THEORY OF DISPERSION IN MICROSTRIP
OF ARBITRARY WIDTH
by
Edward F. Kuester and Dayid C. Chang

Scientific Report No. 35

Electromagnetics Laboratory
Department of Electrical Engineering
University of Colorado
Boulder, Colorado 80309

September 1978

Prepared for

US Office of Naval Research
Arlington, Virginia 22217

This project is supported in part by ONR under Contract No.
N0014-76-C-0318 and in part by NSF Grant No. ENG78-09029.



THEORY OF DISPERSION IN MICROSTRIP

OF ARBITRARY WIDTH

by

Edward F. Kuester and David C. Chang

ABSTRACT

An analytic theory forn the dispersion of the fundamental mode on
wide open michostrip is presented. Only a single basis function 4is néeded
Lo accurately nepresent each of the charge and cwwent distaibutions on
the strnip, thus allowing more efficient determination of the propagation
constant as compared to moment-method solutions nequiring a Larger number
of basis functions. The nesults obtained blend Amooth@yin,to rnesults o4
high-frequency (Wienen-Hopf) theories, and ALLL netain the appealing
physical interpretation in texrms of capacitance and anuc,tanco. of the
nanow 3tuip theory previously obtained by the authons.
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I. INTRODUCTION

In previous work, the authors [1] have presented an analytic_theory
of dispersion for narrow open microstrip in terms of a dispersive series
inductance and capacitance, generalizing the classical expression for the
propagation constant from transmission line theory which involves the
static values of these parameters. Because an accurate form for the current
and charge distributions (which are the same for this case) was available,
it was possible to avoid more cumbersome moment function expansions, and
to obtain a relatively simple dispersion relation possessing the clear
physical interpretation referred to above. In reviewing numerical results
available in the literature for wider microstrip, whose strip width is
comparable to substrate thickness, the authors found significant discrep-
ancies between workers who used different methods to attack the problem
[2]. The best methods seem to be those which can represent the current
and charge distributions (especially the edge singularities) accurately
with a minimum number of basis functions.

The goal of the presenf study is to formulate an analytic theory of
dispersion similar to [1] which will be valid for wider strips, yet still
retain both analytical and computational straightforwardness as well as
clear physical insight into the problem. Crucial to this is the recognition
that the charge and current distributions now differ significantly from
those in the narrow strip limit, and also differ to some extent from
each other. Thus an important part of the discussion entails finding
accurate and reasonably simple functional descriptions of these distribu-

tions. The results will be examined to see to what degree the difference



of these distributions from the narrow strip case and from each other
affects the accuracy of the computed dispersion curves.

Of published numerical work, [3] - [5] offer results that we might
classify as applying to '"wide" microstrip, and these will be used as the
basis for comparison. Also, although we shall consider strips wide com-

pared to the substrate, the strips are not allowed to become electrically

large, because in this range of parameters, the physical mechanisms are
basically different, These are best treated by the methods of [6] - [9]

(which use adaptations of the more appropriate Wiener-Hopf technique).



2. APPROXIMATE CHARGE AND CURRENT DISTRIBUTIONS

FOR €. >> 1, U, = 1 (STATIC CASE)

We shall proceed from the formulation given in [1]. For an assumed
propagation factor of exp(iwt -ikoax), where o 1is a yet unknown
normalized propagation constant and x 1is the distance along the strip

axis (see Fig. 1):
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T = kot is the substrate thickness normalized to the free-space wave-

number, and
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where €. and u, are respectively the relative permittivity and permea-
bility of the substrate. Once the solution of (1) is known as a function

of a , the longitudinal current density Jx(y) is then found from
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The solutions pl(y) and Jx(y) thus obtained, both functions of a,
are then inserted into |
L
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(which follows from the requirement that the transverse current density
vanish at the edges of the strip) which is then a characteristic equation
for determining o .

