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Confinement of electron-hole pairs (excitons) in semiconductor quantum dots (QDs) leads to

novel quantum phenomena, tunable optical properties and enhanced Coulomb interactions, all of

which are sensitive to the size, shape and material composition of the QDs. This thesis discusses

our pursuit in unraveling the complex interrelation between morphology of a QD and its electronic

and optical properties. A series of epitaxially-grown semiconductor nanostructures with different

QD sizes and composition is studied using optical two-dimensional coherent spectroscopy (2DCS).

With the unique capabilities of unambiguously identifying coupling between resonances, isolating

quantum pathways and revealing homogeneous dephasing information in heterogeneous systems,

2DCS is a powerful tool for studying QD ensembles.

Of paramount importance is the exciton homogeneous line width, which is inversely pro-

portional to the dephasing time. As the dephasing time sets the duration for which coherence is

maintained, knowledge of the principal dephasing mechanisms in QDs is essential. 2D spectra of

excitons in weakly-confining GaAs QDs reveal that elastic exciton-phonon coupling and intra-dot

exciton-exciton interactions are responsible for line width broadening beyond the radiative limit,

and the interaction strength of both mechanisms increases for decreasing QD size. These results

are compared to those obtained from InAs QDs, which exhibit an order-of-magnitude larger con-

finement, to illustrate the role quantum confinement plays in exciton dephasing.

The lowest energy optical transitions in semiconductor QDs are modified by confinement-

enhanced Coulomb interactions, such as exchange-mediated coupling between excitons and correla-

tion effects that can lead to bound and anti-bound states of two excitons. 2D spectra particularly

sensitive to these interactions reveal that the electron and hole wave functions - and therefore the



iv

strength of Coulomb interactions - are sensitive to variations in QD size for the GaAs ensemble.

In the InAs QDs, however, the wave functions are remarkably independent of the details of con-

finement, leading to similar electronic and optical properties for all QDs. To provide additional

insight, the spectra are modeled using perturbative density matrix calculations, and the results

are compared to many-body calculations to reveal the significance of the strength and nature of

Coulomb interactions on the optical properties of QDs.
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Chapter 1

Introduction

Advances in nanofabrication technologies in the past few decades have facilitated the re-

alization of novel semiconductor nanostructures with properties tailored for specific applications.

Nanostructures with spatial dimensions comparable to the de Broglie wavelength of charge carriers

residing in the material are readily engineered with nanometer precision. At this length scale,

quantum confinement effects modify the electronic and optical properties and interesting quantum

phenomena emerge. Three-dimensional confinement of carriers in a quantum dot (QD) transforms

the continuous optical spectrum of a bulk semiconductor into a size-tunable, atomic-like spectrum

featuring a series of sharp peaks associated with discrete electronic transitions. Each peak can be

attributed to a particular multi-particle complex, such as an electron-hole pair (exciton), corre-

lated two-excitons (biexciton), a positively- or negatively-charged exciton (trion), as well as other

excitonic states associated with higher energy levels in the QD. Coulomb interactions between elec-

trons and holes are enhanced in QDs compared to nanostructures with additional spatial degrees of

freedom, which can lead to significant modifications of the exciton properties. Moreover, confine-

ment reduces the effects of external perturbations that can limit the radiative lifetime of excitonic

resonances, which can be as long as nanoseconds at low temperature. These unique electronic and

optical properties of QDs have been exploited for a wide range of applications, including quantum

electronics and quantum information processing, optical communications, display technologies, so-

lar energy harvesting and fluorescent labeling, to name a few. Of particular importance for many

of these applications are the physical parameters characterizing the optical transitions, such as the
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energies, transition line widths and dipole moments. These parameters are highly-sensitive to the

QD size, shape and material composition, which are difficult to control during fabrication. QD

fabrication methods are inherently statistical processes that result in an ensemble of QDs with a

distribution of spectroscopic properties. Establishing a connection between the morphology of a

QD and its electronic and optical properties is crucial for the successful implementation of many

QD-based applications.

Insight into the effects of QD morphology on the spectroscopic properties of excitonic res-

onances has been developed in the last three decades using linear and nonlinear spectroscopies,

which are reviewed in Section 1.1. These pioneering works have facilitated the design and fabrica-

tion of novel devices and applications exploiting quantum phenomena that arise from confinement

in QDs, some of which are presented in Section 1.2. Despite significant progress in this field, numer-

ous questions remain with regard to how morphology affects the electronic and optical properties

and coherent-light matter interactions in semiconductor QDs. This thesis discusses our efforts to

address some of these questions by implementing optical two-dimensional coherent spectroscopy

(2DCS) of a series of epitaxially-grown semiconductor nanostructures with different QD sizes and

material composition. 2DCS, an enhanced version of three-pulse four-wave mixing spectroscopy,

offers several advantages for elucidating the complex nature of multi-particle interactions compared

to conventional spectroscopic techniques, which are discussed in Section 1.3. Section 1.4 highlights

our main findings and is followed by an outline of this Thesis in Section 1.5.

1.1 An Historical Perspective on Quantum Dots

The evolution of semiconductor growth techniques [1, 2] in the 1960’s and 1970’s enabled

the fabrication of atomically-sharp heterojunction interfaces between materials with different elec-

tronic and optical properties. This breakthrough launched a new regime of semiconductor quantum

physics in which quantum effects could be introduced and controlled through spatial variation of

the nanostructure dimensions. Since the seminal work of Esaki and Tsu investigating transport

properties of a quantum well (QW) superlattice [3, 4] and the observation of energy quantization
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and tunneling effects in GaAs/AlGaAs QWs by Dingle et al. in 1975 [5], the physics of spatially-

quantized systems has been studied extensively and new quantum phenomena have been observed.

In the early 1980’s, semiconductor lasers with a QW as the active medium were introduced [6, 7],

and localization and interaction effects on electrons and holes confined in one-dimensional quantum

wires were examined by Skocpol et al. [8]. At the same time, quantum size effects on the absorption

spectrum of excitons confined in epitaxially-grown quasi-zero-dimensional quantum boxes were re-

vealed by Ekimov and Onushchenko [9] and in colloidal nanocrystals by Brus [10, 11]. Motivated by

these ground breaking studies, Reed et al. provided the first indirect evidence of energy quantiza-

tion in 1986, and coined the term “quantum dot” (QD) to describe the zero-dimensional quantum

boxes [12]. Follow-up studies by Reed et al. revealed discrete peaks in resonant tunneling spectra,

providing direct evidence of the atomic-like density of states in zero-dimensional QDs [13].

These pioneering works led to a sharp rise in the number of research groups interested in

epitaxially-grown semiconductor QDs. The majority of studies in the following decade revolved

around characterizing the fundamental electronic and optical properties of QDs and developing new

fabrication techniques. Initial experiments investigated QDs that were formed through electron-

beam lithography of narrow GaAs/AlGaAs [14] and InGaAs/InP [15] QWs. The lowest energy

optical transition of these etched QDs was revealed through ensemble photoluminescence (PL)

measurements [14, 15]. The optical and electronic properties could be tuned through application

of external fields and were characterized by measuring Zeeman splittings of electronic states [16],

resonant tunnel coupling between QDs [17] and QD charging with multiple electrons [18, 19, 20].

Calculations of the linear and nonlinear optical properties [21, 22], confinement effects on exci-

ton formation and Coulomb correlations [23] and the influence of field effects [24] aided in the

interpretation and understanding of the experiments; however significant inhomogeneity of the QD

properties due to size dispersion hindered direct comparison between theory and experiments on

QD ensembles.

A major milestone was achieved in 1992 when Brunner et al. demonstrated for the first time

µ-PL spectra from a single GaAs/AlGaAs QD formed from laser-induced thermal interdiffusion of
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a narrow QW nanostructure [25]. As the QD lateral dimensions became comparable to the exciton

Bohr radius in bulk GaAs, discrete spectral lines appeared in the PL spectrum, demonstrating that

they measured the atomic-like spectrum of an exciton in a single dot. They further improved their

growth technique by instead interrupting the epitaxial growth process of a narrow QW, allowing the

gallium and arsenide atoms to diffuse to nucleation sites, naturally forming monolayer interfacial

islands known as interfacial fluctuation QDs (IFQDs) [26]. Their worked spurred a revolution in

single dot fabrication and characterization, allowing for more-easily-controlled, systematic studies

of size effects on the QD properties. Within two years Gammon et al. measured the excited-state

spectrum of a single IFQD [27], the temperature dependence of the exciton homogeneous linewidth

[28] and the exchange interaction in asymmetric dots [29].

In parallel to the development of GaAs IFQDs, significant progress was being made towards

the fabrication of semiconductor QDs using other material combinations, including InSb, GaSb,

AlSb [30], CdTe [31, 32, 33], ZnTe [34, 35], and more commonly, In(Ga)As [36, 37, 38], typically

grown on a GaAs substrate using the Stranski-Krastanow (SK) method [39, 40]. So-called In-

GaAs/GaAs self-assembled QDs (SAQDs) would form naturally to alleviate strain introduced in

the InGaAs layer from the InGaAs/GaAs lattice mismatch. Similar to the GaAs IFQD studies,

InGaAs SAQDs were quickly characterized through examination of the electronic structure and car-

rier relaxation dynamics [41, 42], excitonic localization [43], and size-effects on the exciton exchange

interaction [44, 45], biexciton binding energy [45] and homogeneous line width [46].

By the late 1990s, the fabrication and characterization of epitaxially-grown semiconductor

QDs had advanced to the point that QD-based devices were realizable. The seminal studies high-

lighted in this Section have been crucial to the successful demonstration of a wide range of QD-based

technologies, which are presented in the following Section. Despite the rapid progress in this field

in the first 25 years, numerous questions remain with regard to how QD morphology affects the

electronic and optical properties and coherent light-matter interactions in semiconductor QDs. The

performance of QD-based devices relying on these interactions is typically limited by multiple effects

that are not adequately understood: 1) short coherence and relaxation times due to interactions of
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the charge carriers with each other and the local environment; 2) sensitivity of the QD properties

on size and confinement, which is difficult to eliminate or control within the tolerances necessary

for optimal device operation; and 3) the presence of many-body interactions that often dominate

the linear and nonlinear optical response. Over the last decade, significant progress in experimental

and theoretical QD-based research – some of which are discussed in this Section and the next –

stems from the efforts to understand these problems.

1.2 Applications using Quantum Dots

Semiconductor QDs are considered the solid-state equivalent of atomic systems, with perhaps

a few notable advantages with regard to functional device design and performance. Compared to hot

atomic vapors or cold gases, the versatility of QDs for a broad range of applications stems from the

ability to tune their electronic and optical properties through changes in size and composition, their

strong optical transition dipole moments, and the rapidly-evolving sophistication of deterministic

single dot isolation, placement and incorporation into chip-scale devices. These advantages are

apparent in the first applications of QDs as classical light sources and detectors. In the mid-1990’s

a temperature-insensitive, low current threshold, high gain semiconductor laser fabricated from a

single InGaAs/GaAs QD layer was demonstrated by Shoji et al. [47]. Within one year wavelength-

tunable devices operating at room temperature were developed [48, 49] and within five years optical

gain and stimulated emission were demonstrated in colloidal nanocrystals [50]. The development of

QD-based lasers, incoherent light sources [51] and photo-detectors [52, 53] paved the way for devices

with probe and detection wavelengths ranging from the ultraviolet to the infrared, benefitting both

fundamental science and commercial applications.

Nonclassical states of light can also be generated on demand using semiconductor QDs

[54, 55, 56], enabling on-chip semiconductor quantum optics. To generate and probe the light

characteristics, researchers pump a single QD with a low-intensity laser beam and analyze the

PL statistics using a Hanbury-Brown-Twiss setup [57]. A measure of the second-order correlation

function, g(2), provides the degree to which single photons are emitted from the QD. Variations of
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this experiment can also be used to probe violations of Bell’s inequality for evidence of entangled

photon pairs. These nonclassical light states can be used to ascertain the quality, charge state, and

energy level structure of the QDs under examination and can be used to manipulate or entangle

spatially-isolated QDs.

Within five years of the first experiments on a single QD, Solomon et al. revealed that SK-

grown InAs/GaAs SAQDs in adjacent layers would spatially align and couple through wave function

tunneling if the inter-layer spacing was below a critical thickness [58]. Two years later Bonadeo et

al. demonstrated coherent optical control of the excitonic wave function in a single GaAs/AlGaAs

IFQD using phase-locked picosecond pulses to prepare and manipulate the exciton quantum state

[59]. These two works led to a paradigm shift in the field of quantum optics and hinted at the

possibility of QD-based quantum computation. Indeed, most of the DiVincenzo criteria [60] for

quantum computation – namely, state preparation [61], coherent control and manipulation [62,

63, 64, 65], and state read out [66, 67, 68] – have been demonstrated in QDs. While these works

demonstrate the promise of chip-scale quantum information, scalability beyond the few quantum

bit (qubit) level has yet to be achieved. Some promising methods to overcome the scalability

issue include resonant tunnel coupling [69, 70, 71] and dipole-dipole interactions [72] between QD

molecules and coherently-controlling and entangling spatially-isolated QDs using single photons.

Demonstrating a practical, scalable N -qubit register will lead to a revolution in the field of quantum

information and is currently at the forefront of application-based QD research.

While epitaxially-grown semiconductor QDs are primarily used in opto-electronics, chemically-

synthesized colloidal QDs (CQDs) have been developed for applications ranging from biological

tagging [73] and DNA nanosensors [74] to photovoltaics [75]. In the past decade, CQDs have

shown promise as absorbers for photovoltaic devices with the potential to increase the maximum

attainable efficiency up to 66% [76]. Strong confinement in CQDs, which are generally much

smaller than the bulk exciton Bohr radius, is expected to enhance photon-to-electron conversion

efficiencies and suppress hot carrier relaxation mechanisms compared to bulk materials [75]. More-

over, the bandgap of CQDs can be tuned throughout the solar spectrum by varying their material
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composition and size, and they can be easily incorporated into Graëtzel-like cells for large-scale fab-

rication. One promising, albeit controversial [77], approach to enhance the efficiency is to generate

multiple electron-hole pairs from a single photon through carrier multiplication [78, 79]. Despite

reported exciton-to-photon internal quantum efficiencies up to ∼ 300%, the external efficiencies

of multiplication-enhanced schemes are presently much lower than first- and second-generation

devices.

The applications presented in this Section, while not comprehensive, demonstrate the versa-

tility of semiconductor QDs for optics, electronics, chemistry, and biology. To facilitate the design

and fabrication of novel devices, the effects of QD morphology on the electronic and optical prop-

erties must be better understood. For example, a technical challenge limiting the scalability of

QD-based quantum computation is the inability to systematically fabricate an ensemble of QDs

with similar properties – variability in the growth and preparation processes result in significant

inhomogeneity of the radiative lifetime, emission energy, and dipole moment. Furthermore, unlike

atomic systems, many-body interactions play a significant role in the linear and nonlinear optical

response of QDs. Understanding the influence of morphology on the intrinsic properties of excitons

confined in QDs will lead to the development of predictable growth and fabrication techniques,

facilitating progress in QD-based applications.

1.3 Optical Two-Dimensional Coherent Spectroscopy

Quantum size effects on the electronic and optical properties in QDs have been studied

extensively using both linear and nonlinear ultrafast spectroscopic techniques. The traditional

approach is to perform spectrally- or time-resolved µ-PL spectroscopy on single QDs, which are

isolated by depositing metal apertures on the sample surface or by etching mesas that contain one or

a few dots. Experiments are then performed on tens of dots, whose properties exhibit inhomogeneity

from size and/or composition dispersion (for an excellent review see Ref. [80]). Single dot studies

have revealed rich information about resonance energies [26], Coulomb interactions [81, 82, 83,

84, 85] and exchange interaction effects [44]; however, the influence of confinement on the optical
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properties is often hidden by considerable dot-to-dot variation of the data for QDs emitting at

a particular energy, perhaps arising from sample modifications to isolate single dots and from

the limited number of dots probed for a particular study. These effects are avoided in ensemble

measurements using nonlinear techniques such as transient pump-probe [86] or transient four-wave

mixing (FWM) spectroscopies [87].

Although conventional FWM techniques have been particularly useful for studying QD en-

sembles because of their ability to separate homogeneity from inhomogeneity in limiting cases,

there are a number of drawbacks. Multiple electronic transitions can be excited by broadband

picosecond or femtosecond laser pulses, resulting in complicated dynamics and oscillatory beats

in the FWM signal. Distinguishing between quantum-mechanical coupling or polarization inter-

ference contributions to the beats is often difficult or impossible [88]. In addition, the nonlinear

optical response is averaged within the pulse spectrum; consequently, inhomogeneity can result

in artifacts in the FWM signal, such as artificially fast dephasing of quantum beats. FWM sig-

nals averaged within the laser spectrum are also insensitive to sub-ensemble properties. In order

to probe size-dependent properties, multiple FWM experiments must be performed for different

excitation wavelengths tuned within the QD inhomogeneous distribution. Moreover, there is an

intrinsic ambiguity in distinguishing between the effects of inhomogeneity, dephasing and correla-

tions between transition energy fluctuations, which provide similar signatures in one-dimensional

FWM signals [89]. The manifestation of many-body interactions, such as local field effects [90],

excitation-induced dephasing [91], excitation-induced shift [92] and biexcitonic effects [93], is also

similar in FWM magnitude measurements.

Optical two-dimensional coherent spectroscopy (2DCS), an extension of three-pulse transient

FWM, is a powerful tool that can overcome many of these limitations [94]. An optical analog

of multidimensional nuclear magnetic resonance (NMR) spectroscopy [95], 2DCS has been imple-

mented in both the infrared and optical regimes to study the coherent nonlinear response of a

multitude of complex systems [96]. In contrast to NMR, optical 2DCS can provide a snapshot of

coherent dynamics on a femtosecond timescale and can be employed in a non-collinear geometry,
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resulting in spatial isolation of a background-free signal. By recording the FWM signal along a

specific phase-matched direction, distinct 2D spectra that are sensitive to specific dynamics and

interactions can be generated using different temporal ordering of the excitation pulses and taking a

Fourier transform of the signal with respect to different pulse delays. Compared to one-dimensional

spectroscopies, 2DCS provides many advantages by coherently tracking the signal phase evolution

while one of the pulse delays is scanned. Congested one-dimensional spectra are unfolded onto two

dimensions, allowing identification of multiple contributing resonances to the nonlinear response,

revealing the nature of coupling between resonances and separating quantum-mechanical coherent

pathways. For a specific pulse time ordering in which a photon echo is emitted, inhomogeneous

broadening manifests itself in the 2D spectrum as diagonal elongation, enabling an accurate and

unambiguous measurement of the homogeneous line width. Indeed, within the last three years

2DCS has facilitated progress in our understanding of inhomogeneously broadened QD ensembles

through measurements of electronic properties [97], exciton dephasing and relaxation dynamics

[98, 99], exciton-exciton coherent coupling [100], χ(5) optical nonlinearities [101], exciton-biexciton

correlated broadening [102] and the electron-hole exchange interaction [103].

1.4 Review

Throughout the past decade, the Cundiff group has developed and implemented 2DCS [104] in

the optical regime to study semiconductor QWs [105, 106, 107] and atomic vapors [108, 109, 110]. In

recent years, we have applied 2DCS to examine semiconductor QD ensembles and we have achieved

a number of important milestones. This Section gives a brief review of the QD 2DCS experiments

performed in the Cundiff laboratory and highlights our main results. The experiments on the

GaAs IFQDs were performed in collaboration with Mark Siemens (currently at the University of

Denver), Alan Bristow (currently at West Virginia University), Xingcan Dai (currently at Tsinghua

University), Denis Karaiskaj (currently at the University of South Florida), Steve Cundiff at the

University of Colorado, and Allan Bracker and Daniel Gammon from the U.S. Naval Research

Laboratory. The experiments on the InAs SAQDs were performed in collaboration with Rohan
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Singh, Hebin Li, and Steve Cundiff at the University of Colorado, Dirk Reuter and Andreas Wieck

at the University of Bochum, Allan Bracker and Dan Gammon, and Ilya Akimov and Manfred

Bayer at the University of Dortmund.

1.4.1 2D Spectroscopy of Semiconductor Quantum Dot Ensembles

2DCS of semiconductor QDs is implemented using the JILA Multidimensional Optical Non-

linear SpecTRometer, or JILA MONSTR, designed and built by Bristow et al. in 2009 [111]. The

apparatus consists of a set of folded and nested Michelson interferometers housed inside two thick

aluminum plates and can maintain a pulse delay phase-stability of λ/100. We used this setup to

perform experiments on three different QD samples: GaAs/AlGaAs IFQDs formed from mono-

layer interfacial fluctuations of a thin GaAs QW, and two InAs/GaAs SAQD samples which were

thermally-annealed post-growth at either 900 ◦C or 980 ◦C. Impurities unintentionally-introduced

during the growth of the InAs samples results in approximately half of the QDs being positively

charged with a hole. Because of weaker dipole moments and only 105 - 106 QDs probed within

the excitation laser spot size (compared to an excitation density of ∼ 109 excitons/cm2 typical for

QW studies), the FWM signal from the QDs is typically much weaker than the laser scatter in

the phase-matched direction and is therefore too weak to be observed even when using a lock-in

amplifier to detect a frequency-modulated time-integrated FWM signal on a slow photodetector.

However, 2DCS with phase cycling cancels scatter from the excitation lasers, enabling precise,

background-free measurements of the optical properties and many-body interactions in the QD

samples.

1.4.2 Isolating the Nonlinear Response of Excitons, Biexcitons and Trions

Upon optical excitation using broadband, femtosecond pulses, excitons, charged excitons

(trions) and bound two-excitons (biexcitons) can be created. Exciton resonances appear in the 2D

spectra on the diagonal and elongated along the diagonal by the inhomogeneous line width, whereas

biexciton resonances appear as spectrally-isolated peaks red-shifted from the exciton resonances
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by the biexciton binding energy [102]. Using a specific polarization scheme in which the second

two pulses are cross-linearly polarized with respect to the first pulse and the detected signal,

the biexciton nonlinear response is enhanced relative to that of the exciton because no quantum-

mechanical pathways exist for the exciton for this polarization scheme based on the dipole transition

selection rules. Surprisingly, for this polarization, a resonance on the diagonal is still present for

all samples, albeit with a smaller amplitude and different homogeneous line width. For the InAs

SAQDs, this peak is attributed to the presence of trions, which do not obey similar dipole transition

selection rules as the exciton [101]. For the GaAs IFQDs, the weak diagonal peak is attributed

to the presence of unbound two-excitons in the weakly-confining QDs, which is confirmed by the

presence of two-exciton resonances in two-quantum 2D spectra. Through spectral selection and

by taking advantage of the dipole selection rules, we have measured quantum size effects on the

optical properties of the different excitonic states in these samples.

1.4.3 Coherent and Incoherent Dephasing Mechanisms

Rephasing one-quantum 2D spectra, for which the homogeneous and inhomogeneous line

widths are separated, are generated by using a specific pulse time-ordering in which a photon

echo is emitted after the third excitation pulse. Cross-diagonal slices of the spectra at a particular

emission energy provide a measure of the homogeneous line width [112], inversely proportional to the

dephasing time, whereas a diagonal slice gives the amount of inhomogeneity. Taking cross-diagonal

slices throughout the inhomogeneous distribution provides a measure of the homogeneous line width

for QDs with different resonance energies, i.e. QDs with different physical size. Seminal studies of

the homogeneous line width in GaAs IFQDs had revealed that despite the expectation of a “phonon

bottleneck”, which would lead to smaller dephasing rates, significant dephasing mechanisms were

still present, although the principal mechanism had yet to be established [28, 113]. Applying 2DCS

to this system, we find that elastic exciton-phonon scattering is responsible for the line width

broadening at low sample temperatures (< 35 K), which had been speculated but not directly

observed beforehand [99]. By measuring the exciton-phonon scattering strength for the entire
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ensemble, we find that excitons confined in smaller, higher-energy QDs couple more strongly to

acoustic phonons, consistent with theoretical predictions. In addition, we demonstrate that with

increasing excitation density and independent of the QW exciton population density, the dominant

line width broadening mechanism is exciton-exciton scattering arising from excitons localized in

the same dot.

At elevated temperatures (> 35 K), additional line width broadening arises from temperature-

dependent dynamics of incoherent QW–QD population transfer [98]. 2DCS is aptly designed for this

type of study, since signatures of incoherent coupling appear as spectrally-isolated peaks in the 2D

spectra. We show that at low temperature and long delay times (∼ 100 ps), excitons delocalized in

the QW relax and become confined in the QDs, while at temperatures above 35 K, incoherent QD→

QW excitation occurs. The QW–QD interaction dynamics are modeled using a set of rate equations

that require QW–QD coupling, inter-band population decay, and exciton-bound heavy-hole spin

flips to reproduce the data. These measurements, providing dynamic coupling probabilities and

rates, could facilitate development of more sophisticated, fast, and efficient electro-optic devices

relying on QW–QD interactions.

A similar exciton homogeneous line width temperature dependence behavior is measured for

excitons confined in the InAs SAQDs. In contrast to the GaAs IFQDs, however, the exciton, trion

and biexciton line widths are independent of QD emission energy (i.e. shape, size) and excitation

density. We find that the extrapolated zero-temperature and zero-excitation-density line widths are

≈ 10 − 12 µeV, which is larger than radiatively-limited line widths reported in the literature. To

determine the source of additional line width broadening, we performed a series of measurements

in which the population lifetimes are obtained with 30 neV resolution, which requires λ/100 phase-

stabilization of the pulse delays for an optical-delay line translation of 15 cm and a data acquisition

time of ∼ 5 hours. The population decay rates are ∼ 5 µeV for the exciton and trion - less than the

homogeneous line widths - indicating that pure dephasing effects are important at low temperature

and independent of excitation density [103]. One possible pure dephasing mechanism could be a

fast fluctuating quantum-confined Stark shift arising from phonon-assisted trapping of charges near
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the QDs [114].

1.4.4 Coulomb and Exchange Interactions

Using an alternating linearly-polarized excitation pulse sequence, we can generate a non-

radiative Raman-like coherence between the two lowest-energy exciton spin states, which are cou-

pled and energetically separated by the electron-hole exchange interaction. By monitoring the

coherence oscillations and scanning the delay between the second and third pulses, we can generate

a zero-quantum 2D spectrum that provides a measure of the population decay rate and isolates

quantum pathways associated with the Raman-like coherences. While we do not observe any

exchange-mediated fine-structure splitting between the bright exciton states for the GaAs IFQD

ensemble, we find that the InAs SAQDs exhibit a bright state splitting of ∼ 20 µeV for the entire

ensemble, with a measurement uncertainty over an order of magnitude smaller than the scatter in

typical single-dot experiments [103]. An analysis of the dephasing times and radiative lifetimes re-

veal that the inter-band coherence of the two lowest-energy bright exciton states experience nearly

perfectly-correlated dephasing, which could aid in the development of devices relevant for quantum

information applications that rely on long-lived spin coherence times.

2DCS is a powerful technique for exploring how Coulomb interactions are affected by the

strength and nature of confinement, which we determined by measuring quantum size effects on the

biexciton binding energy for the three samples [102]. While single-dot experiments have provided

some insight in this regard, significant dot-to-dot scatter of the data has made agreement between

theory and experiment elusive. For cross-linearly polarized excitation that enhances the relative

biexciton amplitude, we show that for the InAs SAQDs, which have an in-plane confinement larger

than 60 meV, the biexciton binding energy is unaffected by changes in QD size, likely resulting from

post-growth thermal annealing of the samples. On the other hand, for confinement of ∼ 10 meV in

the GaAs IFQDs, the electron and hole wave functions are sensitive to changes in the confinement

potential; consequently, the biexciton binding energy increases by 15% over the inhomogeneous line

width. The data is simulated using perturbative density matrix calculations that include the effects
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of inhomogeneity, dephasing, and correlated scattering of the biexciton and exciton transitions. A

comparison of the results to microscopic calculations reported in the literature provides detailed

information regarding how the strength and nature of confinement affects Coulomb interactions in

QDs.

1.4.5 Higher-Order Nonlinear Effects

Using a cross-linearly polarized excitation pulse sequence and increasing the excitation pulse

intensity to drive the InAs SAQD nonlinear response beyond the χ(3) regime, an additional spectral

feature, too weak to be observed in the time-integrated FWM signal, appears in the 2D rephasing

spectrum and is attributed to the χ(5) biexciton nonlinear response that is radiated in the FWM

phase-matched direction [101]. This six-wave mixing signal radiates in the FWM direction only

for nonlinear interactions in which one of the pulses acts three times. We model the nonlinear

response using a perturbative expansion of the density matrix. For χ(3), only a single quantum

pathway contributes to the biexciton nonlinear response and agrees with our observations of the

biexciton resonance at low pulse intensity. The biexciton χ(5) nonlinear response can be constructed

from a total of 12 quantum pathways, some of which contribute to the peak that appears at high

intensity. These results demonstrate that although higher-order nonlinearities are often too weak

to be observed in one-dimensional FWM experiments, they can be clearly and unambiguously

identified using 2DCS. Further separation of the χ(5) quantum pathways could be accomplished by

using a variation of nonlinear spectroscopy that isolates the six-wave mixing signal [115, 116] in

combination with higher-order multidimensional coherent spectroscopy [110].

1.5 Thesis Outline

This thesis is focused on revealing the influence of confinement on the electronic and opti-

cal properties of semiconductor QDs using optical 2DCS and is organized as follows. Chapter 2

discusses the physics of semiconductor QDs. The concept of excitons in semiconductors is intro-

duced, followed by a discussion of the conditions for three-dimensional quantum confinement, the
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optical properties of semiconductor QDs, relaxation and dephasing mechanisms, the morphology

of the samples studied, and conventional measurement techniques. In Chapter 3, the develop-

ment of IR and optical 2DCS from multidimensional NMR is reviewed. Then details of FWM

in semiconductors, including an intuitive description of how to interpret FWM experiments, are

discussed. General aspects of 2DCS, different types of 2D spectra, and advantages of the technique

will be presented. The density matrix formalism and the optical Bloch equations will be intro-

duced. In Chapter 4, technical aspects of implementing 2DCS for studying semiconductor QDs

will be discussed in detail, including fundamental and technical challenges, active interferometric

stabilization, FWM generation and detection in QDs, spectral interferometry, and generating and

analyzing 2D spectra. A discussion of the experimental results will begin with confinement effects

on exciton-phonon coupling in Chapter 5. Mechanisms for enhanced broadening in smaller QDs

will be discussed, and the results from the GaAs IFQDs will be compared to those from the InAs

SAQDs. In Chapter 6, results of our studies on the influence of confinement on many-body in-

teractions will be presented and compared between the different QD samples. Calculations based

on the optical Bloch equations are performed and qualitatively reproduce the measured spectra.

Signatures of higher-order nonlinearities will also be presented. 2D spectra revealing QW–QD in-

coherent population transfer will be presented in Chapter 7 and implications from a rate-equation

analysis will be discussed.

In addition, we have performed preliminary 2DCS experiments on CdSeTe/ZnS colloidal QDs,

which will be discussed in Appendix A. A more detailed analysis of the perturbative expansion

of the optical Bloch equations will be presented in Appendix B. In Appendices C and D, the

MONSTR alignment procedure and our efforts in developing a second generation JILA MONSTR

will be presented, respectively.
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Chapter 2

Physics of Semiconductor Quantum Dots

QDs of various material composition and size can be fabricated using several techniques, with

the primary distinction being between epitaxial growth methods and chemical synthesis. Among

epitaxially-grown QDs, In(Ga)As/GaAs and GaAs/AlGaAs have been the most widely-studied,

both of which are the focus of this thesis. The energies associated with quantum confinement

can vary by more than an order of magnitude between GaAs and In(Ga)As QDs. Specifically,

electrons and holes are confined by ∼ 10 meV in GaAs interfacial fluctuation QDs (IFQDs), which

are therefore considered only quasi-zero-dimensional systems. Conversely, confinement in In(Ga)As

self-assembled QDs (SAQDs) typically varies from tens to hundreds of meV, and thus can more

realistically be considered the solid-state equivalent of atomic systems. Because of the different

amounts of confinement, the electronic and optical properties are often calculated using different

methods to try to capture the essential features. One of three theoretical frameworks are typically

used to calculate the electronic bandstructure: an effective mass approach [117, 118], an empirical

pseudopotential theory [119], or k·p theory [120, 121, 122]. All methods generally predict similar

qualitative features, however some persisting discrepancies include the number of confined levels

and the energies of those levels for a particular QD morphology.

In this Chapter, the physics of QDs are discussed in the context of the k·p theory approach

for two reasons: 1) this method automatically considers piezoelectric effects arising from a lattice

strain distribution, which can drastically alter the optical properties; and 2) our results on the

influence of confinement on many-body interactions presented in Chapter 6 are directly compared



21

to theory performed by several groups that use the k·p method. In Section 2.1, condensed matter

theory for bulk semiconductors is reviewed, followed by a discussion of Coulomb effects that lead

to exciton formation. In Section 2.2, conditions for three-dimensional quantum confinement are

introduced, followed by a discussion of how confinement influences the optical properties and many-

body interactions in semiconductor QDs (Section 2.3). In Section 2.4, dephasing mechanisms

relevant to the context of this thesis are discussed, with a primary focus on exciton-exciton and

exciton-phonon interactions and incoherent population transfer mechanisms. Details of the samples

under investigation are discussed in Section 2.5. Conventional spectroscopic methods used to probe

the optical properties in QDs are reviewed in Section 2.6.

2.1 Semiconductor Bulk Bandstructure

Allowed optical transitions in atomic systems are governed by the light-matter interaction

Hamiltonian, whose non-zero matrix elements are determined by the symmetry properties of the

electronic wave functions [123]. In semiconductors, the electron wave functions are Bloch states

that are written as the product of a slowly-varying envelope function, which matches the boundary

conditions of the confining potential, and a periodic Bloch function that captures the periodicity

of the underlying atomic potential [124]. To understand how three-dimensional confinement affects

the semiconductor optical properties, condensed matter theory regarding bulk bandstructure will

first be reviewed.

2.1.1 Periodic Potential Lattice and Bloch Wavefunctions

The Schrödinger equation for an electron in a bulk crystal lattice is

Ĥ ·Ψ (~r) = {−~
2m
∇2 + U (~r)} ·Ψ (~r) = E ·Ψ (~r) , (2.1)

where U(~r) is the periodic crystal lattice potential so that U(~r + ~R) = U(~r) for a lattice vector ~R.

Bloch’s theorem then states that the energy eigenfunction for such a Hamiltonian, Ψ
n~k

(~r), can be
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written as the product of a plane wave envelope function and a periodic Bloch function, u
n~k

(~r),

that has the same periodicity of the underlying atomic potential, giving:

Ψ
n~k

(~r) = ei
~k·~r · u

n~k
(~r) , (2.2)

where u
n~k

(~r) = u
n~k

(~r+ ~R) and ~k is the plane wave vector in the crystal. ~k, equivalent to the crystal

momentum when multiplied by the reduced Planck’s constant, is unique only up to a reciprocal

lattice vector and therefore one only needs to consider ~k within the first Brillouin zone of the

reciprocal lattice. The corresponding energy eigenvalues, En(~k) = En(~k + ~K), are also periodic

with periodicity defined by the reciprocal lattice vector ~K. The index n identifies an energy band

for which the energy varies continuously with ~k. All unique values of En(~k) also occur for ~k within

the first Brillouin zone. For a given U(~r) and ~k, a number of solutions to Eqn 2.1 exist and are

indexed by n.

In general, the dispersion relation E(~k) is complicated and is difficult to calculate. For direct-

gap III-V semiconductors, such as (Al)GaAs and In(Ga)As, the dispersion relation is approximately

quadratic at the center of the Brillouin zone (~k = 0); therefore an effective mass for the electron

can be defined as is done for a free electron plane wave:

meff =

(
1

~2

d2E

dk2

)−1

. (2.3)

The dispersion relation for an electron in the crystal is not the same for a free space electron,

and therefore meff is usually different from the free-space electron mass. Up to this point, the Bloch

theorem is simply a general statement of the wave function form in a periodic potential. Additional

insight can be gained by making specific assumptions about the wave functions using the tight-

binding approximation [124, 125] in which the electrons are tightly-bound to the atom to which they

belong and only weakly interact with electrons in neighboring atoms. Using this approximation,

one writes the total crystal Hamiltonian, Ĥ~k, as the sum of a single-atom Hamiltonian, Ĥ0, and a

perturbation, ∆U(~r), describing the interaction of neighboring atoms, giving:
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Ĥ~k = Ĥ0 + ∆U (~r) . (2.4)

The total wave function, Ψ~k
(~r), satisfies the total Hamiltonian Ĥ~k and can be expanded in a basis

of the single-atom wave functions:

Ψ~k
(~r) =

∑
~R

ei
~k·~rφ

(
~r − ~R

)
, (2.5)

where

φ (~r) =
∑
n

anψn (~r) . (2.6)

In Eqn 2.6, φ(~r) is the weighted sum of the atomic wave functions, ψn(~r), that satisfy the single

atom Hamiltonian Ĥ0. The sum over ~R in Eqn. 2.5 then considers contributions from all units

cells in the crystal lattice. The tight binding approximation requires that the overlap integrals of

neighboring atomic wave functions are zero, establishing the orthogonality relation

〈ψn (~r) |ψm
(
~r − ~R

)
〉 = δnmδ~R,0. (2.7)

For the QD materials (indium, arsenide, and gallium) considered in this thesis, the outer shell

electrons are in the s and p atomic orbitals with angular momentum l = 0 and l = 1, respectively.

Therefore the sum in Eqn. 2.6 can be simplified to contain only s and p states. Using these wave

functions, the relevant total eigenstates and eigenenergies can be determined by calculating the

matrix elements of the total Hamiltonian

〈ψn|Ĥ~k|Ψ~k
〉 = E~k〈ψn|Ψ~k

〉, (2.8)

which can be solved in principle. A general result for the dispersion relation of a bulk III–V

direct-gap semiconductor is depicted in the bandstructure diagram in Fig. 2.1 for ~k ≈ 0.
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Figure 2.1: The conduction (CB) and heavy hole (HH), light hole (LH) and split off (SO) valence

bands for a III–V direct-gap semiconductor. The bandgap, Eg, is the energy difference between the

bottom of the conduction band and top of the HH and LH valence bands at ~k = 0. The SO band

is separated from the HH and LH valence bands by spin-orbit coupling energy, ∆SO.

For bulk GaAs and In(Ga)As, the conduction band (CB) is s-like with zero orbital angular

momentum (L) and a spin angular momentum (S) of 1/2·~. In terms of the total angular momentum

state |J, Jz〉, where the total angular momentum is J = L+S, at ~k = 0 the CB eigenstate is exactly

ΨC = |1/2,±1/2〉 in the tight-binding approximation. The valence bands are p-like with orbital

angular momentum L = 1. Eigenstates for the heavy-hole (HH) band are ΨHH = |3/2,±3/2〉

and for the light-hole (LH) band ΨLH = |3/2,±1/2〉, and the two bands are degenerate at ~k = 0.

The split-off (SO) band eigenstates are ΨSO = |1/2,±1/2〉 and the band is separated from the

HH and LH bands by the spin-orbit interaction energy, ∆SO. For both GaAs and In(Ga)As QDs,

confinement shifts the LH and SO bands to an energy considerably lower than the HH band so

that, to first order, these bands can be neglected. Therefore these bands will be ignored in the

following discussions.

During optical excitation of a direct-gap semiconductor with a photon of sufficient energy
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(~ω > Eg), an electron (e-) is excited from the valence band to the conduction band, simultaneously

creating a vacancy in the HH valence band, which is referred to as a “hole” (h+), shown in Fig.

2.1. Because the photon momentum is orders of magnitude smaller than that of the electron or

hole, the optical transition is essentially vertical in Fig. 2.1 (i.e. the change in momentum, δk, is

≈ zero). For optical excitation high into the conduction band, the Coulomb interaction between

the electron and hole can be treated as a perturbation [126]. In this case, the optical interaction is

governed by the light-matter interaction Hamiltonian (in the dipole approximation) [123]

Ĥint (t) = −~µ · ~E (t) , (2.9)

where ~µ is the transition dipole moment and ~E (t) is the electric field. The light-matter interaction

strength is given by the matrix element µij = 〈f |~µ · ε̂|i〉, where |f〉 and |i〉 are the conduction and

valence band states, respectively, and ε̂ is the electric field polarization vector. This matrix element

determines the dipole transition selection rules for the system. The correct basis for states |f〉 and

|i〉 is, in general, difficult to establish. The description of the eigenstates as pure total angular

momentum states is only valid at ~k = 0 for bulk materials. For ~k 6= 0, eigenstates of the different

bands mix.

When considering quantum confinement in QDs, the envelope wave function must satisfy

the boundary conditions imposed by the confining potential – the envelope is no longer a plane

wave but instead a linear combination of plane waves. Additionally, many-body effects, such as

Coulomb interactions responsible for exciton formation, complicate the picture. Therefore, in order

to properly determine the electron and hole wave functions and energies, a more complete theory

that includes carrier-carrier interactions is necessary, which will be introduced in Section 2.3. In

the following Section, excitonic effects on the optical properties in bulk materials are discussed.

2.1.2 Excitons in Semiconductors

For excitations close to the fundamental bandgap, Coulomb interactions between the electron

and heavy hole can no longer be neglected. In this case, the attractive Coulomb force between the
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electron and hole results in the formation of a bound state, known as an “exciton”. The exciton can

be treated as a “quasiparticle”, and unbound electron-hole pairs are considered as continuum states

[127]. The concept of a quasiparticle is convenient for describing the most basic excitations arising

from weak perturbations. Typically, excitons have large oscillator strengths and dominate the

linear optical properties of semiconductors near the band edge. However, the “residual” Coulomb

forces not accounted for in exciton formation leads to interactions between excitons and induce a

nonlinear response [127].

The exciton, considered the solid-state analog to the hydrogen atom formed by an electron

and proton, can be described using a hydrogen-like energy level scheme. In the center-of-mass

coordinates, the exciton has a reduced mass µ = memh/(me+mh) and a total mass M = me+mh,

where me is the mass of the electron and mh that of the hole. The internal energy of the exciton

is then provided by the hydrogen-like analog:

E (n) = −ER
n2

, (2.10)

where ER is the exciton form of the Rydberg constant (i.e. the binding energy of the exciton ground

state) and n is the principle quantum number of the exciton. ER depends on the reduced mass of

the exciton and the background dielectric constant, ε:

ER =
µe4

2ε2~2
=

~2

2µa2
B

, (2.11)

where aB = ε~2/µe2 is the exciton Bohr radius characterizing the spatial extent of the exciton in

the semiconductor. The total energy of the exciton is then determined by its kinetic energy, the

semiconductor bandgap, and the internal exciton energy [128]:

E
(
n,~k

)
=

~2

2M
|~k|+ Eg −

ER
n2

, (2.12)

where ~k = ~ke+~kh is the exciton center-of-mass wavevector. Excitons can typically be classified into

two types: tightly-bound Frenkel excitons that are primarily localized to a unit cell [129, 130], and
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Wannier-Mott excitons that extend over many unit cells [131]. Because of the small reduced mass

and large dielectric constant in semiconductors, excitons are generally of the Wannier-Mott type

and have large Bohr radii because of dielectric screening. Compared to the hydrogen atom, the

exciton binding energy is orders of magnitude smaller. For example, for a bulk GaAs semiconductor

at zero lattice temperature, Eg = 1.519 eV, me = 0.067 ·m0, mh = 0.51 ·m0 (where m0 is the free

electron mass), ε = 12.9, aB = 11.6 nm and ER ≈ 4.8 meV [132]. For bulk InAs at zero lattice

temperature, Eg = 0.415 eV, me = 0.023 · m0, mh = 0.41 · m0, ε = 15.15, aB = 36.9 nm and

ER ≈ 1.3 meV [132]. As the GaAs (InAs) lattice constant is 0.56 nm (0.61 nm), the electron and

hole are separated by many lattice constants, confirming that the excitons are Wannier-type.

Figure 2.2: (a) The exciton dispersion relation and the photon line E(k) = ~ck/n. (b) A schematic

figure of the exciton linear absorption spectrum with the ground state (n = 1), first excited state

(n = 2) and the unbound electron-hole pair continuum labeled. This figure is reprinted from

Zhang, T., “Optical two-dimensional Fourier transform spectroscopy of semiconductors,” (Doctoral

Dissertation) University of Colorado, Boulder (2008).

Instead of treating optical excitation as a two-particle process, as is shown in Fig. 2.1,

a useful representation of the semiconductor system is the pair picture, shown in Fig. 2.2. In
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Fig. 2.2(a), the exciton energy E(n,~k) is plotted versus the center-of-mass wavevector, ~k. The

origin corresponds to the crystal ground state, and the excited states correspond to excitons with

n = 1, 2, 3, . . . and the unbound electron-hole continuum. An exciton can be excited by a photon

characterized by the light line with energy E(~k) = ~ck/n, where c is the speed of light in vacuum

and n is the semiconductor refractive index. This picture assumes weak exciton-photon coupling

such that exciton-polariton effects can be ignored.

The center-of-mass momentum of an optically-created exciton is essentially zero compared

to the size of the Brillouin zone since the photon momentum is negligibly small, thus ~k ≈ 0 in Eqn.

2.12. The effects of Coulomb interactions are apparent when considering the photon energies that

can be absorbed. Unbound electron-hole pairs in the continuum can be created for photon energies

greater than the fundamental bandgap. As the photon energy ~ω decreases to Eg, the continuum

absorption approaches a finite value instead of decreasing to zero following a square-root behavior

predicted for free-carriers. This enhanced absorption stems from Coulomb interactions between

the electrons and holes, and the ratio of the Coulomb-enhanced absorption coefficient to that

without Coulomb effects is known as the Sommerfeld enhancement factor [126, 128]. For photon

energies ~ω ≥ Eg − ER, excitons can be created in the semiconductor. This effect is more clearly

seen in the schematic low-temperature absorption spectrum shown in Fig. 2.2(b). Strong exciton

absorption peaks corresponding to 1s (n = 1) and 2s (n = 2) hydrogen-like states appear below

the bandgap, followed by a continuum of unbound electron-hole pairs. These results are quite

different from what is expected when ignoring Coulomb interactions between electrons and holes

and demonstrates how excitonic effects influence the band-edge linear absorption properties. The

oscillator strength of an exciton with principle quantum number n relies on the electron-hole overlap

integral and decreases as 1/n3. Experimentally, only excitons with n ≤ 3 are usually observable

because of the small exciton Rydberg constant ER and various broadening and scattering effects

that arise from exciton-exciton, exciton-free-carrier and exciton-phonon interactions.
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2.2 Conditions for Three-Dimensional Quantum Confinement

Quantum confinement effects on the electronic and optical properties become important when

the physical size of the confining potential becomes comparable to the de Broglie wavelength of

the electrons or holes [133]. Considering the thermal motion of a particle of mass m along a single

direction in a crystal with lattice temperature T , then the de Broglie wavelength is given by [133]

λdeB =
h√

mkBT
, (2.13)

where kB is the Boltzmann constant. For an electron in GaAs at room temperature (T = 300

K), λdeB = 42 nm. This means that for nanostructures with spatial dimensions on the order

of tens of nm, which are routinely grown using epitaxial techniques, quantum size effects will

be important from room temperature down to liquid helium temperatures. In semiconductors,

quantum confinement is provided by the discontinuity of the bandgap at interfaces. For structures

that satisfy the confinement conditions set forth by Eqn. 2.13, the motion of electrons and holes is

restricted and quantized along the confinement direction, giving rise to a series of discrete energy

levels. This behavior is depicted in Fig. 2.3, which compares the density of states between the

bulk, QWs, quantum wires, and QDs.



