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Abstract 

 

Knuth, Shelley L. (Ph.D., Department of Atmospheric and Oceanic Sciences) 

Air-sea interactions in the Terra Nova Bay region of Antarctica as measured by 

unmanned aerial vehicles 

Thesis directed by Associate Professor John J. Cassano 

 

In September 2009, several unmanned aerial vehicles (UAV) flew over Terra Nova Bay 

(TNB), Antarctica to collect measurements of the three dimensional properties of the 

atmospheric boundary layer.  TNB has important implications on the atmosphere, ocean, and 

cryosphere due to an open water polynya in the region.  Within the area of lower sea ice 

concentrations, significant air-sea interactions occur.  Until September 2009, observations of the 

wintertime atmospheric boundary layer over the polynya had not been collected.  The UAVs 

captured important information on the structure, moistening, and warming of the atmosphere due 

to the presence of the polynya. 

 This study seeks to increase our understanding of the air-sea interactions in TNB by 

estimating and assessing the primary forcing mechanisms of heat exchange in the region.  Three 

flights in September 2009 collected measurements designed to capture the evolution of the 

atmospheric boundary layer as the continental air passed over the relatively warmer and moister 

surface of the polynya.  This dissertation first analyzes climatological observations to put the 

field season observations into a broader context, showing September 2009 was an anomalous 

year.  Next, a new and innovative methodology, based only on atmospheric data, estimates heat 

fluxes over TNB.  Finally, UAV and satellite data are synthesized to identify the primary forcing 
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mechanisms controlling the fluxes in TNB.  The structure of the atmospheric boundary layer is 

also studied as the continental air mass moves over the polynya.  

This work is significant for several reasons.  First, the UAV data collected are the first in-

situ observations gathered during the wintertime months over the polynya.  This information is 

key for understanding the significant air-sea interactions that occur during this season.  Second, 

the methodology developed to estimate heat exchange from the in situ UAV data provides a 

unique approach for quantifying air-sea interactions without bulk flux algorithms that have large 

uncertainty.  Finally, a better understanding of the forcing mechanisms of energy exchange in 

this region has widespread applicability toward other polynyas in the Arctic and Antarctic, and in 

areas of cold air outbreaks.  This work also has potential to improve the uncertainty of bulk flux 

algorithms in model output. 
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Chapter 1:  Introduction 

 

The Terra Nova Bay (TNB) region of Antarctica, located in the Ross Sea sector of the 

continent, is an area of complex topography that profoundly affects dynamics of the atmosphere, 

ocean, and cryosphere on a local, regional, and global scale (Kurtz and Bromwich 1985; 

Bromwich 1989; van Woert 1999; Morales Maqueda et al. 2004) (Figure 1).  The Antarctic 

continent to the west and north, the Drygalski Ice Tongue to the south, and the Ross Sea to the 

east surrounds TNB.  Approximately 1000 km inland of the coast lies the East Antarctic polar 

plateau, with gently sloping terrain and an elevation of approximately 2-3 km.   The polar plateau 

gives way to mountainous terrain, where the Priestley, Reeves, and David Glaciers connect the 

plateau to TNB (Figure 1).   

During the winter months on the polar plateau, strong radiational cooling occurs as 

longwave radiation is emitted from the surface without compensating shortwave radiation (King 

et al. 1998).  This cold, high-density air overlying the surface is forced toward lower elevations 

under the influence of gravity with the presence of even a gentle slope, reaching speeds in excess 

of 40 m s-1 (Bromwich 1989; Hauser et al. 2002; Knuth and Cassano 2011).  These katabatic 

winds lose their forcing at sea level, but have been shown to propagate outwards from the coast 

by 30 km or more (Kurtz and Bromwich 1985).  Synoptic pressure systems in the Ross Sea can 

enhance the katabatic drainage and aid in their propagation eastward (Bromwich and Kurtz 

1984).  Most air movement between the polar plateau and TNB occurs through the Reeves 

Glacier, due largely to its orientation (Bromwich and Kurtz 1984) (Figure 1).  The katabatic 

winds are particularly strong in TNB due to a confluence zone just upstream of the Reeves 

Glacier (Parish 1982; Bromwich and Kurtz 1984; Parish and Bromwich 1987).   
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Figure 1.  Map of the TNB region (top panel) within the Ross Sea sector of 
Antarctica (bottom panel).  MLA represents Manuela AWS station.  
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When this drainage flow reaches the western coast of TNB, the strong winds advect sea 

ice away from the coast, producing an area of open water, termed a polynya, along its edge 

(Morales Maqueda et al. 2004).  The Drygalski Ice Tongue to the south prevents additional sea 

ice from moving into the bay.  As the cold continental air passes over the polynya, the water 

quickly freezes, but the resulting ice is advected to the east as long as the winds persist.  For this 

reason, coastal polynyas are known as sea ice factories due to the large amount of sea ice that is 

continuously produced and advected offshore (Morales Maqueda et al. 2004).  The TNB polynya 

has been projected to produce approximately 40-60 m of ice per winter, which is approximately 

10% of the total annual ice production in the Ross Sea (Morales Maqueda et al. 2004).  Very 

dense water forms due to brine rejection when the cooled ocean waters produce sea ice (Galleé 

1997; Morales Maqueda et al. 2004).  This high-density water eventually becomes part of 

Antarctic Bottom Water, with TNB producing approximately 10% of the Ross Sea dense water 

contribution (Kurtz and Bromwich 1985; van Woert 1999). 

As the cold, dry air originating from the continental interior is modified by the warmer 

and moister surface of the TNB polynya, strong sensible and latent heat fluxes (SHF and LHF) 

occur (Galleé 1997; van Woert 1999; Morales Maqueda et al. 2004 and others).  The TNB 

polynya varies in size largely with the strength of the offshore winds (Bromwich and Kurtz 

1984; Hauser et al. 2002; Ciappa and Budillon 2012), but has been found to have an average area 

of approximately 1000 km2 and a maximum area of 3-5000 km2 (Kurtz and Bromwich 1985; 

Morales Maqueda et al. 2004).  The polynya generally oscillates with a period of 15-20 days.  

During the winter months, when the katabatic winds are strongest and the polynya is of greatest 

size, the heat fluxes are similarly largest.   
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As the atmospheric boundary layer (ABL) that originates from the continent passes over 

the polynya, its properties are modified by the input of energy through heat fluxes at the air-sea 

interface (Renfrew and King, 2000; Heinemann 2008; Raddatz et al. 2011).  The ABL is warmed 

and moistened with increasing fetch.  Along with changing surface temperatures due to changing 

ice conditions, the vertical temperature and moisture gradients between the atmosphere and 

surface decrease in magnitude as the air mass moves downstream over the polynya (Heinemann 

2008).  Heat fluxes are weakened as a result.  This simplification assumes the polynya is the 

primary source of air mass modification, and that entrainment or radiational sources have 

comparatively smaller impacts on ABL properties. 

The structure of the ABL is also modified as the air mass is advected over the polynya.  

Over the high polar plateau during the winter months, the ABL consists of a strong temperature 

inversion due to radiational cooling at the surface and a downward sensible heat flux, which 

cools the atmosphere.  Once the air mass moves over the open water, a convective internal 

boundary layer (CIBL) is generated, wherein the bottom of the inversion layer is slowly eroded 

as convection ensues due to instability (Chang and Braham 1991; Renfrew and King 2000; 

Heinemann 2008; Raddatz et al. 2011).  Once the continental air mass has passed a sufficiently 

large distance over the polynya, the remnants of the continental inversion layer are no longer 

present, and the ABL consists entirely of the CIBL.  Entrainment of air at the interface of the 

ABL and free atmosphere cause the depth of the ABL to increase with increasing distance from 

the coast (Chang and Braham, 1991; Renfrew and King, 2000; Heinemann 2008).  The 

modifications of the ABL in cold-air outbreaks have been studied in many locations across the 

globe, including other Antarctic (Kottmeier and Engelbart 1992; Roberts et al. 2001; King et al. 

2008) and Arctic (Serreze et al. 1992; Walter et al. 2006; Raddatz et al. 2011) polynyas, the 
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eastern United States (Grossman and Betts 1990), and during lake effect snow events over the 

Great Lakes (Chang and Braham 1991).  

Despite the importance of the TNB region, few observational studies have been 

conducted to understand the impacts of the strong heat fluxes on the ABL.  Kurtz and Bromwich 

(1985) estimated monthly mean heat fluxes over open water using a combination of remote 

sensing and surface meteorological data.  They found the average SHF for September to be 615 

W m-2 and the LHF to be 193 W m-2, which was the second highest month for both heat fluxes 

(behind August).  The AWS used for estimating the heat fluxes was at Inexpressible Island (now 

Manuela site, Figure 1), which is on the western coast of TNB and primarily influenced by winds 

from the Reeves and Priestley Glaciers.  

Several modeling studies have also attempted to quantify the heat flux out of the polynya, 

but have not been confirmed with observations (Morelli 2011; Fusco et al. 2002; van Woert 1999 

and others).  Van Woert (1999) in particular used a simple polynya model to examine the 

response of the TNB polynya to local winds.  His study found an average SHF of 770 W m-2 and 

an average LHF of 250 W m-2 for May-August 1988-1990 with a 30-40% open water fraction 

(positive numbers indicate atmospheric heat gain, as is the standard throughout this paper).  

Fusco et al. (2009) used a combination of observational data and output from the European 

Centre for Medium-range Weather Forecast (ECMWF) 40-year reanalysis (ERA-40) and 

ECMWF operational analysis to calculate fluxes over TNB for the period from 1990-2006.  This 

study found an average SHF of 145 W m-2 over the 17 year period, with an average LHF of 57 

W m-2, assuming a polynya width of 50 km (the approximate length of the Drygalski Ice 

Tongue).  The Fusco et al. (2009) study uses weekly sea ice concentration values from 1994 to 

estimate the presence or absence of ice cover throughout the entire 17 year period.  It was 
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presumed in the study that fluxes were smaller in part due to an underestimation of wind 

intensity from ERA-40.  Morelli (2011) uses a mesoscale Eta model to simulate the ABL over 

the polynya on 15-16 July 2006, finding SHFs of 600 W m-2 and LHFs of 290 W  

m-2 with a sea ice fraction of 0.6. 

The importance of air-sea interactions on the ABL during the winter months and the lack 

of observations to quantify these interactions drive the focus of this dissertation.  In September 

2009, several unmanned aerial vehicles (UAVs) were flown over TNB to estimate the three-

dimensional properties of the atmosphere.  A subsequent field season in September 2012 was 

also flown with the same mission.  These measurements were the first collected over the polynya 

during the winter months, and provide invaluable information regarding the atmospheric state.  

Eight missions were flown to TNB, with varying mission goals for each flight.  On 18, 23, and 

25 September, the mission purpose was to estimate the downstream evolution of the ABL as the 

air masses originating from the continental interior pass downstream over the polynya.  For each 

of these flights, a south-north transect along the coast and over the polynya was made to search 

for the area of strongest winds from the continent.  The UAV was then flown downstream of the 

coast within this jet to estimate the downstream evolution of the ABL along its strongest area.   

The data from these flights were used to understand the spatial and temporal response of 

the ABL to the underlying warm polynya during the winter months.  To put the observations into 

context, a climatology of the TNB region using satellite and AWS data was conducted.  This 

study, published in the Journal of Applied Meteorology and Climatology (“An analysis of near-

surface winds, air temperature, and cyclone activity in Terra Nova Bay, Antarctica, from 1993 to 

2009”), composes Chapter 2 (Knuth and Cassano 2011).  This work shows that September 2009 

is an anomalous year in terms of surface winds, cyclone activity, and upper-level patterns.  A 
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higher number of strong wind events, a shift in cyclone activity eastward, and a corresponding 

shift in a deeper upper level trough led to these conclusions.  As part of this work, an extensive 

cyclone climatology was conducted over the region.  This climatology was used in an effort to 

evaluate the Antarctic Mesoscale Prediction System (AMPS) cyclone forecasts in the region.  

This study, entitled “Evaluation of Antarctic Mesoscale Prediction System (AMPS) cyclone 

forecasts using infrared satellite imagery” was published in Antarctic Science.  While not a part 

of this dissertation, the work from Chapter 2 led to important discoveries in model evaluation 

(Nigro et al. 2011). 

Air-sea interactions in the ABL are best examined by understanding the amount of 

energy transferred between the ocean and the atmosphere, as this exchange will modify the cold, 

dry continental air in the ABL.  Mesoscale and numerical weather prediction models typically 

use the bulk flux equations to estimate surface heat fluxes, where an eddy diffusivity coefficient 

for heat or moisture is applied (Fairall et al. 2003; Walter et al. 2006).  While these transfer 

coefficients are based on measurements, they represent a large amount of uncertainty in the bulk 

flux estimates (Walter et al. 2006).  These formulas also rely on surface temperature information, 

which is highly variable.  As such, estimates of the heat fluxes without the use of bulk algorithms 

have the potential to be more robust and less uncertain.  The development of a methodology to 

estimate SHFs and LHFs from only atmospheric measurements shows this to be true.  Chapter 3, 

entitled, “A methodology for estimating sensible and latent heat fluxes from in situ aircraft 

measurements”, estimates these fluxes by considering adiabatic and non-Lagrangian processes 

and correcting for unobserved changes in heat and moisture below the minimum flight level of 

the UAV.  Several variations of a single method are tested by estimating the change in the heat 

and moisture content as the UAV moves downwind over the polynya.  Each method produces 
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results that differ by less than 5 W m-2, showing the robustness of this method.  This study has 

been submitted to the Journal of Atmospheric and Oceanic Technology, and is currently under 

review (Knuth and Cassano 2014). 

Chapter 4, entitled, “The primary mechanisms of air-sea heat exchange over Terra Nova 

Bay, Antarctica”, uses the UAV data, satellite data, and a bulk flux algorithm to understand the 

primary forcing mechanisms of heat transfer in TNB.  Changes in the air temperature, 

atmospheric moisture, and wind speed are compared to surface temperatures, surface saturated 

mixing ratios, and sea ice fraction to understand the forcing for the surface heat fluxes estimated.  

The Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response 

Experiment (COARE) bulk flux algorithm, which incorporates both surface and atmospheric 

data, is used to estimate the sensitivity of the heat fluxes to surface state.  The impacts on the 

ABL are also explored by examining the evolution of the temperature structure over the polynya.  

This chapter is currently in preparation for submission to a peer review journal. 

The appendix holds useful information on the design and execution of the sixteen UAV 

missions from McMurdo to TNB in September 2009, including the three missions used in the 

studies of Chapters 3 and 4.  This chapter also discusses the quality control performed on the 

data, and is a good reference for the flights throughout this dissertation.  The appendix was 

published in Earth System Science Data, and is entitled, “Unmanned aircraft system 

measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica” (Knuth et al. 

