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Thesis directed by Prof. Murray Holland

A spectrally pure coherent light source is an important component in precision measurement

applications, such as an atomic clock. The more spectrally pure the coherent light source, or the

narrower the linewidth of its power spectrum, the better for atomic clock experiments. A coherent

light light source, such as a laser, is intrinsically an open quantum system, meaning that it gains

and loses energy from an external environment.

The aim of this thesis is to study various open quantum systems in an attempt to discover a

scheme in which an extremely spectrally pure coherent light source might be realized. Therefore,

this thesis begins by introducing the two main approaches to treating open quantum systems, the

quantum master equation approach, and the quantum Langevin equation approach. In addition to

deriving these from first principles, many of the solution methods to these approaches are given and

then demonstrated using computer simulations. These include the quantum jump algorithm, the

quantum state diffusion algorithm, the cumulant expansion method, and the method of c-number

Langevin equations.

Using these methods, the theory of the crossover between lasing and steady state superradi-

ance is presented. It is shown that lasing and steady state superradiance might be demonstrated in

the same physical system, but in different parameter regimes. The parameter space between these

two extreme limits is explored, and the benefits and drawbacks of operating a system at a given

set of parameters, i.e. to achieve the most spectrally pure light source, are discussed.

We also consider the phase stability of a laser that is locked to a cavity QED system comprised

of atoms with an ultra-narrow optical transition. Although the atomic motion introduces Doppler

broadening, the standing wave nature of the cavity causes saturated absorption, which can be used

to achieve an extremely high degree of phase stabilization. The inhomogeneity introduced by finite
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atomic velocities can also cause optical bistability to disappear, resulting in no regions of dynamic

instability that would otherwise restrict operational parameters in the experiment to be tuned

outside of the optimum region where the minimum linewidth occurs.
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Chapter 1

Introduction

1.1 Background

Our understanding of the interaction between light and matter is important, both fundamen-

tally, and because it allows for the development of applications that are integral to the operation

of our society. For instance, it was this understanding that allowed for the invention of the laser in

1960, which was then called ”a solution looking for a problem” [81]. Since then, lasers have become

ubiquitous in our society, with a vast scope of applicability, ranging from medical applications, such

as cancer diagnosis and treatment [24, 25, 35], eye and general surgeries [20], and medical imaging

[32], to industrial applications, such as cutting and welding [5]. Lasers are also used in nuclear

fusion research to deliver a tremendous amount of energy to an extremely small fuel cell, in an

attempt to achieve conditions where nuclear fusion [51, 52] will happen. If achieved, this internal

confinement nuclear fusion would provide an inexaustible source of clean energy.

In fundamental biology research, optical tweezers, which rely on a highly focused laser and

can hold microscopic particles in place [3], have opened the doors to new experiments, including the

study of motor proteins [77], which are the mechanism behind transport phenomenon in neurons.

The information obtained from optical tweezer experiments could allow for the development of a

new generation of drugs and treatments to fight disease related to motor proteins [60].

Our understanding of the interaction between light and matter also has allowed for the

development of the atomic clock. The idea was proposed in 1945 by Rabi [4, 71], and by 1955, an

atomic clock based on a microwave transition in Cesium was built [28, 27, 29], which surpassed in
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accuracy and precision, the best quartz based clocks of the day [19, 46]. This led in 1967 to the

redefinition of the second, in terms of the frequency between two atomic levels in Cesium [71].

Since then, atomic clocks have increased in accuracy and precision by about an order of

magnitude every decade [45], and a vast number of new technologies, including GPS, have followed.

GPS is a space-based system that uses multiple synchronized atomic clocks to provide time and

location information anywhere on Earth, and it has revolutionized navigation in all aspects of our

society.

Recently, a new generation of atomic clocks based on optical transitions has been created

[82, 40, 43, 8]. These new optical atomic clocks were made possible by the new techniques of

trapping and cooling of atoms with lasers, and by the invention of the optical frequency comb. An

optical frequency comb is a pulsed laser that acts like reduction gears in the frequency domain,

allowing optical frequencies to be geared down to measurable microwave frequencies. Optical atomic

clocks have now surpassed the cesium standard in precision and accuracy by orders of magnitude,

and still are becoming even more precise and accurate [8]. In addition to ”being another solution

looking for a problem”, more precise and accurate clocks could be used to detect potential slow

changes to the fundamental constants of nature [7], or to confirm the existence of gravitational

waves predicted in Einstein’s general theory of relativity [6].

Currently, the precision and accuracy of these optical clocks are limited by the linewidth of

the laser used to interrogate the atoms through the Dick effect [17, 70]. Here, the cyclical operation

of these clocks causes an aliasing effect that translates the interrogation laser’s phase noise into the

feedback control loop that keeps the laser on the atomic resonance. The noise in the interrogation

laser is a bottleneck which limits the achievement of better precision and accuracy, and a narrower

linewidth interrogation laser is needed to increase the precision and accuracy of these clocks.

Much effort has already been invested in making a narrow linewidth interrogation laser. The

current state-of-the-art is to send laser light into an ultra-stable reference cavity to reduce the

laser’s linewidth [41, 22, 90, 50, 49]. This method has made for orders of magnitude reduction

in interrogation laser linewidth, but it is limited in further reducing this linewidth by the cavity
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length fluctuations due to the thermal vibrations of the cavity mirrors. Even when using these

cavity stabilized lasers, optical clocks still suffer from the Dick effect, so that further reducing

the linewidth of the interrogation laser would directly allow more accurate and precise clocks.

Reduction of a laser’s linewidth by this method, past the current state of the art, is very difficult.

Because of this difficulty, alternative methods of producing a narrow linewidth laser have

been considered. It was proposed, that in addition to a laser, coherent light can be produced in

an atom-cavity system that is operated in an exotic parameter regime. In this regime, the cavity

decay rate is much larger than the collective atomic decay rate, which is smaller than the decay

rate of independent atoms [65, 64, 63]. In this so called ”bad cavity” or superradiance regime, the

linewidth can actually be smaller than the atomic transition itself, due to collective effects. In fact,

this light could be used directly as the frequency measure for a clock, circumventing the need for

an interrogation laser all together [12]. This type of coherent light source has been explored only

in the extreme superradiance limit, and the crossover between superradiance and the more familiar

lasing limit has only recently been explored [80].

Another proposed method of producing a narrow linewidth laser is to place atoms with an

extremely narrow transition inside an optical cavity, and to stabilize a laser to an atomic transition,

instead of to an empty cavity resonance [62]. Such a system, which again lies in the bad cavity, or

superradiance parameter regime, is insensitive to thermal cavity length fluctuations, and therefore

circumnavigates the main bottleneck of further reducing the linewidth of empty reference cavity

systems. An experimental effort to realize such a system has been made [85], but in contrast to the

original proposal [62], the atoms had a non-negligible velocity, making Doppler effects important.

Still, it was shown theoretically how these systems could be optimized to allow for linewidths

comparable, or even narrower, than the state of the art reference cavity systems [79].

In this thesis, we will explore in detail the topic of the crossover theory from lasing to super-

radiance, and demonstrate the potential for a crossover system to be used in precision measurement

applications [80]. We will also explore the theory of the stabilization of a laser to narrow linewidth

atoms inside a cavity, including the effects due to atomic motion [85, 79, 14].
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Before these topics are explored, the background material necessary for their understanding

will be discussed. Specifically, these aforementioned systems are inherently open, meaning that they

are able to lose and gain energy. Therefore, the equations that describe open quantum systems

will be derived. Exact solution methods to these equations will be discussed. However, these

methods are only able to describe small systems, with ∼ 10 atoms. A solution method does exist

which exploits an underlying symmetry in the derived equations, and therefore drastically reduces

complexity, allowing for larger systems to be analyzed [89]. Still, this method is limited to systems

having ∼ 100 atoms, and therefore cannot be used to directly describe many realistic experiments,

which can have ∼ 105 or more atoms. To describe these larger experimental systems, approximate

solution methods must be used. Therefore, we discuss several approximate solution methods. In

addition to their ability to describe the specific systems previously mentioned, these approximate

solution methods are able to capture the essential physical phenomenon in a wide class of devices,

including the synchronization between two different ensembles of atoms [88].

1.2 Overview

In Chapter 2, the quantization of the electromagnetic field will be discussed. This will prove

necessary in order to correctly describe the Hamiltonian dynamics of our open quantum systems

when few photons are present. Also, it will be necessary in order to describe spontaneous irreversible

processes, such spontaneous emission. The power spectrum, and its relation to two-time correlation

functions will also be discussed. This will allow the spectral properties of a system, such as the

linewidth of the power spectrum, to be calculated.

In Chapter 3, the equation for open quantum systems in the Schrödinger picture of quantum

mechanics, known as the master equation, will be derived. Exact solution methods to the master

equation, such as the quantum jump and quantum state diffusion methods, will be discussed.

In addition, computer simulations of these methods are demonstrated. The cumulant expansion

method, which yields an approximate set of coupled equations for expectation values of system

observables, is then discussed.
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Chapter 4 will begin by deriving the quantum Langevin equations, which describe open

quantum systems in the Heisenberg picture of quantum mechanics. Although these equations can

prove useful for some analytical work, for computer simulations, they are very difficult to work with.

Therefore the Fokker-Planck equation for a quazi-probability distribution describing the system,

and its equivalent set of c-number (complex number) Langevin equations will be discussed. These

c-number Langevin equations can be simulated on a computer with relative ease. Once this proof-

of-principle procedure for deriving the c-number Langevin equations is shown, a more practical

way to derive c-number Langevin equations is given. This new procedure becomes more and more

advantageous as system complexity increases. Computer simulations of the c-number Langevin

equations for several systems will be demonstrated.

Chapter 5 will use several of the methods of the previous chapters to present the theory of the

crossover between lasing and steady state superradiance. Although lasing and steady state super-

radiance seem to be disjoint phenomena, it will be shown that they should actually be thought of as

the extreme limits of a single and more general phenomenon. In a laser, the phase information that

allows for coherence is stored in the light field. In steady state superradiance, the phase information

that allows for coherence is stored in the atomic ensemble. In the in-between parameter region, or

crossover region, phase information that allows for coherence can be stored in the light field and

the atomic ensemble simultaneously. The properties of systems that lie in the superradiance, lasing

and crossover parameter regions will be compared.

The rate at which energy is re-supplied to a typical laser allows the system to operate just

above the lasing threshold. It will be seen that a crossover system operating at this same rate of

re-supplying energy will be much farther above threshold, which can allow the linewidth of the

power spectrum to be orders of magnitude smaller than the laser. Such a system also exhibits

a much larger intracavity intensity than a superradiant system, so that the crossover system is

more experimentally accessible. The linewidth and intracavity intensity will then be shown to be

insensitive to atomic dephasing in all parameter regions, so long as the rate of atomic dephasing is

smaller than the rate of energy being resupplied to the system.
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It will also be demonstrated that a system in the superradiance region is insensitive to

fluctuations in cavity frequency, while a system in the lasing region is insensitive to fluctuations in

the atomic frequency. A crossover system is less sensitive to fluctuations in cavity frequency than

a laser system, and less sensitive to fluctuations in atomic frequency than a superradiant system.

This is important, since fluctuations in cavity length are the cause of the current limit on the

further reduction of the linewidth in today’s best ultrastable lasers.

In Chapter 6, we will consider the phase stability of a local oscillator (or laser) locked to a

cavity QED (Quantum Electrodynamics) system comprised of atoms with an ultra-narrow optical

transition. The atoms will be modeled as being cooled to millikelvin temperatures and then released

into the optical cavity. Although the atomic motion introduces Doppler broadening, the standing

wave nature of the cavity causes saturated absorption features to appear, which are much narrower

than the Doppler width. These features can be used to achieve an extremely high degree of phase

stabilization, competitive with the current state-of-the-art. A comparison between the developed

theory, and the results of an experiment on the system that we consider will be given. Finally, it will

be seen that the inhomogeneity introduced by finite atomic velocities can cause optical bistability to

disappear, resulting in no regions of dynamic instability and thus enabling a new regime accessible

to experiments where optimum stabilization may be achieved.

Finally, chapter 7 will give a conclusion of the presented material.



Chapter 2

Preliminaries

The equations that describe open quantum systems are comprised of both coherent Hamil-

tonian dynamics, and incoherent dynamics. In the systems that we will consider, the Hamiltonian

parts will describe atoms interacting reversibly with an electromagnetic field, meaning that energy

is transferred between the two, but is not lost to an external environment. If there are only a few

photons present in the field, a quantized electromagnetic field will be necessary for an accurate

description. A quantized electromagnetic field will also be required to describe the incoherent parts

of the systems, in which energy is lost to an external environment. These parts are derived by

coupling the system to a continuum of quantized electromagnetic field modes in vacuum.

In addition, the spectral properties of the light produced by a system will be of interest to us.

This aspect concerns the Wiener-Khinchin theorem. This theorem relates the power spectrum to

a two-time correlation function of field variables. In many cases the two-time correlation function

can be obtained with relative ease.

2.1 Quantization of the Electromagnetic Field

We begin by formulating the quantized theory of the electromagnetic radiation and demon-

strating the discrete photon excitations that this implies. Maxwell’s equations in vacuum and
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without sources are,

∇ ·E(r, t) = 0 (2.1)

∇ ·B(r, t) = 0 (2.2)

∇×E(r, t) = −∂B(r, t)

∂t
(2.3)

∇×B(r, t) = µ0ε0
∂E(r, t)

∂t
. (2.4)

Eq. 2.2 allows B(r, t) to be written as the curl of a vector potential A(r, t),

B(r, t) = ∇×A(r, t). (2.5)

In the Coulomb gauge, where ∇ ·A(r, t) = 0, E(r, t) can be written as,

E(r, t) = −dA(r, t)

dt
. (2.6)

Substituting Eqns. 2.5 and 2.6 in Eq. 2.4 yields,

∇2A(r, t) = µ0ε0
∂2A(r, t)

∂t2
. (2.7)

The general solution to Eq. 2.7 inside a cubical volume of side length L, with boundary conditions

corresponding to standing wave modes is,

A(r, t) =
∑
k

(
Akuk(r)e−ıωkt +A∗ku∗k(r)eıωkt

)
, (2.8)

where,

k =
2π

L
n , n = (nx, ny, nz) , ni = 0,±1,±2,± . . . , (2.9)

and,

ωk = c |k| . (2.10)

The mode functions uk(r) are given by,

uk(r) =

(
2

L

)3/2

sin(k · r)ek, (2.11)
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where ek is a unit polarization vector orthogonal to k. These mode functions satisfy,

∇2uk(r) = −
ω2
k

c2
uk(r), (2.12)

where c = 1/
√
µ0ε0 is the speed of light in a vacuum. Also, they form a complete orthonormal

basis, i.e., ∫
V

u∗k(r)uk′(r)dr = δkk′ , (2.13)

where the integral is over the cubical volume V , and δkk′ is the Kronecker delta. Note that for

simplicity we have neglected the discrete polarization index, but that can be accounted for by

letting the index k→ kλ and also summing over λ, the discrete polarization index.

The energy H stored in the electromagnetic field is

H =
1

2

∫
dV

[
ε0 (E(r, t) ·E(r, t)) +

1

µ0
(B(r, t) ·B(r, t))

]
. (2.14)

From Eqns. 2.5 and 2.6, E(r, t) and B(r, t) are therefore given by,

E(r, t) = ı
∑
k

ωk
(
Akuk(r)e−ıωkt −A∗ku∗k(r)eıωkt

)
, (2.15)

B(r, t) =
∑
k

(
Ak(∇× uk(r))e−ıωkt +A∗k(∇× u∗k(r))eıωkt

)
. (2.16)

Eqns. 2.15 and 2.16 may be substituted into Eq. 2.14, and after evaluating the integrals using

Eq. 2.13, Eq. 2.14 becomes,

H =
∑
k

Hk, (2.17)

where

Hk = ε0V ω
2
k (AkA

∗
k +A∗kAk) . (2.18)

After defining the variables qk and pk as,

Ak =
1

2ωk
√
ε0V

(ωkqk + ıpk)

A∗k =
1

2ωk
√
ε0V

(ωkqk − ıpk), (2.19)

Eq. 2.18 becomes,

Hk =
1

2
(pk + ω2

kqk). (2.20)
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This Hamiltonian has the form as a harmonic oscillator with position qk and its conjugate momen-

tum pk, with unit mass. Thus each mode of the electromagnetic field can be formally mapped into

a harmonic oscillator degree of freedom.

The quantization procedure is now preformed in the typical way of quantum mechanics by

demanding that the variables qk and pk become quantum mechanical operators,

qk → q̂k , pk → p̂k, (2.21)

that obey the commutation relations,

[q̂k, p̂k] = ı~δk,k′ . (2.22)

Then, Eq. 2.20 becomes the Hamiltonian for the quantum harmonic oscillator,

Ĥk =
1

2
(p̂k + ω2

kq̂k). (2.23)

This quantization procedure turns each variable Hk into an operator Ĥk that acts on an infinite

dimension Hilbert space. Therefore, the total Hamiltonian Ĥ is a sum over each one of these Hilbert

spaces with each individual space corresponding to a mode of the electromagnetic field. Formally,

to sum over Hilbert spaces means to construct the following:

Ĥ = Ĥk1 ⊗ 1̂⊗ 1̂⊗ 1̂⊗ · · ·

+1̂⊗ Ĥk1 ⊗ 1̂⊗ 1̂⊗ · · ·

+ · · · , (2.24)

where 1̂ is the identity operator on each Hilbert space. With this implied meaning, Eq. 2.24 is

written simply as,

Ĥ =
∑
k

Ĥk. (2.25)

It is convenient to work with annihilation operators âk and creation operators â†k which are

dimensionless and defined by,

âk =
1√

2~ωk
(ωkq̂k + ıp̂k),

â†k =
1√

2~ωk
(ωkq̂k − ıp̂k), (2.26)
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where the commutation relations for âk and â†k follow from Eq. 2.22, and are given by,

[
âk, â

†
k

]
= δk,k′ . (2.27)

The Hamiltonian for each mode indexed by different values of k can now be written as,

Ĥk =
1

2
~ωk

(
âkâ

†
k + â†kâk

)
, (2.28)

or by using Eq. 2.27,

Ĥk = ~ωk
(
â†kâk +

1

2

)
. (2.29)

The eigenbasis of Eq. 2.29 are the quantum harmonic oscillator number states, which obey,

âk |n〉k =
√
n |n− 1〉k

â†k |n〉k =
√
n+ 1 |n+ 1〉k . (2.30)

with âk |n〉k = 0 and integer n ≥ 0. It is now obvious that the above quantization procedure is

equivalent to letting,

Ak →

√
~

2ωkε0V
âk , A

∗
k →

√
~

2ωkε0V
â†k. (2.31)

Therefore, the electric and magnetic field operators, Ê(r, t) and B̂(r, t) are given by,

Ê(r, t) = ı
∑
k

√
~ωk
2ε0

(
âkuk(r)e−ıωkt − â†ku∗k(r)eıωkt

)
, (2.32)

B̂(r, t) =
∑
k

√
~

2ωkε0

(
âk(∇× uk(r))e−ıωkt + â†k(∇× u∗k(r))eıωkt

)
. (2.33)

Eqns. 2.32 and 2.33 are operators in the Heisenberg picture, since they contain the explicit time

dependence. Specifically, they include the time dependence of the free evolution of the field under

Eq. 2.25. This can be seen by considering the frame transformation,

e
ı
~ Ĥtâke

− ı
~ Ĥt = âke

−ıωkt

e
ı
~ Ĥtâ†ke

− ı
~ Ĥt = â†ke

ıωkt. (2.34)
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Therefore, in the Schrödinger picture the fields may be written as,

Ê(r, t) = ı
∑
k

√
~ωk
2ε0

(
âkuk(r)− â†ku∗k(r)

)
, (2.35)

B̂(r, t) =
∑
k

√
~

2ωkε0

(
âk(∇× uk(r)) + â†k(∇× u∗k(r))

)
. (2.36)

For a single mode cavity field of frequency ωc = ck, oriented in the z direction satisfying standing

wave boundary conditions, Eq. 2.11 becomes,

u(z) =

√
2

V
sin(kz), (2.37)

where V is the volume of the cavity. Since we will be mainly focused on the properties of Ê(z, t)

rather than B̂(z, t), it will be convenient to us to put Ê(z, t) in its simplest form. We therefore let

â→ −ıâ in the expressions for Ê(z, t) and B̂(z, t). Then, for the case of linear polarization in the

x direction, Eqns. 2.32 and 2.33 become,

Ê(z, t) =

√
~ωc
V ε0

(
âe−ıωct + â†eıωct

)
sin(kz)

x

|x|
(2.38)

B̂(z, t) = −ı
√

~ωcµ0

V

(
âe−ıωct − â†eıωct

)
cos(kz)

y

|y|
, (2.39)

where x
|x| and y

|y| are unit vectors in the direction x and y directions, and the fact that c = 1/
√
µ0ε0

has been used. The Hamiltonian Ĥ for a single mode cavity field is,

Ĥc = ~ωc
(
â†â+

1

2

)
. (2.40)

Since the zero energy definition is arbitrary, the factor of ~ωc/2 can be dropped from Eq. 2.40

without loss of generality, resulting in,

Ĥc = ~ωcâ†â. (2.41)

In the Schrödinger picture, where the time dependence of Ĥc will appear on to the state vector of

the system under consideration, instead of on â, Eqns. 2.38 and 2.39 are,

Ê(z, t) =

√
~ωc
V ε0

(
â+ â†

)
sin(kz)

x

|x|
(2.42)

B̂(z, t) = −ı
√

~ωcµ0

V

(
â− â†

)
cos(kz)

y

|y|
. (2.43)
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2.2 Jaynes Cummings Model

The Jaynes Cummings model describes a single two level atom interacting with a single

quantized cavity field mode. Besides being a prototypical cavity QED system, it is used to describe

the Hamiltonian part of the open quantum system that will later be considered. We will find that,

in the Jaynes Cummings model, the atom oscillates between its excited and ground states, similar to

the case where the cavity field is treated classically. However, it differs from the classical case, since

these oscillations can occur even when there are no photons present. Although these oscillations are

reversible, this model provides good motivation for describing the irreversible spontaneous processes

such as spontaneous emission, which are caused by the coupling of a system to the many modes of

the electromagnetic field in vacuum.

2.2.1 Jaynes Cummings Hamiltonian

The Hamiltonian describing the free evolution of a two level atom is given by,

Ĥa =
~ωa

2
(|e〉 〈e| − |g〉 〈g|) , (2.44)

where |e〉 and |g〉 are the excited and ground states of the atom, which form an orthonormal basis,

and where ~ωa is the energy difference between the two levels.

The energy of an atom with dipole moment operator d̂ interacting with a single mode elec-

tromagnetic field in a cavity Ê(R, t) is described by,

ĤI = −d̂ · Ê(R, t), (2.45)

where R is the position of the center of mass of the atom. It is valid to evaluate the electric

field Ê(R, t) at R since we are interested in electromagnetic fields with wavelengths much larger

than atomic dimensions. Therefore, in this approximation, known as the dipole approximation, the

electric field is treated as constant over the dimensions of an atom. After inserting the identity
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operator 1̂ = (|e〉 〈e|+ |g〉 〈g|) on both sides of d̂ in Eq. 2.45, it becomes,

ĤI = − (|e〉 〈e|+ |g〉 〈g|) d̂ (|e〉 〈e|+ |g〉 〈g|) · Ê(R, t)

= −
(
〈e| d̂ |g〉 |e〉 〈g|+ 〈g| d̂ |e〉 |g〉 〈e|

)
· Ê(R, t), (2.46)

where 〈e| d̂ |e〉 = 〈g| d̂ |g〉 = 0. This is because under transformation by the parity operator Π̂, the

dipole operator becomes Π̂†d̂Π̂ = −d̂, and since Π̂ |e〉 = − |e〉 and Π̂ |g〉 = − |g〉, it follows that

〈e| d̂ |e〉 = −〈e| d̂ |e〉 = 〈g| d̂ |g〉 = −〈g| d̂ |g〉 = 0. After substituting Eq. 2.38, Eq. 2.46 becomes,

ĤI = ~g (|e〉 〈g|+ |g〉 〈e|)
(
âe−ıωct + â†eıωct

)
. (2.47)

Here, the coupling rate g between the atom and field is given by,

g ≡ −
√

ωc
~V ε0

sin(kz0) 〈e| d̂ · x

|x|
|g〉 , (2.48)

where z0 is the position of the center of mass of the atom.

2.2.2 The Rotating Wave Approximation

We move into an interaction picture that puts the time dependence of the free evolution of

the atom on the atomic operators, defined by,

|̃e〉 〈g| ≡ e
ı
~ Ĥat |e〉 〈g| e−

ı
~ Ĥat = |e〉 〈g| e−ıωat

|̃g〉 〈e| ≡ e
ı
~ Ĥat |g〉 〈e| e−

ı
~ Ĥat = |g〉 〈e| eıωat, (2.49)

where the tilde over the operators indicates that they are in an interaction picture. After substitu-

tion of Eqns. 2.49, Eq. 2.47 becomes,

ĤI = ~g
(
|̃e〉 〈g|eıωat + |̃g〉 〈e|e−ıωat

)(
âe−ıωct + â†eıωct

)
= ~g

(
â|̃e〉 〈g|eı(ωa−ωc)t + â† |̃e〉 〈g|eı(ωa+ωc)t

+â|̃g〉 〈e|e−ı(ωa+ωc)t + â† |̃g〉 〈e|e−ı(ωa−ωc)t
)
. (2.50)

Close to resonance, i.e. when ωc ≈ ωa, terms with ωa + ωc in the exponential oscillate much more

rapidly than terms with ωa−ωc in the exponential. These fast oscillating terms average to zero on
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a time scale that is much faster than the time in which the slowly oscillating terms would average

to zero, and therefore the fast oscillating terms can be dropped. In this approximation, called the

rotating wave approximation, Eq 2.50 becomes,

ĤI = ~g
(
â|̃e〉 〈g|eı(ωa−ωc)t + â† |̃g〉 〈e|e−ı(ωa−ωc)t

)
. (2.51)

Moving back to the Schrödinger picture, where the time dependence due to Eq. 2.40 is not on the

operator â and the time dependence due to Eq. 2.44 is not on the operator |g〉 〈e|, we have,

ĤI = ~g
(
â |e〉 〈g|+ â† |g〉 〈e|

)
. (2.52)

Adding together the Eqns. 2.41, 2.44 and 2.51, we arrive at the Jaynes-Cummings Hamiltonian,

ĤJC = ~ωcâ†â+
~ωa

2
(|e〉 〈e| − |g〉 〈g|) + ~g

(
â |e〉 〈g|+ â† |g〉 〈e|

)
. (2.53)

2.2.3 Rabi Flopping

The Schrödinger equation with Eq. 2.53 as the Hamiltonian,

ı~
d

dt
|ψ(t)〉 = ĤJC |ψ(t)〉 , (2.54)

can be solved by first noting that Eq. 2.53 only couples the state |e〉 |n〉, where the atom is in the

excited state and the field has n excitations, to the state |g〉 |n+ 1〉, where the atom is in the ground

state and the field has n+1 excitations. Therefore, ĤJC can be split up into independent two-state

manifolds, which can be described by the basis {|e〉 |n〉 , |g〉 |n+ 1〉}. The manifold of Eq. 2.53 with

n excitations may be represented as the 2× 2 matrix in the reduced subspace,

ĤJC=̇~

 (
1
2ωa + nωc

)
g
√
n+ 1

g
√
n+ 1

(
−1

2ωa + (n+ 1)ωc
)
.