30
Bulk (3-D) Quantum Well (2-D) Quantum Wire (1-D) Quantum Dot (0-D) 

D
en

si
ty

 o
f 

S
ta

te
s 

Energy D
en

si
ty

 o
f 

S
ta

te
s 

Energy D
en

si
ty

 o
f 

S
ta

te
s 

Energy D
en

si
ty

 o
f 

S
ta

te
s 

Energy 

Eg 

z 

x 
y 

Figure 2.3: Density of states for particles with three (bulk), two (quantum well), one (quantum

wire), and zero (quantum dot) spatial degrees of freedom.

Depending on the characteristics of the QD, e.g. epitaxially-grown versus chemically-synthesized,

shape, composition gradients, etc., different models are used for the confinement potential Hamil-

tonian, with the most common being a simple quantum box with infinite or finite barriers, a

spherical potential well, and a harmonic oscillator potential. These different models predict dif-

ferent eigenstates and eigenenergies; however they all predict qualitatively similar electronic and

optical properties, in general. Quantization of the electron and hole spatial motion has three char-

acteristic effects: 1) the effective band-edge is blue-shifted; 2) confinement forces the electron and

hole to overlap, increasing the oscillator strength, and hence the radiative probability; and 3) as

previously mentioned and depicted in Fig. 2.3, the density of states becomes discrete. Figure 2.4

demonstrates the energy level quantization from quantum confinement for a QD embedded in a

matrix with a larger bandgap, as depicted in the right-most panel.
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Figure 2.4: Energy level diagram of the HH and electron conduction band (CB) for bulk material

with large bandgap, Eg,bulk, QD material with small bandgap, Eg,QD, and the 0-D nanostructure

energy diagram with quantized QD states as a result of embedding the QD material into the bulk

matrix.

If one considers, for example, a square well potential with a barrier height V0 and a potential

width L, then the minimum QD size allowed for the existence of a bound exciton state is Lmin =

π~/
√

2µV0, where µ is the exciton reduced mass. For QD sizes smaller than Lmin, the exciton

will be delocalized in the surrounding matrix in which the QD is embedded. Using the electron

properties for GaAs and a confinement potential of 10 meV (which is typical for GaAs IFQDs),

then Lmin ≈ 25 nm. Castella and Wilkins [134] demonstrated that for GaAs IFQDs with lateral

dimensions 2-3 times Lmin, the PL spectrum is split into two peaks with the lower-energy peak

corresponding to excitons weakly-localized in the quasi-zero-dimensional QDs and the higher-energy

peak corresponding to excitons delocalized in the underlying QW. Their observations are confirmed

for the GaAs sample studied here, discussed in Section 2.5. For the InAs SAQDs, which exhibit

a confinement energy ranging from 60 - 300 meV, then Lmin ≈ 8 − 17 nm. Referring back to the

Bohr radii calculated in the previous Section for these materials, it is evident that in GaAs IFQDs,

where Lmin > aB, excitons are weakly localized, whereas the strong confinement regime is realized
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in InAs SAQDs, where Lmin < aB.

2.3 Optical Properties of Quantum Dots

The low temperature spectrum of a single or few QDs exhibits rich structure that is sen-

sitive to the material composition, size and growth conditions. Large effort has been expended

experimentally to characterize the electronic and optical properties of QDs using various linear and

nonlinear techniques, and numerous theoretical models have been developed to try to reproduce

the experiments. From experiments and theory, it is clear that the electronic and optical properties

and the coherent optical response are influenced by two dominant effects [84]: 1) lattice-mismatch-

induced strain that shifts the energy levels and can vary dot-to-dot [122]; and 2) Coulomb effects

including direct pair-wise Coulomb interactions, analogous to a Hartree-Fock mean-field approx-

imation, and Coulomb correlations beyond the mean-field limit [82]. In this Section, the optical

properties of QDs will be discussed with references to the configuration interaction method and

the k·p theory, which automatically account for strain and Coulomb interactions. The Section

will be concluded with details of the samples investigated in this thesis, conventional spectroscopic

measurement techniques, and motivation for implementing 2DCS to the study of semiconductor

QDs.

2.3.1 Classification of Quantum Dots

Three-dimensional spatial confinement of electrons and holes in semiconductors can be ac-

complished using several techniques, with the most common relying on epitaxial-growth or chemical

synthesis of a low-bandgap material embedded in another material with a higher bandgap. Other

methods have been developed, including lithographically-patterning gate electrodes on a doped

QW containing a two-dimensional electron gas or by using genetically-engineered viruses to or-

ganize inorganic nanocrystal arrays, although these techniques are not as relevant for ultrafast

optical spectroscopy. Colloidal QDs (CQDs) can be chemically-synthesized from binary alloys such

as CdSe, CdS, PbSe and PbS, or from ternary allows such as CdSeTe. CQDs usually exhibit a
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complex optical spectrum that is inhomogeneously broadened by up to hundreds of meV from QD

size dispersion occurring during synthesis. CQDs present a number of challenges for spectroscopic

studies. For example, they typically have resonances at energies outside of the operating range of

lasers and detectors that are commonly available. Furthermore, significant inhomogeneity and large

energy separation between excited states make studying coherent and incoherent intraband dynam-

ics in CQD ensembles difficult because of limited bandwidth of typical laser systems. Nonetheless,

CQDs are interesting from both fundamental and applied perspectives [135] and preliminary 2DCS

studies will be presented in Appendix A.

Epitaxially-grown QD ensembles, on the other hand, usually exhibit inhomogeneous line

widths less than 100 meV and intraband energy level separation on the order of 10 meV. Epitaxial

QDs can be separated into two classes: interfacial fluctuation QDs (IFQDs) that form “naturally”

from monolayer changes in the width of a narrow QW, and self-assembled QDs (SAQDs) that form

to alleviate lattice-mismatch-induced strain in a narrow QW in which two interfacing layers have

dissimilar lattice constants by at least a few percent. The highest quality dots are usually grown by

molecular beam epitaxy (MBE), where, for example, GaAs is deposited one atomic layer at a time

on AlGaAs. If the GaAs layer is deposited uniformly, and then capped by another AlGaAs layer,

the nanostructure would represent a QW. However, under specific growth conditions, which are

detailed in Section 2.5 for the samples studied in this thesis, GaAs islands can form on top of a thin

QW. The sample is then capped with an AlGaAs layer, encasing the islands, resulting in a QW–QD

nanostructure, which is depicted in the schematic diagram in Fig. 2.5. The shape of the QD is

sensitive to the growth conditions and can take the form of a truncated pyramid, lens, sphere or box,

and due to material composition intermixing, the dots often have a linear composition gradient. For

example, in In(Ga)As QDs, due to indium diffusion, the QDs tend to be indium-rich near the top

and gallium-rich near the bottom, resulting in a slight (< 1 nm) displacement of the electron and

hole wave functions along the growth direction, inducing a static electric dipole moment [136]. The

main limitations of both IFQDs and SAQDs are the cost of fabrication and the lack of control over

position of individual QDs. Site-controlled QDs can be fabricated by lithographically-patterning



34

the surface of a semiconductor substrate, such as bulk GaAs, and then growing QDs in the etched

nano-imprints. The QD optical properties have so far been inferior compared to SAQDs, although

significant progress in this area has been made in recent years [137]. Site-controlled growth has

also been achieved using droplet epitaxy [138].
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Figure 2.5: Schematic diagram of epitaxially-grown QDs on a narrow QW. Optical excitation can
create 2-D excitons in the QW and 0-D excitons confined in the QDs.

The confinement potential for In(Ga)As SAQDs is typically hundreds of meV for the electron

and less than 100 meV for the hole. Consequently, the electron-hole pair is bound more by the

confinement potential than Coulomb interactions and the exciton pair-picture established in Section

2.1 is not as relevant as it is for QWs. This is not the case for GaAs IFQDs, in which the electron-

hole pair is bound by ∼ 10 meV relative to 2-D excitons delocalized in the underlying QW. The

results presented in Chapter 6 support the idea that Coulomb effects significantly influence, if not

dominate, the nonlinear optical response of GaAs IFQDs. Moreover, despite strong confinement

in the SAQDs, electron and hole interactions induce measurable changes of the optical properties,

such as exchange-interaction-induced state splitting and bound biexciton effects.

2.3.2 Interband Optical Transitions

A distinct feature of three-dimensional confinement is the discrete energy level spectrum that

supplants the continuous energy bands in lower-dimensionality materials. In the absence of band

mixing effects, each bulk band gives rise to a series of discrete energy states. Due to strong spatial
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confinement and different effective masses, the LH and SO bulk bands exhibit large energy shifts

compared to the HH band and thus can be ignored. Continuing on the bandstructure framework

established in Section 2.1, electrons in the conduction band have an s-like wave function (with total

angular momentum along the growth direction of Jz = 1/2) while holes in the HH valence band

are primarily p-like (with Jz = 3/2). Similar to the eigenstates for the bulk material, the wave

function for a particle in a QD can be written in a slightly different form [139]:

Ψ
n~k

(~r) =
∑
n

Fn (~r) · ψn (~r) . (2.14)

The total wave function, Ψ
n~k

(~r), is a product of an envelope function, Fn(~r), and the periodic

Bloch functions ψn(~r). The envelope is required to satisfy the boundary conditions imposed by

the QD confinement potential and therefore no longer has the form of a plane wave; it is often,

however, written using a plane wave basis set. In contrast to the bulk total wave function, which

has a well-defined crystal wave vector ~k, the eigenstates of the QD are a linear combination of

many ~k’s. This is consistent with the Heisenberg uncertainty relationship δxδpx ≥ ~/2. When

quantum confinement effects become important in three dimensions, δx decreases and therefore the

distribution of crystal wave vectors ∆~k (i.e. δpx) increases.

Numerous theoretical approaches are used to calculate accurate eigenstates and eigenenergies

while including Coulomb effects, exchange interactions and strain, details of which can be found

in Ref. [122] and references therein. One such approach to calculate the single particle states

is to use the eight-band k·p theory [120, 122, 139], and then incorporate Coulomb and exchange

effects using the configuration interaction method [84]. k·p theory assumes that the total wave

function and eigenenergies are known at some wave vector ~k0 and then calculates the bandstructure

perturbatively for ~k near ~k0. For strongly-confining QDs, ~k0 = 0 and the initial known wave

functions consist of the s and p outer-most electron atomic states at ~k = 0, which can be calculated

using the tight-binding approximation described in Section 2.1. Confinement of the electron and

hole wave functions in the QD requires multiple ~k’s to construct the envelope wave function, and
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this method is used to calculate the eigenstates and eigenenergies perturbatively for each ~k. This

method can automatically account for band mixing, which can result from strain and strain-induced

piezoelectric fields.

While determining accurate eigenstates and eigenenergies requires rigorous calculations, the

allowed optical transitions and dipole transition selection rules can be postulated without an inten-

sive theoretical framework. Considering the light-matter interaction Hamiltonian under the dipole

approximation (Eqn. 2.9), the optical transitions are governed by the matrix elements of 〈f |Ĥint|i〉,

where |f〉 and |i〉 are the final and initial electronic states. If the general form for the total wave

function is used, assuming the envelope function varies slowly over a unit cell, then the light-matter

interaction matrix elements are given by [139]

〈f |Ĥint|i〉 ∝
∑
nm

∫
Fn (r) · Fm (r) dr

∫
Ω
ψ∗n (r) ε̂ · ∇ψm (r) dr. (2.15)

In this form, the envelope wave functions are general and therefore orthogonality has not

yet been established for them. The integral of the Bloch functions over Ω is the transition dipole

moment of an atom, thus the allowed interband optical transitions are governed by the atomic

states that form the initial and final electronic states of the associated optical transition. Since

the atomic states consist of primarily s-like and p-like wave functions, if only wave vectors near

~k ≈ 0 are considered, then the conduction and valence band ground states in the QD will consist of

mostly s- and p-like states. This argument is consistent with the rigorous calculations in Ref. [122]

in which, for example, the electron ground state is s-like with an integral probability of 0.89. In

this simplified picture, one could calculate the allowed interband transitions using the atomic wave

functions; however, the optical dipole transition selection rules are also affected by Coulomb and

exchange interactions. Inclusion of these effects can be achieved by employing the configuration

interaction method with basis states determined using the k·p theory. These effects will be reviewed

in the next two sub-Sections.
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2.3.3 Coulomb Effects: Excitons, Biexcitons and Trions

Regardless of whether the interaction energies associated with Coulomb effects are dominated

by the confinement potential energies or not, the excitonic picture is a useful representation for

epitaxially-grown QDs; however, it should be kept in mind that excitons in QDs are different from

bulk excitons in several ways. First, a QD exciton cannot dissociate into an electron and hole, unless

one of the charges leaves the QD, because the external confinement potential usually dominates

over the Coulomb interactions. Second, excited exciton states in a QD are not states of the mutual

Coulomb potential of interacting electrons and holes, but instead they are formed by the charge

carriers residing in higher-lying single-particle states of the QD potential. Coulomb interactions

between electrons and holes then modify the energetics of the few-particle states with respect to

the sum of the energies of the individual single particles, and the resulting energy difference is

considered the binding energy. For example, the exciton energy is given by EX = Ee + Eh −∆X ,

where Ee and Eh are the single-particle electron and hole energies and ∆X is the binding energy

due to renormalization from electron-hole Coulomb interactions. The biexciton energy would then

be EB = 2 · EX −∆B, where ∆B is the biexciton binding energy.

Single dot spectra reveal rich information about the energetics of various multi-particle states

and their radiative decay dynamics. Excitons, bound and anti-bound two-excitons (biexcitons)

and negatively or positively charged excitons (trions) are easily identified in PL spectra. In their

representative ground states, for which only the lowest-energy electron and hole levels are occupied,

these excitonic states would be degenerate if ignoring Coulomb interactions. Experimentally, this is

not the case, and instead splitting of several meV are observed. The energetic ordering of the states

is sensitive to the QD size, shape and composition; therefore a connection between QD morphology

and the recombination energies of the excitonic states is difficult to establish. Experimentally, the

energetics can be systematically characterized by recording many single-dot PL spectra for samples

prepared using different growth methods, i.e. QDs with various morphology; however, significant

dot-to-dot scatter of the data from single dot experiments and accurate characterization of the dot
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size, shape and composition make comparison to theory difficult.

Nonetheless, certain fingerprints for specific QD morphology exist, such as the binding ener-

gies of the biexciton and trion relative to the exciton ground state [84]. Theorists often use this

information to address the inverse problem: using the QD morphology as a fitting parameter, what

QD structure would give rise to the measured optical spectrum? One common technique is to use

the configuration interaction (CI) method [82, 83, 84, 85, 140]. CI is a linear variational technique

for solving the few-particle Schrödinger equation in which the ground state energy, E, is minimized

with respect to all normalized wave functions according to

E ≡ min〈Ψ|Ĥ|Ψ〉|Ψ. (2.16)

The exact ground state energy could, in principle, be found by minimizing Eqn. 2.16 with

respect to all possible |Ψ〉, which is not computationally feasible. An alternative approach is to

expand |Ψ〉 into a linear combination of Slater determinants constructed from the single-particle

states. A Slater determinant is a convenient way to describe the wave function of a multi-fermionic

system that satisfies the anti-symmetry requirements for the Pauli exclusion principle. For example,

for two electrons at positions ~r1 and ~r2 in states χ1 and χ2, the anti-symmetric wave function

would have the form Ψ(~r1, ~r2) = {χ1(~r1) · χ2(~r2) − χ1(~r2) · χ2(~r1)}/
√

2. The corresponding Slater

determinant would then be written as

Φ =
1√
2

∣∣∣∣∣∣∣
χ1(~r1) χ2(~r1)

χ1(~r2) χ2(~r2)

∣∣∣∣∣∣∣ . (2.17)

This expression can be generalized for an N -electron system:

Φ (~r1, ~r2, . . . ~rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~r1) χ2(~r1) · · · χN (~r1)

χ1(~r2) χ2(~r2) · · · χN (~r2)

...
...

. . .
...

χ1(~rN ) χ2(~rN ) · · · χN (~rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.18)
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Using eight-band k·p theory, the single-particle states χi(~r) can be calculated to form the

basis for constructing the many-particle Slater determinant. The total wave function, |Ψα
N 〉, where

N is the number of particles and α is the index for the few-particle state, can be written as a

linear combination of all possible Slater determinants, |Φi,j,k,...〉, that are constructed from the

single-particle states, and is given by

|Ψα
N 〉 =

∑
i,j,k,...

Cαi,j,k,...|Φi,j,k,...〉. (2.19)

If the series contained an infinite number of terms, the wave function would be exact, which,

of course, is not computationally tractable. Truncating the series to a single Slater determinant,

for which all N particles are described by their ground-state wave functions, corresponds to what is

known as the Hartree-Fock (HF) approximation. While this approximation still takes into account

the exchange interaction, i.e. a special case of electron-electron correlation in which no two electrons

can be in the same quantum state, satisfying the Pauli exclusion principle, and direct pair-wise

Coulomb interactions, it cannot account for higher-order correlations of the collective system and

consequently it underestimates the few-particle binding energies. To calculate the CI wave functions

and eigenenergies, Eqn. 2.16 is solved using the wave functions from a truncated expansion of Eqn.

2.19. As an example, consider the positive trion, X+, which consists of an electron (index i) and

two holes (indices j and k). The ground-state configuration could be approximated as a linear

combination of two Slater determinants [84],

|ΨX+

3 〉 =
2∑
i=1

CX
+

i,1,2|Φeihjhk〉, (2.20)

where the electron single-particle wave functions consist of the ground state (i = 1) and

first excited state (i = 2) in this example. In practice, the CI wave functions and energies can be

computed by multiplying both sides of the Schrödinger equation by the Slater determinant, Φi,

inserting the wave function expansion from Eqn. 2.19, and then integrating the result, to give:
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∑
j

〈Φi|Ĥ|Φj〉Cβj =
∑
j

Ej〈Φi|Φj〉Cβj

=
∑
j

EjδijC
β
j

= EiC
β
i . (2.21)

Equation 2.21 is the matrix representation of the component form of an eigenvalue problem.

Thus determining the CI wave function and eigenenergies corresponds to finding the lowest energy

eigenvalues of Eqn. 2.21. Typically the series can be truncated by using only one or two bound

excited state wave functions to construct the Slater determinants. A more accurate approach [84]

is to use a basis constructed from the wave functions of all bound states, which even itself only

accounts for up to ≈ 80% of the total interaction energies associated with the few-particle states

in the QD [141]. Nonetheless, the results from this method have been effective for understanding

the many-body configurations in epitaxial QDs, and are summarized in Fig. 2.6.
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Figure 2.6: The evolution of few-particle recombination energies with increasing amount of corre-

lation and electron-hole exchange. Without Coulomb effects, the exciton (X), positive (X+) and

negative (X−) trions and the biexciton (XX) are degenerate. Only when direct Coulomb inter-

actions, correlations and exchange are included do the few-particle energies accurately reproduce

experiments. Reproduced from A. Schliwa, M. Winkelnkemper and D. Bimberg, Physical Review

B 79, 075443 (2009).

The results summarized in Fig. 2.6 highlight the importance of direct pair-wise Coulomb

interactions (the HF approximation), correlations beyond the HF limit, and exchange interaction

effects on the recombination energies of the few-particle states. The experimental results presented

in Chapter 6 will be analyzed with regard to the CI simulations discussed in this sub-Section

in order to understand how QW–QD confinement and QD size affect the few-particle interaction

energies.

2.3.4 Electron-Hole Exchange Interaction: Exciton Fine-Structure

The theoretical framework introduced in the previous sub-Section automatically takes into

account the effects of the electron-hole exchange interaction through the ground-state Slater de-

terminant. Figure 2.6 demonstrates that electron-hole exchange interaction results in an energetic
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splitting of both the exciton and biexciton states. While exchange effects are typically too weak

to be observed in higher-dimensional systems, they are enhanced in QDs because confinement in-

creases the electron-hole wave function overlap. The origin of the fine-structure splitting, and its

connection to QD morphology, is more easily understood by explicitly writing the exchange energy,

given by [44]

Eexchange =

∫ ∫
d3r1d

3r2 ·Ψ∗X (~re = ~r1, ~rh = ~r2) · 1

|~r1 − ~r2|
·ΨX (~re = ~r2, ~rh = ~r1) , (2.22)

where ΨX is the exciton wave function and ~re,h are the electron and hole spatial positions.

The exchange integral is divided into two parts for calculations: 1) either real-space short- and

long-range components; or 2) k-space analytical and non-analytical components. Considering the

real-space decomposition, the short-range (long-range) component is given by the probability to

find the electron and hole in the same (different) unit cell. First considering short-range exchange,

the spin Hamiltonian for the electron-hole exchange interaction of an exciton is given by [142]

Ĥexchange = −
∑

i=x,y,z

{aiJh,iSe,i + biJ
3
h,iSe,i}, (2.23)

where Se and Jh are the electron and hole spins, a and b are the spin-spin coupling constants,

and the quantization axis is chosen to be along the nanostructure growth direction, z. The single-

particle basis from which excitons can be constructed consist of the HH valence band with total

angular momentum Jh = 3/2 and Jh,z = ±3/2 and the electron conduction band with total angular

momentum Se = 1/2 and Se,z = ±1/2. Writing the total angular momentum projected along z

(M) in the pair-picture exciton basis, then M = Se,z + Jh,z. The |M | = 1 states are optically-

active (bright) excitons, since optical excitation of these states satisfies conservation of angular

momentum. The |M | = 2 states are optically-inactive (dark) excitons and cannot couple to the

light field 1 .

1 These states are modified if the light-hole band is not ignored. In this case, heavy-hole–light-hole band mixing
effects must be included and will result in a basis of eight total angular momentum states, which, for example, must
be considered in colloidal QD samples.
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Using the exciton basis {| + 1〉, | − 1〉, | + 2〉, | − 2〉} and neglecting the x and y components

that are linear in Jh because LH-HH mixing can be ignored, Ĥexchange has the following matrix

form:

Ĥexchange =
1

2



+δ0 +δ1 0 0

+δ1 +δ0 0 0

0 0 −δ0 +δ2

0 0 +δ2 −δ0


, (2.24)

where the δi’s are related to the coefficients in Eqn. 2.23 by: δ0 = 1.5 · (az + 2.25 · bz), δ1 =

0.75 · (bx − by) and δ2 = 0.75 · (bx + by) [44]. Because the matrix in Eqn. 2.24 is block diagonal,

the bright and dark exciton states do not mix and they are separated in energy by δ0. The

following table summarizes the effects of the short-range exchange interaction on the eigenstates

and eigenenergies of the bright and dark excitons:

D2d < D2d

bx = by bx 6= by

Energy Eigenstate Energy Eigenstate

+1
2δ0 | − 1〉 1

2 (δ0 + δ1) 1√
2

(|+ 1〉+ | − 1〉)

+1
2δ0 |+ 1〉 1

2 (δ0 − δ1) 1√
2

(|+ 1〉 − | − 1〉)

1
2 (−δ0 + δ2) 1√

2
(|+ 2〉+ | − 2〉) 1

2 (−δ0 + δ2) 1√
2

(|+ 2〉+ | − 2〉)

1
2 (−δ0 − δ2) 1√

2
(|+ 2〉 − | − 2〉) 1

2 (−δ0 − δ2) 1√
2

(|+ 2〉 − | − 2〉)

Table 2.1: Influence of the exchange interactions on the bright and dark exciton eigenstates for

QDs with ≤ D2d symmetry. When also considering long-range exchange effects, δ0 is replaced by

∆0 and δ1 by ∆1.

For QDs with in-plane rotational symmetry, belonging to the D2d point group, angular mo-

mentum is a good quantum number and bx = by. In this case, δ1 = 0 and the | + 1〉 and | − 1〉
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states are eigenstates of Ĥexchange. If rotational symmetry is broken somehow, such that bx 6= by,

angular momentum is no longer a good quantum number and the | ± 1〉 states are mixed with each

other. In this case, the eigenstates of Ĥexchange are symmetric ( 1√
2
[| + 1〉 + | − 1〉] ≡ |H〉) and

anti-symmetric ( 1√
2
[|+ 1〉 − | − 1〉] ≡ |V 〉) linear combinations of the bright exciton states and are

separated in energy by δ1. Considering the relationship between linearly- and circularly-polarized

light, the |H〉 and |V 〉 states correspond to orthogonal linearly-polarized spin states. The energy

splitting between the hybridized states of | ± 2〉 is equal to δ2 irrespective of the QD symmetry.

The long-range exchange interaction can be included by modifying the sub-block of the

|M | = 1 excitons in Eqn. 2.24 to have the form

 +∆0 +∆1

+∆1 +∆0

 , (2.25)

where ∆0 = δ0 + γ0 and ∆1 = δ1 + γ1. From this modification, it is apparent that the long-range

exchange interaction further separates the bright and dark states by γ0. For rotationally-symmetric

QDs, γ1 = γx−γy = 0, ∆1 = 0, and the |±1〉 bright states are degenerate eigenstates of Ĥexchange.

For asymmetric dots, where ∆1, δ1, and γ1 are nonzero, the long-range exchange further splits the

mixed bright states. In general γ1 � δ1, implying that the long-range exchange interaction is the

dominant mechanism for mixing and splitting of the bright exciton states. This splitting is referred

to in the literature as the exciton “fine-structure splitting” and will be represented by an energy

∆FSS in this thesis.

Values of ∆FSS reported in the literature range from +1000 to −100 µeV, where ∆FSS > 0

implies that |V 〉 is higher in energy than |H〉. Although the dominant mechanism contributing

to the breaking of the QD symmetry and nonzero ∆FSS is still under debate, two competing

mechanisms have been proposed [143]: 1) anisotropy in the QD shape arising from strain that

is present during the epitaxial growth process; and 2) strain-induced piezoelectric fields. Both of

these mechanisms are expected to induce anisotropy in the confinement potential, which typically

aligns |H〉 and |V 〉 along the [110] and [11̄0] crystal axes, respectively, for samples grown along the
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[001] direction.

This discussion so far has assumed the QD is neutral, i.e. it does not contain any resident

charge carriers. For charged QDs the energetics are different. As an example, consider the positive

trion, X+, for which the lowest energy state consists of two heavy-holes with opposite spin and

a single electron with two possible spin orientations with all particles in their respective ground

states. The trion can be considered as an electron interacting with the spin-singlet hole pair.

For QDs exhibiting strong confinement, the electron and hole wave functions have similar spatial

extent; thus the local hole spin density is zero. Consequently the electron-hole exchange interaction

vanishes and ∆FSS = 0. In weakly-confining QDs and structures with higher dimensionality, the

local spin density could be nonzero. This point will be revisited in Chapter 6, where results of

ensemble measurements of ∆FSS are discussed.

2.3.5 Relevant Energy Level Schemes and Dipole Transition Selection Rules

Based on the discussions in the previous sub-Sections, the energy level scheme for the ground

state excitonic transitions in neutral, epitaxially-grown QDs is shown in Fig. 2.7. Excitonic states

can be optically excited in both the underlying QW and the QDs. The single monolayer thickness

difference between the QW and QDs red-shifts the QD resonance relative to the QW; however the

in-plane lateral confinement blue-shifts the resonance, resulting in a net red-shift of the QD peak

relative to the QW by an energy V0. The QW and QD exciton states can be approximated as

two separate two level systems, shown in Fig. 2.7(a). This picture is a simple way to visualize

the QW–QD heterostructures; however the QW and QD are coupled predominantly through inco-

herent population transfer mechanisms and therefore Fig. 2.7(a) is only accurate when neglecting

interactions. The preceding discussion regarding electron-hole exchange is summarized by the en-

ergy diagram shown in Fig. 2.7(b). When considering both short- and long-range exchange for

an asymmetric confinement potential, the bright excitons mix and are energetically split by the

fine-structure splitting, ∆FSS .

In QDs for which ∆FSS = 0, the | ± 1〉 bright exciton states can be excited using circularly-
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Figure 2.7: (a) Energy level diagram in the exciton picture indicating the crystal ground state for
the QDs (|0〉) and QW (|0∗〉) and the corresponding QD (|QDs〉) and QW (|QW〉) exciton ground
states separated by an energy V0. (b) The QD bright excitons mix to form to orthogonal linearly-
polarized states (|H〉 and |V 〉) that are energetically separated by the fine-structure splitting, ∆FSS ,
for an anisotropic confinement potential.

polarized photons with angular momentum σ±, depicted in the energy diagram in Fig. 2.8(a) for

a neutral QD. Without interactions, the two exciton spin states can be considered two separate

two-level systems, and the dipole transition selection rules for these transitions are governed by the

symmetry of the HH and CB atomic Bloch functions discussed in sub-Section 2.3.2. Through a

basis transformation, this energy scheme is equivalent to the “diamond level” scheme shown in Fig.

2.8(b) if ∆FSS = ∆B = 0. The two exciton states are coupled through the sharing of a common

ground state. Moreover, both excitons can be excited to create a two-exciton with energy equal

to twice the exciton energy. At first glance, coupling of the exciton states through the common

ground state would lead to interactions between the two excitons, such as ground state bleaching

nonlinearities; however nonlinearities arising from coherent pathways including the doubly-excited

two-exciton state cancel the singly-excited nonlinearities such that all interactions between the

|+ 1〉 and | − 1〉 excitons cancel. This is expected, since a basis transformation of the independent

two-level systems should not lead to interactions between them.

The “residual” Coulomb interactions between the excitons, which are the interactions be-

yond those responsible for exciton formation, lead to interactions between the excitons. Biexciton

formation, in which the interaction energy between two excitons leads to a renormalization of their
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Figure 2.8: (a) Ground state exciton transitions when neglecting Coulomb and exchange interac-
tions. The |+ 1〉 (| − 1〉) exciton spin state can be excited by absorption of a σ+ (σ−) circularly-
polarized photon. (b) Energy level diagram for a neutral, asymmetric QD, with the optical dipole
transition selection rules labeled. |H〉 and |V 〉 are separated by ∆FSS , and the bound two-exciton
(biexciton) is shown with a positive binding energy, ∆B.

collective energy, and exchange effects that mix the circularly-polarized exciton spin states, break

the symmetry of the diamond level scheme such that it is no longer equivalent to the independent

two-level system picture. Many-body interactions lead to a modification of the optical dipole tran-

sition selection rules. The Hamiltonian basis states are no longer circularly-polarized exciton states,

but are instead more easily described by the orthogonal linearly-polarized states |H〉 and |V 〉. The

selection rules are shown in the energy level diagram in Fig. 2.8(b). Pure |H〉 or |V 〉 exciton

states can be excited using linearly-polarized photons whose electric fields oscillate along either the

minor or major axis of the asymmetric confinement potential. As previously mentioned, |H〉 and

|V 〉 tend to align along the two orthogonal in-plane crystal axes [11̄0] and [110], respectively, for

samples grown along [001]. For the experiments described in this thesis, photons linearly-polarized

along these two axes are defined as having H and V polarization, respectively. Moreover, since the

ground state of the biexciton – comprised of two electrons and two holes – is a singlet state, for

QDs in the strong confinement regime, the local spin density is zero and the biexciton is insensitive

to the exchange interaction. Therefore, the transition selection rules for the biexciton are similar

to the exciton. As shown in Fig. 2.8(b), optical excitation of the QD using two linearly polarized

photons can create a biexciton, which is in contrast to higher-dimensional systems in which two
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opposite circularly-polarized photons are required [107, 144].

2.4 Decoherence and Relaxation Mechanisms

The unique optical properties of epitaxial QDs make them attractive for applications in

opto-electronics and quantum information processing, some of which were introduced in Chapter 1.

Successful implementation of many QD-based devices relies on maintaining coherence of the ground

state exciton polarization for nanoseconds or longer. The homogeneous line width, γ, which is

inversely proportional to the polarization dephasing time, T2, can be broadened beyond the radiative

recombination limit through numerous scattering mechanisms. Understanding the mechanisms

responsible for dephasing – and the influence QD morphology has on them – is important for

testing theoretical models and for enabling design of efficient and practical QD-based technologies.

The experiments performed for this thesis use a series of ultrafast optical pulses to excite

and probe the electronic and optical properties of QDs. The electric field of each pulse creates

an interband polarization with a phase determined by the field. Immediately after excitation,

the polarization begins to dephase with the excitation field and phase coherence is lost in a time

T2. In the coherent regime, T2 is limited only by the population decay time, T1, which sets the

ultimate timescale during which phase coherence is maintained [128]. Processes that alter the

population – such as non-thermal scattering that redistributes the exciton energy or incoherent

relaxation between resonances – inherently limit T2. “Pure” dephasing processes that destroy the

phase coherence without changing the population state include exciton-phonon scattering, exciton-

exciton and exciton-carrier interactions. The polarization dephasing time is related to these decay

and scattering processes through

1

T2
=

1

2T1
+

1

T ∗2
, (2.26)

where T ∗2 is the pure dephasing time. This expression gives an upper limit on T2 of 2T1 in the

case that phase coherence is lost strictly through population decay. The homogeneous line width
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of a single resonance is related to the dephasing time through γ = ~/T2, in energy units. For a

system consisting of multiple oscillators with the same energy, the polarization of every oscillator

in the ensemble decays with the same rate T2, and therefore the system can be characterized by

a single homogeneous line width γ. In contrast, in an inhomogeneously broadened system, every

oscillator has a slightly different energy and the distribution of energies can be characterized by

a Gaussian function centered at an energy E0 with an inhomogeneous line width γinhom. After

optical excitation, the polarization of the ensemble decays faster than the polarization of each

individual oscillator. Initially, all oscillators are in phase; however a phase distribution develops

over time because of the different resonant energies, and the polarizations from the individual

oscillators destructively interfere. The dephasing time of the ensemble can be characterized by a

time constant T
′
2 ≈ ~/γinhom, which is shorter than the dephasing time T2. Inhomogeneity can arise

from disorder due to well width or alloy composition fluctuations in QWs. In QDs, the epitaxial

growth processes are inherently statistical. Consequently each QD has a different size, shape and

composition, resulting in a distribution of emission energies and optical properties of the ensemble.

Nonlinear spectroscopic techniques are particularly suited to distinguish between these different

broadening mechanisms and can provide a measure of the homogeneous line width even in the

presence of strong inhomogeneity [145]. In the remainder of this Section, the dominant exciton

dephasing mechanisms in epitaxial QDs are reviewed. Each mechanism will be discussed in more

detail in the corresponding experimental results Chapter.

2.4.1 Exciton-Phonon Interactions

Of the numerous dephasing mechanisms, exciton-phonon interactions have garnered consid-

erable attention both experimentally and theoretically. From fundamental arguments based on

momentum and energy conservation, exciton-phonon interactions were predicted to be inhibited in

QD systems because of the discrete nature of the density of states, leading to the so-called “phonon

bottleneck” [113]. Thus, the interband polarizations were expected to be radiatively-limited at

low-temperature. Furthermore, the line widths were expected to be insensitive to acoustic phonon
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scattering since the energy levels of the QDs were large compared to the typical phonon energies.

Nonetheless, a strong thermal component of the homogeneous line width has been observed; while

this component was initially attributed to excitation of the exciton population to a higher-lying

energy state through the absorption of a phonon or multiple phonons [28], subsequent studies using

PL [146, 147, 148] and nonlinear spectroscopies [46, 149, 150] have provided evidence that inelastic

activation of the exciton population cannot account for the dephasing. Instead, elastic exciton-

phonon interactions, which leave the population state unchanged, are expected to dominate the

line width broadening. The nature and strength of exciton-phonon scattering strongly depends on

the confinement potential and surrounding QD environment [151, 152]. For QDs in the strong con-

finement regime, the emission line shape is characteristic of exciton-polaron mixed states, where the

homogeneous line width is comprised of a narrow Lorentzian zero-phonon line (ZPL) superimposed

onto a broad phonon sideband background. Conversely, excitons in weakly-confining QDs do not

strongly couple to phonons and only the ZPL is observed. The line shape can be directly measured

in single dot µ-PL spectroscopy. In nonlinear spectroscopies such as time-integrated FWM, the

ZPL and broad background are manifest as slow and fast decay components, respectively, of the

FWM signal with respect to the delay between the pulses. Moreover, the temperature dependence

of the ZPL width and the relative weight of the ZPL component to the broad background compo-

nent have exhibited linear and nonlinear behavior and the measurements vary significantly in the

literature. To this end, a consistent scheme explaining the nature of the exciton-phonon interaction

for QDs with different amount of confinement has not yet been fully developed.

2.4.2 Excitation-Induced Dephasing

Exciton-exciton and exciton-free carrier scattering can significantly influence the optical prop-

erties and coherent nonlinear optical response [153, 154, 155]. Wang et al. have demonstrated

that in high-quality bulk GaAs, excitation-induced dephasing (EID) of the HH exciton is spin-

independent and depends linearly on density for moderate excitation conditions [91, 156], so that

γ = γ0 + φ · γEID, where γ0 is the zero-excitation line width and γEID is the rate of increase of the
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homogeneous line width with average photon flux per pulse, φ, incident on the sample. This form

of EID invokes a Markovian approximation, in which the full-time dependence of the EID process

is neglected and is instead replaced by an instantaneous scattering event. Assuming memory-less

scattering events is valid for bulk and QW systems, since continuous energy spectra of carriers

provides a large phase space, ensuring energy and momentum conservation [157]. This approxi-

mation does not hold for QD structures, since the discrete density of states reduces the available

phase space by restricting the number of allowed scattering transitions. Therefore a rigorous anal-

ysis that takes into account the frequency dependence of the EID scattering process, avoiding the

Markovian approximation, is required to accurately describe EID in QDs. Nonetheless, calculations

performed by Schneider et al. demonstrate that non-Markovian EID effects can be approximated

by a linear dependence on the excitation density, albeit with a larger increase in the dephasing

rate with excitation density. Compared to higher-dimensional structures, QDs are less sensitive to

EID effects [157]; localization reduces the interaction strength between confined and free carriers

and therefore EID plays a reduced role in the nonlinear optical response of QDs, but it cannot be

ignored. Indeed, intradot carrier-carrier scattering and QW–QD interactions leading to dephasing

of the interband optical polarizations determine the homogeneous broadening of QD-based lasers,

where a high density of carriers is necessary for high optical gain [157, 158]. In quantum informa-

tion applications, where single QDs act as qubits that can be coherently manipulated within the

dephasing time T2, intradot exciton-exciton and exciton-free carrier scattering damp Rabi oscilla-

tions and limit the time during which the exciton qubit can be coherently manipulated [159]. EID

effects on the coherent nonlinear response of epitaxial QDs have been studied primarily through

time-integrated FWM experiments [149, 160], where the FWM signal decays more rapidly under

high excitation conditions. Since EID is sensitive to the relative carrier-carrier wave function over-

lap, γEID should be dependent on the amount of confinement and QD size. 2DCS experiments

investigating the size-dependence of EID for both the GaAs IFQDs and In(Ga)As SAQDs will be

discussed in Chapter 6.
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2.4.3 Incoherent Population Transfer and Dynamical Broadening

Carrier transfer in low-dimensional semiconductor structures is interesting for the design of

efficient and fast opto-electronic devices such as QD-based laser diodes. An important parameter

for laser operation is the transfer rate of carriers from a reservoir or 2-D QW to localized QD

states, which can limit the maximum achievable optical gain. Typically, high-energy free carriers

relax or tunnel to the QD ground state in a time ranging from picoseconds [161, 162] to hundreds

[163] of picoseconds, after which exciton-exciton, exciton-carrier and exciton-phonon interactions

become important when the thermal energy is less than the exciton binding energy. From a fun-

damental standpoint, understanding population transfer of excitons between localized QDs and

the underlying QW is interesting since the population lifetime of the interband optical polariza-

tions, characterized by T1, ultimately limits the dephasing time. Thus exciton population transfer

can drastically affect applications where long-lived coherences are required. Similar to population

transfer, dynamical broadening of the interband optical polarizations [114] – where the transition

energy fluctuates with a characteristic timescale and amplitude from external perturbations – will

also dephase the polarizations and limit T2. These population dynamics have been measured using

both PL and nonlinear spectroscopies; however distinguishing between the different mechanisms is

difficult or impossible using 1-D techniques. 2DCS can unambiguously identify couplings between

the QW and QDs and results will be presented in Chapter 7 for the GaAs IFQDs.

2.5 Sample Structure and Preparation

The samples discussed in this thesis are grown using molecular beam epitaxy (MBE) [2].

MBE usually takes place in an ultra-high vacuum (10−11 – 10−10 Torr), where ultra-pure elements,

such as gallium and arsenic, are heated in separate effusion cells until they begin to sublimate.

The gaseous elements are then adsorbed onto a substrate wafer, typically made of GaAs, which is

held in the main chamber of the MBE system and acts as a seed crystal for growth of well-defined

single-crystal layers. Each element cell temperature, cell shutter, the substrate temperature, and
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the substrate rotation rate (required for uniform growth conditions across the entire substrate

wafer) can be adjusted for precise growth of the nanostructures.

All samples studied in this thesis were grown on a [001]-oriented GaAs substrate. The GaAs

IFQD sample was mounted onto a 0.25 inch diameter sapphire disk that is double-side AR-coated

and is wedged by 1◦. The substrate was removed for transmission measurements through mechanical

lapping of the sample on lapping film with 5 µm grain size, until ≈ 10 µm of the substrate remained

(e.g. the sample was, by eye, “infinitely thin”). The remaining substrate was removed via a wet

chemical etch at room temperature using an H2O2 and NH4OH solution with a pH ≈ 8. The

In(Ga)As SAQD samples were also studied in transmission, however the substrate was left intact

since the QD absorption energy is below that of the substrate. The sample was secured onto a

1 mm thick copper sheet with an aperture of 5 mm using rubber cement epoxy. Both samples

were held in a liquid helium cold finger cryostat (Janis model ST100). The GaAs IFQD sample

was provided by Dan Gammon and Allan Bracker at the Naval Research Laboratory. The InAs

SAQD samples were provided by Ilya Akimov and Manfred Bayer from the Technical University of

Dortmund, Germany, and were grown by Andreas Wieck and Dirk Reuter at the Ruhr-University

of Bochum, Germany.

2.5.1 Interfacial Fluctuation Quantum Dots

The GaAs IFQD sample consists of a single 4.2 nm wide GaAs/Al0.3Ga0.7As QW with single

monolayer (ML) interface fluctuations formed by 2 minute interruptions of the gallium flux during

the epitaxial growth process (for detailed growth conditions, see Refs. [27, 28, 29]). For narrow QWs

with widths similar to the one studied here, the fractional change in confinement along the growth

direction from a ML width fluctuation is significant compared to the QW width and can result

in a splitting of the optical spectrum into two peaks [134]. The higher-energy QW exciton states

are weakly-localized by disorder on a length scale that is much larger than the mean separation

between the ML fluctuations. The lower-energy resonance arises from excitons localized at the ML

fluctuation sites, which form the IFQDs. Figure 2.9 shows a typical PL spectrum with the QD
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ensemble red-shifted from the QW resonance by the in-plane confinement energy V0 ≈ 10 meV.
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Figure 2.9: Typical PL spectrum (blue solid line) excited with 633 nm laser light. The center of the
QD ensemble is red-shifted from the QW resonance by an in-plane confinement energy of V0 ≈ 10
meV. The laser excitation spectrum used in the experiments is indicated by the black dashed line.

Based on the analysis of 3-D confinement on bound states given in Section 2.2, the QDs

have lateral dimensions of 30− 40 nm. A distribution of QD sizes results in an inhomogeneous line

width of ≈ 3 meV full-width at half-maximum (FWHM). The QW excitonic resonance has a similar

inhomogeneous line width due to a distribution of disorder length scales, which has been shown

to be the origin of the mobility edge for dephasing and diffusion in 2-D semiconductor systems

[164, 165]. Since the typical QD size is large than the exciton Bohr radius for bulk GaAs, excitons

are only weakly-localized.

2.5.2 Self-Assembled Quantum Dots

Two In(Ga)As SAQD samples are investigated, both consisting of 10 quantum-mechanically

isolated layers of QDs with GaAs barriers (details given in Ref. [166]). A thin layer of InAs

was grown on top of GaAs. Strain builds as the InAs layer thickness increases because of the

7% lattice mismatch between InAs and GaAs. After a critical InAs layer thickness, the strain is

relieved through the formation of islands, known as SAQDs, which rest on top of the underlying

QW (often referred to as the “wetting layer”). The sample is then capped with a GaAs barrier to
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form the QD/QW nanostructure. This process is repeated to form the other QD layers, with 50

nm GaAs layers separating them. Both samples have been thermally annealed post-growth – one

at 900◦C and the other at 980◦C, both for 30 seconds. Annealing promotes indium diffusion so

that a composition gradient forms across the dot, with affects the optical properties of the 900◦C

(980◦C) sample in several ways [167, 166]: 1) the emission is blue-shifted to 1345 (1445) meV; 2) the

inhomogeneous distribution is narrowed to ∼ 15 (10) meV FWHM; and 3) the ground state→ QW

in-plane confinement energy is decreased to ∼ 100 (60) meV. Impurities unintentionally-introduced

during the growth process result in some of the QDs containing a resident hole. A method to

determine the fraction of charged dots will be discussed in Chapter 6. Figure 2.10 shows a typical

PL spectrum of the 900◦C sample with the exciton ground state (GS) and first excited state (ES)

labeled. Adopted from nomenclature in atomic physics, these states are often referred to as the

“s-shell” and “p-shell”.
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Figure 2.10: Typical PL spectrum (blue solid line) for the sample annealed at 900◦C, excited with
633 nm laser light. The QD ensemble ground state (GS) emits at ≈ 1350 meV, and the first excited
state (ES) is visible at ≈ 1370 meV. The laser excitation spectrum used in the experiments is
indicated by the black dashed line.

