g4

0 +
(

4q2
ℓ −V

)
g2

0 + Bg0 + A = (a− g0)(g0 − b)(g0 − c)(g0 − d),

where a + b + c + d = 0. Following the procedure we used to get (4.33), we find

g0(θ, X, T) = r3 − r2 + r1 +
2(r2 − r1)(r3 + r1)

{
1− sn2 [2(θ − θ0)K, k]

}
r3 + r1 + (r2 − r1) sn2 [2(θ − θ0)K, k]

, (4.38)

where

r3 ≡ r3(X, T) =
a + b

2
, r2 ≡ r2(X, T) =

a + c
2

, r1 ≡ r1(X, T) =
b + c

2
,

r3 > r2 > r1, K ≡ K(k(X, T)) is the complete elliptic of the first kind,

k2 =
r2

2 − r2
1

r2
3 − r2

1
, κ2 =

r2
3 − r2

1
4K2 , V = 4q2

ℓ − 2(r2
3 + r2

2 + r2
1).

Since sn2(z, k) has period 2K(k), g0 is periodic in θ with period 1.
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Enforcing periodicity

To eliminate secular terms, we require that g0(θ, X, T) is periodic in θ with period 1 so

that ∫ 1

0
Θ dθ = 0 and

∫ 1

0
g0Θ dθ = 0.

Using

∫ 1

0

∂ig0

∂θi dθ = 0 for i = 1, 2, 3, . . . ,∫ 1

0
gi

0
∂jg0

∂θ j dθ = 0 for i = 1, 2, 3, . . . , and j = 1, 3, 5, . . . ,∫ 1

0
g0g0,θθ dθ = −

∫ 1

0
g2

0,θ dθ,

we get from
∫ 1

0 Θ dθ = 0 that

∂

∂T

∫ 1

0
g0 dθ +

∂

∂X

(
4q2

ℓ

∫ 1

0
g0 dθ − 2

∫ 1

0
g3

0 dθ

)
= 0 (4.39)

and from
∫ 1

0 g0Θ dθ = 0 that

∂

∂T

∫ 1

0
g2

0 dθ +
∂

∂X

(
4q2

ℓ

∫ 1

0
g2

0 dθ − 3
∫ 1

0
g4

0 dθ + 3κ2
∫ 1

0
g2

0,θ dθ

)
= 0. (4.40)

Notice that both (4.39) and (4.40) are conservation laws.

Using (4.38) and the properties of elliptic functions (see Byrd and Friedman, 1971),

we can evaluate these integrals in terms of complete elliptic integrals. After significant

algebraic manipulation, the conservation laws (4.35), (4.39), and (4.40) simplify to

∂ri

∂T
+ vi(r1, r2, r3)

∂ri

∂Z
= 0, i = 1, 2, 3, (4.41)
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where

v1 = 4q2
ℓ − 2(r2

1 + r2
2 + r2

3) + 4(r2
2 − r2

1)
K

K− E
, (4.42a)

v2 = 4q2
ℓ − 2(r2

1 + r2
2 + r2

3) +
4(r2

3 − r2
2)(r

2
2 − r2

1)K
(r2

3 − r2
1)E− (r2

3 − r2
2)K

, (4.42b)

v3 = 4q2
ℓ − 2(r2

1 + r2
2 + r2

3)− 4(r2
3 − r2

2)
K
E

. (4.42c)

After some algebraic manipulation, the Whitham-averaging equations reported in

(Driscoll and O’Neil, 1976) can be put in Riemann-invariant form and shown to be equal

to (4.41) with (4.42).

For large time, the solution tends to a self-similar solution. To match (4.30) — the

DSW’s right boundary condition — we take r1 = 0 and r3 = qℓ. Since the solution is

self-similar, we take r2 = r2(χ) with χ ≡ X/T = ξ/t. This simplifies (4.41) to

(v2 − χ)r′2(χ) = 0 and gives us the implicit equation

χ = 2(q2
ℓ − 3r2

2) +
4q2

ℓr
2
2E(r2/qℓ)

q2
ℓE(r2/qℓ)− (q2

ℓ − r2
2)K(r2/qℓ)

.

Taking the limit r2 → r3 gives χ→ 0 or x ∼ 4q2
ℓt, which is the speed at the front of the

DSW. Taking the limit r2 → r1 gives χ→ 10q2
ℓ or x ∼ −6q2

ℓt, which is speed at the back

of the DSW. These front and back speeds agree well with direct numerics.

4.2.3 Trailing edge

When q2
ℓ > q2

r , the GLM integral equation formulated from −∞ to x only has

contributions from the reflection coefficient and the discrete spectra (the solitons). The

first few terms are sufficient to show our main result: the long-time limit of general,

step-like data is a single-phase DSW. Details will be given in a subsequent paper.