 (2.55)

The time dependent state vector |ψ(t)〉 of the system is given by solving the Schrödinger equation

with this Hamiltonian,

|ψ(t)〉 = c1(t) |e〉 |n〉+ c2(t) |g〉 |n+ 1〉 , (2.56)
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where c1(t) = (〈e| 〈n|) |ψ(t)〉 and c2(t) = (〈g| 〈n+ 1|) |ψ(t)〉. Projecting Eq. 2.56 on to |e〉 |n〉 and

|g〉 |n+ 1〉, and using Eq. 2.54, yields,

ı
d

dt
c1(t) =

(
1

2
ωa + nωc

)
c1(t) + g

√
n+ 1c2(t)

ı
d

dt
c2(t) =

(
−1

2
ωa + (n+ 1)ωc

)
c2(t) + g

√
n+ 1c1(t). (2.57)

We now assume exact resonance, ωa = ωc, and define an interaction picture as,

c̃1(t) = eıωc(n+1/2)tc1(t) c̃2(t) = eıωc(n+1/2)tc2(t). (2.58)

In this interaction picture, Eqns. 2.57 become,

d

dt
c̃1(t) = −ıg

√
n+ 1c̃2(t)

d

dt
c̃2(t) = −ıg

√
n+ 1c̃1(t) (2.59)

The solutions to Eqns. 2.59 with initial conditions c1(0) = 1 and c2(0) = 0 are,

c̃1(t) = cos(g
√
n+ 1t)

c̃2(t) = −ı sin(g
√
n+ 1t), (2.60)

so that the probability of the system being in the excited and ground states, respectively, are,

|c̃1(t)|2 = cos2(g
√
n+ 1t)

|c̃2(t)|2 = sin2(g
√
n+ 1t). (2.61)

Eqns. 2.61 tell us that the dynamics of the system is to oscillate, or flop, between the excited

and ground state with Rabi frequency g
√
n+ 1. It is interesting to note that even when there are

initially no excitations in the field i.e. n = 0 to stimulate an excited atom to emit its photon, the

system will exhibit Rabi flopping. Although the expectation value of the electromagnetic field in

the vacuum state |0〉 is zero,

〈0| Ê(z, t) |0〉 =

√
~ωc
V ε0
〈0|
(
â+ â†

)
|0〉 sin(kz)

x

|x|

= 0, (2.62)
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the expectation value for the intensity of the field in the vacuum state is non-zero,

〈0|
∣∣∣Ê(z, t)

∣∣∣2 |0〉 =
~ωc
V ε0
〈0|
(
â+ â†

)2
|0〉 sin2(kz)

=
~ωc
V ε0

sin2(kz). (2.63)

It can be seen from Eqns. 2.62 and 2.63 that even though the electromagnetic field in vacuum is

on average zero, it fluctuates. Therefore, the Rabi flopping that occurs when there are initially

no excitations in the field is caused by fluctuations in the vacuum electromagnetic field. This is a

consequence of the quantum mechanical treatment of the electromagnetic field; an excited atom in

a classical field that contains no energy would never decay.

Rabi flopping between excited and ground state is a reversible process, unlike spontaneous

emission in which the photon leaves and never comes back. To correctly model the irreversible

dissipative processes that are observed in nature, such as spontaneous emission, the system must

be coupled to a continuum of modes. Models that include irreversible dissipative processes will be

derived in Chapters 3 and 4.

2.3 Wiener-Khinchin Theorem

We will be frequently interested in information regarding the frequency content of the light

that is produced by an open quantum system. The open quantum system that we consider may

for instance consist of atoms interacting with an electromagnetic field inside a cavity. The spectral

information about the cavity field, which is described by the annihilation operator â(t), can be

obtained from the power spectral density S(ω), which is defined by,

S(ω) ≡ lim
T→∞

1

T

〈
â†T (ω)âT (ω)

〉
, (2.64)

where,

âT (ω) ≡
∫ T/2

−T/2
dte−iωtâ(t). (2.65)

Eq. 2.64 tells us how the total energy that is contained in the cavity field is distributed as a

function of frequency ω. The power spectral density, described by Eq. 2.64, will often consist of a
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distribution of frequencies around a central frequency. The width of this distribution, called the

linewidth, denoted by ∆ν, is measure of the spectral purity of the light emitted by the considered

system.

Since many of the solution methods to the equations of open quantum systems do not give

direct access to â(t), it will often be difficult to calculate the power spectral density from Eq. 2.64

directly. However, an alternative method to obtain Eq. 2.64 is possible. This is demonstrated by

substituting Eq. 2.65 into Eq. 2.64, which yields,

S(ω) = lim
T→∞

1

T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′e−iω(t′−t)

〈
â†(t)â(t′)

〉
. (2.66)

After changing variables to τ ≡ t′ − t, Eq. 2.66 becomes,

S(ω) = lim
T→∞

1

T

{∫ 0

−T
dτ

∫ T/2

−T/2−τ
dte−iωτ

〈
â†(t)â(t+ τ)

〉
+

∫ T

0
dt

∫ T/2−τ

−T/2
dte−iωτ

〈
â†(t)â(t+ τ)

〉}
. (2.67)

We assume that the system under consideration is in steady state, so that
〈
â†(t)â(t′)

〉
is independent

of t, and only depends on τ . Then, Eq. 2.67 becomes,

S(ω) = lim
T→∞

1

T

∫ T

−T
dτe−iωτ

〈
â†(t)â(t+ τ)

〉
(T − |τ |) .

=

∫ ∞
−∞

dτe−iωτ
〈
â†(t)â(t+ τ)

〉
, (2.68)

or since S(ω) is real,

S(ω) =

∫ ∞
−∞

dτe−iωτ
〈
â†(t+ τ)â(t)

〉
= 2Re

[∫ ∞
0

dτe−iωτ
〈
â†(t+ τ)â(t)

〉]
. (2.69)

Eq. 2.69 is known as the Wiener-Khinchin Theorem. It says that the power spectrum is the Fourier

transform of the two-time correlation function
〈
â†(t+ τ)â(t)

〉
. Therefore, the power spectrum S(ω)

and its linewidth ∆ν, can be obtained from
〈
â†(t+ τ)â(t)

〉
, which in many cases can be directly

accessed.



Chapter 3

Master Equation

To correctly incorporate dissipation into a quantum mechanical system, the system is assumed

to be small, and weakly coupled to a much larger reservoir. Since we only care about keeping track

of system variables, the combined system and reservoir are evolved to second order in perturbation

theory, and then the reservoir variables are averaged over. The resulting equation, called the master

equation, keeps track of system variables only, and allows the system to lose or gain energy from

its weak coupling to the large reservoir.

This approach is in the Schrödinger picture, where the time dependence is put on the state

vector of the combined system and reservoir. Because the reservoir will be averaged over, the

system will evolve into a statistical mixture of states, and it will no longer be able to be described

by a single state vector. Instead, it will be necessary to describe the system by a reduced density

operator, which can account for the system evolving into a statistical mixture of states.

3.1 Density Operator

Operators corresponding to system observables do not act on the reservoir part of the total

Hilbert space. Therefore, if some sort of a partial expectation value over the reservoir part of the

the state vector describing the combined system and reservoir could be performed, the complexity

of the problem would be drastically reduced from the start. Unfortunately, a partial expectation

value of a state vector can not be taken, but an analogous operation can be performed on a density
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operator, which is defined as

χ̂(t) ≡ |Ψ(t)〉 〈Ψ(t)| , (3.1)

where |Ψ(t)〉 is the state vector for the combined system and reservoir.

Let θ̂SR be an arbitrary operator of the system and reservoir Hilbert spaces. The trace of

χ̂(t) and θ̂SR is given by,

Tr
[
χ̂(t)θ̂SR

]
=

∑
s

∑
r

〈s| 〈r| χ̂(t)θ̂SR |s〉 |r〉

=
∑
s

∑
r

〈s| 〈r|Ψ(t)〉 〈Ψ(t)| θ̂SR |s〉 |r〉

=
∑
s

∑
r

〈Ψ(t)| θ̂SR |s〉 |r〉 〈s| 〈r|Ψ(t)〉

= 〈Ψ(t)| θ̂SR

(∑
s

∑
r

|s〉 |r〉 〈s| 〈r|

)
|Ψ(t)〉

= 〈Ψ(t)| θ̂SR |Ψ(t)〉 ,

(3.2)

where the states |s〉 are a basis for the system Hilbert space, and the states |r〉 are a basis for the

reservoir Hilbert space. This tells us that performing the trace of χ̂(t) and θ̂SR is equivalent to

taking the expectation value of θ̂SR.

If we are only interested observables associated with the system, we can preform partial trace

over the reservoir Hilbert space, and arrive at a reduced density operator for the system only. Let

θ̂S , be an arbitrary system operator. The trace of χ̂(t) and θ̂S is,

Tr
[
χ̂(t)θ̂S

]
=

∑
s

∑
r

〈s| 〈r| χ̂(t)θ̂S |s〉 |r〉

=
∑
s

∑
r

〈s| 〈r| χ̂(t) |r〉 θ̂S |s〉

=
∑
s

〈s|

(∑
r

〈r| χ̂(t) |r〉

)
θ̂S |s〉

=
∑
s

〈s| ρ̂(t)θ̂S |s〉 , (3.3)
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where,

ρ̂(t) =
∑
r

〈r| χ̂(t) |r〉

= TrR [χ̂(t)] ,

(3.4)

where ρ̂(t) is the reduced density operator of the system. From Eq. 3.3 it can be seen that if the

expectation value of a system operator is desired, it is valid to first take the partial trace of χ̂(t)

over the reservoir Hilbert space to get ρ̂(t) and then later take the remaining partial trace of ρ̂(t)

and θ̂ to get the total trace. In the next section, the equation of motion for a combined system and

reservoir will be considered, and a partial trace over the reservoir Hilbert space will be preformed.

This will leave us with an equation of motion for the reduced density operator of the system. It is

a drastic simplification to not have to keep track of the reservoir Hilbert space.

A consequence of performing a partial trace over the reservoir Hilbert space is that we will

no longer have complete information about combined system and reservoir. This causes the the

reduced density operator to be a mixed state, or a statistical ensemble of states. It will therefore not

be possible to rewrite the reduced density it in terms of state vectors. Therefore, the reformulation

of the problem in terms of density matrices is not only for convenience, it is essential.

The equation of motion for χ̂(t) that is equivalent to the Schrödinger equation, ı~ d
dt |Ψ(t)〉 =

Ĥ(t) |Ψ(t)〉, is called the Von Neumann equation. It is derived by taking a time derivative of χ̂(t)

and substituting in the Schroödinger equation,

d

dt
χ̂(t) =

d

dt
(|Ψ(t)〉 〈Ψ(t)|)

=

(
d |Ψ(t)〉
dt

〈Ψ(t)|+ |Ψ(t)〉 d 〈Ψ(t)|
dt

)
=

1

ı~

(
Ĥ(t) |Ψ(t)〉 〈Ψ(t)| − |Ψ(t)〉 〈Ψ(t)| Ĥ(t)

)
=

1

ı~

[
Ĥ(t), χ̂(t)

]
.

(3.5)
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3.2 The Master Equation for a Damped Harmonic Oscillator

To derive the master equation [66], we will need to make two approximations. First, the

interaction between system and reservoir is assumed to be weak, so that it is sufficient to evolve

the system to leading order in perturbation theory. This is the Born approximation. Also, the

frequency bandwidth of the reservoir is assumed to be very large, so that in the time domain,

reservoir correlations decay away very fast. In the limiting case of infinite bandwidth, the reservoir

is delta correlated in time. This is the Markov approximation.

In order to best illuminate the approximations and the physics involved, the master equation

is derived for a simple system instead of in full generality. Once our foot is in the door, it is easy to

generalize to more complicated systems, since the derivation for those systems follow in an almost

identical manner.

3.2.1 Derivation

Consider a quantum harmonic oscillator of frequency ωc, which is coupled to many other

quantum harmonic oscillators of frequencies ωj . This could be, for instance, used to model the the

coupling of a cavity mode to all other modes of the electromagnetic field in a system cavity QED

system. The Hamiltonian of the combined system and reservoir Ĥ, is given by,

Ĥ = ĤS + ĤR + ĤSR, (3.6)

where ĤS is the Hamiltonian for the system,

ĤS = ~ωcâ†â, (3.7)

ĤR is the Hamiltonian for the reservoir,

ĤR = ~
∑
j

ωj r̂
†
j r̂j (3.8)

and ĤSR is the Hamiltonian for the coupling between the system and reservoir,

ĤSR = ~
∑
j

(
λj â
†r̂j + λ∗j âr̂

†
j

)
, (3.9)
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where â is the annihilation operator in the system Hilbert space and r̂j is the annihilation operator

of the jth mode in the reservoir Hilbert space, and λj is the coupling between the system and the

jth mode in the reservoir.

At time t = t0, it is assumed that there are no correlations between the system and reservoir,

and therefore χ̂(t0) is of the separable form,

χ̂(t0) = ρ̂(t0)⊗ R̂, (3.10)

where ρ̂(t) is the reduced density operator of the system, and R̂ is the reduced density operator of

the reservoir, which are defined respectively as,

ρ̂(t) ≡ trR {χ̂(t)} , (3.11)

and

R̂ ≡ trS {χ̂(t)} . (3.12)

The reservoir density operator, R̂, has no time dependence because we are assuming that the

reservoir is broadband, so that in the time domain, it returns to its steady state value on a time

scale much faster than system dynamics. Therefore at later times we can also assume that χ̂(t)

will be seperable,

χ̂(t) = ρ̂(t)⊗ R̂. (3.13)

The reservoir is assumed to be in thermal equilibrium at temperature T , which is described by,

R̂ =
e
− ĤR
kBT

trR

{
e
− ĤR
kBT

} . (3.14)

The first step in our derivation is to move into an interaction picture, so that the time

dependence of ĤS and ĤR can be rotated out. This is done by the following transformation:

˜̂χ(t) = e
i
~(ĤS+ĤR)tχ̂(t)e−

i
~(ĤS+ĤR)t. (3.15)

It is worth noting that Eq. 3.14 implies that R̂ is unaffected by this transformation, since an

operator commutes with an exponential of itself, so that,

˜̂
R = R̂ (3.16)
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To find the time evolution in the interaction picture, the derivative of both sides of Eq. 3.15 is first

found,

˙̃
χ̂(t) = − 1

i~

(
ĤS + ĤR

)
e
i
~(ĤS+ĤR)tχ̂(t)e−

i
~(ĤS+ĤR)t

+e
i
~(ĤS+ĤR)

(
˙̂χ(t)e−

i
~(ĤS+ĤR)t + χ̂(t)

(
1

i~

(
ĤS + ĤR

))
e−

i
~(ĤS+ĤR)t

)
. (3.17)

Upon substitution of Eq. 3.5 into Eq. 3.17, it becomes,

˙̃
χ̂(t) = − 1

i~

(
ĤS + ĤR

)
˜̂χ(t)

+e
i
~(ĤS+ĤR)

(
1

i~

[
Ĥ(t), χ̂(t)

])
e−

i
~(ĤS+ĤR)t +

1

i~
˜̂χ(t)

(
ĤS + ĤR

)
. (3.18)

Finally, we now use Eq. 3.6 and simplify, and arrive at,

˙̃
χ̂(t) = − 1

i~

(
ĤS + ĤR

)
˜̂χ(t) +

1

i~
˜̂χ(t)

(
ĤS + ĤR

)
+e

i
~(ĤS+ĤR) 1

i~

((
ĤS + ĤR + ĤSR(t)

)
χ̂(t)− χ̂(t)

(
ĤS + ĤR + ĤSR(t)

))
e−

i
~(ĤS+ĤR)t

= e
i
~(ĤS+ĤR) 1

i~

(
ĤSR(t)χ̂(t)− χ̂(t)ĤSR(t)

)
e−

i
~(ĤS+ĤR)t

=
1

i~
e
i
~(ĤS+ĤR)

(
ĤSR(t)e−

i
~(ĤS+ĤR)e

i
~(ĤS+ĤR)χ̂(t)

−χ̂(t)e−
i
~(ĤS+ĤR)e

i
~(ĤS+ĤR)ĤSR(t)

)
e−

i
~(ĤS+ĤR)t

=
1

i~

[
˜̂
HSR(t), ˜̂χ(t)

]
, (3.19)

where,

˜̂
HSR(t) ≡ e

i
~(ĤS+ĤR)tĤSR(t)e−

i
~(ĤS+ĤR)t. (3.20)

Next, both sides of Eq. 3.19 are integrated,

˜̂χ(t)− ˜̂χ(t0) =
1

i~

∫ t

t0

dt′
[

˜̂
HSR(t′), ˜̂χ(t′)

]
, (3.21)

and then substitute this back into itself to obtain,

˜̂χ(t)− ˜̂χ(t0) =
1

i~

∫ t

t0

dt′
[

˜̂
HSR(t′), ˜̂χ(t0)

]
− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′
[

˜̂
HSR(t′),

[
˜̂
HSR(t′′), ˜̂χ(t′′)

]]
. (3.22)
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After taking the partial trace over the reservoir of both sides of Eq. 3.22, it is given by,

˜̂ρ(t)− ˜̂ρ(t0) = − 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′trR

{[
˜̂
HSR(t′),

[
˜̂
HSR(t′′), ˜̂χ(t′′)

]]}
, (3.23)

where the first term on the right hand side of Eq. 3.22 vanishes since the trace over the reservoir

of r̂j and r̂†j are zero. The vanishing of this term is why Eq. 3.23 was expanded up to second order

in
˜̂
HSR. The Born approximation is now made, by neglecting terms higher than this leading order

in
˜̂
HSR.

We assume that the integration time interval τ ≡ t− t0 is short compared to the time it takes

the reservoir to change, but long compared to the time it takes the system to change. Under this

assumption, it is valid to approximate,

˜̂ρ(t0 + τ)− ˜̂ρ(t0)

τ
≈ d

dt
˜̂ρ(τ). (3.24)

Under this approximation, Eq 3.23 is turned into a coarse-grained equation of motion for ˜̂ρ(t),

d

dτ
˜̂ρ(τ) = − 1

~2τ

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{[
˜̂
HSR(τ ′),

[
˜̂
HSR(τ ′′), ˜̂χ(t)

]]}
, (3.25)

where the independent variable has been changed from t to τ , and the time origin has been shifted

by t0.

In order to proceed, the form of ĤSR in the interaction picture must be found. To do this,

the time dependence of the system operator â and reservoir operators r̂j in the interaction picture

are found,

˜̂a(t) = e
i
~(ĤS+ĤR)tâe−

i
~(ĤS+ĤR)t

= e
i
~ ĤStâe−

i
~ ĤSt

= âe−iωct, (3.26)

˜̂rj(t) = e
i
~(ĤS+ĤR)tr̂je

− i
~(ĤS+ĤR)t

= e
i
~ ĤRtr̂je

− i
~ ĤRt

= r̂je
−iωjt. (3.27)
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Eqns. 3.26 – 3.27, and their Hermitian conjugates are substituted into Eq. 3.9, so that ĤSR

in the interaction picture is given by,

˜̂
HSR(τ) = ~

∑
j

(
λje

i(ωc−ωj)τ â†r̂j + λ∗je
−i(ωc−ωj)τ âr̂†j

)
,

= ı~
(
â†F̂ (τ)− âF̂ †(τ)

)
, (3.28)

where the reservoir operator F̂ (τ) is defined as,

F̂ (τ) ≡ −ı
∑
j

λj r̂je
i(ωj−ωc)τ . (3.29)

After expanding the double commutator, and substituting in Eq. 3.28, Eq. 3.25 becomes,

d

dt
˜̂ρ(t) =

1

τ

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{(
â†F̂ (τ ′)− âF̂ †(τ ′)

)(
â†F̂ (τ ′′)− âF̂ †(τ ′′)

)
˜̂χ(t)

−
(
â†F̂ (τ ′)− âF̂ †(τ ′)

)
˜̂χ(t)

(
â†F̂ (τ ′′)− âF̂ †(τ ′′)

)}
+H.C.

=
1

τ

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′

(
â†â† ˜̂ρ(t)trR

{
F̂ (τ ′)F̂ (τ ′′)R̂

}
− â†â ˜̂ρ(t)trR

{
F̂ (τ ′)F̂ †(τ ′′)R̂

}
−ââ† ˜̂ρ(t)trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
+ ââ ˜̂ρ(t)trR

{
F̂ †(τ ′)F̂ †(τ ′′)R̂

}
−â† ˜̂ρ(t)â†trR

{
F̂ (τ ′)R̂F̂ (τ ′′)

}
+ â† ˜̂ρ(t)âtrR

{
F̂ (τ ′)R̂F̂ †(τ ′′)

}
+â ˜̂ρ(t)â†trR

{
F̂ †(τ ′)R̂F̂ (τ ′′)

}
− â ˜̂ρ(t)âtrR

{
F̂ †(τ ′)R̂F̂ †(τ ′′)

})
+H.C. (3.30)

Since R̂ is diagonal in the reservoir eigenbasis, terms with two F̂ (τ) or two F̂ †(τ) in the

reservoir trace will be zero. However, terms with one F̂ (τ) and one F̂ †(τ) in the reservoir trace will

be non-zero. Consider, for example, the term proportional to,

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
=

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′

∑
i,j

λ?iλjtrR

{
r̂†i r̂jR̂

}
e−i(ωi−ωc)τ

′
ei(ωj−ωc)τ

′′

=

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′

∑
j

|λj |2 trR
{
r̂†j r̂jR̂

}
ei(ωc−ωj)(τ

′−τ ′′),

(3.31)
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where the last line follows again from the fact that R̂ is diagonal in the reservoir eigenbasis.

The sum is changed to an integral over ω by including a density of states D(ω),∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
=

∑
j

∆j |λj |2
∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
r̂†j r̂jR̂

}
ei(ωc−ωj)(τ

′−τ ′′)

=

∫ B

0
dωD(ω) |λ(ω)|2

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
r̂†r̂R̂

}
ei(ωc−ω)(τ ′−τ ′′)

(3.32)

where ∆j = 1 and B is the bandwidth of the reservoir. Since we assuming that the bandwidth of

the reservoir is very large, the reservoir relaxation rate 1
τR

will be much larger than the systems

relaxation rate 1
τS

. Then, for τ << τS , trR

{
r̂†r̂R̂

}
will be approximately constant, so that it can

be factored outside of the integral,∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
=

∫ B

0
dωD(ω) |λ(ω)|2 trR

{
r̂†r̂R̂

}∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′ei(ωc−ω)(τ ′−τ ′′). (3.33)

The resulting integral of the exponential will then destructively interfere when T ≡ τ ′− τ ′′ >> τR,

resulting in it averaging to zero. Therefore, after changing variables to T , the upper limit of

integration on the T integral can be extended to T = ∞ with minimal error, so that Eq. 3.33

becomes,∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
=

∫ B

0
dωD(ω) |λ(ω)|2 trR

{
r̂†r̂R̂

}∫ τ

0
dτ ′
∫ ∞

0
dTei(ωc−ω)T

=

∫ B

0
dωD(ω) |λ(ω)|2 trR

{
r̂†r̂R̂

}∫ τ

0
dτ ′
[
πδ(ω − ωc)− iP

(
1

ω − ωc

)]
, (3.34)

where we have used,

lim
t→∞

∫ t

t0

dt′ei(ωc−ω)(t−t′) = lim
t→∞

∫ t−t0

0
dTei(ωc−ω)T = πδ(ω − ωc)− iP

(
1

ω − ωc

)
. (3.35)

Neglecting the principal part, P (1/(ω − ωc)), which leads to a negligible frequency shift, Eq. 3.34

becomes, ∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′trR

{
F̂ †(τ ′)F̂ (τ ′′)R̂

}
=
κτn̄

2
, (3.36)
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where,

κ = 2πD(ωc) |λ(ωc)|2 , (3.37)

and n̄ is the average number of thermal excitations in the reservoir,

n̄ = trR

{
r̂†r̂R̂

}
. (3.38)

After evaluation of the other reservoir trace terms, which follow in almost an identical manner to

the one demonstrated, Eq. 3.30 becomes the master equation for the damped harmonic oscillator,

d

dt
˜̂ρ(t) =

1

2

(
−â†â ˜̂ρ(t)κ (n̄+ 1)− ââ† ˜̂ρ(t)κn̄+ â† ˜̂ρ(t)âκn̄+ â ˜̂ρ(t)â†κ (n̄+ 1)

)
+H.C.

= −κ
2

(n̄+ 1)
(
â†â ˜̂ρ(t) + ˜̂ρ(t)â†â− 2â ˜̂ρ(t)â†

)
− κ

2
n̄
(
ââ† ˜̂ρ(t) + ˜̂ρ(t)ââ† − 2â† ˜̂ρ(t)â

)
.

(3.39)

3.2.2 Analytic Solutions for Photon Number

Eq. 3.39 can be used to calculate the average photon number
〈
â†â
〉

since in the Schrödinger

picture,

d

dt

〈
â†â
〉

= tr

[
â†â

d

dt
˜̂ρ(t)

]
. (3.40)

Now, Eq. 3.39 is substituted into Eq. 3.40 to obtain

d

dt

〈
â†â
〉

= −κ
2

(n̄+ 1) tr
[
â†ââ†â ˜̂ρ(t) + â†â ˜̂ρ(t)â†â− 2â†ââ ˜̂ρ(t)â†

]
−κ

2
n̄tr

[
â†âââ† ˜̂ρ(t) + â†â ˜̂ρ(t)ââ† − 2â†ââ† ˜̂ρ(t)â

]
= −κ

2
(n̄+ 1) tr

[
â†ââ†â ˜̂ρ(t) + â†ââ†â ˜̂ρ(t)− 2â†â†ââ ˜̂ρ(t)

]
−κ

2
n̄tr

[
â†âââ† ˜̂ρ(t) + ââ†â†â ˜̂ρ(t)− 2ââ†ââ† ˜̂ρ(t)

]
, (3.41)

where in the last line, we have used the cyclic property of the trace,

tr
[
ÂB̂Ĉ

]
= tr

[
ĈÂB̂

]
= tr

[
B̂ĈÂ

]
, (3.42)

with Â, B̂, and Ĉ being arbitrary operators. Eq. 3.41 can be simplified by using the commutation

relations for creation and annihilation operators,[
â, â†

]
= ââ† − â†â = 1̂, (3.43)
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where 1̂ is the identity operator. We find,

d

dt

〈
â†â
〉

= −κ
2

(n̄+ 1) tr
[
2â†

(
â†â+ 1

)
â ˜̂ρ(t)− 2â†â†ââ ˜̂ρ(t)

]
−κ

2
n̄tr

[(
ââ† − 1

)
ââ† ˜̂ρ(t) + ââ†

(
ââ† − 1

)
˜̂ρ(t)− 2ââ†ââ† ˜̂ρ(t)

]
= −κ

〈
â†â
〉

+ +κn̄. (3.44)

The solution to Eq. 3.44 is,

〈
â†â
〉

(t) =
〈
â†â
〉

(0)e−κt + n̄
(
1− e−κt

)
. (3.45)

Eq. 3.45 will prove useful in sections 3.4 and 3.5 when we will wish to compare the numerical

solution methods demonstrated in that section to an analytic solution. These numerical solution

can be used to treat more complex systems, where analytic solutions are not possible.

3.2.3 The Quantum Regression Theorem

Consider the two-time expectation value of two arbitrary system operators Â and B̂,

〈
Â(t+ τ)B̂(t)

〉
= tr

[
e
i
~ Ĥτ Â(t)e−

i
~ Ĥτ B̂(t)ρ̂

]
, (3.46)

where Ĥ is the total Hamiltonian of system and reservoir. Using the cyclic property of the trace,

we find

〈
Â(t+ τ)B̂(t)

〉
= tr

[
e−

i
~ Ĥτ B̂(t)ρ̂e

i
~ Ĥτ Â(t)

]
= tr

[
Ŝ(τ)Â(t)

]
, (3.47)

where,

Ŝ(τ) ≡ e−
i
~ Ĥτ B̂(t)ρ̂e

i
~ Ĥτ . (3.48)

Eq. 3.48 says that Ŝ(τ) obeys the same equation of motion as ρ̂. Since ρ̂ obeys the master equation,

so does Ŝ(τ). Taking the derivative with respect to τ of both sides of Eq. 3.47 yields,

d

dτ

〈
Â(t+ τ)B̂(t)

〉
= tr

[(
d

dτ
Ŝ(τ)

)
Â(t)

]
. (3.49)
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Thus, since
(
d
dτ Ŝ(τ)

)
is known, the equation of motion for the two-time correlation function〈

Â(t+ τ)B̂(t)
〉

can be calculated. This is the the quantum regression theorem.

To demonstrate the quantum regression theorem,
〈
â†(t+ τ)â(t)

〉
is calculated for the damped

harmonic oscillator. We let Â→ â† and B̂ → â in Eq. 3.49,

d

dτ

〈
â†(t+ τ)â(t)

〉
=

〈(
d

dτ
Ŝ(τ)

)
â†(t)

〉
(3.50)

Using Eq. 3.39 for Ŝ(τ) yields,

d

dτ

〈
â†(t+ τ)â(t)

〉
= −κ

2
(n̄+ 1) tr

[
â†âŜ(τ)â† + Ŝ(τ)â†ââ† − 2âŜ(τ)â†â†

]
−κ

2
n̄tr

[
ââ†Ŝ(τ)â† + Ŝ(τ)ââ†â† − 2â†Ŝ(τ)ââ†

]
= −κ

2
(n̄+ 1) tr

[
â†â†âŜ(τ) + â†ââ†Ŝ(τ)− 2â†â†âŜ(τ)

]
−κ

2
n̄tr

[
â†ââ†Ŝ(τ) + ââ†â†Ŝ(τ)− 2ââ†â†Ŝ(τ)

]
, (3.51)

where in the last line, the cyclic property of the trace has been used. The commutation relations

for creation and annihilation operators are used to simplify, yielding,

d

dτ

〈
â†(t+ τ)â(t)

〉
= −κ

2
(n̄+ 1) tr

[
â†â†âŜ(τ) + â†

(
â†â+ 1̂

)
Ŝ(τ)− 2â†â†âŜ(τ)

]
−κ

2
n̄tr

[(
ââ† − 1̂

)
â†Ŝ(τ) + ââ†â†Ŝ(τ)− 2ââ†â†Ŝ(τ)

]
= −κ

2
(n̄+ 1) tr

[
â†Ŝ(τ)

]
+
κ

2
n̄tr

[
â†Ŝ(τ)

]
= −κ

2
tr
[
â†Ŝ(τ)

]
. (3.52)

Eq. 3.48 is substituted with B̂ → â, and the cyclic property of the trace is again used. Then,

d

dτ

〈
â†(t+ τ)â(t)

〉
= −κ

2
tr
[
â†e−

i
~ Ĥτ B̂(t)ρ̂e

i
~ Ĥτ

]
= −κ

2
tr
[
e
i
~ Ĥτ â†e−

i
~ Ĥτ âρ̂

]
= −κ

2
tr
[
â†(t+ τ)â(t)ρ̂(t)

]
= −κ

2

〈
â†(t+ τ)â(t)

〉
. (3.53)

The solution to Eq. 3.53 is, 〈
â†(t+ τ)â(t)

〉
=
〈
â†(t)â(t)

〉
e−κτ/2, (3.54)
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and from Eq. 3.45,

〈
â†(t+ τ)â(t)

〉
=
(〈
â†â
〉

(0)e−κt + n̄
(
1− e−κt

))
e−κτ/2. (3.55)

3.3 The Master Equation for a Damped Two Level Atom

The master equation for a two level atom coupled to a reservoir of harmonic oscillators

follows almost instantaneously. This system could, for instance, describe the spontaneous emission

of radiation from a two level atom due to its coupling to the many modes of the electromagnetic

field. Describing how two level atoms are damped by a reservoir will be essential to systems that

will be treated later.