2013).  Another study describing the flights and data collected entitled “Observations of 

Antarctic polynya with unmanned aircraft systems”, published in Eos can be found in Cassano et 

al. 2010, although is not included in this dissertation. 
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Chapter 2:  An analysis of near-surface winds, air temperature, and cyclone 

activity in Terra Nova Bay Antarctica from 1993-2009  

 

ABSTRACT.   In September 2009, the first unmanned aerial vehicles were flown over Terra 

Nova Bay, Antarctica to collect information regarding air-sea interactions.  Prior to the field 

season, wind and temperature data from a local automatic weather station (AWS) were collected 

from 1993-2007 and compared to an August-October 2006-2008 satellite cyclone analysis to 

place the September 2009 observations into a broader context.  AWS wind data revealed a strong 

tendency toward downslope flow in the region regardless of season, as the majority (55%) of 

winds were from the west to northwesterly directions.  Most winds observed at the site were less 

than 20 m s-1, but 83% of the stronger winds were associated with downslope flow. Of fifteen 

strong wind events (greater than 20 m s-1 for more than 10 hours) evaluated during the cyclone 

analysis period, 100% occurred in the presence of a cyclone in the adjacent Ross Sea. Winter 

experienced the greatest number of strong wind events (68%), while summer had the lowest 

(4%).  Most temperatures were between -15 and -25ºC, with temperatures influenced by wind 

fluctuations. The cyclone analysis revealed 64% of systems were comma-shaped, and most 

cyclones (84%) within the Ross Sea were mesocyclones.  A comparison of AWS data for 

Septembers 1993-2007 and September 2009 showed more strong wind events during 2009, while 

the cyclone analysis revealed a shift in cyclonic activity eastward.  Reanalysis data comparing 

September 1993-2007 and September 2009 shows an eastward shift in a deeper upper-level 

trough, indicating September 2009 was an anomalous year.  
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1.  Introduction 

Since the early 1900s, when Robert Falcon Scott’s Northern Party spent an unfortunate 

winter on Inexpressible Island, the Terra Nova Bay region of Antarctica has been recognized as 

an area of harsh winds and brutally cold temperatures.  These meteorological extremes make this 

a region where scientific research is both difficult to conduct and of great importance.  The 

severe winds, caused by offshore downslope flow through nearby mountain valleys, transport 

sea-ice eastward from the coast and create a relatively ice-free area within Terra Nova Bay.  

These ice-free windows into the ocean, termed polynyas, can exist throughout the winter season, 

making the region important for the alteration of oceanic currents, the production of 

phytoplankton, the congregation of oxygen-breathing sea mammals, and the movement of ships 

carrying supplies for various Antarctic scientific stations (Buffoni et al. 2002; McMahon et al. 

2002; Arrigo and van Dijken 2003 and 2004). 

Despite the small size of Terra Nova Bay, the interaction between local atmospheric and 

oceanic forcing can have significant effects on the local and large-scale circulation of the 

Southern Hemisphere.  The atmospheric effects – largely from downslope drainage from the 

interior of the continent – can alter existing weather patterns or enhance energy fluxes between 

the ocean and atmosphere (Bromwich 1989; Bove and Paolo 2009).  The oceanic effects – 

largely caused by the open ocean water – can change currents in the southern oceans (Buffoni et 

al. 2002).  A well-documented coastal polynya that is highly sustainable during the winter season 

is located at the base of the Nansen Ice Sheet in Terra Nova Bay, and is largely maintained by 

strong downslope flow from air rushing through the valleys of the Reeves, and to Priestley, and 

to some extent David Glaciers (Bromwich and Kurtz 1984; Petrelli et al. 2008; Kern 2009) 

(Figure 2). 
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Figure 2.  Map of Terra Nova Bay, with a broader area of the Antarctic 
continent in the inset.  
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Oceanic sensible heat fluxes are also thought to contribute to maintaining the ice-free polynya 

(van Woert 1999). 

During the winter season, when the downslope flow is the strongest, intense winds 

blowing across the open water can cause large fluxes of energy out of the ocean and into the 

atmosphere.  The injection of warmer ocean air from the polynya into the atmosphere can cause 

a convective surface layer to form, initiating the development of mesoscale dynamic systems, 

such as land-breezes or cyclones (Gallée 1996; Carrasco et al. 2003; Bove and Paolo 2009).  

Cold atmospheric temperatures and strong winds can further the development of this convective 

layer.  

As well, the polynya is an important area for the production of sea ice, as the denser, 

saltier water left behind when the ice forms and moves eastward sinks to the bottom of the ocean 

and adds to the formation of Antarctic Bottom Water (Hauser et al. 2002; Kern 2009).   Despite 

the relatively small area of the polynya (during the winter the size varies between 3000 and 7000 

km2), the impacts on the climate system are significant, as the formation of Antarctic Bottom 

Water influences the Southern Ocean thermohaline circulation (Hauser et al. 2002). 

There is a subtle but important difference between katabatic and downslope flow, as the 

two are often mistaken as the same.  Any flow down sloping terrain can be described as 

downslope flow.  Winds blowing down the terrain can be caused by a number of factors, 

including a background pressure gradient force or gravity acting on negatively buoyant air 

adjacent to the slope.  Katabatic flow is downslope flow of radiatively cooled, negatively 

buoyant air (Parish and Cassano 2003).  Radiational cooling from the surface, particularly during 

the winter, will generate a strong surface inversion, which will in turn produce a pressure 

gradient force directed down the fall-line.  It is the presence of radiatively cooled, negatively 
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buoyant air that distinguishes katabatic flow from the more general downslope flow. As such, 

katabatic flow is always downslope flow, but downslope flow is not always katabatic.  In this 

paper, we will attempt to discriminate between the two types of flow, although it is important to 

note that from wind measurements alone, it is not possible to determine whether a flow is 

katabatic or simply downslope (Parish and Cassano 2001).  In these cases, the more general term 

of “downslope flow” will be used.  A detailed analysis of whether the flow is downslope or 

katabatic requires detailed knowledge of the thermodynamic evolution of the near surface air 

over the Antarctic continent and is not possible from the limited observational data available 

over the continent and as such is beyond the scope of this work.  Since the development of the 

coastal polynya is due largely to the presence of strong offshore (and downslope) winds the 

distinction between katabatic and the more general downslope flow is inconsequential for this 

study. 

Despite the impacts of the Terra Nova Bay region on the local and regional climate 

system, few in situ observations are available to examine the significance of these atmospheric 

effects.  Several automatic weather stations (AWS) are available near Terra Nova Bay, but these 

stations are widely spaced and limited to within a few meters of the surface (Stearns et al. 1993).  

Satellite data coverage has improved dramatically in recent years, and while the temporal and 

spatial scales of this data are high, the vertical resolution of the data is limited, particularly near 

the surface.  Aircraft flights flown during field campaigns can provide excellent data throughout 

the atmospheric layer, but can be expensive and logistically difficult.  To date and to the authors’ 

knowledge, there have only been two field campaigns consisting of instrumented aircraft over 

the Terra Nova Bay region (Parish and Bromwich 1989; Davis et al. 2008).  The first field 

campaign took place during November 1987, and consisted of two successive flights through a 
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katabatic layer originating from Reeves Glacier, with the purpose being to study the boundary 

layer dynamics within a katabatic flow field.  The second took place in several transects across 

the polar plateau, Ross Island, and Terra Nova Bay during November and December 2003, 

collecting measurements of temperature and pressure as part of a study aimed at understanding 

the processes that control trace chemicals across Antarctica (Davis et al. 2008). 

 In September 2009, the first unmanned aerial vehicles (UAV), which are more easily 

maneuverable and require less of a logistical component than larger, manned aircraft, were flown 

from the Pegasus White Ice runway near Ross Island to Terra Nova Bay, with the purpose being 

to examine the atmospheric mechanisms responsible for the formation and modification of dense 

shelf water within the area polynya.  The UAVs measured wind speed and direction, temperature, 

humidity and pressure over Terra Nova Bay.  As well, information about the surface state of the 

polynya, such as digital images and skin temperature measurements, were collected during the 

UAV flights at high vertical and temporal resolutions (Cassano et al. 2010).  Prior to the 

September 2009 UAV field season, an examination of the local weather patterns of Terra Nova 

Bay from 1993-2008 was conducted using the only two readily available data sources in the 

region – AWS and satellite data.  Prevailing wind speeds and directions, as well as changes with 

temperature, were studied from the AWS between 1993 and 2007, and synoptic and mesoscale 

cyclones from a manual satellite analysis for the months of August through October of 2006-

2008.  The purpose of this examination is to explore the characteristics of the local atmospheric 

forcing, namely downslope flow and cyclogenesis, and use these tendencies to place the data 

from the September 2009 field season in a broader context. The UAV observations of the 

atmosphere over Terra Nova Bay can be used to determine whether expected shelf water 
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formation from the polynya during September 2009 is stronger or weaker than the long-term 

average, based on our analysis.  

Section 2 describes the data sources used for this analysis, including explanations 

regarding specific criteria for strong wind events and the use of Rita AWS.  Section 3 describes 

the results from the 1993-2008 analysis years.  Section 4 relates the 1993-2008 analysis to the 

meteorological pattern of September 2009. A summary is presented in Section 5. 

 

2.  Data Description 

 

a. AWS observations 

 

 AWS data from Rita site, operated by the Italian Antarctic Research Programme (PNRA), 

was used as the primary dataset to study atmospheric changes in Terra Nova Bay.  Rita AWS is 

located just west of Terra Nova Bay, downstream of both Reeves and Priestley Glaciers, at an 

elevation of 268 meters (Figure 2).  The station measures temperature, wind speed and direction, 

relative humidity, and atmospheric pressure on an hourly basis.  The temperature, pressure, and 

relative humidity data are instantaneous measurements reported at the top of the hour, while the 

wind measurements are the average of the data from the ten minutes prior to the start of the hour 

(Paolo Grigioni, pers. comm.).  The Vaisala wind instruments are operational at a minimum 

temperature of -50ºC, while the Vaisala temperature and humidity measurements are operational 

to -40ºC.  The tower stands 10 meters tall on bare rock, and is powered by two 48-Watt solar 

panels and six lead acid batteries.  The data from the station is transmitted in real-time via the 

ARGOS data collection system (DCS), and has been in operation since January 1993.  Data from 



 

 

16 

January 1993 through November 2007 have been quality-controlled by PNRA, and are used for 

this analysis.  Data from September 2009 were quality-controlled by the authors for comparison 

with the 1993-2007 dataset to place the September 2009 observations into a broader perspective.  

Unfortunately, due to a loss of the radiation shield, the temperature sensor was not transmitting 

reasonable temperatures during September 2009, and was omitted for this period. 

Analysis of the AWS data focused on wind and temperature observations.  These 

observations were examined separately to determine the general flow pattern over Terra Nova 

Bay as well as the basic atmospheric properties of the region.  Wind and temperature 

observations were then combined to determine the potential offshore interaction between the 

atmospheric and oceanic state. Changes in wind patterns, temperature, and wind-temperature 

fluctuations were examined using the Rita AWS data both over the entire 1993-2007 period and 

the September 2009 UAV time period, as well as by season, with the seasons defined as being 

spring (October – November), summer (December – January), autumn (February – March), and 

winter (April – September).  The selection of these seasons were based on Seefeldt and Cassano 

(2008), where April was chosen as part of the winter period instead of autumn to closer match 

known Antarctic seasonal patterns. 

Further analysis was conducted using the Rita AWS wind observations by identifying 

strong wind events over the study area.  A strong wind event was identified as being one in 

which the wind speeds reported were in excess of 20 m s-1 for at least a 10-hour duration.  The 

selection of a 10-hour duration was based on Seefeldt and Cassano (2007) in which prevailing 

wind regimes over the Ross Ice Shelf were examined using AWS and model data to identify 

corresponding wind events.  The selection of a minimum wind speed threshold of 20 m s-1 was 

based on several factors, including manual analysis of the dataset.  Several thresholds were tested, 
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including 15, 30, 40, and 50 m s-1, and it was found that using 20 m s-1 captured a representative 

number of wind events that were maintained for longer than 10 hours.  In addition to this 

analysis, Morales Maqueda et al. (2004) indicate the need for a wind speed threshold of at least 

20 m s-1 to exist in order to maintain ice-free polynyas around the Antarctic coast.   

 To account for fluctuations in wind speed due to wind gusts, winds were allowed to drop 

below 20 m s-1 for no greater than 10 consecutive hours during an event.  Below threshold 

durations of 5 and 10 hours were tested and compared to the criteria listed above.  An example of 

the changes between the 10- and 5-hour duration analyses during a sample period (September 

2002) can be seen in Figure 3.  During this month, event 1 was eliminated during the 5-hour 

analysis, while event 2 was shortened by 25 hours.  Event 1 was removed as there were more 

observations below the wind speed threshold than above, while event 2 was shortened due to the 

occurrence of a sharp peak in wind speed at the beginning of an event, followed by an immediate 

drop for more than five hours.  A manual analysis of these events indicated that the first event 

should be removed, but the second should have the duration as in the 10-hour analysis.  From 

this analysis and others throughout all months of September between 1993-2007 and 2009, it was 

concluded that a maximum below-threshold duration of ten hours would be used, while 

limitations would be imposed to eliminate those wind events where a greater period of time 

during the event was spent below the wind speed threshold.  The criteria for the specifications of 

strong wind events are summarized in Table 1. 

The AWS analysis was not extended through 2008 for two reasons.  First, the PNRA 

quality-controlled dataset only included data through November 2007, and maintaining a 

uniform dataset throughout the analysis period was critical.  Secondly, on 21 September 2008 the 

Rita AWS fell down, and data was unavailable until the following field season.  Given that a 
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Figure 3.  Comparison of strong wind events during September 2002 allowing 10 
and 5 hours below the wind speed threshold.  Gray boxes indicate the strong 
wind events for each threshold level.  
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significant portion of 2008, and in particular the month of highest interest to this study – 

September - was unavailable, 2008 was disregarded from the AWS analysis entirely.  

Additionally, there were several months during the 1993-2007 analysis period during which data 

was unavailable at Rita.  These periods of data loss largely extended from winter through spring 

season, as issues with the AWS that occurred during winter were unable to be repaired until the 

summer field season.  Periods of data loss occurred from July-October 1993, May-October 1996, 

and August-November 2001.  No data was available for December 2007, as the data had not 

been quality-controlled during that time.  This loss of data accounted for a 25% total loss of 

observations in spring, a 14% loss in summer, an 8% loss in autumn, and a 21% loss in winter. 

