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1. Introduction. The purpose of this paper is to develop a chapter in

the theory of the small vibrations of mechanical systems which is the
consequence of some recent work in matrix theory. The results which we
shall obtain are based primarily upon papers of Parter [1] and Maybee
[2], [3], [4]. And, while we shall expound our theory in the context
of mechanics, the methods and results are applicable in other areas as
well, in particular in electrical vibrations.

We shall be interested in the vibrations of a mechanical system
for which the kinetic energy T has the form

n
®

1 2 .
T:E ijqj,mj>0,1San, . (1.
j=1

and the potential energy V has the form
n
= . .2
\4 Z 853949 (1.2)
ij=1

Here the variables ql,...,qn are the generalized coordinates of the
system and the matrix S = [Sij]? has properties which we will now specify.
To this end we require some preliminary ideas.

(i) 1f A = [aij]'ll satisfies the condition a, 40 if and only if
aji A0 we say it is combinatorially symmetric.

(ii) If A is a combinatorially symmetric matrix the graph of A, G(A) ,

consists of n vertices v

17 with an edge joining \ and Vj’

i#£#3, if aij A0 .
Observe that in this definition we have not made use of the elements
aj4 1 <i<n, hence G(A) is loop free.

(iii) A graph T 1is called a tree if it is connected and has no circuits.



Definition 1. The square matrix A = [a ]? is said to be of class

ij

Q; if G(A) 1is a tree and if
ajj >0, 1 <3j <n,
(1.3)
aijaji =20, for 1i £ j

Definition 2. A mechanical system will be called a vibration tree if

the kinetic and potential energies are given by (1.1) and (1.2) where
the matrix S is symmetric and positive definite and G(S) is é tree.
We note that the hypotheses of symmetry and positive definiteness
guarantee that conditions (1.3) are satisfied for S hence § € Q;
In addition to the matrix S we have two other matrices associated

with a vibration tree. First the matrix M = diag[m ..,mn] , Which -

1’
is a diagonal matrix with positive diagonal entries, and also

v=n1s (1.4)

which we shall call the matrix of the system. Let us derive the proper-
ties of U .
In the first place U ¢ Q;, since S ¢ Q; and multiplication of

. 1
the i-th row of S by the positive number o does not affect the

' i
membership of S in Q; . Also U 1is not symmetric, but it is a well
known fact that a positive definite non-singular matrix L exists such
that U = I.._l UL is symmetric. In the present case L can be chosen

to be a positive diagonal matrix (see [2]). In fact, it is easy to see

that if

and

fi
o

I



then for i # j

uij = sgn Vij /Vijvji
where

1 if .. >0,

1]
sgn v, . = -1 if v, K <0,

1] 1]
0 if v,, =0 .

1]

Now consider the free vibrations of a vibration tree. Using the

Lagrange equations of motion we have
MG + Sq = 0
where q = (ql,...,qn) + We can also write this system in the form
4+ Ug =0 . (1.5)

Thus we can characterize a vibration tree as a system of the form (1.5)

%

where the matrix U ¢ Q; . i

2. Examples of Vibration Trees.

Example 1. A mechanical system is called a Sturm system if the kinetic

energy is given by (1.1) and the potential energy has the form

=1

n-1

2
vV = Zaiqi—z 2 b;a;4d

i:l 1=1

i1 3 >0, 1 <1i <n, (2.1)

bi >0, 1 <i<n-1.

Charles Sturm was the first to investigate the oscillations of such systems
in detail. His work was diséovered in manuscripts found after his death
(see Bocher [5]). Moreover, his remarkable theorem of algebra was also

discovered in the course of these investigations.



The matriX S for the Sturm system is a Jacobi or tridiagonal

That is, we have s, . =0 if |i— j‘ >1, s.. =a., l<i<n,

matrix, ij ii 5

and Siil = 85,11 —bi’ 1l <i<n-1. The graph of S is shown in

figure 1 For convenience, we shall call such a graph a Sturm graph.