The Hamiltonian of the combined system and reservoir, Ĥ, is again given by Eq. 3.6, but

now, the system Hamiltonian ĤS is given by,

ĤS =
~ωa

2
σ̂z, (3.56)

where ωa is the frequency difference between the two atomic levels. The Hamiltonian for the

coupling between the system and reservoir, ĤSR, is now given by,

ĤSR = ~
∑
j

(
λj σ̂

+r̂j + λ∗j σ̂
−r̂†j

)
, (3.57)

where r̂j is the annihilation operator of the jth mode in the reservoir Hilbert space, λj is coupling

rate between the system and the jth mode of the reservoir, and σ̂−, σ̂+, and σ̂z are the Pauli

operators, which obey,

[
σ̂+, σ̂−

]
= σ̂z[

σ̂z, σ̂+
]

= 2σ̂+

[
σ̂−, σ̂−

]
= 2σ̂−. (3.58)
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To find Eq. 3.57 in the interaction picture, σ̂− in the interaction picture must be found,

˜̂σ−(t) = e
i
~(ĤS+ĤR)tσ̂−e−

i
~(ĤS+ĤR)t

= e
i
~ ĤStσ̂−e−

i
~ ĤSt

= σ̂−e−iωat, (3.59)

Eqns. 3.26 and 3.27, and their Hermitian conjugates are substituted into Eq. 3.57, so that

ĤSR in the interaction picture is given by,

˜̂
HSR(τ) = ~

∑
j

(
λje

i(ωc−ωj)τ σ̂+r̂j + λ∗je
−i(ωc−ωj)τ σ̂−r̂†j

)
,

= ı~
(
σ̂+F̂ (τ)− σ̂−F̂ †(τ)

)
, (3.60)

where F̂ (τ) is defined identically to the way it was defined in Eq. 3.29. After making the replace-

ments â → σ̂− and â† → σ̂+, Eq. 3.60 has the exact same form as Eq. 3.28, so the derivation is

identical, except now the decay rate for the atoms, γ, is given by,

γ = 2πD(ωa) |λ(ωa)|2 , (3.61)

The master equation for the damped two level atom is therefore,

d

dt
˜̂ρ(t) = −γ

2
(n̄+ 1)

(
σ̂+σ̂− ˜̂ρ(t) + ˜̂ρ(t)σ̂+σ̂− − 2σ̂− ˜̂ρ(t)σ̂+

)
−γ

2
n̄
(
σ̂−σ̂+ ˜̂ρ(t) + ˜̂ρ(t)σ̂−σ̂+ − 2σ̂+ ˜̂ρ(t)σ̂−

)
. (3.62)

3.4 Quantum Jumps

The master equation can be solved numerically, without any approximations, by using the

quantum jumps algorithm. In this algorithm, many random pieces, or trajectories, of the Dyson

expansion of the master equation are found, and they are then averaged over. Because these

trajectories are chosen with the correct weights to reproduce the Dyson expansion of the master

equation, the correct evolution is given. The Dyson expansion of the master equation, how to find

the correct weights of specific trajectories, and how to preform the algorithm are described.
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3.4.1 The Dyson Expansion of the Master Equation

A general master equation can be written in the form,

d

dt
ρ̂(t) = − ı

~

[
Ĥ0, ρ̂(t)

]
− 1

2

N∑
k=1

{
Ŝ+
k Ŝ
−
k ρ̂(t) + ρ̂(t)Ŝ+

k Ŝ
−
k − 2Ŝ−k ρ̂(t)Ŝ+

k

}
, (3.63)

where Ĥ0 describes the coherent evolution of the system, and

Ŝk =
√
γkŝk, (3.64)

is a jump operator, where ŝk is a system operator, and γk is a system decay rate.

We define an effective Hamiltonian as

Ĥeff ≡ Ĥ0 −
ı~
2

∑
k

Ŝ†kŜk, (3.65)

so that Eq. 3.63 becomes

d

dt
ρ̂(t) = − ı

~

(
Ĥeff ρ̂(t)− ρ̂(t)Ĥ†eff

)
+
∑
k

Ŝ†kρ̂(t)Ŝk. (3.66)

Eq. 3.66 can now be written in the form

d

dt
ρ̂(t) = L̂ ρ̂(t), (3.67)

with

L̂ ρ̂(t) = L̂0ρ̂(t) + L̂J ρ̂(t), (3.68)

where

L̂0ρ̂(t) = − ı
~

(
Ĥeff ρ̂(t)− ρ̂(t)Ĥ†eff

)
,

L̂J ρ̂(t) =
∑
k

Ŝkρ̂(t)Ŝ†k. (3.69)

In an interaction picture defined by the transformation,

˜̂ρ(t) = e−L̂0tρ̂(t), (3.70)

Eq. 3.67 reduces to

d

dt
˜̂ρ(t) = e−L̂0tL̂Je

L̂0t ˜̂ρ(t). (3.71)
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Both sides of Eq. 3.71 are integrated from t′ = 0 to t′ = t to obtain,

˜̂ρ(t) = ˜̂ρ(0) +

∫ t

0
dt′e−L̂0t′L̂Je

L̂0t′ ˜̂ρ(t′). (3.72)

The above equation is substituted into its self to yield

˜̂ρ(t) = ˜̂ρ(0) +

∫ t

0
dt′e−L̂0t′L̂Je

L̂0t′ ˜̂ρ(0) +

∫ t

0
dt′
∫ t′

0
dt′′e−L̂0t′L̂Je

L̂0(t′−t′′)L̂Je
L̂0t′′ ˜̂ρ(t′′) (3.73)

This procedure can be repeated an infinite number of times to yield the Dyson expansion for ˜̂ρ(t),

˜̂ρ(t) = ˜̂ρ(0) +

∫ t

0
dt′e−L̂0t′L̂Je

L̂0t′ ˜̂ρ(0) +

∫ t

0
dt′
∫ t′

0
dt′′e−L̂0t′L̂Je

L̂0(t′−t′′)L̂Je
L̂0t′′ ˜̂ρ(0)

+

∫ t

0
d1

∫ t′

0
dt′′
∫ t′′

0
dt′′′e−L̂0t′L̂Je

L̂0(t′−t′′)L̂Je
L̂0(t′′−t′′′)L̂Je

L̂0t′′′ ˜̂ρ(0) + · · ·

= ˜̂ρ(0) +
∞∑
n=1

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
dt1

×e−L̂0tnL̂Je
L̂0(tn−tn−1)L̂J · · · L̂Je

L̂0(t2−t1)L̂Je
L̂0t1 ˜̂ρ(0). (3.74)

Applying the inverse transformation that was applied in Eq. 3.70 yields the Dyson expansion in

the Schrödinger picture,

ρ̂(t) = eL̂0tρ̂(0) +
∞∑
n=1

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
dt1

×eL̂0(t−tn)L̂Je
L̂0(tn−tn−1)L̂J · · · L̂Je

L̂0(t2−t1)L̂Je
L̂0t1 ρ̂(0), (3.75)

where ˜̂ρ(0) = ρ̂(0), by definition. After plugging the more explicit form of the jump Liouvillian into

Eq. 3.75, it becomes,

ρ̂(t) = eL̂0tρ̂(0) +

∞∑
n=1

∑
k1,··· ,kn

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
dt1

×eL̂0(t−tn)L̂
(kn)
J eL̂0(tn−tn−1)L̂

(kn−1)
J · · · L̂ (k2)

J eL̂0(t2−t1)L̂
(k1)
J eL̂0t1 ρ̂(0),

(3.76)

where

L̂
(ki)
J = Ŝki ρ̂(t)Ŝ†ki . (3.77)
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3.4.2 Definition of Quantum Trajectories

Justifying the name later, we define a ”trajectory” to be the quantity inside all of the sums

and integrals in Eq. 3.76,

ρ̂t1,k1;t2,k2;··· ;tn,kn(t) = eL̂0(t−tn)L̂
(kn)
J eL̂0(tn−tn−1)L̂

(kn−1)
J · · · L̂ (k2)

J eL̂0(t2−t1)L̂
(k1)
J eL̂0t1 ρ̂(0). (3.78)

A trajectory depends explicitly on the values of ki and the values of ti that appear in its definition.

In a trajectory, there are only two types of operations being performed. One is the free evolution

under Ĥeff ,

ρ̂(ti) = eL̂0(ti−ti−1)ρ̂(ti−1), (3.79)

which is the solution to the equation,

d

dti
ρ̂(ti) = L̂0ρ̂(ti)

=
1

ı~

(
Ĥeff ρ̂(ti)− ρ̂(ti)Ĥ

†
eff

)
, (3.80)

and the other is the application of a jump operator,

L̂
(k)
J ρ̂(ti) = Ŝkρ̂(ti)Ŝ

†
k. (3.81)

If the initial condition for the density operator is chosen to be in a pure state,

ρ̂(0) = |ψ(0)〉 〈ψ(0)| , (3.82)

evolution under Ĥeff preserves the purity of the state and therefore is equivalent to a Schrödinger

type evolution,

d

dti
|ψ(ti)〉 =

1

ı~
Ĥeff |ψ(ti)〉 . (3.83)

Also, the application of a jump operator to a pure state preserves the purity of the state,

L̂
(k)
J |ψ(ti)〉 〈ψ(ti)| = Ŝk |ψ(ti)〉 〈ψ(ti)| Ŝ†k ⇐⇒ Ŝk |ψ(ti)〉 . (3.84)
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Therefore, the trajectory can be rewritten in terms of state vectors as

|ψt1,k1;t2,k2;··· ;tn,kn(t)〉 = e−
ı
~ Ĥeff (t−tn)Ŝkne

− ı
~ Ĥeff (tn−tn−1)Ŝkn−1 · · ·

×Ŝk2e
− ı

~ Ĥeff (t2−t1)Ŝk1e
− ı

~ Ĥeff t1 |ψ(0)〉

= Ût,tnŜknÛtn,tn−1Ŝkn−1 · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉 , (3.85)

where

Ûti,ti−1 ≡ e−
ı
~ Ĥeff (ti−ti−1). (3.86)

Eq. 3.85 says that a quantum trajectory is constructed by evolving an initial state |ψ(0)〉 with Ĥeff

from 0 to t1, and then applying the jump operator Ŝk1 , evolving this resulting state from t1 to t2,

applying the jump operator Ŝk2 , and repeating this procedure n times.

3.4.3 Unraveling the Master Equation

After taking the rest of the trace of Eq. 3.76, it can be written as,

1 = 〈ψ(0)| Û †t,0Ût,0 |ψ(0)〉+

∫ t

0
dt1
∑
k1

〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t,t1Ût,t1Ŝk1Ût1,0 |ψ(0)〉+ · · ·

+
∑

k1,··· ,kn

∫ t

0
dtn · · ·

∫ t3

0
dt2

∫ t2

0
dt1

×〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knÛ

†
t,tnÛt,tnŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉+ · · · (3.87)

The first term in Eq. 3.87 can be identified as the probability that no jumps will occur in

the interval [0, t]. The second term can be identified as the probability that exactly one jump will

occur in the interval [0, t], and likewise, the (n+ 1)th term can be identified as the probability that

n jumps will occur in the interval [0, t].

In the (n+ 1)th term, the sum over ki is a sum over all of the possible jump operators that

could be applied in the trajectory, Ût,ti−1Ŝki−1
· · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉. Furthermore, the integral

over dti is an integral over all the possible times that the ith jump operator is applied. Therefore,

the quantity,
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P(t1,k1;t2,k2;··· ;tn,kn) ≡ 〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knÛ

†
t,tnÛt,tnŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉 (3.88)

can be interpreted as the probability of the specific jumps {Ŝk1 , Ŝk2 , · · · , Ŝkn} occurring at the

specific times {t1, t2, · · · , tn} in the interval [0, t].

Because of this, Eq. 3.85 is rewritten as

|ψt1,k1;t2,k2;··· ;tn,kn(t)〉 =
√
〈ψ(0)| Û †t1,0Ŝ

†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knÛ

†
t,tn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

×
Ût,tnŜknÛtn,tn−1Ŝkn−1 · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉√

〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knÛ

†
t,tnÛt,tnŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

=
√
P(t1,k1;t2,k2;··· ;tn,kn)

|ψt1,k1;t2,k2;··· ;tn,kn(t)〉√
〈ψt1,k1;t2,k2;··· ;tn,kn(t)|ψt1,k1;t2,k2;··· ;tn,kn(t)〉

, (3.89)

Thus, we know the probability with which every single possible trajectory will come into the Dyson

expansion of the master equation.

The probability of getting a specific trajectory can be split up into a product of the proba-

bilities of intermediate steps. This can be seen by rewriting it as

P(t1,k1;t2,k2;··· ;tn,kn) =
〈ψ(0)| Û †t1,0Ŝ

†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knÛ

†
t,tnÛt,tnŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

×
〈ψ(0)| Û †t1,0Ŝ

†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†knŜkn · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

〈ψ(0)| Û †t1,0Ŝ
†
k1
Û †t2,t1Ŝ

†
k2
· · · Ŝ†kn−1

Ŝkn−1 · · · Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉
× · · ·

×
〈ψ(0)| Û †t1,0Ŝ

†
k1
Û †t2,t1Ŝ

†
k2
Ŝk2Ût2,t1Ŝk1Ût1,0 |ψ(0)〉

〈ψ(0)| Û †t1,0Ŝ
†
k1
Ŝk1Ût1,0 |ψ(0)〉

×
〈ψ(0)| Û †t1,0Ŝ

†
k1
Ŝk1Ût1,0 |ψ(0)〉

〈ψ(0)|ψ(0)〉
(3.90)

Therefore, a trajectory with the record (t1, k1; t2, k2; · · · ; tn, kn) can be constructed in a piecewise

fashion, one time evolution and jump at time. It is beneficial to construct a trajectory this way,

since it is fairly easy to obtain the probability distribution for getting the record {t1, k1; · · · ; ti, ki}

conditioned upon having gotten the record {t1, k1; · · · ; ti−1, ki−1}.

To find this, it is noted that for a small time interval [0, τ ], the probability that an emission

occurs at time τ should be related to the probability that no emission occurs on the interval. The
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equation of motion for the norm of |ψ(τ)〉 is

d

dt
〈ψ(τ)|ψ(τ)〉 =

d 〈ψ(τ)|
dt

|ψ(τ)〉+ 〈ψ(τ)| d |ψ(τ)〉
dt

= 〈ψ(τ)|
(
− 1

ı~
Ĥ†eff

)
|ψ(τ)〉+ 〈ψ(τ)|

(
1

ı~
Ĥeff

)
|ψ(τ)〉

= 〈ψ(τ)|
(
− 1

ı~
Ĥ†eff

)
+

(
1

ı~
Ĥeff

)
|ψ(τ)〉

= 〈ψ(τ)| − 1

ı~

(
Ĥ0 +

ı~
2

∑
k

Ŝ†kŜk

)
+

1

ı~

(
Ĥ0 −

ı~
2

∑
k

Ŝ†kŜk

)
|ψ(τ)〉

= −
∑
k

〈ψ(τ)| Ŝ†kŜk |ψ(τ)〉 . (3.91)

Integrating both sides from t′ = 0 to t′ = τ ,

〈ψ(τ)|ψ(τ)〉 − 〈ψ(0)|ψ(0)〉 = −
∫ τ

0
dt′
∑
k

〈
ψ(t′)

∣∣ Ŝ†kŜk ∣∣ψ(t′)
〉
, (3.92)

or since 〈ψ(0)|ψ(0)〉 = 1,∫ τ

0
dt′
∑
k

〈
ψ(t′)

∣∣ Ŝ†kŜk ∣∣ψ(t′)
〉

+ 〈ψ(τ)|ψ(τ)〉 = 1. (3.93)

The above equation says that the loss of norm of |ψ(τ)〉, produced by evolving with Ĥeff , is taken

up by the set of states
{
Ŝk |ψ(τ)〉

}
, and that the sum of the norm of both is equal to one.

3.4.4 The Quantum Jumps Algorithm

We are now in a position to describe the quantum Monte Carlo algorithm that simulates the

Dyson expansion of the master equation. This algorithm can be performed as follows:

(1) Start in the state |ψi〉 at time ti.

(2) Pick a random number r1 in the interval [0, 1].

(3) Evolve |ψi〉 under Ĥeff ,

|ψ(t)〉 = e−
ı
~ Ĥeff (t−ti) |ψi〉 , (3.94)

until 〈ψ(t)|ψ(t)〉 = r1, and call this time ti+1.

(4) Choose another random number r2 on the interval [0, 1].



39

(5) Set r2 equal to the cumulative distribution function of the conditional probabilities of a

decay into mode k at time ti+1,

r2 =

∑k=ki
k=0 〈ψ(ti+1)| Ŝ†kŜk |ψ(ti+1)〉∑
k 〈ψ(ti+1)| Ŝ†kŜk |ψ(ti+1)〉

, (3.95)

and solve for ki, the ith random mode of decay.

(6) Apply the jump operator corresponding to ki to the state |ψ(ti+1)〉, normalize, and call this

new state

|ψi+1〉 =
Ŝki |ψ(ti+1)〉

〈ψ(ti+1)| Ŝ†kiŜki |ψ(ti+1)〉
. (3.96)

(7) Repeat steps 1-6 until t ≥ T, the time at which the experiment ends, keeping track of the

pieces of the trajectory |ψi〉 and construct a trajectory out of these pieces,

|ψR〉 =



|ψ1〉 0 ≤ t < t1

|ψ2〉 t1 ≤ t < t2

...

|ψn〉 tn−1 ≤ t < tn,

(3.97)

where R = {t1, k1; t2, k2; · · · ; tn, kn}, is the record of the random times and modes of decay

of the trajectory.

(8) The simulation the Dyson expansion of the master equation, and hence the full time evo-

lution of the density operator under the master equation, is given by repeating steps 1-7

N times, and forming,

ρ̂(t) = lim
N→∞

1

N

N∑
m=1

|ψR〉m 〈ψR|m
〈ψR|m |ψR〉m

, (3.98)

where |ψR〉m is the mth trajectory constructed by repeating steps 1-6 N times. The ex-

pectation value of any observable Ô can be found by,

tr[Ô ˆρ(t)] = lim
N→∞

1

N

N∑
m=1

〈ψR|m Ô |ψR〉m
〈ψR|m |ψR〉m

. (3.99)
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3.4.5 Computer Simulation of Quantum Jumps

Although analytical solutions exist for simple systems, such as the damped harmonic oscil-

lator, for more complex systems, for instance where multiple atoms are coupled to a cavity field,

analytic solutions do not exist. To treat these more complex systems, the numerical solution meth-

ods must be relied on. Even so, it will be advantageous to demonstrate these methods for the

simple systems since they are easily extended to more complicated systems.

In Fig. 3.1, the results of a computer simulation which implements the quantum jumps algo-

rithm for the damped harmonic oscillator is shown. We consider the average number of excitation〈
â†(t)â(t)

〉
in the damped mode with n̄ = 1 as a function of t/κ . For reference, the analytical

solution for
〈
â†(t)â(t)

〉
, Eq. 3.45, can be seen in black. In a single trajectory, which is shown in

blue, there is a precise number of excitations until a random jump occurs at a random time. Then,

the number of excitations is increased or decreased by one, depending on which jump operator was

randomly chosen. When many of these random trajectories are averaged together, the correct evo-

lution for
〈
â†(t)â(t)

〉
is approached, which is demonstrated in red, where 1000 random trajectories

are averaged over.

3.5 Quantum State Diffusion

The unraveling of the master equation into quantum jumps is only one of many possible

unravelings. It corresponds to a measurement scheme in which light from the system is directly

detected on a photodetector. Another possible measurement scheme is homodyne detection, in

which the light coming from the system is mixed with a strong laser called the local oscillator.

An unraveling of the master equation that corresponds to homodyne detection yields the quantum

state diffusion equation. It is basically the limit of the quantum jump method in which the mixed

light from the system and local oscillator has an infinite number of infinitesimally small jumps.
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Figure 3.1: The quantum jumps algorithm is used to find
〈
â†(t)â(t)

〉
for a damped harmonic

oscillator with n̄ = 1, and α(0) = 2. The analytic expression for
〈
â†(t)â(t)

〉
is shown in black, a

single trajectory is shown in blue, and 1000 trajectories is shown in red.
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3.5.1 Master Equation of a Homodyne System

Consider the master equation for a damped single mode cavity field of linewidth κ,

d

dt
ρ̂(t) = −κ

2

{
â†âρ̂(t) + ρ̂(t)â†â− 2âρ̂(t)â†

}
. (3.100)

Where â is the annihilation operator of the mode, and ρ̂(t) is the system’s density operator. If this

damped cavity field is mixed with strong local oscillator of amplitude β through a beam splitter

with high transmittivity, the amplitude of the resulting field that is incident on a detector is given

by,

Ĉ =
√
κ (â+ β) , (3.101)

where we have assumed that the phase of the local oscillator is zero. In an interaction picture that

rotates at the frequency of the cavity field, the master equation describing this system is of the

form of Eq. 3.63 with Ŝk → Ĉ and Ĥ0 dropped,

d

dt
ρ̂(t) = −1

2

{
Ĉ†Ĉρ̂(t) + ρ̂(t)Ĉ†Ĉ − 2Ĉρ̂(t)Ĉ†

}
= L̂0ρ̂(t) + L̂J ρ̂(t), (3.102)

where,

L̂0ρ̂(t) = − ı
~

(
Ĥeff ρ̂(t)− ρ̂(t)Ĥ†eff

)
, (3.103)

with

Ĥeff = − ı~
2
Ĉ†Ĉ, (3.104)

and

L̂J ρ̂(t) = Ĉρ̂(t)Ĉ†. (3.105)

The Dyson expansion of Eq. 3.102 has the same form as Eq. 3.76, so that the analysis of the

previous section carries over directly into this section.

In a time interval ∆t, the photon flux that reaches the photodetector is〈
Ĉ†Ĉ

〉
∆t = κ∆t

〈
â† + β

〉〈
â+ β

〉
≈ κ∆t

(
β
〈
â† + â

〉
+ β2

)
, (3.106)
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where
〈
â†â
〉

has been dropped since β is large. We assume κ∆t ∼ β−3/2, so that for large

β, the number of photodetections n = κ∆tβ2 ∼ β1/2 is large, while the change of the system

κ∆tβ
〈
â† + â

〉
∼ β−1/2 is small.

By Eq. 3.87, the probability that n jumps occur in a time interval ∆t, is given by

Pn(∆t) =

∫ ∆t

0
dtn · · ·

∫ t3

0
dt2

∫ t2

0
dt1

〈ψ(0)| Û †t1,0Ĉ
†Û †t2,t1Ĉ

† · · · Ĉ†Û †∆t,tnÛ∆t,tnĈ · · · ĈÛt2,t1ĈÛt1,0 |ψ(0)〉 , (3.107)

where,

Ûti,ti−1 = e−
ı
~ Ĥeff (ti−ti−1)

= e−
1
2
Ĉ†Ĉ(ti−ti−1). (3.108)

To order O(β−3/2), Ûti,ti−1 and Ĉ commute, so that,

Pn(∆t) =
tn

n!
〈ψ(0)| Û †∆t,0

(
Ĉ†Ĉ

)n
Ût,0 |ψ(0)〉 . (3.109)

After substitution of Eqns. 3.101 and 3.108, Eq. 3.109 becomes,

Pn(∆t) = e−(κ∆tβ2) (κ∆tβ2)n

n!

(
1 + (n− (κ∆tβ2))2xβ−1 +O(β−3/2)

)
, (3.110)

where x = 〈ψ(0)| (â†+ â)/2 |ψ(0)〉. From Eq. 3.110, it can be shown [86] that the random variable n

corresponding to this probability distribution can be approximated by a Gaussian random variable

of the form,

n = κ∆tβ2
(

1 + 2xβ−1 +O(β−3/2)
)

+
√
κ∆Wβ

(
1 +O(β−1/2)

)
, (3.111)

where ∆W is a Wiener increment [33] which satisfies 〈∆W 〉2avg = ∆t.

The state of a specific trajectory after a time interval ∆t, is given by Eq. 3.85 which now

takes the form,

|ψR(∆t)〉 = Û∆t,tnĈÛtn,tn−1Ĉ · · · ĈÛt2,t1ĈÛt1,0 |ψ(0)〉 , (3.112)

where the subscript R denotes a specific record of jump at times R = {t1, t2, · · · , tn}. To order
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O(β−3/2), Ûti,ti−1 and Ĉ commute, so that Eq. 3.112 can be rewritten,

|ψR(∆t)〉 = Û∆t,0Ĉ
n |ψ(0)〉

= e−
κ
2 (â†+β)(â+β)∆t

(√
κ(â+ β)

)n |ψ(0)〉 . (3.113)

Finally, Eq. 3.113 is expanded to O(β−3/2), Eq. 3.111 is substituted for n, and the limit of β → 0 is

taken, resulting in the quantum state diffusion equation for a trajectory corresponding to homodyne

measurement,

|ψR(t+ ∆t)〉 =

{
1 + κ∆t

(
−1

2
â†â+ 2x(t)â

)
+
√
κ∆W (t)â

}
|ψR(t)〉 . (3.114)

In numerical simulations, Eq. 3.114 must be normalized after each time step. The density operator

is then reconstructed by simulating N random trajectories, and forming,

ρ̂(t) = lim
N→∞

1

N

N∑
m=1

|ψR〉m 〈ψR|m
〈ψR|m |ψR〉m

, (3.115)

The expectation value of any observable Ô can be found by,

tr[Ô ˆρ(t)] = lim
N→∞

1

N

N∑
m=1

〈ψR|m Ô |ψR〉m
〈ψR|m |ψR〉m

. (3.116)

3.5.2 Computer Simulation of the Quantum State Diffusion Equation

In Fig. 3.2, the results of a computer simulation which solves the quantum state diffusion

equation for random trajectories, for the damped harmonic oscillator is shown. We consider the

average number of excitation
〈
â†(t)â(t)

〉
in the damped mode with n̄ = 1 as a function of t/κ . For

reference, the analytical solution for
〈
â†(t)â(t)

〉
, Eq. 3.45, can be seen in black. In a single trajec-

tory, which is shown in blue, there are many very small jumps, so that the number of excitations

randomly diffuses in time. When many of these random trajectories are averaged together, the

correct evolution for
〈
â†(t)â(t)

〉
is approached, which is demonstrated in red, where 1000 random

trajectories are averaged over.
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Figure 3.2: The quantum state diffusion equation is solved for random trajectories which are used to
find

〈
â†(t)â(t)

〉
for a damped harmonic oscillator with n̄ = 1, and α(0) = 2. The analytic expression

for
〈
â†(t)â(t)

〉
is shown in black, a single trajectory is shown in blue, and 1000 trajectories is shown

in red.
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3.6 The Master Equation for a General Cavity QED System

In a cavity QED system, in which energy is re-supplied to the atoms, energy can not be

supplied directly at the frequency of the considered transition. Otherwise, when a large number

of atoms become excited, stimulated emission would occur, and the inversion would never become

positive. However, if a higher third level is repumped, and this level spontaneously decays down,

the system can achieve positive inversion. This repumping process can be thought of as reverse

spontaneous emission, and can be modeled with the master equation for a two level atom with

γ → w, σ̂+ → σ̂−, and σ̂− → σ̂+, where w is now the repumping rate.