 

Criteria Value 

Wind Speed Threshold 20 m s-1 

Minimum Duration of Time at or Above 

Wind Speed Threshold 

 

10 hours 

Maximum Continuous Amount of Time 

Allowed Below Wind Speed Threshold 

 

10 hours 

Ratio of time above threshold to time below 

threshold 

≥1 

 

Table 1.  Selection criteria for strong wind events.  
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b.   Selection of Rita AWS 

 

Rita site was chosen over other area AWS due to its representativeness of the 

meteorological conditions just upstream of the polynya.  To confirm this, comparisons of the 

winds and potential temperatures at three other AWS upstream of Terra Nova Bay (Eneide, Sofia, 

and Zoraida) were made to the Rita AWS observations (Figures 4 and 5).  To appropriately 

compare the four datasets, only times when observations were available at all four stations were 

used in the analysis.  As Sofia AWS ceased transmissions in 2002, the dataset of the four stations 

was between 1993 and 2002.  It was expected that Eneide site would have the lowest wind 

speeds of all four sites, based on its low elevation (approximately 91 meters) and being furthest 

from the terminus of the Reeves and Priestley Glaciers.  Due to location, winds at Sofia site were 

expected to reflect influences from both Reeves and Priestley Glaciers, and Zoraida was 

expected to experience the strongest wind speeds due to its elevation (884 m) and location on 

Priestley Glacier.  Figure 4 confirms this.  Prevailing winds at Eneide are almost equally 

dominated from the west and north-northwest, and exhibit the weakest wind speeds overall and 

the least number of strong wind events (Figure 4).  Winds at Sofia are mostly from the west, but 

also strong from the north, indicating influences from both Reeves and Priestley Glaciers (Figure 

4).  Winds at Zoraida reflect strong influences from Priestley Glacier in terms of directional flow, 

and also show the highest number of strong wind events (Figure 4). 

It was expected that temperatures would be potentially coldest at Zoraida site, reflecting 

an unstable atmosphere consistent with katabatic drainage from higher elevations.  However, 

Figure 5 shows temperatures to be potentially coldest at Sofia site.  With a stable atmosphere 

present between Zoraida and Sofia, mean katabatic forcing cannot exist between these sites on 
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Priestley Glacier without an additional external force, such as that from a background synoptic 

pressure gradient.  Further analysis is needed to confirm this. 

 

 

 

Figure 4.  Wind roses from 1993-2002 for Eneide, Rita, Sofia, and Zoraida AWS.  
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Figure 5.  Potential temperature histogram from 1993-2002 for Eneide, Rita, 
Sofia, and Zoraida AWS.  

 

This analysis shows that Zoraida and Eneide sites are not the most ideal locations to 

characterize the off-continent air mass, while Sofia and Rita are.   Zoraida’s location inland and 

on Priestley Glacier is only an accurate representation of the air flowing down the glacier from 

the high polar plateau.  Southwesterly winds at Eneide site (Figure 4) show an influence from 

local topography that will not necessarily be representative of the flow pattern that travels further 

east over the polynya.  Additionally, Eneide’s location is too far north of where the Priestley and 

Reeves Glaciers’ wind jet extends to depict these air masses accurately.  Sofia and Rita sites, 
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however, are ideally placed to characterize the air mass upstream of the polynya.  Sofia’s 

location on the Nansen Ice Sheet demonstrates flow from both Reeves and Priestley Glaciers, but 

the shortened observational record (which extends until 2002) is not ideal, and the lack of data in 

September 2009 makes this AWS ineffective to this study.  Rita site, located on the windward 

side of the Northern Foothills and further south than Eneide, has a long data record, including 

wind observations during September 2009, and is the most reasonable AWS to use for this 

analysis. 

Using all four sites for the analysis presented in this paper was not feasible, as the time 

period when all stations have coincident data is severely limited.  The availability of coincident 

data was considered critical for this study, since missing data could easily bias the high wind 

event analysis. For the 1993-2002 time period, only two winters could be sampled due to a loss 

of transmissions from at least one of the four sites.  Closer examination of Figure 6 shows that 

when using all four stations, upwards of 80% of the observations during the winter months were 

missing, whereas using only Rita AWS results in only a 30% loss in observations during those 

months.  Given the above analysis between regional AWS, and the optimization of data during 

the winter months, Rita is the ideal AWS to use for this study.  

 

c.  Cyclone Climatology 

 

 The cyclone analysis was produced using the National Oceanic and Atmospheric 

Administration (NOAA) Local Area Coverage (LAC) 1-km resolution data provided by the 

Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin.  A time 

frame of August to October 2006 to 2008 was chosen as the analysis study period to acquire a 
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reasonable sampling of cyclones around the time of year of the UAV flights in September 2009.  

For years 2006-2008, LAC data from the NOAA-18 satellite was used; for the September 2009 

comparison dataset, NOAA-19 LAC data was used.  Cyclones were identified using the infrared 

data over a domain area centered at 74°S 175°W (Figure 7), which covers the entire Ross Sea 

including Terra Nova Bay, from one satellite image per day, typically around 3 UTC.  This 

dataset was expanded to include the entire Ross Sea for two main reasons:  to include all systems 

that would have an impact on Terra Nova Bay, and to match previous climatological datasets that 

have included the entire Ross Sea region (Carrasco and Bromwich 1994; Gallée 1996; Carrasco 

et al. 2003).   

The cyclones found from this data were manually identified by a thorough examination 

of each image (Figure 7).  The analysis included any system showing cyclonic rotation over the 

domain, with information regarding position, time, size, and shape recorded.  The size of the 

systems were identified by examining both the short and long dimensions of the system, with 

those smaller than 1000 km identified as mesocyclones, while those larger classified as synoptic 

systems (Heinemann 1990; Bromwich 1991; Carrasco et al. 2003).  The shape of the system was 

divided into four categories:  comma, merry-go-round, single-cyclonic band, and spiral-form, 

following previous studies of cyclones in the Antarctic (Carleton and Fitch 1993; Carrasco et al. 

2003).  Merry-go-round systems have several small cyclones attached to a much larger system, 

single-cyclonic band systems are those that are in the early stages of cyclone formation, and a 

spiral-form system has several bands that form a cyclone, as opposed to the comma-shaped 

systems which are a single mass of clouds.  Information on the size and shape of cyclonic 

systems was included in this dataset to coincide with other cyclone climatologies conducted 

across the Antarctic (Carleton and Fitch 1993; Turner et al. 1998; Carrasco et al. 2003).  
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Figure 6.  Percentage of strong wind events and percentage of missing data 
occurring during each month at a) Eneide, Rita, Sofia, and Zoraida AWS 
between 1993 and 2002, and b) Rita AWS between 1993 and 2007.   
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Figure 7.   Example infrared satellite image from 2 October 2006 at 3 UTC used 
to conduct the cyclone analysis.  The lines indicate the dimensions of a cyclone 
in the eastern Ross Sea, while the “L1” indicates the cyclone center.  The box 
over Ross Island shows an anti-cyclonic vortex to the east of the island.  
 

3.  Climatology of Selected Variables in Terra Nova Bay  

 

a.  Wind speed and atmospheric temperature tendencies 

 

 Wind rose plots from Rita site show that the majority (55%) of winds are from the west, 

west-northwest, and northwest directions, indicating a dominant flow regime that is downslope 

(Figure 8).  Eighty six percent of all wind speeds at Rita site are less than 20 m s-1; however, of 
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the wind speeds greater than 20 m s-1, 83% are from the west to northwesterly direction, 

indicating that most of the extreme wind speeds are from downslope flow.  Between 1993 and 

2007, a total of 418 strong wind speed events (as defined in Section 2) were identified, with the 

maximum winds found during the 1993-2007 time frame being 58 m s-1.  Most strong wind 

events occurred in July (at 14%), with the least occurring during January (1%) (Figure 6b).  The 

winter and autumn seasons showed the highest percentages of strong wind events at 68% and 

17% respectively, while spring and summer had only 11% and 4% of the total wind events.   

 An examination of the temperatures at Rita site shows 39% of the observations are within 

the -15 to -25°C range, with a peak that exhibits a sharper decrease toward colder values and a 

gradual decline as temperatures get warmer (Figure 9).  Analysis of the seasonal contributions to 

temperatures in the -15 to -25°C bin shows that the majority (73%) of temperatures in this bin 

occur during winter season, while 0% occur during summer.  Spring and autumn contribute to 

11% and 16%, respectively.  The majority of observations colder than -25°C also occur during 

the winter season (97%), with 0% of the observations occurring during summer and the 

remainder evenly split between spring and autumn.  Temperatures warmer than -15°C see 

contributions from all four seasons, with most temperatures occurring during summer (39%), and 

the least during winter (14%).  Spring and autumn contribute 21% and 26%, respectively. 

Histograms of temperature for various wind speed ranges are shown in Figure 10.  

Relatively few observations are found at the most extreme wind speeds, as the frequency of these 

events is much lower.  Intermediate winds, such as the 10-20, 20-30, and 30-40 m s-1 categories 

exhibit a Gaussian distribution, while the 0-10 m s-1 category exhibits a bimodal distribution of 

temperature, with two peaks occurring near -20°C and 0°C.  Further analysis comparing 
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temperatures in the 0-10 m s-1 category during each of the four seasons show that the two peaks 

are due to contributions from the winter and summer seasons, respectively.   

 

 

 

Figure 8.  Wind rose plot from Rita AWS for 1993-2007. 
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Figure 9.  Temperature histogram for Rita AWS from 1993-2007. 

 

b.  Synoptic and mesoscale cyclone characteristics 

 

 The identification of meso- and synoptic-scale cyclones from a manual cyclone analysis 

during the August-October 2006-2008 time period indicated several interesting patterns of 

cyclone locations across the Ross Sea (Figure 11).  In particular, two prominent features are 

easily visible.  The first is the high density of mesocyclones (cyclones with sizes less than 1000 

km) located on the lee (northern) side of Ross Island, as indicated by Box 1.  The large number 

of mesoscale cyclones in this area are likely cyclonic shear vortices that are produced by 

southerly flow around Ross Island.  Previous studies suggest that some of these cyclones are 

spawned from cyclonic shear vortices that occur on the lee (north) side of Ross Island, which in 
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turn arise from the persistent low-level southerly winds that flow around the island topography 

(e.g. Monaghan et al 2005). Within the area outlined by Box 1 are three dense regions of 

mesoscale cyclones.  The areas to the western and eastern sides of Ross Island (on the left and 

right-most portions of Box 1) are the shear vortices produced by the southerly wind flow, which 

are enhanced by the topography of the island.  This topography alters the flow around the barrier 

such that cyclonic shear vortices on the western side, and anti-cyclonic vortices on the eastern 

side, no larger than 300 km, are produced (see example, Figure 7). 

In the middle of Box 1 is a predominantly cyclone-void region, with the exception of a 

few larger (300-500 km) mesocyclones.  The few number of cyclones produced directly north of 

Mt. Erebus, a nearly 4000 meter volcano that sits atop Ross Island, is due to the inability of flow 

that originates from the southern portion of the island to climb the barrier and flow over the 

obstacle instead of around (Seefeldt et al. 2003).  The few cyclones that do bridge this barrier 

assist in the production of slightly larger cyclonic shear vortices than those that are produced 

when the flow traverses the westerly and easterly edges of the island.  This cluster of cyclonic 

activity on the lee-side of Ross Island is in direct correlation with several previous studies that 

examined cyclonic flow in the southwestern corner of the Ross Sea (Bromwich 1991; Carrasco 

and Bromwich 1994; Carrasco et al. 2003).  It is possible for the cyclones that are produced in 

the lee of Ross Island to propagate northward to later impact Terra Nova Bay.  A second region 

of interest, outlined by Box 2 of Figure 11, depicts a noticeable lack of cyclones that not only 

form but track through this region.  This lack of cyclonic activity will be discussed further in 

Section 4. 
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Figure 10.  Temperature histograms by wind speed for Rita AWS from 1993-
2007. 
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Figure 11.  Map of cyclone locations from August to October 2006-2008.  A 
high-density region of mesocyclones is located in the southwestern corner of the 
Ross Sea (Box 1).  A low-density region of cyclonic activity is located in the 
center of the Ross Sea (Box 2).  
 

To determine the influence of cyclonic activity on downslope winds, a comparison 

between strong wind events and cyclones in and around Terra Nova Bay was conducted for 

August-October 2006-2007 (the only time period during which both datasets coincided).  This 

analysis showed that one hundred percent of the 15 strong wind events occurred in the presence 

of a cyclone located in the Ross Sea.  This is a rather important result that will need to be further 
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addressed as part of future analysis of the potential linkages between cyclones in the Ross Sea 

and strong winds in Terra Nova Bay. 

 In addition to the location of the cyclones, other characteristics, such as size and shape, 

were collected as part of the satellite analysis.  Figure 12 depicts the size distribution of the 

various cyclones during the study period.  Most cyclones (63%) found in the Ross Sea are 

smaller than 500 km, with 84% of all cyclones being mesocyclones.  Only 16% of all cyclones 

found were classified as synoptic-scale systems.  Examination of the shape of the cyclones 

identified a majority (64%) of the systems, either synoptic or mesoscale, were of a comma shape, 

with 25% spiral-form, 6% single-cyclonic band, and 3% merry-go-round (Figure 13).  While the 

shape of a system will not change the system dynamics, it can be important in terms of 

understanding the regional circulation.  For example, comma and merry-go-round systems tend 

to develop in regions of strong background flow, while spiral-form systems develop in 

synoptically quiet regions (Turner and Pendlebury 2000).  Information regarding the shape and 

concurrent size of the systems can provide vital information about the individual systems and 

background synoptic environment that can impact the weather on a regional level, such as in 

Terra Nova Bay. 

Knowledge of the typical atmospheric state over Terra Nova Bay is critical for 

understanding the UAV field measurements collected during September 2009.  Changes in wind 

or temperature patterns can lead to changes in the opening of the polynya, which in turn can lead 

to changes in sea-air fluxes.  Variations in cyclonic activity can lead to changes in the direction 

and magnitude of winds, and can advect warm or cold air into the region.  Interactions between 

two air masses of different temperatures can generate mesoscale systems, which can also impact 

the size of the polynya.  From this analysis, it can be seen that the primary air source that is 
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advected over the polynya originates from the glacial valleys upstream of Terra Nova Bay, with 

a temperature typically observed at -20ºC.  In future analysis, observations of this air mass from 

the UAV collected during September 2009 will be compared to the findings from this study to 

put the UAV observations in a broader perspective.  While the small number of UAV flights are 

not necessarily representative of the September 2009 monthly mean conditions, it is important to 

understand not only how the overall September 2009 conditions fit into the broader perspective, 

but how the conditions sampled by the UAV relate to the broader perspective as well.   