Let us first examine the static limit of these equations. We find

that cosh az-l koy + 1,
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and M > 0, thus decoupling (1) and (4) for the quantites pl(y) and

p,(¥) = -ik JX(Y)/G . Now if ¢_>>1, we can write
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The first integral is known exactly [10, #4.116.2] as

2 il
- €r+1 &n tanh —%{L



whereas the second can be estimated to be smaller than about

1.6

€
r(er+1)

for any value of y. Thus, for ei >>1 as can typically be found in
microstrip, we will provisionally neglect the second integral in (10),
but return later to the question of a more accurate evaluation. Equation

(1) is now

1
miy- LN I
T J fn tanh —lxz%—l-pl(y yay' =15 |yl 22 (11)
T
-2
which can be solved explicitly for pl(y') by using the fact that (11)
is precisely the integral equation for the charge on a symmetric
stripline [11], i.e., with a second ground plane at a height t above
the strip (Fig. 2a). Its solution (which can be obtained either by

conformal mapping techniques or by the Schwinger transformation and a

singular integral equation procedure [12]) is

Po

pl(y) = (12)

2 mh 2 ﬂy4m
/éosh (Zt - cosh (2t

where the constant po is obtained by substituting (12) into (11) and

setting y =0; the result is (see Appendix ):

i
€r+1 cosh(ig

) (13)
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where K(k) 1is the complete elliptic integral of the first kind [13].
The capacitance of the symmetric strip is then obtained from the total

charge per unit length on the strip, which is, from the Appendix
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if we let the modulus k =tanh g%— and k' = (l-kz)% is the complementary

modulus.

The roﬁgh equivalence between the open strip and symmetric strip
for large €. wasvapparently first remarked by Dukes [14], who argued
that since most of the electric flux is concentrated in the substrate,
the upper ground plane has only a small effect. Wheeler [15] has used
this limiting case as a partial basis for his approximate conformal
mapping solution of the static capacitance of the open microstrip.

In the case of a nonmagnetic substrate (ur =1), we have

/21412

y (15)

Gé?)(y) = 2n

As in [1], we can identify (15) as the kernel of the integral equation
for the charge density £(y) on one of two parallel strips in free space,
whose width is 2% each and which are separated vertically by a distance 2t

and maintained at the potentials +V and -V (Fig. 2b):

1y 2 2
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The capacitance Cp of this system can be found by the method of conformal
transformation (see the references to [16]) to be given by

L
C, = 2 | E0Iay = KOQO/KGD ()
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where the modulus k1 is the solution of
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2 K(kl) -E(kl)

K(kDE,k)) - BEGIF(,k) = 505 sin ¢ = (18)

kfk(kl)
and F(¢,k) and E(¢,k) are the incomplete elliptic integrals of the first
and second kind, while E(k) is the complete eiliptic integral of the
second kind [13].

It has been found [16] that a simple, closed-form approximation to
the function f(y) (that is to say, the current distribution Jx(y) in the

present problem) is given by

J
J ) = — > (19)
2. me

cosh’(3) - coshz(%%a

where JO is some constant. By comparison with (12) it can be seen that
the charge distribution is '"flatter,'" i.e., the charge decays more rapidly
away from the singularities at the edges of the strip that does the current.
In the next section, these distributions will be used to obtain an approxi-

mate dispersion relation, valid for large €.



3. DERIVATION OF THE DISPERSION RELATION

The static charge and current distributions from the previous section
can be expected to describe the distributions for non-zero frequencies
with reasonable accuracy as well, provided the strip does not become
electrically large. Even though (12) and (19) are not precisely correct
even for the static case, one could use these distributions in an
expression which possessed some kind of variational property to solve
for the propagation constant o. In the static case, when the integral
equations for charge and current decouple, such expressions can be found
for capacitance and inductance separately [11]; [17]-[19]. More general
(and more complicated) stationary functionals for determihing o have
also been obtained for non-zero frequency when the equations are
coupled [2],[20]-[21];[18]. A much simpler form is obtained if trial
functions of the same form are used for both charge and current-- that is,
if transverse currents are assumed to be negligible [21], [2]. Later on,
we shall examine the merits of a variational expression, and the possibility
of neglecting transverse currents, but at first, we shall start from a
slightly different point.