2.6 Review of Conventional Experimental Techniques

A number of techniques have been devised for studying the electronic and optical properties

of single dots and ensembles. A fundamental challenge in performing single dot spectroscopy
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is separating the weak signal from the strong excitation laser pulses. The signal is enhanced

by increasing the number of dots in ensemble measurements; however significant dispersion of

the QD properties requires nonlinear techniques to isolate contributions from homogeneous and

inhomogeneous effects. In this Section, a number of techniques used to investigate single dots and

ensembles will be reviewed.

2.6.1 Photoluminescence Spectroscopies

Some of the first characterization studies of epitaxial QDs were performed using PL spec-

troscopy (for a representative list of experiments, see references in [99]). Single dots must be isolated

in order to eliminate the effects of inhomogeneity. Electron-beam lithography and metal liftoff are

often used to open a series a apertures in thin opaque aluminum or gold films deposited on the

sample surface. Apertures ranging in diameter from 0.2 to 50 µm, spaced sufficiently apart so that

only a single aperture is in the laser spot, are commonly used. The sample is then excited using non-

resonant above-gap excitation with a power density below ≈ 100 W/cm2 to avoid heating effects.

Steady-state PL is detected in reflection through the same aperture using a triple spectrometer and

charge coupled device (CCD) detector, which are necessary to eliminate pump light scatter. As

shown in Fig. 2.11, PL from a 25 µm aperture exhibits broad, inhomogeneously-broadened peaks,

indicative of radiative recombination of excitons in QWs with a single ML thickness difference [29].

With decreasing aperture size, discrete peaks appear in the PL spectrum are are attributed to

excitons localized in the QDs.
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Figure 2.11: Non-resonant PL spectra from a GaAs IFQD sample. A thin aluminum film was

deposited on the sample, and apertures of various diameter were formed to isolate regions containing

different numbers of dots. For large apertures, broad PL from excitons delocalized in 11 ML and 10

ML thick QWs is observed. With decreasing aperture size, the spectrum evolves into a discrete set

of peaks indicative of single dot emission. The laser excitation energy is EL = 2.4 eV. Reproduced

from D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Physical Review

Letters 76, 3005 (1996).

By varying the excitation laser wavelength, a two-dimensional map correlating the PL emis-

sion and laser excitation energies reveals the excited states of the dots, and information regarding

coupling between dots can be inferred. Time-resolved PL of single dots is achieved using pulsed laser

excitation and detecting the PL through a monochromator and streak camera system to achieve

picosecond time resolution [166]. Low excitation conditions are required to ensure that multiple

excitons in one QD are not excited by a single excitation laser pulse.

Steady-state and time-resolved PL have facilitated progress in our understanding of the op-

tical properties of single QDs. Recombination line widths and dynamics can reveal some of the

processes that limit the radiative recombination lifetime and dephasing time of the ground and
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excited states. A systematic study of different dots reveals the emission energy dependence (i.e.

QD size dependence) of the optical properties, such as the recombination energies of different ex-

citonic states. A critical drawback of single dot PL spectroscopies is the considerable dot-to-dot

variation of the data for a particular emission energy, perhaps arising from modification of the

local environment through the single dot isolation techniques. Patterning the sample using metal

masks can introduce field effects that might shift the electronic bands or introduce charge carriers.

Etching mesas that contain one or few dots [147] is an alternative to metal film deposition; however

surface states and phonon scattering at the mesa boundaries can alter the linear and nonlinear

response so that the intrinsic optical properties are not probed. Alternative single and ensemble

QD characterization techniques that can eliminate some of these drawbacks are discussed in the

following sub-Sections.

2.6.2 Resonance Fluorescence

Adapted from atomic physics experiments, resonant-fluorescence detection is suited to prob-

ing quantum statistics of QD emission and enables coherent optical control of a QD combined with

quantum optical detection [168]. In resonant-fluorescence measurements, a pump resonantly excites

an optical transition in the QD, and incoherent photon emission is detected. The technical chal-

lenge is to detect the emitted photons without the pump laser background. One method to reduce

contributions from the pump is to detect the fluorescence normal to the sample and pump at large

angles relative to the normal. This spatial filtering, along with detecting photons cross-linearly

polarized relative to the pump, enables detection of single photons, although initial attempts using

this method could not fully suppress the pump light. This method also requires a long focal length

lens to focus the pump, increasing the spot size at the sample and reducing the intensity, thus

increasing the probability of exciting multiple QDs and reducing the signal strength for the QD

under examination.

Alternative geometries have enabled on- and near-resonance efficient detection. One scheme

employs QDs embedded in a planar microcavity [169]. The pump laser is fiber-coupled into the
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waveguide and the cavity forces the QD to emit along a specific direction, inherently enhancing

the emission efficiency and suppressing the pump background. Another scheme is to excite and

detect along the same direction normal to the sample surface using a high numerical-aperture lens,

high-quality polarizer, and sharp spectral filter or dichroic mirror. This scheme inhibits detection

at the pump frequency, but enables collection of single photons shifted by a small frequency from

the pump. Using these techniques, researchers are devising methods to optically prepare, control

and couple QDs embedded in photonic waveguides [170] and detect the single photon emission

when exciting resonantly.

2.6.3 Photocurrent Detection

The photocurrent approach is advantageous compared to optical detection primarily because

of its high detection efficiency. For example, in the case of optical detection, only 2% of the light

can escape because of the large GaAs-air refractive index mismatch. Although low optical detection

efficiency can be mitigated by incorporating single QDs into photonic structures or using a solid-

immersion lens with a matched refractive index, the signal is ultimately detected through absorption

in a slow photodiode or CCD, which have efficiencies below that of photocurrent detection. Figure

2.12 depicts the principles behind photocurrent detection, which was first demonstrated by Zrenner

et al. in 2002 [66].
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(a) 

(b) (c) 

Figure 2.12: (a) Schematic view of an excitonic two-level system in the ground state of a semicon-

ductor QD. (b) Intrinsic region of a biased single-QD photodiode. An optically-excited electron

hole pair can tunnel out of the QD when the sample is biased, producing the deterministic pho-

tocurrent. (c) Schematic view of a single-QD photodiode, consisting of a GaAs n-i–Schottky diode.

Optical access to a single QD is provided by a shadow mask. Reproduced from A. Zrenner, E.

Beham, S. Stufler, F. Findeis, M. Bichler and G. Abstreiter, Nature 418, 612 (2002).

A single QD is embedded in the intrinsic region of a photodiode structure. Resonant ex-

citation creates an electron-hole pair that can tunnel out of the QD when the sample is biased.

The carriers are detected as a change in the photocurrent of only a few pA. This method has been

used primarily for coherent control experiments, where, for example, the exciton and biexciton

quantum state can be manipulated [66, 171, 172] and hole spins can be prepared and detected

[173]. Some apparent drawbacks of the technique originate from the limited coherence times due to

the charge carrier tunneling required for detection. This can be mitigated, however, by gating the

applied voltage, enabling dynamic control of the tunneling rate for both high detection efficiency

and long coherence times [174]. The background photocurrent is proportional to the incident power

(attributed to contributions from other dots in the structure at high power), requiring proper cali-

bration of the photocurrents to isolate the single dot response. Moreover, the technique inherently
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requires high-quality samples in photodiode structures, limiting the types of samples that can be

studied. Care must also be taken to properly set the gate voltage so that the charges are removed

from the sample between subsequent laser pulses; too slow of a tunneling rate could result in the

presence of charge carriers when subsequent laser pulses arrive at the sample, which would shift

the energy of the optical resonance and reduce the photocurrent signal.

2.6.4 Nonlinear Spectroscopies

The most widely-used techniques for time-resolved single dot characterization under reso-

nant excitation are nonlinear spectroscopies, such as pump-probe-type measurements that detect

the third-order nonlinear optical response of the QD. In most pump-probe experiments, the signal

detected is the pump-mediated differential transmission or reflection of the probe. The interference

between the third-order polarization, induced by the interaction of the pump and probe in the

sample, with the probe can be spectrally-resolved using a monochromator, time-resolved through

gated up-conversion techniques, or time-integrated using a slow detector and lock-in amplifier. In

pump-probe experiments, the differential signal is proportional to the population inversion induced

by the pump. The pump-probe delay, probe energy and probe polarization can be varied to re-

solve carrier relaxation, dephasing and spin dynamics, Coulomb-mediated dephasing and transition

energy shifts, excited-state absorption, and biexciton formation, to name a few. For example, Leni-

han et al. have measured the biexciton binding energy dependence on the exciton emission energy

by pumping a subset of the inhomogeneously-broadened QD ensemble and tuning the spectrally-

narrow probe energy to map out the excited-state absorption of the exciton → biexciton transition

[86]. Pump-probe experiments can also be used to characterize the interband optical polarization

dephasing rate by burning a spectral hole in the inhomogeneous distribution using a narrow pump

pulse, and tuning a narrow probe pulse to map out the homogeneous line width of the transition

[175]. The pump is amplitude modulated with frequency ∆P and the probe is frequency modulated

at ∆PR. The pump and probe excite the QD ensemble, which is embedded in a waveguide geometry

to enhance the light-matter interaction. The probe is interfered with a reference and their interfer-
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ence is measured on a slow detector at the modulation difference frequency ∆mod = ∆PR−∆P using

a lock-in amplifier. These methods are also effective for studying coherent control and manipulation

of single QDs and have been demonstrated for a number of systems [176, 177, 178].

Time-resolved and time-integrated FWM techniques have enabled measurements of the opti-

cal properties of inhomogeneously-broadened ensembles with great success in revealing dephasing

rates of the exciton coherence [149, 87]. In these experiments, details of which will be discussed

in the following Chapter, the nonlinear interaction of the pump and probe pulses generates a

nonlinear signal that is radiated in a background-free phase-matched direction. The signal can

be time-resolved using nonlinear up-conversion techniques, spectrally-resolved, or more commonly,

time-integrated using a slow detector and lock-in amplifier. The signal is recorded as the pump-

probe delay is varied, and the decay of the signal provides a measurement of the dephasing rate.

Interference between quantum pathways can give rise to beats in the FWM signal, and the period

and damping of these beats can provide information regarding the intrinsic dephasing mechanisms

in the sample. For example, Fig. 2.13 demonstrates the time-integrated FWM signal from In-

GaAs ensembles with different QW → QD confinement, V0 [45]. At early times, fast oscillations

corresponding to quantum interference of the ground state → exciton and exciton → biexciton

transitions are observed. At longer times, slow oscillations corresponding to quantum interference

between the interband transitions of the two bright exciton states |H〉 and |V 〉 are present, with the

beat period inversely proportional to ∆FSS . These experiments demonstrate that the dephasing

rate, biexciton binding energy and fine-structure splitting are sensitive to the level of confinement.



63

Figure 2.13: Time-integrated FWM amplitude versus delay, τ , between the two excitation pulses,

for InGaAs QD samples with varying amounts of in-plane confinement energy, V0. Beats at early

time corresponding to interference between the exciton and biexciton quantum pathways, while

oscillations corresponding to interference between the linearly-polarized bright excitons are observed

at longer delays. Reproduced from W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter,

and A. D. Wieck, Physical Review B 69, 161301(R) (2004).

While 1D FWM experiments, where the signal is recorded as a function of a single delay,

have enhanced our understanding of confinement effects on the optical and electronic properties in

QDs, they have several limitations that make interpretation of the data difficult or even impossible.

For example, the nonlinear optical response of the QD ensemble is averaged over the excitation

spectrum, thus 1D techniques are insensitive to the optical properties within the excitation laser

bandwidth. Moreover, dispersion of the optical properties within the excitation laser bandwidth will

result in artificially fast dephasing of the polarization and beats. FWM is also unable to reliably

distinguish between the effects of inhomogeneity, dephasing and correlations between transition

energy fluctuations of different states, which all contribute similarly to the FWM signal. Recently,

optical 2DCS, which is an extension of FWM, has been implemented to study GaAs IFQDs [98, 99,
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100] and In(Ga)As SAQDs [101, 102, 103]. This technique can overcome many of these limitations

to simultaneously probe single-dot-like properties and ensemble interactions. Details of 2DCS,

including the history of the technique, its implementation, and interpretation of the results, will be

discussed in the following Chapter.



Chapter 3

Principles of Two-Dimensional Coherent Spectroscopy

Optical two-dimensional coherent spectroscopy (2DCS) is the optical analog of multidimen-

sional nuclear magnetic resonance (NMR) that was developed in the 1970s [95]. Compared to

conventional one-dimensional or non-Fourier transform techniques, 2DCS offers many advantages

by tracking the phase evolution of the sample’s nonlinear response with respect to two time de-

lays. Precise knowledge of the phase enables a Fourier transform to be taken with respect to

the delays, providing a correlation map of the nonlinear response with respect to two frequency

dimensions. Congested one-dimensional spectra are unfolded onto two dimensions to allow for

separation of inhomogeneous and homogeneous line widths, isolation of coherent pathways and

identification of coupling between resonances. Moreover, the preservation of phase information

enables the real and imaginary components of the nonlinear response to be separated, providing

microscopic details not possible to obtain in magnitude measurements. These abilities make 2DCS

a powerful technique for probing a material’s electronic and optical properties, including dephas-

ing mechanisms, population decay and transfer dynamics and many-body interactions. 2DCS

has been implemented to study a multitude of complex systems, including liquids [179, 180],

molecules [181, 182, 183, 184, 185, 186, 187], atomic vapors [108, 109, 110, 188], semiconductor

QWs [106, 107, 189] and QDs [97, 98, 99, 100, 101, 102, 103].

In this Chapter, the development of optical 2DCS from NMR is first discussed in Section 3.1.

In the following Section, the basic principles of four-wave mixing (FWM) are introduced, followed by

an interpretation of the FWM experiments using the nonlinear optical response function to describe
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the third-order macroscopic polarization (Section 3.3). The optical Bloch equation formalism is

reviewed in Section 3.4, followed by an intuitive, sum-over-states diagrammatic approach to building

the nonlinear response function (Section 3.5). This theoretical framework will aid in the discussion

and interpretation of 2DCS. The transition from 1D to 2D spectroscopy is detailed in Section 3.6,

including a discussion of the types of 2D spectra that can be generated, an intuitive interpretation

of the spectra and advantages of the technique.

3.1 Development of IR and Optical 2D Spectroscopy

Multidimensional coherent spectroscopy was first implemented by the Ernst group in 1976

for NMR spectroscopy [190]. Soon after, it was clear that 2D NMR spectra contained valuable

information that was not readily available from conventional NMR spectroscopies [191], such as

cross peaks that revealed vibrational coupling between adjacent chemical bonds and spin coupling

and transfer in molecules. These seminal works led to a heightened interest in multidimensional

spectroscopy, and the technique was quickly extended to microwave frequency spectroscopy [192],

2D Raman spectroscopy of atomic vapors [193] and 2D infrared (IR) spectroscopy [194]. Similar to

NMR studies, 2D IR spectroscopy revealed information about structural properties of molecules by

probing the active vibrational modes and their coupling [183, 195]. 2D electronic spectroscopy was

introduced by the Jonas group and was first implemented to study the dye IR144 in methanol [181].

In the last decade, 2D spectroscopy has been extended to the near-IR and optical regimes to study

carrier dynamics and many-body effects in semiconductors. Some of the first studies investigated

a disordered QW characterized by a bimodal inhomogeneous distribution and observed temporal

oscillations in the time-resolved [88, 196] and spectrally-resolved [197] four-wave mixing (FWM)

signals. These methods are based on measuring the FWM signal as a function of the delay between

the excitation pulses; thus a 2D map correlating the time- or frequency-domain FWM signal with

the pulse delay can be generated. There were two schools of thought regarding the temporal

oscillations: either the beats originated from quantum interference between excitons or they were

due to electromagnetic interference from two quantum-mechanically-uncoupled systems. Based on
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a model in which the two effects could be distinguished by their temporal signatures, a conclusion

was reached that the oscillations were indeed due to quantum interference, indicating that the

transitions were coupled [88]. This problem was revisited using coherent excitation spectroscopy

(CES), which relies on spectrally-resolving the FWM signal generated by a narrow bandwidth pulse

preceding a second broad bandwidth pulse [198]. The FWM spectrum is recorded while the first

pulse frequency is scanned, and peaks appear when the first pulse is in resonance with the optical

transitions in the QW. The results from this experiment contradicted previous studies and claimed

that the oscillations originated from the interference of the radiated fields of spatially-isolated

excitons. 2D PL excitation spectra was developed for single QD spectroscopy, which provided

information regarding incoherent energy transfer between GaAs IFQDs [29]. As in the context

of NMR, “two-dimensional coherent spectroscopy” implies that the coherent phase evolution is

preserved along two dimensions, either in the time domain so that a two-dimensional Fourier

transform can be taken, or in the frequency domain. Therefore, these initial 2D studies of QWs

and QDs, while elucidating some of the optical and electronic properties in semiconductors, are

not considered 2DCS experiments since the 2D spectra are generated by incoherently stacking 1D

spectra.

More recently, 2DCS has been implemented in the near-IR and optical regimes and has proven

to be a powerful tool for unraveling the complex nonlinear optical response of semiconductors. In

2005, Borca et al. investigated the role of many-body effects and unbound electron-hole pairs on the

nonlinear response of excitons in GaAs QWs [105]. Follow-up studies revealed that the dominant

many-body interactions were excitation-induced dephasing and excitation-induced shift between ex-

citons [106], and microscopic theories required Coulomb correlations beyond the Hartree-Fock mean

field limit to reproduce the data [107]. 2D spectra particularly sensitive to many-body interactions

revealed the role of mean-field interactions and higher-order Coulomb correlations on bound and

unbound two-excitons in QWs [116, 199]. The power of 2DCS had not been extended to the study

of QDs until recently. In the past few years, 2DCS has facilitated progress in our understanding

of electronic properties [97], exciton dephasing and relaxation dynamics [98, 99], exciton-exciton
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coherent coupling [100], χ(5) optical nonlinearities [101], exciton-biexciton correlated broadening

[102] and exciton fine-structure [103] in epitaxial and colloidal QDs.

3.2 Four-Wave Mixing

The dephasing dynamics in semiconductors typically occur on the timescale of picoseconds

to tens of picoseconds, thus requiring ultrafast spectroscopic techniques to resolve them. Linear

spectroscopy, for a limited number of cases, is sensitive to the dephasing rate; however the primary

drawback of this technique is that it cannot distinguish between homogeneous and inhomogeneous

broadening. This limitation is overcome using nonlinear techniques such as transient FWM and

pump-probe spectroscopy, which can provide a measure of the homogeneous line width even in

the presence of significant inhomogeneity. Nonlinear spectroscopic techniques require light with

sufficient intensity such that the polarization induced in the sample can no longer be approxi-

mated as linearly-proportional to the incident electric field, but instead higher-power terms must

be considered, i.e.,

P = χ(1) · E + χ(2) · E2 + χ(3) · E3 + · · · , (3.1)

where P is the induced macroscopic polarization, E is the electric field of the incident light and

χ(n) is the nth-order susceptibility. Equation 3.1 ignores the vector nature of E and P , which

would require χ(n) to have the form of an n + 1 order tensor. The linear response of the system

is approximated by truncating the series to include only the χ(1) term, which determines the

absorption and refractive index. For materials with inversion symmetry, the even orders of χ(n) are

zero, thus the lowest-order nonlinearity in these materials is due to the χ(3) response. A material’s

χ(3) response can be probed using transient FWM and pump-probe techniques for which two or

three incident fields interact in the material to generate the nonlinear polarization. In the case

of two fields, one of them acts twice. These techniques are most commonly applied in the time

domain or a mixture of both time and frequency domains where, for example, the nonlinear signal
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is spectrally-resolved while the pulse delay is varied.

In pump-probe experiments (often called transient absorption), a pump pulse injects a popu-

lation that saturates a transition. A delayed probe pulse then experiences either reduced absorption

at the same transition energy or can drive a stimulated emission process (both of which appear as a

decrease in the absorption), or the probe can excite some of the population carriers to higher-lying

states (which appears as an increase in absorption). The dynamics of these processes are mapped

out by scanning the probe delay. As the population dynamics are measured, as opposed to the

coherent dynamics, pump-probe is not considered coherent spectroscopy. This technique can still

provide details about the coherent response by spectrally-resolving the differential probe signal,

where the change in signal strength can arise from changes in the transition line width or energy

and can provide a measure of the many-body interactions contributing to these phenomena.

The coherent nonlinear response can be probed using transient FWM techniques, of which

there are many variations. In its most basic form, a FWM signal is generated through the nonlinear

light-matter interaction using three pulses with similar frequency. The first pulse (A) incident on

the sample, with wavevector kA, induces a linear polarization, i.e. a coherent superposition between

the ground and excited states. After a delay τ , the second pulse (B), with wavevector kB, is incident

on the sample and converts the polarization into a population. The population amplitude depends

on the relative phase of the electric field of pulse B with respect to that of the polarization created

by pulse A and varies across the sample at zero delay. The population is maximum when the two

fields interfere constructively and is minimum where they interfere destructively, forming a dynamic

population grating with an amplitude that varies across the sample with spatial period kB − kA.

The third pulse (C) is incident on the sample with wavevector kC after a delay T with respect to

pulse B. The polarization induced by this pulse scatters off the grating into the phase-matched

direction ks = −kA + kB + kC, which is the FWM signal. In this case, detecting the signal along

ks necessarily requires that pulse A acts as the conjugated pulse irrespective of time-ordering of

the pulses.

The FWM signal depends on the pulse ordering and the pulse delays. The polarization gen-
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erated by pulse A coherently evolves during the delay τ . Since the system is in a population state

after pulses A and B are incident on the sample, incoherent population dynamics are associated

with the delay T . Recording the FWM as either τ or T are varied thus provides essential infor-

mation regarding coherent polarization dynamics or incoherent population relaxation and transfer

dynamics. In a more complicated picture, additional processes in the sample can be probed, such

as Raman-like coherences, and will contribute to the nonlinear FWM signal. Moreover, the pulse

time ordering can be varied where, for example, pulse A is incident on the sample last. In this case,

no FWM signal is expect to radiate along ks for a simple two-level system. This time ordering has

been used to detect and study the influence of many-body interactions on the coherent nonlinear

response [200]. A more complete description of the different pulse time orderings will be discussed

in Section 3.6 in the context of 2DCS.

3.2.1 Types of FWM Experiments

A general FWM experimental setup is depicted in Fig. 3.1. The FWM signal is generated by

three pulses with variable delays between the pulses, as described previously. The most common

method to detect the signal is to record it on a slow detector for the integration of the signal

intensity during the emission time, t. This time-integrated FWM (TI-FWM) signal is recorded

while either the delay τ or T is varied and can be expressed as:

STI (τ, T ) ∝
∫ +∞

0
|P (3) (τ, T, t) |2dt, (3.2)

where P (3)(τ, T, t) is the macroscopic third-order polarization. For a homogeneously-broadened

medium of independent two-level systems, in the approximation that the excitation pulses are

infinitely short in time and in the Markovian limit, the TI-FWM signal has the form [201]

STI (τ, T ) ∝ Θ (τ) Θ (T ) · e−2γτ · e−ΓgrT , (3.3)
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where Θ(x) is the Heaviside step function, γ is the homogeneous line width, and Γgr is the decay rate

of the population grating visibility during T . The grating visibility is sensitive to population decay,

spatial diffusion and spectral diffusion (which is often linked to spatial diffusion). The population

decay rate and spatial diffusion can be distinguished by measuring, for example, the decay of the

FWM signal with T for different angles between pulses A and B to measure the spatial diffusion

coefficient.

If the system is inhomogeneously-broadened, the first-order polarization created by the first

pulse will dephase more rapidly during τ than the homogeneous dephasing rate due to the oscillators

in the ensemble having different resonance frequencies. If the first pulse is the conjugated pulse

A, then the interactions of the second and third pulses with the system can reverse the phase

evolution of the oscillators, resulting in rephasing of their polarizations during the time evolution

after the third pulse. In this case, the FWM signal is emitted as a photon echo with a maximum

amplitude at a time τ after the third pulse and a temporal duration inversely proportional to the

inhomogeneous line width of the system. The TI-FWM signal of an inhomogeneously-broadened

system for this pulse time-ordering has the form [201]

STI (τ, T ) ∝ Θ (τ) Θ (T ) · e−4γτ · e−ΓgrT . (3.4)

It is clear from Eqn. 3.4 that the signal decays with τ at a rate proportional to the homo-

geneous line width even in the presence of inhomogeneity. This aspect is one of the strengths of

the FWM technique. However, in the case of moderate inhomogeneity where, for example, the

homogeneous and inhomogeneous line widths are equal, the dephasing rate is ambiguously defined

because the factor multiplying γ in Eqn. 3.3 and Eqn. 3.4 depends on the degree of inhomogeneity.
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Figure 3.1: Schematic diagram of an experimental setup for time-integrated (TI), time-resolved

(TR) and spectrally-resolved (SR) FWM signal detection.

Instead of using a slow detector to integrate the FWM signal, the signal can be measured

via up-conversion with a reference pulse delayed by a time t in a nonlinear crystal to obtain the

time-resolved FWM (TR-FWM) signal as a function of the emission time t. This signal can be

expressed by:

STR (τ, T, t) ∝
∫ +∞

−∞
|P (3)(τ, T, t

′
)|2 · |Eref (t− t′)|2dt′ , (3.5)

where E(t) is the reference pulse electric field. The FWM signal can also be measured by spectrally-

dispersing the emitted field using a grating and detecting the different frequency components using

a multi-channel CCD in a spectrometer (or using a slow detector and scanning the grating angle

in a monochromator). The spectrally-resolved FWM (SR-FWM) signal has the form

SSR (τ, T, ωt) ∝
∫ +∞

−∞
|P (3) (τ, T, t) |2eiωttdt, (3.6)

where ωt is the emission frequency. Heterodyning the SR-FWM signal with a reference pulse enables

measurement of the complex signal, i.e. with full phase information, for complete characterization
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of the nonlinear signal. This is accomplished by interfering the FWM signal with a time-delayed

reference pulse collinearly in a spectrometer. If the reference pulse amplitude and phase are well-

characterized, then the FWM signal amplitude and phase can be extracted through Fourier analysis

[202]. Details of this heterodyne technique will be presented in the following Chapter that discusses

implementation of spectral interferometry for 2DCS.

3.3 Nonlinear Response Function

The macroscopic polarization induced by the nonlinear light-matter interaction is connected

to the microscopic electronic couplings and dynamics in the sample through a multidimensional

nonlinear response function [203]. In a three-pulse experiment, excitation pulses A, B and C are

incident on the sample at absolute times tA, tB and tC, respectively, so that the separation between

pulses A and B is τ ≡ tB − tA, between pulses C and B is T ≡ tC − tB, and the FWM signal is

measured at a time t = ts after pulse C (assuming tA < tB < tC). The pulse sequence and timing

definitions are depicted in Fig. 3.2.

kA 

Time 

t ts 

kB kC 

FWM 

T 
tA 

tA’ 

tB’ 

tB tC 

tC’ 

t 

Figure 3.2: Excitation pulse sequence for three-pulse FWM experiments. Pulses with wavevectors

kA, kB and kC arrive at the sample as times tA, tB and tC, respectively. Pulses A and B are

separated by τ = tB − tA, B and C by T = tC − tB, and the signal is measured at a time t = ts

after pulse C.
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The electric field of each pulse is given by

Ej (r, t) = [ε+
j (t) · ei(kj ·r−ωjt) + ε−j (t) · e−i(kj ·r−ωjt)]êj , (3.7)

where kj , ωj and êj are the wavevector, frequency and unit polarization vector of the jth pulse

(j = A,B or C). ε+
j (t) (ε−j (t)) is the positive (negative) frequency component of the slowly-varying

pulse envelope. Using this notation, the pulse sequence can be written as the sum of the three

electric fields:

E (r, t) =
∑

j=A,B,C

Ej(r, t− tj), (3.8)

where pulse j arrives at the sample at time tj . The total third-order polarization generated by the

interaction of the three pulses in the material can be written as

P (3)(r, tA, tB, tC) =

∫ ∞
0

∫ ∞
0

∫ ∞
0
R(3)(t

′
A, t

′
B, t

′
C)·EA(r, t

′
A − tA)EB(r, t

′
B − tB)

× EC(r, t
′
C − tC) · dt′Adt

′
Bdt

′
C,

(3.9)

where R(3) is the third-order time-dependent response function of the system and t
′
j is the inte-

gration variable associated with pulse j. The nth order response function R(n) is calculated using

time-dependent perturbation theory and can be expressed as a combination of (n+ 1)th-order cor-

relations of the dipole moment operator [204]. In general, a sum-over states expression for R(3) can

be derived for an arbitrary system.

In the limit of impulsive excitation, where the pulse envelope duration is short compared to

the system dynamics and pulse delays, each pulse can be approximated as a Dirac delta function

pulse in time. In this case, Eqn. 3.9 can be analytically evaluated and has the following form:

P (3)(r, t, tA, tB, tC) = R(3)(tA, tB, tC)·ε±Aε
±
Bε
±
C · e

i(±kA±kB±kC)·r · e−i(±ωA±ωB±ωC)·t

× ei(±ωA±ωB±ωC)·tC · ei(±ωA±ωB)·tB · ei(±ωA)·tA .

(3.10)
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Equation 3.10 includes all possible commutations of pulses A, B and C nonlinearly interacting

in the sample. Each contribution produces a distinct FWM signal that radiates in the corresponding

phase-matched direction ks = ±kA ± kB ± kC after inserting P (3) into Maxwell’s equations as a

source term. Signals will emit in the phase-matched direction only if the sample size is larger than

the wavelength of the excitation pulses and emitted signal; otherwise, a population grating cannot

form across the sample and the signal will emit isotropically. Of the eight possible wavevectors for

ks, only four are independent, since ks = −ks corresponds to the complex conjugate of P (3) and

does not represent a unique physical process. The signal wavevector can then assume any of the

four phase-matching values: ks,I = −kA + kB + kC, ks,II = kA − kB + kC, ks,III = kA + kB − kC

and ks,IV = kA + kB + kC.

For a given pulse time ordering, different physical processes in the sample will radiate along

the different ks,j (where j = I, II, III or IV ). For example, if pulse A is incident on the sample first,

followed by pulse B and then pulse C, the signal radiated along ks,I corresponds to the rephasing

signal for which a photon echo is emitted from an inhomogeneously-broadened system at a time τ

after pulse C. For this same pulse time-ordering, no signal is expected to radiate along the ks,III

direction from a simple two-level system; the appearance of a signal along this direction for this

pulse time ordering has been attributed to many-body interactions in the sample. One could probe

the entire third-order nonlinear response by recording the FWM signal along all ks,j’s. While this

is rather straightforward for a two-pulse experiment, for two directions, recording all the signals

is technically challenging and often not possible nor necessary (because they won’t provide new

information) for three-pulse experiments. Alternatively, the FWM signal can be measured along

a single ks,j, and multiple experiments using different time-orderings can be performed to probe

different physical processes in the sample. The third-order polarization associated with the different

pulse time-orderings can be obtained from a sum-over-states expression for the nonlinear response

function. The response functions can be intuitively understood using a diagrammatic approach

consisting of double-sided Feynman diagrams that represent the various coherent pathways. Before

connecting the nonlinear response function to the diagrams, which are described in Section 3.5,
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the optical Bloch equation formalism will first be reviewed in the next Section. The optical Bloch

equations will aid in understanding how to construct and interpret the Feynman diagrams from an

nth order perturbative expansion of the equations of motion for the density matrix.

3.4 Optical Bloch Equation Formalism

The optical Bloch equations (OBEs) are convenient for interpreting the coherent nonlinear

optical response of the light-matter interaction. They are more accurately applied to model atomic

systems, where the energy structure is well characterized by a few atomic transitions [205]. For semi-

conductors, in which many-body effects (MBEs) often dominate the coherent nonlinear response,

the OBEs encounter difficulties. To account for MBEs, the OBEs can be modified phenomenologi-

cally to incorporate different effects such as excitation-induced dephasing (EID), excitation-induced

shift (EIS) and local field corrections (LFC) [92]. While phenomenological few-level models are of-

ten used because of their relatively easy implementation, significant progress has been made in the

development of fundamental microscopic theory for semiconductors using density matrices as well

as non-equilibrium Green’s functions, which can account for Coulomb interactions between elec-

trons and holes [203, 206, 207, 208]. Nonetheless, the basic form of the OBEs without modifications

can help develop an intuitive understanding and interpretation of the 2DCS experiments. For a

review and numerical analysis of the modified OBEs with MBEs, see Ref. [92].

3.4.1 Density Matrix and the Equation of Motion

The OBEs are derived using the density matrix formalism. The density matrix is useful for

describing a quantum system of mixed states, that is, a statistical ensemble of pure states. Suppose

a system may be found in state |ψ1〉 with probability p1, state |ψ2〉 with probability p2, and so

forth, where 0 ≤ pn ≤ 1,
∑

n pn = 1 and the |ψn〉’s are linear combinations of the pure basis states

of the system, |φi〉. The density matrix operator is then defined as [205]
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ρ̂(t) ≡
∑
n

pn · |ψn(t)〉〈ψn(t)|, (3.11)

where |ψn(t)〉 is the time-dependent wave function of state n with probability pn. In terms of the

eigenstates of the system, |ψn(t)〉 can be written as

|ψn(t)〉 =
∑
i

ci(t)|φi〉, (3.12)

where ci(t) is the time-dependent coefficient for state |φi〉. For a given state |ψn(t)〉, the elements

of the density matrix, ρij = ci(t) · c∗j (t), give the probability of the system being in a particular

quantum state. The diagonal elements, ρii = |ci(t)|2, give the probability of the system being in

an eigenstate i, thus they are referred to as the population density. The off-diagonal elements, ρij

(i 6= j), describe the probability to be in a coherent superposition (polarization) between states i

and j. As an example, consider a single two-level system with ground state |1〉 and excited state

|2〉. Suppose the wavefunction of the system has the form |ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉. The density

matrix is then given by:

ρ =

ρ11 ρ12

ρ21 ρ22

 =

c1c
∗
1 c1c

∗
2

c2c
∗
1 c2c

∗
2

 . (3.13)

The diagonal element ρ11 = |c1|2 (ρ22 = |c2|2) is the population density of the ground

state (excited state). The off-diagonal element ρ12 = c1c
∗
2 = ρ∗21 describes the coherence of the

system. When considering an ensemble of independent two-level systems, the total system can be

described using a summation of the pure case density matrices, given by Eqn. 3.13, weighted by

the probability, pn, of each individual system. The expectation value of any observable variable of

the system can be expressed using the density matrix operator. For example, the expectation of

the polarization operator P̂ is given by:

〈P̂ 〉 = 〈ψ(t)|P̂ |ψ(t)〉 = T r(Pρ(t)), (3.14)
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where T r represents the trace of an operator, i.e. the sum the operator’s diagonal elements.

For a system which can be described by a statistical ensemble of pure quantum states, the time

dependence of the expectation value of the polarization is governed by the time evolution of the

density matrix operator. Thus simulating the nonlinear response of a simple system amounts to

analyzing the equations of motion for the density matrix. The equations of motion can be derived

from the Schrödinger equation of the wavefunction and are given by:

ρ̇ =
−i
~

[H, ρ], (3.15)

where [H, ρ] = H · ρ − ρ ·H. As currently written, Eqn. 3.15 does not include any relaxation or

dephasing parameters. They can be added phenomenologically, resulting in a modified equation of

motion whose matrix elements are [209]:

ρ̇ij =
−i
~
∑
k

(Hikρkj − ρikHkj)− Γijρij , (3.16)

where Γij = (1/2)(γi + γj) + γphij , γi (γj) is the decay rate of state i (j) and γphij is the coherence

pure dephasing rate (γphij = 0 for i = j). For a simple two-level system, the Hamiltonian is given

by

H = H0 +HI =

~ω1 V12

V21 ~ω2

 , (3.17)

where H0 is the free-particle Hamiltonian with eigenenergies ~ω1 and ~ω2 for states |1〉 and |2〉,

respectively. The light-matter interaction Hamiltonian, under the dipole approximation, is given

by HI = −µ · E(t). Only off-diagonal elements of HI are nonzero due to parity of the eigenstates.

Inserting H into the equation of motion for ρ gives a set of equations that describe the time evolution

of the density matrix, commonly referred to as the OBEs. The OBEs are written as
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ρ̇11 = −γ1 · ρ11 +
i

~
· µ12E(t) · (ρ12 − ρ21)

ρ̇22 = −γ2 · ρ22 −
i

~
· µ12E(t) · (ρ12 − ρ21)

ρ̇12 = −Γ12 · ρ12 + iω0ρ12 −
i

~
· µ12E(t) · (ρ22 − ρ11), (3.18)

where ω0 = (1/~) · (E2 − E1). Equation 3.18 can be used to describe coherent light-matter in-

teractions in atomic systems. In order to account for MBEs in semiconductors, the equations are

modified to include phenomenological terms for EID, EIS and LFC. In order to model these phe-

nomena correctly, the modified OBEs need to be numerically solved. For the purpose of providing

an intuitive understanding of 2DCS, however, these modifications are neglected. The equations of

motion for the density matrix can be solved perturbatively in the limit of weak electric fields that

are Dirac delta function pulses in time. Perturbation theory provides analytical solutions that will

help to understand the relation between the light-matter interaction and the coherent nonlinear

response in FWM experiments. The OBEs can be perturbatively solved by expanding them in

terms of the Rabi frequency, Ω ≡ (µ12 · E)/~:

Ω → αΩ

ρij = ρ
(0)
ij + αρ

(1)
ij + α2ρ

(2)
ij + · · · , (3.19)

where α is assumed to be a small dimensionless parameter. These forms for Ω and ρij are inserted

into Eqn. 3.18 and equal powers of the coefficients αn are collected. If we write the electric

field as E(t) = Ê(t)exp(−iωt) + Ê∗(t)exp(iωt) and ρij(t) = ρ̂ij(t)exp(−iωt) for i 6= j, then the

general expression for the nth-order equation of motion for the density matrix, in the rotating wave

approximation, is given by

ρ̇
(n)
ij = −i∆ij · ρ(n)

ij +
iµ

2~
· Ê(t) · ρ(n−1)

kl , (3.20)

where ∆ij ≡ ωi − ωj − iΓij . From this expression it becomes clear that the interaction of the
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light field with the system increases the order of perturbation from n − 1 to n. Furthermore,

contributions to the polarization arise at odd orders of the applied field, whereas new contributions

to the population arise at even orders. These two points are demonstrated in Fig. 3.3, where

each arrow corresponds to a single interaction of the field with the system. Equation 3.20 can be

integrated to give a general form for the nth-order density matrix component ρ
(n)
ij . A diagrammatic

approach using double-sided Feynman diagrams is useful for tracking the different orders of the

density matrix and is introduced in the following Section.

𝜌(0)11 

𝜌(1)12 

𝜌(1)21 

𝜌(2)11 

𝜌(2)22 

𝜌(3)12 

𝜌(3)21 

Figure 3.3: Schematic diagram representing the increase in perturbation order n with each light-

matter field interaction. Even orders of the applied field produce populations, whereas odd orders

generate polarizations.

3.5 OBEs Made Easy: Double-Sided Feynman Diagrams

In perturbation theory, the evolution of the density matrix elements can be tracked using

double-sided Feynman diagrams. Each diagram corresponds to a coherent pathway in Liouville

space. The diagrams are constructed by drawing vertical lines to track the “bra” and “ket” that

form the density matrix operator, as depicted in Fig. 3.4. The left line represents the “ket” and the

right line the “bra”, with time increasing vertically upward. The incident light field is represented

by the arrow, and the interaction of the field with the system is indicated by the vertex of the

arrow with either the left or right vertical line. The light field interaction changes the density

matrix state from |i〉 to |j〉. An arrow pointing to the right implies the light field has the form

Ej · exp(ikj · r − iωjt), while an arrow pointing to the left means the light field contribution is
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conjugated, with the form E∗j · exp(−ikj · r + iωjt). An arrow pointing towards (away from) the

vertical lines indicates absorption (emission) of a photon, driving the system from a lower (higher)

energy state to a higher (lower) energy state. Thus the interaction of a field with amplitude Ej

(E∗j ) with the “ket” state corresponds to an absorption (emission) process (the opposite is true for

the “bra” state).

𝜌 =  |𝜓  𝜓| =
|𝑖  𝑖| |𝑖  𝑗| ⋯

|𝑗  𝑖| |𝑗  𝑗| ⋯
⋮ ⋮ ⋱

 

|𝑖  

|𝑖  

 𝑖| 

 𝑗| 

Time E(t) 

E(t) 

Figure 3.4: The light-matter field interaction changes either the “bra” or “ket” state of the density

matrix. The double-sided Feynman diagram is shown for a conjugated field that interacts with the

system in a population state i to induce a polarization between states i and j.

In the example given in Fig. 3.4, the time evolution of the density matrix element ρ
(n)
ij = |i〉〈j|

depends on ρ
(n−1)
ii , the energy separation and dipole moment between states |i〉 and |j〉, the decay

and dephasing rates, and the applied electric field as indicated in Eqn. 3.20. This equation can

be integrated to give the nth-order density matrix element and is shown in Fig. 3.5 for the four

possible vertex types.
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𝜌𝑗𝑘
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Figure 3.5: The four possible double-sided Feynman diagram vertices and their corresponding

integrals for calculating the density matrix elements.

Each order in the perturbation expansion can be characterized by a diagram containing one

vertex, and n such diagrams are concatenated vertically in time to produce a diagram for the

nth-order component of the density matrix. The overall wavevector of the diagram is the sum of

the individual wavevectors for each vertex. The sign of the diagram is (−1)m, where m is the

number of vertices on the right vertical line, since each interaction with the “bra” introduces a

minus sign. The nth-order component can be calculated using the integrals in Fig. 3.5. Calculating

ρ
(3)
ij , for example, requires performing a triple integral over the applied field and previous orders

of the density matrix. From the double-sided Feynman diagram, one can directly write down

the mathematical form of the nonlinear response function using an appropriate set of translation
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rules [204]. Once all Feynman diagrams for a particular phase-matched direction and pulse time-

ordering are determined, the sum-over-states expression for the total nonlinear response can be

obtained from the diagrams.

To illustrate how the double-sided Feynman diagrams can easily lead to a sum-over-states

expression for R(3), consider a system with a single ground state |g〉, singly-excited states |e〉 and

|e′〉, and doubly-excited state |f〉, which represents the QD system with two bright exciton states

and a doubly-excited biexciton state presented in Chapter 2. When only considering the signal

radiated along ks = −kA + kB + kC and limiting the pulse sequence to the rephasing time ordering

for which the conjugated pulse A arrives at the sample first, we can write three general double-sided

Feynman diagrams, shown in Fig. 3.6.

t 
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ks 

(a) (b) (c) 
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 𝑔| 
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kB 

kC 

ks 

T 

t 

(d) 

|𝑔  

|𝑒  

|𝑓  

meg, weg 

mfe, wfe 

Figure 3.6: (a)-(c) Double-sided Feynman diagrams relevant for the FWM signal radiated along

ks = −kA + kB + kC for the rephasing pulse time ordering in which the conjugated pulse A arrives

first. (d) The energy level scheme consists of a ground state, |g〉, singly-excited states, |e〉, and

doubly-excited states |f〉.

The diagrams in Fig. 3.6 describe the processes of ground-state bleaching (a), excited-state

emission (b) and excited-state absorption (c) [203]. For example, for the excited-state emission

process in (b), the conjugated field A with wavevector −kA excites the “bra” from state |g〉 to

state |e〉, inducing a polarization between these states. After a time τ , field B with wavevector
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kB acts on the “ket” to induce a polarization between states |g〉 and |e′〉, which places the system

into a coherent superposition between states |e′〉 and |e〉 during T . If |e′〉 = |e〉, then the frequency

associated with this coherence is zero, and the system is instead in a population state of |e〉. After

the delay T , field C with wavevector kC acts on the “bra” to drive it from state |e〉 to state |g〉.

The system remains in a coherent superposition between states |e′〉 and |g〉 during t. This coherent

pathway is one contribution to the macroscopic polarization that will radiate as the FWM signal

in the phase-matched direction ks. From the three diagrams in Fig. 3.6, all the possible coherent

pathways for the rephasing time ordering can be summed to obtain an expression for the nonlinear

response function R(3), which is given by [204]:

R(3) =

(
i

~

)3

[

∑
e,e′

(µge · ê1)(µeg · ê2)(µge′ · ê3)(µe′g · ê4)e(iωeg−Γeg)τe−ΓggT e
−(iω

e
′
g
+Γ

e
′
g
)t

+
∑
e,e′

(µge · ê1)(µge′ · ê2)(µeg · ê3)(µe′g · ê4)e(iωeg−Γeg)τe−(iω
e
′
e
+Γ

e
′
e
)T e
−(iω

e
′
g
+Γ

e
′
g
)t

+
∑
e,e′ ,f

(µge · ê1)(µge′ · ê2)(µe′f · ê3)(µfe · ê4)e(iωeg−Γeg)τe−(iω
e
′
e
+Γ

e
′
e
)T e−(iωfe+Γfe)t],

(3.21)

where µij , ωij ≡ ωi − ωj , and Γij are the dipole moment, transition frequency and decay

rate, respectively, of the transition i → j. The result in Eqn. 3.21 can be inserted into Eqn. 3.10

to determine the total macroscopic polarization of the system, P (3)(τ, T, t). The radiated FWM

field can then be calculated by inserting the polarization into Maxwell’s equations as a source

term. These steps result in a simple expression that connects the spectrally-resolved emission to

the macroscopic polarization, which is given by [210]:

E(τ, T, ωt) =
L

2n(ωt)cε0
iωtP

(3)(τ, T, ωt), (3.22)

where L is the sample thickness, n(ωt) is the frequency-dependent refractive index, c is the speed of
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light and ε0 is the vacuum permittivity. Equation 3.22 is valid only if absorption and propagation

effects in the sample can be ignored.

3.6 2D Spectroscopy

Optical 2DCS is an enhanced version of transient FWM, in which the pulse delays are stepped

with interferometric precision and the FWM complex field is measured through spectrally-resolved

heterodyne detection. The technical details and challenges of implementing 2DCS are discussed in

the next Chapter. In this Section, the principles of the technique are discussed and an intuitive

description of the different types of 2D spectra is provided using the Feynman diagrams described

in the previous Section.