. 1 2 _’3 n-1 , n
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G(S) for a Sturm system

figure 1.

Among the many physical problems which lead to Sturm systems we
mention only one; namely the transverse oscillations of a weightless
ideally flexible thread with n beads. This problem has an honorable
place in the history of mechanics, having been studied by d'Alembert,
Daniel Bernoulli, Euler, and Lagrange. With appropriate hypotheses on

the motion the problem has the form

n
1 g 1
T:E’ Zmy ) A =_2" E Z(y1+l“y1) 3 yo =Yy =0 . (202)

where yj is the displacement of the j-th bead, mj is the mass of the
j-th bead, £y the segment of the thread between the (j - 1)-th and j-th
beads, and ¢ 1s the (constant) tension in the thread. The formulas (2.2)

are correct if both ends of the thread are stationary.

Example 2.

Consider the system of springs and masses illustrated in figure 2.

By use of a free body diagrm and some simple manipulation the equations
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Figure 2.

for the free vibrations of this system can be put into the form (1.5).

Let us set

. n -Zl kj
o = - kK., b, =-——— |, 1 < j<n-1,
M J J /
1 j=1 Mle
Y - = (k. +k )
i~ Mj J n+j-1

Then, corresponding to the matrix U in (1.5), we have the symmetric

matrix
U = o bl b2 . e e bn—l . (2.3)
b1 Yl 0o . . 0
b2 0 Yz A ¢
bn~1 0 0 Yn—l

A matrix having the form (2.3) is usually called a bordered diagonal
matrix and, for this reason, we shall refer to any mechanical system with
such a matrix, as a bordered diagonal vibration tree. The graph of U

is shown in figure 3.



Graph of bordered diagonal matrix

Figure 3.

As one might conjecture the fundamental properties of the bordered
diagonal vibration tree are quite different from those of the Sturm

system,

3. Fundamental Spectral Properties of Vibration Trees.

We have seen in the introduction that the natural frequencies and
modes of vibration of a vibration tree can be obtained from the study

of the symmetric matrix U. The matrix U is also positive definite

..l i
since S 1is positive definite, hence U =M S is also, and thus so is

U = D_lUD by two applications of the BinetFCauchy formula. It follows
that if xl,..,,xn are the eigenvalues of the matrix ﬁ, we can assume
that

| 0 < Kl < Kz < 0w .S Kn . (3.1)

Our purpose in this section is to refine the sequence of inequalities
(3,1) and to deduce some facts concerning certain of thp eigenvectors of
a vibration tree. To achieve this we must first introduce an additional
concept.

Let us denote by C the closed qualitative cone in Rn containing

01

in its interior the vector x = (1,1,...,1) , i.e., the vector with n

components all equal to 1, and by C

02 the cone containing -x.



(Qualitative cones in Rn are discussed in the paper [4].) In general,
we denote by ij the various‘closed qualitative cones in Rn containing
in their interior at least one vector having exactly k changes of sign
in its sequence of components. Thus, for example, we might denote by

C11 the céne containing x = (~1,1,...,1) (each component except the

first equal to 1 ), by C the cone containing s = (-1,-1,1,1,...,1),

12
etc. Each of these closed qualitative cones is a closed hyperoctant in
Rn and each closed hyperoctant is found somewhere in the sequence ij .
Clearly k < n-1,

Now we formulate
Theorem 1. Let ﬁ be the matrix of a vibration tree. Then:

(i) U has a unique positive eigenvalue X such that for every other
eigenvalue A of ﬁ, A>A>0 .