91



4.3 Conclusion

DSWs appear when weak dispersion and weak nonlinearity dominate the physics; they

arise in many physical systems, including fluid dynamics, plasmas, superfluids, and

nonlinear optics. For systems with weak dispersion and weak, cubic nonlinearity, the

mKdV equation is the leading-order asymptotic equation. Unlike the IST theory for the

KdV equation in chapter 3, the IST theory for the mKdV equation with non-vanishing

boundary conditions was not known in the literature. Therefore, we first needed to

derive the GLM integral equations for non-vanishing boundary conditions. We found

that the GLM integral equation formulated from x to ∞ has a contribution for the

transmission coefficient when q2
ℓ > q2

r and conjectured that, like the KdV equation, this

implies that the solution tends to a single-phase DSW in these cases. We showed that the

long-time-asymptotic solution of the mKdV equation for general step-like initial data

where limx→−∞ q(x, t) = qℓ > 0 and limx→∞ q(x, t) = 0 tend to a single-phase DSW; we

found this long-time-asymptotic solution using the IST method and matched-asymptotic

expansions. Therefore, a single-phase DSW eventually forms from well-separated,

multi-step initial data, despite having more complex multiphase dynamics at

intermediate times for this boundary data.
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Part II

Two-dimensional ocean-wave soliton

interactions
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Chapter 5

Nonlinear shallow ocean-wave soliton

interactions on flat beaches

The study of water waves has a long and storied history, with many important

applications including naval architecture, oil exploration, and tsunami propagation. The

mathematics of these waves is difficult because the underlying equations are strongly

nonlinear and have a free boundary where water meets air; there is no comprehensive

theory. This chapter reports that X, Y, H, and more complex nonlinear interactions

frequently occur on two widely separated flat beaches and are not rare events, as was

previously thought. In fact, these X-, H-, and Y-type interactions can be seen daily,

shortly before and after low tide. These phenomena are closely related to the analytical

solution of a multi-dimensional nonlinear wave equation that has been studied

extensively since 1970 (Kadomtsev and Petviashvili, 1970; Ablowitz and Clarkson,

1991a) and is a generalization of an equation studied by Korteweg and de Vries in 1895

(Korteweg and de Vries, 1895), which gave rise to the concept of solitons (Zabusky and

Kruskal, 1965). From the universality of the underlying equation (Ablowitz, 2011) and

the fundamental nature of these waves, it is expected that similar X-, H-, and Y-type

structures will be seen in many different physical problems, including fluid dynamics,
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nonlinear optics, and plasma physics.

A version of this chapter was published with Mark J. Ablowitz in Physical

Review E (Ablowitz and Baldwin, 2012).

5.1 Background and introduction

Water waves have been studied by mathematicians, physicists, and engineers for

hundreds of years. While there are many types of water waves, here we will discuss

solitary waves in shallow water; they are often called solitons and they have unique

properties. Solitary waves in fluids (Grimshaw, 2007) and oceans (Osborne, 2010) are a

major and active research area.

J. S. Russell, a naval architect, made the first recorded observation of a solitary

wave in the Union Canal, Edinburgh in 1834: a stopping barge set off a solitary wave

that went along the canal for one or two miles without changing its speed or its shape

(Russell, 1844). He did experiments and found, among other things, that the wave’s

speed depends on its height; he then concluded that it must be a nonlinear effect.

Boussinesq (1877) and Korteweg and de Vries (1895) derived approximate nonlinear

equations for shallow water waves. They found both solitary and periodic nonlinear

wave solutions to these equations; they also found that the speed is proportional to its

amplitude — bigger waves move faster. So Russell’s observations were quantitatively

confirmed.

Between 1895 and 1960, solitary waves were mostly studied by water wave

scientists, mathematicians, and coastal engineers. In the 1960s, applied mathematicians

developed robust approximation techniques and found that the Korteweg–de Vries

(KdV) equation appears universally when there is weak quadratic nonlinearity and

weak dispersion (Ablowitz, 2011). In 1965, Zabusky and Kruskal (1965) found that the

solitary waves of the KdV equation have remarkable elastic interaction properties and
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termed them solitons. Gardner, Greene, Kruskal, and Miura (Gardner et al., 1967) then

developed a method for solving the KdV equation with rapidly decaying initial data;

this method has been extended to many other nonlinear equations and is called the

inverse scattering transform (IST) (Ablowitz and Segur, 1981b; Novikov et al., 1984) —

such equations are called integrable.

In 1970, Kadomtsev and Petviashvili (1970) (KP) extended the KdV equation to

include transverse effects; this multi-dimensional equation, like the KdV equation, is

integrable (Ablowitz and Clarkson, 1991a). Our observations in this chapter are related

to soliton solutions of the KP equation that do not decay at large distances; these

interacting, multi-dimensional line-soliton solutions can be found analytically (Ablowitz

and Segur, 1981b). Before our observations, there was only one well-known photograph

of an interacting line-soliton in the ocean and it was thought that such interactions are

rare events; it was taken in the 1970s in Oregon (fig. 4.7b in Ablowitz and Segur (1981b))

and is similar to figure 5.3. Since the KP equation has other X, Y, H, and more complex

line-soliton solutions, we sought and found ocean waves with similar behavior

(figs. 5.1–5.6). Surprisingly, these X, Y, H, and more complex types of line-solitons appear

frequently in shallow water on two relatively flat beaches, some 2,000 km apart! These

freely propagating, interacting line-solitons are remarkably robust. While these

interactions are not stationary, and so only last a few seconds, a casual observer will be

able to see them with the insights provided in this chapter. Interestingly, in laboratory

experiments involving internal waves emanating from the interaction of cylindrical

wave fronts, Maxworthy (1980, fig. 11) reported an X-type internal wave interaction;