2DCS based on three-pulse FWM can be experimentally implemented using a number of

different methods, with the most common utilizing passive phase-stabilization of the pulse delays

through common-path optics [211, 212, 213], pulse-shaping methods [214, 215], non-interferometric

spectral intensity measurements [216], spectral phase calibration procedures [210] and active phase-

stabilization using a reference laser and feedback electronics [104, 217]. For each of these variations,

the geometric position and wavevectors of the pulses can be different, with perhaps the most

common (and the one employed in the experiments discussed in this thesis) being the box geometry,

depicted in Fig. 3.7(a). Three excitation pulses propagate along three corners of a square and are

focused onto the sample with wavevectors kA, kB and kC. The third-order polarization, P (3)(τ, T, t),

generated by the nonlinear interaction of the three pulses in the sample radiates the FWM field

that is detected in the phase-matched direction ks = −kA +kB +kC. Figure 3.7(c) shows the FWM

and excitation beam spots on the collimating lens as viewed when looking towards the sample. The

time ordering of the excitation pulses is shown in Fig. 3.7(b), where the delay between the first

two pulses is τ , between the second and third pulses is T , and the signal is emitted during t.
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Figure 3.7: (a) Schematic of the excitation pulses propagating in the box geometry. The FWM

signal is emitted in the phase-matched direction, ks. (b) Time ordering of the excitation pulses.

(c) The FWM signal and excitation beam spots on the output lens as viewed looking towards the

sample.

The FWM signal is measured by interfering it with a delayed reference pulse on a beam

splitter, and their interference is spectrally-resolved using a spectrometer and multi-channel CCD.

The FWM complex field is extracted using a simple algorithm that is discussed in the next Chapter.

In standard 2DCS experiments, the electric field of the emitted FWM signal is presented as a 2D

spectrum for which any two signal frequencies associated with the time delays are correlated.

A 2D spectrum can be obtained from the emitted signal field, E(τ, T, t), by recording spectral

interferograms while stepping one of the delays and taking a Fourier transform with respect to this

delay. Since the Fourier transform with respect to t is implicit in the spectrally-resolved detection

method, a Fourier transform with respect to τ produces a 2D spectrum with amplitude and phase

characterized by

S(ωτ , T, ωt) =

∫ +∞

−∞
E(τ, T, ωt)e

iωτ τdτ (3.23)

for a fixed value of T . Similarly, if T is stepped for a fixed τ , the 2D spectrum is characterized by

a complex amplitude S(t, ωT , ωt). Using the relations between the nonlinear response function and
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the radiated FWM field discussed in the previous Section, a 2D spectrum can be analyzed using

the sum-over-states expressions for R(3).

3.6.1 Types of 2D Spectra

Different microscopic processes in the sample can be probed by measuring the FWM signal

along the phase-matched direction ks for different permutations of the pulse time ordering, which

are shown in Fig. 3.8. For each pulse sequence, a Fourier transform of the signal is taken with

respect to two of the time delays, which are indicated by the labels “Axis 1” and “Axis 2”.
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Figure 3.8: Schematic diagrams of the excitation pulse time ordering available for optical 2DCS

three-pulse experiments. The rephasing pulse sequence is depicted in (a), where the conjugated

pulse A is incident on the sample first, and the signal if Fourier-transformed with respect to τ

and t. (b) is a variant of the sequence in (a), where instead the delay T is scanned to probe

population dynamics and Raman-like coherences. The non-rephasing pulse sequence is depicted in

(c), where the conjugated pulse comes second. (d) The two-quantum pulse sequence, where the

conjugated pulse arrives last, is sensitive to many-body interactions. In each case, the signal is

Fourier-transformed with respect to axes 1 and 2 to produce the corresponding 2D spectrum.

2D spectra for different excitation sequences are presented in this sub-Section for the four-
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level energy scheme shown in Fig. 3.9, which consists of a ground state (|g〉), two singly-excited

exciton states (|H〉 and |V 〉) and a doubly-excited biexciton state |B〉. As mentioned in the previous

Chapter, this energy scheme is relevant for the epitaxial QDs discussed in this thesis; therefore the

analysis in this sub-Section will aid in interpreting the results presented in later Chapters.

|𝑉  

|𝐵  

DFSS 

DB 

V H 

H 
V 

|𝐻  

ℏ𝜔𝐻 − ℏ𝜔𝑔 = ℏ𝜔0 − Δ𝐹𝑆𝑆/2 

ℏ𝜔𝑉 − ℏ𝜔𝑔 = ℏ𝜔0 + Δ𝐹𝑆𝑆/2 

ℏ𝜔𝐵 − ℏ𝜔𝐻 = ℏ𝜔0 − Δ𝐵 + Δ𝐹𝑆𝑆/2 

ℏ𝜔𝐵 − ℏ𝜔𝑉 = ℏ𝜔0 − Δ𝐵 − Δ𝐹𝑆𝑆/2 

Relevant Energies: 

(a) (b) 

|𝑔  

ħw0 

ħw0 

Figure 3.9: (a) The relevant energy level scheme used to model the nonlinear response from epitaxial

QDs, consisting of the a ground state, |g〉, two singly-excited exciton states, |H〉 and |V 〉, separated

by the fine-structure splitting energy ∆FSS , and a doubly-excited biexciton state |B〉 with binding

energy ∆B. The corresponding energies are indicated in (b).

As discussed in detail in Chapter 2, the four-level energy diagram in Fig. 3.9 is equiva-

lent to two independent two-level systems if ∆B = 0. For the ensuing discussions, we consider

nonzero ∆FSS and ∆B and follow the dipole transition selection rules as indicated in Fig. 3.9.

The corresponding pulse sequence is indicated for each type of spectrum. The coherent pathways

contributing to the 2D spectra are derived from the double-sided Feynman diagrams discussed in

the previous Section. The spectra are calculated using the sum-over-states expressions for R(3) for

zero inhomogeneity so that the coherent pathways are more clearly resolved. The dipole moments

for all transitions are equal to unity, all population relaxation rates are Γii = 0.05 meV and all ho-

mogeneous line widths are Γij = 0.1 meV. Typically for epitaxial QDs, ∆B � ∆FSS , which would

result in most of the coherent pathways overlapping spectrally; thus for demonstration purposes

we set ∆FSS = 2 meV and ∆B = 3 meV.
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3.6.1.1 Rephasing One-Quantum Spectrum (S1)

A rephasing one-quantum spectrum SI(ωτ , T, ωt) is generated using the pulse time ordering

shown in Fig. 3.8(a) (the index i in Si indicates the arrival order of the conjugated pulse A relative

to the other pulses). The FWM signal is recorded while the delay τ between the first pulse A

and pulse B is scanned and the delay T between pulses B and C is held fixed. The FWM signal

field E(τ, T, ωt) is Fourier-transformed with respect to τ to generate the rephasing one-quantum

2D spectrum that correlates the excitation frequencies, ωτ , with the emission frequencies, ωt, in

a two-dimensional map. Coherently tracking the phase of the signal as the delay τ is scanned

with sub-cycle precision permits the Fourier transform operation of the emitted FWM field, thus

congested one-dimensional spectra can be coherently unfolded onto two frequency dimensions.

The coherent pathways that contribute to the rephasing signal are indicated by the Feynman

diagrams in Fig. 3.10(a)-(f) for pulse A linearly polarized along H and all possible polarization

combinations of pulses B and C and the detected signal. Consider the diagram in Fig. 3.10(a),

for which the polarization sequence is HHHH (where the sequence is defined as the polarization of

pulses A, B, C and the detected signal, respectively). For this pathway, pulse A creates a coherent

superposition between the ground state |g〉 and the excited state |H〉 that evolves as e−iωgHτ , where

ωgH ≡ ωg − ωH < 0. For an inhomogeneously-broadened ensemble, the oscillators evolve during

τ with different frequencies and dephase. After a delay τ , pulse B converts the coherences into a

ground state population, which does not accumulate phase during T but instead simply decays with

a rate Γgg. After a delay T , the third pulse C converts the population back to a coherence between

states |H〉 and |g〉, which evolves as e−iωHgt. Comparing the phase evolution between τ and t, it

is apparent that the coherences oscillate with negative frequency during τ and positive frequency

during t because pulse A is conjugated. Phase evolution with opposite sign during τ and t enables

the coherences to “rephase” at a time τ after pulse C, resulting in a photon echo signal with a

temporal duration inversely proportional to the inhomogeneous line width (thus the reason this

time ordering is referred to as the rephasing pulse sequence). The first- and third-order coherences
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during τ and t, respectively, evolve with frequency of magnitude ~ωH = ~ω0 −∆FSS/2; thus this

coherent pathway contributes to the peak labeled (a) on the diagonal dashed line (indicating equal

excitation and emission energies) in the simulated 2D spectrum shown in Fig. 3.10(g).
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Figure 3.10: (a)-(f) Double-sided Feynman diagrams for the diamond level scheme consisting of the

a ground state, |g〉, two singly-excited exciton states, |H〉 and |V 〉, and a doubly-excited biexciton

state |B〉. An additional six diagrams can be written if states |H〉 and |V 〉 are swapped (referred

to in the spectrum using the labels with “prime” notation), resulting in a total of 12 coherent

pathways. The simulated 2D spectrum in (g) contains contributions from all possible coherent

pathways irrespective of polarization; however specific pathways can be isolated by taking advantage

of the dipole transition selection rules, as discussed in the text.

The remaining allowed coherent pathways are represented by the Feynman diagrams in Fig.

3.10(b)-(f). Only diagrams for which the first pulse is polarized along H are shown; an additional

six diagrams can be written by interchanging |H〉 and |V 〉, which are referred to in the 2D spectrum

using the labels with “prime” notation. Thus a total of 12 coherent pathways can contribute to
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the coherent nonlinear response in the rephasing pulse time ordering, which are shown in the

2D spectrum in Fig. 3.10(g). The vertical axis is plotted as negative energy since the first-order

coherences induced by the conjugated pulse A oscillate with negative frequencies during τ compared

to the third-order coherence frequencies during t. Two pathways (labeled (a) and (b) in Fig. 3.10)

contribute to the peak at |~ωτ | = ~ωt = ~ωH on the diagonal. They correspond to the system

being in either a ground or excited state population during T . The peak labeled {(c), (f)} arises

from coherent pathways that involve excitation of the doubly-excited state |B〉. This peak is red-

shifted from the diagonal peak along the emission energy axis by ∆B−∆FSS (∆B +∆FSS for peak

{(c′), (f ′)}). A third peak, corresponding to the Feynman diagrams (d) and (e), appears at the

excitation energy of state |H〉 and emission energy of state |V 〉. The three peaks labeled with the

“prime” notation arise from similar processes where pulse A is linearly polarized along V instead

of H.

The off-diagonal peaks arise from interactions in the system, since they indicate excitation

at one energy and emission at another. The presence of these peaks is due to the bound biexciton

energy shift ∆B. From the Feynman diagrams it is clear that for ∆B = 0, the (f) and (c) coherent

pathways destructively interfere with the (d) and (e) pathways (and same for “primed” notation) so

that only two peaks remain in the 2D spectrum that correspond to the ground-state bleaching and

excited-state emission nonlinearities. This is expected: for ∆B = 0, the four-level energy diagram in

Fig. 3.9 is equivalent to two independent two-level systems through a basis transformation, which

leaves the Hamiltonian unchanged. Thus, the nonlinear response for these two energy schemes

would be similar and off-diagonal peaks indicative of coupling between the states would be absent.

An apparent advantage of performing 2DCS is the separation of the coherent pathways that

give rise to the nonlinear optical response. For example, in one-dimensional spectrally-resolved

FWM, which is the vertical projection of the 2D spectrum onto the emission axis, pathways (a),

(b), (d
′
) and (e

′
) spectrally-overlap (similarly for (d), (e), (a

′
) and (b

′
)). Since these pathways

originate from different microscopic processes, interpreting one-dimensional FWM measurements is

often difficult or impossible. Not all pathways are isolated in the rephasing 2D spectrum, however –
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each peak in the spectrum comprises two pathways. The diagonal peaks are easy to interpret since

they arise from ground and excited state populations of the same transition. On the other hand,

the off-diagonal peaks include contributions from both ground-state bleaching and Raman-like

coherences between states |H〉 and |V 〉 and thus extracting relevant parameters such as dephasing

rates, dipole moments, and transition frequencies is not as straightforward. One can take advantage

of the selection rules to isolate some of the pathways. For example, using an HVVH polarization

sequence, the coherent pathway labeled (f) is isolated and the |B〉 → |H〉 transition emission

properties can be probed. In practice, ∆FSS � ∆B, and so only two spectrally-resolvable peaks

are measured. Nonetheless, certain coherent pathways can be isolated through the dipole selection

rules.

3.6.1.2 Rephasing Zero-Quantum Spectrum (S1)

A rephasing zero-quantum spectrum SI(τ, ωT , ωt) is generated using the same pulse time

ordering as the rephasing one-quantum experiments, but instead scanning T while holding τ fixed

and taking a Fourier transform of the emitted signal field with respect to T , as depicted in Fig.

3.8(b). A photon echo is still emitted at a time τ after pulse C; however the dynamics associated

with population decay and Raman-like coherences can now be probed. The simulated SI(τ, ωT , ωt)

2D spectrum is shown in Fig. 3.11.
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Figure 3.11: Simulated rephasing zero-quantum spectrum SI(τ, ωT , ωt) that correlates the zero-

quantum energy associated with T to the emission energy associated with t. The spectrum contains

contributions from all coherent pathways, and the peak labels correspond to the same Feynman

diagrams for the rephasing one-quantum spectrum SI(ωτ , T, ωt). The amplitude has been saturated

at half the maximum to enhance the cross peaks at ~ωT 6= 0.

Compared to the rephasing one-quantum spectrum, the zero-quantum spectrum more clearly

isolates the coherent pathways associated with the biexciton transition and Raman-like coherences

between states |H〉 and |V 〉. One can also take advantage of the selection rules to isolate single

peaks in the spectrum. For example, if ∆FSS is smaller than the |H〉 → |g〉 and |B〉 → |H〉

homogeneous line widths, which is often the case experimentally, then the (f), (a), (b), (c) and

(d
′
) pathways will overlap, inhibiting the ability to extract useful information. However, one can

isolate the pathway associated with (f) by using an HVVH polarization sequence for which only

this pathway is dipole-transition allowed. By using the transition selection rules to isolate certain

quantum pathways, the parameters for specific peaks can be accurately measured. For example, the

line widths along ~ωT are associated with different relaxation processes depending on the coherent

pathway and can provide additional insight into the dephasing mechanisms in the system that
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cannot be obtained from the other 2D spectra. This aspect is discussed in more detail in Chapter

6.

3.6.1.3 Non-Rephasing One-Quantum Spectrum (S2)

Using three-pulse excitation allows for time ordering of the first two pulses to be interchanged,

which is a capability not available in two-pulse experiments. A “non-rephasing” one-quantum

spectrum SII(ωτ , T, ωt) can be generated by impinging the sample first with pulse B, followed by

the conjugated pulse A and then pulse C, as depicted by the timing sequence in Fig. 3.8(c). Pulse

B is scanned earlier in time (increasing τ) while the FWM signal is recorded, and the emitted FWM

field is Fourier-transformed with respect to τ . For this pulse time ordering, the phase accumulation

occurs with similar sign for the first-order coherences during τ and third-order coherences during

t. For a homogeneously-broadened system, the signal will decay with the homogeneous dephasing

rate Γij . If instead the line width is dominated by inhomogeneity, then the oscillators with different

frequencies will dephase during τ and t and the signal decays in a time inversely proportional to

the inhomogeneous line width. This behavior is in contrast to the rephasing pulse time ordering:

the coherences no longer rephase and the emitted FWM signal is a free-polarization decay instead

of a photon echo. The coherent pathways for this pulse time ordering are shown in Fig. 3.12(a)-(f)

for pulse B linearly-polarized along H (as with the rephasing pulse time ordering, there are an

additional six diagrams that correspond to interchanging |H〉 and |V 〉 and are referred to using

the “prime” notation). The corresponding 2D non-rephasing spectrum for zero-inhomogeneity is

shown in Fig. 3.12(g).
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Figure 3.12: (a)-(f) Double-sided Feynman diagrams for the non-rephasing pulse sequence for the

first pulse linearly-polarized along H. An additional six Feynman diagrams can be written for the

first pulse polarized along V and are referred to using the “prime” notation. (g) The corresponding

simulated 2D non-rephasing spectrum for the four-level energy structure containing contributions

from all coherent pathways. The amplitude has been saturated at half the maximum to enhance

the cross peaks.

The vertical axis in Fig. 3.12(g) is plotted as positive excitation energy ~ωτ since the co-

herences evolve with positive frequencies during τ for this pulse time ordering. The ground-state

bleaching and excited-state emission pathways ({(a), (b)}, {(a)
′
, (b)

′}) overlap on the diagonal, sim-

ilar to the rephasing zero- and one-quantum spectra. In this case the Raman-like coherence between

states |H〉 and |V 〉 associated with diagrams (e) and (e
′
) are also on the diagonal, thus the diag-

onal peaks will oscillate with T at frequency ∆FSS/~. In contrast to the rephasing one-quantum

spectrum, the remaining pathways are spectrally-isolated. Thus the isolation of the majority of the

coherent pathways can be achieved by performing these three types of 2DCS experiments. Further
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isolation can be achieved by performing three-dimensional coherent spectroscopy for which the

FWM signal is spectrally-resolved while both τ and T are scanned [110].

3.6.1.4 Two-Quantum Spectrum (S3)

A fourth-type of 2D spectrum, SIII(τ, ωT , ωt), can be generated using a pulse sequence in

which the conjugated pulse A arrives at the sample last and the delay T is scanned instead of τ , as

depicted by the timing sequence in Fig. 3.8(d). This pulse time ordering (for τ = 0) is equivalent

to the “negative” delay in two-pulse experiments for which no FWM signal is expected without

considering many-body effects. The SIII spectrum is sensitive to many-body interactions in the

system since the ground-state bleaching and excited-state emission pathways do not contribute.

This idea is evident when considering the coherent pathways contributing to this signal, which are

shown in Fig. 3.13(a)-(d). For the first pulse B polarized along the H transition, four pathways

contribute to the nonlinear response. All pathways involve creating a coherence between states |g〉

and |B〉 from the interaction of the excitations created by the first two pulses.
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Figure 3.13: Double-sided Feynman diagrams for the two-quantum pulse time ordering. An addi-

tional four diagrams can be written by interchanging the |H〉 and |V 〉 states and are labeled in the

spectrum in (g) using the “prime” notation. The simulated spectrum contains contributions from

all coherent pathways.

For a biexciton binding energy ∆B = 0, pathways (a) and (c) destructively interfere with

pathways (d) and (b), respectively, and therefore the SIII field is zero. This is to be expected,

since the energy level diagram for zero biexciton binding energy is equivalent to that of two-

independent two-level systems for which no interaction-mediated signal is expected. The exciton-

exciton interaction is modeled using the OBEs, in this case, by introducing a shift of the two-exciton

energy. Generation of a “two-quantum” coherence can be intuitively understood by considering the

excitation and interaction between two excitons: the first pulse B excites a coherence between states

|H〉 and |g〉 of one exciton that evolves as e−iωHgt
′
, where t

′
is the time after the arrival of the pulse.

The second pulse C excites the same transition for another exciton, which also evolves as e−iωHgt
′
.
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The total phase evolution of the nonlinear signal occurs as e−i2ωHgT during T , which is twice

the frequency of a singly-excited exciton. Interactions between the two excitons can result in a

renormalization of their collective energy such that the phase evolution evolves as e−i(2·ωHg−∆B)T ,

where the renormalization energy is ∆B. Necessary for this mechanism to generate an SIII signal,

the interaction must preserve phase coherence between the two excitons; otherwise, the phase

evolution of the individual excitons would destructively interfere and the SIII signal would be zero.

A two-quantum spectrum is shown in Fig. 3.13(e) for similar simulation parameters as the

zero- and one-quantum spectra. All peaks appear at a two-quantum energy of 2 · ~ω0 −∆B. Each

peak consists of two coherent pathways – one from initial excitation of the |g〉 → |H〉 transition

and the other from the |g〉 → |V 〉 transition – which are characterized by similar dipole moments,

dephasing rates and energies during T and t and can therefore be considered equivalent. This type

of spectrum provides a sensitive measure of the many-body effects on the renormalization energies

and dephasing rates and has been implemented previously for both GaAs QWs [199, 218] and

InGaAs coupled QWs [219]. SIII spectra of GaAs IFQDs will be presented in Chapter 6.

3.6.2 Interpreting 2D Spectra

In a 2D spectrum, individual resonances produce diagonal peaks and coupling between res-

onances produce off-diagonal peaks. This characterization allows for an intuitive way to identify

the level system and type of coupling between resonances. Consider a system consisting of two

independent transitions with energies ~ω1 and ~ω2, shown in Fig. 3.14(a). The corresponding

2D rephasing spectrum shown below the energy level diagram consists of two diagonal peaks at

(~ωt = ~ω1, ~ωτ = −~ω1) and (~ω2, −~ω2). As expected for two independent transitions, no off-

diagonal coupling peaks are present. The diagonal peaks arise from both the ground-state bleaching

and excited-state emission nonlinearities depicted by the diagrams in Fig. 3.10(a) and (b). If the

two transitions share a common ground state, as shown by the “V” system in Fig. 3.14(b), then

they can no longer be considered independent. In this case, two off-diagonal peaks appear at (~ω1,

−~ω2) and (~ω2, −~ω1) and are attributed to the coherent pathways depicted by the (d) and (e)
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Feynman diagrams in Fig. 3.10. Because the two transitions share a common ground state, exci-

tation of one transition depletes the ground state population, which in turn affects the nonlinear

optical response of the other transition.
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Figure 3.14: (a) Two independent two-level transitions and the corresponding 2D rephasing spec-

trum. (b) A three-level system with a common ground state and the corresponding 2D rephasing

spectrum. (c) Two independent two-level systems that are coupled through incoherent relaxation

from the higher-energy state to the lower-energy state, and the corresponding 2D rephasing spec-

trum.

The two systems and corresponding 2D rephasing spectra in Figs. 3.14(a) and (b) demon-

strate the power of 2DCS: the technique can unambiguously identify whether resonances are

quantum-mechanically coupled, whereas in one-dimensional spectroscopies such as linear absorp-

tion, PL and spectrally-resolved FWM, the two off-diagonal peaks would be hidden by the diagonal

peaks. The nature of the coupling between transitions can also be identified using 2DCS. Consider

a system of two two-level transitions that would otherwise be uncoupled if not for incoherent non-

radiative population transfer from the higher-energy excited state to the lower-energy excited state,

as shown in Fig. 3.14(c). This type of coupling would produce a single off-diagonal peak at energies

(~ω1, −~ω2). This cross-peak originates from excitation at the ω2 transition and then incoherent
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population relaxation to the ω1 transition, after which the FWM signal is radiated. Because this

is an incoherent process that affects populations, it occurs during the delay T for which phase

coherence need not be maintained. The dynamics of this incoherent process can be mapped out by

recording rephasing spectra for different delays T .

3.6.2.1 Lineshape Analysis

Up to this point, the systems considered have been homogeneously-broadened. In practice,

most semiconductor samples studied are inhomogeneously-broadened either through disorder in

QWs or dispersion in QD shape and composition. Various nonlinear spectroscopies have been

used to study the line width broadening mechanisms in semiconductors, including TR- and TI-

FWM [145]. The decay rate of a two-pulse TI-FWM signal can be connected to the homogeneous

line width of a simple two-level system or for a sample dominated by inhomogeneity; however

an accurate measurement of the homogeneous line width is difficult or impossible for samples

exhibiting moderate inhomogeneity. In TR-FWM, the width of the emitted photon echo for an

inhomogeneously-broadened sample provides an accurate measure of the inhomogeneity, and the

decay of the echo with the two-pulse delay provides the homogeneous line width; however the echo

may not be well-defined due to many-body interactions. It can also be distorted due to beating in

the TR- or TI-FWM signal when multiple resonances are excited [220].

A glance at a rephasing 2D spectrum can give a qualitative sense of the inhomogeneity in

a sample: for a given peak, the width in the cross-diagonal direction is associated with homoge-

neous broadening, whereas the width along the diagonal is related to the inhomogeneity in the

sample. However, acquiring quantitative line width information is not so straightforward since, as

is shown below, the line widths are coupled along both directions. Past work on 2D line shapes in

NMR spectroscopy has focused on correlating the coupling between inhomogeneous and homoge-

neous broadening rather than understanding and isolating the individual contributions [95]. The

coupling degraded the spectral resolution, which was enhanced using windowing functions at the

expense of accurate line width measurements. An alternative approach implemented for molecular
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systems considered both rephasing and non-rephasing signals together, which reduced the coupling

[221]. From a theoretical approach, envelope line shapes were derived in the homogeneous and

inhomogeneous limits from the Fourier transform of an absolute-value 2D time-domain solution of

the OBEs [222]. Other theoretical work focused on correlations [223, 224] and many-body effects

on the ratios of dephasing parameters [220] as opposed to determining a quantitative and physically

meaningful relationship between the homogeneous and inhomogeneous line widths and the widths

of a peak in the 2D rephasing spectrum.

We have established a quantitative connection between the homogeneous and inhomogeneous

line widths and the cross-diagonal and diagonal widths in a 2D rephasing spectrum using analytical

solutions to the OBEs [112]. In order to calculate the 2D spectral line shapes, we first consider the

signal in the 2D time domain. Based on the OBE simulations discussed in the previous Chapter,

the FWM signal for a single inhomogeneously-broadened resonance in the 2D time domain is

SI(τ, T = 0, t) = S0
I e
−(γ(t+τ)+iω0(t−τ)+σ2(t−τ)2/2)Θ(t)Θ(τ), (3.24)

where S0
I is the amplitude at time zero, ω0 is the center resonance frequency, γ is the homogeneous

line width, σ is the inhomogeneous line width and the Θ’s are unit step functions establishing

that the signal cannot be emitted before the pulses arrive. A Gaussian distribution is used as the

inhomogeneous broadening profile. The signal can be decomposed into a homogeneous decay along

the photon echo direction, t
′

= t + τ , and an oscillation multiplied by a Gaussian envelope along

the “anti-echo” direction, τ
′

= t− τ , giving

SI(τ
′
, T = 0, t

′
) = S0

I e
−(γt

′
+iω0τ

′
+σ2τ

′2/2)Θ(t
′ − τ ′)Θ(t

′
+ τ

′
). (3.25)

Equation 3.25 is a more intuitive form to visualize the 2D time domain signal. The signal is

shown in Fig. 3.15 in the 2D time (a) and frequency (b) domains. The signal is not completely

separable along t
′

and τ
′

due to the Θ functions enforcing causality. In order to extend these

results to the frequency domain and derive analytical line shapes, we apply the projection-slice
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theorem of Fourier transforms [225]. This theorem states that a Fourier transform of a projection

in one domain is equivalent to a slice in the 2D Fourier pair plane. In this case, we project the 2D

time domain signal onto t
′

and τ
′
, as illustrated in Figs. 3.15(c) and (d), respectively. A Fourier

transform of these projections then provides the function for the line shape function of a slice along

the ωt′ and ωτ ′ directions in the 2D spectrum, respectively.

(a) (b) (c) (d) 

Figure 3.15: 2D spectrum in the (a) time and (b) frequency domains. (c) The Fourier transform of

a projection of the 2D time domain signal onto the t
′

axis corresponds to a slice along ωt′ axis. (d)

A similar analysis for τ
′

corresponds to a slice along the ωτ ′ axis. The shaded regions correspond

to areas of zero signal as enforced by causality.

In order to obtain an expression for slices in the 2D spectrum that cut through the resonance

peak, we first invoke the Fourier shift theorem, which states that a shift in one domain is equivalent

to a linear phase ramp in the Fourier pair domain. Therefore to slice through the resonance peak

at ω0 in the spectral domain, the 2D time domain signal must be multiplied by a linear phase term

eiω0τ
′
. The time domain signal is then normalized (divide out S0

I ) and projected onto the t
′

and τ
′

axis. The projection onto t
′

axis and centered at ω0, as illustrated by Fig. 3.15(c), is written as

SprojI (t
′
) =

∫ ∞
−∞

SI(τ
′
, t
′
)dτ

′
= e−γt

′
∫ t
′

−t′
eσ

2τ
′2/2dτ

′
=

√
2π

σ
e−γt

′
Erf(σt

′
/
√

2), (3.26)

where the integration limits are established by the causality conditions depicted by the shaded

regions in Fig. 3.15(c) and Erf is the error function. A Fourier transform of this projection yields
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the cross-diagonal line shape

SprojI (ωt′ ) =
e

(γ−iω2

t
′ )

2/2σ2

Erfc
(
γ−iω

t
′

√
2σ

)
σ(γ − iωt′ )

, (3.27)

where Erfc is the complementary error function. The 2D time domain signal projection onto the

τ
′

axis, illustrated in Fig. 3.15(d), is written as

SprojI (τ
′
) =

∫ ∞
−∞

SI(τ
′
, t
′
)dt
′

= eσ
2τ
′2/2

∫ ∞
|τ ′ |

e−γt
′
dt
′

=
1

γ
eσ

2τ
′2/2e−γ|τ

′ |. (3.28)

The Fourier transform of this expression is given by the convolution (∗) of the Fourier transforms

of the Gaussian and exponential decay and yields the diagonal spectral line shape along ωτ ′ :

SprojI (ωτ ′ ) =

(√
2

πσ2
e
−ω2

τ
′ /2σ

2

)
∗

(
1

γ2 + ω2
τ ′

)
=

√
2π

γ
Voigt(γ, σ, ωτ ′ ), (3.29)

where the Voigt profile is a convolution of a Gaussian profile and a Lorentzian profile. The expres-

sions for the cross-diagonal and diagonal line widths in Eqns. 3.27 and 3.29, respectively, are valid

for all values of γ and σ. Table 3.1 summarizes the line shapes for complex rephasing spectra, i.e.

including the real and imaginary components.

While the expressions for the line shapes in Eqns. 3.27 and 3.29 are general, they take

on familiar forms in certain limits. In the homogeneous limit for which the inhomogeneous line

width is zero, both the diagonal and cross-diagonal slices of the rephasing amplitude spectrum

are Lorentzian functions L(ω, γ) =
√

2/π · (γ2 + ω2)−1 with a FWHM equal to 2γ. In this limit,

enforcing the time ordering (zero signal for t, τ < 0) strongly affects the projections onto t
′

and

τ
′
. It is the time ordering and consequent truncation of the 2D time domain signal that leads to

the classic spectral star shape with Lorentzian width along both the diagonal and cross-diagonal

directions.

In the opposite extreme case for which the line width is dominated by inhomogeneity (σ � γ),

the cross-diagonal line shape becomes
√
L(ωt′ , γ) with a Lorentzian FWHM of 2γ, and the diagonal

line shape is Gaussian G(ωτ ′ , σ) = σ−1·exp(−ω2
τ ′
/2σ2) with line width σ. In this limit, the Gaussian
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distribution characterizing the photon echo width in the time domain can be treated as a Dirac

delta function so that the photon echo is restored along the diagonal t
′

= t + τ . The projection

onto t
′

is purely homogeneous and the truncation of the signal at τ, t < 0 due to time-ordering

is negligible. The projection onto τ
′

is a narrow Gaussian whose Fourier transform is a broad

Gaussian along ~ωτ ′ in the 2D spectrum.

Real Imaginary Amplitude

Spectral Line Shapes

Shape Width Shape Width Shape Width

Hom. Limit

Cross-Diag. d2

d2ω
L(ω). 2γ (0-X) d

dωL(ω) 2γ√
3

(V-P) L(ω) 2γ

Diag. L(ω) 2γ – – L(ω) 2γ

Inhom. Limit

Cross-Diag. L(ω) 2γ d
dωL(ω) 2γ (V-P)

√
L(ω) 2γ

Diag. G(ω) σ – – G(ω) σ

Table 3.1: 2D rephasing spectral line shapes and widths (FWHM) in the homogeneous and inhomo-

geneous limits. Definitions: L(ω) = Lorentzian function; G(ω) = Gaussian function; γ = Lorentzian

homogeneous line width; σ = Gaussian inhomogeneous line width; 0 − X = zero-crossing points;

V–P = valley-to-peak.

Discussed in detail in Chapter 5, the inhomogeneous line width of a QD ensemble is typ-

ically orders of magnitude larger than the homogeneous line width; thus quantitative values of

the dephasing rates and amount of inhomogeneity can be obtained using the expressions in the

inhomogeneous limit. Moreover, since inhomogeneity arises from a distribution of QD sizes in the

ensemble, one can can take cross-diagonal slices at different positions along the diagonal to obtain

the homogeneous line width for various resonance energies within the inhomogeneous distribution.

The signal amplitude at each resonant energy is the sum of the nonlinear response of all QDs

emitting at that energy, which do not necessarily have similar physical properties such as shape

and strain. Nonetheless, we show in Chapter 5 that the homogeneous line width at each energy is
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consistent with the line widths obtained from single dot studies. This observation suggests that all

QDs with a particular resonance energy can be described by one of the following: either 1) all the

dots have similar physical properties, and therefore similar homogeneous line widths; or 2) dots

with a distribution of properties contribute to the signal at a given energy, but their differences in

shape, strain and local environment do not introduce a distribution of homogeneous line widths.

Because the line width is dominated by inhomogeneity, the former scenario is more likely; any

change in the dot properties shifts its resonance energy and contributes to inhomogeneous broad-

ening so that each cross diagonal slice provides the homogeneous line width averaged over many

dots with similar physical properties.

3.6.3 Advantages of the Technique

Besides the ability to isolate coherent pathways, identify resonance coupling mechanisms and

separate inhomogeneity from homogeneity, 2DCS has additional capabilities that make it a powerful

technique for studying semiconductors. One ability that is particularly useful is the preservation of

phase information. By measuring the complex signal field, the technique inherently performs many

other conventional spectroscopic experiments simultaneously. For example, a vertical projection

along the ~ωτ axis provides the SR-FWM field from which the TR-FWM field can be extracted

by taking an inverse Fourier transform with respect to ωt. The TI-FWM signal can be extracted

by integrating the spectrum along ~ωt and taking an inverse Fourier transform with respect to

ωτ . Furthermore, multiplication of the probe field and the real part of the 2D signal integrated

along ωτ is equivalent to the spectrally-resolved differential transmission signal from a pump-probe

experiment. Preservation of phase also enables decomposition of the complex signal field into its real

and imaginary components that are connected by the Kramers-Kronig relation. A 2D spectrum

with correct global phase has played an essential role in distinguishing between the microscopic

mechanisms for different many-body interactions in semiconductor QWs [105, 106, 189, 199].

Another advantage of three-pulse 2DCS techniques in which the pulse time-ordering can be

arbitrarily set is the ability to obtain the four different types of spectra discussed in this Section.
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Each type of spectrum provides a unique picture into the dynamics and physical properties that gov-

ern the nonlinear response. By comparing the amplitudes, energies and line widths of all the peaks

in the different types of spectra, one has the ability, for example, to distinguish between incoherent

and coherent resonant coupling and ascertain the energy level structure [219, 226]. Moreover, with

phase stability of each pulse delay, three-dimensional spectra can be generated to further isolate

the coherent pathways, facilitating the pursuit of complete experimental characterization of the

system Hamiltonian [110].

The 2DCS technique can also decouple the time and frequency resolutions imposed by the

time-bandwidth product [210]. The time resolution in the experiment is determined by the ex-

citation pulse width and the frequency resolution is limited by the maximum delay between the

pulses. Consequently, 2DCS can capture the fast dynamics using femtosecond pulses with a fre-

quency bandwidth that can span the spectral region of interest while being able to resolve the

individual resonances. For example, using a Ti:Sapphire laser as the excitation source, one can

probe dynamics on a tens of femtoseconds time scale. For pulse delays up to 1 ns (requiring a delay

distance of 15 cm, which is easily achievable with current delay-stage technology), one can achieve

a 1 GHz (4.1 µeV) spectral resolution. Zero-padding techniques can further enhance the resolution

in certain circumstances.

These capabilities make 2DCS a powerful technique to study a diverse set of materials in

biology, chemistry and atomic and semiconductor physics. Experimental implementation and the

technical challenges associated with 2DCS in the near-IR and optical wavelengths are discussed in

the next Chapter.



Chapter 4

Experimental Implementation of 2D Spectroscopy

Optical 2DCS experiments are commonly implemented using impulsive laser fields to probe

the nonlinear optical response in the time domain or mixed time-frequency domains. The nonlinear

signal is measured while the excitation pulse delays are varied, often using mechanical delay lines,

glass prism wedges or pulse-shaping techniques. Due to the nature of the phase-sensitive measure-

ments, stability of the pulse delays to ≈ λ/100 or better is critical. Mechanical vibrations and drift

of the optical mounts and inaccuracies in stepping of the pulse delays can degrade the nonlinear

signal and introduce artifacts when generating a 2D spectrum. Compared to IR wavelengths, elim-

inating these detrimental effects is more difficult in the near-IR and optical regime because the

relative phase fluctuations increase at shorter wavelengths, making the implementation of optical

2DCS challenging.

High phase stability and accurate pulse positioning for 2DCS experiments have been achieved

using several methods, some of which were introduced in the previous Chapter. 2DCS was initially

implemented in the Cundiff group using a free-space setup with active interferometric stabilization

of the pulse delays in 2005 [104]. The technique was first applied to study semiconductor QWs,

and Li et al. were able to distinguish between different many-body contributions to the nonlin-

ear response more easily compared to one-dimensional spectroscopies [105, 106]. This work was

instrumental in demonstrating that 2DCS could be performed in the optical regime using active

stabilization; however the experimental setup had several limitations. Particularly, the delay be-

tween the second and third pulses, T , was not actively stabilized. Without stabilizing this delay,
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the setup was not ideal for performing zero-quantum experiments to probe Raman-like coherences

(although the setup could probe zero-quantum coherences if the frequencies were low enough).

Moreover, the original setup was not able to generate a two-quantum spectrum, which is particu-

larly sensitive to many-body interactions. These limitations are eliminated by the first generation

JILA Multidimensional Optical Nonlinear SpecTRometer, or JILA MONSTR, designed and built

by Bristow et al. in 2009 [111]. This ultrastable platform is used to perform the experiments dis-

cussed in this thesis, with a few modifications for enhancing the signal-to-noise ratio from epitaxial

QDs and optimizing the data acquisition time.
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Figure 4.1: Schematic diagram of the 2DCS experimental setup with active stabilization. Three

pulses propagating in the box geometry interact nonlinearly with the sample to generate a FWM

signal that is interfered with a phase-stabilized reference pulse, and their interference is spectrally-

resolved. Active phase stabilization is achieved by monitoring HeNe interference patterns from the

MONSTR and using them as error signals for servo feedback loop filters that drive PZT actuators.

The FWM signal/reference pulse delay is stabilized using an external servo loop. (DCM: dichroic

mirror; BS: beam splitter with a reflective coating on one quadrant of one side; P: polarization

optics consisting of λ/2 and λ/4 retarders, linear polarizers and liquid crystal phase modulators;

L1: focusing lens; L2: collimating lens; PZT: piezo-electric actuator; ∆t: adjustable reference/signal

delay).

The apparatus consists of a set of nested and folded Michelson interferometers with mechan-

ical delay stages that produce four pulses that are phase stabilized by electronic servo feedback

loops, which are described in detail in Section 4.2. As depicted in the experimental schematic

diagram in Fig. 4.1, three of the pulses are incident on the sample to generate the FWM signal
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(Section 4.3), while the fourth pulse is routed around the sample and used as a reference pulse for

heterodyne spectral interferometry, which requires an additional external interferometer to stabilize

the reference/signal phase. Spectral interferometry using the reference pulse enables extraction of

the FWM amplitude and phase, which is discussed in Section 4.4. The complex FWM signal is

recorded while any of the pulse delays are scanned with interferometric precision, and a 2D spec-

trum is generated by taking a Fourier transform of the signal with respect to the scanned delay, as

described in Section 4.5. Before discussing details of the apparatus and experiment, fundamental

and technical challenges for implementing 2DCS to study semiconductor QDs are described in the

following Section.

4.1 Fundamental and Technical Challenges

Optical 2DCS of semiconductor QDs is fundamentally difficult to implement because long

pulse delays are required to probe the radiatively-limited dephasing time in epitaxial QDs, which

has been measured to be as long as a few nanoseconds [46]. 2DCS methods based on pulse-shaping

techniques are typically constrained by their spectral resolution to maximum pulse delays of tens

of picoseconds [227]; other methods that delay the pulses using glass-wedges achieve even smaller

delays. Thus, the only practical approach to sufficiently map out the decay of the FWM signal

– providing a quantitative measurement of the homogeneous line width – is to delay the pulses

using mechanical delay lines. The phase of the pulses must be stabilized to ≈ λ/100 and the delays

must be incremented in precise, equal steps in order to perform a numerical Fourier transform

with respect to the varied delay. In the optical or near-IR regime, this stability criterium requires

limiting the mechanical motion of the optical mounts to less than ≈ 5 nm, as is shown later in

this Chapter. This limit is severely exceed when only using sturdy optics mounts and a protective

box enclosing the experimental setup. The necessary phase stability and stepping precision can be

achieved, however, using active stabilization with feedback electronics. Moreover, the stabilization

must be maintained over the course of the experiment, which requires mechanical delays of ≈ 15 cm

and data acquisition times up to ≈ 5 hours. These criteria are satisfied via active interferometric
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stabilization in the JILA MONSTR, which is described in detail in the next Section.

Obtaining quantitative information from 2D spectra of epitaxial QDs is challenging because

QDs have weaker dipole moments than QWs and the number of QDs excited within the pulse spot

size (typically ≈ 105 − 106) limits the maximum attainable signal-to-noise ratio. From a technical

standpoint, non-resonant scatter of the excitation pulses into the FWM phase-matched direction

tends to dominate the SR-FWM signal to the point that the signal cannot be identified. Modulating

the excitation pulse amplitudes and detecting the TI-FWM signal on a slow detector using a lock-in

amplifier does not increase the signal-to-noise ratio enough to detect the weak signal. Thus other

techniques are required to optimize the signal strength and alignment of the collection optics, which

are described in more detail in Section 4.3. Once the optics are aligned and the sample positioned

properly for maximum FWM signal generation and detection, distinguishing between the laser

scatter and FWM signal in the 2D spectrum is still difficult. The Fourier-transform operation can

eliminate some of the noise in the spectral window of the signal; however the signal-to-noise ratio

often remains too low to be able to extract useful quantitative information. Low signal-to-noise

ratios can be mitigated by using phase-cycling algorithms that enhance the relative FWM signal

strength at each pulse delay. Phase cycling involves toggling the phases of the excitation pulses at

each delay between zero and π and then adding phased spectral interferograms appropriately to

remove the pump scatter and enhance the FWM signal. Methods for performing phase cycling are

discussed in Section 4.4.

4.2 Active Interferometric Stabilization using the JILA-MONSTR

The JILA-MONSTR [111] produces four phase-stabilized pulses whose delays and time or-

dering can be arbitrarily adjusted, as shown in the experimental setup diagrams in Fig. 3.8 in the

previous Chapter and in more detail in Fig. 4.1. The excitation source is a mode-locked Ti:Sapphire

oscillator that produces ≈ 100 fs pulses at a repetition rate of 76 MHz. The pulse center wave-

length is tuned to either 756 nm for the GaAs IFQDs or above 900 nm for the InAs SAQDs with

a spectral bandwidth of ≈ 10 nm FWHM. The femtosecond pulses are combined with the output
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of a Helium-Neon (HeNe) CW laser on a dichroic mirror (DCM) so that they collinearly propagate

into the MONSTR. The MONSTR consists of a set of nested Michelson interferometers shown in

the schematic representation in Fig. 4.2. The input lasers are split by a 50:50 beam splitter so

that fields of equal power are propagating in the two arms of an interferometer. Each arm of the

interferometer is itself an interferometer, so that four replicas are generated by the nested inter-

ferometers. DCMs are placed at the end of each arm, which transmit the femtosecond pulses and

reflect the HeNe laser. Delay stages are inserted into each arm so that the femtosecond pulse delays

can be arbitrarily adjusted. The reflected HeNe beams recombine and exit the opposite port of the

beam splitters and their interference is used as an error signal input for servo feedback electronics.

The relative phase between pulse pair A–B and C–Ref and between all four pulses is monitored

by detecting the corresponding HeNe interference pattern on a photodiode. Any deviation of the

HeNe interference from the zero-crossing point corresponds to a change in the optical path length

of one of the arms of the interferometer; this error signal is used as the input to a servo loop filter

whose output drives a piezoelectric actuator (PZT) controller. The output of the PZT controller

adjusts the voltage on a PZT that is attached to the back of one mirror in each interferometer (not

shown in the schematic in Fig. 4.2). The loop filter provides negative feedback so that any change

in the interferometer arm is compensated for by the PZT. Controlled through a computer interface,

the servo loops are engaged to stabilize all pulse delays during acquisition of the FWM signal and

they are disengaged to allow for scanning of the pulse delays.
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Figure 4.2: Schematic representation of the nested Michelson interferometers. Pulses A, B, C and

Ref exit the interferometers through the dichroic mirrors (DCMs), while the collinearly propa-

gating HeNe beams are reflected and exit the opposite ports of the beam splitters. The HeNe

interference patterns are used as error signals for servo loop filters that stabilize the path lengths

of the interferometers. The pulse delays are stepped with interferometric precision by disengag-

ing the servo loops, after which the loops are re-engaged during data acquisition. In reality, the

interferometer is designed so that a single DCM is used.

The scheme presented in Fig. 4.2 is implemented in the JILA-MONSTR, which is comprised

of two decks that each contain the optics for an interferometer, and an additional interferometer is

formed between the decks. Computer-aided design (CAD) drawings are shown for the lower and

upper decks in Figs. 4.3(a) and (b), respectively. Each deck is milled from cast aluminum to house

the optics for the interferometers. The lower deck supports the interferometer for pulses C and the

Ref , while the upper deck for pulses A and B.
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Figure 4.3: CAD drawings of the JILA-MONSTR. (a) The lower deck houses the interferometer

for pulses C and Ref , while (b) the upper deck for pulses A and B. The entire assembly is formed

by flipping and securing the upper deck onto the lower deck, shown in (c). (BS: beam splitter;

CP: compensation plate; PZT: piezo-electric actuator; QD: quad-diode photodector; P: periscope

mirrors; DCM: dichroic mirror). Reproduced from Bristow et al., Review of Scientific Instruments

80, 073108 (2009).
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The long delay stage U enables 20 cm of travel and moves both C and Ref together with

respect to the upper deck. The C–Ref delay can be adjusted using stage Z. A mirror mounted

on a PZT controls the relative phase of pulse Ref with respect to C. The delays of pulses A and

B are adjusted by stages Y and X (travel distance of 5 cm each) and the relative optical path

length between the A–B and C–Ref interferometers is controlled by the PZT just before stage Y .

All mirrors in the interferometers are silver protected by a dielectric from tarnishing. Each beam

splitter consists of a broadband coating centered at 800 nm on a thin, low group velocity dispersion

fused silica substrate. Compensation plates made from similar substrates are inserted to balance

the dispersion. All optics are anti-reflection coated and held in custom mounts that minimize strain

to prevent induced birefringence.