Inferences can then be made as to changes in the size of the polynya and in turn sea-air fluxes, 

which can impact changes in the shelf water of the polynya. 

 

 

 
Figure 12.  Histogram of cyclone size for August 2006 to October 2008. Bins 
range from 0-500 km, 500-1000 km, etc.  
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Figure 13.  Number of cyclones of different shape for August 2006 to October 
2008.  
 

 

4.  Comparison of AWS winds and cyclone activity for September 2009 

 

 An examination of wind fields and cyclone activity in Terra Nova Bay between 

September 1993-2007 and September 2009 shows that September 2009 experienced stronger 

winds and fewer cyclones, with more winds from the north-northwest, than the analysis months.  

As during the 1993-2007 analysis, the majority of winds originate from the west to northwesterly 

directions, indicating that downslope winds are the primary flow field over the polynya during 

September 2009.  During the Septembers of 1993 to 2007, 60% of the winds were west to 
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northwesterly, as compared with 75% of the winds during September 2009 (Figure 14).  This 

shift in wind direction, particularly to the north-northwest during September 2009, indicates a 

displacement of surface cyclones in the Ross Sea and Ross Ice Shelf regions, accompanied by 

variations in an upper-level large scale feature, as described below.   

 

 

 

Figure 14.  Wind roses from observations at Rita AWS for all Septembers from 
1993-2007 and September 2009. 

 

 During September 2009, 39% of winds were greater than 20 m s-1, as compared with 14% 

of wind observations during 1993-2007.  As during the analysis years, 83% of those winds 

greater than 20 m s-1 were from the west to northwesterly directions, indicating that the strongest 

winds correspond with downslope flow.  Five strong wind speed events were recorded in 

September 2009, while the 1993-2007 Septembers experienced an average of 3.7 strong wind 

speed events per month (Figure 15).  As during the analysis years, 100% of the strong wind 

events that occurred during September 2009 arose in the presence of a Ross Sea cyclone. 
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Most of the cyclone activity shifted toward the eastern Ross Sea during September 2009, 

while much of the activity during the previous Septembers (2006-2008) was located in the 

western to central Ross Sea (Figure 16).  A cyclone-void region in the area between 

approximately 71-75°S and 165-175°W, as outlined in Box 2 of Figure 11 and Box 1 of Figure 

16, shows that during September 2009 this area had 150% more cyclones (13 vs. 5) than during 

September 2006-2008, with four of the five cyclones observed within the box occurring in 2008.  

During 2008, nearly double the number of cyclones were observed throughout August-October, 

which was due to a strong upper-level trough at 500 mb located in the same area as the trough in 

2009 (not shown).  

 

 

 
Figure 15.  The number of strong wind events during September between the 
years of 1994 and 2009.  Years excluded were years with no data.  
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Figure 16. Cyclone locations for all Septembers from 2006-2009. A region void 
of cyclone activity in the Ross Sea in years 2006-2008, and with increased 
activity in 2009, is identified by Box 1.    

 

A comparison of the National Centers for Environmental Prediction/National Center for 

Atmospheric Research (NCEP/NCAR) Reanalysis 500 mb geopotential height composite means 

for September 1993-2007 to September 2009 shows an upper-level trough that was situated over 

the center of the Ross Ice Shelf in previous Septembers had deepened and shifted further east 

over western Marie Byrd Land during September 2009 (Figure 17).  These upper-level troughs, 
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which will tilt toward colder air, are indicative of surface cyclones to the north and northeast.  

Hence, typical Septembers show more cyclones in the center to just east of center portions of the 

Ross Sea, while during September 2009 the majority of surface cyclones would have been 

further east of the Ross Sea and north of Marie Byrd Land.  This shift explains the lower number 

of cyclones found in Terra Nova Bay during September 2009. 

A comparison of Figures 17a and 17b indicates that an enhanced west to east pressure 

gradient force, which will strengthen downslope surface winds in the vicinity of Terra Nova Bay, 

is present in 2009 compared to the multi-year mean. This enhanced pressure gradient is the result 

of both a deeper trough in the eastern Ross Sea as well as a stronger ridge over the East Antarctic 

plateau.  An analysis of Figure 15 shows that the years of 1994, 2000, 2003, 2005, and 2009 had 

an above average number of strong wind events, while 1999, 2002, and 2007 were below 

average.  1995 and 1997 had an average number of strong wind events during the year.  A closer 

examination of the NCEP/NCAR reanalysis 500 mb geopotential height fields for these years 

(not shown) indicates that during the average and above average years (with the exception of 

1997), a ridge could be found on the high polar plateau.  During the years when the number of 

strong wind events were below average, no ridge was found on the polar plateau, but rather a 

trough at 500 mb was found just west of the Ross Ice Shelf on the high polar plateau.  Turner et 

al. (2009) suggests that a strong ridge pattern on the high polar plateau accompanied by a sea 

level low pressure anomaly promotes an ideal situation for generating strong wind events off the 

East Antarctic coast.  The ridge during September 2009 was more intense than for the other 

strong wind event years, as was the trough over western Marie Byrd Land, implying strong 

downslope flow along the glacial valleys of the Transantarctic Mountains, including in Terra  
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a) 

 

b) 

 
Figure 17.  NCEP/NCAR Reanalysis monthly means of 500 mb geopotential 
height (m) for a) September 1993-2007 and b) September 2009. 
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Nova Bay. The shifts in the 500 mb geopotential height pattern described above would also be 

expected to influence surface low pressure centers. The eastward shift in cyclone locations 

during September 2009 is consistent with an eastward shift in the 500 mb trough during 2009 

(Figure 16). 

One potential explanation for the shift in the 500 mb geopotential height pattern is related 

to the El Niño/Southern Oscillation (ENSO) pattern of 2009, which experienced a transition from 

a cold ENSO (La Niña) to warm ENSO (El Niño) during the latter half of the year (Arndt et al. 

2010).  Correlations between ENSO events and Antarctic climate patterns are highly variable, 

but studies have shown that ENSO events can lead to changes in the Rossby wave pattern of the 

Southern Hemisphere (Turner 2004).  Previous studies (Kidson 1999; Turner 2004; Fogt and 

Bromwich 2006) have shown that during warm ENSO events there typically exists a high 

pressure anomaly in the Amundsen Sea region, while in cold ENSO events a low pressure 

anomaly is present.  These anomalies are particularly present during the September-October-

November (SON) months (Fogt and Bromwich 2006).  An examination of the difference 

between 500 mb heights in 2009 and the analysis years (1993-2007) shows the existence of a 

high pressure anomaly in this area (Figure 18a).  The intensity and location of the anomaly in 

SON 2009 is similar to years in which an El Niño pattern was present, and is particularly 

comparable to the 2002 warm ENSO event (not shown), which corroborates findings from the 

2009 State of the Climate Report (Arndt et al. 2010). 

While the mean SON high pressure anomaly for 2009 coincides with previous studies 

that indicate a similar upper level pattern to other El Niño years, the September 2009 month does 

not represent the El Niño signal.  Instead, a low pressure anomaly is present in the Amundsen 

Sea during this month, indicating that the Amundsen Sea region during September 2009 was still 
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experiencing the effects of La Niña (Figure 18b).  Later in 2009, as Figure 18a shows, a wave 

train of positive and negative height anomalies consistent with the El Niño pattern can be seen in 

the South Pacific and South Atlantic (Fogt and Barreira 2010).   

 

 

Figure 18.  NCEP/NCAR reanalysis monthly means of 500 mb geopotential 
height (m) difference between a) SON 2009 and SON 1993-2007 and b) 
September 2009 and September 1993-2007. 

 

The Southern Annular Mode (SAM) indices in the latter half of 2009 were highly 

variable.  Generally speaking, a negative (positive) SAM index is correlated with higher (lower) 

pressures over the Antarctic continent (Turner 2004; Fogt and Bromwich 2006).  The SAM 

index of September 2009 was -0.78 (Fogt and Barreira 2010), indicating higher pressures over 

the interior.  Indeed, an examination of Figure 18 shows these higher pressures.   

The eastward shift in the upper-level flow pattern and surface cyclone activity, a stronger 

than average ridge on the polar plateau and stronger than average low in the Ross Sea, and 
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stronger than average winds at Rita site indicates that September 2009 was anomalous.  An 

understanding of the September 2009 meteorological pattern, and its relationship to previous 

patterns, is imperative for understanding the data collected from the UAV flights in September 

2009.  As discussed in several studies, including Bromwich and Kurtz (1984) and Bromwich et 

al. (1993), strong wind events aid in opening Antarctic polynyas, both in Terra Nova Bay and 

elsewhere across the continental coast.  In a year such as September 2009, when winds were 

stronger than previously observed, the ice-free polynya will occur more frequently and exist for 

longer periods of time.  A combination of the strong winds, colder temperatures from the 

westerly winds originating from the high polar plateau, and open ocean water will increase ocean 

to atmosphere heat fluxes during this time. An understanding of the strength of the wind flow 

during this month, as well as its origin (i.e., downslope) and how it compares to previous years 

will provide a basis to determine how the anomalous year sampled by the UAV will impact the 

Terra Nova Bay climate system in September 2009.   

 

5.  Summary  

 

The climate of the Terra Nova Bay region of Antarctica was studied from 1993-2009 

using AWS and satellite data to establish an understanding of the local flow regimes and 

atmospheric conditions of this region.  This work was in support of an observational field 

campaign conducted during September 2009 that included the use of UAVs to collect 

information regarding the atmospheric structure of Terra Nova Bay.  The analysis of weather 

patterns during the years prior to 2009 was used to place the AWS and satellite observations 

during September 2009 into a broader context. 
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  Wind and temperature data from Rita AWS, located to the west of Terra Nova Bay on 

the Northern Foothills region of the Transantarctic Mountains, were analyzed during 1993-2007 

and 2009 to determine dominant weather conditions.  As several studies have shown that 

downslope flow is strongly driven by a pressure gradient force induced by sea level cyclonic 

activity, a manual satellite analysis was produced from August to October 2006-2008 to study 

the density of cyclones throughout Terra Nova Bay and the nearby Ross Sea.  The wind, 

temperature, and cyclone datasets from 1993-2008 were then compared to AWS and satellite 

datasets collected during September 2009 to determine the similarities of the field season month 

to years prior. 

Results indicate typical winds in Terra Nova Bay originate from glaciers just west of 

Terra Nova Bay.  The majority of the winds are less than 20 m s-1, but of the winds greater than 

20 m s-1, 83% are from directions consistent with downslope flow.  An analysis of strong wind 

events found 418 events between 1993 and 2007, with 100% of these events during 2006-2007 

associated with cyclonic activity in the Ross Sea.  Winter experienced the greatest number of 

strong wind events (68%), with 14% of the total events occurring during July.  Summer season 

exhibited the least number of strong wind events, with only 1% of events occurring during 

January. 

Temperature histograms at Rita site from 1993-2007 show that 39% of temperatures fall 

in the ten-degree band between -15 and -25°C, with 45% of temperatures between -15 and 10°C, 

and only 16% of temperatures below -25°C. A satellite analysis over Ross Sea found a high-

density of mesocyclones occurring on the lee-side of Ross Island, including the southwestern 

corner of the Ross Sea as well as Terra Nova Bay.  The majority of systems classified during this 
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study period were found to have a size extent of less than 1000 km, with the remaining 16% 

identified as synoptic systems.  Most of these cyclonic systems had a comma shape. 

A comparison of the AWS and satellite data from the 1993-2007 Septembers and 

September 2009 showed an increased number of strong winds and an eastward shift of cyclonic 

activity during September 2009.  NCEP/NCAR Reanalysis 500 mb geopotential heights show an 

eastward shift in an upper level trough in September 2009, as compared to Septembers 1993-

2007, over the eastern Ross Sea.  This eastward displacement was due to changes in the Southern 

Hemisphere Rossby wave pattern, which was consistent with previous documented impacts of 

ENSO on high southern latitude circulation (Turner 2004; Fogt and Bromwich 2006). The 

intensification of the 500 mb trough and a strong ridge center over the high polar plateau 

enhanced the downslope directed pressure gradient force and thus downslope flow in the region.  

The strong flow pattern, change in cyclone activity, and shift in synoptic flow patterns, indicates 

that September 2009 was an anomalous year.  Data collected and analyzed in future work from 

the UAV flights during this month will provide exciting new insights into uncharacteristic flow 

patterns over the region. 
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Chapter 3:  A methodology for estimating sensible and latent heat fluxes from in 

situ aircraft measurements 

 

ABSTRACT.   In September 2009, several Aerosonde® unmanned aerial vehicles (UAVs) 

were flown from McMurdo Station to Terra Nova Bay, Antarctica, with the purpose of collecting 

three-dimensional measurements of the atmospheric boundary layer (ABL) overlying a polynya.  

Temperature, pressure, wind speed, and relative humidity measurements collected by the UAVs 

were used to calculate sensible and latent heat fluxes (SHF and LHF) during three flights.  

Fluxes were calculated over the depth of the ABL using a robust and innovative method in which 

only measurements of mean atmospheric state (no transfer coefficients) were used.  The initial 

flux estimates assumed that the observations were Lagrangian. Subsequent fluxes were estimated 

that included modifications to incorporate adiabatic and non-Lagrangian processes as well as the 

mass below flight level.. The SHF ranged from 12 to 485 W m-2, while the LHF ranged from 56 

to 152 W m-2.   The importance of properly measuring the variables used to calculate the 

adiabatic and non-Lagrangian processes is discussed.  Uncertainty in the flux estimates is 

assessed both by varying the calculation methodology and by accounting for observational errors.  

The SHF proved to be most sensitive to the temperature measurements, while the LHF was most 

sensitive to relative humidity.  All of the flux estimates are sensitive to the depth of the boundary 

layer over which the values are calculated.  This manuscript highlights these sensitivities for 

future field campaigns to demonstrate the measurements most important for accurate flux 

estimates. 
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1.  Introduction 

 

The coastal landscape of Antarctica is dominated by fierce winds that originate over the 

continental interior, introducing cold, dry air to a relatively warmer and moister atmospheric 

boundary layer (ABL) at the outlet of glacial valleys.  Coastal polynyas are formed when this 

strong off-continental flow pushes ice offshore, leaving an area of open water or thin sea ice 

adjacent to the coast.  In Terra Nova Bay (TNB), located in the western Ross Sea (Figure 1), 

strong flow that can be greater than 40 m s-1 (Bromwich 1989; Hauser et al. 2002; Knuth and 

Cassano 2011) produces a polynya that is a dominant feature throughout the winter months.   As 

cold and dry air is advected over the polynya, the ensuing large ocean-atmosphere temperature 

and humidity differences can lead to large sensible and latent heat fluxes (SHF and LHF).  This 

modification of the near surface air above the polynya in TNB has been shown to enhance 

mesocyclone development, sea ice production, and Antarctic Bottom Water (Budillon et al. 