Weidman et al. (1992) later showed that the length of the stem in (Maxworthy, 1980,

fig. 11) follows a Hopf bifurcation when plotted against the intersection angle.
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Figure 5.1: A plot and a photograph of an X-type interaction. (a) A plot of an analytical
line-soliton interaction solution of the KP equation at t = 0 using (5.3) and (5.4). In this
and the following plots, we picked the ki and Pj to be qualitatively similar to the photo-
graph in part (b). Here, k1 = k2 = 1/2, P1 = −P2 = 2/3 so eA12 ≈ 2.3. (b) Taken in Mexico
on 31 December 2011; notice the large amplitude of the short stem. (c) A 3d-plot of the
solution in (a), which qualitatively agrees with (b); we only include one 3d-plot because
the density plots show the interaction behavior clearly.

5.2 Observations

Single line, solitary water waves are familiar to every beach goer: they are localized in

the direction of propagation and have a distinctive, hump-like wave profile. These

waves break when they are sufficiently large compared to the depth and they often

curve from transverse beach and bottom effects. We will focus on interacting line solitary

waves that form X, Y, H, and more complex interactions.

It was thought that X-type ocean wave interactions happen infrequently. This is

97



x

y
(a)

(b)

(c)

Figure 5.2: A plot and photographs of a Y-type interaction. (a) k1 = 1/2, k2 = 1, P1 = 3/4,
P2 = 1/4 so eA12 = 0. (b) Taken in Mexico on 6 January 2010. (c) Taken in California on 3
May 2012.

not the case: X-, H-, and Y-type ocean wave interactions occur daily, shortly before and

after low tide on relatively flat beaches. M.J.A. observed these interactions near

20◦41′22′′ N, 105◦17′44′′ W in Nuevo Vallarta, Mexico from 2009 to 2013 between

December and April. D.B. observed these interactions near 33◦57′52′′ N, 118◦27′35′′ W on

Venice Beach, California in May 2012 — about 2,000 km away — and in Nuevo Vallarta,

Mexico in February and March 2013. Figures 5.1–5.6 shows a few of the thousands of

photographs that we took. The water depth where we saw these interactions was

shallow, usually between 5 and 20 cm; the beaches are long and relatively flat; the

interactions usually happen within 2 hours before and after low tide; the cross-waves

produced near a jetty appear to help induce these interactions. We found that these X-,
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Figure 5.3: A plot and photographs of an X-type interaction with a longer stem. (a) k1 =
k2 = 1/2, P1 = −1/4− 10−2, P2 = 3/4 so eA12 ≈ 51. (b) Taken in California on 2 May
2012 in shallower water than figure 5.1b. (c) Taken in California on 4 May 2012.

H-, and Y-type interactions usually come in groups, which last a few minutes. We saw

many X-, H-, and Y-type interactions each day that we made observations; both M.J.A.

and D.B. saw X-type interactions most frequently and H- and Y-type interactions less

frequently. We also saw more complex interactions, such as three line-solitons on one

side of the interaction region and two line-solitons to the other side, which we will call a

3-in-2-out interaction; these more complex interactions are much less frequent than X-,

H-, or Y-type interactions. Our observations indicate that X-, H-, and Y-type interactions

are remarkably robust: they typically persist through bottom-depth changes,

perturbations from wind and spray, and sometimes even breaking!

We observed two types of X interactions: an interaction with a short stem (fig. 5.1)
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Figure 5.4: A plot and photographs of an X-type interaction with a very long stem. (a) k1 =
k2 = 1/2, P2 = −P1 + 10−10 = 1/2 so eA12 ≈ 5× 109. (b) Taken in Mexico on 28 December
2011 in shallower water than figure 5.3b. (c) Taken in California on 3 May 2012.

and an interaction with a long stem where the stem height is higher than the incoming

line-solitons (figs. 5.3 and 5.4). The amplitude of the short-stem X-type interaction can be

quite large in deeper water. Interestingly, the length of the stem often increases as the

depth decreases. We also observed H-type interactions with a long stem where the stem

height is lower than the tallest incoming line-soliton (fig. 5.5). Figure 5.2 shows a typical

Y-type interaction. A more complex interaction, with three ‘incoming’ and two

‘outgoing’ segments, is shown in figure 5.6.

When one knows what to look for and when and where to look for them, X-, H-,

and Y-type interactions are fairly easy to observe. In addition to happening less

frequently, more complex interactions are harder to see because they are highly
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Figure 5.5: A plot and photographs of an H-type interaction, where the stem has a lower
rather than a higher amplitude. (a) k1 = 1, k2 = 1/2, P1 = 1/2− 10−7, P2 = 0 so eA12 ≈
5× 10−8. (b) and (c) Taken in California on 3 May 2012.

non-stationary and have shorter interaction times than X-, H-, and Y-type interactions.