In addition to the damping of the excited state population due to spontaneous emission, it

is also possible that decoherence of the phase between excited and ground states can occur. This

dephasing can occur, for instance, due to elastic collisions in an atomic cloud. It can be modeled

by a system reservoir coupling Hamiltonian ĤSR of the form,

ĤSR = ~
∑
j

(
λj σ̂

z r̂j + λ∗j σ̂
z r̂†j

)
, (3.117)

where r̂j is the annihilation operator of the jth mode in the reservoir Hilbert space, λj is coupling

rate between the system and the jth mode of the reservoir, and σ̂z is a Pauli operator, which obeys

Eqns. 3.58. This form of ĤSR models the dephasing between excited and ground states, since the

action of the operator σ̂z is to change the relative phase between the excited and ground state by

π. Eq. 3.117 is the same as Eq. 3.57 with σ̂+ → σ̂z. Therefore the derivation is preformed in the

same way as in Sec. 3.3, with γ → 1/2T2, where 1/T2 is the dephasing rate. Then, the master

equation describing atomic dephasing is given by,

d

dt
˜̂ρ(t) = − 1

4T2
(n̄+ 1)

(
σ̂zσ̂z ˜̂ρ(t) + ˜̂ρ(t)σ̂zσ̂z − 2σ̂z ˜̂ρ(t)σ̂z

)
− 1

4T2
n̄
(
σ̂zσ̂z ˜̂ρ(t) + ˜̂ρ(t)σ̂zσ̂z − 2σ̂z ˜̂ρ(t)σ̂z

)
=

1

2T2
(n̄+ 1)

(
σ̂z ˜̂ρ(t)σ̂z − ˜̂ρ(t)

) 1

2T2
n̄
(
σ̂z ˜̂ρ(t)σ̂z − ˜̂ρ(t)

)
. (3.118)

Many cavity QED experiments are done at close to zero temperature, so that average number

of thermal excitations n̄ = 0. Putting it all together, the master equation for N two level atoms
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of frequency ωa, decay rate γ, repumping rate w, and dephasing rate 1
2T2

, coupled with rate g to a

single mode cavity of decay rate κ is given by,

d

dt
ρ̂ = − ı

~

[
Ĥ, ρ̂

]
− κ

2

{
â†âρ̂+ ρ̂â†â− 2âρ̂â†

}
− γ

2

N∑
j=1

{
σ̂+
j σ̂
−
j ρ̂+ ρ̂σ̂+

j σ̂
−
j − 2σ̂−j ρ̂σ̂

+
j

}

−w
2

N∑
j=1

{
σ̂−j σ̂

+
j ρ̂+ ρ̂σ̂−j σ̂

+
j − 2σ̂+

j ρ̂σ̂
−
j

}
+

1

2T2

N∑
j=1

{
σ̂zj ρ̂σ̂

z
j − ρ̂

}
, (3.119)

with,

Ĥ =
~ωa

2

N∑
j=1

σ̂zj + ~ωcâ†â+
~g
2

N∑
j=1

(
σ̂−j â

† + σ̂+
j â
)
, (3.120)

where ρ̂ is the system density operator, and â is the annihilation operator for the cavity mode. The

jth atom is described by the operators,

σ̂−j = |g〉j 〈e|j

σ̂+
j = |e〉j 〈g|j

σ̂zj = |e〉j 〈e|j − |g〉j 〈g|j

1̂j = |e〉j 〈e|j + |g〉j 〈g|j , (3.121)

where |e〉j is the excited state, |g〉j is the ground state, and 1̂j is the identity operator for the

jth atom. Then we can use the fact that |e〉j and |g〉j are orthonormal, i.e. 〈e|i |g〉i = 0, and

〈e|i |e〉i = 〈g|i |g〉i = 1, to simplify calculations. The commutation relations between the atomic

operators are, [
σ̂+
i , σ̂

−
j

]
= σ̂zi δij[

σ̂zi , σ̂
+
j

]
= 2σ̂+

i δij[
σ̂−i , σ̂

−
j

]
= 2σ̂−i δij , (3.122)

where δij is the Kronecker delta.

3.7 Cumulant Expansion to Second Order

The quantum jumps and quantum state diffusion methods are only able to describe very

small systems, with atom numbers N ∼ 10. This is because the basis used to describe the system
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scales with atom number N as 2N . Many experiments done today have atom numbers N ∼

105 or higher, and in order to describe these larger systems, approximation methods must be

employed. The cumulant expansion is one such approximate method that allows large systems

to be described. In this method, equations for expectation values of observables of interest will

be derived. These equations will couple to higher order moments, which will in turn couple to

even higher order moments. We choose to factorize all moments higher that second order, using

the cumulant expansion [54]. This will allow a closed set of equations for expectation values to

be derived. With the help of the quantum regression theorem, and again using the cumulant

expansion, equations for two-time expectation values can also be derived.

3.7.1 Closed Set of One-Time Expectation Values

We begin by deriving the equation of motion for 〈σ̂z1〉, the inversion for a single atom of the

atomic ensemble. Using Eq. 3.119,

d

dt
〈σ̂z1〉 = tr[σ̂z1

d

dt
ρ̂]

= − ıωa
2

N∑
j=1

tr
[
σ̂z1σ̂

z
j ρ̂− σ̂zj σ̂z1 ρ̂

]
− ıg

2

N∑
j=1

tr
[
σ̂z1

(
σ̂−j â

† + σ̂+
j â
)
ρ̂−

(
σ̂−j â

† + σ̂+
j â
)
σ̂z1 ρ̂
]

−γ
2

N∑
j=1

tr
[
σ̂z1σ̂

+
j σ̂
−
j ρ̂+ σ̂+

j σ̂
−
j σ̂

z
1 ρ̂− 2σ̂+

j σ̂
z
1σ̂
−
j ρ̂
]

−w
2

N∑
j=1

tr
[
σ̂z1σ̂

−
j σ̂

+
j ρ̂+ σ̂−j σ̂

+
j σ̂

z
1 ρ̂− 2σ̂−j σ̂

z
1σ̂

+
j ρ̂
]

+
1

2T2

N∑
j=1

tr
[
σ̂zj σ̂

z
1σ̂

z
j ρ̂− σ̂z1 ρ̂

]
, (3.123)
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where the cyclic property of the trace has been used. After using Eq. 3.121 to simplify, Eq. 3.123

becomes,

d

dt
〈σ̂z1〉 = − ıg

2
tr
[
−σ̂−j â

† + σ̂+
j âρ̂− σ̂

−
j â
† + σ̂+

j â
]

−γ
2
tr
[
σ̂+

1 σ̂
−
1 ρ̂+ σ̂+

1 σ̂
−
1 ρ̂+ 2σ̂+

1 σ̂
−
1 ρ̂
]

−w
2
tr
[
−σ̂−1 σ̂

+
1 ρ̂− σ̂

−
1 σ̂

+
1 ρ̂− 2σ̂−1 σ̂

+
1 ρ̂
]

= ıg
(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
− (w + γ) (〈σ̂z1〉 − d0) , (3.124)

where d0 ≡ w−γ
w+γ . Since

〈
â†σ̂−1

〉
couples into Eq. 3.124, its equation must also be calculated.

Eq. 3.119 is used again to find,

d

dt

〈
â†σ̂−1

〉
= tr[â†σ̂−1

d

dt
ρ̂]

= − ıωa
2

N∑
j=1

tr
[
â†σ̂−1 σ̂

z
j ρ̂− σ̂zj â†σ̂−1 ρ̂

]
− ıωc

2
tr
[
â†σ̂−1 â

†âρ̂− â†ââ†σ̂−1 ρ̂
]

− ıg
2

N∑
j=1

tr
[
â†σ̂−1

(
σ̂−j â

† + σ̂+
j â
)
ρ̂−

(
σ̂−j â

† + σ̂+
j â
)
â†σ̂−1 ρ̂

]
−κ

2
tr
[
â†σ̂−1 â

†âρ̂+ â†ââ†σ̂−1 ρ̂− 2â†â†σ̂−1 âρ̂
]

−γ
2

N∑
j=1

tr
[
â†σ̂−1 σ̂

+
j σ̂
−
j ρ̂+ σ̂+

j σ̂
−
j â
†σ̂−1 ρ̂− 2σ̂+

j â
†σ̂−1 σ̂

−
j ρ̂
]

−w
2

N∑
j=1

tr
[
â†σ̂−1 σ̂

−
j σ̂

+
j ρ̂+ σ̂−j σ̂

+
j â
†σ̂−1 ρ̂− 2σ̂−j â

†σ̂−1 σ̂
+
j ρ̂
]

+
1

2T2

N∑
j=1

tr
[
σ̂zj â

†σ̂−1 σ̂
z
j ρ̂− â†σ̂−1 ρ̂

]
. (3.125)

With the use of the commutation relations for creation and annihilation operators, Eq. 3.43, and

with the help of Eqns. 3.121, Eq. 3.125 becomes,

d

dt

〈
â†σ̂−1

〉
= − ıωa

2
tr
[
â†σ̂−1 ρ̂+ â†σ̂−1 ρ̂

]
+ ıωctr

[
â†σ̂−1 ρ̂

]
− ıg

2

N∑
j=1

tr
[
â†âσ̂−1 σ̂

+
j ρ̂− ââ

†σ̂+
j σ̂
−
1 ρ̂
]

−κ
2
tr
[
â†σ̂−1 ρ̂

]
− γ

2
tr
[
â†σ̂−1 ρ̂

]
− w

2
tr
[
â†σ̂−1 ρ̂

]
− 1

T2
tr
[
â†σ̂−1 ρ̂

]
. (3.126)
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The coupling term requires closer attention, since here, the j 6= 1 terms in the sum are not zero:

d

dt

〈
â†σ̂−1

〉
=

(
−ıωa + ıωc −

κ

2
− γ

2
− w

2
− 1

T2

)〈
â†σ̂−1

〉
− ıg

2
tr
[
â†âσ̂−1 σ̂

+
1 ρ̂− ââ

†σ̂+
1 σ̂
−
1 ρ̂
]
− ıg

2

N∑
j 6=1

tr
[
â†âσ̂−1 σ̂

+
j ρ̂− ââ

†σ̂+
j σ̂
−
1 ρ̂
]

=

(
−ıδ − κ

2
− γ

2
− w

2
− 1

T2

)〈
â†σ̂−1

〉
+
ıg

2

(〈
â†âσ̂z1

〉
+

1

2
(1 + 〈σ̂z1〉)

)
+
ıg

2
(N − 1)

〈
σ̂+

1 σ̂
−
2

〉
, (3.127)

where δ ≡ ωa − ωc, and the identical atom assumption has been invoked in the last term. It is

clear now that it is the coupling term that causes nth order moments to couple to (n+ 1)th order

moments. We therefore use the cumulant expansion [54], dropping cumulants higher than second

order. Applying this to
〈
â†âσ̂z1

〉
yields,〈

â†âσ̂z1

〉
=

〈
â†â
〉
〈σ̂z1〉+

〈
â†σ̂z1

〉
〈â〉+ 〈âσ̂z1〉

〈
â†
〉
− 2

〈
â†
〉
〈â〉 〈σ̂z1〉

=
〈
â†â
〉
〈σ̂z1〉 , (3.128)

where the last line follows from the fact that 〈â〉 = 0. Eq. 3.128 is substituted into Eq. 3.127 to

obtain,

d

dt

〈
â†σ̂−1

〉
=

(
−ıωa + ıωc −

κ

2
− γ

2
− w

2
− 1

T2

)〈
â†σ̂−1

〉
+
ıg

2

(〈
â†â
〉
〈σ̂z1〉+

1

2
(1 + 〈σ̂z1〉)

)
+
ıg

2
(N − 1)

〈
σ̂+

1 σ̂
−
2

〉
. (3.129)

The equations of motion of both
〈
â†â
〉

and
〈
σ̂+

1 σ̂
−
2

〉
are now calculated, and the cumulant

expansion is used to expand moments higher than second order, dropping all cumulants of higher

than second order. Then, we arrive at the closed set of equations,

d

dt
〈σ̂z1〉 = ıg

(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
− (w + γ) (〈σ̂z1〉 − d0)

d

dt

〈
â†σ̂−1

〉
=

(
−ıδ − κ

2
− γ

2
− w

2
− 1

T2

)〈
â†σ̂−1

〉
+
ıg

2

(〈
â†â
〉
〈σ̂z1〉+

1

2
(1 + 〈σ̂z1〉)

)
+
ıg

2
(N − 1)

〈
σ̂+

1 σ̂
−
2

〉
d

dt

〈
σ̂+

1 σ̂
−
2

〉
= −

(
w + γ +

2

T2

)〈
σ̂+

1 σ̂
−
2

〉
− ıg

2
〈σ̂z1〉

(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
d

dt

〈
â†â
〉

= −κ
〈
â†â
〉
− ıNg

2

(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
, (3.130)
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with d0 ≡ w−γ
w+γ . Eqns. 3.130 can be solved on a computer with a numerical differential equation

solver in fractions of a second. Even so, for most purposes we are only interested in the steady

state solution, which can be found by setting the time derivatives to zero, and solving the resulting

algebraic equations. These algebraic equations can also be easily solved on a computer, which is

what is typically done in practice. However, for a broad strokes understanding of the physics, simple

analytic solutions are desirable, and can be obtained in the limit of large N . We set δ = 1
T2

= γ = 0,

for simplicity, and combine Eqns. 3.130 with the time derivatives set to zero,

0 = ıg
(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
− w (〈σ̂z1〉 − d0) ,

0 =
(
−κ

2
− w

2

)〈
â†σ̂−1

〉
+
ıg

2

(〈
â†â
〉
〈σ̂z1〉+

1

2
(1 + 〈σ̂z1〉)

)
+
ıg

2
(N − 1)

〈
σ̂+

1 σ̂
−
2

〉
0 = −w

〈
σ̂+

1 σ̂
−
2

〉
− ıg

2
〈σ̂z1〉

(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
0 = −κ

〈
â†â
〉
− ıNg

2

(〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉)
. (3.131)

Then, after defining,

C ≡ Ng2

w + κ
ε ≡ κ

N(w + κ)
, (3.132)

we arrive at the quadratic,

0 = C (1− ε) (1− 〈σ̂z1〉)
2 + (1− C + 2εC) (1− 〈σ̂z1〉)− 2εC. (3.133)

For ε = 0, (1− 〈σ̂z1〉) = 1− 1
C , so for ε� 1, we add the quantity ξ to this,

(1− 〈σ̂z1〉) = 1− 1

C
+ ξ (3.134)

where ξ is of order ε. Eq. 3.134 is substituted into Eq. 3.133, and only first order terms in ε are

kept. In this way, ξ is found to be,

ξ =
ε

C

C2 + 1

C − 1
, (3.135)

From Eqns. 3.131, the rest of the steady state observables are easily solved for. All together, they
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are,

〈σ̂z1〉 =
1

C
− ε

C

(C2 + 1)

(C − 1)〈
σ̂+

1 σ̂
−
2

〉
=

1

2
〈σ̂z1〉 (1− 〈σ̂z1〉)〈

â†â
〉

=
Nw

2κ
(1− 〈σ̂z1〉)〈

â†σ̂−1

〉
=

iw

2g
(1− 〈σ̂z1〉) . (3.136)

The optimum repumping value w = wopt, at which the maximum photon number is achieved,

is found by setting d
dw

〈
â†â
〉

= 0 and solving for the w at which this occurs. Doing this, it is found,

0 =
d

dw

〈
â†â
〉

=
N

2κ
− wopt

g2
(3.137)

so that

wopt =
Ng2

2κ
. (3.138)

Substituting Eq. 3.138 into Eqns. 3.136 yields,

〈σ̂z1〉opt =
1

2

〈
σ̂+

1 σ̂
−
2

〉
opt

=
1

8〈
â†â
〉
opt

=
N2g2

8κ2

〈
â†σ̂−1

〉
opt

=
iNg

8κ
. (3.139)

3.7.2 Closed Set of Two-Time Expectation Values

The cumulant expansion method can also be used to calculate
〈
â†(t+ τ)â(t)

〉
using the

quantum regression theorem demonstrated in Sec. 3.2.3. With Â→ â† and B̂ → â in Eq. 3.49, and

noting now that Ŝ(τ) = e−
i
~ Ĥτ âρ̂e

i
~ Ĥτ , we arrive at,

d

dτ

〈
â†(t+ τ)â(t)

〉
= tr

[(
d

dτ
Ŝ(τ)

)
â†
]

= −ıωctr
[
â†â†âŜ(τ)− â†ââ†Ŝ(τ)

]
− ıg

2

N∑
j=1

tr
[
â†
(
σ̂−j â

† + σ̂+
j â
)
Ŝ(τ)−

(
σ̂−j â

† + σ̂+
j â
)
â†Ŝ(τ)

]
−κ

2
tr
[
â†â†âρ̂+ â†ââ†ρ̂− 2â†â†âρ̂

]
, (3.140)
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where the cyclic property of the trace has been used. The commutation relations for creation and

annihilation operators, Eq. 3.43, are used to simplify,

d

dτ

〈
â†(t+ τ)â(t)

〉
= ıωctr

[
â†Ŝ(τ)

]
− κ

2
tr
[
â†Ŝ(τ)

]
+
ıg

2

N∑
j=1

tr
[
σ̂+
j Ŝ(τ)

]
=

(
ıωc −

κ

2

)〈
â†(t+ τ)â(t)

〉
+
ıgN

2

〈
σ̂+
j (t+ τ)â(t)

〉
, (3.141)

where we have assumed identical atoms in the last line. Since
〈
σ̂+

1 (t+ τ)â(t)
〉

couples into Eq. 3.141,

its equation of motion must also be found. We therefore calculate,

d

dτ

〈
σ̂+

1 (t+ τ)â(t)
〉

= tr

[(
d

dτ
Ŝ(τ)

)
σ̂+

1

]
= − ıωa

2

N∑
j=1

tr
[
σ̂+

1 σ̂
z
j Ŝ(τ)− σ̂zj σ̂+

1 Ŝ(τ)
]

− ıg
2

N∑
j=1

tr
[
σ̂+

1

(
σ̂−j â

† + σ̂+
j â
)
Ŝ(τ)−

(
σ̂−j â

† + σ̂+
j â
)
σ̂+

1 Ŝ(τ)
]

−γ
2

N∑
j=1

tr
[
σ̂+

1 σ̂
+
j σ̂
−
j Ŝ(τ) + σ̂+

j σ̂
−
j σ̂

+
1 Ŝ(τ)− 2σ̂+

j σ̂
+
1 σ̂
−
j Ŝ(τ)

]

−w
2

N∑
j=1

tr
[
σ̂+

1 σ̂
−
j σ̂

+
j Ŝ(τ) + σ̂−j σ̂

+
j σ̂

+
1 Ŝ(τ)− 2σ̂−j σ̂

+
1 σ̂

+
j Ŝ(τ)

]

+
1

2T2

N∑
j=1

tr
[
σ̂zj σ̂

+
1 σ̂

z
j Ŝ(τ)− σ̂+

1 Ŝ(τ)
]
, (3.142)

where the cyclic property of the trace has been used. After simplifying using Eq. 3.121, Eq. 3.142

becomes,

d

dτ

〈
σ̂+

1 (t+ τ)â(t)
〉

= ıωatr
[
σ̂+

1 Ŝ(τ)
]
− ıg

2
tr
[
â†
(
σ̂+

1 σ̂
−
1 − σ̂

−
1 σ̂

+
1

)
Ŝ(τ)

]
−γ

2
tr
[
σ̂+

1 Ŝ(τ)
]
− w

2
tr
[
σ̂+

1 σ̂
−
j σ̂

+
j Ŝ(τ)

]
− 1

T2
tr
[
σ̂+

1 Ŝ(τ)
]

=

(
ıωa −

γ

2
− w

2
− 1

T2

)〈
σ̂+

1 Ŝ(τ)
〉
− ıg

2

〈
â†σ̂z1Ŝ(τ)

〉
=

(
ıωa −

γ

2
− w

2
− 1

T2

)〈
σ̂+

1 (t+ τ)â(t)
〉
− ıg

2

〈
â†(t+ τ)σ̂z1(t+ τ)â(t)

〉
.

(3.143)
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To be consistent with the approximations of Sec. 3.7.1, the third order moment in Eq. 3.143 is

factorized and the third order cumulant is dropped, which yields,

〈
â†(t+ τ)σ̂z1(t+ τ)â(t)

〉
=

〈
â†â
〉
〈σ̂z1〉+

〈
â†σ̂z1

〉
〈â〉+ 〈âσ̂z1〉

〈
â†
〉
− 2

〈
â†
〉
〈â〉 〈σ̂z1〉

= 〈σ̂z1(t+ τ)〉
〈
â†(t+ τ)â(t)

〉
. (3.144)

Putting it all together, in an interaction picture that rotates at ωa, defined by,

˜̂a(t) = e−iωatâ(t) ˜̂σ−1 (t) = e−iωatσ̂−1 (t), (3.145)

we have,

d

dτ

〈
â†(t+ τ)â(t)

〉
= −

(
ıδ +

κ

2

)〈
â†(t+ τ)â(t)

〉
+
ıgN

2

〈
σ̂+
j (t+ τ)â(t)

〉
d

dτ

〈
σ̂+

1 (t+ τ)â(t)
〉

= − ıg
2
〈σ̂z1(t+ τ)〉

〈
â†(t+ τ)â(t)

〉
−
(
γ

2
+
w

2
+

1

T2

)〈
σ̂+

1 (t+ τ)â(t)
〉
, (3.146)

where δ ≡ ωa − ωc.

To solve Eqns. 3.146, we note that they are of the form,

d

dτ
A(τ) = c1A(τ) + c2B(τ)

d

dτ
B(τ) = c3A(τ) + c4B(τ), (3.147)

which can be solved by taking the Laplace transform of both sides,∫ ∞
0

dτe−sτ
{
d

dτ
A(τ)

}
=

∫ ∞
0

dτe−sτ {c1A(τ) + c2B(τ)}∫ ∞
0

dτe−sτ
{
d

dτ
B(τ)

}
=

∫ ∞
0

dτe−sτ {c3A(τ) + c4B(τ)} . (3.148)

After integrating the left hand sides by parts, and defining,

A(s) =

∫ ∞
0

dτe−sτA(τ)

B(s) =

∫ ∞
0

dτe−sτB(τ), (3.149)
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Eq. 3.148 becomes,

−A(0) + sA(s) = c1A(s) + c2B(s)

−B(0) + sB(s) = c3A(s) + c4B(s). (3.150)

Eq. 3.150 is algebraically solved for A(s), yielding,

A(s) =
(s− c4)A(0) + c2B(0)

s2 − (c1 + c4) s+ (c1c4 − c2c3)

=
(s− c4)A(0) + c2B(0)(
s− ∆ν+

2

)(
s− ∆ν−

2

) , (3.151)

where,

∆ν± = − (c1 + c4)∓
√

(c1 + c4)2 − 4 (c1c4 − c2c3)

=
1

2
(κ+ w)∓ 1

2

√
(−κ+ w)2 − 4Ng2 〈σ̂z1〉. (3.152)

By the method of partial fractions, Eq. 3.151 can be put into the form,

A(s) =
X(

s− ∆ν+

2

) +
Y(

s− ∆ν−
2

) , (3.153)

so that taking the inverse Laplace transform yields

〈
â†(t+ τ)â(t)

〉
= A(τ) = Xe−

∆ν+τ

2 + Y e−
∆ν−τ

2 . (3.154)

Since ∆ν+ � ∆ν−, the second term decays fast to zero, so that the first term dominates. Then,

since the Fourier transform of an exponential with decay rate ∆ν is a Lorentzian with a full width

half maximum linewidth ∆ν, the steady state linewidth ∆ν of a system described by Eq. 3.119 is

given by,

∆ν =
1

2
(κ+ w)− 1

2

√
(−κ+ w)2 − 4Ng2 〈σ̂z1〉. (3.155)

By plugging Eq. 3.136 into Eq. 5.51, and again assuming N � κ
w+κ , we find a simple

expression for the linewidth,

∆ν =
C2 + 1

C(C − 1)

Ω2κ

(w + κ)2
. (3.156)
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3.8 Conclusion

We have seen that an open quantum system can be described by coupling it to a large

reservoir, and evolving the combined system and reservoir to second order in perturbation theory.

Then, after taking the partial trace over the reservoir Hilbert space, and making the Markov ap-

proximation, the master equation was obtained. For simple systems, such as the damped harmonic

oscillator, the master equation can be used to derive exact analytical solutions for expectation

values. With the help of the quantum regression theorem, analytical solutions for two-time ex-

pectation values can also be derived. We also introduced the quantum jumps and quantum state

diffusion methods which can be used to solve the master equation using a computer. The quan-

tum jumps method unravels the master equation into random trajectories, which correspond to

the random measurement record of photons leaving the system and being detected. The quantum

state diffusion method unravels the master equation into random trajectories, which correspond

to a randomly fluctuating homodyne photocurrent that results from mixing the photons from the

system with a strong local oscillator. In both cases, the random trajectories are averaged over

to obtain the correct evolution in the ensemble sense. Computer simulations using both of these

methods were demonstrated in the system of the damped harmonic oscillator. For systems with a

large number of atoms, the quantum jumps and quantum state diffusion methods are not possible,

since the size of the Liouville space grows exponentially with atom number. For very large systems,

approximate methods such as the cumulant expansion method must be employed. We derived a

closed set of equations for expectation values by factorizing all moments higher than second order

that appear in the equations. With the help of the quantum regression theorem, equations for

two-time expectation values were also derived.



Chapter 4

Langevin Equations

Another way to incorporate dissipation into quantum mechanics is through the quantum

Langevin equations. This formalism is completely equivalent to the master equation approach,

but instead of the time dependence being on the state of the system, it is put on the operators

themselves. Thus, the Langevin equations are in the Heisenberg picture of quantum mechanics,

while the master equation is in the Schrödinger picture. In analogy to the master equation approach,

dissipation occurs in the Langevin approach due to the coupling of the small system to a large

reservoir.

The quantum Langevin equations are operator equations, which are cumbersome and not

easily simulated on a computer. Therefore, for solutions methods that do not make approximations,

the quantum master equation is a better starting point. However, the quantum Langevin equations

can be used to derive approximate equations that can describe large systems, where exact solution

methods are not possible. Therefore, after the quantum Langevin equations are derived from

first principles, the Fokker-Planck equation for a quazi-probability distribution which describes the

quantum system, is derived. With the aid of stochastic calculus, this Fokker-Planck equation will

be shown to be equivalent to a set of c-number Langevin equations, which can be used to describe

large systems, and are easily simulated on a computer.

Once this correspondence between quantum operator Langevin equations and c-number

Langevin equations is demonstrated, a more practical route to obtain the c-number Langevin

equations is given.



58

4.1 Derivation of the Quantum Langevin Equations

We will begin by deriving the quantum Langevin equations [66] for N two level atoms coupled

to a single cavity mode. The derivation will focus on the decay of the cavity only, for simplicity.

However, in analogy to the master equation derivation, the incoherent decay and repumping of

the atoms is derived in an almost identical manner as presented here. The Hamiltonian Ĥ of the

combined system and reservoir is given by,

Ĥ =
~ωa

2
Ĵz + ~ωcâ†â+

~g
2

(
Ĵ−â

† + Ĵ+â
)

+ ~
∑
k

νk b̂
†
k b̂k + ~

∑
k

λk

(
b̂†kâ+ b̂kâ

†
)
, (4.1)

which describes N two level atoms of frequency ωa coupled with frequency g to a single mode cavity

of frequency ωc, which is coupled with rates λk to a large reservoir of other harmonic oscillators

of frequency νk. The cavity mode is described by the annihilation operator â, and the reservoir is

described by the annihilation operators b̂k, while the N two level atoms are described by,

Ĵz =
N∑
j=1

σzj ,

Ĵ± =

N∑
j=1

σ±j ,

where σ−j , σ
+
j , σ

z
j are the Pauli matricies for the jth atom.

In the Heisenberg picture, the equation of motion of â is given by,

˙̂a =
i

~

[
Ĥ, â

]
= i

[(
ωcâ
†â+

g

2
Ĵ−â

† +
∑
k

λk b̂kâ
†

)
, â

]
= iωc

[
â†â, â

]
+ i

g

2

[
â†, â

]
Ĵ− + i

[
â†, â

]∑
k

λk b̂k

= −iωcâ− i
g

2
Ĵ− − i

∑
k

λk b̂k, (4.2)
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and the equation of motion of b̂k is given by,

˙̂
bk =

i

~

[
Ĥ, b̂k

]
= i

[(∑
l

νlb̂
†
l b̂l +

∑
l

λlb̂
†
l â

)
, b̂k

]
= i

∑
l

νl

[
b̂†l b̂l, b̂k

]
+ iâ

∑
l

λl

[
b̂†l , b̂k

]
= −iνk b̂k − iλkâ. (4.3)

As an aside, it is now apparent that if the decay of the atoms was accounted for, it would not

change the form of Eq. 4.2 or Eq. 4.3, but would change the equations associated with the atoms.

