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ABSTRACT
It is proved that every commutative linear language is regular. This
result follows from a more general one which provides conditions which

imposed on an arbitrary language imply its regularity.




INTRODUCTION

The class of regular languages, LR’ forms a very fundamental class of
languages within formal language theory (see, e.g., [H] and [S]). The class
- of context-free languages, LCF’ is an important class of languages containing
LR. In order to better understand the structure of languages in LCF various
attempts have been made to provide conditions which imposed on a language
in LCF will “force it" to be regular. Such conditions can be grammatical,
that is they are conditions which imposed on a context free grammar imply
that its language is regular ("right-linearity" and "non-self-embedding"

are examples of such conditions).

Much less is known about conditions which imposed on (the structure of
words in) a context-free language will imply that the language is regular,
see, e.g., [ABBL]. 1In an effort to learn more about such conditions one
may investigate subclasses of LCF which are "as small as possible" (and
still contain LR). A class of 1anguag¢s "very close" to LR is the class
of linear languages, LLIN‘ Since 1ineafﬁgrammars differ from right-Tinear
grammars only by the fact that the unique nonterminal in a sentential form
may generate terminal symbols both to the right and to the left of itself, it
looks very plausible that requiring commutativity of a linear language
(that is requiring that for every word each permutation of occurrences of
letters in it will result in a word also in the language) will force it

to be regular.

This conjecture was formulated in [L] which considers various properties

of commutative context-free languages. In our paper we demonstrate that

this conjecture holds.




0. PRELIMINARIES

We assume the reader to be familiar with the basic theory of context-
free languages; in particular with the basic theory of regular and linear
languages, see, e.g., [S]. We use mostly standard language theoretic
terminology and notation. Perhaps the following points require an additional

explanation.

We use N to denote the set of nonnegative integers and N" to denote
the set of positive integers. For n e N+, N denotes the n-folded
cartesian product of N. If v e N" then, for 1 < i < n, v(i) denotes the
i-th component of v. If v, v, € N then v, <V, if and only if vl(i) < vz(i)
for each 1 < i < n. |

For a finite set Z, #Z denotes its cardinality. For sets Zl’ 22, Z1 - Z2

denotes the set-theoretic difference of Z1 and 22.

In the sequel of this paper we consider an arbitrary but fixed
alphabet ¢ = {al, ...,ad} where d 2 1, and so all languages we consider are

over L.

For a word w, alph(w) denotes the set of all letters that occur in w.

For a letter a and a word w, #a(w) denotes the number of occurrences of

a in w.

Let ¥: Z* »—Nd be the mapping defined by:
for w ¢ Z*, y(w) = (#al(w), cens #ad(w)); Y s referrid to as the Parikh
mapping and ¥(w) as the Parikh vector of w. For K ¢ T, ¥(K) ={_J ¥(w).

we K
In this paper we deal with commutative languages. They are defined as

follows.




*
nefinition. (i). Let w e I . The commtative closure of w, denoted
*
com(w), is defined by com(w) = {xex ¥ (x)=¥(w)}. (ii). A language K is
commutative if com(w) ¢ K for each w ¢ K. (iii). Let X ¢ W(Z*). The

*
language of X, denoted L(X), is defined by L(X) = {weZ :v¥(w) eX}. O

The following result is a direct consequence of the above definition.

Lemma 0.1. (i). Let Ky Ky be commutative languages. Ky < K, if and
* .
only if W(Kl) c W(Kz). (ii). Let X c ¥(2 ). Then L(X) is uniquely
defined. 0O

The following result from [La] (somewhat reformulated so that it is

suited for our application) will be useful in the sequel.

*
Proposition 0.1. Let X < ¥(X ). There exists a finite set F ¢ X such

that for every v € X there exists a u € F such thatu <v. 0




1. PERIODIC LANGUAGES

In this section periodic languages are introduced and investigated.
They form a subclass of the class of commutative languages.