(ii) There exists a qualitative cone Cpq such that an eigenvector
y of U belonging to i belongs fo the interior of Cpq o

(iii) No other eigenvector of U not linearly dependent upon y belongs

to C
Pa

Ezggﬁ. We have already observed that the eigenvalues of U are positive,
hence the righthand half of the inequality in (i) is true. The remainder
of theorem 1 results from the following construction. We shall first
construct a vector x = (xl,...,xn) with all components different from
vzero and having the property that the scalar product of the j-th row

vector u, = (U.,,cs0.,U
J jrres

) of U with x has the same sign as x,, i.e.
jn J !

n
(Zujkxk)xj>0,lsjsn. (3.2)
k=1



To this end set x, = 1 and suppose u

1 SETIRIRRE A B 1 2

1 P

are the nonzero elements in the first row of ﬁ which are not on the

principal diagonal of U . We set Xk+l =1 if ulik >0 and Xk+l = -1

if ulik < 0 . Next let uZil"°"u2i ) 2 < i, <iy < v < lp <n be

the nonzero elements in the second row of U which are above the princi-

pal diagonal of U . We set xp+l+k =1 if uZik >0 and xp+l+k = =1

if uZik < 0 . This process is continued until all of the nonzero ele-
ments above the principal diagonal of U are used up. Since G(ﬂ) is
a tree there are exactly n-1 of these nonzero elements and the vector
X will be completely and uniquely determined by this construction. It

remains to establish (3.2). By construction ujkxkxj =20 for k > j

2
and it is obvious that u.,.x., >0 . Finall for k< j u, x x,
333 Vo < J AR

uijkxj = 0 again by construction.

Now the vector x which we have constructed belongs to a unique
qualitative cone Cpq and the inequality (3.2) implies that U maps

Cpq into itself. Moreover, U is irreducible so that no coordinate
subspace of Rn is left invariant by U and hence U is irreducible
relative to the cone Cpq . The entire theorem now follows from the
generalized Perron-Frobenius theorem of Birchoff and Vandergraft and its
corollaries (see the paper [6]).

We remark that a different and perhaps simpler proof of most of
theorem 1 was given in the paper [2]¢ But the present formulation of
the theorem is more precise and the construction of the vector x 1is of

particular interest in mechanics since the eigenvector y Dbelonging to

A will have the same sign pattern as x . We further remark that the

1l <i, <i <...<ip

< n
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We first require the following result from the paper [3].

- -=1
Lemma 1. Let U € Q; . Then every cycle of U is positive and
—~1
every element of U is different from zero.
We shall point out some interesting facts related to lemma 1 below,

but for the moment it furnishes a primary tool for the proof of

Theorem 2. Let U be the matrix of a vibration tree. Then:

(i vu has a unique positive eigenvalue % such that for every
-1 ~
other eigenvalue X of U , A >A>0 .

(ii’) There exists a qualitative cone Ca a such that an eigenvector
b4

§ of U belonging to i belongs to the interior of Ca ~ .

1 p,q
(iii") No other eigenvector of U belongs to Cﬁ ~
3
-1 *

Proof. By lemma 1 U is irreducible and a Morishima matrix. Hence
there exists a permutation matrix P such that
t--1 v ]
B=PU P = B11 B12

; le B22 |
where B11 and B22 are square positive matrices and —B12 and —B21

are (in general) rectangular positive matrices. It follows that B and
hence also 5—1 itself leaves invariant a qualitative cone Cﬁ& in

R™ and is irreducible with respect to this cone. The remaining results

of the theorem follow again from the generalized Perron-Frobenius theorem.

Matrices having all nonzero cycles positive have been extensively studied
and are called Morishima matrices (see [4]). Professor Michio Morishima
of the London School of Economics is a distinguished mathematical econo-

mist. His original work on such matrices appeared in 1952 in the paper

(71



cone Cpq is determined uniquely up to compliments hy U . Two cones
are complimentary if the elements of one are the negatives of the elements

of the other.
By following through the construction of the theorem we obtain the

followingsign patterns for aneigenvector belonging to the largest eigen-

value of U when U is a Jacobi matrix, the matrix of a Sturm systen,
and when U is a bordered diagonal matrix.