2003; Carrasco et al. 2003; Petrelli et al. 2008; Orsi and Wiederwohl 2009). 

To understand the conditions within the ABL over the polynya and to quantify air-sea 

interactions in TNB from observational data, several unmanned aerial vehicles (UAV) were 

flown over TNB in September 2009 to collect information on the three-dimensional state of the 

atmosphere (Cassano et al. 2010; Knuth et al. 2013).  Using the data collected during these 

flights, SHF and LHFs are calculated to quantify air-sea interactions in the region.   

A methodology to calculate the heat fluxes is described, where only mean atmospheric 

state data from the UAV are utilized and a bulk transfer coefficient is not used.  This method 

initially considers a Lagrangian approach to estimating the fluxes, with corrections to incorporate 

other processes considered.  The purpose of this paper is to describe this method of calculating 
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heat fluxes while highlighting the sensitivity of the necessary corrections on estimating the 

fluxes.  Understanding this sensitivity will be critical for other researchers flying scientific 

missions to ensure the data most sensitive to the flux estimations are observed well.  As such, the 

uncertainty in the flux calculations will also be assessed from both a methodological as well as 

an instrumental perspective.  Section 2 describes the UAV flights, Section 3 discusses the 

methodology used to calculate the fluxes, Section 4 describes the results and uncertainty, and 

Section 5 provides a summary. 

 

2.  Aerosonde Flights 

 

 In 2009, sixteen Aerosonde® UAV missions were flown from McMurdo Station, 

Antarctica, with six local test missions, two failed missions, and eight missions to TNB (Cassano 

et al. 2010; Knuth et al. 2013).  The UAV had a wingspan of 3 m, a weight of 15 kg, and a 

payload capacity of 2-5 kg.  The aircraft had a range of over 1000 km, and flew at approximately 

150-3000 m altitude during the flights.  The flights were flown as low as possible to ensure the 

most accurate flux estimates, but could not be flown below 150 m due to concerns about icebergs 

as well as inaccuracies in the Global Positioning System (GPS) data.  Data was telemetered back 

to the field team in McMurdo in real time by an on board data logger (Knuth et al. 2013). 

The UAV carried several instruments on board, including temperature, pressure, and 

relative humidity sensors that recorded data with a 10 second temporal resolution (Knuth et al. 

2013).  Wind speed measurements were made using a combination of air speed calculated by the 

on-board pitot tube and ground speed observations from the GPS.  Due to the lack of a 

magnetometer, periodic aircraft maneuvers were performed to find wind direction.  These wind 
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finding maneuvers involved periodic sweeps across the incoming air stream where the maximum 

air speed measured by the pitot tube was found.  Specific humidity was calculated from the 

relative humidity and pressure measurements. 

 On days when the flight mission was to estimate the turbulent fluxes over the polynya, 

the UAV flew north from McMurdo toward TNB along the coast.  Once over the Drygalski Ice 

Tongue (DIT) the UAV would descend to ~150-240 m, and a roughly south-north coastline 

parallel flight leg across TNB was flown to find the location of maximum wind speed (the 

downslope wind jet) (Figure 19).  Once this determination was made, the UAV was then flown 

downwind of the coast within this jet.  Flying downwind from the coast within the jet achieved 

two goals:  1) to sample the area of TNB that would have the strongest air-sea fluxes; and 2) to 

document the downstream evolution of the ABL as the continental air mass was modified by the 

air-sea fluxes.  Along this approximately west-east cross section, vertical profiles were collected 

approximately every 20 km across TNB (Figure 19).  The UAV ascended and descended within 

the profiles by spiraling with a 1 km width; however, not all profiles contained useable data 

within each ascent or descent.   

 Of the sixteen UAV flights, three flights – 18 September, 23 September, and 25 

September – were used to calculate heat fluxes as part of this study. Three profiles were 

collected on 23 and 25 September (Profiles 1-3), where Leg 1 uses data between Profiles 1 and 2, 

and Leg 2 between Profiles 2 and 3 (Figure 19).  On 18 September, four profiles were collected, 

but only the furthest downstream pair – Profiles 3 and 4 (corresponding to Leg 3), are used in 

this study.  Using the data from these flights, a methodology for calculating the fluxes was 

developed, and is described in the following section. 
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Figure 19.  Flight paths on 18, 23, and 25 September 2009.  Markers indicate 
profile locations along flight path.  Profiles 1-4 are labeled as P1, P2, P3, and 
P4.  Eneide AWS is labeled as “END”.   
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3.  Flux Calculation Methodology and Corrections 

 

 The methodology described below uses atmospheric data (temperature, pressure, wind 

speed, and moisture) to estimate changes in the energy present in the atmosphere over the UAV 

flight path.  The general approach, described in 3a, uses methods similar to those of Kottmeier 

and Engelbart (1992) and Serreze et al. 1992, as well as those in the ocean community to 

estimate carbon dioxide flux through inverse modeling (Tarantola 1987; Enting et al. 1993; 

Bosquet et al. 1999).  However, the methodology outlined in this work provides a much more 

extensive analysis of the non-Lagrangian correction methods (outlined in 3c), making this work 

unique. 

 

a. SHF formulation 

 

 Using a Lagrangian approach, the heat fluxes are estimated by examining changes in the 

state of an air parcel along a UAV flight path.  An estimation of the SHF can be found from the 

thermodynamic energy equation (TEE) written in finite difference form: 

 

𝑄! = 𝑐!
∆!
∆!
− !

!
∆!
∆!

     (1) 

 

where cp is the specific heat of dry air at constant pressure (1004 J kg-1 K-1), T is the air 

temperature (K), t is time it takes the air parcel to travel between concurrent profiles, ρ is the 

density of the air (kg m-3), and p is the pressure (Pa).  The density is calculated using virtual 

temperature and pressure from the UAV data.  𝑐!
∆!
∆!
 is proportional to the time rate of change of 
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temperature and !
!
∆!
∆!

 is the adiabatic term, which are both estimated from the UAV observations.  

It is assumed that changes in Qs, the diabatic heating term (here in units of J kg-1 s-1), are only 

due to surface fluxes from the polynya into the air parcel.  All other diabatic processes, such as 

entrainment, subsidence, and radiation, are assumed to be negligible as part of this study.  While 

neglecting these processes may impact the results, the necessary observations to quantify these 

terms are not available for these flights.   

 Equation 1 is modified by multiplying by ρdz, the mass per unit area of the column of 

interest, to put the equation in terms of W m-2 such that: 

 

𝜌∆𝑧𝑄! =
!!!∆!∆!!∆!∆!

∆!
           (2) 

 

where z is the UAV height (m) at some point in the ABL profile.  The term on the LHS is the 

SHF in units of W m-2, while the RHS represents the change in heat content (HC) adjusted by 

adiabatic processes over the ABL over time.  For these calculations the air parcel is assumed to 

extend over the depth of the ABL, since this is the portion of the atmosphere directly influenced 

by the surface.  The depth of the ABL is estimated from the UAV observed potential temperature 

profiles along the flight path.   

 Considering the change in HC throughout the depth of the ABL at a single point in time 

and (for the moment) neglecting adiabatic processes, the RHS becomes: 

 

𝐻𝐶 = 𝑐!𝜌𝑇∆𝑧     (3) 
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where the HC is being summed over the depth of the ABL (UAV flight level to the ABL top).  

This term represents the amount of energy present over the entire depth of the ABL within each 

profile measured along the UAV flight path.  The SHF (in W m-2) is then calculated by 

examining the change in HC over the amount of time, δt, it takes the air parcel to travel between 

the upstream and downstream profiles, or 

 

           (4) 

 

Because the SHF in Equation 4 is valid between two concurrent profiles, there is one value 

estimated for each flight leg.  For example, if a flight leg has three profiles, there will be two 

SHF values – one valid between Profiles 1 and 2, and one valid between Profiles 2 and 3.   

 Equations 3 and 4 are critical to this study, as these indicate how changes in the 

atmospheric state will alter the HC of the air parcel, which will in turn be used to estimate the 

SHF. The derivation of these equations assumes the observations are exactly Lagrangian and 

neglect adiabatic changes in temperature between pairs of profiles. We will use this simplest 

estimate of the SHF as a baseline for comparing more realistic flux estimates that include 

processes such as adiabatic temperature changes and the non-Lagrangian nature of the 

observations. To account for this, the HC estimated in Equation 3 will be altered for each process 

that influences the SHF, and corrections to the purely uncorrected HC (given in Equation 3) will 

be made to estimate a new flux.  Each of these corrections (described below) will be compared to 

the uncorrected SHF to estimate the relative impact of each correction on the SHF. 

 

 

! 

SHF =
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b. Adiabatic Processes 

 

As shown in Equation 1, as the air parcel travels from the upstream to the downstream 

profile, changes in the temperature of the column occur due to both diabatic and adiabatic 

processes.  When calculating the SHF, only diabatic changes in temperature should be 

considered and adiabatic changes removed.  To account for and remove changes in the 

temperature due to adiabatic processes, Poisson’s equation, derived from the TEE, can be used to 

estimate the adiabatic temperature of the air parcel: 

 

𝑇!"# = 𝑇!!"#
!!
!!

!/!!
     (5) 

 

where Tadb is the adiabatic temperature the upstream air column would have if it moved 

downstream at the new pressure p2.  T1obs is the UAV observed mean temperature of the 

upstream air column, p1 and p2 are the average pressures of the upstream and downstream 

columns, and R is the gas constant for dry air (287 J kg-1 K-1).  Then, to estimate the diabatic 

temperature of the downstream air column, we use: 

 

𝑇!!"# = 𝑇!!"# − (𝑇!"# − 𝑇!!"#)    (6) 

 

where T2obs is the UAV observed mean temperature of the downstream air column, and the term 

in parentheses on the RHS is the adiabatic temperature change experienced as the air parcel 

moves from the upstream to the downstream profile location.  
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 Finally, to estimate a SHF that excludes adiabatic processes, the temperature in Equation 

6 is used to estimate the downstream HC, so that Equation 3 now becomes 

 

𝐻𝐶!"#$ = 𝑐!𝜌𝑇!!"#∆𝑧     (7) 

 

and Equation 4 is used to estimate the SHF.  

 

c. Non-Lagrangian Processes 

 

The above formulations describe fluxes that use a Lagrangian approach, assuming the 

UAV measures the same air parcel at the location of the downstream profile as it did at the 

upstream.  In reality, the UAV does not fly at the same speed as the air parcel, and this non-

Lagrangian nature of the observations needs to be accounted for in the flux estimations within 

the TEE.  Non-Lagrangian processes will be used to correct the temperature and pressure 

variables to consider the conditions that should have been measured if the UAV had followed the 

air parcel.  This correction will consider two perspectives:  time and space, with the space 

perspective separated into two distinct methodologies.  Both perspectives are equally viable, but 

differ in the observations used to implement them. 

 

i. Time Perspective 

 

Figure 20a shows a schematic diagram of the time perspective used to account for the 

non-Lagrangian nature of the UAV observations. In this schematic, the u subscript represents the 
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UAV, and the p subscript represents the parcel.  Consider two profile locations, P1 (at position 

x1) and P2 (at position x2), separated by a distance Δx = x2 – x1.  At time t1, both the UAV and air 

parcel are located at P1 (xu,1 = xp,1, tu,1 = tp,1).  As the parcel and UAV move toward P2, they 

travel at different speeds, reaching the location of P2 (at distance x2) at different times (xu,2 = xp,2, 

tu,2 ≠ tp,2).  This time mismatch needs to be corrected with (in terms of temperature): 

 

𝑇!"## = − !"
!"
𝛿𝑡     (8) 

 

where Tcorr represents the correction to the Lagrangian temperature (or the non-Lagrangian 

correction), is the Eulerian time rate of change of temperature, and is the difference in time 

(tu,2-tp,2) between when the UAV and air parcel reach the location of P2.  It is important to note 

that not only is temperature corrected in this way, but also pressure.   

The Eulerian time rate of change term ( ) is estimated using data from Eneide AWS (Figure 

19) because there is no stationary data over the UAV flight path that allows for an estimation of 

the Eulerian time rate of change term.  In an analysis conducted by Knuth and Cassano (2011), 

Rita AWS was shown to be the most representative weather station for conditions over TNB.  

However, due to instrument failures and a loss of data during September 2009 at that site, Eneide 

was chosen for this study.  Unfortunately, Eneide (as well as all other AWS in the region) is a 

poor choice to use for estimating the term.  Eneide is approximately 35-70 km from the 

profiles being collected along the polynya, and in a completely different topographical regime.  

As well, the time resolution of the AWS data is hourly, while it takes approximately 15-20 
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minutes for the UAV to fly between profiles.  The lack of appropriate data to estimate the time 

correction for the 2009 UAV flights raises concerns about the reliability of time perspective 

corrections for this field campaign, and as such, a discussion of the time corrected fluxes is not 

included in this work.  In a subsequent set of UAV flights over TNB in September 2012, 

Eulerian measurements of the atmosphere were collected by the UAV over the polynya that 

make an appropriate estimate of the time-only corrections possible.   

 

ii. Space Perspective 

 

 There are two space perspective scenarios to consider when correcting for the non-

Lagrangian nature of the UAV observations. The first considers a scenario where the air parcel 

and UAV start at P1 at the same time but at some later time are not collocated. The second 

considers a scenario where the air parcel and UAV are at P2 at the same time and are not 

collocated at the initial time. Each method should provide similar answers, and both are 

described below. 

Figure 20b is a schematic illustrating the first space perspective scenario. Again, P1 and 

P2 are separated by a distance Δx, and both the UAV and air parcel are located at P1 (xu,1 = xp,1) 

at the initial time (tu,1 = tp,1).  As the parcel and UAV move toward P2, they travel at different 

speeds.  In the example illustrated in Figure 20b, the UAV travels slower than the air parcel.  

Therefore, when tp2=tu2 and the UAV is located at P2, the air parcel is located at some point 

downstream, and xu,2 ≠ xp,2.  This space mismatch needs to be corrected with (in terms of 

temperature): 
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a) 

 

 

b) 
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c) 

Figure 20.  Schematic of the time (a) and space (b and c) perspectives of the 
non-Lagrangian approach to the heat flux calculations.  The circle represents the 
air parcel, and the plane outline represents the UAV.    P1 and P2 represent 
Profile 1 and Profile 2, x indicates distance, t indicates time, u represents the 
UAV, and p represents the parcel.  The “1” and “2” subscripts indicates two 
different points in space or time. The equal P1 space perspective is shown in 
panel b and the equal P2 space perspective is shown in panel c.  