Eq. 4.3 is now integrated,

b̂k(t) = b̂k(0)e−iνkt − iλk
∫ t

0
dt′e−iνk(t−t′)â(t′), (4.4)

and substituted into Eq. 4.2 to obtain,

˙̂a = −iωcâ− i
g

2
Ĵ− − i

∑
k

λk

(
b̂k(0)e−iνkt − iλk

∫ t

0
dt′e−iνk(t−t′)â(t′)

)
= −iωcâ− i

g

2
Ĵ− −

∑
k

λ2
k

∫ t

0
dt′e−iνk(t−t′)â(t′)− i

∑
k

λk b̂k(0)e−iνkt. (4.5)

An interaction picture is defined by,

˜̂a = eiωctâ,

˜̂
J− = eiωctĴ−,

so that in this interaction picture, Eq. 4.5 becomes,

˙̃
â = −ig

2
˜̂
J− −

∑
k

λ2
k

∫ t

0
dt′e−i(νk−ωc)(t−t

′)â(t′) +
˜̂
F, (4.6)

where,

˜̂
F = −i

∑
k

λk b̂k(0)e−i(νk−ωc)t. (4.7)
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In the second term on the right hand side of Eq. 4.6, the sum over k is changed to an integral

over ν by including a density of states,∑
k

λ2
k

∫ t

0
dt′e−i(νk−ωc)(t−t

′)â(t′) =
∑
k

∆kλ2
k

∫ t

0
dt′e−i(νk−ωc)(t−t

′)â(t′)

=

∫ B

0
dνD(ν) |λ(ν)|2

∫ t

0
dt′e−i(ν−ωc)(t−t

′)â(t′)

=

∫ B

0
dνD(ν) |λ(ν)|2

∫ t

0
dτe−i(ν−ωc)τ â(t− τ). (4.8)

In analogy to the derivation of the master equation, it is assumed that the reservoir has a very

large bandwidth B, so that the reservoir relaxation rate 1
τR

will be much larger than the systems

relaxation rate 1
τS

. Then, for τ << τS , â(t − τ) will be approximately constant, so that it can be

evaluated at τ = 0 and factored outside of the integral. The resulting integral of exponentials will

then destructively interfere when τ >> τR, resulting in it averaging to zero. Therefore the upper

limit of that integral can be extended to τ =∞ with minimal error. In this Markov approximation,

Eq. 4.8 becomes,∑
k

λ2
k

∫ t

0
dt′e−iνk(t−t′)˜̂a(t′) =

∫ ∞
0

dνD(ν) |λ(ν)|2 â(τ)

∫ ∞
0

dτe−i(ν−ωc)τ

= lim
η→0

∫ ∞
0

dνD(ν) |λ(ν)|2 â(t)

∫ ∞
0

dτe−i(ν−ωc−iη)τ

=

∫ ∞
0

dνD(ν) |λ(ν)|2 â(t)

[
πδ(ν − ωc) + iP

(
1

ν − ωc

)]
. (4.9)

where D(ν) is a density of states, and Eq. 3.35 has been again used. Neglecting the principal part

of Eq. 4.9, which leads to a small frequency shift related to the Lamb shift, and substituting it into

Eq. 4.6 results in,

˙̃
â = −ig

2
˜̂
J− −

κ

2
˜̂a+

˜̂
F, (4.10)

where,

κ = 2πD(ωc) |λ(ωc)|2 . (4.11)

For use in later calculations, using Eq. 4.7, we calculate,〈
˜̂
F
〉

= −i
∑
k

λk

〈
˜̂
bk(0)

〉
e−i(νk−ωc)t

= 0, (4.12)



61

since
〈

˜̂
bk(0)

〉
= 0, because it is the trace of an annihilation operator. We also calculate,

〈
˜̂
F †(t)

˜̂
F (t′)

〉
=

∑
k

∑
k′

λ∗kλk′
〈

˜̂
b†k(0)

˜̂
bk(0)

〉
ei(νk−ωc)te−i(νk′−ωc)t

′

=
∑
k

|λk|2 n̄kei(νk−ωc)(t−t
′)

≈ D(ωc) |λ(ωc)|2 n̄(ωc)

∫ ∞
−∞

dνei(νk−ωc)(t−t
′)

= κn̄(ωc)δ(t− t′), (4.13)

where the discrete sum has again been approximated as an integral over a density of states, and

the slowly varying variables have been pulled outside the integral, which is valid under the Markov

approximation described above. Also, the fact that,∫ ∞
−∞

dνei(νk−ωc)(t−t
′) = 2πδ(t− t′), (4.14)

has been employed. In the same way, it can be shown that,

〈
˜̂
F (t)

˜̂
F †(t′)

〉
= κ (n̄(ωc) + 1) δ(t− t′), (4.15)

and 〈
˜̂
F (t)

˜̂
F (t′)

〉
=
〈

˜̂
F †(t)

˜̂
F †(t′)

〉
= 0. (4.16)

The quantities defined in Eqns. 4.13, 4.15 and 4.16 are called the diffusion coefficients, and are

needed to characterize the system, as we will see later.

4.2 Adiabatic Elimination and the Superradiance Master Equation

As a brief aside, we are now in a position to derive the superradiance master equation. This

is done by first integrating Eq. 4.10, obtaining,

˜̂a(t) = ˜̂a(0)e−
κ
2
t +

∫ t

0
dt′e−

κ
2

(t−t′)
(
−ig

2
˜̂
J− +

˜̂
F
)

= ˜̂a(0)e−
κ
2
t − ig

2

∫ t

0
dt′e−

κ
2

(t−t′) ˜̂
J− +

∫ t

0
dt′e−

κ
2

(t−t′) ˜̂
F. (4.17)

Assuming the system is in the steady state, t is large enough so that e−
κ
2
t → 0. This allows

the first term in Eq. 4.17 to be dropped, but not the other terms because they have exponentials
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that depend on t− t′ which can be small. The second term in Eq. 4.17 is now integrated by parts

multiple times, and under the steady state assumption,∫ t

0
dt′e−

κ
2

(t−t′) ˜̂
J− =

2

κ
˜̂
J− −

(
2

κ

)2 d

dt
˜̂
J− + · · · (4.18)

Eq. 4.18 tells us that if, ∣∣∣ ˜̂
J−

∣∣∣ >> 1

κ

∣∣∣∣ ddt ˜̂
J−

∣∣∣∣ , (4.19)

it is valid to make the adiabatic approximation, keeping only the first order term in Eq. 4.18. Under

this approximation, Eq. 4.17 becomes

˜̂a(t) = −i g
κ

˜̂
J− +

˜̂
G, (4.20)

where

˜̂
G =

∫ t

0
dt′e−

κ
2

(t−t′) ˜̂
F. (4.21)

An upper limit on the adiabatic condition, Eq. 4.19, in terms of the parameters of the problem

can be obtained by finding the equation of motion for
˜̂
J−,

˙̃
Ĵ− = i

g

2
˜̂a
[

˜̂
J+,

˜̂
J−

]
= ig˜̂a

˜̂
Jz

= ig
(
−i g
κ

˜̂
J− +

˜̂
G
)

˜̂
Jz

=
g2

κ
˜̂
J−

˜̂
Jz + igG̃

˜̂
Jz, (4.22)

substituting this into Eq. 4.19, and noting that the largest value of
∣∣∣ ˜̂
Jz

∣∣∣ occurs when the Bloch

vector points to one of the poles, having the value N . Eq. 4.19 then says,

κ >> NCγ, (4.23)

where

C =
g2

κγ
. (4.24)

The master equation for a system of atoms interacting with a damped cavity mode, which has

been adiabatically eliminated is then given by inserting Eq. 4.20 into Eq. 3.119. Since the master
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equation is course grain averaged over the timescale of the reservoir, it is valid to set
˜̂
G →

〈
˜̂
G
〉
R

in Eq. 4.20 before inserting it into Eq. 3.119, and still consistent with the approximations of the

master equation. The expectation value
〈

˜̂
G(t)

〉
R

is given by,

〈
˜̂
G(t)

〉
R

=

∫ t

0
dt′e−

κ
2

(t−t′)
〈

˜̂
F (t′)

〉
= 0. (4.25)

Therefore, we arrive at the superradiance master equation,

d

dt
˜̂ρ = −Cγ

2

{
˜̂
J+

˜̂
J−ρ̃+ ρ̃

˜̂
J+

˜̂
J− − 2

˜̂
J−ρ̃

˜̂
J+

}
−γ

2

N∑
j=1

{
σ̂+
j σ̂
−
j

˜̂ρ+ ˜̂ρσ̂+
j σ̂
−
j − 2σ̂−j

˜̂ρσ̂+
j

}

−w
2

N∑
j=1

{
σ̂−j σ̂

+
j

˜̂ρ+ ˜̂ρσ̂−j σ̂
+
j − 2σ̂+

j
˜̂ρσ̂−j

}
. (4.26)

4.3 Fokker-Planck Equations for the P Function

Since Eq. 4.10 is an equation of quantum operators, it cannot simply be used in numerical

simulations. We therefore seek a method that can be used for numerical simulation. To this end, the

Fokker-Planck equation for a quazi-probability distribution describing the system is derived from

the master equation. It is then demonstrated that the resulting Fokker-Planck equation can be

equivalently described in terms of a set of c-number Langevin equations, which can be easily solved

using numerical simulations. The method is demonstrated for the damped harmonic oscillator.

The master equation for the damped harmonic oscillator is,

˙̂ρ = −ıω0

[
â†â, ρ̂

]
+
γ

2
(n̄+ 1)

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+
γ

2
n̄
(

2â†ρ̂â− ââ†ρ̂− ρ̂ââ†
)

= −ıω0

[
â†â, ρ̂

]
+
γ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+ γn̄

(
âρ̂â† + â†ρ̂â− â†âρ̂− ρ̂ââ†

)
. (4.27)

It is assumed that ρ̂ can be expanded as,

ρ̂ =

∫
d2αP (α, t) |α〉 〈α| , (4.28)
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where P (α, t) is a quazi-probability function called the P function, and |α〉 is a coherent state.

Eq. 4.28 is substituted into Eq. 4.27, yielding,∫
d2α |α〉 〈α| ∂

∂t
P (α, t) =

∫
d2αP (α, t)

{
− ıω0

(
â†â |α〉 〈α| − |α〉 〈α| â†â

)
+
γ

2

(
2â |α〉 〈α| â† − â†â |α〉 〈α| − |α〉 〈α| â†â

)
+γn̄

(
â |α〉 〈α| â† + â† |α〉 〈α| â− â†â |α〉 〈α| − |α〉 〈α| ââ†

)}
.

(4.29)

To simplify Eq. 4.29, the fact that,

|α〉 = e−
1
2
|α|2eαâ

† |0〉 , (4.30)

is used to show that,

∂

∂α
|α〉 〈α| =

∂

∂α

(
e−|α|

2

eαâ
† |0〉 〈0| eα∗â

)
=

(
â† − α∗

)
|α〉 〈α| , (4.31)

and that also,

∂

∂α∗
|α〉 〈α| =

∂

∂α∗

(
e−|α|

2

eαâ
† |0〉 〈0| eα∗â

)
= |α〉 〈α| (â− α) . (4.32)

Eqns. 4.31 and 4.32 can then be used to simplify the various terms in Eq. 4.29, which then becomes,∫
d2α |α〉 〈α| ∂

∂t
P (α, t) =

∫
d2αP (α, t)

{
−
(γ

2
+ ıω0

)
α
∂

∂α

−
(γ

2
− ıω0

)
α∗

∂

∂α∗
+ γn̄

∂2

∂α∂α∗

}
|α〉 〈α| . (4.33)

Eq. 4.33 is now integrated by parts, assuming that P (α, t) vanishes sufficiently rapidly at infinity

so that the surface terms can be dropped. Then,∫
d2α |α〉 〈α| ∂

∂t
P (α, t) =

∫
d2α |α〉 〈α|

{(γ
2

+ ıω0

) ∂

∂α
α

+
(γ

2
− ıω0

) ∂

∂α∗
α∗ + γn̄

∂2

∂α∂α∗

}
P (α, t). (4.34)
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Eq. 4.34 implies that,

∂

∂t
P (α, t) =

{(γ
2

+ ıω0

) ∂

∂α
α+

(γ
2
− ıω0

) ∂

∂α∗
α∗ + γn̄

∂2

∂α∂α∗

}
P (α, t). (4.35)

This is the Fokker-Planck equation for the damped harmonic oscillator in the P representation.

Eq. 4.35 can be put into a more convenient form by defining α = x+ ıy and substituting,

∂

∂t
P (α, t) =

{γ
2

(
∂

∂x
x+

∂

∂y
y

)
+ ω0

(
∂

∂x
y − ∂

∂y
x

)
+
n̄

2

(
∂2

∂x2
+

∂2

∂x2

)}
P (α, t). (4.36)

4.4 Equivalence of Langevin and Fokker-Planck Equations

It is now demonstrated a Fokker-Planck equation for a probability distribution has an equiv-

alent Langevin equation for the random variable of that probability distribution. To do this, we

will need to take a brief aside into Stochastic calculus [33].

A Langevin equation is a stochastic differential equation of the form,

dx

dt
= a(x, t) + b(x, t)ξ(t), (4.37)

where ξ(t) is a rapidly fluctuating random function of time. We assume that ξ(t) is idealized in the

sense that we assume that ξ(t) and ξ(t′) are statistically independent. Mathematically this is the

statement that the time average of ξ(t) and ξ(t′) are delta correlated,

〈
ξ(t)ξ(t′)

〉
= δ(t− t′). (4.38)

We also assume that

〈ξ(t)〉 = 0, (4.39)

since any non-zero mean can be absorbed into the definition of a(x, t). This idealized random

process is called white noise.

It can be shown that ∫ t

0
dt′ξ(t′) = W (t), (4.40)
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where W (t) is the Wiener process. Since the Wiener process is not differentiable, Eq. 4.37 does not

actually exist. However, the integral equation

x(t)− x(0) =

∫ t

0
dt′a(x, t′) +

∫ t

0
ξ(t′)dt′b(x, t′)

=

∫ t

0
dt′a(x, t′) +

∫ t

0
dW (t′)b(x, t′), (4.41)

where

dW (t) ≡ dW (t+ dt)− dW (t) = ξ(t)dt (4.42)

does exist, but comes with its own difficulties, namely that the last term is not well defined. This

can be seen by looking at the integral before dt is allowed to be come infinitesimal. Consider

Sn =

n∑
i=1

G(τi) {W (ti)−W (ti−1)} , (4.43)

where τi is some value between ti and ti−1. The crux of the whole situation is that the value of Sn

is dependent on the value of τi that we choose. This issue, which does not occur with an ordinary

Riemann sum defined integral, is caused by the discontinuous nature of W (t). The choice τi = ti−1,

defines what is known as the Ito stochastic integral. Other choices, such as τi = 1
2 (ti + ti−1), which

defines the Stratonovich stochastic integral, will not be considered here. By using the definition of

the Ito integral, it can be shown that in the Ito interpretation of a stochastic integral,

dW (t)2 = dt,

dW (t)2+N = 0,

where N is a positive integer. This causes the chain rule from ordinary calculus not to hold. To

find the Ito calculus chain rule, consider the differential of a function f(x(t)) of a stochastic variable

x(t),

df [x(t)] = f [x(t) + dx(t)]− f [x(t)]

= f ′[x(t)]dx(t) +
1

2
f ′′[x(t)]dx(t)2 + . . .

= f ′[x(t)] {a(x, t)dt+ b(x, t)dW (t)}

+
1

2
f ′′[x(t)] {a(x, t)dt+ b(x, t)dW (t)}2 + . . . (4.44)
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To first order in dt, this gives,

df [x(t)] = f ′[x(t)] {a(x, t)dt+ b(x, t)dW (t)}+
1

2
f ′′[x(t)]b(x, t)dW (t)2

= f ′[x(t)] {a(x, t)dt+ b(x, t)dW (t)}+
1

2
f ′′[x(t)]b(x, t)dt. (4.45)

This is known as Ito’s formula.

The equivalence between a stochastic differential for a stochastic variable x(t) and a Fokker-

Planck equation for the stochastic variable’s probability distribution P (x(t)) can now be demon-

strated. Consider the time development of the average value of an arbitrary function f(x(t)),

d

dt
〈f(x(t))〉 =

〈df(x(t))〉
dt

=

〈
f ′[x(t)]a(x, t) +

1

2
f ′′[x(t)]b(x, t)

〉
, (4.46)

where the average value of the term multiplied by dW (t) is zero because dW (t) = ξ(t)dt and

〈ξ(t)〉 = 0. The average value of a stochastic variable is found by integrating the stochastic variable

multiplied by its conditional probability density P (x′, t′|x0, t0) from time x0 to x. Following this

procedure, Eq. 4.46 becomes,

d

dt
〈f(x(t))〉 =

∫
dx

{
f ′(x)a(x, t) +

1

2
f ′′(x)b(x, t)

}
P (x, t|x0, t0). (4.47)

Integrating by parts and discarding the surface terms results in,

d

dt
〈f(x(t))〉 =

∫
dxf(x)

{
− d

dx
[a(x, t)P (x, t|x0, t0)] +

1

2

d2

dx2

[
b(x, t)2P (x, t|x0, t0)

]}
. (4.48)

The time development of the average value of an arbitrary function f(x(t)) can also be written as

d

dt
〈f(x(t))〉 =

∫
dxf(x)

d

dt
P (x, t|x0, t0). (4.49)

Equating Eqns. 4.48 and 4.49 and remembering that f(x) is an arbitrary function of x results in,

d

dt
P (x, t|x0, t0) = − d

dx
[a(x, t)P (x, t|x0, t0)] +

1

2

d2

dx2

[
b(x, t)2P (x, t|x0, t0)

]
. (4.50)

Eq. 4.50 is the Fokker-Planck equation for the conditional probability density P (x, t|x0, t0) for

the stochastic variable x(t). This shows the equivalence between a stochastic differential equation,

Eq. 4.37, for a stochastic variable x(t) and a Fokker-Planck equation for the probability distribution

of that variable.



68

4.5 C-number Langevin Equations For Coherent State Amplitudes

Eq. 4.50 is now used to find the stochastic differential equations for α(t) that is equivalent

to Eq. 4.36. Since P (α, t) is complex, there are two stochastic equations; one for the real part of

P (α, t),

dx = −
(γ

2
x+ ω0y

)
dt+

√
n̄

2
dW1(t), (4.51)

and one for the imaginary part of P (α, t),

dy = −
(γ

2
y − ω0x

)
dt+

√
n̄

2
dW2(t). (4.52)

These equations can be rewritten as one complex Langevin equation as

dα = −
(γ

2
+ ıω0

)
αdt+

√
n̄dη(t), (4.53)

where

dη(t) =
(dW1(t) + ıdW2(t))√

2
.

Eq. 4.53 can be used to generate trajectories for α. These trajectories can then be used to calculate

various expectation values of interest, even n time expectation values because,

〈
(â†(t1) · · · â†(tm)â(tm+1) · · · â(tn)

〉
=

∫
d2αP (α) {α∗(t1) · · ·α∗(tm)α(tm+1) · · ·α(tn)}

=
1

N

N∑
i=1

α∗i (t1) · · ·α∗i (tm)αi(tm+1) · · ·αi(tn), (4.54)

where αi(t) is a single trajectory, and N is the number of trajectories.

The results of a computer simulation that solves Eq. 4.53 and uses Eq. 4.102 to find
〈
â†(t)â(t)

〉
and g(1)(τ) = Re

[〈
â†(tss + τ)â(tss)

〉]
are shown in Fig. 4.1 and Fig. 4.2, respectively, where tss is

the time in which the system reaches steady state.

In both figures, the analytical solutions, Eqns. 3.45 and 3.55 are shown in black. In a single

trajectory, which are shown in blue in both figures, the system is undergoing a random walk, so

that the number of excitations randomly diffuses in time. When many of these random trajectories
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are averaged together, the correct evolution for
〈
â†(t)â(t)

〉
and g(1)(τ) are approached, which is

shown in red, where 1000 random trajectories are averaged over. The figures show good agreement

between the analytical results and the numerical results from the above Langevin method.

4.6 A More Practical Derivation of Quantum Langevin Equations

In theory, the quantum Langevin equations, along with the corresponding diffusion coeffi-

cients, for an arbitrarily complicated system can be derived as they were in section 4.1. In practice,

however, there is a much simpler way to derive them, which proves very valuable with increasing

system complexity. Langevin equations consist of two separate terms, called drift and diffusion

terms. The drift terms consist of the Hamiltonian dynamics, and the decay due to the coupling of

the system to a large reservoir. The diffusion terms contain the fluctuations caused by the coupling

of the system to a large reservoir. The generalized Einstein relations provide a way to obtain the

diffusion terms if the drift terms and all of the second order moments are known. The drift terms,

and the second order moments can be calculated using the master equation that describes the

system. Then, the diffusion terms can be found using the Einstein relations. We begin by deriving

the generalized Einstein relations.

4.6.1 The Generalized Einstein Relations

Consider the Langevin equations for a general system described by the operators Âµ,

d

dt
Âµ(t) = D̂µ(t) + F̂µ(t), (4.55)

where D̂µ(t) are the drift terms and F̂µ(t) are the diffusion terms, or noise operators. We assume

that the noise operators obey 〈
F̂µ(t)

〉
= 0, (4.56)

and 〈
F̂µ(t)F̂ν(t′)

〉
= 2Mµν(t)δ(t− t′), (4.57)

where Mµν(t) are called the diffusion coefficients.
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Figure 4.1: The c-number Langevin equations are used to find
〈
â†(t)â(t)

〉
for a damped harmonic

oscillator with n̄ = 1, and α(0) = 2. The analytic expression for
〈
â†(t)â(t)

〉
is shown in black, a

single trajectory is shown in blue, and an average over 1000 trajectories is shown in red.
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Figure 4.2: The c-number Langevin equations are used to find g(1)(τ) = Re
[〈
â†(tss + τ)â(tss)

〉]
for a damped harmonic oscillator with n̄ = 1, and α(0) = 2, and tss is the time in which the system
reaches steady state. The analytic expression for g(1)(τ) is shown in black, a single trajectory is
shown in blue, and an average over 1000 trajectories is shown in red.
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We substitute Eq. 4.55 into the identity,

Âµ(t) = Âµ(t−∆t) +

∫ t

t−∆t
dt′

d

dt
Âµ(t′), (4.58)

multiply by F̂ν(t) on the left, and then arrive at,

〈
Âµ(t)F̂ν(t)

〉
=
〈
Âµ(t−∆t)F̂ν(t)

〉
+

∫ t

t−∆t
dt′
〈
D̂µ(t′)F̂ν(t) + F̂µ(t′)F̂ν(t)

〉
. (4.59)

The first term on the right hand side of Eq. 4.59 is zero on physical grounds. This is because

a system operator at a given time can have no correlation with a reservoir operator at a later

time, hence this term is factorizable, and
〈
F̂µ(t)

〉
= 0. A similar line of reasoning shows that〈

D̂µ(t′)F̂ν(t)
〉

= 0, unless t = t′, so the lower limit of integration on this term can be changed to

t, and hence this term is zero. Then,

〈
Âµ(t)F̂ν(t)

〉
=

∫ t

t−∆t
dt′
〈
F̂µ(t′)F̂ν(t)

〉
. (4.60)

Using Eq. 4.57, combined with the fact that a delta function lying on one of the limits of integration

causes the value of the integral to be half of what it would be otherwise, results in,

〈
Âµ(t)F̂ν(t)

〉
= Mµν(t). (4.61)

In an analogous manner to the method just described, it can be shown that,

〈
F̂µ(t)Âν(t)

〉
= Mµν(t). (4.62)

Now consider,

d

dt

〈
Âµ(t)Âν(t)

〉
=

〈
d

dt

(
Âµ(t)

)
Âν(t)

〉
+

〈
Âµ(t)

d

dt

(
Âν(t)

)〉
=

〈
D̂µ(t)Âν(t)

〉
+
〈
Âµ(t)D̂ν(t)

〉
+
〈
F̂µ(t)Âν(t)

〉
+
〈
Âµ(t)F̂ν(t)

〉
,(4.63)

(4.64)

where in the last line Eq. 4.55 and linearity has been used. Substituting Eqns. 4.61 and 4.62 into

Eq. 4.64 and solving for Mµν(t), results in,

2Mµν(t) =
d

dt

〈
Âµ(t)Âν(t)

〉
−
〈
Âµ(t)D̂ν(t)

〉
−
〈
D̂µ(t)Âν(t)

〉
. (4.65)
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Eq. 4.65 is called the generalized Einstein relation. It shows how to calculate the diffusion coef-

ficients Mµν(t) if the drift terms and the equations of motion for
〈
Âµ(t)Âν(t)

〉
are known. The

generalized Einstein relation proves invaluable when the system under consideration is complex and

the exact form of the noise operators is unknown.

4.6.2 Obtaining the Drift Terms

We specialize to the system of N damped two level atoms with decay rate γ and frequency

ωa at zero temperature, driven by a strong classical field that couples to the atoms with Rabi

frequency Ω. By Eq. 3.119, this system is described by,

d

dt
ρ̂(t) = − ı

~

[
Ĥ, ρ̂(t)

]
− γ

2

N∑
j=1

(
σ̂+
j σ̂
−
j ρ̂(t) + ρ̂(t)σ̂+

j σ̂
−
j − 2σ̂−j ρ̂(t)σ̂+

j

)
, (4.66)

with

Ĥ =
~ωa

2

N∑
j=1

σ̂zj +
~Ω

2

N∑
j=1

(σ̂−j e
ıωct + σ̂+

j e
−ıωct), (4.67)

where,

Ĵz =

N∑
j=1

σ̂zj ,

Ĵ± =
N∑
j=1

σ̂±j ,

where σ̂−j , σ̂
+
j , σ̂

z
j are the Pauli matricies for the jth atom.

We seek equations for Ĵ−, Ĵ+, Ĵz that are of the form of Eq. 4.55,

d

dt
Ĵµ(t) = D̂µ(t) + F̂µ(t), (4.68)

where µ = {−,+, z}. From Eq 4.56, the drift terms are,

〈
D̂µ(t)

〉
=

〈
d

dt
Âµ(t)

〉
= tr

{
Âµ

d

dt
ρ̂(t)

}
, (4.69)
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where the last line is valid in the Schrödinger picture. Using Eq. 4.66 we find,〈
σ̂−j

d

dt
ρ̂(t)

〉
= tr

{
σ̂−j

d

dt
ρ̂(t)

}
=

(
−ıωa −

γ

2

)〈
σ̂−j

〉
+
ıΩ

2
e−ıωct

〈
σ̂zj
〉
, (4.70)

so that,

〈
D̂−(t)

〉
=

1

N

N∑
j=1

〈
σ̂−j

d

dt
ρ̂(t)

〉

=

〈(
−ıωa −

γ

2

)
Ĵ− +

ıΩ

2
e−ıωctĴz

〉
, (4.71)

and therefore,

D̂−(t) =
(
−ıωa −

γ

2

)
Ĵ− +

ıΩ

2
e−ıωctĴz. (4.72)

Likewise, it can be shown that,

D̂+(t) =
(
ıωa −

γ

2

)
Ĵ+ −

ıΩ

2
eıωctĴz, (4.73)

D̂z(t) = −γ
(
1̂ + Ĵz

)
+ ıΩ

(
Ĵ−e

ıωct − Ĵ+e
−ıωct

)
, (4.74)

where,

1̂ =
1

N

N∑
j=1

1̂j . (4.75)

We move into an interaction picture by defining,

˜̂
J− = eıωctĴ−,

˜̂
J+ = e−ıωctĴ+, (4.76)

and combine these with Eqns 4.72 – 4.74 to obtain,

˜̂
D− =

(
−ıδ − γ

2

)
˜̂
J− +

ıΩ

2
Ĵz,

˜̂
D+ =

(
ıδ − γ

2

)
˜̂
J+ −

ıΩ

2
Ĵz,

˜̂
Dz = −γ

(
1̂ + Ĵz

)
+ ıΩ

(
˜̂
J− − ˜̂

J+

)
, (4.77)

where δ = ωa − ωc.
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4.6.3 Obtaining the Diffusion Coefficients

Now that the drift terms are known, Eq. 4.65 can be used to find the diffusion coefficients.