Figure 4.4: Photograph of the JILA-MONSTR. The lasers enter on at the right hand side of the

picture, and the four output beams, propagating in the box geometry, are shown focusing to a

single spot. Credit: Greg Kuebler and Alan Bristow.

The total assembly is formed by flipping and fastening the upper deck onto the lower deck,

encompassing all the optics with a 5 cm gap between the decks, as shown in Fig. 4.3(c). The

gaps along the side of the assembly are enclosed with panels to minimize the effects of air currents.

After assembly, a 2” diameter DCM is attached to the front and acts as all the DCMs depicted

in Fig. 4.2. The DCM transmits the femtosecond pulses and reflects the HeNe beams back into

the MONSTR, completing the interferometer. The HeNe beams exit the MONSTR opposite the
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entrance side, as depicted in Figs. 4.1 and 4.3. The femtosecond beams that perform the 2DCS

experiment exit the MONSTR through the DCM and co-propagate along the four corners of a

square with 1” sides. A photograph of the enclosed JILA-MONSTR highlighting the input beam

on the right hand side and the four femtosecond beams focused through a lens is shown in Fig. 4.4.

The alignment procedure for the MONSTR is described in Appendix C.

Upper 
Deck 

Lower 
Deck 

Lower Deck 

Upper Deck 

Figure 4.5: HeNe error signals for the lower-, upper-, and inter-deck interferometers recorded over

approximately 10 minutes, without (a) and with (b) the servo loop filters engaged. The signals are

offset from zero in (b) for clarity. Reproduced from Bristow et al., Review of Scientific Instruments

80, 073108 (2009).

The instability of the apparatus [111] when the servo loops are disengaged is evident from

the characteristic error signals shown in Fig. 4.5(a). The signals are shown over a duration of ≈

10 minutes. Within several minutes the path length difference of each interferometer drifts more

than λ/4, resulting in a phase change > 2π radians at the diagnostic port 1 . In comparison, with

1 a factor of 1/4 arises from the HeNe double passing the stage once before and once after reflecting off the 2”
DCM, so that a change in one interferometer arm of λ/4 corresponds to a phase change at the HeNe diagnostic
output of 2π.
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the servo loops engaged, the error signals are fixed at 0 V, as shown in Fig. 4.5(b) (the lower and

inter-deck signals are offset by 1 and -1 V, respectively, for clarity). The error signal statistics follow

a normal distribution with standard deviation that corresponds to less than ≈ 2 nm displacement

for each interferometer [111]. This motion corresponds to better than λ/100 for the femtosecond

pulse phase stabilization.

4.3 FWM Generation in Quantum Dots

The four pulses generated from this ultrastable platform propagate in the box geometry along

the four corners of a 1” square. Using a 15 cm focal length lens (L1 in Fig. 4.1), three of pulses are

focused onto the sample with wavevectors kA, kB and kC to a spot size of ≈ 100 µm. The FWM

signal generated by all three beams is detected in the phase-matched direction ks = −kA +kB +kC,

which is the fourth corner of the square. As previously mentioned, specific types of 2D spectra are

generated by choosing a specific pulse time ordering, scanning the appropriate delay, and taking

a Fourier transform of the extracted FWM signal with respect to the scanned delay. In order to

avoid contributions to the FWM signal from all coherent pathways at delays shorter than the pulse

duration (where the pulse time ordering is ambiguous), the experiments are performed using a delay

of 200 fs for the pulse pair this is not scanned. Specific coherent pathways are isolated by taking

advantage of the dipole transition selection rules, which requires the ability to independently adjust

the polarization state of each pulse. Placing the necessary polarization optics inside the MONSTR

is not possible. Placing them after the MONSTR poses the risk of introducing unwanted vibrations

that are not compensated for using the HeNe, which could degrade the signal-to-noise ratio and

introduce artifacts in the 2D spectrum; however, we find that by placing all optics downstream from

the MONSTR in sturdy, monolothic mounts, we are able to incorporate the necessary polarization

optics without compromising the phase stability.

Before being focused by the lens, each pulse first passes through a half-wave plate and linear

polarizer (all of which are held in a sturdy, monolithic mount as indicated by the component labeled

P in Fig. 4.1) so that any arbitrary linear polarization state can be achieved. An auxiliary mount
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housing four quarter wave plates can be attached to circularly-polarize the pulses. The pulses

then propagate through a computer-controlled shutter assembly that enables selection of any pulse

combination at the sample. After passing through the lens, the pulses are partially-reflected by a

single-side AR coated window to form a replica focus that is imaged onto a CCD (purchased from

The Imaging Source Europe GmbH, model #: DMK41BF02.H, not shown in the experimental setup

figures; see Bristow et al. for details [228]). The replica focus serves two purposes [228]: 1) it can be

used for all-optical retrieval of the global phase; and 2) the re-imaged spatial interference patterns

between the pulses can be used for pair-wise calibration of zero delay between the pulses. For a

given pulse pair, one pulse is scanned through the other, and the visibility of the spatial interference

pattern can be used to determine the pulse widths and relative delays. The field correlations are

fit to a sinusoidal function with a double Gaussian envelope and offset, and the delay associated

with the peak amplitude is taken as the zero delay value.

The QD samples are held in a cold finger liquid helium flow cryostat for transmission exper-

iments as discussed in Chapter 2. The sample position and downstream optics can be adjusted

to optimize the signal-to-noise when detecting the SR-FWM signal. If the SR-FWM signal is too

weak, the TI-FWM signal can be detected by modulating the amplitude of pulse A at ΩA and B at

ΩB and measuring the signal using a slow detector and lock-in amplifier with reference frequency

ΩR = ΩA − ΩB. Unfortunately neither of these methods are effective for the QD samples studied

here because the laser scatter into the phase-matched direction dominates the signal; thus one

cannot simply optimize the FWM signal by adjusting the sample and collection optics.

We can resolve this problem by instead optimizing a different FWM signal excited under

slightly different conditions than those that will be used for the QD experiments. For the GaAs

IFQDs, we blue-shift the excitation laser center wavelength by ≈ 5 nm so that the laser is resonant

or nearly resonant with the QW heavy-hole exciton (recall that the QD–QW separation is 10

meV, as shown in PL spectrum from this sample in Fig. 2.9). Since the nonlinear response from

the QW is significantly stronger than from the QDs, the SR-FWM signal can be optimized for

this excitation wavelength. Tuning the laser back in resonance with the QDs does not affect the
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alignment or focusing enough to require re-optimization and, in this case, the QD FWM signal is

optimized (the pulse delay time zero values are acquired with the laser resonant with the QDs). A

similar procedure is not possible for the InAs SAQD samples since QW–QD wavelength separation

is too large to maintain similar alignment when tuning between them. Instead, we optimize the

non-resonant FWM signal that is generated in the GaAs barrier for all pulses coincident in time

[150]. The non-resonant signal, which lasts only when all three pulses temporally overlap, is orders

of magnitude larger than the signal from the QDs. Optimizing this signal using the aforementioned

procedures is straightforward and results in the largest FWM signal from the QDs. The experiments

are then performed by setting the stationary pulse delay equal to 200 fs for the experiments.

4.4 FWM Detection: Fourier-Transform Spectral Interferometry

The FWM signal amplitude and phase is measured through spectral interferometry with a

phase-stabilized reference pulse [202, 229]. To avoid pre-exciting the sample, the reference, which is

derived from the fourth pulse exiting the MONSTR, is routed around the sample and recombined

with the FWM signal on a beam splitter, shown in Fig. 4.1. Because the signal and reference do not

share common path optics, an external interferometer is required to stabilize their relative phase.

The final pulse incident on the sample (pulse C for the rephasing and non-rephasing experiments,

pulse A for the two-quantum experiment) and a portion of the reference pulse are focused to a spot

to form a spatial interference pattern at the entrance of a 6 µm core single-mode fiber, which acts

as an aperture to select a narrow portion of the interference pattern. The interference amplitude is

used as the error signal for an additional servo feedback loop, as described in the previous section.

A mirror attached to a PZT in the reference path is controlled by the servo electronics to stabilize

the interference. Since the final pulse and the FWM signal propagate on common optics, they

both experience similar phase fluctuations. Stabilizing the reference phase with respect to the

final pulse thus ensures that the reference and signal phase difference is stabilized. The reference

and signal are combined on a beam splitter and collinearly-propagate into a 0.75 meter imaging

spectrometer, where their interference is spectrally-resolved and detected using a CCD camera. The
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thermo-electrically cooled CCD has a 1024×256 array of 25 µm pixels and a 16-bit dynamic range.

The reference/signal delay is adjusted using a translation stage in the reference path. The delay,

denoted ∆t, is set so that a spectral interferogram with dense fringes is observed. The maximum

number of fringes is limited by the spectrometer/CCD resolution, which is ≈ 0.01 nm (≈ 20 µeV)

at a center wavelength of 800 nm.

The reference/signal spectral interferogram intensity can be written as [202]

|ER(ωt) + Es(ωt)|2 = |ER(ωt)|2 + |Es(ωt)|2 + 2Re{Es(ωt)E∗R(ωt)}, (4.1)

where Es(ωt) and ER(ωt) are the FWM signal and reference electric fields, respectively. The power

spectra of the FWM signal (|Es(ωt)|2), reference (|ER(ωt)|2) and their interference (2Re{Es(ωt)E∗R(ωt)}

are shown in Fig. 4.6(a) for the GaAs IFQD sample with the laser tuned to resonantly excite the

QW transition. The FWM signal amplitude and phase can be extracted from the interference

term, shown in Fig. 4.6(b). This term is isolated by subtracting the signal and reference power

spectra, which are taken before the experiment. The inverse Fourier transform of the interference

term contains two terms that are time-reversed from each other and separated by a time 2∆t in

the time domain, given by

S(t) = F−1{S(ωt)} = f(−t−∆t) + f(t−∆t), (4.2)

where F−1 is the inverse Fourier transform and the terms f(−t − ∆t) and f(t − ∆t) correspond

to the peaks at negative and positive time, respectively, as shown in Fig. 4.6(c). Only the term

f(t − ∆t) satisfies causality and therefore the remaining features in the time domain signal are

filtered using a Heaviside theta function Θ(t−∆t). The remaining term is then Fourier transformed

back to the frequency domain, multiplied by a phase factor exp(−iωt∆t) to remove the linear phase

associated with the reference/signal delay and the reference amplitude is divided out, thus isolating

the complex FMW signal electric field [202]:
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Es(ωt) =
F{Θ(t−∆t)F−1{S(ωt)}}e−iωt∆t

E∗R(ωt)
, (4.3)

where F is the Fourier transform operator. The extracted amplitude and phase of Es(ωt) are

shown in Fig. 4.6(d) by the black solid and red dashed curves, respectively. The signal phase,

φs(ωt), is measured relative to the reference phase, φR(ωt). φs(ωt) increases by π radians across

the QW exciton resonance, as expected. If the reference phase varies with ωt, it must first be

characterized by an auxiliary spectral interferometry experiment using a pulse with known spectral

phase, which can be obtained from FROG measurements [230]. An overall global phase offset is

still unknown, however, and can be characterized through all-optical phase retrieval outlined in Ref.

[228] or through a separate pump-probe experiment as described in Ref. [104]. Only amplitude

measurements are presented in this thesis and therefore details of the phase retrieval algorithms

are not further discussed.
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Figure 4.6: (a) Power spectra of the FWM signal, reference and their interference for the excitation

pulses resonant with the QW exciton transition in the GaAs IFQD sample. (b) The interference

term is isolated by subtracted the signal and reference power spectra from Eqn. 4.1. (c) The

interference term is inverse Fourier-transformed into the time domain, which contains two terms

time-reversed from each other. The term at positive times is isolated by multiplying the signal

by a Heaviside theta function. (d) The positive time-domain signal is Fourier-transformed back

to the frequency domain, multiplied by a phase factor to remove the linear reference/signal phase

dependence, and divided by the reference amplitude. The retrieved FWM spectral amplitude (black

solid line) and phase (red dashed line) are shown.

In practice, the FWM amplitude and phase retrieval algorithm as expressed by Eqn. 4.3

is robust when the signal-to-noise ratio is large enough such that the SR-FWM signal can be
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distinguished from the background noise. For low signal-to-noise, correctly determining the delay

∆t can be difficult, and noise that temporally overlaps with the time-domain signal will not be

completely removed after it is Fourier transformed back to the frequency domain. In 2DCS spectra,

scatter from the excitation lasers is observed along the diagonal in the single-quantum spectra

because the pump is only self-coherent. The noise can be drastically reduced by using phase

cycling techniques that eliminate laser light scatter, which were developed in NMR spectroscopy

[95]. Phase cycling has been used in optical 2DCS experiments in which the pulses spatially-overlap

and collinearly-propagate [188, 231] to remove noise and interference and to isolate specific quantum

pathways. It has been used previously in non-collinear 2D techniques using pulse shapers [232].

We choose an alternative approach and use transmissive liquid crystal phase modulators (LCs) to

toggle the phases of the first two excitation pulses incident on the sample. The LCs (purchased

from Meadowlark Optics) can provide up to λ/2 retardance for wavelengths ranging from 450 nm

to 1800 nm. The applied voltage to the LCs is modulated at a frequency of 4 kHz (square wave)

centered at 0± 5 mV to avoid charge build-up that can cause damage. The modulation amplitude

can be varied between 0 V and 10 V with a 20 ms response time and can be set to introduce either

a 0π or 1π phase shift of the pulses. A 0π shift is defined for a modulation amplitude of 0 V.

The voltage corresponding to a 1π phase shift is calibrated by monitoring the spatial interference

pattern (using the replica focus discussed previously) between the pulse passing through the LC

and any other pulse. The voltage is slowly ramped from 0 V to 5 V while the interference pattern

is monitored, and the voltage at which the pattern has shifted by half a fringe (peak to trough)

corresponds to the LC voltage for a 1π phase shift. This is repeated for the other LC and pulse so

that the phases of the first two pulses incident on the sample can be toggled between 0π and 1π at

each pulse delay2 .

To understand how phase cycling eliminates laser light scatter, consider a rephasing one-

quantum 2D experiment for which pulse A is incident on the sample first and interferograms are

2 any two pulses could be used to perform the phase cycling algorithm; however if the phase of last pulse incident
on the sample is toggled at each delay, the external interferometer servo loop would disengage, disrupting phase
coherence. Thus we toggle the phase of the first two pulses.
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recorded while the A–B delay τ is scanned. At any given τ , the spectral interferogram between the

reference, FWM signal and scatter from pulse A (single pulse chosen for brevity) is given by

s1 ≡ |ER(ωt) + Es(ωt) + EA(ωt)|2 = |ER(ωt)|2 + |Es(ωt)|2 + |EA(ωt)|2

+ 2Re{Es(ωt)E∗R(ωt) + Es(ωt)E
∗
A(ωt) + EA(ωt)E

∗
R(ωt)},

(4.4)

where ER(ωt), Es(ωt) and EA(ωt) are the field amplitudes of the reference, FWM signal and pulse A

scatter into the phase-matched direction, respectively, and the phase offsets are defined to be zero.

The phase of the signal depends on both the phase associated with the nonlinear response, φs,0(ωt),

and the phases of the excitation pulses, so that φs(ωt) = −φA(ωt) + φB(ωt) + φC(ωt) + φs,0(ωt).

Toggling the phase of pulse A by 1π introduces a multiplicative e±iπ = −1 factor to the terms with

EA(ωt) and Es(ωt), while toggling the phase of pulse B inverts the sign of only the terms with

Es(ωt). Pump scatter can be eliminated by recording four interferograms (si) at each τ : s1 → no

phase shifts for any pulse; s2 → 1π shift for pulse A; s3 → 1π shift for pulses A and B; s4 → 1π

shift for pulse B. The corresponding interference terms are given by

s2 = 2Re{−1 · Es(ωt)E∗R(ωt) + Es(ωt)E
∗
A(ωt) +−1 · EA(ωt)E

∗
R(ωt)} (4.5)

s3 = 2Re{Es(ωt)E∗R(ωt) +−1 · Es(ωt)E∗A(ωt) +−1 · EA(ωt)E
∗
R(ωt)}

s4 = 2Re{−1 · Es(ωt)E∗R(ωt) +−1 · Es(ωt)E∗A(ωt) + EA(ωt)E
∗
R(ωt)}.

(4.6)

The FWM/reference interference term is isolated by combining the interferograms according

to: snet = (1/4)(s1 + s3 − s2 − s4) = 2Re{·Es(ωt)E∗R(ωt)}. Combining phased interferograms

this way will also cancel scatter from the other two pump pulses as well as any other nonlinear

interactions that are not associated with the three-pulse FWM signal. The end result is an increase

in the signal-to-noise ratio by up to a factor of 104 with negligible increase in the data acquisition

time, since the LC response time (20 ms) is approximately an order of magnitude shorter than the
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time required to increment the pulse delay. Moreover, the phase cycling algorithm automatically

removes the power spectra of the reference, FWM signal and scattered laser light. The primary

advantage of eliminating this step from the FWM field extraction procedure is that the FWM

power spectrum, which depends on the pulse delays, no longer needs to be measured at each delay

before data acquisition. Since the limiting factor for the data acquisition time is the mechanical

motion of the delay stages, eliminating this step reduces the acquisition time by a factor of ≈ 2.

4.5 Generating and Analyzing 2D Spectra

A 2D data array is constructed by repeating the FWM signal extraction algorithm on the

phase-cycled interferograms at each delay. The incremental adjustment of any one of the pulse

delays is indicated by the flow chart in Fig. 4.7(a). Consider a rephasing one-quantum experiment

that requires scanning the delay τ . At the start of the scan, a phase-cycled interferogram is acquired.

Then the HeNe diagnostic error signal associated with the upper deck interferometer is measured

(Verr1). Next the interdeck servo loop is disengaged, followed by the upper deck servo loop. The

error signal of the upper deck interferometer is re-measured (Verr2) to determine the change in the

path length difference (δ) of the upper deck after disengaging the loops, which is calculated using

the expression δ = (λ/2π) · asin[Verr2 − Verr1/V0], where λ is the HeNe wavelength. V0 is half the

interferometer error signal peak-to-peak amplitude, which is set to 2 Vpp for all interferometers by

adjusting the input gain on the servo loop filters. The delay stages are stepped in integer increments

of the HeNe wavelength λ/4, since the servo loop filters are designed to lock the signal to a 0 V

DC reference signal, which corresponds to the zero crossings of the HeNe interference diagnostic

error signals. Each incremental step is adjusted by ±δ to account for changes in the interferometer

optical path length when the servo loop filters are disengaged. The delay stage Y is scanned a

specified distance after which the HeNe error signal is re-measured (Verr) to check for glitches in

the stepping and locking operations. The upper deck loop is re-engaged, followed by the inter-deck

loop. A phase-cycled spectrum is acquired, and the process is repeated until the specified total

number of spectra are measured.
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Figure 4.7: (a) Flow chart of the data acquisition and stage stepping algorithm. After a phase-cycled

spectrum is acquired, the HeNe error signal is measured (Verr1). The servo loops are disengaged

and the error signal is measured again (Verr2) to compute the change in optical path length (±δ)

after the loops are disengaged, where V0 is half the peak-to-peak error signal. The stage steps the

specified distance, the servo loops are re-engaged, the error signal is measured again (Verr) to check

for glitches, and the process is repeated until the total specified number (N) of spectra are acquired.

(b) HeNe error signal for stepping the delay τ by λ, corresponding to an undersampling ratio of

four. The shaded regions indicate when the loop filter is engaged. Reproduced from Bristow et al.,

Review of Scientific Instruments 80, 073108 (2009).

An incremental stage distance of λ/4 corresponds to one fringe at the HeNe diagnostic pho-

todiode and a ∆τ = 1.06 fs minimum delay of the femtosecond pulses. The Nyquist frequency

associated with this delay is fNyq = 1/2∆τ = 473.61 THz, which is the maximum frequency that

can be accurately reconstructed without aliasing effects [233]. The most common signal reconstruc-

tion techniques produce the smallest of falias(N) = |f − 2NfNyq|, where f is the frequency of the

signal and N is any integer; satisfying the Nyquist criterion ensures that falias(N = 0) = |f |, i.e.

the signal is properly sampled. Many of the semiconductor materials of interest studied with 2DCS

have resonances centered at several hundred THz within a spectral window smaller than 10’s of

THz. In this case, aliasing can be exploited by appropriately undersampling the signal with a step

size larger than 1.06 fs, enabling faster data acquisition. For example, the QW and QD transitions
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in the GaAs IFQD sample are at 399 THz and 396.5 THz, respectively. Scanning the stages such

that 32 HeNe fringes pass at the diagnostic photodiodes corresponds to a travel distance of 10.1

µm and a Nyquist frequency of fNyq = 1/(2 · 33.8fs) = 14.8 THz. In this case, the lowest alias of

the signal (centered at ≈ 398 THz) is falias(N = 13) = |398 THz −2 · 13 · 14.81 THz | = 12.5 THz.

Thus for this undersampling ratio the signal will appear at ωτ/2π = 12.5 THz with a bandwidth of

±2 THz, which lies below fNyq and will be properly reconstructed. In practice, the aliased signal

is measured and this process is worked in reverse to reconstruct the correct spectrum by unfolding

the image around the Nyquist frequency. The HeNe error signal shown in Fig. 4.7(b) corresponds

to a stage translation of one HeNe wavelength so that four fringes (i.e. undersampling ratio of four)

pass on the photodiode. The fast oscillations are from the motion of the stage when the servo loop

is disengaged. After the stage motion has settled (within a couple hundred milliseconds), the servo

loop filter is re-engaged for data acquisition (shaded regions). 2D spectra have been accurately

reconstructed using undersampling ratios of up to 128, depending on the center frequency and

bandwidth of resonances studied.

The total number of incremented delays is determined by the undersampling ratio and the

signal decay rate. A windowing function is applied to the data with respect to the scanned delay

so that the signal gradually decays to zero; otherwise, abrupt edges in the time domain would

introduce oscillations in the frequency domain, and these truncation artifacts inhibit quantitative

analysis of the 2D spectrum. The maximum delay is defined as the time at which the windowed

signal accurately reproduces the real signal, so that if the signal has decayed below the minimum

detection threshold at a time τmax, then the maximum number of data points is Tmax = τmax/∆τ =

τmax/(Nλ/4 · 2 · (1/c)), where N is the undersampling ratio and c is the speed of light in vacuum.

After all interferograms are recorded for the total specified number of delays, the complex FWM

signal at each delay can be extracted using the procedure outlined by Eqn. 4.3. A 2D spectrum

is generated by taking a Fourier transform of the data set with respect to the stepped delay. The

procedure outlined in this section for scanning the delay τ is also used for scanning the other delays

to generate all four types of 2D spectra.



Chapter 5

Influence of Confinement on Exciton-Phonon Coupling

In solid-state materials, carrier-phonon interactions are a significant source for loss of co-

herence. From fundamental arguments based on momentum and energy conservation, inelastic

exciton-phonon scattering was expected to be inhibited in QDs because of the discrete nature of

the density of states. This concept led to the prediction of a “phonon bottleneck” [113] and sug-

gested that the homogeneous line width would be radiatively limited at low temperatures [28].

Moreover, the bottleneck effect was expected to prevent line width broadening at elevated tem-

peratures, since the difference in excited state energy levels in the dots were large compared to

the typical acoustic phonon energies. These ideas generated considerable interest and motivated

numerous works examining environmental effects on the emission properties of QDs. Photolumi-

nescence spectra of single dots revealed that the exciton-phonon coupling resulted in spectral line

shapes that were comprised of a broad background superimposed onto a narrow Lorentzian, and

the relative amplitude of the background compared to the Lorentzian depended on the material

composition and size of the dots [28, 146, 147, 148]. Similar conclusions were drawn from FWM

experiments on QD ensembles from which an initial fast decay of the signal was attributed to

the broad background and a slow decay to the radiatively-limited homogeneous line width [150].

Common to all experiments was the observation of a strong thermal component of both the broad

background and narrow Lorentzian line widths. Despite the bottleneck effect, the broadening has

been attributed to phonon activation of the exciton to higher-lying energy levels [28, 146, 148];

however this idea is inconsistent with observations in other works, which have provided evidence



130

that inelastic scattering cannot account for the amount of broadening observed and instead pure

exciton-phonon dephasing processes must be considered [147, 149, 150, 114].

These observations have stimulated numerous theoretical studies investigating the origins of

the line shape and the strong thermal component to the homogeneous line width [151, 152]. Different

approaches are used to describe the exciton-phonon interactions, most of which are modeled using

deformation potential coupling of longitudinal acoustic phonon modes to the exciton states. In

Section 5.1, a description of the exciton-phonon interaction mechanism and the main results from

the models will be discussed. In Section 5.2, the temperature and dot size dependence of the

GaAs IFQD homogeneous line widths extracted from 2D spectra will be presented. In Section

5.3, preliminary results and analysis of the ZPL temperature dependence of excitons in the InAs

SAQDs will be presented.

5.1 Background

The workhorse for calculating exciton-phonon interactions has been the independent boson

model, which allows for an exact analytical solution for the linear polarization [146] and third-

order nonlinear response [234]. This model does not consider the exciton-phonon interaction as

a perturbation, but instead considers new eigenstates arising from the mixing of discrete exciton

states with a quasi-continuum of phonon modes. Transitions between these mixed states give rise

to an exciton-phonon band which can describe the broad background observed in the QD emission

spectra. The general Hamiltonian for the coupled exciton-phonon system is given by [146]

Ĥ = E0c
†c+

∑
~q

~ω~q(b†~qb~q +
1

2
) + c†c

∑
~q

M~q(b
†
~q + b~q), (5.1)

where c and b~q (c† and b†~q) are the respective annihilation (creation) operators of the exciton, with

energy E0, and the phonon, with momentum ~q and energy ~ω~q. The first two terms are the exciton

and phonon population energies of the system. The last term is the exciton-phonon interaction,

whose strength is characterized by the matrix elements of M~q. The ground state of the system is the
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crystal lattice coupled to a phonon reservoir, shown in Fig. 5.1 as the lower-energy manifold. The

higher-energy excited state manifold is an admixture of the pure exciton states with the phonon

reservoir. In Fig. 5.1, only the crystal ground state manifold and the ground state exciton manifold

are shown for a single phonon mode with wave vector ~q. The phonon modes are assumed to be

quantum harmonic oscillators with energy spacing between the n and n+ 1 levels equal to ~ω~q.

Lattice Displacement Coordinate 

E
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A 
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C 

E0 

ħwq 

dE = gq·ħwq 

Figure 5.1: Schematic diagram of the exciton-phonon system for a specific phonon mode q with

energy ~ωq in the configuration coordinate space. The parabolas are harmonic potentials of the

crystal lattice ground state and the exciton ground state with (solid lines) and without (dashed

line) the exciton-phonon interaction. The interaction leads to an exciton-polaron shift dE. The

transitions labeled A, B and C are examples of radiative recombination processes involving zero

phonons (ZPL), one phonon emission and one phonon absorption, respectively.

Analytical solutions of the optical polarization based on the Hamiltonian in Eqn. 5.1 can be

obtained when neglecting the off-diagonal elements of M~q. This approximation ignores mixing of

the excited exciton states and is valid only when the thermal energy, kbT , is smaller than the exciton
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energy level spacings. The primary effect of coupling of an exciton with phonon mode ~q is a change

in the equilibrium lattice position, which shifts the exciton energy by the temperature dependent

exciton-polaron energy dE = M2
~q /~ω~q = g~q · ~ω~q, where g~q is defined as the coupling constant of

the exciton with phonon mode ~q. As illustrated in Fig. 5.1, the exciton-polaron shift allows optical

transitions between states with different phonon occupation numbers, two of which are labeled as

transitions B and C in Fig. 5.1. Without the shift, the wave functions of the states connected by

transitions B and C are orthogonal so that the transition dipole moment is zero. The transition

labeled by A is called the zero-phonon line (ZPL), since it connects states in the upper and lower

manifolds with similar phonon occupation numbers. The dipole moment for state A is non-zero

even if dE = 0. Based on this simple picture, without specifying the exciton-phonon interaction

mechanism, one can intuitively understand the origin of the emission line shapes of the QDs. The

narrow Lorentzian, which is always present in the spectra, arises from the ZPL transitions, whereas

the broad background arises from the transitions between states with different phonon quantum

numbers. Thus, the sidebands will be present only when the exciton-polaron shift is large enough

so that the dipole moment between states with different occupation numbers is comparable to that

of the ZPL transition.

The matrix elements of M~q and the transition probabilities can be calculated by explicitly

writing the form for the exciton-phonon interaction. Often, several assumptions are made be-

forehand. First, the dominant interaction term between excitons and phonons arises from the

deformation potential coupling to longitudinal acoustic (LA) phonons [151], so transverse phonon

modes, piezoelectric coupling and optical phonons are ignored. Moreover, the elastic properties of

the QD are assumed to be similar to those of the surrounding matrix, so that bulk phonon modes

can be used. Lastly, the QD confinement potential is either considered strongest in the growth

direction and the QD shape assumed symmetric so that the the exciton wave function is isotropic

in the transverse directions, or a spherical confinement potential and corresponding exciton wave

functions are used. In either case, the exciton wave function can be characterized by a localization

length parameter ξ. Coulomb interactions between the electron and hole are usually ignored. With
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these assumptions, the diagonal matrix elements of M~q can be written, for an exciton state |X〉, as

[151]

M~q =

√
~|~q|

2ρusν
· (Dc〈X|ei~q·~re |X〉 −Dv〈X|ei~q·~rh |X〉), (5.2)

where ρ is the mass density, ν is the quantization volume, and Dv (Dc) is the deformation potential

of the valence (conduction) band. The deformation potential characterizes the carrier-phonon

coupling strength and describes the change in the electronic band structure due to displacement

of the lattice equilibrium coordinates. The acoustic phonon dispersion relation is assumed to be

isotropic, i.e. ω(~q) = us · q, where us is the angular averaged sound velocity of the mode. Thus

each phonon mode can be characterized by its wave vector modulus q and energy ~ωq. In this case,

one can define an exciton-phonon coupling constant, g(q), which is integrated over all directions

of ~q and is related to the exciton-phonon coupling matrix through g(q) = (Mq/~ωq)2. Phonons

with wave vectors equal to q ∼ 1/ξ interact most strongly with the excitons, so that phonons with

energies greater than ~ωq ≈ 2~us/ξ only weakly couple with the excitons. Using typical numbers

for GaAs, for example, the deformation potential coupling of LA phonons with excitons is limited

to phonons with energy less than ≈ 2 meV. Moreover, for weakly-confining QDs with large ξ, only

phonons with small q interact with the excitons and the exciton-polaron shift is reduced compared

to strongly-confining dots. In this case, the exciton-phonon background is narrow and hidden by

the ZPL in the optical spectrum. Furthermore, the magnitude of g(q) decreases for dots with large

ξ, leading to a reduction in the broad background amplitude.

The exciton emission or absorption line shapes are dictated by the strength of the exciton-

phonon coupling. The ZPL transition is allowed irrespective of the coupling strength, and the

background is comprised of a continuum of transitions between states with different phonon occu-

pation numbers. When modeling this phenomenon, the continuum of phonon modes is discretized

into a set of N modes qi, where each mode can be described by the diagram in Fig. 5.1 with a cou-

pling constant g(qi). In this model, each transition between states with different phonon occupation
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numbers is artificially broadened to have a similar line width as the ZPL. For example, Besombes

et al. can accurately reproduce their photoluminescence line shapes using N = 12 phonon modes,

and they only consider phenomenologically-broadened transitions between states that are different

in the phonon occupation number by zero, one, and two [146].

A severe limitation of the independent boson model is that broadening of the ZPL can only

be included phenomenologically. Being linear in the displacement coordinates and diagonal in

the exciton states, the model only considers an impulsive excitation of a phonon cloud, which

quickly decays into a finite lattice distortion that is constant during the subsequent time evolution

of the polarization. This constant distortion, which is the origin of the exciton-polaron energy

shift, introduces the phonon satellite peaks but cannot dephase the transitions. Thus the model

cannot provide insight into the mechanisms responsible for the ZPL temperature dependence. This

drawback can be mitigated by taking into account the off-diagonal elements of the carrier-phonon

coupling term M~q, i.e. phonon-assisted transitions of the exciton to higher-lying energy states.

Calculations performed by Muljarov and Zimmermann show that by considering these elements, an

exciton-phonon interaction term quadratic in the displacement coordinates appears [152]. This term

can account for broadening of the ZPL through the temperature dependent phonon occupation,

described by the Bose function N~q = 1/[exp(~ω~q/kbT )−1]. Similar to the independent boson model,

their calculations set the wave vector limit for exciton-phonon coupling at q ∼ 1/ξ. Their results

demonstrate that the optical polarization quickly decays on a timescale ξ/us ≈ 1 ps, which reflects

the formation of the polaron cloud and provides the broad background in the optical spectrum.

The resulting finite lattice distortion, however, is not completely stable because of the quadratic

coupling term. This term describes scattering into the higher-lying energy states, which distorts

the polarization and leads to an exponential decay. This exponential decay describes the narrow

ZPL in the optical spectrum and is in agreement with the experiments on strongly-confining QDs

[150].

In their calculations, Muljarov and Zimmerman clarify that their derivation is valid only if

the relevant LA phonon energies are much smaller than the typical spacing between the exciton



135

energy levels, which implies that the phonon-assisted transitions between excited states are virtual

and do not affect the exciton population state. Therefore the quadratic coupling is useful only for

strongly-confining QDs, such as the InAs SAQDs, where the excited states are spaced by tens of

meV and the acoustic phonon energies are less than a few meV. However, for the GaAs IFQDs, the

acoustic phonon energies are comparable to the energy level spacing, invalidating this approach.

Nonetheless, we show in the following sections that the temperature dependent broadening of the

ZPL can still be described using the Bose function, which provides a measure of the typical energy

of phonons strongly coupled to the excitons.

5.2 Zero-Phonon Line Broadening

2D rephasing amplitude one-quantum spectra acquired from the GaAs IFQDs using co-linear

excitation and detection (HHHH) are shown in Figs. 5.2(a) and 5.2(b) for low (6 K) and high (50 K)

temperature, respectively. The results discussed in this section are all performed using an excitation

photon density at the sample of 1 × 1012 photons·pulse−1·cm−2, which is the maximum intensity

while remaining in the χ(3) regime and corresponds to ≈ 0.1 excitons excited per QD on average.

Each spectrum features a QW (XQW ) and QD (XQD) exciton peak, and a QW biexciton peak

(BQW ) appears red-shifted along the emission energy axis from XQW by the biexciton binding

energy. A QD biexciton peak can be expected, but it is too weak to be observed using this

polarization sequence. The peak of the excitation pulse spectrum is centered on XQD. Both spectra

are normalized to their maximum amplitude, and the contours in the spectrum in Fig. 5.2(b) are

scaled so that the maximum plotted amplitude is equal to 0.1. As discussed in Chapter 3, the cross-

diagonal line shape can be fit using a
√
Lorentzian function, and the full-width at half-maximum

(FWHM) of the fit is equal to twice the homogeneous line width, γ. The homogeneous line shapes

(points) and the fits (solid lines) obtained at the maximum amplitude of the QD inhomogeneous

distribution are shown in Figs. 5.2(c) and 5.2(d) for temperatures 6 K and 50 K, respectively.
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Figure 5.2: Normalized rephasing one-quantum amplitude spectra of the GaAs IFQD sample are

shown for a sample temperature of (a) 6 K and (b) 50 K. Each spectrum features a QW (XQW ) and

QD (XQD) exciton peak and a QW biexciton peak (BQW ) red-shifted from XQW by the biexciton

binding energy. Cross-diagonal slices taken at the maximum amplitude of XQD are shown for (c)

6 K and (d) 50 K, where the data (points) are fit using a
√
Lorentzian function (solid line) with

a FWHM equal to 2γ.

The fact that a
√
Lorentzian function fits the line shapes well at both low and high tem-

perature indicates that the broad phonon sidebands attributed to transitions between states with

different phonon occupation numbers are absent; thus the FWHM of the fits provides a measure of

the ZPL width. Figures 5.2(c) and 5.2(d) clearly show that the ZPL is broader at 50 K than 6 K.

Figure 5.3(a) shows the projection of the QD signal onto the vertical axis (points), which gives the

absorption line shape, with line center of the inhomogeneous distribution marked by the vertical

arrows. With an increase in the temperature, the band-gap decrease red-shifts the inhomogeneous
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distribution. The line shape at both temperatures is asymmetric with with a tail on the high-

energy side of the distribution. In photoluminescence, a similar asymmetry was observed and was

attributed to the lack of translational invariance of the excitons confined in the dots, which implies

that the exciton wave function is described by a distribution of wave vectors centered around ~k = 0.

The optical density – which is proportional to the absorption spectrum – was derived by Schnabel

et al. and calculated by Leosson et al. for a disordered potential with average confinement energy

E0 to be [235, 236]

α(E) ∝ 1

2η

[
1 + erf

(
E − E0

σE
− σE

2η

)]
· e(σE/2η)2−(E−E0)/η, (5.3)

where ‘erf’ is the error function, σE is the FWHM of the disordered confinement potential energy

distribution, and η = ~2∆~k2/2M is defined to be the localization energy parameter for a wave

vector distribution ∆~k and exciton mass M . The model fits the projections in Fig. 5.3(a) well for

both temperatures and is consistent with the idea that the excitons are weakly localized in the QDs.

An advantage of performing 2DCS on the QDs is that the inhomogeneous and homogeneous line

widths are uncoupled, enabling us to extract the homogeneous line width dependence on the QD

resonance energy by taking cross-diagonal slices along the diagonal. The ZPL width dependence

on the QD resonance energy is shown in Fig. 5.3(b) for a set of temperatures ranging from 6 K to

50 K. The line center of the inhomogeneous distribution at each temperature is indicated by the

solid circles. The ZPL width increases with energy (decreasing QD size) across the inhomogeneous

distribution for all temperatures, with the effect being more dramatic at elevated temperatures.

Oscillations in the ZPL widths are due to time truncation artifacts of the FWM signal and are more

pronounced at lower temperatures, where the signal dephases more slowly. At each temperature, a

linear fit is performed (solid lines in Fig. 5.3(b)) and values from the fits are used in the subsequent

discussion.
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Figure 5.3: (a) The asymmetric absorption line shape, obtained by projecting the 2D amplitude

rephasing spectrum onto the vertical axis. The line shapes (points) are reproduced using Eqn. 5.3

(solid line). Line center of the inhomogeneous distribution is marked by the vertical arrows. (b)

The ZPL widths (points) within the FWHM of the inhomogeneous distribution for different sample

temperatures. Line center of the inhomogeneous distribution at each temperature is marked by the

larger solid circle. Linear fits (solid lines) are performed at each temperature.

The ZPL width temperature dependence is shown in Fig. 5.4(a) for QDs at line center of

the inhomogeneous distribution (points). The temperature dependence is fit using a Bose function

and offset, given by [28]

γµ(T ) = γ∗µ +
∑
ν>µ

γµν ·N(Eµν , T ), (5.4)

where µ and ν are indices of the exciton ground state and higher-lying states, respectively, N(Eµν , T ) =

1/[exp(Eµν/kbT ) − 1] is the Bose function that describes the phonon occupation of a single mode

with energy Eµν , and γµν is the coupling pre-factor characterizing the exciton-phonon interaction
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strength. The first term in Eqn. 5.4 represents a temperature independent dephasing offset, while

the second term describes the exciton-phonon interaction. A single term from the sum in Eqn.

5.4 is used to fit the data, shown in Fig. 5.4(a) as the solid line. The fit matches the data for

an activation energy of E12 = 4.4 ± 0.8 meV and an offset of γ∗1 = 0.11 ± 0.01 meV. The offset

is significantly larger than the radiatively-limited line widths reported in the literature for IFQDs,

which are typically ten’s of µeV. The significant low temperature broadening we observe arises

predominantly through excitation-induced dephasing and is described in more detail in the next

Chapter.
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Figure 5.4: (a) Temperature dependence of the ZPL width measured at line center of the inhomo-

geneous distribution. The data (points) are fit with Eqn. 5.4 using a phonon energy E12 = 4.4±0.8

meV and an offset of γ∗1 = 0.11± 0.01 meV. The absence of a phonon-activation peak in the data

reveals that the dominant thermal broadening mechanism is virtual transitions between states,

which is an elastic exciton-phonon scattering process. (b) The virtual activation energy (solid line)

and coupling pre-factor characterizing the strength of the exciton-phonon interaction (dashed line)

are shown for QDs with different resonance energies (sizes).

Since the model fits the data well and the phonon energy E12 is similar to the energy spacing

between the exciton ground and excited states, one could speculate that the increase in the ZPL

width with temperature stems from phonon-assisted excitation of the exciton to a higher-lying

energy state. However, we can rule out this possibility since no additional features consistent with
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this mechanism appear in the spectra. Since the inelastic activation mechanism is an incoherent

process that would change the exciton population state, we can map out the dynamics of this

process by measuring multiple rephasing one-quantum spectra at different delays T , during which

time the system is in a ground or excited population state. If the exciton is excited to an energy

level ≈ 4.4 meV higher, then a peak will appear blue-shifted along the emission energy axis by this

energy at a time characteristic of the exciton-phonon scattering process. This peak would represent

excitation at the exciton ground state energy and emission at the excited state energy. Spectra were

taken for T up to 300 ps, which is almost an order of magnitude longer than the dephasing time,

and no signatures of inelastic exciton-phonon scattering appear at this energy. This observation

reveals that elastic pure dephasing from exciton-phonon scattering broadens the ZPL.

Intuitively, this result can be understood using the model based on virtual transitions between

states proposed by Muljarov and Zimmermann discussed in the previous Section: the exciton-

phonon scattering mechanism results in virtual transitions of the exciton either within the ground

state or between the ground and excited states [151], which interrupts the coherence oscillations

during τ and t and increases the dephasing rate. If the energy of phonons that strongly couple to

the excitons, determined by the constant g(q) discussed in the previous Section, is small relative

to kbT , then the temperature dependence exhibits a linear behavior since the Bose function can

be approximated as N(E, T ) ≈ kbT/E. This might occur when the energy level spacing of the

excited states is much larger than the relevant phonon energies, so that only virtual transitions

within the ground state occur. On the other hand, if the relevant phonon energies are similar

to kbT , the above approximation no longer holds. This behavior might occur when the relevant

phonon energies are similar to the energy level spacing, so that virtual transitions between the

ground and excited states are important. At elevated temperatures (> 35 K) and after long pulse

delays (T > 100 ps), we observe incoherent transfer from the QD states to the delocalized QW

states, which is an inelastic broadening mechanism that contributes to the ZPL width (discussed in

detail in Chapter 7). However, the timescale of this process is almost an order of magnitude longer

than the QD exciton dephasing time and the energy does not match the phonon activation energy
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E12 = 4.4 meV from the fit to the data, so it cannot be responsible for the ZPL width broadening

discussed in this Section.

This analysis is repeated as a function of energy offset from line center of the inhomogeneous

distribution to characterize the dependence of the exciton-phonon interaction on the QD resonance

energy (i.e. QD size). Figure 5.4(b) shows that the virtual activation energy, E12 (solid line), and

the exciton-phonon interaction pre-factor, γ12 (dashed line), both increase with increasing exciton

energy (decreasing QD size). An increase in E12 is a direct result of the ground-to-excited state

energy separation increasing with decreasing QD size. The resonance energy dependence on the

QD size is calculated by solving Schrödinger’s equation for a finite three-dimensional box using

an effective mass M = 0.18 · m0, where m0 is the electron mass, and a binding potential of 10

meV. The QD size is adjusted until the emission spectrum matches results obtained from single

dot photoluminescence spectra of a similar sample [27], which indicates that the typical QD in the

sample has lateral dimensions of ≈ 40 nm. Changes in the QD size are mapped onto changes in the

resonance energies, and the calculations reveal that the energy spacing between the exciton ground

and first excited states changes by 1 meV for a change in the exciton ground state resonance energy

of 0.8 meV, which agrees well with the slope of E12 in Fig. 5.4(b). The increase in γ12 for higher

energy, smaller dots is consistent with Takagahara’s work that predicts greater exciton-phonon

coupling for smaller dots [151]. Intuitively, this result can be understood by considering that the

exciton wave function in smaller dots is described by a larger ∆~k, which in turn enables coupling

of the exciton with more phonon modes.

5.3 Enhanced Exciton-Phonon Coupling in InAs SAQDs

The homogeneous line shapes from the GaAs IFQDs do not show any signs of the broad

phonon sidebands, even at elevated temperatures. This result is not surprising, however, since

excitons are only weakly-localized in the dots, so the amplitude of the coupling constant g(q) is

small. On the other hand, excitons are strongly-confined in the InAs SAQDs, which enhances

the exciton-phonon interactions and alters the optical properties of the ground and first excited
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state transitions. In this Section, preliminary results on our studies of the ZPL width broadening

mechanisms in the InAs SAQD sample annealed at 900 ◦C are discussed and a model is proposed

to explain the data.

5.3.1 Phonon Sidebands

2D one-quantum rephasing amplitude spectra are shown in Figs. 5.5(a)-(c) for a sample tem-

perature of 10 K, 50 K and 70 K, respectively. The spectra are acquired using co-linearly polarized

excitation and detection (HHHH) and an incident photon density of 3×1012 photons·pulse−1·cm−2,

which is the maximum intensity of the incident pulses while remaining in the χ(3) regime. At this

intensity the estimated exciton density per QD is 0.1. Each spectrum features a single peak inho-

mogeneously broadened along the diagonal, and a weak peak red-shifted by the biexciton binding

energy along the emission energy axis. Cross diagonal-slices taken at line center of the inhomo-

geneous distribution are shown in the bottom row of Fig. 5.5 for the three temperatures. Both

neutral and charged excitons (trions) contribute to the nonlinear optical response for this polar-

ization sequence. When using an HVVH polarization sequence, which is discussed in more detail

in the next Chapter, no quantum pathways exist for the exciton, so any remaining signal on the

diagonal dashed line is attributed to the trion nonlinear response. The signal for this polarization is

two orders of magnitude weaker than for the HHHH polarization sequence; this result suggests that

the trion contribution for the HHHH polarization scheme can be ignored since the signal is domi-

nated by the exciton nonlinear response. In this case the parameters extracted from the spectrum

describe the optical properties of excitons in neutral QDs. At 10 K, a single
√
Lorentzian function

is fit to the data, indicating that the line width is comprised of the ZPL transition only and is 12

µeV. At elevated temperatures, broad phonon sidebands appear and the ZPL broadens. The line

shapes are fit to a triple
√
Lorentzian function to account for the ZPL, the phonon sidebands and

the weak biexciton peak.
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Figure 5.5: Normalized rephasing one-quantum amplitude spectra from the InAs SAQDs annealed

at 900 ◦C for a sample temperature of (a) 10 K, (b) 50 K and (c) 70 K. The dominant peak in each

spectrum is inhomogeneously-broadened along the diagonal and arises from the exciton nonlinear

response. The corresponding homogeneous line shapes and fits are shown in the bottom row. At

low temperature, a single
√
Lorentzian function is used to fit the ZPL shape, whereas at elevated

temperatures an additional
√
Lorentzian function is necessary to fit the broad phonon background.