The functions (12) and (1Y) will be viewed as the first in two sets
of basis functions into which the charge and current respectively will
be expanded, the coefficients (of which p0 and Jo are the first) to be
found by the method of moments. Our approximate solution is then
obtained by truncating each expansion to one term only. Specifically, we
substitute (12) and (19) into the integral equations (1) and (4),

explicitly separating out the static parts G(O) and G(O) from the kernels
e m



Ge amd Gm as was done for the narrow strip in [1]. The static terms

can be simplified using (11), (14), (16), and (17). We then multiply

(1) by (12) and (4) by (19), and integrate from -% to & with respect to y.
The resulting expressions determine f and JO as functions of o. These
are used with (7) to obtain, after considerable algebra, the character-
istic equation for determining o:

o’ = L(o) C(a) (20)

where L(a) and C(0) are a dispersive inductance and capacitance per unit
length of line, respectively, and each consists of a static part and a

dispersive part:

L(a) = L + Ly(@) (21)
1 _ 1, 1
) ~ €, ' T@ (22)

The static inductance is in a form which was shown in [16] to be an

excellent approximation to the exact value for the parallel plates, thus:

while CS is related to the capacitance of the symmetric stripline

mentioned in section 2, plus a moderately small correction term:

o T
11 XY, _g_[ 1 2 (" tanhae Pogeingn(osh 01
C, ~ 2(_+1) K() " T4 LkK() Xcosh X (e_+1)(c_+tanh 1) d

© (24)

Here k =tanh g%— is the same modulus which appears in (14), and Pu(z)
is the Legendre function of argument z and index pwhich is found to be

the Fourier transform of the charge distribution(12)--see the Appendix.
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Expression (24), using an approximation instead of the Legendre function,
was obtained in [11]. The dispersive terms are C-dependent and can be

shown to vanish with the frequency:

2
ta®) =%[sz1(1<'2)] 6,7 @) (25)
me
1 k'kao Pavpleoshad b
Cq@) kiK(k)) P, _, (cosh "l;’i ) Cg
2v Jz(cosh L ) 2)
] [k Kk )]ﬁ K(k)] o F_’i) 6\ (@) + My} (26)

where the modulus k2 =tanh %%3 while v = TMXZ-I/N. The functions Géz),

Géz)(u) and Mz(u) are Sommerfeld integrals similar to those obtained in

[1]:

@\, 1 . N
Gp @) = “ O+uncoth WT ~ A(l+coth AT)J[ _g+izicOsh 29] o (27)
(2) _ © ujtanhou T tanh AT J[: L1243
Ce (@) = J[ u, (e utu tanh u T X(er+tanh AT) P-%+iT(COSh *_9]
0
(28)
[P, .. (cosh )][ (cosh ]dk
M, (@) = 2(e_-1) —i+it
2 T u (e_u +u tanh u T)(u +u_ coth u T) (29)
o o Tom n o n n

where T= AT/m. Equations (27)-(29) differ from the corresponding functions
in [1] only by the presence of the Fourier transform of the current
distribution in Géz)(u), that of the charge distribution in Géz)(a),

and of both in the coupling term Mz(a).
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4. AN ALTERNATIVE DISPERSION RELATION

The dispersive part of the capacitance in (26) is rendered somewhat
cumbersome by the appearance of the frequency—dependent functions
sz_%(cosh g%a and Pv_%(cosh E?-) which arise because the forcing (cosh)
terms in (1) and (4) are multiplied by different basis functions in the
process of obtaining (20) - (29). A somewhat different dispersion relation
can be obtained from the variational expression given in [21], which can

be shown to be expressible as

dA

- (B, 001% + x

. J°° u_tanh u_T , I°° u { [jx(k)]2+[3y(>\)]2}
o] ° 0 H

u (€ u +u_ tanh u_T) u +u cothuT
o ro n n rTo n n
o 2 (30)

[, )] o

u (€. u +u_ tanh u T)( u +u_ coth u T)
o ro n n rTo n n

+ (€rur—l)J
o)

in the present notation, where 51(X), 3X(X) and jy(A) are the Fourier
transforms of the charge density, longitudinal current density and transverse
current density on the strip, respectively. From the continuity equation,
the latter can be expressed in terms of the first two:

5 0 - pl(X) +ikoaJX(A)
y —ikol

(31)

It should be noted that in order for the second integral in (30) to exist,
jy must not be allowed to have a 1/\ singularity at A = 0, and thus we
must have
pl(O) + 1k0qu(0) =0
This is clearly a restatement of the edge condition (7) on Jy’ which is thus

implicit in equation (30).
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Using the Fourier transforms of (12) and (19) for Bl(k) and BX(X) in
(30), and taking (7) into account, we can again obtain a dispersion relation
in the form of (20) - (24), except that a slightly different form is obtained

for the dispersive part of C(Q):