Another difficulty is that most water waves break before X-, H-, or Y-type interactions

form; so sustained observation may be needed. Along with the photographs here, we

have also taken many videos that show the development and general dynamics of these

waves; the readers can watch some of these videos and see many more photographs at

our websites http://www.markablowitz.com/line-solitons and

http://www.douglasbaldwin.com/nl-waves.html.
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Figure 5.6: A plot and photographs of a 3-in-2-out interaction, where there are three line-
solitons on one side of the interaction region and two line-solitons on the other side.
(a) k1 = 1, k2 = 2, k3 = 3, P1 = −1/3, P2 = −2/3, P3 = −5/3. (b) and (c) Taken in
California on 4 May 2012.

5.3 Mathematical description

The KP equation (Kadomtsev and Petviashvili, 1970),

∂

∂x

(
1√
gh

ηt + ηx +
3

2h
ηηx +

h2γ

2
ηxxx

)
+

1
2

ηyy = 0, (5.1)

is the two-space and one-time dimensional equation that governs unidirectional,

maximally-balanced, weakly-nonlinear shallow water waves with weak transverse

variation. Here, sub-scripts denote partial derivatives, η = η(x, y, t) is the wave height

above the constant mean height h, g is gravity, γ = 1− τ/3, τ = T/(ρgh2) is a
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dimensionless surface tension coefficient, and ρ is density. When there is no

y-dependence, the equation reduces to the KdV equation (Korteweg and de Vries, 1895).

The KP equation was first derived in the context of plasma physics (Kadomtsev and

Petviashvili, 1970) and was later derived in water waves (Ablowitz and Segur, 1979).

The sign of γ is important: there is ‘large’ surface tension when γ < 0, and this equation

is called KPI; there is ‘small’ surface tension when γ > 0, and this equation is called

KPII. We can rescale (5.1) into the non-dimensional form (Ablowitz, 2011)

(ut + 6uux + uxxx)x + 3σuyy = 0, (5.2)

where u relates to the wave height η and σ = ±1 corresponds to the sign of γ.

For large surface tension, KPI has a lump-type solution that decays in both x and

y but has not yet been observed. Only recently has a large-surface-tension

one-dimensional soliton been observed (Falcon et al., 2002); it satisfies the KdV equation

and is a depression from the mean height.

We will only discuss KPII here because surface tension is small for ocean waves.

The KPII equation has solutions with a single-phase, which we will call line-solitons. We

are interested in the interactions of line-solitons. These solutions can be found by

so-called direct methods (Ablowitz and Segur, 1981b): special N-soliton solutions of the

KP equation can be written in the form (Satsuma, 1976)

u = uN = 2
∂2 ln FN

∂x2 , (5.3)

where FN is a polynomial in terms of suitable exponentials. This solution is convenient

for finding the simplest such solution: the first three are

F1 = 1 + eη1 , F2 = 1 + eη1 + eη2 + eη1+η2+A12 ,

F3 = 1 + ∑
1≤i≤3

eηi + ∑
1≤i<j≤3

eηi+ηj+Aij + eη1+η2+η3+A12+A13+A23 ,
(5.4a)
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where ηj = k j[x + Pjy− (k2
j + 3σP2

j )t] + η
(0)
j , k j, Pj, η

(0)
j are constants, and

eAij =
(ki − k j)

2 − σ(Pi − Pj)
2

(ki + k j)2 − σ(Pi − Pj)2 , i < j. (5.4b)

For KPII (where σ = 1), u1, F1 correspond to the simplest one line-soliton, which

is essentially one-dimensional. The more interesting case of u2, F2 correspond to the

interaction of two line-soliton waves. These interactions have distinct patterns: when

eA12 = O(1), we get an X-type interaction with a short stem (fig. 5.1); when eA12 ≫ 1, we

get an X-type interaction with a long stem where the stem height is higher than the

incoming line-solitons (figs. 5.3 and 5.4); when eA12 ≪ 1, we get an H-type interaction

with a long stem where the stem height is less than the height of the tallest incoming

line-soliton (fig. 5.5); and when eA12 = 0, we get a Y-type interaction (fig. 5.2). As

mentioned earlier, the length of the stem appears to be correlated to the depth of the

water. Short stems where eA12 = O(1) are usually found in much deeper water than long

stem X-type wave interactions where eA12 ≫ 1.

Recently, novel and exotic web-like structures for the KP equation (N-in-M-out)

have been found using Wronskian methods (Biondini and Kodama, 2003; Chakravarty

and Kodama, 2008) that go beyond the simplest ‘building block’ solutions of X-, H-, and

Y-type line-soliton solutions. We observed significantly more X-, H-, and Y-type

interactions than we observed web-like interactions. Note also that an N-in-M-out

solution (where M < N) can be found by starting with FN and taking ki and Pj such that

eAM,N = · · · = eAN−1,N = 0; figure 5.6 shows such a 3-in-2-out interaction. It was recently

shown that these line interactions persist under the next order perturbations in the

equations for water waves (Ablowitz and Curtis, 2011); while the stem can be four times

the height of the incoming line-solitons in the KP equation, it is less than four times the

height when higher-order terms are included.
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5.4 X-, H-, and Y-type structures and tsunami propagation

Miles (1977a,b) first discovered that Y-type solutions could be associated with the KP

equation; he also related it to “Mach-stem reflection,” the phenomenon that occurs in gas

dynamics. Interestingly, Wiegel (1964) reported that the 1946 Aleutian earthquake

induced tsunami caused a Mach-stem reflection along the cliffs of the western edge of

Hilo Bay in Hawaii. Yeh et al. (2010) revisited Mach-stem reflection in water waves with

an inclined bottom, both analytically in the context of the KP equation and in a

laboratory water wave tank.

