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Abstract

Let B,B' be bases of a matroid, with XeB, X'eB.

Sets X.X' are a symmetric exchange if (B-¥NuX' an
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-X'JUX are bases.

Sets X,X' are a strong serial B-exchange if there is a bijection f:X9X',

where for any ordering of the elements of X,;say Xisi=1,...,mbases are formed
by the sets BQ=B, Bi=(Bi—1'X1)Uf(Xi)’ for i=1,...,m. Any symmetric
exchange X,X' can be decomposed by partitioning
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where (1) bases are formed by the sets BO_BﬁwuBi (81_1 Yi)UYi :

(2) sets Yi’Yi' are a strong serial B;_y-exchange; (3) properties

analogous to (1) and (2) hold for base B' and sets Y;,Yi.

1. Introduction

Exchanges in matroid bases are interesting mathematically, since
matroids (combinatorial pregeometries [3])are so common, and algorithmically,
since exchanges occur in many graph and network flow algorithms [4]. This
note presents a theorem on the structure of symmetric exchanges. Recently,
several derivations of the "symmetric subset exchange axiom" have been
given [2,5,7]. Although two derivations are constructive [2,5], they do
not offer immediate insight into the structure of symmetric exchanges.

Our theorem shows how a symmetric exchange can be decomposed into smaller

symmetric exchanges that can be executed "element-by-element".



2. Definitions and Related Results

This section describes several types of exchanges for bases of a
matroid. In what follows, let B and B' be bases of a given matroid.
For example, Figures 1-2 show several bases of the graphic matroid
on four nodes. These bases consist of three solid arcs or three dotted
arcs.

Let X and X' be sets of elements of M. The ordered pair X,X' is
a B-exchange if X<B and (B-X)UX' is a base. When X and X' both consist of
single elements, say x and x', we say x,x' is a B-exchange. For example
in Figure 1, let B be the first base shown, B = {1,2,6}. The first and
last bases illustrate the B-exchange {1,2}, {4,5}; two other B-exchanges,
2,4 and 1,5, are also illustrated. Note any matroid satisfies the "basis
exchange axiom":

Let B and B' be bases of M. For any element xeB, there is an element

x'eB' such that x,x' is a B-exchange.

The ordered pair of sets X,X' is a symmetric exchange for B,B' if
X,X' is a B-exchange and X',X is a B'-exchange, or equivalently, if X<B,
X'eB', and both (B-X)UX' and (B'-X'MUX are bases. In Figure 1 for B=
{1,2,6} and B'={4,5,6}, the pair 2,4 is a symmetric exchange. Note any
matroid satisfies the "symmetric subset exchange axiom" [2,5,7]:

Let B and B' be bases of M. For any set X<B, there is a set
X'<B' such that X,X' is a symmetric exchange.

The sequence of ordered pairs of sets, Xi,Xi’,i=1,...,m, is a serial B-exchange

if,for i=1,...,m, bases are formed by the sets BB B1=(Bi_1—X1)UX!- and further,

'|9
XicBi-T' Thus the exchanges Xi,X% can be made one after another. Figure 1

shows a serial B-exchange, 2,4;1,5.



there is a bijection f:X»X‘? where for any ordering of the elements of X, say
x;51=T,...m, the sequence of pairs Xi’f(xi)’iz]"°”m’ is a serial

B-exchange. Thus the exchanges x,f(x) can be executed in any order.

Figure 1 shows a strong serial B-exchange, {1,2}, {5,4} (where f(1)=5,

f(2)=4).

3. The Decomposition Theorem

This section derives the following decomposition theorem.

Theorem: Let X,X' be a symmetric exchange for bases B,B' of a matroid.
m

Sets X,X' can be partitioned, X= U Yi’ X'=
i=1 i

I ——

Y.', where
.

(1) the sequence Yi,Yi', i=1,...,m, is a serial B-exchange;
(2) the sequence Y%,Y1,1=1,...,m, is a serial B'-exchange;
(3) the exchanges made in (1)-(2), Y.,Y:' and Y%,Yi, are

strong serial exchanges.

Figure 2 illustrates the theorem, for B=X={1,2,3} and B'=X'={4,5,6}.

The symmetric exchange X,X' is decomposed into the strong serial exchange
3,6, followed by the strong serial exchange {1,2}, {4,5} (see Figure 1),
To derive the theorem, we first refine the basis exchange axiom.

Lemma 1: Let X,X' be a B-exchange. For any element xeX, there is an
element x'eX' such that x,x' is a B-exchange.

Proof: By hypothesis, B and (B-X)UX' are bases. So for any element xeX,
there is an element x'e(B~X)uX' such that x,x' is a B-exchange. Also,

x' £ B-X, since B-X¢B-x. Hence x'eX'. !ﬁ

Next we investigate when exchanges can be made sequentially.