A third function is used to fit the weak biexciton peak red-shifted from the diagonal peak at zero

energy.

The appearance of the phonon sidebands confirms that the exciton-phonon coupling strength

is greater in this sample compared to the GaAs IFQDs, so that now the transition dipole moment

is significant between states with different phonon occupation numbers. The sidebands have been

previously observed in both the linear emission spectrum from single dots and in the nonlinear
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FWM response from QD ensembles. They are a manifestation of coupling between the different

mixed exciton-phonon levels in the crystal ground state and exciton ground state manifolds (as

shown in Fig. 5.1), which is analogous to coupling between the vibrational levels of the ground and

excited state manifolds of a diatomic molecule or photosynthetic light-harvesting antennae [187].

A future area of interest is to perform a systematic study and analysis of the sideband amplitude,

width and center frequency relative to those of the ZPL. For example, an asymmetry of the line

shape can provide insight into thermalization effects of the ground and excited state manifolds.

If the broad background in the photoluminescence emission spectrum is offset to lower energies

compared to the ZPL, then one might conclude that the dominant optical transitions are between

states with low phonon occupation numbers in the excited manifold and high occupation numbers

in the ground state manifold. Similarly, if the absorption spectrum reveals that the background is

blue-shifted relative to the ZPL, then only the zero phonon level of the ground state manifold is

predominantly occupied. This information is readily available in the 2D spectra and can provide a

deeper understanding into exciton-phonon interaction effects.

5.3.2 Excited State/Ground State Dephasing Mechanisms

The ZPL widths extracted from the
√
Lorentzian fits to the cross-diagonal slices taken at

line center of the inhomogeneous distribution are shown in Fig. 5.6(a) for the exciton ground state

(GS, blue squares) and first excited state (ES, red circles). These states are separated in energy

by ≈ 25 meV, which is too large for simultaneous excitation due to the limited laser bandwidth at

the resonance energies. Each set of data were obtained with the laser tuned resonantly with the

corresponding transition. The GS ZPL width is ≈ 12 µeV at low temperature and increases with

temperature in a monotonic manner. The ES ZPL width is ≈ 25 µeV at low temperature and is

insensitive to an increase in the temperature until ≈ 35 K, after which it increases similarly as the

GS.
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Figure 5.6: (a) The ZPL width temperature dependence of the exciton ground state (blue squares)

and first excited state (red circles). The data is fit using the model described in the text, which

includes effects from exciton-phonon scattering, phonon-assisted relaxation and the quantum con-

fined Stark effect. (b) Schematic diagram of a charge trap near the QD. Fluctuations of the emission

energy, EGS , of an exciton in the ground state arise from the Stark effect associated with charges

being captured and emitted from the trap with respective times tcap and tesc. (c) The charge

capture and emission times and the fluctuation correlation time (τc) dependence on the sample

temperature. At elevated temperatures, the correlation time decreases, with is reflected in the ZPL

width broadening.

Insight into the phonon modes that couple strongly to the excitons could be obtained by

analyzing the ZPL widths using the Bose function and offset given by Eqn. 5.4. However a

comparison of the low temperature GS ZPL width (≈ 12 µeV) to the expected radiatively-limited

line width of ≈ 3 µeV, based on population decay rate measurements, reveals that significant pure

dephasing exists in the sample, independent of excitation density (excitation-induced dephasing

effects and measurements of the population decay rate are discussed in detail in the following

Chapter). The exciton-phonon interaction model described by Eqn. 5.4 cannot account for the

additional pure dephasing at low temperature. One possible broadening mechanism could be the

existence of a fluctuating environment arising from charges that are unintentionally introduced

during the growth process, which become trapped in weakly-confining localization sites due to
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unavoidable wetting layer/barrier interface roughness. The electric fields from localized charges in

the vicinity of the QD induce a shift of the QD emission lines through the quantum confined Stark

effect [114]. The QD resonance energy is randomized by the capture and escape of charges in the

localization trap and the fluctuations can be characterized by a spectral modulation amplitude,

Σ, and a timescale, τc. The characteristic parameters Σ and τc are determined by the proximity

of the trap to the QD and the times associated with capture and escape of charges from the

trap. This process is depicted in Fig. 5.6(b), where the characteristic charge trap and escape

times are tcap and tesc, respectively. Calculations performed by Berthelot et al. demonstrate that

in the slow modulation limit (Στc/~ � 1), slow reservoir fluctuations are reflected in the QD

spectrum, and the line shape is Gaussian with a FWHM give by 2
√

2ln(2)Σ. In the opposite limit

(Στc/~ � 1), fast reservoir fluctuations are smoothed out and the line shape is narrowed into a

Lorentzian with a FWHM given by 2Σ2τc/~. The random charge fluctuations result in transition

energy shifts over time equal to δE(t) around a mean resonance energy EGS . Both Σ and τc are

then computed by performing Monte Carlo simulations of the correlation function of the energy

fluctuations, X(t) = 〈δE(t)δE(0)〉. The simulated results are well reproduced by the expressions

[114]

1

τc
=

1

tcap
+

1

tesc

Σ =

√
N∆√

tesc
tcap

+
√

tcap
tesc

, (5.5)

where N is the number of traps and ∆ is the Stark shift. The saturation value of Σ is given by

Σs =
√
N∆/2 and the temperature dependence of these expressions is reflected in tesc and tcap.

The trapping of charges is associated with phonon emission and the escape process occurs through

the absorption of phonons or through a carrier-carrier Auger mechanism, which is assumed to be

temperature independent. These processes are related to the capture and escape times through
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1

tcap
=

∑
i

1

ti

(
1 +

1

eEi/kbT − 1

)
1

tesc
=

∑
i

1

ti

(
1

eEi/kbT − 1

)
+

1

tA
, (5.6)

where each term in the summation represents the carrier-phonon interaction involving phonons

with average energy Ei and a characteristic scattering time ti. The time tA is the average Auger

scattering time. Two terms from the summations corresponding to indices i = 1, 2 are necessary

to reproduce the data. These expressions can be used to calculate the ZPL line width dependence

on the fluctuating charge reservoir. Moreover, the ZPL width also depends on the exciton-phonon

virtual activation process described in the previous Section, so that the total ZPL width of the GS

exciton can be expressed as

γGS =
γpop

2
+

2Σ2τc
~

+
~
t3

(
1

eE3/kbT − 1

)
, (5.7)

where γpop/2 = 3 µeV is the radiatively-limited ZPL width and t3 and E3 are the average time

and phonon energy corresponding to the exciton-phonon virtual activation mechanism. The results

from this model are shown as the solid line in Fig. 5.6(a). The corresponding capture, emission,

and fluctuation correlation times are shown in Fig. 5.6(c). The correlation time is ≈ 1 ps for all

temperatures, which is similar to the results obtained by Berthelot et al. from a similar sample

[114]. A short τc is also consistent with the idea that the transition energy fluctuations δE(t) must

be fast enough to dephase the interband optical coherences during τ and t, which occurs on a

timescale of tens to hundreds of picoseconds. The ZPL temperature dependence of the ES exciton

is modeled using a similar expression given by

γES =
γpop

2
+

2Σ2τc
~

+
~
t3

(
1 +

1

eE3/kbT − 1

)
+

~
t4

(
1

eE4/kbT − 1

)
, (5.8)

where the parameters t4 and E4 describe the ES exciton-phonon virtual activation behavior. The

term corresponding to parameters t3 and E3 describes phonon-assisted relaxation from the ES to
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the GS. The results from this model are shown as the dashed line in Fig. 5.6(a). The following

table summarizes the parameters used in the expressions to fit the data.

Σs tA t1 t2 t3 t4 E1 E2 E3 E4

GS 0.39 21 0.9 6 1 - 8 36 25 -

ES 0.20 21 0.9 6 0.3 0.7 8 36 25 20

Table 5.1: Parameters used in the fits of the exciton ground state (GS) and first excited state (ES)

ZPL widths. Σs and Ei are given in units of meV and ti in units of ps.

The following assumptions have been made for fitting the data: 1) the ground and excited

states have a similar radiatively-limited ZPL width [237]; 2) the characteristic charge carrier-phonon

interaction times and energies are similar for both states; and 3) The phonon energy E3 associated

with the excited state → ground state relaxation process is equal to the energy separation of the

states. The zero temperature ZPL widths set constraints on the values for tA and the excited

state phonon-assisted relaxation parameter t3. Simultaneous fitting of the GS and ES ZPL widths

based on these assumptions and constraints is sufficient to uniquely determine the values of the other

parameters. Without the Auger scattering mechanism, the fits underestimate the zero-temperature

offset of both states. An interesting result is the smaller saturation spectral modulation amplitude,

Σs, for the ES compared to the GS, which implies a smaller Stark shift for the ES. In a simple

picture, a larger Stark shift is expected for the ES exciton because weaker confinement typically

leads to greater polarizability of the electron and hole wave functions; however, the exact form

of the wave functions depends on the QD morphology, and several experimental and theoretical

studies have shown that the GS exciton can experience a larger Stark shift for certain electric field

orientations and strengths [238, 239].

The energies E1 and E2 likely describe charge carrier scattering with acoustic and optical

phonons, respectively. Although the average phonon energy, E3, associated with the GS exciton-

phonon interaction mechanism is similar to the GS–ES energy separation, the scattering is likely
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virtual in nature. An investigations of the GS–ES coupling is an interesting perspective for future

experiments. An additional constraint on the parameters could be established by measuring the ES

→ GS relaxation rate, described by (t3)−1. The rate can be determined by repeating the rephas-

ing one-quantum experiments using excitation pulses with sufficient bandwidth to simultaneously

probe the GS and ES transitions. Incoherent population relaxation dynamics can be monitored by

acquiring multiple spectra for different delays T . The fraction of the ES population relaxing to the

GS would appear as a spectrally-isolated peak, and the relaxation time t3 could be determined from

a rate equation analysis of the peak amplitudes. ES population relaxation dynamics have been in-

ferred from photoluminescence and TI-FWM studies. In photoluminescence, the ES dephasing time

was measured for ≈ 100 dots and was less than 100 ps [240], corresponding to a minimum line width

of ≈ 7 µeV. This width is almost an order of magnitude larger than for the GS and is attributed

to phonon-assisted relaxation to the GS. More recently, TI-FWM experiments have revealed that

the photon echo amplitude of excitons in the first ES exhibits a bi-exponential decay with a long

decay time ≈ 1.1 ns, corresponding to a line width < 1 µeV that is comparable to that of the GS

exciton [87, 237]. The discrepancy between the reported values is likely a result of different QD

morphologies and therefore confinement energies and energy level separation. In the photolumines-

cence study, the QDs were comprised of In0.5Ga0.5As/GaAs and emitted from ≈ 1250− 1350 meV,

which was 200 − 100 meV below the wetting layer emission energy. In the TI-FWM experiment,

the QDs were comprised of InAs/GaAs that emitted around 1050 meV, which was 332 meV below

the wetting layer. Moreover, the ES can exhibit a more complicated fine structure compared to the

GS, which can alter the polarization selection rules [237]. Perhaps weaker confinement and smaller

GS–ES energy separation is responsible for the enhanced ES→ GS phonon-assisted relaxation that

we observe. 2DCS is particularly suited for examining coupling between the exciton ground and

excited states and could reveal the role of QD morphology on phonon-assisted transitions between

excited states in QDs.



Chapter 6

Influence of Confinement on Many-Body Interactions

The finite confinement potential, discrete electronic density of states and long interband

optical coherence times of semiconductor QDs are reminiscent of atomic systems, leading to the

connotation of QDs as “artificial atoms”. Despite some similarities, this simple picture becomes

dramatically more complicated when the QD contains more than one charge, usually by means

of optical excitation of single or multiple electron-hole pairs in neutral or charged QDs. Analyt-

ical methods adopted from atomic physics have been used to calculate the electronic and optical

properties of dots embedded in a glass matrix, which exhibited nearly spherical shape with quasi-

infinite confinement potential [11]. While this structure was more closely analogous to atomic

systems, epitaxially-grown semiconductor QDs exhibit complex geometrical structure and are sen-

sitive to environmental effects, which inhibit the possibility to accurately calculate the properties

using analytical methods [84]. Several approximations have been made to simplify the geometry,

including rectangular [241] and spherical [242] QD shapes and parabolic confinement potentials

[243]; however these simplifications might introduce artificial properties that are not observed in

real physical systems. Moreover, the electronic and optical properties depend on the interrelation

between confinement effects and Coulomb interactions between multiple charges residing in the dot,

which require more advanced calculation methods. For example, the properties of realistic QDs

depend on the shape, composition, strain effects and piezoelectric fields, which all require numerical

techniques to be taken into account properly.

Theoretical efforts have benefited from single-dot spectroscopy, which has been an extremely
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powerful tool for measuring and characterizing the influence of confinement, material composition

and shape on the QD optical properties (for a compilation of experiments results, see Ref. [84]).

More recently, nonlinear techniques such as pump-probe and FWM have enabled studies of QD

ensembles, although these methods have several limitations that have been discussed in previous

Chapters. Regardless, previous works have revealed that the recombination energies of different

excitonic states are sensitive to the morphology of the QDs. Calculations have demonstrated that

Coulomb interactions, including exchange and correlation effects, are of large importance. For ex-

ample, in Fig. 6.1, which is representative of the data obtained from many single-dot experiments,

the binding energies of neutral (XX) and charged biexcitons (XX+) and positive (X+) and nega-

tive (X−) trions are shown as a function of the exciton recombination energy for InAs/GaAs QDs,

obtained from a single-dot photoluminescence spectroscopy experiment [244]. Clear trends are

visible for the entire ensemble – specifically, the binding energies decrease with increasing recombi-

nation energy, or decreasing QD size1 . Rodt et al. perform configuration interaction calculations

using different numbers of electron and hole states confined in the QD. Their results indicate that

with decreasing dot size, the number of confined levels decreases, the effects of Coulomb correla-

tions beyond the HF level diminish, and the binding energies are reduced and can even be negative

(i.e. blue-shifted with respect to the exciton), indicating the multi-particle configuration is in an

“anti-binding” state but held together by confinement of a QD. For example, for exciton recom-

bination energies below ≈ 1220 meV in their sample, the biexciton binding energy is positive (i.e.

the biexciton → exciton recombination energy is red-shifted with respect to the exciton → ground

state). With increasing exciton recombination energy, the biexciton binding energy decreases and

flips sign.

1 A positive binding energy corresponds to a red-shift in the recombination energy with respect to exciton →
ground state recombination.
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Figure 6.1: Comparison between the measured (a) and calculated (b),(c) relative recombination

energies of the neutral (XX) and charged (XX+) biexciton and positive (X+) and negative (X−)

trions versus exciton recombination energy, E(X), in InAs/GaAs QDs. In the calculations, the total

configuration, TC = (#e,#h), comprises the number of electron (#e) and hole (#h) states confined

in the dots. The calculations of the binding energies in (b) and (c), for which a positive binding

energy corresponds to a red-shift of the transition energy with respect to the exciton recombination

energy, are performed using two and six confined electron states, respectively, whereas the number

of bound holes states is varied. Reproduced from Rodt. et al., Physical Review B 71, 155325

(2005).

The results presented in Fig. 6.1 clearly demonstrate that the binding energies, and therefore

Coulomb effects, are sensitive to the QD size; however for single dot studies, significant dot-to-

dot scatter of the data limits one’s ability to compare experiment and theory only to samples

whose optical properties vary significantly over a large energy range. For example, the calculated
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recombination energies shown in Figs. 6.1(b) and 6.1(c) indicate that if the relative change in

the number of bound hole levels in the QD is small, then the change in the biexciton binding

energy is negligible; these small changes cannot be deduced from the data in Fig. 6.1(a) because

of significant dot-to-dot variation at any given recombination energy. The large scatter of the data

could be attributed to the limited number of dots probed, or perhaps to the sample modifications

(aperture masks, etching mesas, etc.) necessary to isolate single QDs. Ensembles of dots can be

probed using nonlinear techniques, which eliminate the need for sample modifications for single-dot

isolation and dramatically increase the number of dots that can be probed. In this Chapter, our

efforts to probe the effects of many-body interactions on the electronic and optical properties of

QDs using 2DCS are discussed. The nonlinear response from excitons, biexcitons and trions can

be independently analyzed by taking advantage of the dipole transition selection rules, which are

discussed in Section 6.1. In Section 6.2, exciton-exciton scattering effects on the dephasing rates

will be presented. In Section 6.3, 2DCS experiments probing the biexciton properties are discussed,

and the results are compared to configuration interaction models in order to reveal the effects of

confinement on Coulomb interactions between excitons. In Section 6.4, high-resolution 2D spectra

probing exchange interaction effects are presented.

6.1 Isolating the Nonlinear Response from Excitons, Biexcitons and Trions

A quantitative analysis of the 2D spectra from the epitaxial QDs requires isolating specific

coherent pathways that otherwise overlap because of inhomogeneity. Figure 6.2(a) and 6.2(b) shows

typical rephasing one-quantum spectra of the InAs SAQDs annealed at 900 ◦C and of the GaAs

IFQDs, respectively, taken at 10 K, an excitation intensity within the χ(3) regime and collinear

polarization (HHHH). The excitation field polarization direction is aligned along the |H〉 state for

all samples. The orientation of the InAs sample is determined through an analysis of ∆FSS acquired

from the zero-quantum spectra, which is described in detail in Section 6.4. AFM images of a surface

dot layer on the GaAs sample indicates that the average QD shape is slightly asymmetric along

the [110] and [11̄0] crystal axes (H and V directions). The cleave planes of the sample are along



154

these directions, making alignment of the sample straightforward.
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Figure 6.2: Rephasing one-quantum spectra taken at 10 K and low-excitation conditions. An

HHHH excitation and detection polarization sequence is used for the InAs and GaAs QD spectra

in (a) and (b), respectively. For the respective spectra from the InAs and GaAs dots in (c) and

(d), an HVVH polarization sequence is used. The peaks labeled D are associated with excitons

and trions and the peaks labeled B arise from biexciton contributions, as discussed in the text.

For collinear polarization, both spectra in Figs. 6.2(a) and 6.2(b) feature a single peak (D)

elongated along the diagonal by the sample’s respective inhomogeneous line width. When using a

cross-linear polarization excitation and detection sequence (HVVH), an additional peak appears in

the spectra shown in Figs. 6.2(c) and 6.2(d). Based on the dipole optical transition selection rules

described in the previous Chapters, we can attribute the two peaks to either the exciton, biexciton,
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or trion [101]. The diagonal peak in the spectra generated with an HHHH polarization sequence,

for neutral QDs, arises from the ground-state bleach and excited-state emission nonlinearities of

the exciton transition, described by the Feynman diagrams (a) and (b) in Fig. 3.10. The exciton→

biexciton transition is also accessible with this polarization sequence and appears in the spectrum

as a peak red-shifted along the emission energy axis, ~ωt, by the biexciton binding energy, ∆B.

For these samples and excitation conditions, the biexciton peak is too weak and the spectrum is

dominated by the ground state → exciton transition so that only a single diagonal peak is present.

In the case of charged QDs, excitation of the biexciton is forbidden due to Pauli blocking. Optical

excitation creates an electron-hole pair that interacts with the resident charge to form a trion. The

trion resonance appears as a diagonal peak spectrally-shifted along the diagonal from the exciton

transition by the trion renormalization energy (either positive, i.e. binding, or negative, i.e. anti-

binding, depending on the QD shape and composition and charge sign). The InAs SAQD ensemble

contains both neutral and charged QDs, thus the diagonal peak for the HHHH polarization sequence

is attributed to both excitons and trions. The fraction of charged QDs is estimated by noting that

the third-order polarization and the ZPL width are proportional to the fourth and second powers of

the dipole moment, respectively. We assume that a single dipole moment characterizes the quantum

pathways leading to each excitonic state, and we use the radiatively-limited ZPL widths (discussed

in the Section 6.4) to estimate the ratio of the dipole moments. By measuring the exciton (trion)

peak amplitudes and line widths using the HHHH (HVVH) polarization sequence at low power (in

the χ(3) regime) and relating them through the dipole moments, we estimate that ≈ 50% of the QDs

are charged in the InAs SAQD sample annealed at 900 ◦C. This analysis requires normalizing the

HHHH and HVVH spectra with respect to each other, which is done using the biexciton peak since

the biexciton nonlinear response is expected to be the same for each polarization sequence (based

on the Feynman diagrams in Chapter 3). A similar analysis is difficult for the InAs sample annealed

at 980 ◦C since the biexciton contribution is too weak to extract the necessary parameters for the

HHHH sequence. The GaAs IFQD sample exhibits no clear signatures indicating the presence of

trions.
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Using an HVVH polarization sequence, no quantum pathways exist for the exciton peak on

the diagonal. Only one pathway associated with the biexciton → exciton emission is optically

accessible (Fig. 3.10(f)), which is attributed to the peak labeled B in Figs. 6.2(c) and 6.2(d). The

optical nonlinearities associated with the ground-state bleaching and excited-state emission are

absent using this polarization, which enhances the biexciton relative amplitude in the spectrum.

The presence of a diagonal peak for the InAs SAQDs is attributed to the dots that are charged

with a hole. For charged QDs, the exchange interaction Hamiltonian is not diagonal using linearly-

polarized basis states since only a single circularly-polarized transition is optically allowed due to

Pauli blocking of one of the |±1〉 transitions from the resident charge. Transforming the excitation

and detection polarization states and the Feynman diagrams in Fig. 3.10 to a circular basis,

assuming only one circularly-polarized transition is optically-allowed, one finds that the ground-

state bleaching and excited-state emission nonlinearities for this single transition do not completely

cancel and will result in a diagonal peak, which is associated with the trion. In the GaAs IFQD

sample, the presence of the diagonal peak for this polarization sequence could indicate the presence

of charged QDs; however two-quantum experiments discussed in Section 6.3 reveal the presence of

unbound two-excitons in the dots. Unbound two-excitons can be described using similar pathways

as the biexciton with a zero binding energy, which would appear as a peak on the diagonal in the

rephasing spectrum. Therefore we conclude that the peaks in Fig. 6.2(d) originate from two-exciton

interactions, and their ratio provides a measure of the degree to which the two excitons bind into

a biexciton.

Isolation of specific quantum pathways using the dipole transition selection rules is possible

only to the extent that the |H〉 and |V 〉 basis states diagonalize the Hamiltonian. Mechanisms that

mix the basis states, such as band mixing, can introduce effects that make interpretation of the

results difficult. For example, if the light-hole band cannot be ignored, then the spin-independent

Hamiltonian consists of eight basis states, which mix when considering the exchange interaction.

The measurements of ∆FSS discussed in Section 6.4 agree well with our assignment of the |H〉 and

|V 〉 basis states and assumption that band-mixing effects can be ignored.
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6.2 Excitation-Induced Dephasing

Excitation-induced dephasing effects are usually detrimental for many applications, such as

coherent control and manipulation of QDs for quantum information processing. The ZPL width has

been shown to increase linearly with excitation density in GaAs IFQDs [149]; however few studies

exist that have systematically investigated the influence of confinement on EID in QDs. The inset

of Fig. 6.3(a) shows the EID behavior of the ZPL width at line center of the inhomogeneous

distribution of the GaAs IFQDs, measured at a sample temperature of 6 K for co-linearly polarized

excitation and detection (HHHH). As the average excitation power decreases from 1 mW/beam

(1× 1012 photons·pulse−1·cm−2) to zero, the ZPL width decreases linearly to an extrapolated zero

excitation value of γ = 31± 10 µeV, which is similar to the radiatively-limited ZPL width reported

in the literature [28, 149, 245]. The similarity of our measurement and the ZPL widths obtained

from single dot studies indicates that all QDs emitting at a particular resonance energy can be

characterized by the same ZPL width measured using 2DCS.
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Figure 6.3: (a) The GaAs IFQD ZPL width dependence on the exciton recombination energy,

measured for multiple excitation photon densities at a sample temperature of 6 K using co-linearly

polarized excitation and detection (HHHH). The dashed line represents the extrapolated zero-

excitation ZPL widths. The gray vertical arrow indicates line center of the inhomogeneous distri-

bution. Inset: power dependence of the ZPL width at line center. The extrapolated zero excitation

width is 31 ± 10 µeV. (b) Cross-diagonal line widths of the exciton (blue diamonds), biexciton

(red circles) and trion (black squares) are shown as a function of resonance energy for the InAs

SAQDs annealed at 900 ◦C. The widths are equal to the ZPL widths for the exciton and trion,

whereas the biexciton width can be broadened through other mechanisms discussed in the text.

No excitation-induced dephasing effects are observed within the χ(3) regime, shown in the inset for

the exciton ZPL width.

Measurements of the ZPL width at line center of the inhomogeneous distribution were re-

peated using a 4f grating pulse shaper to filter the excitation pulses such that excitons were not

generated in the QW, and no change in the QD ZPL width values was observed. This is an inter-

esting result: EID effects play a significant role in the dephasing of QD excitons as shown in the

inset to Fig. 6.3(a), but effects from QW excitons are negligible. Thus, this many-body effect is

governed by either intra- or inter-dot exciton-exciton interactions. Figure 6.3(a) shows the ZPL
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width variation across the inhomogeneous distribution for three different average excitation powers

and an extrapolation to zero excitation. Assuming that the low temperature, extrapolated zero

power line widths are radiative lifetime broadened, the width should be proportional to the square

of the optical transition dipole moment. Previous studies have found that the dipole moment is

smaller for smaller QDs emitting at higher energy [246, 247], which is consistent with the negative

slope for the zero excitation ZPL widths in Fig. 6.3(a). With increasing power, all ZPL widths

increase and the slope flips from negative to positive. This behavior suggests that multiple excitons

are excited within a given QD, and the interaction strength between these excitons increases with

decreasing QD size due to greater exciton-exciton wave function overlap.

The exciton (blue diamonds), biexciton (red circles) and trion (black squares) cross diagonal

line widths of the InAs SAQD sample annealed at 900 ◦C are shown in Fig. 6.3(b) for an average

power of 5 mW/beam (2.5 × 1012 photons·pulse−1·cm−2). The trion and biexciton widths are

extracted from the peaks in Fig. 6.4(a), discussed in detail in the next Section. The exciton line

width was obtained using an HHHH polarization sequence and the trion and biexciton widths using

an HVVH sequence. The data reveal that the line width of each excitonic state is independent of

the emission energy. The cross diagonal widths of the exciton (12±1 µeV) and trion (8±2 µeV) are

equal to their ZPL widths, whereas the width of the biexciton peak (32± 3 µeV) can be broadened

beyond the homogeneous line width through auxiliary effects that are discussed in sub-Section 6.3.1.

Interestingly, for excitation intensities within the χ(3) regime, no EID effects are observed for the

InAs SAQDs, shown for the exciton ZPL width in the inset to Fig. 6.3(b). Moreover, because of

weak confinement in the GaAs IFQDs, the excitation density for a given QD is likely not limited by

phase-space filling (Pauli-blocking), which is not the case for the strongly-confining InAs SAQDs.

6.3 Biexcitonic Effects

Recall from Chapter 3 that the nonlinear optical response of bound biexcitons appear in a 2D

rephasing one-quantum spectrum as spectrally-isolated peaks. Moreover, using the dipole transition

selection rules, the biexciton nonlinear response can be isolated and its optical properties – including
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the binding energy and dephasing rate – can be unambiguously measured. Normalized 2D rephasing

one-quantum amplitude spectra are shown in Fig. 6.4 for the InAs SAQDs annealed at 900 ◦C (a)

and 980 ◦C (b) and for the GaAs IFQDs (c). The data were taken at the maximum excitation

intensity while remaining in the χ(3) regime for the respective sample, corresponding to < 0.1

excitons excited per QD on average. The peak of the excitation spectrum was tuned to be resonant

with the maximum amplitude of the QD inhomogeneous distribution. The excitation and detection

polarizations were adjusted for a cross-linearly polarized sequence (HVVH), and the temperature

of all samples was 10 K. Figures 6.4(a) and 6.4(b) both feature a peak inhomogeneously-broadened

along the diagonal (D) and a similar peak red-shifted along ~ωt (B). For the GaAs IFQDs shown in

Fig. 6.4(c), two diagonal peaks are observed and correspond to the nonlinear optical response from

the QDs (DQDs) and from the disordered QW (DQW ). Both diagonal peaks feature a peak red-

shifted along ~ωt similar to the InAs samples. The peaks labeled B for all samples are consistent

with being a bound biexciton, as has been previously observed in 2D spectra of GaAs QWs [144]

and will be verified using simulations discussed in sub-Section 6.3.1. Horizontal slices taken at the

maximum diagonal peak amplitude are shown in the inset to each figure.
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Figure 6.4: Normalized rephasing one-quantum amplitude spectra for the InAs SAQDs annealed

at (a) 900 ◦C and (b) 980 ◦C and for (c) the GaAs IFQDs. The spectra were taken for a sample

temperature of 10 K, cross-linear polarization (HVVH) and for maximum intensity while remaining

in the χ(3) regime. Peaks labeled “D” are signatures of trions and/or unbound two-excitons, whereas

peaks labeled “B” are bound biexcitons.

Cross-linear polarization is used to enhance the relative amplitude of the biexciton with

respect to the diagonal peak since the quantum pathways for the exciton resonance are not dipole

transition allowed. Since contributions from the |g〉 → |H〉 transition are not expected for this

polarization sequence, the peaks labeled “D” must originate from other nonlinearities. In addition

to the bound biexciton, a FWM signal at the exciton resonance in a QW for HVVH polarization

has been previously observed and attributed to local field effects, EID and unbound two-exciton

correlations [156, 248], which are the likely mechanisms contributing to the diagonal peak DQW

in Fig. 6.4(c). For the GaAs IFQDs, both EID effects (discussed in the previous Section) and

unbound two-quantum coherences (discussed in sub-Section 6.3.2) are observed, which give rise to

the peak DQDs.

The many-body interactions giving rise to EID and unbound two-quantum correlations are

absent for the InAs SAQDs, indicating that the peaks labeled “D” must originate from a differ-

ent mechanism. Through measurements of ∆FSS (discussed in the next Section), we determine

that all QDs in the ensemble are characterized by an anisotropic confinement potential and the
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anisotropy is aligned along the same crystal axes. Since no exciton response is expected for an

HVVH polarization sequence, the remaining spectral amplitude on the diagonal is a signature of

the trion nonlinear response from QDs that contain a resident charge carrier. In charged QDs, opti-

cal excitation can only create an electron-hole pair along one of the circularly-polarized transitions

|+ 1〉 or | − 1〉, after which the pair can interact with the resident charge carrier to form a singlet

trion. The trion response appears as an inhomogeneously-broadened peak on the diagonal for this

polarization sequence. For charged QDs, biexcitons cannot be optically excited for the excitation

pulse bandwidth used in these experiments because of Pauli blocking.

All three samples exhibit biexciton peaks red-shifted along the emission energy axis ~ωt by

the biexciton binding energy, ∆B. An advantage of using 2DCS to investigate biexciton properties

in QDs is apparent from Fig. 6.4: the binding energy can be measured for the entire ensemble

simultaneously, which cannot be done for other linear and nonlinear techniques. The measured ∆B

are shown as a function of emission energy relative to the energy of the maximum diagonal peak

amplitude in Fig. 6.5(a) for the InAs SAQDs annealed at 900 ◦C (blue squares) and 980 ◦C (red

squares) and in Fig. 6.5(b) for the GaAs IFQDs (blue circles) and QW (red circles). For both InAs

QD samples, the biexciton binding energy is constant for the entire ground state inhomogeneous

distribution and is equal to 3.30 ± 0.02 meV and 2.61 ± 0.03 meV for the 900 ◦C and 980 ◦C

samples, respectively. Changes in the biexciton binding energy with emission energy appear in the

2D spectra as a tilt of the biexciton peak relative to the diagonal dashed line. With increasing

emission energy, ∆B,QDs increases from 3.3 to 3.8 meV, whereas ∆B,QW decreases over a similar

range.



163

-4 -2 0 2 4
2.0

2.5

3.0

3.5

4.0

4.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
3.2

3.4

3.6

3.8

4.0

 

 

 

 InAs 900C

 InAs 980C

 

 

 

 GaAs QDs

 GaAs QW

B
ie

x
ci

to
n

 B
in

d
in

g
 E

n
er

g
y
 (

m
eV

) 

Emission Energy, E – ED,peak  (meV) 

(a) 

(b) 

Figure 6.5: Emission energy dependence (measured relative to the maximum amplitude of the

diagonal peak) of the biexciton binding energies for (a) the InAs SAQDs annealed at 900 ◦C (blue

squares) and 980 ◦C (red squares) and (b) for the GaAs IFQDs (blue circles) and QW (red circles).

Inhomogeneity of 10-15 meV in the InAs SAQDs is comparable to the exciton binding energy;

therefore it is essential to determine how and if Coulomb interactions dictating biexciton renor-

malization are affected by changes in QD size (emission energy). The effects of confinement on the

binding energy have been studied extensive in the past decade [86, 45, 84, 85]. In these studies, the

biexciton binding energy is typically shown to decrease with increasing exciton emission energy at

a rate ranging from 0.025 to 0.1, and perhaps more importantly for quantum electronics applica-

tions, large dot-to-dot scatter of the data exists in the literature. Using a form of 2D spectroscopy

that allows for the investigation of individual QDs, Kasprzak and Langbein have observed a nearly

constant binding energy ∆B = 4.9 ± 0.2 meV for ∼ 50 GaAs IFQDs formed from a 5 nm wide

GaAs QW [249]; however their dot-to-dot uncertainty is similar to the overall change in the binding

energy shown in Fig. 6.5(b).

Using the configuration interaction model described in Chapter 2, Schliwa et al. explained

the binding energy dependence on localization as arising primarily from two competing mechanisms

[84]: direct pair-wise Coulomb interactions, analogous to a Hartree-Fock mean-field approximation,

and Coulomb correlations beyond the mean-field limit. As shown in Fig. 2.6 in Chapter 2, only
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when Coulomb correlations are considered is ∆B > 0. The relative strength of the correlations

decreases when the number of bound states within the QD decreases, which can occur for a large

fractional decrease in the QD size. For changes in the QD size such that the single-particle energy

levels shift, but the total number of confined levels in the dot remains the same, changes in the

relative strength of Coulomb correlations is expected to be small. As depicted in the simulated

results shown in Figs. 6.1(b) and 6.1(c), the binding energies are predicted to be more sensitive to

the number of confined hole levels than the number of confined electron levels.

The constant binding energy for the InAs SAQDs can be explained in the above context.

The QD size distribution is large enough to introduce inhomogeneity of ≈ 10 − 15 meV; however

size fluctuations only shift the resonant energies, whereas the number of confined levels in the

QDs remains the same for the entire ensemble. Consequently, the biexciton binding energy is

independent of the confinement potential. The negligible dot-to-dot scatter of the binding energy

is likely a result of thermal annealing. A ≈ 7% lattice mismatch between GaAs and InAs introduces

a significant amount of strain in the system, which is not entirely relieved through the formation of

SAQDs. In unannealed samples, strain can give rise to built-in piezoelectric fields, whose strength

can vary dot-to-dot. Abbarchi et al. have suggested that strain is the primary source of scatter

in the data for a given sample, and they have found that in GaAs QD samples formed by droplet

epitaxy, the strain is eliminated and the scatter in the biexciton binding energy is reduced [85]. For

the InAs SAQDs samples we have investigated, post-growth thermal annealing results in In/Ga

diffusion and leads to an indium gradient across the QD, which reduces the InAs/GaAs lattice

mismatch [250] as well as the built-in fields that can impact the multi-particle interactions.

Determining the effects of localization and disorder in the GaAs IFQD sample requires dif-

ferent theoretical treatment since electrons and holes are only weakly localized in the QDs. First-

principles Monte Carlo simulations by Filinov et al. indicate that for a given QW width, introducing

a single monolayer (ML) width fluctuation will force electrons and holes to spatially overlap until

the ML lateral dimensions reach a critical size, at which point the multi-particle binding energies

are at a maximum and the inter-particle distances a minimum [251]. Upon further increase of



165

the ML size, the inter-particle distances increase and the binding energies decrease until the ML

fluctuation size is large enough such that the particles are considered to be confined in a single-

ML-wider QW. Our observations are consistent, at least qualitatively, with their calculations. In

regions of the QW where the fluctuation lateral dimensions are small, the exciton and biexciton

are only weakly localized by the disorder. For these excitonic states, the biexciton binding energy

increases with fluctuation size (decreasing exciton recombination energy), which is consistent with

the observed trend for ∆B,QW in Fig. 6.5(b) for the QW biexciton. In regions of the QW where

the fluctuations are large enough such that excitons are confined in the QDs, an increase in the

QD size (decrease in the recombination energy) would decrease the binding energy, also consistent

with the trend for ∆B,QDs in Fig. 6.5(b) for the QD biexciton peak.

6.3.1 OBE Analysis

In addition to the biexciton binding energy, quantitative information regarding the exciton

→ biexciton dephasing rate, correlations between fluctuations of the exciton and biexciton states,

and the distribution of biexciton binding energies at any particular recombination energy can be

extracted from the 2D spectra. Insight into these processes is obtained by comparing the measured

spectra to simulations based on a perturbative expansion of the density matrix similar to the

calculations discussed in Chapter 3 and derived in Appendix B (the simulations follow a similar

approach derived in Ref. [89]). Results from the calculations are shown in this sub-Section for

the InAs SAQD sample annealed at 900 ◦C, but calculations have also been performed for the

other samples and the results are simply quoted. Briefly, the OBEs are analytically-solved to third-

order in the applied field using Dirac delta-function pulses in time. A two-dimensional Gaussian

distribution is used for the exciton and biexciton transitions with inhomogeneous line widths δX

and δB, respectively. Correlations between fluctuations in the ground-state → exciton and exciton

→ biexciton transition energies are characterized through a correlation coefficient R, where perfect

correlation corresponds to R = 1. Perfect correlation implies that the biexciton energy is uniquely

defined for a specific exciton energy, whereas for R < 1, a distribution of biexciton energies exists.
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To model the diagonal peak, which arises from the trion nonlinear response, it is assumed that

only a single circularly-polarized transition is accessible in the charged QD; thus only the quantum

pathways associated with singly-excited states along this transition are considered (since Pauli-

blocking inhibits multi-exciton excitation in a charged QD for the excitation bandwidth used in

the experiments). A positive biexciton binding energy, ∆B > 0, is used for the calculations. The

homogeneous line width of the trion transition is adjusted to match the cross-diagonal line width,

whereas the biexciton line width is varied for reasons discussed below.

Results from the simulation are shown in Fig. 6.6. The spectral features are different than

those from the examples in Chapter 3 for a few reasons. First, inhomogeneity was neglected in

Chapter 3 but is included in Fig. 6.6. Second, all the possible quantum pathways are considered

in Chapter 3, whereas in the simulations presented here, only the pathways contributing to the

biexciton and trion peaks are considered for neutral QDs and charged QDs, respectively. Lastly,

usually ∆B � ∆FSS , which, for a homogeneously-broadened system, would result in only a single

biexciton peak appearing in the 2D spectrum of a neutral QD. When including inhomogeneity and

the nonlinear response from charged QDs, two inhomogeneously-broadened peaks appear in the

spectrum, as shown in Fig. 6.6 for various simulation parameters.
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Figure 6.6: Simulations based on analytical solutions to the OBEs demonstrate the effects of

exciton-biexciton correlations, inhomogeneity and dephasing on the biexciton nonlinear response

in a 2D rephasing one-quantum spectrum. The exciton (γX) and biexciton (γB) dephasing rates,

exciton (δX) and biexciton (δB) inhomogeneous line widths, and the correlation coefficient (R) are

set to: (a) R = 1, δB = δX and γB = 3 · γX ; (b) R = 1, δB = 1.5 · δX and γB = 3 · γX ; and (c)

R = 0.9999, δB = δX and γB = 0.

The simulations demonstrate that the model accurately reproduces the measured spectrum

for R ≥ 0.9999, δB = δX and γB ≤ 3 ·γX . To illustrate the effects of inhomogeneity on the coherent

nonlinear response, Fig. 6.6(b) shows a 2D spectrum for R = 1, δB = 1.5 · δX and γB = 3 · γX .

Increasing the biexciton inhomogeneous line width relative to that of the exciton results in a tilt of

the biexciton peak – indicating that the binding energy decreases with increasing emission energy.

This can be understood by considering correlation of the exciton and biexciton transition energy

fluctuations. For R � 1, a distribution of biexciton binding energies will exist at each exciton

emission energy and a round biexciton peak will appear in the 2D spectrum. However, for R = 1,

an increase in the exciton transition energy corresponds to a deterministic proportional increase in

the biexciton transition energy, according to

ωB − ω0
B = α ·

(
ωX − ω0

X

)
, (6.1)

where ωB − ω0
B and ωX − ω0

X are the changes in biexciton and exciton transition frequencies,
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respectively, about their center frequency. This expression leads to the relation

δB = α · δX . (6.2)

For α > 1, an increase in the exciton transition energy corresponds to a larger increase in the

biexciton transition energy, and as a result, the biexciton peak appears tilted in the 2D spectrum.

Distinguishing between the effects of correlation and dephasing is more subtle, since both

increasing γB and decreasing R broaden the biexciton cross-diagonal line width. A lower limit on

R is estimated by setting γB = 0 and decreasing R to 0.9999, shown in Fig. 6.6(c), which matches

the measured cross-diagonal line width. For R < 1, a distribution of exciton→ biexciton transition

energies exists and consequently the biexciton peak is broadened along the cross-diagonal direction.

Since γB is necessarily greater than zero, this gives a lower limit on R for the InAs SAQDs annealed

at 900 ◦C. A similar analysis for the InAs SAQD sample annealed at 980 ◦C and for the GaAs IFQDs

and QW yield minimum R coefficients of 0.99, 0.97 and 0.95, respectively. A value of R ≥ 0.99 for

both the InAs SAQD samples – indicating essentially no scatter of the biexciton binding energy

at a given exciton emission energy – is attributed to thermal annealing, which relieves strain and

minimizes the built-in piezoelectric fields that can alter the optical properties from dot-to-dot.

Weaker confinement in the GaAs QDs reduces the correlation coefficient to R = 0.97.

6.3.1.1 Signature of the χ(5) Biexciton Nonlinear Response

By increasing the excitation intensity to drive the system beyond the χ(3) regime, an addi-

tional spectral feature (BU ), too weak to be observed in the TI-FWM signal, appears red-shifted

by ∆B along the excitation energy axis in the 2D rephasing one-quantum spectrum of the 900

◦C InAs SAQD sample, shown in Fig. 6.7(a) for an average power of 15 mW/beam (1 × 1013

photons·pulse−1·cm−2) using HVVH polarization. The spectrum also features the bound biexciton

(BL) and trion (X+) peaks that are present in the low-excitation-intensity spectrum in Fig. 6.4(a).

A power dependence of the amplitudes, shown in Fig. 6.7(c), indicates that BU increases with in-

tensity as P 5/2, which suggests that it arises from the χ(5) biexciton nonlinear optical response.
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This six-wave mixing signal radiates in the FWM direction only for nonlinear interactions in which

one of the pulses, A, B or C, acts three times. For excitation below 5 mW/beam (3.3 × 1012

photons·pulse−1·cm−2), BU is absent and the X+ and BL amplitudes follow P 3/2, confirming that

the experiments are performed in the χ(3) regime at low power.
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Figure 6.7: Experimental and simulated normalized rephasing one-quantum spectra are shown for

HVVH polarization in (a) and (b), respectively. The power dependence of the peak amplitudes in

(c) indicates that the trion (X+) and biexciton (BL) peaks arise from the χ(3) response, whereas

the peak BU is attributed to the χ(5) biexciton response.

Additional evidence supporting our identification of the χ(5) biexciton peak is provided by ex-

tending the OBE simulations discussed in this section to fifth-order in the applied field. Parameters

similar to those used for the third-order response are used for the calculations, with the difference

that one of the pulses acts three times. The third- and fifth-order quantum pathways contributing

to the biexciton nonlinear response are represented by the double-sided Feynman diagrams shown

in Fig. 6.8 for an HVVH polarization sequence. Only a single Feynman diagram contributes to the

biexciton χ(3) response, as indicated in Fig. 6.8(a). The diagram demonstrates that the system

evolves with frequencies ω0 and ω0 − ∆B/~ during τ and t, respectively, corresponding to peak

BL that is red-shifted along ~ωt by ∆B. The χ(5) biexciton nonlinear response can be constructed

from a total of 12 quantum pathways; however only three pathways in which pulse A acts three
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times, depicted in Figs. 6.8(b)-(d), contribute to peak BU . The diagrams indicate that the system

evolves with frequencies ω0 −∆B/~ and ω0 during τ and t, respectively, consistent with peak BU

red-shifted along the excitation energy axis ~ωτ by ∆B. Analytical solutions to the OBEs including

the fifth-order effects are shown in Fig. 6.7(b). Excellent agreement with the data is obtained using

similar parameters for peak BU as are used for peak BL.
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Figure 6.8: Double-sided Feynman diagrams representing the quantum pathways contributing to

(a) the χ(3) response and (b)-(d) the χ(5) response of the bound biexciton.