1. Suppose U is a Jacobi matrix with each element uii+l <0,

1 <i<n-1 . Then
n+l
sgn y = (4,=,4,,+, ..., (~1) )

where sgn y 1is the vector defined in [4]. In this case U is the matrix

of a Sturm system.

2. Suppose U is a Jacobi matrix with each element uii+l >0,

l<i<n-1. Then
SEN ¥ = (+,+5e00,+) o
3. Suppose U is a bordered diagonal matrix with uli <0, 2 <i<n.

Then

Sgn ¥y = (+,=,~,ee0,") .

4. Suppose U is a bordered diagonal matrix with sgn U, = (—1)n,
2 <1 <n . Then

n
Sgn ¥ = (+,+,=,+, .0, (1)) .

As a consequence of theorem 1 the sequence of inequalities (3.1)

is sharpened so as to have the form

4
0 < Kl < Xz € 0ee < xn_ < Xn . (3.19

1
Our'next results will, among other things, sharpen this sequence still

further. For this purpose we shall examine the matrix 6_1 .
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Several observations may be made. In the first place, observe that

the sequence (3.1) is now refined to
0 <M <k < .o =) <A, (3.17)

since the largest eigenvalue of ﬁ_l is the reciprocal of the smallest
eigenvalue of U o

Observe also that we have not given any rule in the proof of theorem
2 for computing the sign pattern of the eigenvector vy corresponding to

A We shall correct this omission shortly.

1
Finally observe that the matrix ﬁ_l is of considerable interest in
mechanics. It is called the flexibility matrix or influence matrix of

the system.

4. The eigenvector belonging to the smallest eigenvalue of a vibration tree.

We shall make use of the cofactor formula first published in [3] (see
also [4]) in order to find the sign pattern of the eigenvector belonging
to the smallest eigenvalue of U . To save verbiage let us denote this
eigenvector by vy to conform with the notation of (3.17).

. Let u B be an element of U y o # B, and consider the cofactor
o

U . According to the above mentioned formula U can be computed

aB af

if we know the chains from B to ¢ in U and appropriate principal
minors of U . Since G(U) is a tree, there is exactly one nonzero
chain in U from B to o . Also because of positive definiteness the

principal minors of U are positive and the sign of U depends only
o

p

upon the nonzero chain ﬁ(ﬁ -.@) . Such a chain enters the cofactor

formula with sign (--1)r where r 1is the length of the chain. Finally

) is a Morishima matrix, hence the sign patterns of any two rows are
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either identical or the negative of one another. Thus vy has the
; . =-1
sign pattern of, say, the first row of U . All of these facts enable

us to state the following result.

Theorem 3. Let U be the matrix of a vibration tree, let xl be the
smallest eigenvalue of ﬁ, and let Yy be a corresponding eigenvector.
Then the first component of yl is positive and the Jj-th component for

1l «j <n has sign (—l)p sign u(j » 1) where u(j - 1) is the (unique)

nonzero chain in U from J to 1 and p is the length of a(j 1) .

Let us illustrate theorem 3 with an eXample, Suppose ﬁ has the
graph shown in figure 4 with the signs of the appropriate elements not

on the principal diagonal as indicated. (For example, the + sign on the
1

Figure 4.

edge joining vertices 1 and 3 indicates that u13 and u31 are positive,

etc.) Then Yy satisfies sgn vy, = (,-1,-1,-1,1,1,-1) . On the other
hand the sign pattern of Yg the eigenvector belonging to the largest
eigenvalue X7 of U, is given by sgn Yy = (1,1,-1,-1,1,~-1,1) . Thus

we have p =4, ﬁ = 3 for the present example.
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5. More on the examples.

The two examples of section 2 represent, in a sense which will become
qlear presently, the two extreme possibilities for the spectrum of a
vibration tree. We can, indeed, use them to show that the results obtained
in sections 3 and 4 cannot be improved upon in general.