Recent observations of the 2011 Japanese Tohoku–Oki earthquake induced

tsunami indicate that there was a ‘merging’ phenomenon from a cylindrical-wave-type

interaction (Song et al., 2012) that significantly amplified the tsunami and its destructive

power. This effect is remarkably similar to the initial formation of an X-type wave: while

it is initially a linear super-position effect, the interaction can be significantly modified or

enhanced by nonlinearity after propagating to shore. Moreover, for large distances (in

the open ocean direction) an earthquake induced tsunami will propagate approximately

like the KP equation. So strong nonlinear effects from X-, H-, or Y-type interactions can

have serious effects for land much further away; the destruction in Sri Lanka from the

2004 Sumatra–Andaman earthquake induced tsunami is an example of such a

long-distance effect.

5.5 Conclusion

We reported that X-, H-, and Y-type shallow water wave interactions on a flat beach are

frequent, not rare, events. Casual observers can see these fundamental wave structures

once they know what to look for. Extensive ocean observations reported here enhance

and complement laboratory and analytical findings. We expect that similar interactions

will be observed in many other fields — including fluid dynamics, nonlinear optics, and
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plasma physics — because the leading-order equation here is also the leading-order

equation for many other physical phenomena.
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Chapter 6

Conclusion

This dissertation first looked at DSWs: We investigated the KdV equation’s six canonical

two-step cases. Then the KdV equation’s large-time-asymptotic solution for general

step-like initial data. Then the mKdV equation’s large-time-asymptotics solution for the

general step-like initial data where limx→−∞ q = qℓ > 0 and limx→∞ q = 0. This

dissertation also looked at nonlinear shallow ocean-wave soliton interactions.

In chapter 2, we investigated the KdV equation’s large-time solution for the initial

data

u(x, t = 0) =


h0, x < 0

h1, 0 < x < L

h2, x > L

.

Because of Galilean-invariance, this gave six canonical cases,

I ( ): h0 > h1 > h2, II ( ): h0 > h2 > h1,

III ( ): h1 > h0 > h2, IV ( ): h2 > h0 > h1,

V ( ): h1 > h2 > h0, VI ( ): h2 > h1 > h0.

Cases I ( ), II ( ), and III ( ) go to a single-phase DSW in the large-time limit.
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Case I ( ) exhibited two-phase dynamics that direct numerical simulation, using

ETDRK4, and Whitham-averaging theory indicated was transitory. Case II ( ) went to

a DSW with an oscillatory tail that decayed in amplitude like O(t−1/2), as shown by

both numerical simulation and Whitham theory. Case III ( ) goes to a DSW with a

finite number of solitons; the exact number, speed, and height of solitons is given by IST

theory and agreed with our numerical simulations.

While cases I–III went to a single-phase DSW in the large-time limit, cases IV

( ), V ( ), and VI ( ) go to a RW in the large-time limit. Case IV ( ) goes to a

RW with an oscillatory tail that decays like O(t−1/2) based on both Whitham theory and

direct numerical simulation. Case V ( ) goes to a RW and a finite number of solitons,

whose number, speed, and height are exactly determined from IST theory and were

confirmed with numerical simulation. Case VI ( ) goes to a RW that has neither a long

oscillatory tail nor any solitons.

Direct numerical simulation, Whitham theory, and IST theory each proved to be

powerful tools for investigating this problem. The ETDRK4 scheme that we used to do

our numerical simulations is spectrally accurate in space and fourth-order in time; our

simulations took only minutes to hours to run on a desktop computer when we

conservatively took five-times the Nyquist rate of the linear-wave tail, four-times the

width of our DSW region, and a time-step of 10−3 to 10−4. After the DSW forms and we

have rapid oscillations amenable to averaging, Whitham theory becomes a powerful tool

for investigating the asymptotic behavior of the solution. Cases II ( ), III ( ), IV

( ), and V ( ) could be modeled with one-phase Whitham theory, while case I

( ) needed two-phase Whitham theory; all cases compared well with direct numerical

simulation away from the linear-wave tail. The amplitude of the linear-wave tail—as we

showed in the chapter 3—comes from the reflection coefficient’s magnitude; so Whitham

theory gives reflectionless DSWs1 that come from initial data where the reflection

1I’m naming it here based on Mark Hoefer’s suggestion for the name.
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coefficient R(λ) = 0 for λ > c (see equations 3.32 and 3.33), which isn’t the case for

piecewise-constant initial data.

In chapter 3, we generalized the results from chapter 2 for shock-forming initial

data. Shock-forming initial data has limx→−∞ u > limx→+∞ u; because the KdV equation

is Galilean invariant, we can transform this initial data to initial data where

lim
x→−∞

u(x, t) = 0 and lim
x→+∞

= −6c2.