The TI-FWM signal from this sample for the HVVH sequence does indeed show exciton-

biexciton quantum beats, but with a frequency proportional to the emission energy difference

between the X+ and BL peaks. If strong enough, the χ(5) biexciton contribution could be distin-

guished in the TI-FWM signal as a beat with frequency corresponding to the energy separation

between peaks BU and BL [252]. Although signatures of the χ(5) biexciton response are absent from

the TI-FWM signal, these results demonstrate the sensitivity of 2DCS to clearly and unambigu-

ously measure weak higher-order nonlinearities. Further separation of the χ(3) and χ(5) pathways

could be accomplished using a variation of nonlinear spectroscopy that isolates the six-wave mixing

signal [116, 115] in combination with higher-order multi-dimensional spectroscopy [110].
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6.3.2 Two-Quantum Coherences in GaAs IFQDs

A two-quantum 2D spectrum, for which the conjugated pulse is incident on the sample last,

is particularly sensitive to the effects of many-body interactions on the coherent nonlinear optical

response, since the signal for this pulse time ordering is non-zero only if there are interactions be-

tween excitons. Two-quantum spectra have been used to investigate the microscopic mechanisms

governing bound biexcitons and unbound, but correlated, two-excitons in GaAs QWs [199, 218];

however two-quantum coherences have not been probed previously in QDs using 2DCS. Since non-

linearities associated with phase-space filling do not contribute for the two-quantum pulse sequence,

weak nonlinearities associated with exciton-exciton interactions can be investigated. Surprisingly,

no two-quantum signal is measured for either InAs QD sample, which is unexpected since it is

clear that interactions between excitons leads to biexciton formation and spectrally-shifted peaks

in the 2D rephasing one-quantum spectrum. The absence of a two-quantum signal could be due to

either a fast dephasing time between the ground state and the two-quantum state (which is either

a bound biexciton or unbound, correlated two-exciton state), or the signal-to-noise ratio could be

too small to detect the signal. On the other hand, a two-quantum signal is observed for the GaAs

IFQDs, and preliminary two-quantum spectra are shown in Fig. 6.9. The excitation intensity is

adjusted so that the signal is in the χ(3) regime, and the excitation and detection polarization is set

to co-circular (LLLL) and cross-circular (LRRL) for the top and bottom rows, respectively. The

spectra on the left in both rows are taken using the full excitation spectral bandwidth, whereas the

middle and right figures are acquired with the excitation spectrum progressively filtered to avoid

excitation at the QW resonance energy.
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Figure 6.9: Two-quantum amplitude spectra are shown for (a) co-circular (LLLL) and (b) cross-

circular (LRRL) polarization schemes. The excitation spectrum is shown above each 2D spectrum.

In (a), the QW, LXP and HXP amplitudes decrease as the excitation pulses are filtered so that their

spectral overlap with the QW resonance decreases, while the QD amplitude remains unchanged.

In (b), cross peaks are absent and only the QW amplitude decreases when spectrally-filtering the

excitation pulses.

Each spectrum in the top row features two peaks on the diagonal line (~ωT = 2 · ~ωt). These

peaks correspond to unbound, but correlated, two-excitons in the QDs and in the QW. Interestingly,
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cross peaks are present at the QD + QW two-quantum energy the QD and QW emission energies,

which indicates that the QD and QW excitons are correlated. When using a LRRL polarization

scheme, as shown in the bottom row in Fig. 6.9, the unbound two-quantum peaks appear on the

diagonal red-shifted along both energy axes, which is attributed to the allowed formation of bound

biexcitons comprised of opposite-spin excitons. Moreover, the QW–QD cross peaks are absent for

this polarization scheme. The amplitudes of each peak are shown in Figs. 6.10(a) and 6.10(b) for

LLLL and LRRL polarization, respectively. The cross peak amplitudes are shown after subtracting

the amplitude measured on the opposite side of the diagonal peak to eliminate contributions from

the diagonal peaks.
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Figure 6.10: The QDs (red circles), LXP (black upside-down triangles) and HXP (green triangles)

amplitude dependence on the QW amplitude, which is varied by spectrally-filtering the excitation

pulses. For co-circular polarization shown in (a), the QD amplitude remains unchanged, whereas

the LXP and HXP decrease with QW amplitude. For cross-circular polarization shown in (b), the

QD amplitude remains unaffected by changes in the QW amplitude, and the LXP (and HXP, not

shown) amplitude is at the background level.

Previous experiments and calculations of two-quantum spectra from GaAs QWs demon-

strated that the dominant contribution to the signal was the interaction of the exciton interband

coherence with the mean-field present from other excitons [199]. Moreover, two-quantum coherent
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coupling between heavy-hole and light-hole excitons was observed and also attributed primarily to

the mean-field. Our observations of two-quantum coherent coupling between QD and QW excitons

only for co-circular polarization might suggest that the QW–QD correlations are governed primar-

ily by their mean-field interactions. A comparison of the real and imaginary components of the

signal to microscopic calculations is necessary to establish the dominant microscopic interactions

giving rise to the two-quantum signal. However, we can determine the dominant many-body ef-

fects arising from the microscopic interactions by simulating the 2D spectrum using the analytical

OBE simulations discussed in Chapter 3, for a six-level system, shown in Fig. 6.11(a). The energy

scheme consists of a ground state (|g〉), singly-excited QD (|D〉) and QW (|W 〉) exciton states,

doubly-excited states representing two-exciton correlations in the QDs (|2D〉) and QW (|2W 〉),

and a doubly-excited QW–QD correlated state (|DW 〉). A bound biexciton is ignored since the

excitation pulses and detected signal were co-circularly polarized. Such a level diagram is equiva-

lent to two four-level systems through a Hilbert space transformation [93, 219, 226]. In the absence

of interaction effects, quantum pathways involving the doubly-excited states destructively interfere

with pathways associated with interactions between the singly-excited states so that only nonlinear-

ities associated with the individual singly-excited transitions contribute to the signal. Interactions

in the system are modeled by breaking the equivalence of the doubly- and singly-excited states by

changing the two-exciton → exciton optical properties, such as the energies, dephasing rates, or

transition dipole moments, compared to the ground state→ exciton transitions. Experimental and

calculated spectra are shown in Figs. 6.11(b) and 6.11(c), respectively.
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Figure 6.11: (a) Six-level energy scheme used to simulate the measured two-quantum 2D spectrum

shown in (b), which was obtained using co-circularly polarized excitation and detection. The energy

scheme consists of a single ground state (|g〉), QD (|D〉) and QW (|W 〉) exciton states, QD (|2D〉)

and QW (|2W 〉) two-exciton states, and a mixed QW–QD two-exciton state (|DW 〉). The simulated

spectrum is shown in (c).

Excellent agreement between the simulation and experiment can be obtained by introducing

a renormalization of the two-exciton energies on the order of tens of µeV. The energy shift of each

state breaks the equivalence of the doubly- and singly-excited transitions, giving rise to the two-

quantum signal. The parameters used in the simulation are not unique, though – excitation-induced

dephasing effects will also generate a two-quantum signal. However, these two effects will produce

different peak line shapes in the real and imaginary components of the spectrum. Measurements

of the complex signal with correct phase is an interesting area of future research and should reveal

the dominant coherent interaction effects between QW and QD excitons.

6.4 Electron-Hole Exchange Interaction: Exciton Fine-Structure

The exchange-interaction-mediated fine-structure splitting, ∆FSS , between the two lowest

exciton states |H〉 and |V 〉 has been widely-studied for both fundamental and applied reasons.

From an application standpoint, QDs are promising candidates to form the building blocks for
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large-scale entangled-photon pair generation. The polarization of photon pairs emitted through

cascaded radiative decay of the biexciton state is determined by the intermediate exciton state. In

an ideal QD with ∆FSS = 0, the polarization of the photon emitted from the biexciton → exciton

transition has been shown to be entangled with the polarization of the photon emitted from the

exciton → ground state transition [253], forming the state (|HBHX〉+ |VBVX〉)/
√

2), where H and

V are the polarization states of the two photons. Splitting of the |H〉 and |V 〉 states provides “which

path” information with respect to the energy of the photons, preventing polarization entanglement.

Thus, significant effort is being expended in the pursuit of scalable arrays of QDs with a ∆FSS

as close to zero as possible. QDs whose ∆FSS is smaller than the radiative line width of either

the |H〉 or |V 〉 transition can exhibit polarization entanglement, however the degree to which the

photons are entangled is maximum for zero splitting. Manipulation of ∆FSS has been achieved

using numerous methods, such as application of an in-plane magnetic field [253] and external

electric fields in combination with applied mechanical strain [254].

From a fundamental perspective, the dominant microscopic mechanisms that are responsible

for the splitting are still under debate [85]. The influence of QD morphology on ∆FSS has been

investigated in single dots using photoluminescence [44, 85, 143, 166, 250] or by spectrally averaging

the ensemble nonlinear response using time-integrated FWM techniques [45]. These studies have

shown that ∆FSS typically decreases with increasing emission energy (decreasing confinement) at

a rate ranging from 0.25 to 2 µeV/meV. Moreover, it is generally believed that anisotropy in the

confinement potential responsible for non-zero ∆FSS tends to orient |H〉 and |V 〉 along the [110]

and [11̄0] crystal axes for samples grown along the [001] direction. Elongation and piezo-electric

fields are thought to be responsible for the anisotropy [143], both of which are sensitive to the

amount of strain in the sample.

In this Section, our efforts to investigate the influence of confinement on ∆FSS in the InAs

SAQD sample annealed at 900 ◦C using 2DCS are discussed (similar experimental parameters were

used as in the previous Section). Using 2DCS, ∆FSS can be measured for an entire QD ensemble

simultaneously by monitoring the temporal evolution of the non-radiative coherence between |H〉
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and |V 〉. The non-radiative |H〉 − |V 〉 coherence, which has no optical dipole moment, can be

probed optically by coherently exciting the |g〉 − |H〉 and |g〉 − |V 〉 transitions using either two

orthogonal linearly-polarized pulses or a single circularly-polarized pulse. We choose to work in

the |H〉 and |V 〉 basis and generate the non-radiative |H〉 − |V 〉 coherence using the rephasing

timing sequence for which the conjugated pulse A arrives at the sample first, followed by pulses

B and C. Referring back to the double-sided Feynman diagrams in Fig. 3.10, pulse A, which

is polarized along |H〉, generates an optical coherence along the |g〉 − |H〉 transition. Pulse B is

incident on the sample after a time τ = 200 fs to avoid coherent artifacts and pulse time-ordering

ambiguities and is linearly polarized along |V 〉, so that it generates a coherence along the |g〉− |V 〉

transition. The two optical coherences are equivalent to a non-radiative coherence between |H〉

and |V 〉 that oscillates during T with a frequency equal to ∆FSS/~. Pulse C, linearly polarized

along |H〉, converts this non-radiative coherence back to a coherence along |g〉−|V 〉, which radiates

along the FWM signal direction and is recorded while the delay T is scanned. The signal is Fourier

transformed with respect to T to generate the zero-quantum spectrum, which is shown in Figs.

6.12(a)-(c) for polarization sequences HVHV, VHVH and HHHH, respectively.
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Figure 6.12: Normalized rephasing zero-quantum amplitude spectrum for (a) HVHV, (b) VHVH

and (c) HHHH polarization sequences. For HVHV and VHVH polarizations, the spectra feature

an |H〉 − |V 〉 coherence peak at +∆FSS and −∆FSS along ~ωT , respectively, and a trion peak at

~ωT = 0. Only a single peak dominated by the exciton nonlinear response is observed for HHHH

polarization.

The spectrum in Fig. 6.12(a) features a peak at zero mixing energy that is inhomogeneously-

broadened along ~ωt, which is attributed to the trion nonlinear response since no quantum pathways

exist for the exciton for an HVHV polarization scheme. Being at zero mixing energy, the trion is in

either a ground- or excited-state population during T , and the line width along ~ωT is a measure of

the trion population decay rate. The spectrum also features a peak a ~ωT ≈ 19 µeV, which stems

from the |H〉−|V 〉 coherence that oscillates with frequency ωV H = ωV −ωH during T . The spectrum

shown in Fig. 6.12(b) demonstrates that upon switching the polarization sequence to VHVH, for

which during T the non-radiative coherence oscillates with frequency ωHV = −ωV H , the |H〉 − |V 〉

coherence peak resonant energy switches sign, as expected for an anisotropic confinement axis

aligned along the same crystal axis for all the QDs. When using an HHHH polarization sequence,

shown in Fig. 6.12(c), the |H〉 − |V 〉 coherence disappears and the spectrum features a single

peak at zero mixing energy. The amplitude of this peak increases by over an order of magnitude

compared to the zero-mixing-energy peak in the other spectra, which is attributed to the allowed

exciton coherent pathways for this polarization that dominate the nonlinear response.
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6.4.1 Exciton Fine-Structure Splitting and Radiative Line Widths

Quantitative information regarding the radiative line widths and ∆FSS is obtained by fitting

slices taken along ~ωT to either a double
√
Lorentzian, as shown as the solid line in Fig. 6.13(a)

for HVHV at an emission energy of 1345 meV, or a single
√
Lorentzian for HHHH. The exciton

and trion population decay rates, ΓX and ΓT , respectively, and the |H〉 − |V 〉 coherence dephasing

rate, γFSS , are obtained from the half width at half maximum of the fits to the corresponding

peaks [112]. ∆FSS is the difference between the energies corresponding to the maximum amplitude

of the two peaks in either the HVHV or VHVH spectra. Line widths and splitting obtained from

the fits are shown in Fig. 6.13(b) for emission energies within the FWHM of the inhomogeneous

distribution. With increasing (decreasing) emission energy (confinement), ∆FSS decreases at a rate

of 0.1 µeV/meV. For the ensemble, ΓX ≈ 5.8± 0.5 µeV, ΓT ≈ 5.2± 0.4 µeV and γFSS ≈ 5.7± 0.3

µeV. Both ΓT and ΓX increase with increasing emission energy, although the changes are within

the estimated uncertainties in the line widths.
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Figure 6.13: (a) A slice (points) taken along ~ωT at an emission energy of 1345 meV is fit to a double

√
Lorentzian (solid line) for HVHV polarization. (b) Exciton fine-structure splitting (∆FSS), the

|H〉 − |V 〉 coherence dephasing rate (γFSS) and the exciton (ΓX) and trion (ΓX) population decay

rates are shown as a function of the exciton emission energy.

The population decay rates shown in Fig. 6.13(b) for the exciton and trion indicate that

the radiatively limited ZPL widths are γX ≈ 2.9 µeV and γT ≈ 2.6 µeV, respectively, which
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are consistent with FWM studies of samples with similar confinement reported in the literature

[45, 150]. Recall that the measured low-temperature exciton and trion ZPL widths for this sample

are 12± 1 µeV and 8± 2 µeV, respectively. The fact that γX > ΓX/2 and γT > ΓT /2 verifies that

significant pure dephasing exists in this sample even at low temperature, independent of excitation

density. The decrease of ∆FSS with increasing emission energy is consistent with results in the

literature for samples with similar confinement [250, 45, 255], although our measured rate at which

the splitting decreases is relatively smaller, likely a result of the thermal annealing. This is an

interesting result, since it implies that essentially all of the QDs in the sample exhibit to the

same ∆FSS , which could perhaps be exploited for large-scale generation of entangled-photon pairs

through the application of external fields or strain.

6.4.2 Transition Energy Fluctuation Correlations

The dephasing rate of the |H〉 − |V 〉 coherence, γFSS , is equal to ΓX within experimental

uncertainties. This result suggests that not only does a single ∆FSS characterize the exciton

fine-structure splitting at a particular resonance energy, but that fluctuations in the |H〉 and |V 〉

transition energies are correlated. To quantify the level of correlation, the dephasing rate, γFSS ,

can be related to the population decay and dephasing rates of the individual |g〉−|H〉 and |g〉−|V 〉

optical transitions by [201, 256]

γFSS = 1/2 · (ΓX,H + ΓX,V ) + γpFSS , (6.3)

where γpFSS is the contribution from pure dephasing mechanisms and is defined as

γpFSS = γpH + γpV − 2 ·R · (γpH · γ
p
V )1/2. (6.4)

In the above expression, γpH and γpV are the pure dephasing rates of states |H〉 and |V 〉,

respectively, and the coefficient R represents the level of correlation between fluctuations in the

transition energies of the two states. As shown in the inset to Fig. 6.14, a coefficient R = 1
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corresponds to a simultaneous energy fluctuation of states |H〉 and |V 〉 with equal amplitude.

Correlated scattering preserves the |H〉 − |V 〉 coherence – but not the interband optical coherence

of the individual transitions – and leads to γFSS = 1/2 · (ΓX,H + ΓX,V ) = ΓX for ΓX,H = ΓX,V

and γpH = γpV (which is the case for this sample). For uncorrelated scattering, where R = 0,

the additional dephasing beyond the radiative limit is simply the sum of the dephasing rate of

the individual transitions. Anti-correlated scattering (R = −1) occurs when the two transitions

experience simultaneous and opposite-amplitude transition energy fluctuations and results in the

maximum dephasing rate of the |H〉 − |V 〉 coherence.
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Figure 6.14: Coefficient R representing the level of correlation between transition energy fluctu-

ations of states |H〉 and |V 〉, shown as a function of emission energy. The inset is a schematic

diagram illustrating the effects of correlated (R = 1), uncorrelated (R = 0) and anti-correlated

(R = −1) scattering events.

Since the experimentally determined γFSS is nearly equal to ΓX , R ≈ 1 and the exciton

states exhibit nearly perfectly correlated scattering. R is determined by inserting the measured

line widths into Eqns. 6.3 and 6.4 and is shown in Fig. 6.14. The slight decrease with increasing

emission energy stems from the increase in γFSS since γX and ΓX are independent of emission

energy. The slight decrease could arise from an extension of the exciton wave functions into the
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barriers for smaller QDs, which could cause the |H〉 and |V 〉 states to no longer experience similar

transition energy scattering events. One might suspect that with increasing temperature, exciton-

phonon interactions could reduce the level of correlation. Investigating the temperature dependence

of R could provide a deeper understanding into the mechanisms that govern correlation between

the bright exciton states and is an interesting direction for future experiments.



Chapter 7

Quantum Well – Quantum Dot Incoherent Population Transfer in GaAs IFQDs

Charge carrier transfer in low-dimensional semiconductor heterostructures occurs in a wide-

range of material systems that are technologically relevant. For example, the principle operation of

continuous-wave and mode-locked lasers with QD-based active media relies on optical or electrical

injection of charge carriers into the wetting layer, after which they relax to the lowest energy

confined states in the QDs. QD-based lasers offer a number of advantages compared to those based

on bulk or QW active media, including temperature-insensitivity, low current threshold, low noise,

enhanced gain over a broad wavelength range and complex gain dynamics that enable novel lasing

modes [49, 257], all of which are sensitive to the relaxation dynamics of the injected carriers. Charge

transfer dynamics are also important for light-harvesting, where, for example, high energy photons

generate electron-hole pairs in highly-excited, weakly-confining states of the QD. The high-energy

carriers can relax to lower energy states through the emission of phonons, or energy in excess of

the band gap can be harnessed to generate multiple electron-hole pairs from a single photon [78].

Understanding the dynamics associated with charge transfer between states is crucial for increasing

the efficiency of enhanced energy conversion processes.

The GaAs IFQD sample is a model system to study population transfer between localized

and delocalized states. Because the QW–QD energy separation is smaller than the excitation laser

spectral bandwidth, the nonlinear optical response of both the QW and QDs can be simultaneously

probed. Moreover, the population transfer and decay rates are slow compared to the duration of

the pulses, i.e. the change in population is negligible during the light-matter interaction, but fast
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compared to the maximum achievable pulse delays in the 2DCS experiment, enabling complete

characterization of the population relaxation dynamics. In this Chapter, incoherent exciton popu-

lation transfer dynamics between confined states in the GaAs IFQDs and delocalized states in the

underlying QW are studied by recording rephasing one-quantum spectra for various delays T . In

Section 7.1, 2D rephasing one-quantum spectra revealing incoherent QW–QD exciton population

transfer are presented. Procedures for determining transfer rates and amplitudes are discussed and

the temperature dependence of the extracted values are shown. A model describing the coupling

is introduced in Section 7.2. In Section 7.3, the data are simulated using a rate equation analysis

based on the model presented in Section 7.2, and the main conclusions from the simulations are

highlighted.

7.1 Measuring QW – QD Population Transfer Dynamics

It is clear from the two-quantum 2D spectra shown in the previous Chapter that QW and QD

excitons are coherently coupled through an excitation-induced shift or dephasing mechanism. The

coupling strength, however, is too weak for features associated with coherent QW–QD interactions

to appear in the rephasing zero- and one-quantum spectra, which are dominated by nonlineari-

ties associated with phase-space filling. Figure 7.1(a) shows a normalized rephasing one-quantum

spectrum for a sample temperature of 35 K and for a delay between pulses B and C of T = 5

ps. The spectrum is qualitatively similar to the low temperature spectra of this sample shown in

the previous Chapters, where the coherent nonlinear optical response of the QD (XQDs) and QW

(XQW) excitons appears on the diagonal dashed line, and the QW biexciton peak (BQW) appears

red-shifted along the emission energy axis by the QW biexciton binding energy. Quantum pathways

associated with the system being in a ground or excited state population after the first two pulses

do not accumulate phase during the delay T , but instead decay through interband recombination

or non-radiative relaxation. Since the phase does not evolve during T for these processes, pop-

ulation transfer dynamics can be studied by recording 2D rephasing spectra for increasing delay

T . Normalized spectra are shown in Figs. 7.1(b)-(c) for T increasing from 20 ps to 100 ps, also
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acquired for a sample temperature of 35 K. The maximum amplitudes of the spectra relative to

the spectrum taken at T = 5 ps are shown on the respective color bars. At short times, the QW

and QD peaks dominate the spectrum and are inhomogeneously broadened along the diagonal.

With increasing delay T , radiative recombination and population transfer processes decrease the

amplitudes of these peaks. Moreover, the peak shapes become more symmetric, which indicates

loss of correlation between the exciton excitation and emission energies during T . The appearance

of cross peaks at long T reveals incoherent exciton population transfer between the QW and QDs,

which would otherwise be concealed in one-dimensional linear and nonlinear spectroscopies. A

relaxation peak (RP) appears at the excitation energy of the QW and emission energy of the QDs,

revealing incoherent QW → QD population relaxation and localization. Thermal activation of QD

excitons is observed at longer T as an excitation peak (EP) at the excitation energy of the QDs

and emission energy of the QW. The round line shapes of the cross peaks indicate that there is no

correlation between the QW and QD energies during the population transfer process.
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Figure 7.1: QW (XQW ) and QD (XQDs) excitons, QW biexciton (BQW ), QW → QD relaxation

(RP ) and QD → QW excitation (EP ) peaks are observed in the normalized 2D rephasing one-

quantum spectra for increasing delay T . The sample temperature is 35 K for all spectra. The

maximum amplitude of each spectrum relative to the T = 5 ps spectrum is shown on the color bar.

The extent to which QW–QD population transfer occurs is quantified by integrating each

peak within a square region of ±3 meV about the peak center, encompassing > 95% of the feature.
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The background is removed by subtracting the line integral of the enclosing region. Integrating

each peak, as opposed to simply using the maximum amplitude, provides insight into the coupling

mechanisms between the QW and QD ensemble. Migration and tunneling of excitons – resulting in

spectral diffusion that broadens the peaks at long delay T – will not transfer the exciton population

outside of the integration region. Thus any contributions to the decay of the integrated signal stem

from radiative recombination, non-radiative scattering process, spin relaxation between the bright

| ± 1〉 and dark | ± 2〉 states, and QW–QD population transfer. The integrated RP (EP) values are

divided by the XQW+RP (XQDs+EP) values in order to properly determine the degree to which

excitons excited in the QW (QDs) have transferred to the QDs (QW).

The QW and QD peaks decay bi-exponentially with T , shown using a logarithmic vertical

scale in Figs. 7.2(a) and 7.2(b), respectively, for a sample temperature of 35 K. Growth of the RP

and EP is shown in Figs. 7.2(c) and 7.2(d), respectively. The RP and EP data are modeled using

a fit function proportional to [1 − exp(−Γ · T )]. The T -dependence experiments are repeated for

sample temperatures ranging from 6 - 50 K, and the temperature dependence of the decay and

growth rates extracted from the fits are shown in Figs. 7.2(e)-(h) for the QW, QDs, RP and EP,

respectively. Both the QW and QD fast and slow relaxation rates are on the order of 0.1 and 0.01

ps−1, respectively. At temperatures less than 10 K, the RP growth rate is comparable to the QW

and QD slow decay rates, and it becomes twice as fast at higher temperatures. The EP is only

observed at temperatures higher than 35 K, and its growth rate is < 0.01 ps−1. The observation

of an EP at temperatures < 50 K is in contrast to SAQDs exhibiting stronger confinement, where

phonon-assisted excitation of excitons out of the QDs occurs at much higher temperatures [258].

The temperature dependence of the ratio of the slow and fast decay fit amplitudes are shown in Figs.

7.2(i) and 7.2(j) for the QW and QDs, respectively, and for the RP and EP growth fit amplitudes in

Figs. 7.2(k) and 7.2(j), respectively. The QW and QD fit amplitude ratios decrease with increasing

temperature, indicating an enhancement of their respective population decay within the first 10 ps.

The RP fit amplitude decreases from unity to ≈ 1/2 with increasing temperature, while the EP fit

amplitude increases to ≈ 1/2 at 50 K.
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Figure 7.2: Bi-exponential decay of the integrated (a) QW and (b) QD peaks and growth of the

(c) RP and (d) EP with T for a sample temperature of 35 K. Temperature dependence of the rates

extracted from the fits are shown in (e)-(h). Under high excitation conditions, the QW and QD

peaks exhibit a single exponential decay with delay T with a decay rate indicated by the open

squares in (e) and (f). These rates converge to the low-excitation slow decay rates for decreasing

excitation photon density. Panels (a)-(h) are plotted on a logarithmic vertical scale. The last

row shows the temperature dependence of the ratio of the QW (i) and QD (j) bi-exponential fit

amplitudes and the RP (k) and EP (l) growth fit amplitudes.
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7.2 Modeling QW – QD Population Transfer

The essential features observed in Fig. 7.1 can be captured using a simplified energy scheme

for the QW and QD states, which is shown in Fig. 7.3(a). Even though the two-quantum spectra

in the previous Chapter revealed that excitons in the QDs and QW interact coherently, this type

of coupling is weak compared to incoherent population transfer. Thus we model the QW and

QD ground state transitions as two separate two-level systems that are coupled only by exciton

population transfer. Both the QW and QD exciton states, each of which is comprised of a spin

±3/2 heavy-hole and a spin ±1/2 electron, can be described by their total spin quantum numbers,

resulting in four states with spin projections ±1 and ±2, as depicted in Fig. 7.3(b). Since the goal

of this experiment is to establish the dominant QW–QD incoherent population transfer phenomena,

we ignore any exchange interaction effects that can couple and energetically-split the | ± 1〉 and

| ± 2〉 states, and instead consider a simplified system in which optical excitation can create QW

and QD excitons in the dipole transition allowed | ± 1〉 bright states, which are degenerate.
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Figure 7.3: (a) Approximation of the QW and QD states as two separate two-level systems that are

coupled by incoherent population transfer. The lowest energy QW and QD states are comprised

of optically-active | ± 1〉 bright states and optically-inactive | ± 2〉 dark states, as shown in (b). (c)

Proposed model capturing all possible coupling channels between the QW and QD states. Transfer

rates between the QW and QD states are labeled as Γ
+/−
ij , where the + (-) corresponds to excitation

(relaxation) and i (j) corresponds to the initial (final) state. Electron/hole spin flips transfer the

exciton between the | ± 1〉 and | ± 2〉 states at a rate of Γ
QW+/-
12 for the QW and Γ

QD+/-
12 for the

QDs. QW/QD radiative and non-radiative population decay to the ground state occurs at a rate

of Γ
QW/QD
i0 , where i is either 1 or 2 depending on the exciton spin state.

All possible coupling channels between the QW and QD excitons are shown in Fig. 7.3(c).

Excitons can decay through radiative recombination or non-radiative processes, such as scattering

from defects or exciton-exciton Auger scattering. Alternatively, the |±1〉 excitons can couple to the

dipole forbidden | ± 2〉 dark states through electron or hole spin flips. For example, the |+ 1〉 state

is comprised of a −1/2 spin electron and a −3/2 spin heavy-hole 1 . An electron spin flip takes the

exciton from the | + 1〉 state to the | + 2〉 state, whereas a hole spin flip would couple the | + 1〉

and | − 2〉 states. Reverse spin-flip processes can return the excitons from the | ± 2〉 states back to

| ± 1〉. In the limit that these processes are fast compared to recombination, a quasi-equilibrium

population distribution of the bright and dark states will form, and the decay of this distribution is

1 here we define the exciton spin projection, JZ,X , in terms of the electron and hole spin projections, JZ,e and
JZ,h, respectively, as JZ,X = JZ,e − JZ,h
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reflected in the slow decay rate of the QW and QD populations. The slow decay rates are limited

by recombination and non-radiative scattering, slower spin-flip processes, and QW–QD incoherent

population transfer. QW excitons can relax directly into QD states through phonon scattering and

emission or indirectly through multiple spin flip scattering events. Cross-coupling between QW and

QD bright and dark states involves phonon-assisted population transfer in addition to a spin-flip

event. Indirect coupling involving more than one path in Fig. 7.3(c) occurs at a rate that is a

multiplicative combination of the rates of each process; thus the likelihood of population transfer

occurring via multiple paths decreases as the number of paths involved increases. On the other

hand, QD excitons can be excited to the QW states along the reverse paths of the QW → QD

relaxation.

7.3 Rate Equation Analysis

The QW–QD population transfer dynamics are modeled using a system of rate equations.

The goal of the proposed model is not to encompass all QW and QD intra-actions, but instead

connect the population transfer phenomena to coupling between the states depicted in Fig. 7.3(c).

The model incorporates radiative and non-radiative decay, coupling between bright and dark exciton

states and population transfer between QW and QD exciton states. Despite the simplified model,

excellent agreement with the results is obtained, providing insight into the coupling dynamics in

the sample. Rate equations describing the coupling channels shown in Fig. 7.3(c) are given by

the expressions in Eqn. 7.1. The exciton population in the QW is given by NQW
±i and in the QDs

by NQD
±i . G

QW/QD
i determines the number of available states in the QW or QDs and is given by

(1−N
QW/QD
±i /N

QW/QD
max ), where i is the spin state.

Ṅ
QW
±1 = −

(
ΓQW
10 + ΓQW−

12 GQW
2 + Γ−11GQD

1 + Γ−12GQD
2

)
NQW
±1 +

(
Γ+
11NQD

±1 + ΓQW+
12 NQW

±2 + Γ+
12NQD

±2

)
GQW

1

Ṅ
QW
±2 = −

(
ΓQW
20 + ΓQW+

12 GQW
1 + Γ−22GQD

2 + Γ−12GQD
1

)
NQW
±2 +

(
Γ+
22NQD

±2 + ΓQW−
12 NQW

±1 + Γ+
12NQD

±1

)
GQW

2

Ṅ
QD
±1 = −

(
ΓQD
10 + ΓQD−

12 GQD
2 + Γ+

11GQW
1 + Γ+

12GQW
2

)
NQD
±1 +

(
Γ−11NQW

±1 + ΓQD+
12 NQD

±2 + Γ−12NQW
±2

)
GQD

1

Ṅ
QD
±2 = −

(
ΓQD
20 + ΓQD+

12 GQD
1 + Γ+

22GQW
2 + Γ+

12GQW
1

)
NQD
±2 +

(
Γ−22NQW

±2 + ΓQD−
12 NQD

±1 + Γ−12NQW
±1

)
GQD

2 . (7.1)
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Almost all parameters in Eqn. 7.1 can be directly related to the rates extracted from the

2D spectra. The combined radiative and non-radiative recombination decay rates Γ
QW/QD
10 are the

measured slow decay rates, Γslow, and the bright-to-dark coupling rates Γ
QW/QD-
12 are the measured

fast decay rates, Γfast, in Fig. 7.2. Γ−11 is related to the measured RP growth rate and Γ+
11 is related

to the measured EP growth rate. The cross-coupling rates Γ
+/−
12 equal Γ

+/−
11 ×Γ

QW/QD+/−
12 . The sum

of the rates contributing to the RP and EP in the model are set equal to the measured growth rates

of the peaks, given in Figs. 7.2(g) and 7.2(h), respectively. Dipole selection rules prevent radiative

decay of the dark states, thus Γ
QW/QD
20 reflects non-radiative decay processes and is fixed to be an

order of magnitude less than Γ
QW/QD
10 in order to best match the population at long times. The

dark state QW–QD coupling rates Γ
+/−
22 are set equal to Γ

+/−
11 . The dark-to-bright spin flip rates

ΓQW+
12 and ΓQD+

12 are adjusted between 0.035 – 0.045 ps−1 and 0.065 – 0.07 ps−1, respectively, in

order to match the amount of initial population decay at short time. Because a low photon density

is used, the exciton states are expected to be far from saturation and N
QW/QD
max is fixed at an order

of magnitude larger than the initial population in each state. The system of rate equations are

solved and the solutions (solid lines) are shown in Fig. 7.4 with the measured population amplitude

(points) taken at 35 K. The free parameters in the equations are the dark state decay rates Γ
QW/QD
20

and dark-to-bright state spin flip rates Γ
QW/QD+
12 . The rates are consistent with detailed balance

at the highest temperature, when QW ↔ QD coupling is significant and the system is in a quasi-

equilibrium state. Departure from detailed balance at low temperature is not surprising because

the exciton populations decay before equilibrium is reached.
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Figure 7.4: Measured population amplitudes (points) and results from the rate equation analysis

(solid lines) are shown for the (a) QW, (b) QDs, (c) RP and (d) EP. The rates used in the rate

equation analysis are obtained from the measurements except for Γ
QW/QD+
12 and Γ

QW/QD
20 , which

are adjusted to obtain best agreement between the model and data. Results from the model with

Γ
QW/QD
20 (dashed line) and Γ

QW/QD+
12 (dashed-dotted line) equal to zero are also shown.

Agreement between the model and the measurements shown in Fig. 7.4 allows us to draw

several conclusions regarding the primary decay and QW–QD coupling mechanisms. To match the

QW and QD bi-exponential decay, a population transfer mechanism is required such that a quasi-

equilibrium distribution is established between multiple states – otherwise, the population will

simply decay at with a rate similar to Γfast (dashed-dotted line in Fig. 7.4). It is well-established

that QW exciton-bound hole spin relaxation occurs on a picosecond timescale due to confinement-

enhanced electron-hole exchange [259], and this mechanism is attributed to the fast decay of the

QW population. Excitons initially in the | ± 1〉 bright states can hole-spin-flip to the | ∓ 2〉 dark

states, after which they can non-radiatively decay or spin flip back to the bright states. The onset

of the slow decay occurs after formation of a quasi-equilibrium between excitons in the bright

and dark states. Exciton population relaxation in QDs is expected to occur more slowly than in

QWs because the discrete density of states suppresses many of the effective scattering mechanisms

[151, 260]. However, the mechanisms responsible for fast spin relaxation in QWs have been found to

be effective for excitons weakly-localized in GaAs IFQDs [261]. Coupling between the exciton spin

states through electron or exciton spin flips can contribute to population decay, but these relaxation
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processes occur on a much slower time scale compared to Γfast and are therefore combined with

other slow processes in the rate ΓQD
10 in the model. The similarity between the QW and QD fast

population decay suggests that the same exciton-bound hole spin flip mechanisms in the QW are

prevalent in the IFQDs as well. This mechanism is included in the model through the terms with

rates ΓQD-
12 . The increase of Γfast with temperature for the QW and QDs is consistent with previous

studies on temperature dependence of hole spin lifetimes in narrow GaAs QWs [262, 263].

With increasing excitation photon density, the QW and QD populations exhibit a single

bi-exponential behavior, and the decay rates converge toward a single slow decay rate Γslow, as

shown by the open square symbols in Figs. 7.2(e) and 7.2(f) for a sample temperature of 23 K.

This behavior is modeled by setting the maximum number of states N
QW/QD
max equal to the initial

population bright states, which saturates the number of available states G
QW/QD
i . While exciton-

exciton Auger scattering increases with excitation density, including this mechanism in the model

by introducing terms proportional to ΓAuger · NQW/QD
i has an opposite effect – the QW and QD

population decay is characterized by a single exponential with a rate that converges towards the fast

decay rate Γfast. Therefore, the observation of a bi-exponential decay suggests that exciton-exciton

Auger scattering is negligible for the excitation conditions used in the experiments and that the

number of available states greatly exceeds the initial exciton populations.

The ratio of the slow and fast exponential fit amplitudes for the QW and QDs, shown in Figs.

7.2(i) and 7.2(j), respectively, are ≈ 1/2 for sample temperatures ≤ 10 K, and then decrease with

increasing temperature. Since both ground and excited state population terms contribute to the

nonlinear response, the initial QW and QD populations should not decay below 1/2 their initial

values (since ground state quantum pathways cannot spin flip to dark states). The decrease of the

amplitude ratio below 1/2 at higher temperature indicates that additional relaxation mechanisms

beyond our model influence the fast dynamics. One possible mechanism could be scattering of

excitons to high-momentum states outside of the light-cone, which is known to contribute to a

decrease in photoluminescence yield from resonantly excited excitons in QWs [264]. To account

for the initial population decay below a relative amplitude of 1/2, we adjust the dark-to-bright
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spin flip rates Γ
QW/QD+
12 to match the data. This is justified because the dominant contribution

to the QW–QD coupling giving rise to the RP and EP in the model is the direct bright-to-bright

transition, which depends on the number of QW and QD excitons in the bright states irrespective

of the mechanisms governing their population or decay. The dashed-dotted line in Fig. 7.4 shows

the populations when the rates Γ
QW/QD+
12 equal zero, which highlights the significance of the dark-

to-bright transfer mechanism for obtaining a bi-exponential decay and reproducing the behavior of

RP and EP growth. At long T , the QW and QD populations decay primarily through radiative

and non-radiative recombination, exciton and electron spin flips and coupling between the QW and

QD states. In the model, the dark state decay rates Γ
QW/QD
20 are set to be an order of magnitude

smaller than those for the bright states since the dark states decay non-radiatively. Setting these

rates equal to zero, depicted in Fig. 7.4 by the dashed lines, the model underestimates the QW

and QD population slow decay rates, the RP is essentially unaffected and the EP growth rate and

amplitude increase.

Although the QW and QD can couple through any of the paths indicated in Fig. 7.3(c), the

likelihood of a given process occurring decreases with an increasing number of paths involved, since

the rates of each path are multiplied to determine the total coupling rate. The most likely QW

→ QD exciton transfer path is directly between the bright | ± 1〉 states, which requires acoustic

phonon emission for energy and momentum conservation. A possible exciton-phonon coupling

mechanism is the following: zero-momentum excitons initially in the QW acquire momentum by

scattering from the phonon population, after which they relax to the QD states while emitting one or

multiple phonons with the necessary energy and momentum. Because the momentum distribution

of excitons in the QDs is centered about zero with a non-zero width ∆k, QW excitons with zero

initial momentum can also lose 10 meV of energy and relax into the QD states via phonon emission.

Additionally, the 10 meV energy separation between the QW and QDs can be overcome through a

cascaded process involving dark excited states in the QDs [265, 266]. With increasing temperature,

the RP exponential fit amplitude decreases from unity at 6 K, indicating that essentially the

entire population at long T relaxes to the bright QD states, to 0.4 at 50 K. Although the QW
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→ QD relaxation rate increases with temperature, the process itself becomes inhibited and only

approximately half of the initial QW population relaxes to the bright QD states. The decay from

unity to 0.4 is attributed to an increase in the QW population decay to the dark QD states. As

the bright-to-dark-state exciton-bound hole spin-flip rate ΓQW-
12 increases with temperature, the

QW–QD cross-coupling relaxation rate also increases such that at high temperature, QW excitons

in the bright states decay equally to the bright and dark QD states.

Excitation from the QDs to the QW states involves similar paths as the QW relaxation

processes in Fig. 7.3(c); however, the physical mechanisms are quite different. Since excitons in

the QDs must overcome the 10 meV confinement potential, the EP is only expected to appear

at higher temperature where phonon-assisted activation processes can occur. The QD → QW

activation process is observed only for sample temperatures at 35 K and above, at which significant

acoustic phonon population with energy ≥ 10 meV exists. While multiphonon activation is possible,

the absence of the EP at lower temperatures indicates that QD→ QW excitation likely arises from

a single-phonon process. Similarly to the QW → QD RP fit amplitude, the increase in the hole-

spin-flip rate ΓQD-
12 with temperature suggests that at higher temperature, the EP fit amplitude will

approach 1/2 because QD excitons will couple to either the bright or dark QW states with equal

probability. Best agreement between the model and data is obtained when including terms with

the cross-coupling rates Γ
+/−
12 and the QW–QD dark state coupling rates Γ

+/−
22 , so that the sum of

the rates contributing to the RP and EP features are equal to the measured growth rates.

The ability of 2DCS to separate quantum pathways is evident from these experiments and

analysis. Using one-dimensional linear or nonlinear spectroscopies, the population dynamics could

not be accurately modeled, since the overlapping quantum pathways would inhibit extraction of the

amplitudes and decay rates. As mentioned in Chapter 5, performing a similar experiment probing

population transfer between the exciton ground and first excited states in the InAs SAQDs and

applying a similar rate equation analysis would allow one to unambiguously and quantitatively

establish the transfer rates and probabilities. Morever, the mechanisms governing energy transfer

dynamics in numerous other material systems, such as light-harvesting complexes [187] and col-
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loidal nanocrystals designed for multi-exciton generation [135] have been widely debated. Perhaps

by performing this type of experiment and analysis, in conjunction with other types of 2DCS ex-

periments discussed in this Thesis thus far, one can better understand and quantify incoherent and

coherent energy transfer to design highly-efficient solar energy conversion devices.



Chapter 8

Conclusion

Establishing the connection between morphology and the electronic and optical properties of

semiconductor QDs is important for a variety of fields, including solar energy conversion, quantum

information, and the generation and detection of classical and quantum states of light, to name a

few. Successful implementation of QD-based technologies relies on the ability to grow and prepare

QDs with specific properties in a controlled manner. Controlled fabrication has been difficult to

achieve since the QD properties are sensitive to the size, shape, strain, confinement and material

composition, which can vary dot-to-dot. The focus of this Thesis has been to investigate how

the strength and nature of multi-particle interactions, which determine the electronic and optical

properties, are influenced by the QD structure and material composition. Optical two-dimensional

coherent spectroscopy (2DCS) is a powerful technique for studying interaction effects on the co-

herent optical response of inhomogeneously-broadened ensembles. 2DCS is based on three-pulse

four-wave mixing spectroscopy with the enhancement of interferometric stabilization of the pulse

delays, enabling a two-dimensional Fourier transform of the signal to be taken with respect to two

of the time delays. By coherently tracking the signal phase, the nonlinear optical response can be

unfolded onto two frequency dimensions, allowing for better isolation of the numerous quantum

pathways contributing to the signal that are not sufficiently separated using one-dimensional tech-

niques. Moreover, effects from heterogeneity, such as variation in the resonance energy, exciton

fine-structure splitting and biexciton binding energy, have distinct signatures in the 2D spectra.

By performing a series of experiments in which the pulse time ordering, excitation and detection
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polarization states, sample temperature and material composition are varied, we are able to bet-

ter understand the connection between morphology and the optical and electronic properties of

the QDs. Comparison of the results to simulations reveals the role interaction-effects play in the

coherent nonlinear optical response.

This thesis begins with a discussion of the fundamental physics of electrons in semiconduc-

tors, whose electronic and optical properties are modified by quantum confinement. A discussion

of microscopic many-body calculations reported in the literature aids in developing an intuitive

understanding of how Coulomb effects modify the properties of the relevant energy levels in the

system. Strong Coulomb interactions result in distinct optical dipole transition selection rules,

which we have used to isolate specific quantum pathways that contribute to the coherent nonlinear

optical response. We have shown that by using specific polarizations of the excitation pulses and

detecting a specific polarization component of the signal, the nonlinear optical response of excitons,

biexcitons and trions can be unambiguously isolated.

The first set of experiments discussed in this thesis focused on investigating the effects of

exciton-phonon interactions on the spectral line shapes obtained from rephasing one-quantum ex-

periments. Analytical solutions to the optical Bloch equations were used to derive expressions for

fitting the spectral line shapes, from which the half-width-at-half-maximum provides a measure

of the homogeneous line width. The results reveal that excitons in GaAs IFQDs couple weakly

with phonons through an elastic interaction mechanism. The dependence of the homogeneous line

widths on the sample temperature and emission energy indicate that excitons confined in smaller

QDs couple more strongly to phonons. Compared to GaAs IFQDs, the exciton-phonon interac-

tion strength in strongly-confining InAs SAQDs is significantly enhanced, which is revealed by a

distinct spectral line shape that is attributed to phonon-assisted transitions between energy levels

with different phonon occupation numbers. A comparison of the low-temperature line widths to the

population decay rates indicate that the homogeneous line widths of excitons in the GaAs IFQD

sample are radiatively-limited, whereas significant pure dephasing still exists in the InAs SAQDs.

The line width temperature dependence for excitons in this sample is reproduced using a model
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that incorporates both exciton-phonon and exciton-carrier interactions, for which the latter are

responsible for low-temperature line width broadening beyond the radiative limit.

Using a certain excitation and detection polarization sequence, the nonlinear response of

biexcitons and trions can be isolated in order to investigate confinement effects on Coulomb inter-

actions. Interestingly, for the InAs SAQDs, which exhibit an inhomogeneous line width of ≈ 15

meV, the biexciton binding energy is the same for all dots in the ensemble. Comparison of this

result to calculations reported in the literature reveal that the Coulomb effects responsible for

biexciton renormalization are independent of the details of confinement for these samples. In con-

trast, the biexciton binding energy increases by ≈ 0.5 meV across the 2 meV inhomogeneous line

width of the GaAs IFQDs. Thus, even though the GaAs IFQD sample is more homogeneous than

the InAs SAQD samples, the Coulomb interactions responsible for exciton-exciton interactions are

more sensitive to changes in the confinement potential. By increasing the excitation intensity, we

are also able to drive the nonlinear response of the InAs SAQD sample beyond the χ(3) regime to

probe for higher-order nonlinearities. An isolated feature appears in the 2D spectrum under high

excitation conditions and is attributed to the χ(5) nonlinear optical response of the biexciton.

Coulomb interactions are also manifest in coupling of the two lowest exciton spin states, which

results in mixing and an energetic splitting between them. Using a specific pulse time ordering and

excitation and detection polarization sequence, we have measured this splitting for all dots in the

InAs SAQD ensemble simultaneously with a spectral resolution limited only by the maximum pulse

delay achievable with the apparatus. The data reveal that fluctuations in the transition energies of

the two lowest exciton transitions are nearly perfectly correlated. Moreover, similar to the biexciton

binding energy, the state splitting is essentially independent of the QD size, which has interesting

implications for applications discussed in the next Section.

We have also studied interactions between excitons localized in the GaAs IFQDs and exci-

tons delocalized in the underlying QW. The exciton transitions can be described using a model

comprised of two separate two-level systems that are coupled through incoherent population trans-

fer between the excited states. By performing a series of 2DCS experiments in which incoherent
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population dynamics can be probed, we have characterized the population decay rates of QW and

QD excitons, as well as the population transfer dynamics between them. The dynamic incoherent

coupling is modeled using a set of rate equations that require exciton-bound hole spin flips between

optically active and inactive states, radiative and non-radiative decay and incoherent QW–QD

coupling to reproduce the data. Coherent interactions between QW and QD excitons, which are

too weak to be observed in the rephasing spectra, are revealed through two-quantum 2D experi-

ments. Additional experiments and calculations are currently underway, which will help identify

the microscopic interactions responsible for the coherent coupling.