We first find,

2M̃z+ =
d

dt

〈
Ĵz

˜̂
J+

〉
−
〈
Ĵz

˜̂
D+

〉
−
〈

˜̂
Dz

˜̂
J+

〉
=

1

N

d

dt

〈
˜̂
J+

〉
−
〈
Ĵz

((
ıδ − γ

2

)
˜̂
J− −

ıΩ

2
Ĵz

)〉
−
〈(
−γ
(
1̂ + Ĵz

)
+ ıΩ

(
˜̂
J− − ˜̂

J+

))
˜̂
J+

〉
, (4.78)

where Eqns. 4.77, and the fact that,

Ĵz
˜̂
J+ =

1

N2

N∑
i=1

N∑
j=1

σ̂zi
˜̂σ+
j

=
1

N2

N∑
j=1

˜̂σ+
j

=
1

N
˜̂
J+, (4.79)

have been used. Also, to obtain Eq. 4.79, Eqns. 3.121 have been employed. From Eq. 4.68, it is

easy to see that d
dt

〈
˜̂
J+

〉
=
〈

˜̂
D+

〉
, so that after substitution of Eq. 4.77, and further simplification,

Eq. 4.78 becomes,

2M̃z+ =
1

N

〈(
ıδ − γ

2

)
˜̂
J− −

ıΩ

2
Ĵz

〉
− 1

N

〈((
ıδ − γ

2

)
˜̂
J− −

ıΩ

2
1̂

)〉
− 1

N

〈(
−γ
(

˜̂
J+ +

˜̂
J+

)
+
ıΩ

2

(
1̂− Ĵz

))〉
=

2γ

N

〈
˜̂
J+

〉
. (4.80)

Likewise, it can be shown,

2M̃−z =
2γ

N

〈
˜̂
J−

〉
,

2M̃zz =
2γ

N

(
1 +

〈
˜̂
Jz

〉)
,

2M̃−+ =
γ

N
. (4.81)
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Putting it all together, the quantum Langevin equations for N two level atoms driven by a strong

classical field in an interaction picture that rotates at the field frequency are,

d

dt
˜̂
J− =

(
−ıδ − γ

2

)
˜̂
J− +

ıΩ

2
Ĵz +

˜̂
F−

d

dt
˜̂
J+ =

(
ıδ − γ

2

)
˜̂
J+ −

ıΩ

2
Ĵz +

˜̂
F+

d

dt
Ĵz = −γ

(
1̂ + Ĵz

)
+ ıΩ

(
˜̂
J− − ˜̂

J+

)
+

˜̂
Fz, (4.82)

where the noises are correlated according to,

〈
˜̂
Fµ(t)

˜̂
Fν(t′)

〉
= 2M̃µνδ(t− t′), (4.83)

with,

2M̃µν =

− + z


− 0 γ
N

2γ
N

〈
˜̂
J−

〉
+ 0 0 0

z 0 2γ
N

〈
˜̂
J+

〉
2γ
N

(
1 +

〈
˜̂
Jz

〉)
.

(4.84)

It will be convenient in the next section to work with real quantities, so we define,

˜̂
Jx ≡ ˜̂

J+ +
˜̂
J−

˜̂
Fx ≡ ˜̂

F+ +
˜̂
F−

˜̂
Jy ≡ −i

(
˜̂
J+ − ˜̂

J−

)
˜̂
Fy ≡ −i

(
˜̂
F+ − ˜̂

F−

)
. (4.85)

Using these definitions, and Eqns. 4.82 and Eqns. 4.84, it is then trivial to show that,

d

dt
˜̂
Jx = −γ

2
˜̂
Jx − δ ˜̂

Jy +
˜̂
Fx,

d

dt
˜̂
Jy = δ

˜̂
Jx −

γ

2
˜̂
Jy − ΩĴz +

˜̂
Fy,

d

dt
Ĵz = −γ

(
1̂+ Ĵz

)
+ Ω

˜̂
Jy +

˜̂
Fz, (4.86)

where the noises are correlated according to,

〈
˜̂
Fµ(t)

˜̂
Fν(t′)

〉
= 2M̃µνδ(t− t′), (4.87)
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with,

2M̃µν =

x y z


x γ
N − iγ

N
γ
N

(〈
˜̂
Jx

〉
− i
〈

˜̂
Jy

〉)
y iγ

N
γ
N

iγ
N

(〈
˜̂
Jx

〉
− i
〈

˜̂
Jy

〉)
z γ

N

(〈
˜̂
Jx

〉
+ i
〈

˜̂
Jy

〉)
− iγ
N

(〈
˜̂
Jx

〉
+ i
〈

˜̂
Jy

〉)
2γ
N

(
1 +

〈
˜̂
Jz

〉)
.

(4.88)

4.7 A More Practical Derivation of the C-number Langevin Equations

4.7.1 Solving for the C-Number Diffusion Coefficients

There is also a more practical way to derive c-number Langevin equations than the method

described in Sections 4.3 - 4.5. We assume that there exists a set of c-number equations that have

a correspondence with the quantum Langevin equations,

d

dt
Jx = −γ

2
Jx − δJy + Fx,

d

dt
Jy = δJx −

γ

2
Jy − ΩJz + Fy,

d

dt
Jz = −γ (1 + Jz) + ΩJy + Fz, (4.89)

with,

〈Fµ(t)〉 = 0, (4.90)

where µ = {−,+, z}. Also the noises are correlated according to,

〈
Fµ(t)Fν(t′)

〉
= 2Mµν(t)δ(t− t′), (4.91)

where Mµν is a 3× 3 an unknown matrix of c-numbers, as a function of time. The entire problem

thus boils down to finding the c-number diffusion matrix elements Mµν that make the c-number

Langevin equation have a correspondence with the quantum Langevin equation. To make this

correspondence, we force the second order moments from the quantum equations to be equal to

the second order moments from the c-number equation. However, since c-numbers commute, and
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quantum operators do not, we must choose an ordering for the quantum equations before the

correspondence can be made.

To illustrate this point, consider the following c-number second order moment, constructed

from Eq. 4.89,

d

dt
〈JxJy〉 =

〈(
d

dt
Jx
)
Jy
〉

+

〈
Jx
(
d

dt
Jy
)〉

=
〈(
−γ

2
Jx − δJy + Fx

)
Jy
〉

+
〈
Jx
(
δJx −

γ

2
Jy − ΩJz + Fy

)〉
= −γ 〈JxJy〉+ δ (−〈JyJy〉+ 〈JxJx〉)− Ω 〈JxJz〉+ 2Mxy, (4.92)

where Mxy =
〈

˜̂
Fx

˜̂
Jy

〉
=
〈

˜̂
Jx

˜̂
Fy

〉
. Since c-numbers commute, and quantum operators do not,

Eq. 4.92 can correspond with equal validity to the quantum second order moment,

d

dt

〈
˜̂
Jx

˜̂
Jy

〉
=

〈(
d

dt
˜̂
Jx

)
˜̂
Jy

〉
+

〈
˜̂
Jx

(
d

dt
˜̂
Jy

)〉
=

〈(
−γ

2
˜̂
Jx − δ ˜̂

Jy +
˜̂
Fx

)
˜̂
Jy

〉
+
〈

˜̂
Jx

(
δ

˜̂
Jx −

γ

2
˜̂
Jy − ΩĴz +

˜̂
Fy

)〉
= −γ

〈
˜̂
Jx

˜̂
Jy

〉
+ δ

(
−
〈

˜̂
Jy

˜̂
Jy

〉
+
〈

˜̂
Jx

˜̂
Jx

〉)
− Ω

〈
˜̂
JxĴz

〉
+ 2M̃xy, (4.93)

or its anti-ordered counterpart,

d

dt

〈
˜̂
Jy

˜̂
Jx

〉
=

〈(
d

dt
˜̂
Jy

)
˜̂
Jx

〉
+

〈
˜̂
Jy

(
d

dt
˜̂
Jx

)〉
=

〈(
δ

˜̂
Jx −

γ

2
˜̂
Jy − ΩĴz +

˜̂
Fy

)
˜̂
Jx

〉
+
〈

˜̂
Jy

(
−γ

2
˜̂
Jx − δ ˜̂

Jy +
˜̂
Fx

)〉
= −γ

〈
˜̂
Jy

˜̂
Jx

〉
+ δ

(
−
〈

˜̂
Jy

˜̂
Jy

〉
+
〈

˜̂
Jx

˜̂
Jx

〉)
− Ω

〈
˜̂
JzĴx

〉
+ 2M̃yx, (4.94)

or a symmetric combination of the two,

d

dt

〈
˜̂
Jx

˜̂
Jy

〉
s

=
d

dt

(
1

2

〈
˜̂
Jx

˜̂
Jy

〉
+

1

2

〈
˜̂
Jy

˜̂
Jx

〉)
= −γ

〈
˜̂
Jx

˜̂
Jy

〉
s

+ δ
(
−
〈

˜̂
Jy

˜̂
Jy

〉
s

+
〈

˜̂
Jx

˜̂
Jx

〉
s

)
− Ω

〈
˜̂
JxĴz

〉
s

+ M̃xy + M̃yx. (4.95)

Here, we choose to make the symmetric correspondence, so that,

2Mxy ≡ M̃xy + M̃yx

= − iγ
N

+
iγ

N

= 0. (4.96)
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We choose the symmetric correspondence for several reasons. First, in this case, and in many other

cases, it allows for the simplest diffusion matrix 2Mµν . Second, in the symmetric correspondence,

2Mµν is, by construction, automatically a symmetric matrix. This fact allows an easy algorithm

to be performed to find the noises that reproduce 2Mµν for numerical simulations. Finally, again

by construction, there will not be any commutator pieces left to be absorbed into the diffusion co-

efficients when the symmetric correspondence is made. To demonstrate this, consider the following

c-number second order moment,

d

dt
〈JyJy〉 =

〈(
d

dt
Jy
)
Jy
〉

+

〈
Jy
(
d

dt
Jy
)〉

=
〈(
δJx −

γ

2
Jy − ΩĴz + Fy

)
Jy
〉

+
〈
Jy
(
δJx −

γ

2
Jy − ΩĴz + Fy

)〉
= 2δ 〈JxJy〉 − γ 〈JyJy〉 − 2Ω 〈JzJy〉+ 2Myy, (4.97)

and the following quantum second order moment,

d

dt

〈
˜̂
Jy

˜̂
Jy

〉
=

〈(
d

dt
˜̂
Jy

)
˜̂
Jy

〉
+

〈
˜̂
Jy

(
d

dt
˜̂
Jy

)〉
=

〈(
δ

˜̂
Jx −

γ

2
˜̂
Jy − ΩĴz +

˜̂
Fy

)
˜̂
Jy

〉
+
〈

˜̂
Jy

(
δ

˜̂
Jx −

γ

2
˜̂
Jy − ΩĴz +

˜̂
Fy

)〉
= δ

〈
˜̂
Jx

˜̂
Jy

〉
+ δ

〈
˜̂
Jy

˜̂
Jx

〉
− γ

〈
˜̂
Jy

˜̂
Jy

〉
− Ω

〈
Ĵz

˜̂
Jy

〉
− Ω

〈
˜̂
JyĴz

〉
+ 2M̃yy. (4.98)

Since, for instance, 〈JzJy〉 can not correspond to both
〈

˜̂
JyĴz

〉
and

〈
˜̂
JzĴy

〉
simultaneously, commu-

tation relations must be used to put Eq. 4.98 in terms of one or the other before a correspondence

can be made. The resulting left over commutator piece will have to be absorbed into the definition

of 2Myy. However, in the symmetric correspondence, since,

d

dt

〈
˜̂
Jµ

˜̂
Jν

〉
s

=
1

2

d

dt

〈
˜̂
Jµ

˜̂
Jν

〉
+

1

2

d

dt

〈
˜̂
Jν

˜̂
Jµ

〉
, (4.99)

every term will automatically have its symmetric counterpart, so that there will be no left over

commutator pieces to absorb into Mµν . Therefore, in the symmetric correspondence, we can

automatically set,

2Mµν = M̃µν + M̃νµ. (4.100)
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In the symmetric correspondence, therefore, the c-number diffusion matrix is,

2Mµν =

x y z


x γ
N 0 γ

N 〈Jx〉

y 0 γ
N

γ
N 〈Jy〉

z γ
N 〈Jx〉

γ
N 〈Jy〉

2γ
N (1 + 〈Jz〉) .

(4.101)

Eqns. 4.89 and Eq. 4.101 are the c-number Langevin equations for N two level atoms driven by a

strong field, corresponding to symmetric ordering. These c-number Langevin equations correspond

to a Fokker-Planck equation for a Wigner quazi-probability distribution.

4.7.2 Numerical Simulation of C-number Langevin Equations

The final problem that must be overcome before a numerical simulation can take place is how

to choose the noises in Eqns. 4.89 so that Eq. 4.101 is reproduced. Since Eq. 4.101 is symmetric, it

is easy to diagonalize. In this diagonal basis, the noises are simply the square root of independent

real Wiener processes. Then the inverse transformation is applied, and in the original basis, the

noises will be linear combinations of the independent real Wiener processes, and they will reproduce

Eq. 4.101.

Now that this final problem has been solved, Eqns. 4.89 with noises that satisfying Eq. 4.101

can be used to generate trajectories. These trajectories can then be used to calculate various

symmetric expectation values of interest,

〈
Ĵµ(t1) · · · Ĵν(tm)

〉
s

=
1

N

N∑
i=1

Jµ(t1) · · · Jν(tm), (4.102)

where Jµ(t) is an operator for a single trajectory, and N is the number of trajectories.

The results of a computer simulation that solves Eqns. 4.89 subject to Eq. 4.101 to find〈
Ĵz(t)

〉
and S(ω), the normalized Fourier transform of g(1)(τ) = Re

[〈
Ĵ+(tss + τ)Ĵ−(tss)

〉]
are

shown in Fig. 4.3 and Fig. 4.4, respectively. Here, tss is the time in which the system reaches

steady state.
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Figure 4.3: The c-number Langevin equations for symmetric ordering are used to find the inversion〈
Ĵz(t)

〉
for resonance fluorescence for N = 100 atoms, with Ω = 5γ and δ = 0. The analytic

expression for
〈
Ĵz(t)

〉
for N = 1 is shown in black, a single trajectory is shown in blue, and an

average over 1000 trajectories is shown in red.
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Figure 4.4: The c-number Langevin equations for symmetric ordering are used to find S(ω), the
normalized Fourier transform of g(1)(τ) for resonance fluorescence for N = 100 atoms, with Ω = 5γ
and δ = 0. The analytic expression for S(ω) for N = 1 is shown in black, a single trajectory is
shown in blue, and an average over 1000 trajectories is shown in red.
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In both figures, the analytical solutions for single atom resonance fluorescence [84] are shown

in black. In a single trajectory, which are shown in blue in both figures, the system is undergoing

a random walk, so that the number of excitations randomly diffuses in time. When many of

these random trajectories are averaged together, the correct evolution for
〈
Ĵz(t)

〉
and S(ω) are

approached, which is shown in red, where 1000 random trajectories are averaged over.

4.8 Conclusion

We have seen how Langevin equations for quantum operators are derived. The approxi-

mations that go into this derivation are equivalent to the approximations used in the derivation

of the master equation. In the superradiance limit, the cavity field described by the quantum

Langevin equations can be adiabatically eliminated, and used to derive the superradiance mas-

ter equation. Since Langevin equations of quantum operators are difficult to solve numerically, a

Fokker-Planck equation for a quazi-probability distribution was derived. Here, we used the normal

ordered quazi-probability distribution, called the P-function, which can be used to calculate nor-

mal ordered moments. This distribution was shown to be equivalent to a set of c-number Langevin

equations by using methods of Ito stochastic calculus. These c-number Langevin equations were

solved for many trajectories, which can be used to find general n-time expectation values. Since

the derivation of the Fokker-Planck equation becomes quite complicated for systems of increasing

complexity, a method to more practically derive c-number Langevin equations was described. This

involved deriving the generalized Einstein relations, which allow the diffusion, or noise terms of

a set of quantum Langevin equations to be known, if the diffusion terms are known. The drift

terms and second ordered moments were found using a master equation, and the Einstein relations

were then used to find the diffusion terms. Then, the method to find a correspondence to a set

of c-number equations for a given ordering was described. We specialize here to use a symmetric

correspondence, because in this ordering, the form of the equations are best suited for the numerical

algorithm that we describe. Although this method may seem like unnecessary machinery to solve

such a simple problem, it really proves worth its weight in gold when more complex systems are
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analyzed involving large numbers of atoms.



Chapter 5

The Crossover from Lasing to Steady State Superradiance

The bulk of this chapter is being prepared for submission to Physical Review A.

Since its first demonstration in 1960 [59], the laser has had a profound impact on fundamental

science research, and has also become ubiquitous in other areas of society. Lasers are integral to

many areas of research and applications, ranging from atomic and molecular physics research,

atomic clocks, global positioning system, nuclear fusion research, biology research, medicine and

consumer electronics.

Although many different types of lasers exist, with their key parameters spanning many

orders of magnitude, all lasers share the same conceptual foundation. A laser is a cavity quantum

electrodynamics (QED) system consisting of a gain medium inside of an optical cavity. We will

oftentimes refer to the gain medium as “atoms” for brevity. Lasers typically operate in the so called

good cavity regime of cavity QED where the linewidth of the cavity is much narrower than the

bandwidth of the gain medium. The atoms generate a coherent electromagnetic field in the cavity

by means of stimulated emission [72]. Stimulated emission is a quantum mechanical interference

effect in which the presence of a large number of photons in a certain mode of a light field increases

the probability that an atom will emit into that mode. The energy emitted into the cavity field has

to be replenished by some repumping mechanism to achieve steady state operation. In a laser, the

macroscopic phase information that is associated with the coherence of the generated radiation is

stored in the light field.
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Around the same time as the laser was first demonstrated, the effect of superradiance was

predicted [18], and soon thereafter, experimentally demonstrated. Superradiance is a quantum

mechanical interference effect in which correlations between atoms cause them to emit collectively.

Superradiance has most commonly been considered as a pulsed phenomenon. Atoms in an ensemble

are prepared in the excited state. Spontaneous emission into one or a few spatial modes is then

enhanced via a quantum mechanical interference effect. However, it has been known for some time

that superradiance can also occur in steady state [65, 64, 63, 21] by placing the atomic ensemble

inside a cavity. In contrast to lasers, superradiance in steady-state requires a cavity with a much

broader linewidth than the atomic linewidth. This regime is referred to as the bad-cavity limit

of cavity QED [83, 56, 13, 38, 39]. The radiation produced in steady state superradiance is also

coherent. However, in contrast to a laser, the coherence is stored in the atomic medium. Progress

has recently been made towards the experimental verification [9] of this proposal.

An important application of lasers is as a stable local oscillator for optical atomic clocks

and precision spectroscopy. These lasers rely on stabilization against reference cavities. The most

advanced such lasers reach linewidths of < 0.1Hz corresponding to quality factors of Q > 1015 [15].

The limiting factor in the way of further improvement of these local oscillators are thermal vibra-

tions of the dielectric coatings in the cavity mirrors [50]. To overcome this challenge, it has been

proposed to use steady state superradiance based on clock transitions to create an even more stable

light source [65, 13]. However, this proposal has challenges of its own. First of all, in spite of the

enhancement that occurs due to superradiance, the produced intensity is typically much lower than

a conventional laser. Second of all, perturbations of atomic transition frequencies can potentially

lead to phase and frequency perturbations in the generated field.

Balancing the advantages and disadvantages of the two systems (lasers and light sources

based on steady state superradiance) leads to the following question: Why not consider a cavity

QED system in which coherence is stored in both the light field and atoms on an equal footing?

The linewidth of such a system should be less sensitive to thermal fluctuations of the cavity mirrors

than a laser, and it should be able to produce more output power than a device based on steady
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state superradiance.

The focus of this paper is to consider the properties of such a hybrid system, and to compare

and contrast them to the properties of systems based purely on lasing and systems based purely on

steady state superradiance. To this end we develop a theoretical model that is applicable throughout

the entire crossover. We analyze the model using different levels of approximation: An exact method

using SU(4) operators, a semi-classical method based on c-Number Langevin equations, a quantum

phase diffusion model for the field amplitude, a cumulant expansion of system expectation values,

and a mean field model. By comparing the results from these different models we clarify the role

played by quantum fluctuations and correlations.

The rest of this chapter is organized as follows. In section 5.1 we summarize the physical

model upon which our analysis is based. In 5.2 we discuss the different levels of approximation and

to what extent they are able to capture the various physical signatures. In section 5.3 we define a

crossover parameter which characterizes the relative importance of stimulated emission to collective

atomic effects in a cavity QED system. In section 5.4 we discuss the results of the various solution

methods, and compare the properties of systems which are operated in the different parameter

regimes of the crossover.

5.1 Model

We model our system as a collection of N two-level atoms inside a single mode optical cavity

using the quantum Born-Markov master equation to describe the open quantum system,

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L̂ [ρ̂] , (5.1)

where,

Ĥ =
~ωa

2

N∑
j=1

σ̂zj + ~ωcâ†â+
~Ω

2

N∑
j=1

(
â†σ̂−j + σ̂+

j â
)
, (5.2)

and L̂ [ρ̂] denotes the Liouvillian superoperator.

The Hamiltonian Ĥ describes the coherent evolution of the coupled atom cavity system,

where ωa is the frequency between the two levels of each of the atoms, and ωc is the frequency of
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the cavity mode. The Pauli spin matrices for the atoms are σ̂+
j ,σ̂−j and σ̂zj , and â is the annihilation

operator of the cavity mode. The atom-cavity coupling rate is Ω. That we take this to be the same

for all items implies assumption of the equivalence of the atom-cavity coupling at the positions of

all of the atoms. This could be achieved by strongly confining the ensemble in a optical lattice

potential at the antinodes of the cavity modefunction.

The incoherent evolution is described by the Liouvillian L̂ [ρ̂],

L̂ [ρ̂] = −κ
2

(
â†âρ̂+ ρ̂â†â− 2âρ̂â†

)
−γ

2

N∑
j=1

(
σ̂+
j σ̂
−
j ρ̂+ ρ̂σ̂+

j σ̂
−
j − 2σ̂−j ρ̂σ̂

+
j

)

−w
2

N∑
j=1

(
σ̂−j σ̂

+
j ρ̂+ ρ̂σ̂−j σ̂

+
j − 2σ̂+

j ρ̂σ̂
−
j

)
,

+
1

2T2

N∑
j=1

(
σ̂zj ρ̂σ̂

z
j − ρ̂

)
, (5.3)

where ρ̂ is the system’s density matrix, κ is the decay rate of the cavity, γ is the incoherent decay

rate of the atoms, w is the incoherent repumping rate of the atoms, and 1
T2

is the inhomogeneous

dephasing rate.

5.2 Solution Methods

Eq. 5.1 becomes increasingly complex with increasing atom number N , since the associated

Hilbert space scales as 2N . Exact simulation methods, such as the quantum jump and quantum

state diffusion methods, are limited to N ∼ 10 with the cavity field basis truncated to just a few

photons.

The SU(4) solution method [42] [87] exploits an underlying permutation symmetry in Eq. 5.1

to drastically reduce the number of basis states needed to describe the problem, allowing systems

with N ∼ 100 to be treated. However to treat this many particles, the cavity field basis must

also be truncated to just a few photons. In order to treat systems which have a larger number of

photons, we combine the SU(4) method with the quantum jump method [16] [26] [68]. Even with
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the ability to describe problems with larger photon number, N ∼ 100 is still too few particles to

describe many realistic experimental situations.

We therefore also describe the c-number Langevin equation method [74, 53], which approxi-

mate the quantum Langevin equations that are equivalent to Eq. 5.1. These equations do not scale

with N in the same way, and therefore can often be used to treat systems with large N where an

exact treatment is not possible. Another method that does not scale with N in the same way is the

mean field solutions of the quantum Langevin equations, along with an analytic solution for the

linewidth of the power spectrum, which assumes Gaussian phase fluctuations and neglects ampli-

tude fluctuations [38, 39]. Finally, the cumulant expansion method [55] does not scale exponentially

with N , and can therefore also be used to treat large systems. These methods are now described

in detail.

5.2.1 Langevin Theory

The Langevin equations that are equivalent to Eq. 5.1 are are derived using the method

demonstrated in Chapter 4.6, and are given by,

d

dt
â = −1

2
(κ+ 2iωc)â−

iNΩ

2
Ŝ− + F̂ a, (5.4)

d

dt
Ŝ− = −1

2
(Γ + 2iωa) Ŝ

− +
iΩ

2
âŜz + F̂−, (5.5)

d

dt
Ŝz = −(w + γ)

(
Ŝz − d0

)
+ iΩ

{
â†Ŝ− − âŜ+

}
+ F̂ z, (5.6)

Ŝ(+,−,z) =
1

N

N∑
k=1

σ̂
(+,−,z)
k ,

where Γ ≡ w + γ + 2
T2

, and where d0 = w−γ
w+γ . The noises are correlated according to,

〈
F̂µ(t)F̂ ν(t′)

〉
= 2Dµνδ(t− t′), (5.7)
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where the Dµν are calculated using the Einstein relations [66],

2Daa† = κ

2D+− =
1

N

(
w +

1

T2

(
1 +

〈
Ŝz
〉))

2D−+ =
1

N

(
γ +

1

T2

(
1−

〈
Ŝz
〉))

2D+z = −2w

N

〈
Ŝ+
〉

2Dz+ =
2γ

N

〈
Ŝ+
〉

2D−z =
2γ

N

〈
Ŝ−
〉

2Dz− = −2w

N

〈
Ŝ−
〉

2Dzz =
2γ

N

(
1 +

〈
Ŝz
〉)

+
2w

N

(
1−

〈
Ŝz
〉)

. (5.8)

5.2.1.1 Mean Field Langevin

Much of the physical insight into our system can be gained by considering analytical ex-

pressions in which quantum fluctuations are treated at varying levels of approximation. Since our

system is composed of a large number of constituent parts, the overall effect of quantum fluctua-

tions is expected to be small. To this end, we first look at the expectation values of Eqns. 5.4–5.6,

whereby the fluctuations drop out since they have zero average. In an interaction picture that

rotates with the frequency of atom-cavity coupled system ω, these equations become,

d

dt
a0 = −1

2
(κ+ 2i(ωc − ω))a0 −

iNΩ

2
S−0 , (5.9)

d

dt
S−0 = −1

2
(Γ + 2i(ωa − ω))S−0 +

iΩ

2
âSz0 , (5.10)

d

dt
Sz0 = −(w + γ) (Sz0 − d0) + iΩ

(
a†0S

−
0 − a0S

+
0

)
. (5.11)

In steady state, Eqns. 5.9 – 5.11 yield that either a0 = 0, or,

Sz0 =
(κ+ 2i(ωc − ω))(Γ + 2i(ωa − ω))

NΩ2
. (5.12)

Since Sz0 is determined by atomic populations, it must be real, and this sets frequency for the

atom-cavity coupled system to be

ω =
κωa + Γωc
κ+ Γ

. (5.13)
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It is assumed that δ = ωa − ωc is small, so that terms proportional to δ2 can be neglected. Then

Eq. 5.12 becomes,

Sz0 =
1

C
, (5.14)

where C ≡ NΩ2

κΓ is the many-atom cooperativity. We also find,

|a0|2 =
N(w + γ)

2κ
(d0 −

1

C
). (5.15)

Eq. 5.15 is a quadratic function of w (note that d0 and C depend on w), and therefore has an

extremum value. By setting the derivative of Eq. 5.15 with respect to w equal to zero, the optimum

value of w which gives the maximum |a0|2 can be found:

wopt =
NΩ2

2κ
− γ − 1

T2
. (5.16)

In the limit NΩ2

2κ >> γ, 1
T2

, then,

(|a0|2)opt =
N2Ω2

8κ2
. (5.17)

The first and second thresholds are defined to be the values of w at which Eq. 5.15 equals zero.

The first threshold is defined to be w1 � wopt. In this case, the zero of Eq. 5.15 yields,

w1 = γ. (5.18)

i.e. the first threshold occurs when the repumping becomes greater than the natural linewidth of

the atoms so that coherence can establish. The second threshold occurs around w2 ∼ wopt. In this

case, the zero of Eq. 5.15 yields,

w2 =
NΩ2

κ
. (5.19)

At this point, Sz0 is close to unity, and the repumping is so strong that it prevents coherence in the

system developing.

5.2.1.2 Phase Diffusion Linewidth

It is also possible to derive an analytic expression for the linewidth from the quantum

Langevin equations, Eqns. 5.4 – 5.6 by assuming that only phase fluctuations of â are impor-

tant, and neglecting amplitude fluctuations. To this end, we follow closely to the derivation done in
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[38, 39]. Eq. 5.4 is differentiated, and substituted into it Eqns. 5.4 – 5.5 and the integral of Eq. 5.6,

to arrive at an equation for â alone,

¨̂a = −1

2
(κ+ Γ) ˙̂a− κΓ

4
â+

NΩ2

4
âŜz + F̂ , (5.20)

where

Ŝz =

∫ t

0
dt′e−(w+γ)(t−t′)

(
(w + γ) + F̂ z

− 2

N

(
d

dt
(â†â) + κâ†â− â†F̂ a − F̂ a† â

))
, (5.21)

and,

F̂ =
Γ

2
F̂ a − iNΩ

2
F̂− +

˙̂
F a. (5.22)

The annihilation operator â is decomposed according to,

â = (a0 + ρ̂)eiφ̂. (5.23)

Above threshold, amplitude fluctuations are expected to be small, so that〈
â†(t)â(0)

〉
= a2

0

〈
ei(φ̂(t)−φ̂(0))

〉
. (5.24)

After substituting Eq. 5.23 into Eq. 5.20, we take the imaginary part to first order in products

of operators, and find,

¨̂
φ = −1

2
(κ+ Γ)

˙̂
φ+

1

a0
Im[F̂ ], (5.25)

where a factor of e−iφ has been absorbed into F̂ . Eq. 5.25 is then integrateed, assuming that (κ+Γ)

is large, to arrive at,

φ̂(t)− φ̂(0) =
2

a0(κ+ Γ)

∫ t

0
dt′Im

[
Γ

2
F̂ a − iNΩ

2
F̂−
]
. (5.26)

Since F̂ a and F̂− are Gaussian, we can use〈
ei(φ̂(t)−φ̂(0))

〉
= e−

1
2〈(φ̂(t)−φ̂(0))2〉. (5.27)

Therefore, we use Eq. 5.26, along with Eqns. 5.8 to find,〈
(φ̂(t)− φ̂(0))2

〉
=

(
(C + 1)

2(Cd0 − 1)

Γ

(w + γ)

Ω2κ

(κ+ Γ)2

)
t, (5.28)
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so that the linewidth ∆ν given by,

∆ν =
(C + 1)

2(Cd0 − 1)

Γ

(w + γ)

Ω2κ

(κ+ Γ)2
. (5.29)

5.2.1.3 C-number Langevin equations for numerical simulations

We now derive c-number Langevin equations that have a correspondence to the quantum

Langevin equations, and that can be easily numerically simulated on a computer, by following the

procedure demonstrated in Chapter 4.7. These equations do not neglect amplitude fluctuations, as

was done in section 5.2.1.2. Since operators do not necessarily commute, and c-numbers do, care

must be take in making this correspondence. We define,

d

dt
a = −1

2
(κ+ 2iωc)a−

iNΩ

2
S− + F a, (5.30)

d

dt
S− = −1

2
(Γ + 2iωa)S

− +
iΩ

2
aSz + F−, (5.31)

d

dt
Sz = −(w + γ) (Sz − d0) + iΩ

{
a†S− − aS+

}
+ F z, (5.32)

where the omission of the hats over the variables signifies that they are c-numbers. The noises are

correlated according to, 〈
Fµ(t)F ν(t′)

〉
= 2Dµνδ(t− t′), (5.33)

where the elements of Dµν depend on the precise operator order correspondence that is chosen.