 

𝑇!"## = − !"
!"
𝛿𝑥          (9) 

 

where  is the temperature gradient found from the difference in the mean column 

temperatures at the start and end of the flight path, and  is the difference in space (xp,2-xu,2) 

between the air parcel location and the UAV location (P2). 

Figure 20c is a schematic illustrating the second space perspective scenario where the 

UAV and air parcel are located at P2 (xu,2 = xp,2) at the same time (tu,2 = tp,2).  Because the air 

parcel and UAV travel at different speeds, they must have originated at different locations 
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upstream.  In the example illustrated in Figure 20c, the air parcel, located at P1 at tu,1, travels 

faster than the UAV.  At this same time, the UAV is located some distance downstream of P1 so 

that xu,1 ≠ xp,1.  This space mismatch, much like the equal P1 scenario described in Figure 20b, is 

also corrected with Equation (9). 

 A SHF that accounts for the non-Lagrangian processes illustrated in Figure 20b can be 

estimated by altering the downstream HC in Equation 3 such that  

 

𝐻𝐶!"#$ = 𝑐!𝜌𝑇!!!∆𝑧     (10) 

 

where T2LG is the downstream air column temperature that only incorporates Lagrangian 

processes.  This temperature is found by adjusting the observed downstream temperature by the 

non-Lagrangian temperature given by Equation 9.  Equation 4 is then applied to estimate the 

SHF. Alternately a correction for the upstream HC can be applied based on the case illustrated 

Figure 20c. 

 In the space correction detailed above, the estimated temperature gradient based on the 

UAV measurements is considered instantaneous over the amount of time it takes the air parcel to 

fly to the downstream profile.  An adjustment to the temperature gradient that considers changes 

over time should also be considered.  However, an appropriate correction would need to consider 

data from a local AWS site such as Eneide, and this data has already been deemed inappropriate 

for the 2009 flights.  Therefore, for the final SHF (and LHF) calculations, a correction to the 

estimated  for changes due to time along the flight path is not considered.  
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d. Changes in the Atmosphere Below Flight Level 

 

The flux estimates described above neglect changes in the heat content in the atmosphere 

below flight level, which likely underestimates the fluxes described previously.  To account for 

this, we estimate the change in heat content below the flight level by modifying Equation 3 to 

give: 

 

ΔHC = ΣcpρΔTΔz     (11) 

 

where the summation is evaluated over the depth of the layer between the lowest UAV flight 

level and the surface and ΔT is the change in temperature between pairs of profiles and includes 

the non-Lagrangian and adiabatic corrections described previously. Since observations of the 

temperature below flight level are not available we assume that ΔT below the UAV flight level is 

the same as that found between the flight level and ABL top. Given that the ABL is usually well 

mixed this is a reasonable assumption. The additional heat content calculated with Equation 11 is 

added to the previously estimated heat content value from flight level to the top of the ABL and a 

new SHF is calculated. This SHF is the final, fully corrected flux (hereafter termed the “final 

flux”). 

The above discussion highlights several adjustments to the uncorrected flux necessary for 

providing the most accurate estimate of the SHF.  In this study, the following fluxes will be 

discussed:  uncorrected flux, adiabatic-only (described in Section 3b), space-only (Section 3cii), 

space-adiabatic (for both described scenarios), and the final flux estimate.  The final fluxes adjust 
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temperatures to account for both adiabatic and non-Lagrangian processes, as well as the heat 

content below flight level. 

 

e. Latent Heat Fluxes 

 

Calculation of the LHF will follow a similar formulation to the SHF.  The water vapor 

conservation equation (in units of J kg-1 s-1) in finite difference form is: 

 

 𝑄! = 𝐿!
∆!
∆!
           (12) 

 

where Lv is the latent heat of vaporization at 0°C (2.5x106 J kg-1) and q is the specific humidity.  

Equation 12 is converted to units of W m-2 by multiplying both sides by the mass per unit area of 

the column (ρΔz).  The diabatic moisture term with respect to latent heating Ql incorporates 

surface fluxes, entrainment, and any latent heat release due to changes in phase, but we will 

assume that all changes to Ql are due to surface fluxes.   

Following on the methods of calculating the SHF, it is also useful to define the latent heat 

content (LHC) of the air parcel in each profile within the ABL to be: 

 

 𝐿𝐻𝐶 = 𝜌 𝐿!𝑞∆𝑧          (13) 

 

The LHF is then calculated by considering the difference in LHC measured within each profile 

along the UAV flight path over the amount of time δt it takes the air parcel to travel between the 

upstream and downstream profiles, 
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𝐿𝐻𝐹 = !"!!"#$!!"#_!"
!"

    (14) 

 

Equations (12-14) yield the uncorrected LHF for this study. 

In order to make the most accurate estimate of the LHF non-Lagrangian corrections 

similar to the SHF must be applied.  In September 2009, there was no relative humidity data 

from the AWS, and thus a time-only correction cannot be made.  Following on Section 3cii, the 

space-only correction to the specific humidity data is: 

 

𝑞!"## = − !"
!"
𝛿𝑥     (15) 

 

where the terms in the equation are as listed above.  Equation 13 is then modified to become 

 

𝐿𝐻𝐶 = 𝜌𝐿!𝑞!!"∆𝑧         (16) 

 

and Equation 14 is used to estimate the LHF that incorporates non-Lagrangian processes.  The 

correction to account for the LHC below flight level is implemented in a manner similar to what 

was described in Section 3d.  

 

4.  Results  

 

a. ABL Selection 
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Because the HC and LHC, and thus estimated fluxes, depend greatly on the depth of the 

ABL, the top of the ABL was determined to be the point at which the upstream and downstream 

potential temperature profiles are no longer clearly distinguishable from each other.  This 

criterion was used since we expect that the surface fluxes experienced by an air parcel will 

modify the atmospheric state in the lowest portion of the profile, while conditions above the 

influence of the surface fluxes should remain relatively constant between pairs of profiles. 

However, some flight days displayed clear features, such as inversions, capped mixed layers, or 

changes in mixing ratio, which indicate the presence of a convective ABL (CBL), and in these 

instances the ABL height is chosen accordingly. 

On 18 September (Figure 21), the top of the ABL was defined at 457 m.  Below this point, 

the lapse rate in the downstream profile (Profile 4) is decreasing at the dry adiabatic lapse rate, 

whereas above 457 m, the lapse rate shifts to a positive value.  The specific humidity profiles 

also support an ABL depth of 457 m as a shift in the profiles from decreasing specific humidity 

to a more well-mixed value is apparent, particularly in Profile 4.  Given the complexity of the 

ABL profiles, alternative ABL heights (and impacts on flux estimates) are explored in Section 4d. 

On Leg 1 on 23 September (Figure 22), an ABL height of 720 m was determined.  Above 

this point, the upstream and downstream profiles are similar, while below 720 m the downstream 

profile (Profile 2) is clearly warmer throughout the layer than the upstream profile (Profile 1).  In 

Profile 2, the layer between 420 and 720 m exhibits sharp spikes in the potential temperature, 

where the colder temperatures show conditions similar to Profile 1, and the warmer temperatures 

similar to Profile 2.  We suspect that these spikes are not noise but an example of the UAV 

sampling the convective plumes of the ABL alongside the conditions in the profile that are not 

yet impacted by convection.  This indicates the top of the ABL on this day is not at one level, but 
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varies vertically over this 300 m distance. The specific humidity profiles also show a clearly 

moister ABL in the downstream profile below 720 m with little difference above this height. 

 

Figure 21.  The upstream (blue) and downstream (red) potential temperature 
(top), temperature (bottom left),  and specific humidity (bottom right) profiles 
for Leg 3 on 18 September.  The black horizontal line represents the best 
estimate of the ABL height.  
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Figure 22.  The upstream (blue) and downstream (red) potential temperature 
(top), temperature (bottom left),  and specific humidity (bottom right) profiles 
for Leg 1 on 23 September.  The black horizontal line represents the best 
estimate of the ABL height.  
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Figure 23.  The upstream (blue) and downstream (red) potential temperature 
(top), temperature (bottom left),  and specific humidity (bottom right) profiles 
for Leg 2 on 23 September.  The black horizontal line represents the best 
estimate of the ABL height.  
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The height of the ABL for Leg 2 on 23 September (Figure 23) was determined to be at 

540 m.  This flight leg exhibited most clearly the characteristics of a CBL, with a well-mixed  

layer present from flight level to 540 m in the downstream profile (Profile 3).  This layer is 

topped by a capping inversion at 540 m that extends to 600 m. The specific humidity profiles are 

also well mixed in this layer with a rapid decrease in specific humidity above 540 m, consistent 

with the ABL top being located at this height.  

On 25 September, an ABL depth of 240 m was determined for Leg 1 (Figure 24), with 

Profile 2 being warmer than Profile 1.  Above this level, the two profiles exhibit similar 

characteristics to approximately 525 m, above which another air mass is likely impacting 

conditions within the profiles.  The specific humidity profiles also show clearly distinct values 

below 240 m, although the values don’t appear well-mixed until approximately 280 m. 

For Leg 2 on 25 September, the two profiles exhibit similar characteristics throughout the 

entire depth of the UAV profile (Figure 25).  However, a nearly well-mixed layer topped by a 

capping inversion in Profile 3 shows that the ABL top is likely at 250 m on this day. The specific 

humidity profiles support this contention. The downstream profile shows nearly constant specific 

humidity up to 250 m with a rapid drop above this height, consistent with an ABL depth of 250 

m. 

 

b. Sensible Heat Fluxes 

 

From the methods described in Section 3, five variations of SHF have been calculated – 

the uncorrected, adiabatic-only, space-only, space-adiabatic, and final fluxes for the P1 and P2 

scenarios.  This section will briefly examine the uncorrected fluxes, then describe each  
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Figure 24.  The upstream (blue) and downstream (red) potential temperature 
(top), temperature (bottom left),  and specific humidity (bottom right) profiles 
for Leg 1 on 25 September.  The black horizontal line represents the best 
estimate of the ABL height.  
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Figure 25.  The upstream (blue) and downstream (red) potential temperature 
(top), temperature (bottom left),  and specific humidity (bottom right) profiles 
for Leg 2 on 25 September.  The black horizontal line represents the best 
estimate of the ABL height.  
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correction made to understand how the addition of other processes change the original, 

uncorrected flux estimate. 

The estimates of the SHF are influenced by the temperature difference between the two 

profiles, the depth of the ABL, and the amount of time it takes the air parcel to travel between 

profiles (which is influenced by the wind speed) (Table 2).  A larger temperature difference 

indicates a larger amount of energy being added to the air parcel as it moves downstream, which 

will lead to a larger SHF.  A deeper ABL will also yield a larger flux due to a greater amount of 

mass being heated in the air column.  An increased wind speed will yield a faster air parcel travel 

time that will also increase the flux.  

Examining the uncorrected fluxes for each flight day (Table 2) shows a range of SHF 

between -1 and 331 W m-2, with the largest flux occurring in Leg 1 on 23 September and the 

smallest on Leg 2 of 25 September (Table 2).  Despite Leg 1 on 23 September having a higher 

SHF than all other flight days, Leg 1 on 25 September exhibits the strongest wind speed and 

largest difference in temperature between the upstream and downstream profiles (Table 2).  This 

seeming disparity occurs due to the depth of the ABL over which the HC is calculated – the ABL 

depth on the 23rd is over 475 m greater than on the 25th (Table 2).  As such, the difference in HC 

per unit meter between the two concurrent profiles is over 6.6x105 J m-2 greater on the 23rd than 

the 25th, leading to a larger SHF being estimated on the 23rd.  

The adiabatic-only correction will decrease (increase) the flux due to an increase 

(decrease) in pressure along the flight path.  An increase in pressure downwind will lead to a 

heating of the air parcel due to adiabatic effects.  Because this adiabatic heating needs to be 

removed to estimate an accurate diabatic SHF, this increase in pressure will act to decrease the 

flux.  The opposite is true for a decrease in pressure downwind.  In Table 2, ΔP describes the  
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 18 Sept. 
Leg 3 

23 Sept. 
Leg 1 

23 Sept. 
Leg 2 

25 Sept. 
Leg 1 

25 Sept. 
Leg 2 

WS (m s-1) 19.6 18.2 16.4 22.2 18.7 
ABL depth 

above flight 
level (m) 

220 564 383 76 86 

ABL depth 
below flight 

level (m) 

237 157 157 160 164 

Total ABL 
depth (m) 

457 721 540 236 250 

Uncorrected 
ΔT (K) 0.4 0.7 0.4 1.1 0 

SHF (W m-2) 49 331 121 75 -1 
Adiabatic-only correction 

ΔT (K) 0.3 0.6 0.4 1.1 0.1 
ΔP (Pa) 45 90 3 101 -146 

SHF (W m-2) 44 297 120 70 25 
ΔSHF (W m-2) -5 (-10%) -34 (-10%) -1 (0%) -5 (-7%) 26 (26%) 

Space-only correction – P1 equal 
ΔT (K) 0.9 0.8 0.4 1.9 0 

SHF (W m-2) 123 412 129 128 0 
ΔSHF (W m-2) 74 (151%) 81 (24%) 8 (7%) 53 (71%) -1 (1%) 

Space-only correction – P2 equal 
SHF (W m-2) 124 414 129 128 0 
ΔSHF (W m-2) 75 (153%) 83 (25%) 8 (7%) 53 (71%) -1 (1%) 

Space-adiabatic correction – P1 equal 
ΔT (K) 0.8 0.7 0.4 1.8 0 

SHF (W m-2) 111 371 128 120 11 
ΔSHF (W m-2) 62 (126%) 40 (12%) 7 (6%) 45 (60%) 12 (12%) 

Final correction – P1 equal 
SHF (W m-2) 232 472 185 385 12 
ΔSHF (W m-2) 183 

(373%) 
141 (43%) 64 (53%) 310 (413%) 13 (13%) 

 
Table 2.  Values for average wind speed over the ABL (WS),  various ABL 
depths, temperature difference between pairs of profiles (ΔT),  estimated sensible 
heat flux (SHF),  pressure difference between pairs of profiles (ΔP),  change in 
sensible heat flux from uncorrected value (ΔSHF),  and the correction to the 
observed temperature (Tcorr) for flight legs on 18, 23, and 25 September 2009.  
Percent difference comparing the correction to the uncorrected flux is given in 
parentheses. 
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difference in pressure between the downstream and upstream profiles (ΔP=Pdown-Pup).  Table 2 

shows that on most flight legs, pressures increased downwind (positive ΔP), and the adiabatic- 

only correction was negative, leading to a decrease in the uncorrected flux.  On Leg 2 on 25 

September, however, the pressure decreased, leading to a positive adiabatic-only correction. 