The monograph [8] of Gantmacher and Krein gives a thorough account
of the theory of Sturm systems. We summarize the principal results

below in theorem 4 using the language of qualitative cones.

Theorem 4. Let U be the matrix of a Sturm system. Then the eigenvalues
of U satisfy

0 < xl < Kz < e < Kn (5.1)

and there exists a sequence of qualitative cones C_.. ,C

oy ees,C .
0j,' " "13,° ! n-l,Jn

, 1 2
such that an eigenvector yp of U belonging to xp belongs to the

interior of the cone C . .
p_lpr

We remark that the sequence of cones l<ps<n, is

Cp*l,Jp’
determined uniquely up to complimentary cones by U

Now it is obvious that the sequence of inequalities (5.1) is much
stronger than (3.1”), but the example of the bordered diagonal vibration
tree shows that (3.1”) is the strongest sequence of inequalities obtain-
able in the general case.

Consider indeed the matrix U given in (2.3). Setting D()) =

determinant (ﬁ— AI) we have

n-1 'n-1 n-1
2 .
DM = (@=N T[T -0 = 3ny T y=-» . (5.2)
i=1 j=1 i=1

i£
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Suppose there are m distinct values among the Yi which we may take

to be 81,52,...,Bm in increasing order and these occur with multiplicities

nl,nz,.,..,nm respectively. We have, or course,

n, +n_+ ...+n =n-1
1 2 m

(We could have m = n-1 so that there are no repetitions among the Yi D)

m
n,-1
From the righthand side of (5.2) we can factor out [| (Bi-h) * !
i=1
hence B4 is an eigenvalue of U of multiplicity ni-l . Now devide
m
!

-\ i

D(A) by WT’(Bi y: to yield
i=1
m 2
D{A) 4
~ =a-A- ) T = e - A0y,
Ny i-1 *
1T ¢a = »
i=1
2
e 2
where d(A) = A + Z} 5 - % and cy is the sum of the n, values of
i
i=1

2 2
bj associated with Bi’ hence cy >0 . Clearly the eigenvalues of

U not found among the Bi are going to satisfy

al) = o . (5.3)

Let us plot d(A) against X . Obviously d()A) is asymptotic to each
of the vertical lines ) = Bi , 1 <i <m . Moreover, we have

m C2
'O =1+ ) — >0,
i=1 (B~ W

hence d is an increasing function of A wherever it is defined.

N

Observe that d(0) >0, d - -o as A -0 and d - 4o as )\ = +» .

Hence the graph is as shown in figure 5. We see that the m+1 roots
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of d(\) = o, denoted by Hyoes ooty g satisfy the relations
By <Byps Bjog <Hy <Bys 2<ism, g < Mol (5.4)

It follows that the n eigenvalues of U are divided into two groups
as follows:
"I. There are n-(m+1) eigenvalues consisting of ni-—l values
equal to Bi' l<i<m.
II. There are m+1 eigenvalues uj y, 1 £ <=m+1, which are simple
andlSéfisfy (5.4) .

The first group can be empty (the case m = n-1) but there are
always at least two elements in the second group. In the case m =1
where all Yi are equal to 51 there are two eléments in group II and

the sequence (3.1”) has the form

0 < Xl < Xz = KB = vee = A < A,

justifying our claim that the sequence (3.17) cannot be sharpened in
J y

general,
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Theorem 4 also contains a very strong statement about the eigen-
vectors of a Sturm system. For comparison, let us examine the eigen-—
vectors of the bordered diagonal vibration tree.