Lemma_2; Let x,x',y be elements, where x,x' is a B-exchange, and y,x'
is not a B-exchange. For any element y', the sequence x,x':;y,y' is a
serial B-exchange if and only if y,y' is a B—eXchange.
Proof: First we prove the "only if" implication, Suppose X,X';y,y' is a
serial B-exchange. So {X,y};{x’,y‘} is a B-exchange; By Lemma 1, there
is an element ze{x',y'} such that y,z is a B-exchange. By hypothesis,
z # x'. Thus 2=y', and y,y' is a B-exchange.

The "if" implication follows similarly, by considering the
exchange {x',y}, {x,y'} for base (B~-x)ux'. &

The next result is the basis of the theorem.

Lemma 3: Let X,X' be a symmetric exchange for bases B,B'. There are
sets Y,Y', where YcX, Y'cX', such that Y,Y' is a strong serial B-exchange,
and Y',Y is a strong serial B'-exchange.
Proof: Choose any element y;eX. Apply Lemma 1 to get an element y;'eX'
such that y;,y1' is a B-exchange. Then apply Lemma 1 to get an element
yoeX such that y;',y, is a B'-exchange. Continue in this manner, until
an element y; or y% repeats. This construction shows there 1is a
sequence of distinct elements, yi,y%,1=1,...,m, such that yieX;y%sX';yi,y%
is a B-exchange; and y%,yi+1 is a B'-exchange (We use arithmetic module m,
S0 Ypgy™Yy) -

Choose such a sequence yi,y%,i=1,...,m, with m as small as possible.
Set Yﬁ{yl,...,yh§ and Y'={yi,.,°,yh;}. Now we show the bijection Yio¥i
makes Y,Y' a strong serial B-exchange.

First note if yi,yj is a B-exchange, then i=j. For if i#j, the



sequence yj+1’y3+1°""yi-l’y%—1°yi’yj contradicts the minimality of m.

Now suppose w;w‘;x;x';z;z”; are nairs of corresponding elements.
We show they give a ger1a1 B-exchange, i.e., bases are formed by the
sets B]=(B—w)UW', 82=(B]—X)Ux',B3=(B2 -2)Uz'., The B-exchanges involving
elements W,X, and 2 with elements of Y' are w,w';x,x';%,2'; and no others,
by the above remark. Thus B, is a base..‘Furthermore,‘thé B]—exchanges |
involving elements X and 2 with elements of Y'" are X;i’;z,Z'g and no
others, by Lemma 2. So B, is a base. Similarly, we see B; is a base.
This argument indicates how an induction can be made to show Y,Y'
is a strong serial B-exchange. We show Y', Y is a strong serial B'-

exchange in a similar manner, using the bijection y%,yi+l.

i

Now we derive the decomposition theorem.

Proof of theorem: Let X,X' be a symmetric exchange for bases B,B'.
Apply Lemma 3, getting sets Y]cX,Y+:Xﬂ If Y1,YH do not exhaust X,X',
then X—Y],X'—Yi.is a symmetric exchange for bases (B—Y])UYi,
(B'-Yi)UY1. Apply Lemma 3 again. Continuing this way, we derive the
desired decomposition of X,X'. lB



-------

4. Discussion

The decompositon gf the theorem s not unique. However,
it does give information about the structure of symmetric exchanges.
Consider an exchange X,X' that cannot be further decomposed, i.e.,
m=1 in the theorem. Such exchanges are the "building blocks" of
symmetric exchanges. If| X|=1, then X,X' is‘a symmetric exchange of two -
elements. The case 1X}=2 is illustrated by the second exchange in Figure 2,
{1,2}, {4,5}. Similar exchanges for arbitrary cardinalities [X'=n
can be constructed, For example, in the graphic matroid on nodes 1,2,...,2n,
take

X ={(2k,2k-1)|1<ksn},

X'={(2k,2k+1)|1<k<n},

B ={(i,2n~1)|1<i<n}uX,

B'={(1,2n+2-1)] 1<in}uX'.

A special case of the theorem occurs when the symmetric exchange X,X'
is actually B,B'. In this. case, it is interesting to ask if the index
m can be made to take on the extreme values, m=1 and m=r (where r is the
rank of the matroid). Clearly m=1 cannot always be achieved. (This is
illustrated by the bases in the first graph of Figure 2,) For m=r, each
exchange Yi’Y% is a symmetric exchange of two elements, Yi’yg' This
is achieved for the bases in Figure 2 by the exchanges 1,6; 2,4; 3,5. The
bound m=r can be achieved in other special cases, such as partition
matroids, matching and transversal matroids, and matroids of rank less
than 4. In general, however, it is not known if this bound can be achieved,
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Figure 1. A strong serial B-exchange

Figure 2. Decomposition of a symmetric exchange
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Fig. 2