For this boundary data, we found a large-time asymptotic approximation of the solution.

This solution has three basic regions: [u + 6c2] exponentially small for x > O(t) except,

perhaps, for a finite number of solitons; a slowly varying cnoidal wave—the DSW—for

x ≤ O(t); and a decaying oscillatory wave for −x < O(t).

In the large-time limit, the region right of the DSW is exponentially small except,

perhaps, for a finite number of solitons. If the initial data admit solitons, they will come

from the discrete spectra; that is, they correspond to the transmission coefficient’s simple

poles. Except for any solitons, [u + 6c2] will be exponentially small right of the DSW. In

this region we can asymptotically solve the GLM integral equation by summing its

Neumann series. To the far right, the contribution from the reflection coefficient

dominates. Near the DSW’s right, the contribution from the transmission coefficient

dominates. Summing the Neumann series at the DSW’s right edge gives

u(x, t) ∼ −6c2 + 12c2 sech2
[ c

ε
(ζ − ζ0)

]
,

where

ζ0 =
ε

2c
log
{

32
√

π

H2(0)c1/2ε3/2

}
and

ζ = −x− 2c2t− 3ε

4c
log(6c2t− x) + · · · .
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This provides the boundary condition on the DSW’s right edge. Note how the DSW is

twice the height of the step, 12c2 compared with 6c2, and how its position, ζ0, is

determined by the initial data through the scattering data.

Using this as the DSW’s right boundary condition, we make the variable change

u(x, t) = −6c2 + g(ζ, t) in KdV equation. Following standard perturbation theory, we

introduce the slow variables X = δx and T = δt (δ = O(t−1)) and the fast variable θ such

that θζ = κ(Z, T) and θt = −ω(Z, T). The compatibility condition θζt = θtζ leads to

κT + ωZ = 0, which is usually called the conservation of waves law. After expanding

g = g0 + δg1 + · · · and grouping in like powers of δ, we eliminate secularity by

requiring the periodicity of g in θ to obtain two additional conservation laws. Since the

KdV equation is third-order, we now have as many conservation laws as constants of

integration. We transform these conservation laws with a variable change into a

diagonal system that was originally found in Whitham (1965); we then find a similarity

solution to this diagonal system that matches the DSW’s right boundary condition. This

similarity solution is the single-phase DSW that Gurevich and Pitaevskii (1974) found.

Therefore, general step-like initial data go to a single-phase DSW in the large-time limit

even when multiphase dynamics exist at intermediate times.

The linear-wave tail at the DSW’s left can be written as a similarity solution that

decays like O(t−1/2); this similarity solution has two slowly varying parameters, A and

θ0. While we could determine A and θ0 by summing the Neumann series that solves the

GLM integral equation formulated from −∞ to x, we used a WKB-type method to find

A and θ0. We find that the similarity solution’s amplitude depends on the reflection

coefficient’s magnitude.

While the KdV equation has only three canonical cases—a DSW, a RW, and

vanishing boundary conditions—the mKdV equation has seventeen canonical cases.

This is because the KdV equation is Galilean invariant and the mKdV equation is not. If

we only consider cases where limx→−∞ q > limx→+∞ q, we are left with seven cases. Of
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these seven cases, we used IST and matched-asymptotic expansions to find the mKdV

equation’s long-time asymptotic solution when limx→−∞ q = qℓ > 0 and limx→+∞ q = 0.

To find the large-time asymptotic solution for the DSW cases, we first needed to

develop the IST theory for the mKdV equation with the non-vanishing boundary data

lim
x→−∞

q(x, t) = qℓ and lim
x→+∞

q(x, t) = qr

with qℓ > qr. From the mKdV equation’s known Lax pair, we used our boundary

conditions to define eigenfunction as x→ ±∞ and then define the scattering data using

these eigenfunctions. Where the KdV equation’s scattering data have one branch cut, the

mKdV equation’s scattering data have one or two branch cuts depending on qℓ and qr.

To find the GLM integral equations associated with mKdV for step-like data, we need to

find the scattering data’s analytic properties and symmetries. Once we know the

scattering data’s analytic properties and symmetries, we can determine the GLM

integral equations. The GLM integral equation from x to ∞ has a contributuion from the

transmission coefficient when q2
ℓ > q2

r ; and, like the KdV equation, these cases go to a

DSW in the large-time limit. In this dissertation, we only looked for the solution’s

long-time asymptotic approximation when qℓ > 0 and qr = 0.

As with the KdV equation, we find the solution’s large-time asymptotic

approximation by doing the following: solving the GLM integral equation with a

Neumann series right of the DSW; using matched-asymptotic expansions and

multiple-scales perturbation theory in the DSW region; and then showing that the

solution decays to the DSW’s left. To the DSW’s right, we can asymptotically

approximate the GLM integral equation’s kernel and the resulting Neumann series; like

the KdV equation, the dominant contribution is from the reflection-coefficient term away

from the shock front and from the transmission-coefficient term near the shock front.