Definition. Let p = Vgs Vys oo Yy be a sequence of vectors from Nd. '

We say that p is a base if and only if v.(j) =0 for all i, j = 1 such that

i = j. We use first(p) to denote v The p-set, denoted ©(p), is defined by

o
o(p) = {Ve‘i’(z*): =vg Ly vyt . Ly vy for some £y, ..., Ly e N OO

Note that the p-set is a linear set (see, e.g., [S]). It is easy to

see that each base is unique in the following sense.
Lemma 1.1. If p, p' are bases such that 0(p) = O(p') then p = p'. O

*k
Definition. Let X < ¥(I ). We say that X is periodic if and only if

there exists a base p such that X = 0(p). O

*
In view of Lemma 1.1 for each periodic X ¢ ¥(Z ) there exists a unique
base p such that X = O(p); we say that p is the base of X and we write

p = base(X).

Definition. A language K is periodic if and only if K is commutative
and ¥(K) is periodic. If K is periodic then the base of ¥(K) is referred

to as the base of K, denoted base(K). 0O

The following parameters of periodic languages will be considered in

the sequel .

Definition. Let K be a periodic language where base(K) = Vgs Vis sees Vg
(i). The type of K, denoted type(K), is the pair of vectors (ul,uz)

from Nd defined as follows:




i

up = (vO(l) (mod vl(l)), cens vo(i) (mod vi(i)), cees vO(d) (mod vd(d))) and
Uy = (vl(l), ...,vi(i), ...,vd(d)).

(ii). The size of K, denoted size(K), is defined by:

size(K) = 1:??t;d {max{ul(i),uz(i)}}1Where type(K) = (ul,uz). 0

Example. Let L = {al, CPYCPY a4} and let K be'the periodic language
such that base(K) = (1, 6,8,0),(2,0,0,0), (0,3,0,0), (0,0,0, 0), (0,0,0,7).
Then type(K) = (uy, u2) where u; = (1,0,8,0) and u, = (2,3,0,7);
size(K) = max{2,3,8,7} = 8. 0O

The following result is very basic for periodic languages.

Theorem 1.1. Every periodic 1énguage is regular.

Proof.

Let K be a periodic language and let base(K) = YAZCRERTRFE Clearly
a word W e E* is in K if and only if, for every i e {1,...,d},
#ai(W) > vo(i) and #ai(W) = vo(i) (mod vi(i)) ............................ (1)
Consequently K = K; n...nKy where K; = {wez :(1) holds} for 1 <1 <d.

It is easily seen that each Ki’ 1 < i <d, is reqular and so K is regular. O

Next we will provide conditions which imposed on an arbitrary language

will force it to be a finite union of periodic languages.

Lemma 1.2. Let Kl’ K, be periodic languages such that type(Kl) = type(Kz).
If first(base(Kl)) < first(basé(Kz)) then K2 c Kl'
Proof.

Obvious. [

Lemma 1.3. Let F be a family of periodic Tanguages such that all
languages in F are of the same type. There exists a finite family of

languages L ¢ F suchthat \_JK = \ K.
KeF Kel




Proof,

*
Let XF ¢ ¥(Z£ ) be defined by XF = {v * V= first(base(K)) for some K ¢ F},
By Proposition 0.1, XF contains a finite set of vectors {zl, cees zz}, £z=21,

such that

for each v ¢ XF’ Z; S for some j ¢ {1, s (2)
Now let, for each JeAl, ..., e}, Kj be a ]anguagevfrom F such that

uy = first(base(Kj)) and Jet | = {Kl,..., Ke}. Then the result follows from

(2) and from Lemma 1.2. 0

Lemma 1.4. Let F be 3 family of periodic languages such that there
exists a q N+ such that size(K) < q for each K ¢ F, Then there exists a

finite family of languages L ¢ F such that\_JK =k,
KeF Kel

Proof.

Let F satisfy aséumptions of the Temma. Since stze(K) < q for each
Ke F, the number of different types of languages in F jis finite, Consequent]y
there exists a positive integer r sych that F = FILJ...t)Fr where, for each
T<js<r,all languages in Fj are of the same type. Hence the result

follows from Lemma 1.3. [

Theorem 1.2. Let K be a language. If there exists a q ¢ N
such  that for each w « K there exists a periodic language L c K where

We L and szze(L ) < q then K is a finite union of periodic languages.