™

L2 i
Cd%a) - %‘[@'é(k}J J;£2)(“) ¥ Ms(“?f i %’Gés)ﬁx) (32)
- (

while the dispersive part of L(&) from (25) remains unchanged. Here

Géz)(oc) is again given by (28), while

S [Py, (coSh "li’i )12 dx
MS(G) - 2(’gr—l) [ U (e u +u_ tanh u_T)(u +u_ coth u T) (33)
o-ro n n o n n
and 2
me e
o P_%+iT(cosh fE-) P_%+12T(cosh T )
(3) _ dX k'K(k) } Ky K(k,)
Gm ©) =2 g5y unhleL A
00 n n
— (34)

It can be noted that (32) and (26) differ only by terms which would
be absent if pl(y) and Jx(y) had the same functional form; that is, if no
transverse currents existed. The question that remains to be examined
is how great the effect of these currents is on the compqted value of o .
Results using equation (26) for Cd(u) were compared with those obtained
using (32), and also with those using (32) without Gés)(u) (i.e., without
the direct contribution from the transverse currents). Using &/t =2.34,
kot = 0,107, and €. = 9.9, values obtained for the effective dielectric
constant ereff =a2 from these three methods were 8.339, 8.337, and
8.337 respectively, indicating that the difference between the functional

forms of pi(y) and Jx(y) seems to have very little effect on results,

although, as may be concluded from the comparisons in [2], the difference

between these forms and those for the narrow strip are significant.
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5. NUMERICAL RESULTS AND DISCUSSION

5.1 Narrow strips

The essential restriction imposed by this theory is that €. be large
compared to one, but not that &/t necessarily be large. It can be shown,
in fact, using the limiting form of the Legendre functions for argument
equal to unity [22] and the limiting forms for the elliptic integrals
as k and k2 + 0 that the dispersion equations derived here pass over
into those obtained for narrow strips [1] if'er is large, and thus the
present theory is valid for strips of arbitrary width. Results have been
computed for narrow strips and compare quite well with those of [1],
although of course the latter does not require evaluations of Legendre

functions and is altogether more appropriate to the task.

5.2 Wider strips

Of the results available for wider strips, those of [5] seem to have
the greatest likelihood of accuracy. As argued in [2], the moment method
used in [5] uses a set of basis functions to describe the currents which
possess the proper singular behavior at the edges of the strip, and a
sufficient number of these is employed to assure an accurate result.
Figure 3 gives a comparison between the results for the widest strip from
[5] and from the present method (the three methods mentioned in the previous
paragraph gave indistinguishable results when displayed graphically--this
was true for all results presented here). The agreement is nearly exact;
the discrepancy is at least as much as the error involved in reading data
from the graph in [5]. Kowalski and Pregla [3] have used a variational
approach, but use only the current distribution appropriate to a narrow

strip as a trial function. While, as seen in [2], this gives good results
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even for strips as wide as the substrate thickness, a comparison of their
results for a wider strip with those of our method (Figure 4) shows that
the narrow strip current distribution is no longer adequate, although the
same general trend for the effective dielectric constant is predicted.

In [4], results for very wide strips are computed by what is also
(in essence) a variational technique, but using a constant distribution of
the current on the strip. Comparing results with those of our method in
Fig. 5, we see that for %/t =2, their method seems to predict a reasonable
value for uz in the static 1limit, but dispersion effects are considerably
underestimated, For a very wide strip with £/t = 5, no consistent pattern
of error seems to be present. A possible explanation of this is that in
both methods, Sommerfeld integrals like (27)-(29) must be evaluated with
rapidly oscillating integrands (the conical functions oscillate more
rapidly with T as the argument is increased; a similar rapid oscillation
occurs in [4] due to trigonometric functions. In support of our result
for the static limit, we can offer agreement with the graphically displayed
results of Wheeler [15] and many others who héve studied this case.

Also displayed in Fig. 5 afe the results of Nefedov and Fialkovskii [9],
who apply a Wiener-Hopf technique appropriate to very wide strips and rather
high frequencies. It can be seen that in both instances good agreement with
our result is obtained at frequencies for which /Efkok 2 1. Below this,
there is some difficulty in accurately reading the graph in [9], but this
is of little consequence since the theory admittedly breaks down for law

frequencies anyway.
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6. CONCLUSION

It has been found that accurate results for the dispersion of
wider open microstrip can be obtained for dielectrically dense, nonmagnetic
substrates using only a single basis function each for the charge and
current distributions on the strip. Computing times can be considerably
shortened compared to moment-method approaches requiring larger numbers of
basis functions’to represent these quantities. A smooth transition has
been observed between this, low-frequency theory, and the higher frequency