Summing the Neumann series gives the DSW’s right boundary condition. Matching to
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this boundary condition and using multiple-scales perturbation theory gives three

conservation laws that determine the slowly varying wave parameters in the DSW

region; a variable change diagonalizes these conservations laws to give Riemann

invariants; assuming that the solution goes to a similarity solution and matching to the

boundary condition gives the DSW’s large-time asymptotic approximation. Therefore,

we find that general step-like initial data go to a single-phase DSW for the mKdV

equation when qℓ > 0 and qr = 0.

A two-dimensional generalization of the KdV equation is the KP equation. The

KP equation has line-soliton solutions that can be computed exactly using Hirota’s

bilinear method. The interaction of two KP line-solitons produces four basic solutions;

these solutions have eA12 = 0, eA12 ≪ 1, eA12 = O(1), or eA12 ≫ 1 and look like a Y, an H,

an X, and an X with a long stem, respectively. We observed shallow ocean-wave

interactions that qualitatively agreed with these solutions at two flat beaches about

2,000 km apart. We also saw more complex line-soliton interactions that qualitatively

agreed with the KP equation’s exact N-soliton interactions. Before our observations,

there was only one X-type interaction photograph known in the literature; thus, it was

thought that nonlinear shallow ocean-wave interactions where rare. They are not: they

happen every day near low tide on flat beaches. The frequency of X-, H-, and Y-type

interactions is much more frequent than that of more complex interactions like 3in-2out

interactions; 3in-2out interactions have three line solitons on one side of the interaction

region and two on the other.
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Appendix A

Analyticity of KdV equation’s

eigenfunctions

The results in this appendix are not new, but are included for completeness.

To show the analyticity of the eigenfunctions, we will use integral equation for

the eigenfunctions. It’s convenient to define

M(x; λ) ≡ ϕ(x; λ)eiλx/ε M̄(x; λ) ≡ ϕ̄(x; λ)eiλx/ε, (A.1a)

N(x; λr) ≡ ψ(x; λr)eiλrx/ε N̄(x; λr) ≡ ψ̄(x; λr)eiλrx/ε, (A.1b)

so that

M(x; λ) ∼ 1, M̄(x; λ) ∼ e2iλx/ε, as x → −∞,

N(x; λr) ∼ e2iλrx/ε, N̄(x; λr) ∼ 1, as x→ +∞

and

T(λ, λr)M(x; λ) ≡ N̄(x; λr)ei(λ−λr)x/ε + R(λ, λr)N̄(x;−λ)ei(λ+λr)x/ε. (A.2)

We can use Green’s functions to get Volterra integral equations for M and N̄. To do this
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we’ll make the change of variables in (3.6a),

v(x; λ) = m(x; λ)e−iλx/ε and v(x; λ(λr)) = n(x; λr)e−iλrx/ε,

to get

mxx(x; λ)− (2iλ/ε)mx(x; λ) = −u0(x)m(x; λ)/(6ε2),

nxx(x; λr)− (2iλr/ε)nx(x; λr) = −[6c2 + u0(x)]n(x; λr)/(6ε2).

To solve, we consider the Green’s functions defined by

Gxx − (2iλ/ε)Gx = −δ(x) and Hxx − (2iλr/ε)Hx = −δ(x);

using Fourier analysis then gives taking their Fourier transform gives

(−p2 + 2λp/ε)Ĝ = −1, (−p2 + 2λr p/ε)Ĥ = −1,

and then taking the inverse Fourier tranform gives

G(x; λ) =
1

2π

∫
C

eipx dp
p(p− 2λ/ε)

and H(x; λr) =
1

2π

∫
C

eipx dp
p(p− 2λr/ε)

,

where C is an appropriate contour. Note that G(x; λ) has poles at p = 0 and p = 2λ/ε

and H(x; λr) has poles at p = 0 and p = 2λr/ε. We close C in the lower-half p-plane for

G (since we’re interested in x → −∞ for M and M̄) and in the upper-half p-plane for H

(since we’re interested in x → ∞ for N and N̄); thus,

G(x; λ) =
ε

2iλ

(
1− e2iλx/ε

)
H(x) and H(x; λr) =

−ε

2iλr

(
1− e2iλrx/ε

)
H(−x),
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where H(x) is the Heaviside function. Therefore,

M(x; λ) = 1 +
1

6ε2

∫ ∞

−∞
G(x− ξ; λ)u0(ξ)M(ξ; λ)dξ,

= 1 +
1

12iλε

∫ x

−∞

(
1− e2iλ(x−ξ)/ε

)
u0(ξ)M(ξ; λ)dξ, (A.3)

N̄(x; λr) = 1 +
1

6ε2

∫ ∞

−∞
H(x− ξ; λr)[u0(x) + 6c2]N̄(ξ; λr)dξ,

= 1− 1
12iλrε

∫ ∞

x

(
1− e2iλr(x−ξ)/ε

)
[u0(ξ) + 6c2]N̄(ξ; λr)dξ. (A.4)

These are Volterra integral equations. Note that G(x− ξ; λ) is analytic in the upper half

λ plane and H(x− ξ; λr) is analytic in the lower half λr plane. As we’ll show below, their

iterates converge when

∫ ∞

−∞

∣∣∣u(x) + 6c2H(x)
∣∣∣ (1 + |x|n)dx < ∞, (A.5)

for n ≥ 1. Hence M(x; λ) is analytic in the upper half λ plane and N̄(x; λr) is analytic in

the lower half λr plane; M is also continuous at λ = 0 and N̄ is continuous at λr = 0

when n ≥ 2.