8.1 Outlook

The results presented in this Thesis demonstrate the advantages provided by using 2DCS to

probe QD ensembles. Applying the technique to a wide-range of material systems beyond those

presented here will provide a more comprehensive picture into the effects of QD morphology on the

electronic and optical properties. Modifications to the experimental apparatus will also enable new

types of experiments with additional tools for manipulating the QD properties, some of which are

described below.

8.1.1 Dephasing and Relaxation of Excited Exciton States

The QW–QD population transfer experiments discussed in Chapter 7 can be used to investi-

gate coupling between the exciton ground and first excited states in the InAs SAQDs. The broad

homogeneous line width of the excited state exciton at low temperature, shown in Chapter 5, is

reproduced by introducing terms in the model that account for phonon-assisted relaxation from

the excited state to the ground state. This mechanism, however, is only inferred from the data.

Directly measuring this population transfer mechanism by performing rephasing one-quantum ex-

periments for various delays T would provide an unambiguous and quantitative measurement of

the decay rate and amplitude of this process. This experiment will require a mode-locked laser

with a spectral bandwidth FWHM of at least 25 meV; thus the mode-locked ti:sapphire laser will
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not suffice. A second generation 2DCS apparatus that has recently been completed, discussed in

Appendix D, will provide the necessary tunability and bandwidth to perform this experiment.

8.1.2 Field Effects on Optical and Electronic Properties

An interesting set of experiments can be performed by using 2DCS to monitor the effects of

external magnetic and/or electric fields on the electronic and optical properties of the QDs. For in-

stance, by applying an in-plane magnetic field in combination with an electric field or applied stress,

researchers have demonstrated that ∆FSS can be tuned to zero [254]. This aspect has garnered

significant interest in recent years, since a QD with ∆FSS less than the radiative line width has

been shown to produce polarization-entangled photon pairs via biexciton-exciton cascaded emission

[253]. Since all the dots in the InAs SAQD sample studied in this thesis exhibit essentially the

same ∆FSS , perhaps by applying the appropriate external fields, one might be able to demonstrate

generation of entangle-photon pairs from an ensemble of dots. This experiment would likely require

a new sample to be grown that is also strongly thermally-annealed but does not contain a large

fraction of charged QDs.

Coupling between QDs has also attracted much interest for quantum information applications.

Resonant tunnel coupling of charge carriers or excitons between neighboring QDs can be tuned using

an external electric or magnetic field, which has been exploited for qubit gating operations [71].

The spectral response of tunnel-coupled QDs is distinct from the uncoupled case, which might

produce unique fingerprints in a 2D spectrum. Heterogeneity will likely wash out any coupling

effects in the 2D spectra of coupled QD ensembles, thus a 2DCS scheme that is sensitive to the

nonlinear response from a few dots will be necessary. Alternatively, instead of resonant tunnel

coupling between adjacent dots, the dots can couple through an electric field enhanced dipole-

dipole interaction, which does not require the energies of the coupled QDs to be degenerate [72].

Moreover, it is well-established that QDs grown in adjacent layers, but separated by thin barriers,

spatially-align along the growth direction and their resonant energies are correlated [58]. Thus by

using a pre-pulse to excite a sub-ensemble of the bottom QD layer while using 2DCS to probe the
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ensemble of the top layer or both layers, or by performing a two-color 2DCS experiment, ensemble

interaction effects can be studied. The coupling strength can be varied through the applied field,

which can enhance or reduce the dipole moment of excitons in the bottom QDs depending on the

relative field polarization.

8.1.3 Pre-Pulse 2DCS: Quantum Optics of Quantum Dot Ensembles

A pre-pulse-pump and 2DCS-probe experiment could also be used to perform quantum optics

experiments on an ensemble of QDs. For instance, Rabi flopping has been demonstrated in single

QDs by pumping the exciton transition and monitoring the photocurrent [66]. The photocurrent

has been shown to oscillate for increasing pump pulse area with a period corresponding to the

Rabi frequency. Arbitrary optical rotation of the exciton about the Bloch sphere can be achieved

by performing a similar experiment using multiple optical pulses [267]; however coherent control

has yet to be demonstrated for an array of dots. 2DCS is ideally-suited to probe for population

inversion induced by a strong pre-pulse for an ensemble of dots. By taking advantage of the dipole

selection rules, one can use a pre-pulse to generate an exciton population in one of the exciton

fine-structure states in the InAs SAQD sample. Furthermore, using a specific excitation pulse

polarization sequence, one can generate spectrally isolated features that only appear if a significant

exciton population is excited by the pre-pulse. Since nearly all QDs in the sample exhibit nearly

equal radiative line widths, they should also exhibit similar Rabi frequencies. Thus, with a strong

enough pre-pulse intensity, one should be able to invert a significant portion of the ensemble and use

2DCS to probe for inversion beyond the classical limit of a maximum excited-state/ground-state

ratio of 1/2.

8.1.4 Carrier Multiplication in Colloidal Nanocrystals

The desire for efficient and inexpensive photovoltaics (PVs) has stimulated significant re-

search on novel materials and solar energy conversion schemes that would enable devices to operate

beyond the Shockley-Queisser limit. One such approach is the generation of multiple electron-hole
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pairs (excitons) from a single photon, a process known as carrier multiplication (CM). While CM

is inefficient in bulk materials, an increase in efficiency in nanocrystals was proposed in 2002 [75]

and demonstrated 2004 using PbSe QDs [78]. Subsequent studies have shown that CM occurs in

nanostructures of various compositions and shapes, including PbS, Si, InP, and CdTe QDs and

more recently PbSe nanorods. CM has been studied using transient pump-probe or time-resolved

photoluminescence spectroscopies, which rely on the detection of fast Auger decay signatures of

multi-excitons. Comparison of the early-time multi-exciton amplitude compared to the late-time

single-exciton background provides a measure of the CM efficiency. By tuning the pump photon en-

ergy, the efficiency and energy threshold for CM can be established. Although it is widely-accepted

that confinement-enhanced Coulomb interactions lead to higher CM efficiencies, the mechanism

responsible for this phenomenon has been difficult to establish. Several ideas have been proposed,

including impact ionization (a reverse Auger process), coherent superpositions between single and

multiple-exciton states, and multi-exciton generation through virtual excitation of the high-energy

exciton state. 2DCS is ideally-suited to investigate the role of these many-body interactions in

the CM process, since the technique is sensitive to weak interaction effects in inhomogeneously-

broadened ensembles. The proposed mechanisms can be tested using the different types of 2D

experiments described throughout this Thesis. For instance, one can probe for coherent superposi-

tions between single and multi-exciton states using multi-quantum multi-dimensional spectroscopy

for which peaks will appear in the spectra only if this process contributes to CM. Moreover, using a

high-energy pre-pulse to generate electron-hole pairs, one can use 2DCS to probe for CM by looking

for Pauli-blocking effects at the lowest-energy exciton resonance. Compared to the conventional

detection methods, the excellent signal-to-noise and rapid data acquisition times of 2DCS might

provide additional advantages for characterizing the CM efficiency and threshold.



Appendix A

2D Spectroscopy of CdSeTe/ZnS Colloidal Quantum Dots

Semiconductor colloidal nanocrystals exhibit rich and complex electronic structure, which is

manifest in the linear and nonlinear optical response. Quantum confinement effects on the electronic

and optical properties of nanocrystals have been studied for over three decades [10, 11, 268, 269],

with heightened interest in recent years owing to the discovery and characterization of carrier

multiplication (CM) in colloidal QDs (CQDs) [78, 135]. From a technical standpoint, compared

to epitaxially-grown QDs, CQDs have garnered significant interest owing to the low fabrication

cost, simplicity of colloidal synthesis and the relative ease at which quantum confinement effects

can be tuned through engineering the size, shape and material composition. As a consequence of

the tunable electronic and optical properties and novel quantum phenomena such as CM, CQDs

are being explored for a host of applications including photovoltaics [76, 79], laser technology [50]

and cavity quantum electrodynamics [270]. A key for exploiting the tunable properties of CQDs is

connecting the complexity of the multi-particle interactions to the CQD morphology.

Understanding interactions among the confined particles in CQDs has proven to be difficult

because the multitude of transitions in the CQDs are often degenerate, or nearly so, and the optical

spectra are dominated by inhomogeneous broadening. A theoretical analysis of the excitonic energy

level structure indicates that in spherically-symmetric CQDs, the band-edge exciton transition is

eight-fold degenerate. The degeneracy is lifted and the transition is split into five levels when

considering the effects of shape asymmetry, the intrinsic crystal field and the electron-hole exchange

interaction [271]. The energy spacing and ordering of the levels, as well as the oscillator strength,
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strongly depend on the CQD size, shape and material composition.

Recently, multi-exciton interaction effects on the electronic structure and optical properties

of CQDs have been probed using optical 2DCS, which has proven to be particularly useful for

studying CQDs with extensive inhomogeneous broadening. Harel et al. have measured the ultrafast

dynamics of electronic coupling between the exciton states and have provided evidence of exciton-

exciton interaction effects in the spectra [97]. The presence of exciton-exciton interactions have also

been deduced from the spectral line shapes [272]. In this Appendix, we present our preliminary work

investigating the homogeneous line width of the lowest exciton transition in CQDs. We studied

CdSeTe/ZnS core-shell CQDs (Nano Optical Materials, sample # QD800) that were suspended in

a toluene solvent. The manufacturer-specified core diameter is 6.3 nm and shell thickness is 1.8 nm.

The solution was kept at room temperature in a precision cell micro cuvette made from IR quartz

with a 1 mm cell thickness (NSG Precision Cells, model # 30IR1). The measured optical density

(using base e, solid blue line) and the photoluminescence intensity (dashed line) are shown in Fig.

A.1. The photoluminescence is centered at 1550 meV with a FWHM of ≈ 150 meV. Although

maximum excitation occurs at higher energies, the excitation laser spectrum is tuned resonant

with the photoluminescence peak in order to avoid excitation of any excited-state transitions.
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Figure A.1: Room temperature photoluminescence (dashed line) and optical density (base e, solid

line) for the CdSeTe/ZnS CQDs. The sample was excited using a 633 nm HeNe laser to generate

the photoluminescence spectrum.

A normalized rephasing one-quantum 2D spectrum is shown in Fig. A.2(a). The 2D exper-

iments were performed using co-linear excitation and detection and an excitation photon density

of 1 × 1012·photons·pulse−1·cm−2. The spectrum features a peak on the diagonal with an inho-

mogeneous line width limited by the laser spectrum. A cross-diagonal slice (points) taken at 1550

meV is shown in Fig. A.2(b). The line shape comprises the ZPL and phonon sidebands are absent.

The ZPL shape is fit with a
√
Lorentzian function (solid line) whose HWHM gives a ZPL width

of γ = 11 ± 3 µeV, where the estimated uncertainty was determined by repeating the experiment

multiple times.
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Figure A.2: (a) Normalized rephasing one-quantum amplitude spectrum of the room temperature

CdSeTe/ZnS core-shell CQDs acquired using co-linear polarization. (b) A cross-diagonal slice

(points) taken at 1550 meV is fit with a
√
Lorentzian function (solid line) whose HWHM gives a

ZPL width of 11± 3 µeV.

Recall that the ZPL widths from the GaAs IFQDs and InAs SAQDs are ≈ 30 µeV and ≈ 10

µeV, respectively, at 10 K. The ZPL width measured for the CdSeTe/ZnS CQDs is similar to that

of the InAs dots, but remarkably, at room temperature. ZPL widths reported in the literature

for CdSe/ZnS CQDs are similar to our measured value, however only at cryogenic temperatures

[273, 274, 275, 276]. At elevated temperatures, the reported ZPL width is orders of magnitude

larger and the dephasing is dominated by the mechanism giving rise to the phonon sidebands. The

absence of phonon sidebands and the narrow ZPL we observe is quite promising for enabling room

temperature QD-devices that require long coherence times.

To properly understand the origin of the narrow ZPL, a systematic study of the nonlinear

optical response must be performed, including an investigation of the influence of temperature, ex-

citation density and excitation and detection polarization states. Moreover, the radiative lifetime

of the bright ground state exciton in CdSe/ZnS is ≈ 10 ns [277], indicating that even the ZPL

width we have measured is not radiatively-limited. Furthermore, the dark state transitions have

longer radiative lifetimes, which makes interpretation of the results presented in this Appendix dif-
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ficult without performing a systematic series of 2D experiments. Because of the long lifetimes, the

population likely does not fully decay between sequential sets of pulses, which are separated by 13

ns. Thus, the experiments should also be performed while stirring the samples to introduce a fresh

ensemble of CQDs for each set of pulses. By systematically repeating this experiment for various

experimental conditions, insight into the relevant dephasing mechanisms can be obtained. Addi-

tionally, the second generation 2DCS apparatus discussed in Appendix D offers several advantages,

including a lower repetition rate, higher pulse energy, greater tunability and a larger bandwidth, all

of which will facilitate 2DCS experiments investigating the dephasing and interaction mechanisms

in CQDs.



Appendix B

Perturbative Expansion of the Optical Bloch Equations

The optical Bloch equations (OBEs) can be perturbatively solved by inserting lower orders of

the density matrix into the higher order expressions, where each order is an integral over the next

lower order, as indicated in Eqn. 3.20. The calculation described in this Appendix is based on the

work of Yajima and Taira [201] and Cundiff [89]. We consider the four-level system relevant for the

epitaxial QDs, shown in Fig. B.1(a). Recall that the nonlinear optical response for the biexciton

can be enhanced relative to the exciton when using an HVVH polarization scheme in the rephasing

time ordering, which is shown in Fig. B.1(b). For this polarization sequence, the conjugated pulse

A∗ is incident on the sample first and generates a coherence between states |g〉 and |H〉. After a

time τ , the second pulse B impinges the sample and creates a coherence between states |g〉 and

|V 〉, which appears as a zero-quantum coherence between states |V 〉 and |H〉. After a time T , pulse

C is incident on the sample to drive the zero-quantum coherence into a coherence between states

|B〉 and |H〉, which radiates during the emission time t as the FWM signal to return the system

to an |H〉〈H| population state. This sequence is depicted in the double-sided Feynman diagram in

Fig. B.1(c).
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Figure B.1: (a) The four-level energy diagram for a neutral epitaxially-grown QD with an asym-

metric confinement potential. The exciton states |H〉 and |V 〉 are separated by ∆FSS , and the

bound two-exciton (biexciton) is shown with a positive binding energy, ∆B. The rephasing pulse

sequence (b) and the double-sided Feynman diagram (c) for the OBE calculation.

For this pulse sequence and polarization scheme, the expressions shown in Fig. 3.5 are used

to form the third order density matrix element ρ(3)
BH

,

ρ(3)
BH

=
iµBV
2~
· eikC ·r

∫ t

−∞
dt
′′′
e
−i(ωBH−iγBH )

(
t−t′′′

)
ÊC

(
t
′′′
)
e−iωC t

′′′

× iµV G
2~
· eikB ·r

∫ t
′′′

−∞
dt
′′
e
−i(ωVH−iγVH )

(
t
′′′−t′′

)
ÊB

(
t
′′
)
e−iωB t

′′

× −iµGH
2~

· e−ikA·r
∫ t
′′

−∞
dt
′
e
−i(ωGH−iγGH )

(
t
′′−t′

)
Ê∗A

(
t
′
)
eiωA t

′
· ρ(0)

GG
,

(B.1)

where the field is given by Ej(t) = Êj(t)exp(−iωjt) for j = A,B,C. The transition frequency,

dipole moment and dephasing rate between states |j〉 and |k〉 are defined as ωjk, µjk and γjk,

respectively. Equation B.1 can be simplified by defining kS = −kA + kB + kC and grouping terms,

leading to the expression
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ρ(3)
BH

=ρ(0)
GG

−iµBV µV GµGH
8~3

eikS ·re−i(ωBH−iγBH )t

×
∫ t

−∞
dt
′′′ · e−i(ωC−ωBH+ω

VH )t
′′′
· e(γBH−γVH )t

′′′
· ÊC

(
t
′′′
)

×
∫ t
′′′

−∞
dt
′′ · e−i(ωB−ωVH+ω

GH )t
′′
· e(γVH−γGH )t

′′
· ÊB

(
t
′′
)

×
∫ t
′′

−∞
dt
′ · ei(ωA+ω

GH )t
′
· e(γGH )t

′
· Ê∗A

(
t
′
)
.

(B.2)

In the limit that the pulses are short compared to the system dynamics and the pulse delays, we can

approximate the field envelopes as Dirac delta function pulses in time. In this case, the integrals

can be easily evaluated in Eqn. B.2 using the expression Êj(t) = Ẽj · δ(t − tj), where tj is the

arrival time of pulse Ej for j = A,B,C. Setting the field frequencies all equal to ω and inserting

the above expression for the field envelopes into Eqn. B.2 gives

ρ(3)
BH

=ρ(0)
GG

−iµBV µV GµGH
8~3

eikS ·re−i(ωBH−iγBH )t

× e−i(ω−ωBH+ω
VH )tC · e(γBH−γVH )tC · ẼC

× e−i(ω−ωVH+ω
GH )tB · e(γVH−γGH )tB · ẼB

× ei(ω+ω
GH )tA · e(γGH )tA · Ẽ∗A ·Θ (t− tC ) Θ (tC − tB ) Θ (tB − tA) ,

(B.3)

where Θ(t) is the Heaviside theta function. If we let ρ(3)
BH

= ρ̂(3)
BH

exp(−iωt) and define t ≡ t − tC ,

T ≡ tC − tB and τ ≡ tB − tA, then Eqn. B.3 can be re-written as

ρ̂(3)
BH

=ρ(0)
GG

−iµBV µV GµGH
8~3

eikS ·rẼ∗AẼBẼC ·Θ (t) Θ (T ) Θ (τ)

× e−γBH t−γVHT−γHGτ−iωVHT ei(ω−ωBH )t · e−i(ω−ωHG)τ ,

(B.4)

where we have taken advantage of the fact that γGH = γHG and ωGH = −ωHG . The third-order

macroscopic polarization, P̂ (3), is obtained by taking the trace of ρ̂(3)
BH

with the dipole moment oper-

ator, µ. To account for an inhomogeneous distribution of frequencies, this result can be integrated

over a two-dimensional distribution function for ωBH and ωHG :
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P̂ (3)
BH

= N

∫ ∞
−∞

∫ ∞
−∞

µBH · ρ̂
(3)
BH
· g (ωBH , ωHG) dωBHdωHG , (B.5)

where N is the number of dipoles per unit volume and g(ωBH , ωHG) is the distribution function,

for which we choose to use a two-dimensional Gaussian,

g (ωBH , ωHG) =

√
a11a22 − a2

12

π
e

[
a11(ωBH−ω

c
BH

)
2−2a12(ωBH−ω

c
BH

)(ωHG−ω
c
HG

)+a22(ωHG−ω
c
HG

)
2
]
,

(B.6)

centered at frequencies ωc
BH

and ωc
HG

. The parameters a11, a12 and a22 are useful for evaluating

the integrals. To provide physical insight, they can be recast as

R =
a12√
a11a22

δωBH =

√
ln (2)

a22

a11a22 − a2
12

δωHG =

√
ln (2)

a11

a11a22 − a2
12

, (B.7)

where R is the correlation coefficient and δωBH (δωHG) is the half-width at half-maximum of the

distribution along the ωBH (ωHG) axis. Perfect correlation between ωBH and ωHG corresponds to

R = 1, whereas by R = 0 describes no correlation. Evaluating the integral in Eqn. B.5 yields

P̂ (3)
BH

=ρ(0)
GG

−iµBHµBV µV GµGH
8~3

eikS ·rẼ∗AẼBẼC ·Θ (t) Θ (T ) Θ (τ)

× e−i(ω−ω
c
HG

)τ · ei(ω−ω
c
BH

)t · e−γBH t−γVHT−γHGτ−iωVHT

× e−1/4ln(2)
[
(δωHGτ)

2−2Rδω
HG

δω
BH

τt+(δωBH t)
2
]
.

(B.8)

This expression can be inserted into Eqn 3.22 to calculate the radiated electric field due

to the third-order polarization. A similar derivation can be performed for the other Feynman

diagrams presented in Chapter 3. Alternatively, the parameters in Eqn. B.8 can be replaced by

those associated with the corresponding Feynman diagram, since the diagrams in general will result
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in a similar expression. The total two-dimensional time-domain signal is Fourier-transformed with

respect to the varied delays to generate a two-dimensional spectrum. For the χ(5) nonlinear response

in which one of the pulses acts three times to generate a six-wave mixing signal in the FWM phase

matched direction, this derivation can also be easily adapted. The general expression will be the

same since additional time delays need not be considered, although the nonlinear response will be

proportional to iµ6E5/32~5, where each µ and E in this expression represents a single vertex of

the Feynman diagram.



Appendix C

Alignment Procedure for the MONSTRs

This Appendix outlines the alignment procedure for the first generation JILA-MONSTR.

Alignment of the second generation apparatus is performed using a similar procedure, although not

all the steps are necessary due to the inclusion of corner cube retro-reflectors on the translation

stages. Meticulous alignment is crucial for a few reasons: 1) If the beams are not properly aligned

onto the translation stages, then their wavevectors will vary while the stages are scanned. This

effect will gradually reduce the beam overlap at the sample, leading to an artificially fast decay

of the FWM signal; 2) The stabilization and stepping algorithm requires excellent overlap of the

HeNe beams at the diagnostic output, which cannot be achieved without precise alignment; and

3) When properly aligned, the day-to-day alignment of the experimental setup is minimal. For

instance, as of writing this Thesis, we have not had to re-align the MONSTR for over three years.

The only alignment necessary is to adjust the pointing of the Ti:sapphire and HeNe lasers into

the MONSTR, which is relatively straightforward. The alignment procedure is separated into five

sections: 1) Initial beam alignment into the bottom deck of the MONSTR; 2) alignment of the

bottom deck; 3) alignment of the top deck; 4) closing the MONSTR; and 5) aligning the two decks

with respect to each other.

The components used for the MONSTR experimental setup are the following:

• HeNe laser → from CVI Melles Griot, part # 25 LHP 171-249

• Mirrors → either 1/2
′′

or 1
′′

diameter protected silver
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• Beam splitters → 1
′′

diameter, 1 mm thick FABS low-dispersion beam splitters from CVI

Melles Griot

• Compensation plates→ windows made from the same substrate as the FABS beam splitters,

double-side anti-reflection coated

• PZT→ ring piezo-electric actuators from Piezomechanik GMBH, part # HPCH150/6−2/2

• Dichroic mirrors→ both from CVI Melles Griot, part #’s LWP-0-R-633-T-800-PW-2025-C

and LWP-45-Rp-633-Tp-800-PW-1025-C

• B-M1 and T-M1 mirror mounts → from Newport Corporation, part # SS100-R3H

• Translation stages→ from Aerotech Inc, AXIS-X/Y/Z are all model # ALS130H-050-PLUS

and AXIS-U is model # ALS135-200-PLUS

• Translation stage controller → Aerotech Inc NPAQ drive rack and Lab-VIEW integrated

A3200 motion controller software

• The remainder of the mounts on the bottom and top decks are custom made by the JILA

machine shop

• The decks are made from cast aluminum, have a mass of 19 kg each and are precision

machined using a computer numerical control (CNC) mill

• The piezo actuators are controlled using JILA-built piezo drivers, servo loop filters, ampli-

fiers and silicon photodiode detectors.

C.1 Initial Beam Alignment into the Bottom Deck (refer to Fig. C.1)

1.1 Using mirrors O-M1, O-M2 and O-M4, align the Ti:sapphire beam to the JILA-MONSTR

input, adjusting to the proper height and leaving enough space to place apertures and the

Ti:sapphire/HeNe dichroic mirror (O-DM1) on the optical table.
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1.2 Place O-DM1 into the Ti:sapphire beam path at 45◦ relative to the beam propagation as shown

in Fig. C.1, and adjust the HeNe beam path using the HeNe kinematic mount and O-M3

to co-propagate with the Ti:sapphire beam.

1.3 Re-align the Ti:sapphire beam through the apertures located at B-A1 and B-A2 by adjust-

ing mirrors O-M2 and O-M4. Placing a photodiode behind the set of apertures helps to

maximize the power through the apertures.

1.4 Re-align the HeNe beam through apertures B-A1 and B-A2 by adjusting the HeNe kinematic

mount and mirror O-M3. The beams should now both be co-propagating into the bottom

deck assembly. If the HeNe is not mounted using a kinematic holder, then another mirror

in addition to O-M3 can be used to help with adjustment, although it is not necessary.

1.5 Place apertures A1 and A2 in the Ti:sapphire/HeNe beam paths. When the entire alignment

procedure is complete, these apertures can facilitate day-to-day alignment.
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Figure C.1: Layout of external optics aligning the beams into the bottom deck of the MONSTR.

Definitions: M – mirror; DM – dichroic mirror; A – aperture.

C.2 Bottom Deck Assembly Alignment (refer to Fig. C.2)

2.1 For alignment purposes, block the Ti:sapphire laser and use only the HeNe.

2.2 Install the translation stages. Alignment pins have been inserted to ensure that the stage

motion is parallel to the side of the bottom deck.
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(a) At this point, use the software provided by Aerotech to check that the stages are

operating correctly, i.e. minimal in-position jitter, accurate position, minimal move-

and-settle times.

(b) After the alignment of the bottom deck is completed, the HeNe errors signals should be

used as a more accurate diagnostic of the translation stage performance. For instance,

monitor the HeNe fringes at the diagnostic detector while repeatedly stepping one of

the stages a specified distance corresponding to a certain number of HeNe fringes.

2.3 Attach B-M1 and crudely align the reflection through apertures B-A3 an B-A4.

(a) Adjust the tilt using the horizontal and vertical adjustors on B-M1 until the beam

passes through aperture B-A4.

(b) Close aperture B-A3 and check alignment of the beam. Adjust the corner vertically-

and horizontally-coupled tilt knob – this will ultimately translate the beam horizon-

tally.

(c) Repeat steps (a) and (b) until the beam passes cleanly through both apertures.

2.4 Attach B-BS1 and horizontally-center the reflected beam through the PM1 position.

2.5 Attach PM1 to deflect the beam vertically. Take the necessary safety measures to contain the

reflected beam. Because the mount has no kinematic adjustors, place thin shim wedges

underneath the mount to obtain vertical propagating of the beam.

2.6 Check the parallelism of the input beam onto he AXIS-U stage.

(a) Place a photodiode behind the aperture B-A4.

(b) Mount a razor blade on the stage. Without any obstruction of the beam by the blade,

measure the total signal on the photodiode.

(c) With the razor blade mounted horizontally and the stage at its forward-most position

(towards the front of the MONSTR, farthest away from aperture B-A4, block the
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beam so that the signal at the photodiode is one-half the maximum amplitude. Scan

the stage either using the computer control or by hand. If the photodiode signal

amplitude increases, then the angle between the normal of the mirror in B-M1 and

the reflected beam is greater than 45◦. Adjust the B-M1 actuators counter-clockwise

to compensate. Repeat this process until the beam is passing through both apertures

and the amplitude on the photodiode does not vary when the stage is translated

through its entire travel range (termed “flattening” the beam).

(d) Repeat (c) with the razor blade mounted vertically. Note that the stage is slightly

bowed so that perfect alignment cannot be achieved. Perform the alignment near the

position corresponding to time-zero of the pulse delays.

2.7 Attach B-RR1-M2 on the AXIS-U stage.

(a) Attach two apertures onto the optical table, with the farthest distance possible between

them.

(b) Move the stage such that the beam is passing through the first aperture. The vertical

tilt actuator on the B-RR1-M2 will have to be adjusted.

(c) Open the first aperture and adjust the horizontal tilt actuator so that the beam passes

through the second aperture.

(d) Close the first aperture and move the stage until the beam passes through.

(e) Repeat steps (c) and (d) until the beam propagates through both apertures simulta-

neously.

2.8 Attach B-RR1-M1 on the AXIS-U stage. Attach B-M2 to the bottom deck.

2.9 Using B-RR1-M1 and B-M2, coarsely align the beam through apertures B-A5 and B-A6.

2.10 Place a razor blade in front of a photodiode detector placed behind the B-A6 aperture.
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(a) Open both B-A5 and B-A6 apertures. Similar to step 2.6, scan the stage and adjust

the horizontal and vertical tilt adjustors on B-RR1-M1 to flatten the beam.

(b) Close the apertures and adjust B-M2 in order to align the beam through them.

(c) If the vertical pointing of the beam is incorrect, then adjust the vertical actuator on

B-RR1-M2 to raise or lower the beam in B-RR1-M1. Then repeat steps (a) and (b).

Keep in mind that the horizontal and vertical adjustments are slightly coupled, so

steps (a), (b) and (c) will have to be iterated.

2.11 Attach beam splitter mount B-BS2 and adjust the reflection through aperture B-A7.

2.12 Attach compensator plate mount B-CP1 and B-RR2 onto the bottom deck and align the

reflection through aperture B-A8.

(a) Note that the pointing of this beam might be incorrect. The pointing will be adjusted

and aligned to the other bottom deck beam after it has been properly aligned.

2.13 Attach B-PZT1 to the bottom deck and align the reflection through the apertures B-A9 and

B-A10.

2.14 Finely adjust the beam onto the AXIS-Z stage using the procedure outlined in step 2.6.

2.15 Place B-RR3 onto the AXIS-Z stage and align the reflection through aperture B-A11.

2.16 Place a razor blade in front of a photodiode behind aperture B-A11.

(a) Open aperture B-A11. Similar to step 2.6, scan the stage and adjust the horizontal

and vertical tilt actuators on the B-RR3 output mirror to flatten the beam.

(b) Close aperture B-A11 and adjust the B-RR3 input mirror to align the beam through

the aperture.

(c) Iterate steps (a) and (b) until the beam is flattened and passing through aperture B-

A11. Keep in mind that because the mounts slightly couple the horizontal and vertical
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adjustments, (a) and (b) will have to be iterated between the horizontal and vertical

alignment. This beam is now referred to as the Tracer beam.

2.17 The other bottom deck beam, now referred to as beam C, can be aligned to the Tracer beam.

2.18 Using a 1” square pattern (printed and taped level to a mirror mount, for example), adjust

the pointing of beam C so that the beam overlaps with the lower-left corner of the pattern

(when looking at the pattern in the propagation direction) when the pattern is placed close

to the MONSTR and as far away as possible. Since the Tracer beam has been properly

aligned, the pattern placement can be established by ensuring that the Tracer beam is on

the lower-right corner of the pattern for both positions. Adjust the tilt actuators on the

input and output mirrors of B-RR2 to obtain correct alignment of beam C.

2.19 The relative alignment of beam C to the Tracer beam can be checked by measuring the

cross-correlation of the Ti:sapphire beams with a BBO crystal.

(a) Place an aperture in each of the beam paths, leaving enough room for a focusing lens

and BBO crystal.

(b) Insert a 3
′′

diameter focusing lens into the beam paths, and adjust the lens position

so that the beams travel through the apertures after focusing.

(c) Insert the BBO crystal and adjust its alignment so that three frequency-doubled beams

appear – two for the nonlinear interaction of the individual beams and a third for the

interaction involving both of them. The power of the three frequency-doubled beams

should be equal to each other – if this is not the case, the overlap of the beams is not

sufficient and the alignment of beam C needs to be adjusted by repeating step 2.18.

Then block the Ti:sapphire beam for the remainder of the bottom deck alignment.

2.20 Attach B-M3 to the bottom deck.

2.21 Attach the 2
′′

diameter DCM1 to the front of the bottom deck assembly and align the HeNe

reflection back into the MONSTR.
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(a) Block beam C before DCM1 so that it is not reflected back into the MONSTR. Adjust

DCM1 so that the Tracer beam at the HeNe diagnostic output port does not walk

when translating the AXIS-Z stage.

(b) Unblock beam C. Beam C and the Tracer beam should overlap and collinearly propa-

gate after B-M3. If this is not the case, then the alignment of the Tracer beam, beam

C or DCM1 is not correct. When translating the AXIS-Z stage, oscillations in the

interference pattern of the Tracer and beam C should be observed, and the beams

should not walk.

(c) When translating the AXIS-U stage, the HeNe interference patterns at the diagnostic

output should be walk nor should the interference patterns change. If they do, then

either the Tracer, beam C or DCM1 needs to be re-aligned.

2.22 At this point, proper alignment will result in the output Tracer and C beams collinearly

propagating along the lower two corners of a 1
′′

box and the HeNe diagnostic outputs

should also be collinearly propagating with high-visibility interference fringes apparent at

all locations along the beam paths. If both of these conditions are not achieved, it is crucial

that the beams be re-aligned before closing the MONSTR.
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Figure C.2: Layout of the bottom deck assembly. Definitions: M – mirror; DM – dichroic mirror;

A – aperture; BS – beam splitter; CP – compensation plate; PM – periscope mirror; RR – retro-

reflector mount; PZT – mirror mounted on a piezo-electric actuator; AXIS – translation stage.
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C.3 Top Deck Assembly Alignment (refer to Fig. C.3)

3.1 Secure the top deck on the optical table, and use a mirror on a flip mount to direct the

collinearly propagating Ti:sapphire and HeNe beams to the input of the top deck assembly.

Block the Ti:sapphire beam.

3.2 Install the translation stages and verify proper performance as outlined in step 2.2.

3.3 Ensure that no optical components have been installed on the top deck. Align the input HeNe

through apertures T-A1 and T-A2.

3.4 Attach T-M1 to the top deck and align the reflection through apertures T-A3 and T-A4 as

outlined in step 2.3.

3.5 Attach T-RR1 and T-PZT1 to the top deck.

3.6 Align the input and output mirrors of T-RR1 so that the beam is centered on the mirror on

T-PZT1.

3.7 Align the reflection from T-PZT1 through the apertures T-A5 and T-A6, using the procedure

outlined in step 2.3.

3.8 Attach T-PZT2, T-BS1 and T-CP1 to the top deck.

3.9 Loosen the fasteners of T-BS1 and adjust the position so that the reflection off the beam

splitter propagates through apertures T-A7 and T-A8 while ensuring that the beam passes

through the beam splitter towards T-PZT2 cleanly.

3.10 Attach T-CP2 to the top deck.

3.11 Measure the input beam parallelism relative to the AXIS-Y stage using the procedure outlined

in step 2.6. Flatten the beam using T-PZT1 and T-BS1.

3.12 Attach T-RR2 to the AXIS-Y stage and align the output through aperture T-A9.
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3.13 Place a razor blade and photodiode after T-A9 and use the procedure outlined in step 2.16

for flattening the beam output from the AXIS-Y stage.

3.14 Attach T-PZT2 to the top deck and align the reflection through the apertures T-A10 and

T-A11 using the procedure in step 2.3.

3.15 Measure the input beam parallelism relative to the AXIS-X stage using the procedure outlined

in step 2.6. Flatten the beam using T-PZT2.

3.16 Attach T-RR3 to the AXIS-X stage and align the beam output through the aperture T-A12.

3.17 Place a razor blade and photodiode after aperture T-A12 and use the method outlined in

step 2.16 for flattening the beam output from the AXIS-X stage.

3.18 Perform the cross-correlation measurement between beams A and B using the BBO crystal

as outlined in step 2.19.

3.19 Attach the 2
′′

DCM1 to the front of the top deck. Do not adjust the alignment of DCM1.

(a) Check that the reflected beams do not walk when moving the translation stages, that

the beams are collinearly propagating, and that excellent interference is obtained for

all locations along the beam paths.

(b) If the conditions in (a) are not achieved, the alignment of beams A and B needs to be

checked.

3.20 Attach PM2 to the top deck.
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Figure C.3: Layout of the top deck assembly. Definitions: M – mirror; A – aperture; BS – beam

splitter; CP – compensation plate; PM – periscope mirror; RR – retro-reflector mount; PZT –

mirror mounted on a piezo-electric actuator; AXIS – translation stage.
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C.4 Closing the JILA MONSTR

4.1 Ensure that the Ti:sapphire and HeNe beams are correctly aligned to the input of the bottom

deck. Make sure that all apertures have been removed from both deck assemblies. Double

check that PM2 has been installed. Block the laser beams.

4.2 Place lab-jacks near the bottom deck.

4.3 Fasten the handles to the top deck. Flip over the top deck and rest the handles on the lab-jacks

so that the top deck is now resting above the bottom deck.

4.4 Grease the posts on the bottom deck with molybdenum (“molly”) grease. Slowly lower the

lab-jacks so that the top deck is lowered onto the bottom deck. If the top deck becomes

stuck, slowly extend the lab-jacks to loosen the deck, and then continue lowering the deck.

(a) Note that at the time this Thesis was written, we had plans to modify the top deck

so that the lab-jacks were incorporated into the design instead of being an auxiliary

tool.

4.5 Once the top deck is resting on top of the bottom decks, securely fasten it with the bolts.

4.6 Attach DCM1 to the front of the MONSTR.

C.5 Alignment of the Joined Top and Bottom Assemblies

5.1 At this point the Ti:sapphire and HeNe beams should be aligned properly into the bottom

deck assembly. Due to the weight of the top deck, the MONSTR might shift after joining

the two decks.

(a) If this is the case, check that the Tracer and beam C propagate along the lower two

corners of a 1
′′

box.

(b) Adjust O-M1 and O-M2 for the Ti:sapphire laser (kinematic mount and O-M3 for the

HeNe laser) to correct for any deviations.
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(c) Adjust the apertures A1 and A2 so that the Ti:sapphire and HeNe beams are propa-

gating through them.

5.2 Align the top deck to the bottom deck.

(a) Adjust T-M1 and T-PZT1 so that beams A and B are propagating along the top

corners of the 1
′′

box. Proper alignment should result in all four beams propagating

along the four corners of the box at all locations along the beam propagation paths.

(b) Check that when translating the stages, none of the beams walk.

(c) Check that excellent HeNe interference patterns are obtained at the HeNe diagnostic

outputs.

(d) A more precise way to check for proper alignment is to set up the all-optical phase-

retrieval and field-correlation diagnostics.

(i) Insert the lens used for focusing the beams onto the sample.

(ii) Insert the collimating lens, and make sure that the collimated beams also propa-

gate along the four corners of a box (note that we use a 15 cm focal lens focusing

lens and 10 cm focal length collimating lens, thus the output box size is smaller

than the input).

(iii) Insert the single-side anti-reflection coated window that is used for the all-optical

phase-retrieval procedure, and image the focus onto the all-optical CCD camera.

(iv) Scan the translation stages to find time-zero between beam pairs A–B, A–C and

C–Tracer. The interference pattern from each pair should have a similar spatial

period. At this point, all four beams should produce a grid-pattern (see Ref.

[228]). If this pattern is visible and the beams directly after the MONSTR are

on the four corners of a 1
′′

box, then the MONSTR should be aligned properly.



Appendix D

Second-Generation JILA MONSTR

The first generation JILA MONSTR has facilitated 2DCS experiments of a wide-range of

material systems, including epitaxially-grown GaAs, InGaAs and CdTe QWs, GaAs and InAs

QDs, CdSeTe/ZnS core-shell CQDs, and potassium and rubidium vapors. The experimental setup

has several constraints, however, that limit the types of materials that can be studied. For example,

the maximum τ and T delays are ≈ 333 ps and ≈ 1.3 ns, respectively, which limits the maximum

population decay and dephasing times that can be probed. Moreover, the Ti:sapphire laser system

limits the materials that can be studied to those with resonances within the range of ≈ 700− 1000

nm. The laser FWHM spectral bandwidth is also ≤ 15 nm, depending on the operating wavelength.

Thus the system can probe for coupling between resonances that are separated by 15 nm or less. The

laser gain profile and repetition rate (76 MHz) also limits the maximum pulse energy at the sample

to ≈ 200 pJ. A more subtle constraint of the high repetition rate shot-to-shot accumulation effects.

For instance, if the population decay rate of an optical transition is less than the laser repetition

frequency, the system population would not decay to the ground state between subsequent sets of

pulses and artifacts might appear in the 2D spectra. For these reasons, we have developed a second

generation 2DCS experimental setup that is designed to overcome many of these limitations. The

new experimental setup will enable 2DCS of a wide-range of material systems that could not be

previously studied, such as CQDs relevant for photovoltaic applications, GaN-based nanostructures,

light-harvesting complexes, atomic molecules and polymers.

The second generation JILA MONSTR is based on the design of the first generation model
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with a few modifications, which are depicted in the computer-aided design images of the bottom

and top deck assemblies in Fig. D.1. Specifically, the AXIS X and Z translation stages have

been replaced with Aerotech Inc model # ANT130-060-L-25DU-PLUS, which provides 6 cm of

travel, and AXIS Y and U with model # ANT130-160-L-25DU-PLUS, which provides 16 cm of

travel. The new models have superior stability and stepping precision specifications compared to

the previous versions. Morever, the beams double-pass the AXIS Y and U stages, which enables

a maximum delay of ≈ 2 ns for τ and T . Compared to the original translation stages, the new

stages have superior specifications for the accuracy, repeatability and stability performance. We

have found, however, that the accuracy in the stage movement is marginally sufficient for the 2DCS

experiments. After fine-tuning the gain parameters of the servo feedback loops built in to the stages,

in-position stability comparable to the original stages is achieved. On the other hand, we have yet

to find any parameters that lead to sufficiently accurate and repeatable motion when the stages

are commanded to travel a relative distance greater than λHeNe = 632 nm (corresponding to an

undersampling ratio of 4). Thus, in order to perform the 2DCS experiments using an undersampling

ratio greater than 4, the stages must be incrementally stepped a maximum distance of 632 nm and

the movement corrected between increments. An alternative stepping algorithm we are currently

developing involves counting the number of HeNe fringe zero-crossings at the error signal diagnostic

detector in real time and compensating the stage movement accordingly.
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Bottom Deck Top Deck 

AXIS-Y 

AXIS-X 

AXIS-Z 

AXIS-U 

T-RR1 

CC 

5 cm 

Figure D.1: Layout of the bottom and top deck assemblies. Definitions: RR – retro-reflector; CC

– corner cube; AXIS – translation stage.

The retro-reflector T-RR1 on the top deck has been mounted on a 5 cm rail and carriage

system, shown in Fig. D.2(a), to enable a maximum −τ delay (i.e., for the SIII time-ordering) of

up to ≈ 330 ps. Zero delay between the pulses is achieved when the AXIS X and Y stages are

≈ 0.5 cm from their maximum rear-most position and the AXIS Z and U stages ≈ 0.5 cm from

their forward-most position. Thus to achieve ≈ 330 ps delay for −τ , the T-RR1 mount is moved
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5 cm towards the rear of the MONSTR while the AXIS X and Y stages are moved forward 5 cm

and 2.5 cm, respectively. To account for any irregularities in the flatness of the stage motion, the

two-mirror retro-reflectors mounted on the stages in the original design have been replaced with 1”

clear aperture corner cubes from PLX Inc made from protected silver mirrors (model # HM-10-

1E). The corner cube on the AXIS-X stage is mounted on a Thorlabs two-axis translation mount

with 2 mm of total travel along each axis (model # SCP-05), shown in Fig. D.2(b), to facilitate

alignment after joining the top and bottom deck assemblies. The remaining optical components

are similar to those in the original design.

(a) (b) 

5 cm 

T-RR1 

CC 

Two-Axis 

Translation 

Mount 

Figure D.2: (a) Top deck retro-reflector (T-RR1) mounted on a rail and carriage with a maximum

travel distance of 5 cm. (b) Corner cube (CC) mounted on a two-axis translator.

The Ti:sapphire laser system used for the 2DCS experiments in the original design has been

replaced with a regenerative amplifier (Coherent model # 9000PV) that is seeded with pulses from

a Ti:sapphire laser (Coherent Micra). The amplifier operates at a 250 kHz repetition rate and

outputs an average power of ≈ 1.5 W, thus providing ≈ 6 µJ energy per pulse. The output of the

amplifier can be used as the input for a visible optical parametric amplifier (OPA, Coherent model

# 9400) that can output pulses with 80 nJ energy in a tunable wavelength range from 480-700 nm

(the signal output) and 933-2300 nm (the idler output). Additional outputs from the OPA include a

super-continuum white light beam and a frequency-doubled beam stemming from second harmonic

generation of the regenerative amplifier seed pulse. The output of the regenerative amplifier can

instead be used to pump an infrared OPA (Coherent model # 9800) that provides pulses with
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160 nJ energy in a tunable wavelength range of 1200-1600 nm (the signal output) and 1600-2400

nm (the idler output). Either the output of the Micra mode-locked oscillator, the regenerative

amplifier output, or any of the beams from the OPAs can be used as the input for the second

generation JILA MONSTR. Since the optics in the MONSTR are designed for a wavelength range

of 700-1000 nm, operation beyond this range will result in the output beams from the MONSTR

having unequal average power. In most instances this disparity can be compensated by adjusting

the half-wave plates and linear polarizers in the polarization optics assembly (see Fig. 4.1). The

attenuated pulse energies will still likely be greater than the typical pulse energies required for χ(3)

experiments, which usually range from 10-200 pJ per pulse for optical densities below 1 (αL in

base e, where α is the absorption coefficient and L the sample thickness). If sufficient pulse energy

cannot be obtained, the optics can be replaced with those with the appropriate coatings, which

requires re-alignment of the MONSTR as described in Appendix C.
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[270] N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity
QED wih semiconductor nanocrystals,” Nano Letters 6, 557 (2006).

[271] A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. G. Bawendi, “Band-edge
exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright
exciton states,” Physical Review B 54, 4843 (1996).

[272] J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and
D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum
dots,” Physical Review B 86, 125 322 (2012).

[273] P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, “Spectral hole burning and zero
phonon linewidth in semiconductor nanocrystals,” Physical Review B 67, 201 307 (2003).

[274] L. Biadala, T. Louyer, P. Tamarat, and B. Lounis, “Direct observation of the two lowest
exciton zero-phonon lines in single CdSe/ZnS nanocrystals,” Physical Review Letters 103,
037 404 (2009).

[275] L. Coolen, X. Brokmann, P. Spinicelli, and J.-P. Hermier, “Emission characterization of a
single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photon-correlation
Fourier spectroscopy,” Physical Review Letters 100, 027 403 (2008).

[276] F. Masia, N. Accanto, W. Langbein, and P. Borri, “Spin-flip limited exciton dephasing in
CdSe/ZnS colloidal quantum dots,” Physical Review Letters 108, 087 401 (2012).

[277] O. Labeau, P. Tamarat, and B. Lounis, “Temperature dependence of the luminescence lifetime
of signle CdSe/ZnS quantum dots,” Physical Review Letters 90, 257 404 (2003).