The adiabatic-only corrections for all five flight legs ranged from -34 to 26 W m-2.  

Considering only the relative magnitude of the corrections, the largest magnitude correction was 

on Leg 1 on 23 September (34 W m-2) (Table 2), and the smallest (1 W m-2) on Leg 2 on 23 

September (Table 2).  The adiabatic correction had the largest relative impact on Leg 2 on 25 

September, altering the uncorrected fluxes by 26%.  The pressure change was also largest on this 

flight leg.  The adiabatic correction had the smallest relative difference on Leg 2 on 23 

September, where the adiabatic correction changed the uncorrected flux 0% (Table 2).  

The space-only correction depends on two main factors:  the temperature gradient along 

the flight leg (𝜕𝑇/𝜕𝑥), and the space difference δx between the UAV and air parcel locations 

(see Section 3cii).  A positive temperature gradient indicates an increasing temperature with 

increasing distance downwind. A positive δx indicates a situation where the UAV is further 

downstream than the air parcel – in other words, the UAV is flying faster than the air parcel.  It is 

the product of these terms, as given in Equation 9, that controls whether the space-only 

correction will be positive or negative, and thus act to increase or decrease the uncorrected flux. 

The space-only corrections for the P1 equal scenario ranged from -1 to 81 W m-2 (Table 

2), with the correction term on Leg 1 on 23 September being the largest, and Leg 2 on 25 

September the smallest.  The space-only correction had the largest impact on the 18th, however, 

adjusting the uncorrected fluxes by 151%.  On Leg 1 on 25 September, the relative impact of the 

space-correction altered the uncorrected fluxes by half that of the 18th, and the other three days 
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had a relatively small adjustment.  For all flight days, the Tcorr term is positive, indicating an 

increase in the uncorrected flux.  The space corrections for the P2 equal scenario are nearly 

identical to the P1 equal scenario, with values ranging from -1 to 83 Wm-2, and the relative 

impacts ranging from 1% to 153%. This indicates that either of the space correction methods is 

appropriate.  

Perhaps the most important result from the space-only corrections described above is the 

similarity of both the P1 and P2 space-only fluxes, showing the robustness of this methodology.  

Each perspective is a different approach to an equally scientifically viable method, which should, 

and does, provide similar answers.  For the P1 and P2 equal scenarios, the space-only fluxes vary 

by at most 2 W m-2, which is well within the uncertainty of the fluxes due to observational 

uncertainty (see below).  Because of this, the remaining discussion in the text assessing 

individual corrections (such as the space-adiabatic and incorporating the HC and LHC below 

flight level), will only include a discussion of the P1 estimates.  The final range of fluxes given at 

the end of this study, however, will include both the P1 and P2 estimates.    

The space-adiabatic correction incorporates both the space-only and adiabatic corrections 

and uses the terms that impact each individual correction to adjust the uncorrected flux.  The 

relative strengths of each correction term will determine how much the uncorrected flux is 

adjusted.  Over all flight legs but Leg 2 on 25 September, the space-only correction is larger than 

the adiabatic correction, indicating that the non-Lagrangian term is more important than the 

adiabatic term on these flight legs for correcting the fluxes.  The space-adiabatic correction terms 

for both the P1 and P2 equal scenarios are nearly identical, with the P1 equal scenario ranging 

from 7 to 62 W m-2 and the P2 equal scenario ranging from 7 to 63 W m-2.  For both scenarios, 

the largest correction term is on 18 September and the smallest on Leg 2 on 23 September.  The 
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largest and smallest impacts on the uncorrected flux occurred on these days at 126-129% and 6%, 

respectively. 

The final corrected fluxes, which include the space-only, adiabatic, and heat content 

below flight level corrections, range from 12 to 472 W m-2 (Table 2).  Incorporating the ABL HC 

below the flight level has a large impact on the fluxes for most of the flight legs.  The largest 

impacts are on Leg 1 on the 25th and the 18th, where this correction changes the uncorrected flux 

by 413% and 373%, respectively.  This is a ~350% and ~250% change from the space-adiabatic 

correction (Table 2).  These large corrections from incorporating the HC below flight level are 

because the depth of the ABL below the flight level (160 and 237 m) is a large percentage of the 

total ABL depth (236 and 457 m) (Table 2).  The ABL depth is also small on Leg 2 on the 25th 

(250 m), but the changes in the atmospheric variables between the two profiles are comparatively 

smaller, and so the addition of the HC from below flight level does not have as large of an 

impact. 

 

c. Latent Heat Fluxes 

 

Similar to the SHF, the estimates of the LHF are influenced by the specific humidity 

difference between the two profiles, the depth of the ABL, and the amount of time it takes the air 

parcel to travel between profiles (which is influenced by the wind speed) (Table 3).  A larger 

specific humidity difference indicates a larger amount of moisture being added to the air parcel 

as it moves downstream, which will lead to a larger increase in the amount of LHC in the column 

and thus larger LHF.  The uncorrected LHF estimates range from 11 to 98 W m-2 for each of the 

five flight legs, with the largest flux occurring in Leg 2 on 25 September, and the smallest on 
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Leg 1 on 25 September (Table 3).  The largest difference in specific humidity between 

concurrent profiles occurs in Leg 2 on 25 September, with the smallest occurring on 18 

September (Table 3).  The difference in LHF between 18 September and Leg 1 on the 25th is 

only 8 W m-2, with the smaller ABL depth on the 25th leading to a smaller flux despite a slightly 

higher wind speed and specific humidity difference. 

 
 18 Sept. 

Leg 3 
23 Sept. 

Leg 1 
23 Sept. 

Leg 2 
25 Sept. 

Leg 1 
25 Sept. 

Leg 2 
WS (m s-1) 19.6 18.2 16.4 22.2 18.7 
ABL depth 

above flight 
level (m) 

220 564 383 76 86 

ABL depth 
below flight 

level (m) 

237 157 157 160 164 

Total ABL 
depth (m) 

457 721 540 236 250 

Uncorrected 
Δq (kg kg-1) 5.7x10-5 7.8x10-5 8.2x10-5 6.7x10-5 1.7x10-4 

LHF (W m-2) 19 96 68 11 98 
Space-only correction – P1 equal 

Δq (kg kg-1) 1.4x10-4 9.7x10-5 8.7x10-5 1.1x10-4 8.2x10-5 
LHF (W m-2) 46 119 72 19 51 
ΔLHF (W m-2) 27 (142%) 23 (24%) 4 (6%) 8 (73%) -47 (-48%) 

Space-only correction – P2 equal 
LHF (W m-2) 56 121 73 20 43 
ΔLHF (W m-2) 37 (195%) 25 (26%) 5 (7%) 9 (82%) -55 (-56%) 

Final correction – P1 equal 
LHF (W m-2) 98 151 100 56 130 
ΔLHF (W m-2) 79 (416%) 55 (57%) 32 (47%) 45 (409%) 13 (33%) 

 
Table 3.  Values for average wind speed over the ABL (WS),  ABL depth (ABL 
depth),  specific humidity difference between pairs of profiles (Δq),  estimated 
latent heat flux (LHF),  change in latent heat flux from uncorrected value (ΔLHF),  
and the correction to the observed specific humidity (qcorr) for flight legs on 18, 
23, and 25 September 2009.  Percent difference comparing the correction to the 
uncorrected flux is given in parentheses.  
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The space-only LHF correction depends on two main factors:  the specific humidity 

gradient downwind (𝜕𝑞/𝜕𝑥), and the space difference δx (see Section 3cii), where the product of 

these terms given by qcorr (Equation 15) determines whether this correction will increase 

(positive qcorr) or decrease (negative qcorr) the uncorrected LHF.  The space-only LHF 

corrections for the P1 equal scenario range from -47 to 27 W m-2, with the largest flux correction 

on 18 September and the smallest on Leg 2 25 September (Table 3).  The smallest magnitude 

flux correction, 4 W m-2, occurred on Leg 2 23 September.  The space-only correction also had 

the largest relative impact on the 18th, where the space-only correction adjusted the uncorrected 

LHF by 142%, compared to only 6% on Leg 2 on the 23rd, which had the smallest relative impact.  

Four of the five flights showed a positive qcorr value, leading to an increase in the uncorrected 

flux (Table 3).  Leg 2 on 25 September had the only negative qcorr term, which led to a decrease 

in the uncorrected flux.  The P2 equal scenario showed similar results, with the space-only 

correction ranging from -55 to 37 W m-2.  Again, the largest relative impact on the uncorrected 

flux (195%) occurred on 18 September, and the smallest (7%) occurred on Leg 2 on 23 

September.  The space correction also reduced the uncorrected flux on Leg 2 on 25 September.   

Again, because the space-only P1 and P2 LHF are so similar, the correction incorporating 

the LHC below flight level is only applied to the space-only P1 corrected fluxes.  These final 

fluxes are the best estimate of the LHF, and vary from 98 to 151 W m-2 (Table 3).  The largest 

correction terms come on the 18th and on Leg 1 on the 25th at 416% and 409%, respectively, 

which is an increase of 274% and 336% from the space-only corrected fluxes.  On the 18th and 

Leg 1 on the 25th the depth of the ABL below the flight level (237 and 164 m) is large relative to 

the total depth of the ABL (457 and 250 m) and is the reason for the large correction on these 

flight legs.  
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d.  Uncertainty  

 

There are three main areas of uncertainty associated with estimating the fluxes as 

described above.  This uncertainty comes from using time or space corrections for the non-

Lagrangian nature of the UAV observations, from measurement uncertainty (instrument errors), 

and from the choice of ABL depth.  As discussed above, the time versus space will not be 

considered here, but the other two uncertainties are detailed below.  Since it has been shown 

above that the P1 and P2 equal methods provide very similar flux estimates, only the P1 equal 

method fluxes will be discussed below when assessing the remaining two of these uncertainties. 

 All instruments operate with a certain degree of uncertainty.  It is important to assess how 

this uncertainty impacts the calculated fluxes.  To do this, we randomly perturbed the UAV 

observations of temperature, pressure, relative humidity, and wind speed within the degree of 

uncertainty of each instrument.  The uncertainty was based on specifications provided by each 

manufacturer, with accuracies of +/- 0.1°C for temperature (Vaisala HMM213), +/- 0.3 hPa for 

pressure (Vaisala PTB110), and +/- 3% for relative humidity (Vaisala HMM213).  Because of 

the way wind speed is measured, there is no manufacturer specified uncertainty, but McGeer and 

Holland (1993) and Holland et al. (1992) found Aerosonde® to have a wind speed accuracy 

within +/- 1 m s-1.  Kocer et al. (2011) found the UAV (not an Aerosonde®) in their study to be 

accurate to within +/- 0.7 m s-1.  A value of +/- 1 m s-1 was used in our assessment of instrument 

uncertainty. 

 Five combinations of perturbations of the measured atmospheric variables were tested.  

The first involved perturbing all four variables within each instrument’s degree of uncertainty.  

This most closely follows reality when the UAV collects measurements.  The remaining four 



 

 

79 

combinations involved only perturbing one of the atmospheric variables at a time while leaving 

the remaining three unchanged (i.e., as measured by the UAV).  Testing these individual 

perturbations allows an examination of the sensitivity of each measurement on the calculated 

flux.  Each flux was calculated 500 times using random perturbations, and an average flux and 

standard deviation across all trials was found.  This average flux and standard deviation were 

then compared to the unperturbed SHF and LHF to determine the uncertainty. 

 Table 4 shows values of the SHF and LHF for all flight legs for each of the five 

instrument uncertainty combinations.  The average fluxes for the uncertainty calculations show 

that for all combinations both the SHF and LHF do not vary by more than 2 W m-2 from the final 

best estimate flux values.  Most flight days had a standard deviation within 5-15 W m-2 for the 

SHF and less than 5 W m-2 for the LHF.  On 18 September, the standard deviation was over 30 

W m-2 for the SHF and this was due primarily to sensitivity to the imposed pressure errors on this 

leg. The standard deviations also show that the perturbed SHF is least sensitive to changes in 

relative humidity, and generally most sensitive to changes in temperature and pressure, which is 

consistent with the way the flux is calculated.  The LHF is most sensitive to changes in relative 

humidity, which is also consistent with how this flux is estimated.   

Because the fluxes are sensitive to the selection of ABL depth, it is important to assess 

the uncertainty in the fluxes due to different ABL heights by choosing other scientifically 

reasonable heights to calculate the fluxes.  Changes in the fluxes when changing the ABL depth 

will result from two effects – the positive or negative change in the heat (moisture) content due 

to increasing or decreasing the mass of air being warmed (moistened) as the ABL depth changes, 

and changes in the atmospheric conditions within that ABL depth, which will alter the heat and 
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moisture content.  For example, a deeper ABL with the same atmospheric conditions will give a 

larger flux due to the greater atmospheric mass and thus heat and moisture content within the  

 

 18 Sept.,  
Leg 3  

23 Sept.,  
Leg 1 

23 Sept.,  
Leg 2 

25 Sept.,  
Leg 1 

25 Sept.,  
Leg 2  

Sensible Heat Flux 

Best estimate 
SHF 

232 
 

472 
 

185 
 

385 
 

12 
 

SHF (all) 
 

230 +/- 33 
 

471 +/- 13 
 

185 +/- 11 
 

385 +/- 6 
 

12 +/- 6 
 

SHF (T only) 
 

232 +/- 10 
 

472 +/- 9 
 

185 +/- 8 
 

385 +/- 4 
 

13 +/- 4 
 

SHF (p only) 
 

234 +/- 32 
 

471 +/- 9 
 

185 +/- 8 
 

385 +/- 5 
 

12 +/- 5 
 

SHF (RH only) 232 +/- 0 
 

472 +/- 0 
 

185 +/- 0 

 
385 +/- 0 

 
12 +/- 0 

 
SHF (WS only) 232 +/- 0.8 

 
472 +/- 1 

 
185 +/- 0.8 

 
385 +/- 1 

 
12 +/- 0.1 

 
Latent Heat Flux 

Best estimate 
LHF 

98 151 100 56 130 

LHF (all) 
 

98 +/- 5 151 +/- 4 100 +/- 4 56 +/- 2 130 +/- 3 

LHF (T only) 
 

98 +/- 0.6 151 +/- 0.4 101 +/- 0.5 56 +/- 0.1 130 +/- 0.2 

LHF (p only) 
 

98 +/- 0.3 151 +/- 0.1 100 +/- 0.1 56 +/- 0 130 +/- 0.1 

LHF (RH only) 98 +/- 5 151 +/- 4 100 +/- 4 56 +/- 2 130 +/- 3 

LHF (WS only) 98 +/- 0.3 151 +/- 0.5 100 +/- 0.4 56 +/- 0 130 +/- 0.4 

 
Table 4.  Average fluxes (W m-2) found when varying atmospheric parameters 
based on instrument specifications, plus one standard deviation. The best 
estimate flux values listed are the P1 equal final fluxes for the SHF and LHF. 
All refers all observations being perturbed. T only refers to perturbations of 
temperature, p only refers to perturbations of pressure, RH refers to 
perturbations of relative humidity, and WS refers to perturbations of wind speed.  
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layer.  If the change in ABL depth alters the atmospheric conditions within the layer, then the 

flux will increase or decrease depending on whether the change in the atmospheric variables 

increases or decreases the temperature (moisture) difference between pairs of profiles.  The 

individual sensitivity of each effect to the final flux estimation will vary for each case.  