Assume that K satisfies the assumptions of the theorem. Then

K = \,) L where the family F = {Lw ‘We K} satisfies the assumptions of
We K

Lemma 1.4. Thuys the theorem follows from Lemma 1.4. [




Corollary 1.1. Let K be a language. If there exists a q ¢ NT
such that for each w ¢ K there exists a periodic language Lw c K where

W e Lw and size(Lw) < q then K is regular.

Proof.

The corollary follows directly from Theorems 1.1 and 1.2. [




2. COMMUTATIVE LINEAR LANGUAGES

In this section we will consider commutative linear languages. In

particular we will provide their representation through periodic languages.

Theorem 2.1. A language K is a commutative linear language if and only
if K is a finite union of periodic languages.

Proof.

Assume that K is a finite union of periodic languages. Then, by
Theorem 1.1, K is a commutative regular language and so a commutative

Tinear language.

To prove that a commutative Tinear language is a finite union of
periodic languages we prbceed as follows.

Let K be a commutative linear language and let G = (9, I, P,S) be a
linear grammar generating K, so that L(G) = K. Clearly we can assume that
each production of G is in one of the following three forms:

A~Ba, A-+aB and A ~a where A, B are nonterminals (A,BeQ-%) and a is
a terminal (ael).

By Theorem 1.2 it suffices to prove the following result.

Lemma 2.1. There exists a q ¢ N+ such that for every w ¢ K there exists
a periodic language Lw c K where w ¢ Lw and size(Lw) < q.

Proof of Lemma 2.1.

Let m = #Q. We define the sequence {qi} of positive integers as

izl
follows:
ql =m+1 and q1+1 = (q1+'°'+Q-i+1) (m+1) for i > 1.

Then we set q = qu.

Let w e K. Let p = VO’VI’ e Vy be the base defined as follows.
Vo © ¥(w).
If 1 <1 <dis such that vo(i) < q then vi(i) = 0.




If for every i ¢ {1,...,d}, vo(i) < g then all components of o are defined
and we are done. Otherwise we proceed as follows.

Let {by, ..., b} be all the letters from alph(w) such that #, (w) > q for 1<j <.
J

v 9 Eh s 1 . .
Now let w = b1 ce bS u bS ...b1 where u is a fixed word such that
q q q q
bll... bsS u bss. . bl1 e com(w). Since q = qu, w' is well defined.

For 1 < i < s we refer to the leftmost occurrence of bi1 inw as the left
g.
i-block and to the rightmost occurrence of bi] in w' as the right i-block;

- the left i-block together with the right i-block form the i-block of w'.

Consider a derivation tree D of w in G; the path of D originating in its
root and ending on a leaf of D such that the direct ancestor of the last
node (the leaf) has one descendant only is called the spine of D and denoted T.
A sequence of consecutive nodes of 1 is called a segment (of 1). The label
of a nodé e of 1 is denoted by £(e). If p = €1 - € € is a segment of T
such that k > 1, e;, ..., e, are nodes of T, K(el) = £(e,;) and
Z(ej) # ﬂ(el) for 2 < j < k then p is called a repeat (of t); el..L e, is
the front of p (denoted front(p)). The contribution of a segment u of T

~are the occurrences in w' which are "derived" from nodes of u (in other words,
those occurrences in w' which have ancestors among the nodes of p).

The following technical result is very crucial to our proof of
Lemma 2.1.

Clatm 2.1. For every 1 < i < s there exists a repeat p on T such that
the contribution of front(u) is contained in the i-block of w'.

Proof of Claitm 2.1.

The proof goes by induction on i, 1 < i < s,

Let i = 1.

Consider the segment of t consisting of its first (m+l) nodes.




Since Gy = m + 1 it is clear that this segment contributes only to the
first block of w'. On the other hand, the length of this segment is (m+1)
and so it must contain a repeat. Hence the claim holds for i = 1.

Assume that the claim holds up to thei(i- 1) - block where 2 < i < s.

We will demonstrate now that it holds for the i-block of w'.

Let U be the rightmost occurrence of b, , in the left (i-1)-block of w'
and let T be the leftmost occurrence of bi-l in the right  (i-1)-block of w'.