It is convenient to suppose that the rows and columns of U are so

arranged that

Yj =p; for 0 <j-n -...-n, < n,
We must consider the equation (ﬁ-—XI)y = 0 where y = (yl""’yn)
and A is an eigemnvalue of U . This systenm is
n-1
(@-NVy; + ) by, =0 (5.5)
J=1
bjy1-+(Yj- >\)yj+1 =0, 2<Jjsn-1. (5.6)

Suppose first A = Bi . Then ni equations of the form (5.6) reduce to

bjy1

= 0, hence yl = 0 . The remaining n--l--ni equations of the
form (5.6) reduce to (Yj— Bi)yj+l = 0 hence the corresponding components
of the eigenvector are all zero. Finally the n, components which need

not be zero must satisfy (5.5) which becomes

n-1
b.y. =0 7
E Vi (5.7)
j=1
because ¥y = 0 . There are n, nonzero terms on the lefthand side of

(5.5”) and we can clearly obtain ni-l linearly independent solutions,
hence n; - 1 linearly independent eigenvectors. Moreover, it is easy
to see that these eigenvectors can be so chosen as to have exactly two
nonzero components.

- It remains to consider an eigenvector belonging to by l <k sm+1

For such an eigenvector we have the n-1 ‘equations

.
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since K-—Vj A0, 1 <£j<n-1. Evidently all of these eigenvectors
have the property that each component is nonzero

Thus we can conclude that for the bordered diagonal vibration tree
the presence of multiple eigenvalues implies the existence of eigenvectors

with some zero components.

6. Spectral multiplicity.

The example of the bordered diagonal vibration tree represents more
typically the behavior of vibration trees than does the classical example
of the Sturm system. (Our discussion of this example is borrowed, in
part, from that of Wilkinson [9], although this author does not examine
the eigenvectors.) Indeed we shall see that every vibration tree which
is not a Sturm system can have multiple eigenvalues.

It seems to be commonly supposed, if one may judge by statements
available in the literature, that multiple eigenvalues can be ignored in
‘vibration problems. This supposition amazes the present authors. Not
onlywcan multiple eigenvalues occur in nearly all vibration trees ~--
which represent the simplest large scale systems -- but nearly equal
eigenvalues cén occur even in Sturm systems. The use of the modern
digital computer has taught us that nearby eigenvalues are extremely
difficult to distinguish from actual multiple eigenvalues in the real
world of computation. In any system in which multiple eigenvalues can
occur, nearby eigenvalues can.obviously also occur.

“In order to study the possible spectral multiplicities of vibration

trees we require some determinant formulas and some additional graph
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theoretic ideas. The first person to point out the close connection
between the graph G(A) and the spectral properties of A when G(A)
is a tree was Parter in the paper [1]. O0f course, the use of topological
methods to derive determinant formulas for electrical networks goes back
to Kirchhoff and J. C. Maxwell.

First a few graph theoretic concepts. If G is a graph and p. a
vertex of G we remind the reader that the degree of p 1is equal to
the number of edges of G incident at p . An edge of a graph G is
called a bridge (of G) if its removal causes G to become disconnected.
If G is a tree with n vertices it has exactly n-1 edges and every
edge is a bridge. Following Parter we shall let  G(p,q) denote the
connected subtree of G containing p obtained by removing the edge
{p,a} . If G is the graph of the matrix U we denote by D(p,q)
the determinant of the (principal) submatrix ﬁ(p,q) corresponding to
the subtree G(p,q) . We let D(p,q,A) Dbe the characteristic polynomial
of this submatrix. We set D()) = det (U- \I) . Finally we denote by
D’(p,q,A) the determinant obtained from D(p,q,\) by deleting the row
andncolumn containing upp-'l

Our subsequent results are based upon two determinant formulas.