The Volterra integral equations, (A.3) and (A.4), can be solved using the iterates:

M(x; λ) = 1 +
∞

∑
n=1

gn(x; λ) and N̄(x; λr) = 1 +
∞

∑
n=1

hn(x; λr), (A.6)

where

gn(x; λ) ≡
∫ ξn≤···≤ξ1≤x

−∞
Gλ(x− ξ1) · · ·Gλ(ξn−1 − ξn)u0(ξ1) · · · u0(ξn)dξn · · ·dξ1,

hn(x; λ) ≡
∫ ∞

x≤ξ1≤···≤ξn
Hλr(ξ1 − x) · · ·Hλr(ξn − ξn−1)

× [u0(ξ1) + 6c2] · · · [u0(ξn) + 6c2]dξn · · ·dξ1,
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Gλ(ξ) ≡
1− e2iλξ/ε

12iλε
and Hλr(ξ) ≡

e−2iλrξ/ε − 1
12iλrε

, ξ ≥ 0.

Adapting the proofs of Lemma 1 in (Deift and Trubowitz, 1979) and the first

theorem in (Ablowitz et al., 1974) to our initial conditions gives that M(x; λ) and

N̄(x; λr) are analytic and continuous. For Im(λ) ≥ 0, we have that |Gλ(ξ)| ≤ 1/|6λε|

since ξ ≥ 0 and |1− e2iλξ/ε| ≤ 2; thus

|gn(x; λ)| ≤ 1
|6λε|n

(∫ x
−∞ |u0(ξ)|dξ

)n

n!

and so

|M(x; λ)| ≤ exp
{

1
|6λε|

∫ x

−∞
|u0(ξ)|dξ

}
< ∞

for finite x. This estimate blows up for small λ, so for small λ we’ll use that

|Gλ(ξ)| ≤ ξ/(6ε2) and so

|gn(x; λ)| ≤ 1
(6ε2)n

∫ ξn≤···≤ξ1≤x

−∞
(x− ξ1) · · · (ξn−1 − ξn)

× |u0(ξ1)| · · · |u0(ξn)|dξn · · · dξ1,

≤ 1
(6ε2)n

∫ ξn≤···≤ξ1≤x

−∞
(x− ξ1) · · · (x− ξn)

× |u0(ξ1)| · · · |u0(ξn)|dξn · · · dξ1,

=
1

(6ε2)n

(∫ x
−∞(x− ξ)|u0(ξ)|dξ

)n

n!
,

which implies that

|M(x; λ)| ≤ exp
{

1
6ε2

∫ x

−∞
(x− ξ)|u0(ξ)|dξ

}
< ∞

for finite x from (A.5). Thus, for N = 1 in (A.5), M(x; λ) is analytic for Im(λ) > 0 and is

continuous for Im(λ) ≥ 0 when λ ̸= 0; if N = 2 then M(x; λ) is also continuous at λ = 0.
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We can differentiate M(x; λ) in (A.6) with respect to λ and this brings down a

(x− ξ) term; indeed, it can be shown that

∣∣∣∣ ∂j

∂λj Gλ(ξ)

∣∣∣∣ ≤ 2jξ j

6|λ|ε1+j and
∣∣∣∣ ∂j

∂λj Gλ(ξ)

∣∣∣∣ ≤ 2jξ j+1

6(1 + j)ε2+j ,

so ∣∣∣∣ ∂j

∂λj gn(x; λ)

∣∣∣∣ ≤ 2nj

6n|λ|nεn(1+j)

(∫ x
−∞(x− ξ)j|u0(ξ)|dξ

)n

n!

and ∣∣∣∣ ∂j

∂λj gn(x; λ)

∣∣∣∣ ≤ 2nj

6n(1 + j)nεn(2+j)

(∫ x
−∞(x− ξ)j+1|u0(ξ)|dξ

)n

n!
.

Therefore, M(x; λ) is N-fold differentiable (with respect to λ) for Im(λ) ≥ 0 and λ ̸= 0

(and finite x) and is (N − 1)-fold differentiable at λ = 0, where N is given in (A.5).

Likewise, it can be shown that: For N = 1 in (A.5), N̄(x; λr) is analytic for

Im(λr) < 0 and is continuous for Im(λr) ≤ 0 when λr ̸= 0. If N = 2 then N̄(x; λr) is also

continuous at λr = 0. Moreover, N̄(x; λr) is N-fold differentiable (with respect to λr) for

Im(λr) ≤ 0 and λr ̸= 0 (and finite x) and is (N − 1)-fold differentiable at λr = 0.

Moreover, following the identical techniques, if u(x, t) satisfies

∫ ∞

−∞
|u(x, t) + 6c2H(x)|ed|x| dx < ∞, 0 < d ∈ R,

then it can be shown that M(x; λ) is analytic in Im(λ) > −d and N̄(x; λr) is analytic in

Im(λr) < d.
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