Let OU be the ancestor of U on T and let 0T be the ancestor of T on T.

Thus we have the following situation (we have assumed that OU is closer
to the root than OT; clearly we can assume it without lToss of

generality).




LRI

L
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Teft (i-1) - block

left i-block

..... | } L
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right i-block right (i-1)-block




Clearly all nodes above OU contribute either to the left of U or to
the right of T. Now let Ql’ ""QK be all the nodes strictly between
OU and 0T such that they contribute to the right of T.

q q Qs q. '
Since [’b~|1 b22 .. bﬁizz b12]1[ =qpt ..t qi_l,c]ear]y we have
L+lsqp+...+ a4 e et e (3)

Now Tet Zys s Zps Zp 41 be segments of 1 defined as follows:

z4 consists of all the nodes strictly between 0, and Ql,”

U
Z, consists of all the nodes strictly between Q1 and QZ’

z, consists of all the nodes strictly between Qp_q and Qs

Zp 41 consists of all the nodes strictly between Q£ and OT'

We consider now separately two cases.
Case 1. At least one of the segments Zis eees 2y consists of more than
m nodes.

Let iO be the smallest index j such that‘zj consists of more than m nodes.

In z; we consider the segment y consisting of the first (m+1) nodes.
0

- Clearly, this segment contains a repeat; say u. Note that all the nodes

from 21512 S Zi 1Y contribute to the right of U (but to the left of T).

29 -
0 .
The number of occurrences contributed to w' by all the nodes from

Zys s Zi 0 Y is not greater than (£+1)(m+1) and so by (3) it is not

greater than (q1+-...+-q1_ 1t 1) (m+1). Since the length of the left and the right
i-block equals 9y this means that all occurrences contributed by nodes

from zy, ..., 2, 4, v are within the i-block.

Thus in this case the claim holds for the i'th block.




Case 2. Each of the segments Zys e Zp consists‘of no more than m
nodes.

Clearly in this case the number of occurrences contributed to w' by
all the nodes from Zys ...s 2y, does not exceed (£+1)m and (because the
length of the left and right i-block is qi) all of these occurrences are within
the i-block. Moreover, from (3) and from the definftion of q; it follows
that if we consider the segment p of T consisting of (m+1) nodes immediately
following 0T then all the nodes from p will contribute to the i-block
of w'. But p must contain a repeat and so also in this case the claim holds
for the i'th block. |

Hence we have completed the induction and the claim holds. 0

Now that the claim is proved we complete the definition of p as follows.
Let for each i ¢ {1,...,s}, k(bi) be the length of the front of a
repeat y on 1 which satisfies the statement of Claim 2.1 and has the shortest
length. If bi =a, for 1 < j <d, then we set vj(j) = k(b:). Thus p is now

J 1
completely defined; p = Voo Vi sees Vyge

H

We set Lw' L(o(p)). In order to show that Lw' c K it suffices to show

(see Lemma 0.1) that 0(p) ¢ ¥(K).

Let v € O(p), hence v = Vo t Zl v1+'...-+£d vy where El, ...,£d e N.

If Vi(i) # 0 for 1 <1 < d then in the derivation tree D of w' (from the
proof of the above claim) we will "iterate" L, times a repeat of the length

“k(ay) contributing to the i-block (and we do it for each i satisfying

v(i) = 0). In this way we get the word w'(£ .,£d) such that

1>
W(w‘(ﬂl,..., Kd)) = v, Thus v e ¥(K).

IA

Consequently 0(p) < ¥(K) and so L, < K. Clearly size(Lw.) q. Finally

]

we notice that w e Lw' (because w' € com(w)) and so if we set Lw Lw' the

lemma holds. 0O




But Lemma 2.1 together with Theorem 1.2 proves the "only if" part of

the theorem.

Consequently the theorem holds. 0O

The following corollary of Theorém 2.1 solves an open problem from

[L].
Corollary 2.1. 1f K is a commutative linear language then K is reqular.
Proof.

Directly from Theorems 2.1 and 1.1. O

Also, directly from Theorem 2.1 we get the following result.

Corollary 2.2. A language is commutative and regular if and only if

it is a finite union of periodic languages. 0
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