I. The edge formula:

D(A) = D(p,a,\)D(d,Dp, M) - uiqn'm,q,x)n’(q,p,x) (6.1)

The edge formula holds for any edge {p,q} in G(U) (we set D’(p,q,\) =1
if D(p,q,\) = app— A) . It is the generalization to an arbitrary tree
of a corresponding formula for Sturm systems upon which Sturm based his

investigations. There is a second generalization which Parter called the

neighbor formula.
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II. The neighbor formula:

k k k
v 5 o
D()\) = (uqq‘X) TTD(pj)Qy)\) - Z uquD (PJ,a,n) TTD(pm,CIyK) (6.2)
j:l J :l m:l
m# j
where pl"'“’pk are the neighbors of q in G . The neighbor formula

holds for any vertex q in G(ﬁ) . (Observe the close similarity of
formula (6.2) to (5.2) which is the neighbor formula applied to the
vertex 1 of degree n-1 in that example.) The integer k is the
degree of the vertex q .

Observe that if gq is an endpoint of G(ﬁ) , i.e., a vertex of

degree 1 both formulas reduce to

—_ - - 2 4
D()\) = (uqql M) D(p,q,\) Uog D(p,q,N) . (6.3)

Using formulas (6.1) and (6.2) and an ingenious graph theoretic
argument Parter proved the following theorem which we paraphrase as it

applies to vibration trees.

Theorem 5. Let U be the matrix of a vibration tree. Then U has an
eigepvalue A of multiplicity greater than 1 if and only if G(U)
contains a point q of degree = 3 such that A 1is an eigenvalue of
D(pj,q,K) for at least three neighbors pj , 1 <3 <3, of q

Some remarks are in order.

Among vibration trees Sturm systems are characterized by the fact
that G(ﬁ) has no vertex of degree > 2 ., All other vibration trees
have at least one vertex of degree = 3 . Consequently any vibration
tree which is not a Sturm system will have a multiple eigenvalue if the

physical parameters are properly chosen.
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Let us give a simple mechanical interpretation of the theorem.
Suppose, to be specific, G(U) contains a point p of order 3 with
neighbors pl,pz,p3 . Consider the submatrix ﬂ(pj,p) . It is the
matrix of a vibration tree obtained by imposing constraints upon the
original system. The mechanical ihterpretation of the theorem is now
clear. A vibration tree has a multiple eigenvalue A if and only if
there is a point at which at least three subsystems are joined together
each of which has X as an eigenvalue.

Next we remark that the if portion of theorem 5 is an immediate
consequence of formula (6.2). Indeed, if the point g ip the formula

has 3 or more neighbors such that XO is a zero of D(p,q,A) , then

each term on the righthand side has at least a double zero at KO .

Moreover, the following lemma is immediate.

Lemma 2 . Let U be the matrix of a vibration tree. Then U has an

eigenvalue XO of multiplicity k if G(ﬁ) contains a point q of

degree = k+1 such that for k +1 neighbors of q,

pl""’pk+1

KO is an eigenvalue of D(pj,q,K)

We shall show that the condition of the lemma is not necessary.

)

In fact, we have

Lemma 3. Given any positive integer p > 2 there exists a vibration tree

having an eigenvalue of multiplicity p with matrix U such that G(ﬁ)

has no vertex of degree > 3 .

Proof. The proof is by induction on p . For ©p = 2 consider the tree

of figure 6.
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G(U) for p =2
Figure 6.
The corresponding matrix is
U= ‘ b i
U ay bl 2 b3 ,
b1 a, 0 0
0
b2 a3 0
b3 0 0 a,
a bordered diagonal matrix with a double eigenvalue if a, = a_ =a, .

1 3 4

Thus the lemma is true for p =2 . Suppose, now it is true for the

value p-1 and let Gp_.1 be the corresponding graph. Let q be a

vertex of degree 1 of Gp_

1 and construct Gp as shown in Figure 7

Gp__l

s
G(ﬁ) for p from Gp—l
Figure 7.
We apply formula (6.2) at the point q . Denoting by Dp_l(k) the

determinant of the matrix of U corresponding to G we have for the

p-1

matrix corresponding to the graph in figure 7
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D(A) = (urr— K)Dp~l(X)D(s,r,X)D(t,r,K)
- urqD;_l(K)D(s,r,X)D(t,r,X)