(Wiener-Hopf) approaches existing in the literature.
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APPENDIX

EVALUATION OF SOME INTEGRALS

In this Appendix we derive some integrals which arise in section 2

and 3 in connection with the charge or current distribution

1
V/cosh ( ) -Cco sh ( )

In particular, from eqns. (11) and (12) we need the value of

[
I = f 4n tanh ﬂi{ I dy (A.1)
Ie /eosh? (5 - cosh?(3X)
2’ | L
v
f 4n tanh Ty’ 4
4t 2Ly _ 2T
o v/ sh (Zt) cosh ( )
¢o .
- EE_J on [icosh ¢-1-J ___4d¢
Tl cosh ¢+1. /Eosh2¢o—cosh2¢

!
where ¢ = E%E- and ¢O = g%-. But the logarithm in (A.1) can be expressed

as an integral, thus (see, e.g., [12, p. 189]):

ZtJOJ L 1 1 ] L
I === do| dw *
™), %), cosh ¢-w ~ cosh ¢p+w /€55h2¢0 - cosh2¢
¢
1
Lz T >
- J dw f [—osh o-w ¥ Cosh ¢4'h;] véosh2¢ - cosh ¢ *-2)
4t l‘l XO dx
=-—'T-‘_—J dWJ 2 2 2
o o [+ 1ACx
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where x =sinh ¢, and X, = sin}1¢o. The inner integral can be further

transformed by x =X sin 6, so that

1 7m/2
1= -4 d‘”J 5 2
‘o o [x_sin®® +1 -w*]
'1
= -2t dw

LV/1-w? +x2 /1 w2
(o]

e

529 (A.3)

-2t sech (%%J K(sech

by [10, #3.642.3] and the definition of the elliptic integral [13].

Another integral arises in finding the total charge on the strip:
2
J = dy
R

[ 2m 2 Ty,
i/ cosh (Zt) -cosh (Zt)

L
=2 dy

°/éosh2(g%- -coshz(g%é

v
%

it.J ¢
™ o J

cosh2¢0 -cosh2¢

QE_J ° dx
“”’ P — o ——
° /&g -x2 V1 +x2
/2
4t de 4t

- .
- ?[ R = —— sech (E)K(tanh

/. R
° /14 g sin26

ip'A
EE')

(A.4)

by [13, #282.00].
In order to study the frequency dependence of the wide microstrip,

we require the Fourier transform
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cos koXy dy

J' =
P

2. e 15%
cosh (Efﬂ 'COSh(EEJ

H

e
2t P-%+iT (cosh fE—) (A.5)

where T = AT/m and P (z) 1is a particular form of Legendre function known

-3+iT
as a conical function. The result (A.5) is a standard integral representation
for this function [22, p. 14]. Efficient numerical procedures exist for
generating this functions: a uniform asymptotic expansion for large T

[22, p. 23]; [23, p. 466]; [24], and for small T either a power series whose
coefficients are tabulated as functions of the argument z [23] or a method

similar to the arithmetic-geometric mean algorithm for evaluating elliptic

integrals [25].
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Fig. 1 Open microstrip
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Fig. 2 (a) Symmetric stripline

(b) Parallel-plate line
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———=— JANSEN
PRESENT METHOD

7=
6 | I | | |
o 2 4 6 8 10
f, GHz
Fig. 3: Effective dielectric constant €. c = az for open
e

microstrip: t = 0.64 mm, £=1.5 mm, e. = 9.9 as computed

by Jansen [5] and by the present method.
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IO~ ———— KOWALSKI AND PREGLA
PRESENT METHOD

| l 1
o) 5 Jo

f, GHz

Fig. 4: Effective dielectric constant € Eaz for open

Toff
microstrip: t= 1.27mm, £ =1.905mm, €. =9.7

as computed by Kowalski and Pregla [3] and by the
‘ present method
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— .— NEFEDOV AND FIALKOVSKI! (WIENER -HOPF)

. —— —— GOROBETS et al
10 - » PRESENT METHOD

Fig. 5:- Effective dielectric constant € =o? for open microstrip:

Teff
t=1.27 mm, €, = 10.2 for different values of 2/t as computed

by Gorobets et al. [4], Nefedov and Fialkovskii [9] and by
the present method.