The elements of Dµν are determined by calculating the c-number second order moments using

Eqns. 5.30 – 5.32, and then making a correspondence between them and the the quantum second

order moments calculated using Eqns. 5.4 – 5.6. This procedure determines Dµν since the c-number

second order moments contain Dµν (i.e. Dµν = 〈AµF ν〉 = 〈FµAν〉 where Aµ is a system variable),

and the quantum second order moments contain Dµν . A correspondence is then made by choosing

an ordering for the operators, and enforcing that the c-number second order moment equations are

equal to the operator second order moment equations in that ordering.
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To illustrate the procedure, we note that since, 〈S+S−〉 = 〈S−S+〉, they also have the same

equations of motion,

d

dt

〈
S+S−

〉
= −Γ

〈
S+S−

〉
− iΩ

2

〈
a†SzS−

〉
+
iΩ

2

〈
aS+Sz

〉
+ 2D+−. (5.34)

Since operators don’t commute, there are several options for operator second order moment equa-

tions that could correspond to Eq. 5.34. For instance,

d

dt

〈
Ŝ+Ŝ−

〉
= −Γ

〈
Ŝ+Ŝ−

〉
− iΩ

2

〈
â†ŜzŜ−

〉
+
iΩ

2

〈
âŜ+Ŝz

〉
+ 2D+−, (5.35)

d

dt

〈
Ŝ−Ŝ+

〉
= −Γ

〈
Ŝ−Ŝ+

〉
− iΩ

2

〈
â†ŜzŜ−

〉
+
iΩ

2

〈
âŜ+Ŝz

〉
+ 2D−+, (5.36)

d

dt

〈
Ŝ+Ŝ−

〉
s

= −Γ
〈
Ŝ+Ŝ−

〉
s
− iΩ

2

〈
â†ŜzŜ−

〉
s

+
iΩ

2

〈
âŜ+Ŝz

〉
s

+D+− +D−+,

(5.37)

are all equally valid, where the symmetric expectation value of two operators Â and B̂ is given by〈
ÂB̂
〉
s

= 1
2

(〈
ÂB̂
〉

+
〈
B̂Â
〉)

. Therefore, depending on the ordering chosen, 2D+− can either be

equal to 2D+−, 2D−+ , or D+− + D−+. All orderings are equally valid, but one must be chosen,

and consistently used. The difference lies in the inability of the semiclassical theory to completely

describe the full predictions of quantum mechanics.

With this in mind, we make our correspondence, by first changing variables to,

q̂ =
1

2

(
â† + â

)
p̂ =

1

2i

(
â† − â

)
(5.38)

Ŝx =
1

2

(
Ŝ+ + Ŝ−

)
Ŝy =

1

2i

(
Ŝ+ − Ŝ−

)
. (5.39)

This allows us to deal with real quantities only, and therefore by this construction, the c-number

equations will have a† complex conjugate to a, and S+ complex conjugate to S−.
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We choose to match the c-number second order moments to the symmetrically ordered quan-

tum second order moments. This ordering is chosen since, by construction, this correspondence

will always give 2Dµν = Dµν +Dνµ, i.e. there are never any left over commutator pieces in Dµν .

The c-number equations with this symmetric noise are given by,

d

dt
q = −κq − 2ωcp−NΩSy + F q, (5.40)

d

dt
p = −κp+ 2ωcq +NΩSx + F p, (5.41)

d

dt
Sx = −ΓSx − 2ωaS

y + ΩpSz + F x, (5.42)

d

dt
Sy = −ΓSy + 2ωaS

x − ΩqSz + F y, (5.43)

d

dt
Sz = −(w + γ) (Sz − d0) + 2Ω {qSy − pSx}+ F z, (5.44)

with,

2Dqq =
κ

4
2Dpp =

κ

4

2Dxx =
Γ

4N
2Dyy =

Γ

4N

2Dxz = 2Dzx =
−w + γ

N

〈
Ŝx
〉

2Dyz = 2Dzy =
−w + γ

N

〈
Ŝy
〉

2Dzz =
2

N

(
(w + γ) + (−w + γ)

〈
Ŝz
〉)

. (5.45)

Symmetric ordering also gives the added benefit that Dµν is by construction symmetric,

which allows us to use a simple algorithm to find the noises Fµ for a computer simulation that

will reproduce Dµν . The noises are found by finding the unitary transformation that diagonalizes

Dµν , and then applying the inverse transformation to the product of the square root of each of

its eigenvalues with an independent Wiener process. This gives the correct linear combination of

independent Wiener processes that reproduces Dµν . Eqns. 5.40 – 5.45 are equivalent to a Fokker-

Planck equation for the Wigner quasi-probability distribution.
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5.2.2 2nd Order Cumulant Theory

The cumulant theory is derived in the same way as in Chapter 3.7. Eq. 5.1 is used to find

equations for expectation values of system observables, which are truncated to second order in a

cumulant expansion, resulting in the closed set of equations,

d

dt
〈σ̂z1〉 = −(w + γ) (〈σ̂z1〉 − d0) + iΩ

{〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉}
(5.46)

d

dt

〈
â†σ̂−1

〉
= −1

2
(Γ + κ− 2iδ)

〈
â†σ̂−1

〉
+
iΩ

2

{〈
â†â
〉
〈σ̂z1〉

+
1

2
(〈σ̂z1〉+ 1) + (N − 1)

〈
σ̂+

1 σ̂
−
2

〉}
(5.47)

d

dt

〈
σ̂+

1 σ̂
−
2

〉
= −Γ

〈
σ̂+

1 σ̂
−
2

〉
+

Ω

2i
〈σ̂z1〉

{〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉}
(5.48)

d

dt

〈
â†â
〉

= −κ
〈
â†â
〉

+
NΩ

2i

{〈
â†σ̂−1

〉
−
〈
âσ̂+

1

〉}
. (5.49)

This second order cumulant expansion, along with the quantum regression theorem, can be used in

the same way as in chapter 3.7.2, to find a closed set of equations for two-time expectation values,

d

dτ

 〈
â†(τ)â(0)

〉
〈
σ̂+

1 (τ)â(0)
〉
 =

 −κ
2 + iδ iNΩ

2

− iΩ〈σ̂z1〉
2 −Γ

2


 〈

â†(τ)â(0)
〉

〈
σ̂+

1 (τ)â(0)
〉
 . (5.50)

These equations are written in a frame rotating at the atomic frequency. They are important, since

the Fourier transform of
〈
â†(τ)â(0)

〉
is the spectrum of the light inside our cavity QED system.

By using Laplace transform methods, it is found that the solution of the
〈
â†(τ)â(0)

〉
equation,

of Eq. 5.50 is dominated by a single exponential with decay constant,

∆ν =
1

2
(κ+ Γ− 2iδ)− 1

2

√
(−κ+ Γ + 2iδ)2 + 4NΩ2 〈σ̂z1〉, (5.51)

and hence the spectrum is a Lorentzian with linewidth given by Eq. 5.51.

5.3 Characterization of the Crossover

A characterization of the parameter space of a cavity QED system can now be given. Since

the repumping rate w is varied in a typical experiment, the system is characterized by considering
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the value w = wopt, at which there is a maximum number of intra-cavity photons. We define a

crossover parameter ξ to be the ratio of the modified atomic linewidth (including repumping w and

dephasing 1/T2) evaluated at the optimum repump rate w = wopt, to the cavity linewidth κ,

ξ ≡
wopt + γ + 1

T2

4κ
. (5.52)

Inserting Eq. 5.16 into Eq. 5.52 yields,

ξ ≡ NΩ2

8κ2
. (5.53)

Eq. 5.17 can then be used to rewrite ξ in terms of (|a0|2)opt. We do this since it provides an

alternative interpretation of ξ as a parameter that characterizes the crossover, since,

ξ =
(|a0|2)opt

N
, (5.54)

i.e. it is proportional to the ratio of the intra-cavity photon number to atom number. Thus one may

interpret ξ as a quantity that expresses the relative importance of stimulated emission to collective

atomic effects. If ξ � 1, the system is in the bad cavity or superradiant regime. If ξ � 1 the

system is in the good cavity or laser regime. The region ξ ∼ 1 defines the intermediate or crossover

regime.

5.4 Results

5.4.1 Simulations with N = 40

As mentioned previously, the SU(4) method is capable of yielding exact solutions to our

model for N = 40. This is a large enough number of atoms to expect our three solution methods to

be reasonably accurate. We therefore first compare the analytic Langevin method, the c-number

Langevin method, and the 2nd order cumulant method to the exact SU(4) result for three different

values of the crossover parameter: ξ = 0.2, ξ = 1, and ξ = 5, which put the system in the

superradiance, crossover, and lasing parameter regions, respectively. This comparison, seen in

Fig. 5.1, is made for N = 40. The SU(4) method becomes more computationally intensive as ξ is

increased, since there are more photons as ξ is increased, and hence more basis states need to be
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Figure 5.1: Comparison of the different solution methods in the superradiance (ξ = 0.2), crossover
(ξ = 1), and lasing (ξ = 5) regions for N = 40 and C = 1. The analytic Langevin solution is shown
in red (light gray), the 2nd order cumulant solution is shown in blue (dark gray), The exact SU(4)
solution is shown by grey triangles, and the c-number Langevin simulation results are shown by
black circles. The observables considered are (a) the inversion 〈σ̂z〉, (b) the correlation between
atoms

〈
σ̂+

1 σ̂
−
2

〉
, (c) the intracavity photon number

〈
â†â
〉
, (d) the linewidth ∆ν, and (e) the intensity

correlation function G(2)(0).
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tracked. For ξ = 5, the SU(4) simulation was very computationally intensive, so that only a few

values of w are included.

Fig. 5.1 shows that there is an excellent agreement between c-number Langevin and the exact

SU(4) theory for N = 40, in all parameter regions, for all of the considered observables. Therefore,

the c-number Langevin theory can be relied upon for larger atom numbers, where it is not possible

to apply the SU(4) theory.

The analytic Langevin solution works well in the region around w/wopt = 1, but disagrees

outside that region. That is because in Fig. 5.1 (a) and (c), the analytic Langevin solution excludes

all quantum fluctuations. In Fig. 5.1 (d), while the leading order of quantum fluctuations are

included, it is assumed that only phase fluctuations are present, which is not true away from

w/wopt = 1.

The 2nd order cumulant solution works well qualitatively in all parameter regions, but as

seen in Fig. 5.1 (b) and (c) in the superradiance row, and in column (d), there is a quantitative

disagreement between this theory and the SU(4) and c-number Langevin theories.

This quantitative disagreement is due to the fact that there is a difference between a Gaussian

theory, one in which all moments factorize into products of no higher than second order moments,

and a theory that uses Gaussian noise. This difference can be seen by considering the third order

moment
〈
â†âσ̂zi

〉
. According to the cumulant theory,

〈
â†âσ̂zi

〉
=
〈
â†â
〉
〈σ̂zi 〉, a fact which was

essential to use in deriving the closed the set of equations used to find the spectrum, Eqns. 5.50.

In the Langevin theory, however,
〈
â†âσ̂zi

〉
6=
〈
â†â
〉
〈σ̂zi 〉, a fact we have checked with our Langevin

simulations. Even though the difference between
〈
â†âσ̂zi

〉
and

〈
â†â
〉
〈σ̂zi 〉 decreases as 1

N , it is

precisely the 1
N terms that gives rise to the linewidth according to the cumulant theory.

The merit of the 2nd order cumulant theory lies in its simplicity. It is simple to derive the

cumulant equations and it is not computationally intensive to solve them numerically, while the

theory still captures the correct qualitative behavior of the system.
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Figure 5.2: Solutions using the various methods in the superradiance (ξ = 0.1), crossover (ξ = 1),
and lasing (ξ = 10) regions for N=10000 and C = 0.1. For 1/T2 = 0, the analytic Langevin
solution is shown in solid red (solid light gray), the 2nd order cumulant solution is shown in solid
blue (solid dark gray), and the c-number Langevin simulation results are shown by black circles. For
1/T2 = 1

5wopt, the analytic Langevin solution is shown in dashed red (dashed light gray), the 2nd
order cumulant solution is shown in dashed blue (dashed dark gray), and the c-number Langevin
simulation results are shown by black diamonds. (a) All observables considered except linewidth
∆ν show universal behavior in the superradiance, crossover, and lasing regions, after appropriate
scaling. The red (light gray) curves have been artificially widened in order to be seen underneath
the blue curves. (b) ∆ν/κ in the superradiance region (c) ∆ν/κ in the crossover region, (d) ∆ν/κ
in the lasing region.
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5.4.2 Simulations with N = 10000

Now that an agreement between the c-number Langevin and exact SU(4) theories has been

established, we study more experimentally realistic systems with N = 10000 by applying c-number

Langevin theory. We also include the analytic Langevin and 2nd order cumulant theories for

reference. The results of these simulations can be seen in Fig. 5.2. Both the situation in which

1/T2 = 0 and in which 1/T2 = wopt/5 are considered.

As seen in Fig. 5.2 (a), when 1/T2 = 0, the inversion 〈σ̂z〉, the correlation between atoms〈
σ̂+

1 σ̂
−
2

〉
, the intracavity photon number

〈
â†â
〉
, and the intensity correlation function G(2)(0) all

show universal behavior in the superradiance, crossover, and lasing regimes after appropriate scal-

ing. When 1/T2 is large, 1/T2 = wopt/5, these observables still show universal behavior after

appropriate scaling, and do not change their values significantly from the 1/T2 = 0 case.

It is worth noting that even though
〈
σ̂+

1 σ̂
−
2

〉
has universal behavior throughout the crossover,

typical lasers are operated just above threshold at w � wopt, where the resulting value of
〈
σ̂+

1 σ̂
−
2

〉
opt

is much smaller, which is why atom-atom correlations are not usually thought to be important in

lasers.

The linewidth ∆ν, however, does not show universal behavior in the superradiance, crossover,

and lasing regimes. As seen in Fig. 5.2 (b), in the superradiance region, when 1/T2 = 0, ∆ν/κ is

flat in the region of w/wopt < 1. In contrast, the linewidth in the lasing regime, shown in Fig.5.2

(d), linearly decreases as w/wopt increases towards unity. This is the typical Schawlow-Townes

behavior, which can be seen by considering κ/
〈
â†â
〉

using Eq. 5.15. In the crossover region, shown

in Fig. 5.2 (c), we see that for w/wopt small, ∆ν/κ is flat, and as w/wopt approaches unity, ∆ν/κ

starts to linearly decrease as in the lasing regime. Therefore, a system in the crossover region

displays characteristics of both superradiance and lasing.

When 1/T2 is increased to 1/T2 = wopt/5, Fig. 5.2 (b) shows that ∆ν/κ is increased for

w/wopt small, but it is not significantly affected by 1/T2 as w/wopt approaches unity. In any case,

this is the region in which a superradiant system should be operated, since this is the region of
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Figure 5.3: Comparison of (a) linewidth and (b) Intracavity intensity for a system operated in the
crossover (ξ = 1) shown in blue solid, lasing (ξ = 10) shown in red dashed, and far lasing (ξ = 100)
shown in magenta dotted, regions. wopt,c is the optimum w value in the crossover region. For all
systems, N = 10000.

maximum intracavity intensity.

In the crossover region, seen in Fig. 5.2 (c), when 1/T2 = wopt/5, ∆ν/κ is increased for

w/wopt small, where the system is displaying superradiant behavior, but is completely insensitive

to w/wopt approaching unity, where the system starts to display lasing behavior.

As seen in Fig. 5.2 (d), in the lasing region, when 1/T2 = wopt/5, ∆ν/κ is not increased, but

actually decreased in the region slightly below w/wopt = 1, when compared to the 1/T2 = 0 case.

This reduction has also been observed for smaller atom numbers using the exact SU(4) code. It

can be shown that the value of 1/T2 that maximally reduces the linewidth is 1/T2 =
wopt

1+
√

2
.

A typical laser is operated just above threshold, where w/wopt � 1. As seen in Fig. 5.3 (a),

for the same pump strength w, and a fixed N , a system in the crossover region could be operated

with w/wopt = 1, allowing the crossover system to have a linewidth orders of magnitude smaller

than the linewidth of the lasing system. Fig. 5.3 (b) shows that the intracavity intensity,
〈
â†â
〉
,

will be roughly the same for the crossover system operated at w/wopt = 1 as for a laser system

operated at w/wopt � 1.
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Figure 5.4: Instability in the atom-cavity system frequency ω with respect to (a) the cavity fre-
quency ωc and (b) atomic frequency ωa as a function of crossover parameter ξ

5.4.3 Effect of Cavity and Atomic Level Instabilities on the Spectrum

The effect of instabilities in the cavity frequency and atomic frequency on the linewidth is

now investigated. Cavity frequency instability can be caused by fluctuations in cavity length due

to the thermal fluctuations of the cavity mirrors, which are unavoidable in an experiment. The

energy levels in an atom can also be shifted by stray electromagnetic fields. The frequency of the

combined atom-cavity system ω lies somewhere between the bare atom and cavity frequencies, and

is given by Eq. 5.13.

If ω is varied, the resultant time averaged linewidth will be an average over these values,

and will hence be much broader than the quantum limited linewidth. Therefore, the derivative

of ω with respect to ωc, and with respect to ωa, gives us an idea as to how much of an effect an

instability in these frequencies will have on broadening the linewidth. These derivatives are plotted

in Fig. 5.4.

Fig. 5.4 (a) tells us that on the lasing side of the crossover, ω is shifted proportionally to the

shift in ωc, while on the superradiant side, ω is insensitive to shifts in ωc. Conversely, in Fig. 5.4

(b) it can be seen ω is shifted proportionally to the shift in ωa on the superradiance side of the
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crossover, while on the lasing side, ω is insensitive to shifts in ωa. In the intermediate regime

(ξ = 1), ω is not as sensitive to a shift in the ωc as it is in the laser regime, and it is not as sensitive

to a shift in the ωa, as it is on the superradiance side.

5.5 Conclusion

A model that is capable of describing a system operating in any parameter region of the

crossover between steady state superradiance and lasing has been introduced, and three solution

methods to that model were demonstrated. The first method solves a set of c-number Langevin

equations that approximate the quantum Langevin equations that are equivalent to our model.

This method was seen to have outstanding agreement with the exact SU(4) method. Also, analytic

expressions for the expectation values of the quantum Langevin equations were derived. Along

with these solutions, an analytic solution for the linewidth of the power spectrum, which assumes

Gaussian phase fluctuations, and neglects amplitude fluctuations was derived. It is demonstrated

that these analytical results agree with SU(4) and c-number Langevin methods in the region in

which the value of re-pumping is such that the system has the maximum number of intra-cavity

photons, but disagree far from this region. Finally, a closed set of equations to second order in a

cumulant expansion were derived, and shown to agree qualitatively with the SU(4) and c-number

Langevin methods.

Although a system in the lasing parameter region is capable of possessing the smallest

linewidth, typically lasers operate with a re-pumping rate that puts them just above threshold,

which does not allow the smallest linewidth for the system to be realized. For the same re-pumping

rate, a system operating in the crossover region will be much farther above threshold, potentially

allowing for a linewidth orders of magnitude smaller than in the laser region. Also, a crossover

system will have a larger intracavity intensity than a superradiant system, making the former more

experimentally accessible.

It was also demonstrated that a system in all regions of the crossover is insensitive to atomic

dephasing as long as the re-pumping rate is smaller than the dephasing rate. Also, as the crossover
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is traversed into the lasing region, atomic dephasing can actually cause a reduction in the linewidth.

Finally, it was shown that the linewidth on the superradiance side is insensitive to fluctuations

in cavity length, and that these fluctuations become more important as the crossover is traversed

toward the laser side. Conversely, it was shown that the linewidth on the lasing side is insensitive to

fluctuations in the atomic energy levels, and that these fluctuations become more important on the

superradiance side. A system in the crossover region will be less sensitive to cavity frequency fluc-

tuations than a lasing system, and it will be less sensitive to atomic frequency instabilities than a

superradiant system. Both of these fluctuations cause a broadening of the linewidth. These conclu-

sions are significant since fluctuations in the cavity frequency are a principal limitation preventing

further reduction of the linewidth in today’s most ultrastable lasers.



Chapter 6

Laser Stabilization using Saturated Absorption in a Cavity QED System

The bulk of this chapter was published in Physical Review A as Phys. Rev. A 92,

013817 (2015) [79].

Today’s ultra-precise and accurate atomic clocks continue to make important contributions

to fundamental physics as well as applied technology. Atomic clocks have imposed significant

constraints on the drift of fundamental constants [57, 44, 34], may have the potential to enhance

the sensitivity of gravitational wave detectors, and have provided ultimate tests of the general

theory of relativity [73]. With the current stability of optical clocks at the 1×10−18 level, there are

prospects for applying atomic clocks for the detailed mapping of the Earth’s gravity field [37, 10].

A highly stabilized laser is an integral component of high precision measurements, such as

optical atomic clocks and precision spectroscopy. Current technology for achieving highly phase

stable laser sources relies on locking a laser to a high-Q reference ultra low expansion (ULE) glass

cavity [22, 90, 47]. The phase stability of this method is currently limited by the thermal noise

induced in the mirrors, spacers, and coatings of the reference cavity [67], but has been significantly

reduced over the past few years with new engineered materials [48, 61].

As an alternative approach to overcoming the thermal noise problem, it was recently proposed

[62] to lock the laser to the saturated resonance feature exhibited by a collection of atoms with an

ultra-narrow electronic transition trapped in an optical cavity. Here, the atoms were assumed to be

trapped in an optical lattice inside the cavity. Due to the narrow atomic line, such a system would
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typically operate in the parameter region corresponding to the bad cavity limit of cavity QED.

There, the atomic linewidth is significantly narrower than the cavity linewidth. In contrast to the

reference cavity stabilization method described above, the cavity QED method offers a distinct

advantage since no drift compensation is needed.

The cavity QED system exhibits optical bistability in the intracavity intensity [11, 23] where

several solutions exist for the steady-state intracavity field. Working at an input intensity in the

region where bistability is present would in principle allow the greatest degree of stabilization [62].

However, it is not practical to work in the bistable region since quantum and classical fluctuations

between the semi-classical eigenmodes cause the system to be dynamically unstable. Therefore, one

is restricted to working at input intensities above the bistability, where the achievable stabilization

is orders of magnitude worse. Still, it was shown [62] that phase stability corresponding to the

sub-mHz level should be achievable.

Recently [85], an experimental effort to demonstrate the cavity QED system was made by

probing the
∣∣1S0

〉
−
∣∣3P1

〉
intercombination line of 88Sr atoms (i.e. γa/2π = 7.6 kHz) inside an

optical cavity. There, however, the atoms were not trapped in an optical lattice, but loaded into

the center of the cavity using a MOT, which was then turned off during probing. Typical MOT

temperatures correspond to a few millikelvin which is equivalent to a Doppler width of several MHz.

Considering the narrow 7.6 kHz line of the optical transition, this implies that motional effects will

be important.

In this chapter, we extend the many-atom cavity QED theory of [62] to include atomic

motion, and study its effect on the stabilization precision. In spite of the large Doppler effect, the

standing-wave nature of the cavity field induces sharp saturated absorption and dispersion features

to appear in the considered observables. These features are nestled in the center of the overall

Doppler broadened features [76, 31, 75, 58]. The stabilization that is achievable by utilizing these

sharp features is impeded by multi-photon scattering processes that occur when an atom’s velocity

matches one of its Doppleron resonances [1, 78]. The dependence of the stabilization on the number

of atoms and the temperature due to the Dopplerons is discussed. We demonstrate that the motion
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Figure 6.1: Schematic of the cavity QED experiment with a thermal sample of atoms with Doppler
width Γd, each of which have a narrow optical transition of width γa << Γd. The atoms are probed
with a carrier with frequency ωc, and two sidebands located at ωc±FSR, where FSR is the free
spectral range of the cavity. The carrier frequency ωc, which is close to the atomic frequency ωa, is
locked on the cavity mode frequency ω, while the sidebands are assumed far off resonance, typically
∼ 104 atomic linewidths. By demodulating the light transmitted through the cavity at the FSR,
detection of the non-linear phase response of the transmitted light is achieved. This phase response
results in a photocurrent that serves as a frequency discriminating error signal that stabilizes the
laser frequency through the requirement ∆i = 0.
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of the atoms causes the bistability region to disappear, so that no restrictions on input power are

necessary to avoid the dynamic instability that would otherwise result.

6.1 Model

We model our system as a collection of N two-level atoms inside a single mode optical cavity

using the quantum Born-Markov master equation to describe the open quantum system,

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L̂ [ρ̂] , (6.1)

where,

Ĥ =
~∆

2

N∑
j=1

σ̂zj + ~η
(
â† + â

)
+ ~

N∑
j=1

gj(t)
(
â†σ̂−j + σ̂+

j â
)
, (6.2)

and L̂ [ρ̂] denotes the Liouvillian.

The Hamiltonian H describes the coherent evolution of the coupled atom cavity system in an

interaction picture which rotates at the frequency of the cavity, and ∆ is the atom-cavity detuning.

The Pauli spin matrices for the atoms are σ̂+
j ,σ̂−j and σ̂zj , and â is the annihilation operator of

the cavity mode. Furthermore, η =
√

(κPin)/(~ω) is the classical drive amplitude, where κ is the

decay rate of the cavity, Pin is the input power, and ω is the frequency of the cavity mode. The

atom-cavity coupling rate is gj(t) = g0 cos(δjt), where g0 is the maximum coupling amplitude, and

δj = kvj is the Doppler shift in terms of the velocity vj of the jth atom, and wave number k of the

light.

The incoherent evolution describes the various forms of dissipation in this system and is

described by the Liouvillian L̂ [ρ̂],

L̂ [ρ̂] = −κ
2

{
â†âρ̂+ ρ̂â†â− 2âρ̂â†

}
−γ

2

N∑
j=1

{
σ̂+
j σ̂
−
j ρ̂+ ρ̂σ̂+

j σ̂
−
j − 2σ̂−j ρ̂σ̂

+
j

}

+
1

2T2

N∑
j=1

{
σ̂zj ρ̂σ̂

z
j − ρ̂

}
, (6.3)
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where ρ̂ is the system’s density matrix, γ is the spontaneous emission rate for the atoms, and 1
T2

is

the inhomogeneous dephasing rate.

We derive Langevin equations corresponding to Eq. 6.1. Assuming that the classical drive η

is sufficiently strong, a mean-field description provides an accurate representation [36]. We define

the mean values for the field α = −i 〈â〉, and for the atoms, σ−j =
〈
σ̂−j

〉
, σ+

j =
〈
σ̂+
j

〉
, σzj =

〈
σ̂+
j

〉
,

which evolve according to the semiclassical evolution,

α̇ = −κα+ η +
N∑
j=1

gj(t)σ
−
j , (6.4)

σ̇−j = − (γp + i∆)σ−j + gj(t)ασ
z
j , (6.5)

σ̇zj = −γ
(
σzj + 1

)
− 2gj(t)

(
ασ+

j + α∗σ−j

)
, (6.6)

where γp ≡ 1
T2

+ γ
2 is the total decay rate of the atomic dipole. In the moving frame of reference of

the jth atom, the cavity field appears as a traveling wave, containing two frequencies shifted above

and below the cavity frequency by the Doppler shift δj (refer to Fig. 6.1).