(DD(t,r,\) - (M)D(s, 7, )

rs p -1 t p-1

Since D(s,r,)) = u_ _=-XA, D(t,r,\) =u, —-A

ss tt , this reduces to

2
D(A) = (u .- K)(uss-'X)(utt-K)Dp_l(x)- urqu_l(X)(uss-x)(utt~ A)

2 2
R R O L S R Doy M Cu - M)

Suppose A is a zero of D (A\) of order p-1 then it is a zero

0 p-1
of Dp_l(K) of order p-2 . 1t follows that, if U, o= U = KO’
KO will be a zero of order p of D(A) . This completes the inductive

step and the lemma is proved.

We remark that the vibration tree we have constructed‘in the proof
will have p-1 vertices of degree 3 in its graph. As an illustration,
figure 8 shows the graph we have constructed for an eigenvalue of multi=-
plicity 5 . If the elements on the principal diagonal of U corresponding

to all vertices of degree < 2 are all equal to )\ then KO will be

O b

an eigenvalue of multiplicity 5 . It is easy to construct specific

mechanical examples which have this form.

Figure 8,
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Obviously there are now many special results on spectral multiplicities
which can be obtained with the help of the ideas we have introduced. We
shall not pursue this question further in the present paper. Instead
we will conclude with a brief discussion of eigenvectors belonging to
multiple eigenvalues.

Let us focus our attention upon a vertex q of degree =3 of G(ﬁ).

The matrix U may be written in the form

_ py ) .y
U = U(pl,q) 0 e 4 e uplq e e e s e
0 ﬁ(p2,q) .. o.u!

plq qu qq Pk,q
-, -
R ¢ . o U(
B»d U pk,q)
when dq has degree k . Here Gp q is a row vector having exactly
i?
one nonzero element and Gé a is the corresponding column vector.
i’

Suppose, to be specific, that the points pl,pz,p3 are neighbors of ¢

such that D(p 0, 1 <j<3, hence )\ is a double eigen-

0

H

j,c;',xo)
value of U . Let x = (xl,...,xr ), v = (yl,...,yr ), z = (zl,...,zr )

1 2 3
be the eigenvectors of ﬁ(pl,q) , ﬂ(pz,q) , and ﬁ(ps,q) respectively

belonging to Ko . We may assume that X11¥122, are the components

associated with the points pl, pz, and p3 . (This is equivalent to

supposing that u = (u 0,...,0) , etc.
pposing b, ( plq, ) ,0) , )
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If xlylz1 A 0 choose any a and b such that
au X, +bu y, =0
pal p,a’l
and any ¢ and d such that
cu X, +du z. =0,

ql p,a 1
Then the vectors

vy = (axl,...,axrl,byl,o..,byrz,0,0,...,O)

and

v, = (cx

9 ,...,cxr ,0,...,0,dzl,.°,,dzr 305 ¢00,0)

1 1 3

are linearly independent eigenvectors of U belonging to KO .

If X = 0, then

vy = (xl,...,xr ,0,0,...,0)
1

is an eigenvector of U belonging to XO .

If x =0 and Y1%1 # 0 choose a and b such that au_ y.+b 0

u Z. =
1 p,a" 1 P4 1

and

vy = (O,.,,.,,O,ayl,...,ayr ,bzl,...,bzr ,0,...,0)

2 2
is a second eigenvector.

Finally if X = 0 and, say ¥y, = 0, then

v, = (0,...,O,yl,...,yfz,O,Q.Q,O)

is a second eigenvector.
Clearly the above considerations can be extended to the general case
and we see that linearly independent eigenvectors belonging to multiple

eigenvalues of U can always be found easily from eigenvectors of proper
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submatrices of U . These eigenvectors will also always have some com-
ponents equal to zero.

The result of this section clearly justify our remark in section 5
that the bordered diagonal vibration tree is more representative of

vibration trees in general than the Sturm system is.
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