It is convenient to approximate Eqns. 6.4 – 6.6 as a function of the continuous variable δ = kv,

α̇ = −κα+ η + g0

∫
dδP (δ) cos(δt)σ−, (6.7)

σ̇− = − (γp + i∆)σ− + g0 cos(δt)ασz, (6.8)

σ̇z = −γ (σz + 1)− 2g0 cos(δt)
(
ασ+ + α∗σ−

)
, (6.9)

where P (δ) is the Maxwell velocity distribution of width δ0, which is related to the temperature by

the equipartition theorem.

To solve this problem that intrinsically contains a bi-chromatic drive, we proceed in two

ways. Our first approach is to numerically integrate Eqns. 6.7 – 6.9, partitioning the integral into

finite-size velocity bins. The velocity partition must be chosen with care, since the system exhibits

Doppleron resonances, which have a strong dependence on the atomic velocity. Specifically, at

lower velocity, more resolution in the partition is required.

Our second approach is semi-analytic, and involves a Floquet analysis [30, 2], in which we
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expand σ−, σ+, and σz in terms of their Fourier components,

σ− =
∑
l

eilδtx
(l)
1 ,

σ+ =
∑
l

eilδtx
(l)
2 ,

σz =
∑
l

eilδtx
(l)
3 , (6.10)

where x
(l)
1 ,x

(l)
2 , and x

(l)
3 are the amplitudes of the lth Fourier component. Upon substitution of

Eqns. 6.10 into Eqns. 6.7 – 6.9, equations for the amplitudes are found:

ẋ
(l)
1 = − (i(∆ + lδ) + γp)x

(l)
1 +

g0α

2

(
x

(l+1)
3 + x

(l−1)
3

)
,

(6.11)

ẋ
(l)
2 = (i(∆ + lδ)− γp)x(l)

2 +
g0α

∗

2

(
x

(l+1)
3 + x

(l−1)
3

)
,

(6.12)

ẋ
(l)
3 = −γδl,0 − (ilδ + γ)x

(l)
3

−g0

(
αx

(l+1)
2 + α∗x

(l+1)
1 + αx

(l−1)
2 + α∗x

(l−1)
1

)
.

(6.13)

In order to find a steady state solution, we set the time derivatives in Eqns. 6.11 – 6.13 to

zero, and substitute Eqns. 6.11 – 6.12 into Eq. 6.13, yielding,

0 = γδl,0 + alx
(l)
3 + dlx

(l+2)
3 + blx

(l−2)
3 , (6.14)

where δl,0 is a Kronecker delta, and

al ≡ ilδ + γ +
g2

0|α|2

2

(
1

Ql+1
+

1

Pl+1
+

1

Ql−1
+

1

Pl−1

)
, (6.15)

bl = dl−2 ≡
g2

0|α|2

2

(
1

Ql−1
+

1

Pl−1

)
, (6.16)

where,

Pl = i(lδ + ∆) + γp, (6.17)



112

Ql = i(lδ −∆) + γp. (6.18)

For a given α, Eq. 6.14 defines a tridiagonal linear system that can be solved by truncating

l at some finite value, and applying the Thomas algorithm for matrix inversion [69].

Since the atoms have motion, the condition for resonance between an atom and photon is

achieved when the atomic frequency and photon frequency are offset by δ. However, higher order

multi-photon processes, known as Doppleron resonances, involving 2n + 1 photons where n is an

integer, are also possible. The nth order Doppleron resonance corresponds to the terms of order

l/2 in the Floquet theory [1, 78]. This correspondence is why only even values of l can couple into

Eq. 6.14.

In steady state, Eq. 6.7 simplifies to,

α =
η

κ
+
g2

0N

2κ

∫
dδP (δ)

(
x

(−1)
1 + x

(1)
1

)
. (6.19)

Since x−1
1 and x1

1 depend on α, the self-consistent field amplitude α that solves Eq. 6.19 is found

numerically by applying Newton’s method for root finding [69].

We have seen excellent agreement between the two previously described solution methods,

and for the remainder of the chapter, focus our attention on the Floquet solution, which most

transparently illuminates the underlying physics.

6.2 Discussion of Steady State Solutions

We first consider the lowest order solution to Eq. 6.19, by truncating at l = 0, which means we

have not included higher order Doppleron processes. We have verified that this solution displays the

correct physics qualitatively by comparing to higher order solutions that are truncated at increasing

values of l. We define scaled intracavity and input field amplitudes x ≡ α/
√
n0, y ≡ η/(κ

√
n0),

where n0 = (γγp)/(4g
2
0) is the saturation photon number. Eq. 6.19 then becomes,

y = x

(
1 +

NC0

4

∫
dδP (δ)

{
1− i(∆ + δ)/γp

1 + (∆+δ)2

γ2
p

+ |x|2
4 (1 + ξ+)

+
1− i(∆− δ)/γp

1 + (∆−δ)2

γ2
p

+ |x|2
4 (1 + ξ−)

})
, (6.20)
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where C0 ≡
g2
0

κγp
, and ξ± =

γ2
p+(∆±δ)2

γ2
p+(∆∓δ)2 .

It is interesting to consider the relation corresponding to Eq. 6.20 for a ring cavity system that

has a field traveling in only one direction, assuming equal intracavity power. The corresponding

expression is given by,

y = x

(
1 +

NC0

2

∫
dδP (δ)

1− i(∆ + δ)/γp

1 + (∆+δ)2

γ2
p

+ |x|2
2

)
. (6.21)

In the experiment described in [85], the measured observables are the cavity transmitted

power T ≡ |x/y|2 and transmitted phase shift φ ≡ arg(x/y) of the intracavity light relative to

the input light. Fig. 6.2 shows that the presence of ξ± in Eq. 6.20 results in extra absorption and

dispersive features (blue solid) around resonance in the transmission and phase shift, as compared

to a ring cavity field (red dashed) where ξ± = 0.

These extra absorption and dispersive features are caused by the following: The distribution

of atomic velocities results in a different Doppler frequency shift of the light for each atomic velocity

class, so that each velocity class will be resonant at a different detuning ∆. When |∆| � γp|x|,

the resonant velocity class of the atoms is interrogated by both components of the standing wave

field, whereas when |∆| � γp|x|, the resonant velocity class of atoms is interrogated by only one

component of the standing wave field. Thus, there is an increased saturation in atomic absorption,

with a corresponding saturated dispersive feature, for |∆| � γp|x|. These sharp features are absent

from the traveling wave cavity situation where there is only one propagating field.

As seen in Fig. 6.2 (a), for low input intensities, there is no atomic saturation at any detuning.

In Fig. 6.2 (b), the atoms in the velocity class around resonance are saturated by both components

of the field, and the velocity classes away from resonance are saturated by only a single component

of the standing wave field. Therefore, the features caused by the two component saturation and

the features caused by the single component saturation are clearly able to be distinguished. It can

be seen in Fig. 6.2 (c) that as the amount of saturation becomes large, the central feature becomes

power broadened, but is still identifiable. Fig. 6.2 (d) shows the intracavity intensity for a given
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Figure 6.2: Development of the extra absorption and dispersion features in the transmission (T)
and phase shift (φ), as the input intensity is increased. Blue (dark gray) solid curves are for
a standing wave cavity, red (light gray) dashed are for a traveling wave cavity. For all plots,
NC0 = 600 and δ0/γp = 260, which in the case of 88Sr, corresponds to a temperature of ∼ 15 mK.
(a) |y|2 = 5× 10−1, (b) |y|2 = 6× 101, (c) |y|2 = 9× 102; The inset is zoomed in to emphasize the
central features. (d) Input vs intracavity intensity at resonance. The black dots label the input
and intracavity intensities of (a) (b) and (c), and the dashed line is |y|2 = |x|2 for reference. Note
that there is no bistability.
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input intensity with the values used in Figs. 6.2 (a-c) labeled by black dots.

In Fig. 6.3 and Fig. 6.4, a comparison between the solutions to Eq. 6.19, with l truncated at

l = 6, and the experimental results of [85] can be seen. Fig. 6.3 shows the transmitted phase shift

φ ≡ arg(x/y) of the intracavity light relative to the input light around resonance for several systems

of varying input probe laser power. Here is demonstrated a linear increase in phase slope as the

input laser power is reduced. Fig. 6.4 shows the transmitted phase shift for several systems with

varying numbers of atoms. Here is demonstrated a linear increase in phase slope as the number of

atoms is increased. In both figures, an excellent agreement between the theory and experimental

results can be seen.

6.3 Shot Noise Limited Laser Stabilization

For laser stabilization, the central part of the phase response close to the atomic resonance

serves as an error signal, see Fig. 6.2 (c), and allows for the generation of a feedback signal to

the laser frequency. Through the photodetector, the error signal is converted to a measurable

photocurrent. Any photocurrent measured by the photo detector should, in principle be zeroed by

an ideal feedback loop of infinite bandwidth to the laser frequency.

To determine the potential phase stability that could be achievable using our system, we

consider the shot noise limited stabilization linewidth assuming a strong local oscillator, as derived

in [62],

∆ν =
~ω

8πεPsig

(
∂φ
∂∆

)2 =
C0

4πεγ|x|2
(
∂φ
∂∆

)2 , (6.22)

where Psig is the signal power, ε is the photo-detector efficiency and ( ∂φ∂∆) is the dimensionless phase

slope at resonance ∆ = 0. In the case that FM spectroscopy, such as NICEOHMS [85], is used for

the detection of the absorption or cavity transmitted phase, Eq. 6.22 must be modified as follows.

In general, in a configuration where sidebands are applied at the free spectral range of the cavity,

Eq. 6.22 must be multiplied with (1 + Psig/2Psideband), where Psideband is the sideband power.
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laser stabilization. In Fig. 3 we show the phase signal for a
fixed number of atoms as a function of laser detuning for
different input powers in the range 650–1950 nW. For high
input powers we strongly saturate the dipole and power
broaden the central saturated absorption peak. As we
gradually lower the input power, the power broadening
is reduced, leaving the central phase feature with a larger
slope without reducing the signal-to-noise ratio.
Figs. 4(a)–4(d) show the evolution of the phase signal

for fixed probe power as the number of atoms inside the
cavity mode is changed from Ncavity ¼ 2.5 × 107 in (a) to
Ncavity ¼ 1.2 × 107 in (d). We observe a strong dependence
on atom number with increasing phase response and
increasing slope on resonance for increasing atom numbers,
as expected, and the slope can straightforwardly be
improved by increasing the number of atoms. However,
our system is strongly nonlinear and other optimal param-
eters, such as input power, for a given number of atoms,
may not be trivially assigned to our experiment, but must be
found numerically or experimentally.
Using the central phase slope for laser frequency lock-

ing, we estimate a shot noise limited linewidth of
1000 mHz, based on our experimental parameters. This
number can be improved by at least a factor of 20 with
realistic improvements in the experimental parameters, e.g.,
by optimizing the EOM modulation index (a factor 15) and
increasing the atom number and the cavity finesse (both a
factor 10), which would render the system comparable to
state-of-the-art frequency stabilization Refs. [9,24–26] (see
the Supplemental Material [15] for details).

In conclusion,wehave constructed a systemdominated by
highly saturated multiphoton absorption with laser-cooled
strontium atoms coupled to a low finesse optical cavity. The
transmission through the cavity is altered by thermal effects
but, apart from a small decrease in slope, the central phase
response of the atoms remains relatively immune to these
effects while displaying a high SNR owing to the cavity and
detection technique. The atomic phase signature was
observed via cavity-enhanced FM spectroscopy (NICE-
OHMS) on the narrow optical j1S0i − j3P1i intercombina-
tion line of 88Sr, providing a SNR exceeding 7000 for one
second of integration. The understanding obtained here of
the “bad cavity” physics lends promise to further develop-
ment in this area, such as a new generation of frequency
stabilization [11,13] or superradiant laser sources [27,28].
Specifically, the physical understanding of a “warm” system
(MOT temperature) obtained in thisworkwill provevaluable
when future atomic clocks, stable lasers, or both will be
operated under more noisy and compact environments—
e.g., in vehicles and spacecrafts—where the size, rugged-
ness, and convenience of the setup might dictate higher
atomic temperatures than what is currently used for state-of-
the-art systems. In this situation, this work will serve as an
important piece of technical understanding for out-of-lab
clocks employing warm atoms.

We would like to acknowledge support from the Danish
Research Council and ESA Contract No. 4000108303/13/
NL/PA-NPI272-2012. D. T., M. H., and J. Y. also wish to
thank the DARPA QuASAR program, NIST, and the NSF
Physics Frontier Center at JILA for financial support.
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FIG. 3 (color online). Measured phase shift of the cavity-
transmitted field when scanned across the atomic resonance.
The input probe laser power Pin is progressively decreased from
1950 nW (a), 900 nW (b), 700 nW (c) to 650 nW (d). The number
of atoms is about Ncavity ¼ 2.5 × 107. Each point is an average of
three data points. The solid lines are theoretical predictions based
on our theoretical model.
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FIG. 4 (color online). Measured phase shift of the probe light
when scanned across the atomic resonance. The number of atoms
in the cavity is progressively decreased from 2.5 × 107 (a), 2.0 ×
107 (b), 1.7 × 107 (c) to 1.2 × 107 (d). The input power used for all
plots was 650 nW. Each point is an average of three data points.
The solid lines are theoretical predictions based on our theoretical
model. The central slope scales linearly with atom number.
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Figure 6.3: Measured phase shift of the cavity transmitted field when scanned across the atomic
resonance. The input probe laser power, Pin, is progressively decreased from 1950 nW (a), 900 nW
(b), 700 nW (c) to 650 nW (d). The number of atoms is about 2.5× 107. Each point is an average
of three data points. The solid lines are the predictions of the theoretical model.
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laser stabilization. In Fig. 3 we show the phase signal for a
fixed number of atoms as a function of laser detuning for
different input powers in the range 650–1950 nW. For high
input powers we strongly saturate the dipole and power
broaden the central saturated absorption peak. As we
gradually lower the input power, the power broadening
is reduced, leaving the central phase feature with a larger
slope without reducing the signal-to-noise ratio.
Figs. 4(a)–4(d) show the evolution of the phase signal

for fixed probe power as the number of atoms inside the
cavity mode is changed from Ncavity ¼ 2.5 × 107 in (a) to
Ncavity ¼ 1.2 × 107 in (d). We observe a strong dependence
on atom number with increasing phase response and
increasing slope on resonance for increasing atom numbers,
as expected, and the slope can straightforwardly be
improved by increasing the number of atoms. However,
our system is strongly nonlinear and other optimal param-
eters, such as input power, for a given number of atoms,
may not be trivially assigned to our experiment, but must be
found numerically or experimentally.
Using the central phase slope for laser frequency lock-

ing, we estimate a shot noise limited linewidth of
1000 mHz, based on our experimental parameters. This
number can be improved by at least a factor of 20 with
realistic improvements in the experimental parameters, e.g.,
by optimizing the EOM modulation index (a factor 15) and
increasing the atom number and the cavity finesse (both a
factor 10), which would render the system comparable to
state-of-the-art frequency stabilization Refs. [9,24–26] (see
the Supplemental Material [15] for details).

In conclusion,wehave constructed a systemdominated by
highly saturated multiphoton absorption with laser-cooled
strontium atoms coupled to a low finesse optical cavity. The
transmission through the cavity is altered by thermal effects
but, apart from a small decrease in slope, the central phase
response of the atoms remains relatively immune to these
effects while displaying a high SNR owing to the cavity and
detection technique. The atomic phase signature was
observed via cavity-enhanced FM spectroscopy (NICE-
OHMS) on the narrow optical j1S0i − j3P1i intercombina-
tion line of 88Sr, providing a SNR exceeding 7000 for one
second of integration. The understanding obtained here of
the “bad cavity” physics lends promise to further develop-
ment in this area, such as a new generation of frequency
stabilization [11,13] or superradiant laser sources [27,28].
Specifically, the physical understanding of a “warm” system
(MOT temperature) obtained in thisworkwill provevaluable
when future atomic clocks, stable lasers, or both will be
operated under more noisy and compact environments—
e.g., in vehicles and spacecrafts—where the size, rugged-
ness, and convenience of the setup might dictate higher
atomic temperatures than what is currently used for state-of-
the-art systems. In this situation, this work will serve as an
important piece of technical understanding for out-of-lab
clocks employing warm atoms.
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NL/PA-NPI272-2012. D. T., M. H., and J. Y. also wish to
thank the DARPA QuASAR program, NIST, and the NSF
Physics Frontier Center at JILA for financial support.

-400 -200 0 200 400
-0.4

-0.2

0.0

0.2

0.4

Pin = 650 nW

(d)

∆/2π (kHz)

-400 -200 0 200 400
-0.4

-0.2

0.0

0.2

0.4

Pin = 700 nW

(c)

P
ha

se
(r

ad
ia

ns
)

∆/2π (kHz)

-400 -200 0 200 400
-0.4

-0.2

0.0

0.2

0.4

Pin = 900 nW

(b)

-400 -200 0 200 400
-0.4

-0.2

0.0

0.2

0.4

Pin = 1950 nW

(a)

P
ha

se
(r

ad
ia

ns
)

FIG. 3 (color online). Measured phase shift of the cavity-
transmitted field when scanned across the atomic resonance.
The input probe laser power Pin is progressively decreased from
1950 nW (a), 900 nW (b), 700 nW (c) to 650 nW (d). The number
of atoms is about Ncavity ¼ 2.5 × 107. Each point is an average of
three data points. The solid lines are theoretical predictions based
on our theoretical model.
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FIG. 4 (color online). Measured phase shift of the probe light
when scanned across the atomic resonance. The number of atoms
in the cavity is progressively decreased from 2.5 × 107 (a), 2.0 ×
107 (b), 1.7 × 107 (c) to 1.2 × 107 (d). The input power used for all
plots was 650 nW. Each point is an average of three data points.
The solid lines are theoretical predictions based on our theoretical
model. The central slope scales linearly with atom number.
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Figure 6.4: Measured phase shift of the cavity transmitted field when scanned across the atomic
resonance. The number of atoms in the cavity, Ncavity, is progressively decreased from 2.5 × 107

(a), 2.0 × 107 (b), 1.7 × 107 (c) to 1.2 × 107 (d). The input power used for all plots was 650 nW.
Each point is an average of three data points. The solid lines are the predictions of the theoretical
model.
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Eq. 6.22 is the smallest, and hence the phase is most stable, when the product of the slope

around resonance and the intracavity intensity is as large as possible. The optimal input intensity,

which allows this product to be as large as possible, is the value used in Fig. 6.2 (c), and is labeled

by the black dot at |y|2 ≈ 103 in Fig. 6.2 (d).

To achieve a quantitative agreement between theory and experiment [85], higher orders in l

in Eq. 6.19 must be included. These higher order terms correspond to Doppleron resonances, i.e.

multi-photon scattering processes between the atoms and cavity mode.

To study the importance of these higher order Dopplerons, we calculate the linewidth from

Eq. 6.22 at the optimum input power while varying the order of l at which the truncation occurs.

Fig. 6.5 shows the dependence of the linewidth at the optimum input intensity on the order

of l at which the truncation occurs for 3 different sets of parameters. The first set, shown in blue

circles, converges by l = 12. The linewidth calculated with up to l = 12 included before truncation

is around 5 times larger than the linewidth with only l = 0 included. This shows that Doppleron

effects are crucial to include for a correct quantitative analysis of this system.

Shown in red squares, we increase the number of atoms by a factor of 10, and again calculate

the linewidth as a function of the order of l at which the truncation occurs. As a result of N being

increased, the optimum value of |y|2 is also increased. Convergence occurs around l = 16. Now, the

difference between the converged linewidth and the linewidth with only l = 0 included has increased

by a factor of around 2. This demonstrates that as N is increased, higher order Dopplerons play

an increasing role.

We also decrease the temperature by a factor of 10, and again calculate the linewidth at the

new optimum value of |y|2, as shown by the black diamonds. Even though the optimum |y|2 occurs

at a lower value, there is still an increase in the difference between the converged linewidth and

the l = 0 linewidth. Convergence occurs around l = 12. This shows that as the temperature is

decreased, higher order Dopplerons also play an increasing role.

We next study the effect of optical bistability, and its effects on the optimum input intensity.

As can be seen in Fig. 6.6 (a), when δ0/γp = 0 there is a bistability in input (|y|2) vs intracavity
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Figure 6.5: Linewidth at the optimum |y|2, which gives the smallest linewidth, as a function of
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|y|2 = 1270. Red squares: NC0 = 6000, δ0/γp = 260, |y|2 = 7700. Black diamonds: NC0 = 600,
δ0/γp = 80, |y|2 = 850.
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(|x|2) intensities. As the temperature is increased, the bistability becomes less pronounced, until

eventually it disappears entirely, which can be seen in the δ0/γp = 30 curve.

The slope at resonance, which can be seen in Fig. 6.6 (b), has very a different behavior for

the zero and non zero temperature cases. For δ0/γp = 0, the slope is largest on the lower branch,

decreases slightly in the bistable region, and then drops exponentially to zero as the intensity is

increased on the upper branch. When the temperature is increased, the bistability disappears, and

a dispersion feature with negative slope appears. Then the slope goes to a maximally negative

value before power broadening eventually causes it to increase to zero.

The disappearance of the bistability is important for achieving the highest possible degree

of stabilization. In the zero temperature case, the optimal combination of |x|2 and ∂φ
∂∆ to give

the smallest ∆ν occurs on the far left side of the upper branch, when the input intensity has the

fixed value |y|2 = 4NC0, labeled with the black dot in Fig. 6.6 (a) and (b). However, this value

of intensity is in the bistable region, so the system is dynamically unstable when the full quantum

dynamics are accounted for. If the tunneling rate between the different branches is not small, we

are constrained to work at input intensities that are above the bistable region where the achievable

frequency precision is much less. The grey dot in Fig. 6.6 (a) and (b) is at the far right side of

the bistable region, at the fixed input intensity value |y|2 = (NC0)2/4. The stabilization linewidth

is orders of magnitude worse here, because the slope is so small. Nonetheless, working above the

bistability allows for shot noise limited stabilization line widths of ∼ 1 mHz [62].

Fig. 6.6 (c) shows the stabilization linewidth as a function of NC0 for several temperatures. In

the δ0/γp = 0 limit of zero temperature, the black dashed curve corresponds to the input intensity

corresponding to the black dot, and the black solid curve corresponds to the input intensity of the

gray dot. When the temperature is increased sufficiently, the bistability disappears. Then, there are

no longer any regions of dynamic instability and therefore no restrictions on input intensity. Each

of the δ0/γp 6= 0 cases in this plot are calculated at their respective optimal input intensity, and stop

at a critical value of NC0, where the bistability reappears. It follows as reciprocal information that

for a given value of NC0, there exists a critical temperature at which the bistability disappears.
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Figure 6.6: (a) Scaled input (|x|2) vs intracavity (|y|2) intensities for several temperatures with
NC0 = 800 (b) Slope at resonance for several temperatures with NC0 = 800 (c) Stabilization
linewidth as a function of NC0 for several temperatures. For δ0/γp = 0, black dashed is calculated
at the fixed input intensity |y|2 = 4NC0; black solid is calculated at the fixed input intensity
|y|2 = (NC0)2/4. For δ0/γp 6= 0, the linewidth is calculated with the input intensity fixed to the
optimum value that gives the smallest linewidth. In the case of 88Sr, δ0/γp = 150 corresponds to a
temperature of ∼ 5 mK.
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Therefore, by using Fig. 6.6 (c) to note the values of temperature and NC0 at which the bistability

disappears for the different curves, it is seen that the critical temperature increases asNC0 increases.

In general, a lower temperature will yield a smaller linewidth. However, because one must

avoid working in a region of optical bistability, the optimal shot noise limited linewidth for certain

values of NC0 and δ0/γp in which there is no bistability can actually be smaller than the δ0/γp = 0

linewidth which is constrained above the bistability.

6.4 Conclusion

We have seen that thermal atoms in a standing wave cavity field exhibit additional phenomena

that were not observed when considering a frozen arrangement of atoms. Specifically, when the

detuning of the laser and atoms is less than the power broadened linewidth, the system interacts

with both components of the standing wave field. This causes new absorptive and dispersive

features in the observables, which are the features that can be used as an error signal for frequency

stabilization. Multi-photon scattering processes due to Doppleron resonances cause the stabilization

linewidth to increase. This effect becomes more dominant as the collective cooperativity NC0 is

increased, and as the temperature is decreased. A system with sufficient NC0 and no atomic motion

will exhibit optical bistability. Atomic motion may cause this bistability to disappear. When

optical bistability occurs, one is generally restricted to using an input intensity that lies outside of

the bistable region in order to prevent hopping between semiclassical solutions. When there is no

optical bistability, there are no dynamically unstable regions, so that no such restrictions on input

intensity are necessary, allowing the optimally smallest stabilization linewidth to be achieved.



Chapter 7

Conclusion

In this thesis, we have examined a variety of open quantum systems in an attempt to discover

a scheme in which an extremely spectrally pure coherent light source might be realized. Before

these systems were examined, the necessary preliminary material was provided. To begin, the

electromagnetic field was quantized. This was necessary to correctly describe the Hamiltonian

dynamics of our open quantum systems when only a few photons are present. Also, a quantized

field is needed in order to describe spontaneous irreversible processes, such spontaneous emission.

The power spectrum, and its relation to the two-time correlation functions through the Wiener-

Khinchin theorem was also discussed. This allowed the spectral properties of a system, such as the

linewidth of the power spectrum, to be calculated.

Next, we derived the master equation, which describes the Schrödinger evolution for a system

that is weakly coupled to a much larger reservoir. The coupling was treated in time dependent

perturbation theory, and the reservoir was approximated as having infinite bandwidth, and then

averaged over. Exact solution methods to the master equation, such as the quantum jump and

quantum state diffusion methods were presented, and computer simulations of these methods were

demonstrated. The cumulant expansion method, which consists of an approximate set of coupled

equations for expectation values of system observables, was also demonstrated.

The quantum Langevin equations, which describe open quantum systems in the Heisenberg

picture of quantum mechanics, were then derived. The same infinite bandwidth approximation

that was made in the master equation derivation was made here. Since these equations prove
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difficult for computer simulations, a Fokker-Planck equation for a quasi-probability distribution

describing the system was derived. It was shown that a set of c-number Langevin equations are

equivalent to the Fokker-Planck equation. These c-number Langevin equations can be simulated on

a computer with relative ease. Once this procedure for deriving the c-number Langevin equations

from the Fokker-Planck equation was demonstrated, an easier, but less mathematically rigorous

way to derive c-number Langevin equations was shown. This new procedure becomes increasingly

advantageous as the system complexity increases. Finally, computer simulations of the c-number

Langevin equations for several systems were demonstrated.

The theory of the crossover between lasing and steady state superradiance was presented. It

was shown how lasing and steady state superradiance can actually be thought of as the extreme

limits of a single and more general phenomenon. In a laser, the phase information that allows for

coherence is stored in the light field. In steady state superradiance, this phase information is stored

in the atomic ensemble. In the crossover region between these two limits, the phase information that

allows for coherence can be stored in the light field and the atomic ensemble simultaneously. The

parameter space between these two extreme limits was explored, and the benefits and drawbacks

of operating a system at a given set of parameters, to achieve the most spectrally pure light source,

were discussed.

Specifically, it was shown that for a given rate of re-supplying energy, a crossover system will

be much farther above threshold than a laser, which is typically operated just above threshold.

This can allow the linewidth of a crossover system to be orders of magnitude smaller than the laser,

while maintaining a similar intracavity intensity. A crossover system also exhibits a much larger

intracavity intensity than a superradiant system, so that the crossover system is more experimen-

tally accessible. The linewidth and intracavity intensity were shown to be insensitive to atomic

dephasing in all parameter regions, so long as the rate of atomic dephasing is smaller than the rate

of energy being resupplied to the system.

The sensitivity to fluctuations in cavity length and cavity frequency were also discussed.

The superradiance region was shown to be insensitive to fluctuations in cavity frequency, while a
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lasing system is insensitive to fluctuations in the atomic frequency. A crossover system was shown

to be less sensitive to fluctuations in cavity frequency than a laser system, and less sensitive to

fluctuations in atomic frequency than a superradiant system. This is important, since fluctuations

in cavity length are the bottleneck in further reducing the linewidth in today’s narrowest linewidth

lasers.

Finally, we considered the phase stability of a local oscillator locked to a cavity QED system

comprised of atoms with an ultra-narrow optical transition. The atoms were modeled as being

cooled to millikelvin temperatures and then released into the optical cavity. Even though the atomic

motion introduced Doppler broadening, the standing wave nature of the cavity caused saturated

absorption features to appear, which are much narrower than the Doppler width. These features

can be used to achieve an extremely high degree of phase stabilization, competitive with the current

state-of-the-art. A comparison between the developed theory, and the results of an experiment on

the system that was considered was given. It was demonstrated that the inhomogeneity introduced

by finite atomic velocities can cause optical bistability to disappear so that there exist no regions

of dynamic instability that would otherwise restrict operational parameters in the experiment to

be outside the optimum region where the minimum linewidth occurs.
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