Alternative selections for the ABL depth outlined in Section 4a and the impact of changing the 

height of the ABL on the best estimates of the SHF and LHF (space-adiabatic and space-only) 

are assessed below.   

On 18 September (Figure 21), the top of the ABL could be 625 m.  Above this point, the 

potential temperatures in both the upstream (Profile 3) and downstream (Profile 4) profiles are 

very similar, whereas below this level the upstream profile is generally colder than the 

downstream.  This layer is unlikely to be the top of the ABL, due to the distinctness of the dry-

adiabatic layer below, but an assessment of this ABL height can still be made.  The increase in 

the depth of the ABL from 457 m to 625 m yields a SHF of 321 W m-2 and a LHF of 111 W m-2, 

which is a 90 and 18 W m-2 (39% and 13%) increase, respectively.  In this instance, the increase 

in fluxes is due to both an increase in the ABL depth and an increase in the temperature and 

specific humidity differences between the pair of profiles.  

The ABL top on 18 September could also be ~790 m, the level above which the upstream 

and downstream potential temperatures are nearly identical.  This 333 m increase in the ABL 

depth leads to a SHF of 212 W m-2 and a LHF of 109 W m-2, which is a 19 W m-2 decrease and a 

11 W m-2 increase (-8% and 11%) in the SHF and LHF, respectively.  The slight increase in 

these fluxes is likely due mostly to the increase in ABL depth, as the temperature and humidity 

differences will not change much between the profiles from 457 to 790 m (Figure 21). 
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 On Leg 1 on 23 September, it is possible to consider an ABL top of approximately 280 m 

(Figure 22).  Below this level is the presence of a mixed layer, with a capping inversion at the 

top of this layer.  Calculating the flux with an ABL top of 280 m on this day yields a SHF of 337 

W m-2 and a LHF of 82 W m-2.  This decreases the fluxes by 135 and 69 W m-2 (-29% and -46%) 

respectively.  Despite an increase in the temperature difference, wind speed, and specific 

humidity difference the SHF and LHF still decrease, which is solely due to a decrease in the 

ABL top.  This ABL height was not chosen over the 720 m level because there is a warming 

between 280 and 720 m that is unexplained if we assume the ABL top is at 280 m. 

 For Leg 2 on 23 September, a ABL height of 500 m could be chosen as the level above 

which the downstream profile becomes colder than the upstream profile (Figure 23).  This could 

indicate that surface processes are no longer controlling the atmosphere at this point, because the 

atmosphere should continue warming throughout the ABL.    The clear well-mixed layer on this 

flight leg, however, yields the 540 m level to be the appropriate ABL height rather than at 500 m.  

When the SHF and LHF are calculated using 500 m as a ABL top, the fluxes become 207 and 93 

W m-2, increasing the SHF by 22 W m-2 and decreasing the LHF by 7 W m-2 (12% and -7%).  

The wind speed change was negligible, but the temperature difference increased by 0.1K while 

the specific humidity difference decreased very slightly.  Because there was only a 40 m 

difference in ABL height between the two cases, the fluxes were most sensitive to the changes in 

atmospheric conditions on this flight leg. 

 For Legs 1 and 2 on 25 September, no other scientifically reasonable values could be 

chosen for the ABL height outside of that selected for this study (Figures 24-25).  On Leg 1, 240 

m is the location of both an inversion as well as where the two profiles exhibit similar 

characteristics.   



 

 

83 

 The areas of uncertainty described above aid our understanding of the accuracy of the 

SHF and LHF estimated as part of this work.  Final estimates of the fluxes for the UAV flights in 

September 2009 with error bars based on the uncertainty assessment described above are 

provided in Table 5.  Not all estimates described above, however, are appropriate to include in 

this analysis.  For example, the varying ABL heights are not appropriate to include in the 

assessment because those levels are deemed to be less scientifically justifiable compared to the 

levels described in Section 4a.  It is appropriate to include the standard deviations from the 

instrument uncertainty assessment because these are viable uncertainties in the fluxes.  Including 

the uncertainty associated with the P1 and P2 equal space methods is appropriate as well.  The 

uncertainty associated with the time corrections are not included due to the issues with the local 

time rate of change term for the 2009 data, but if used in other field campaigns it is appropriate 

to include this uncertainty as well. 

In Table 5, it is clear that overall there is not much uncertainty in the fluxes calculated 

using the methods described in this paper, with variations of no more than 22 W m-2 for the SHF 

and 14 W m-2 for the LHF.  The greatest overall uncertainty is on 18 September, where the 

instrument uncertainty is relatively large.  

 

 18 Sept. 
Leg 3 

23 Sept. 
Leg 1 

23 Sept. 
Leg 2 

25 Sept. 
Leg 1 

25 Sept. 
Leg 2 

SHF (W m-2) 209 to 231 
+/- 33 

472 to 485 
+/- 13 

176 to 185 
+/- 11 

370 to 385 
+/- 6 

12 to 30 
+/- 6 

LHF (W m-2) 98 to 112 
+/- 5 

151 to 152 
+/- 4 

100 to 101  
+/- 4 

56 to 58  
+/- 2 

117 to 130 
+/- 3 

 
 
Table 5.  Final values for the SHF and LHF including all relevant uncertainties.   
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5.  Summary and Conclusions  

  

 In the Terra Nova Bay region of Antarctica, cold, dry air flowing from the continental 

interior over the relatively warm and moist coastal polynya introduces the potential for strong 

air-sea fluxes to occur.  In September 2009, several flights were conducted using Aerosonde® 

UAVs to collect three-dimensional measurements of the atmosphere overlying the polynya.  SHF 

and LHF were estimated by assessing the change in heat and moisture content over the depth of 

the ABL from pairs of vertical profiles collected along the flight path as the UAV moved 

downwind over TNB.  Spatial and temporal corrections for the non-Lagrangian nature of the 

observations were considered, but due to the observational data available it was concluded that 

only the spatial correction was reasonable for the 2009 flights.  It was determined that, for the 

SHF, a flux correction accounting for both adiabatic and non-Lagrangian spatial processes 

(space-adiabatic), as well as the HC below flight level, was most appropriate, while the spatial 

non-Lagrangian fluxes (space-only) incorporating LHC below flight level were most appropriate 

for the LHF.  Over the three flight days used to calculate the heat fluxes in 2009, the final SHF 

ranged from 12 to 485 W m-2, with the final LHF ranging from 56 to 152 W m-2.  The 

methodology developed shows that the space correction can be implemented in two different but 

scientifically appropriate ways that provide very similar final answers.  

 One of the main goals of this work is to highlight sensitivities in the UAV observations 

that are important to the methodology used in estimating the fluxes.  This will enable future field 

campaigns to better design and implement measurement collection.   The methodology discussed 

here requires a few key measurements to accurately estimate the SHF and LHF.  First, accurate 

collection of profile data within and higher than the atmospheric ABL is critical.  This data 
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should be acquired as frequently as possible along the flight path to ensure correction terms are 

small.  Second, the data needs to be corrected considering adiabatic (for SHF) and non-

Lagrangian processes (for both SHF and LHF), as well as for the HC and LHC below flight level, 

and this work has shown that it is imperative to acquire accurate measurements of the 

atmospheric variables included in these calculations.  For the adiabatic correction, appropriate 

pressure measurements were critical, and for the non-Lagrangian correction, accurate estimates 

of the along path gradients of temperature, pressure, and specific humidity.  To minimize the 

correction due to the unsampled HC and LHC below flight level, ensuring flight data as close to 

the surface as possible is necessary.  Missing from this study were appropriate measurements of 

changes in the atmosphere over time, such as from a nearby AWS or from the UAV data itself.  

The work conducted during the 2009 flights highlighted this critical need, and a future field 

campaign over TNB in 2012 ensured appropriate time-varying measurements from the UAVs.  

For both campaigns, work is currently underway to assess why the fluxes vary from day to day 

and over different locations within TNB, and what processes impact the depth of the ABL.   
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Chapter 4:  The primary mechanisms of air-sea heat exchange over Terra Nova 

Bay, Antarctica 

 

ABSTRACT.  In September 2009, unmanned aerial vehicles (UAVs) were flown over Terra 

Nova Bay (TNB) Antarctica to sample the atmospheric boundary layer (ABL) overlying a 

polynya.  In TNB, a relatively warmer and moister surface associated with the open water 

interacts with cold, dry air originating from the high polar plateau to generate large sensible and 

latent heat fluxes.  Atmospheric measurements collected during these flights were used to 

estimate these fluxes in a previous study.  Through the use of data from the UAVs and satellites, 

this study examines the primary forcing mechanisms for heat exchange during the flights.  It is 

shown that, in September 2009, surface conditions vary much more than atmospheric conditions, 

and the heat fluxes respond primarily to these changes.  The UAV estimates are compared to the 

Tropical Ocean-Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment 

(COARE) bulk flux algorithm, which incorporates both atmospheric and surface data.  The 

COARE fluxes have a much higher degree of uncertainty compared to the UAV fluxes due to 

uncertainty in surface temperatures, showing the necessity for accurate measurements of surface 

conditions.  The impacts of heat exchange on the temperature structure of the ABL are also 

examined.  It is shown that a convective well-mixed layer is formed on most flight days, which 

increases in height as the air passes over the polynya.  The well-mixed layer erodes a residual 

stable layer originating from the polar plateau, generating a new ABL over the open water that is 

distinct from its previous structure. 
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1.  Introduction 

 

The Terra Nova Bay (TNB) region of Antarctica is located in the western Ross Sea 

(Figure 26).  TNB is unique for its topographical, atmospheric, cryospheric, and oceanographic 

influences (Kurtz and Bromwich 1985; Bromwich 1989; van Woert 1999; Morales Maqueda et 

al. 2004).  A large drainage area of katabatic winds to the west of TNB forms a confluence zone 

where winds sharply increase just upstream of the Reeves Glacier (Parish 1982; Bromwich and 

Kurtz 1984; Parish and Bromwich 1987).  This confluence zone leads to an increase in winds 

that can aid in the formation of a polynya at the coast, where sea ice is formed at its western edge 

and pushed further into the Ross Sea by the strong winds.  The Drygalski Ice Tongue, an 

extension of David Glacier that extends approximately 50 km into TNB, prevents sea ice from 

advecting into the region from the south, leaving open water that remains even during the winter 

season (Kurtz and Bromwich 1985) (Figure 27).  As cold and dry air moves over the polynya 

from the continent, air-sea interactions result in large heat and momentum fluxes (Knuth and 

Cassano 2014).  During winter, when winds are strongest and the atmosphere is coldest and 

driest (Knuth and Cassano 2011), the largest sensible and latent heat fluxes (SHF and LHF) will 

occur. 

The atmospheric boundary layer (ABL) over the polynya is modified by the SHF and 

LHFs such that heat added at the surface warms and moistens the ABL (Renfrew and King, 

2000; Heinemann 2008; Raddatz et al. 2011).  The entrainment of air at the top of the ABL 

causes the depth of the ABL to increase with distance from the coast as well as alter the heat and 

moisture content (Chang and Braham, 1991; Renfrew and King, 2000; Heinemann 2008).  With 

increasing fetch, the ABL warms and moistens such that the temperature and moisture gradient  
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Figure 26.  Map of the TNB region (top panel) within the Ross Sea sector of 
Antarctica (bottom panel).  
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Figure 27.  MODIS Terra Visible 0.25 km satellite image from 23 September 
2009 at 21:40 UTC.  This image is valid approximately four hours before the 
UAV flights were flown, due to the lack of a 0.25 image during the flight.  

 

between the atmosphere and the surface diminishes and heat fluxes decrease (Heinemann 2008).  

In TNB, the cold air modification over the polynya is akin to cold air outbreaks occurring over 

other areas across the globe (Grossman and Betts, 1990; Chang and Braham 1991). 

In September 2009, Aerosonde® unmanned aerial vehicles (UAVs) were flown over 

TNB to collect information on the three-dimensional properties of the atmosphere overlying the 

polynya (Cassano et al. 2010; Knuth et al. 2013).  These measurements were the first in situ 
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measurements of the TNB air mass during the winter months, and provided invaluable 

information on the ABL.  Knuth and Cassano (2014) (hereafter KC2014) used the data collected 

by the UAVs to develop a methodology of estimating SHF and LHF between the ocean and 

atmosphere without the use of a bulk aerodynamic formula.  Estimated SHFs over TNB in 

September 2009 from this study ranged from 12 to 485 W m-2, while the LHFs ranged from 56 to 

152 W m-2 (Tables 6 and 7).  

The purpose of this study is to understand the primary forcing mechanisms of ocean-

atmosphere surface heat exchange acting over the TNB polynya.  This paper applies UAV and 

satellite observations to examine how changing atmospheric and surface conditions over TNB 

impact SHFs and LHFs estimated from the UAV data as part of KC2014.  The UAV estimates, 

which incorporate only atmospheric data, are then compared against a bulk flux algorithm 

(which uses both surface and atmospheric data) to understand differences between the two flux 

estimates.  The three flight days examined – 18, 23, and 25 September – represent varying 

physical processes that are explored in this study.  Section 2 briefly summarizes the flux 

methodology developed by KC2014, the data collected during the UAV flights, and the Tropical 

Ocean-Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment 

(COARE) bulk flux algorithm.  Section 3 discusses the atmospheric and surface conditions on 

each of the three flux days to understand the primary forcing mechanisms for heat exchange, and 

Section 4 shows comparisons of COARE to the UAV fluxes.  A summary is found in Section 5. 
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 COARE-
E Flux 

COARE-
M Flux 

UAV 
Flux 

COARE-E 
mean 

comparison 
to UAV 

COARE-M 
mean 

comparison to 
UAV 

Leg 1 on 23 
September 

-- 530  
+/-50 

472 to 
485  +/- 

13 

-- 50 (11%) 

Leg 2 on 23 
September 

-- 120  
+/-33 

176 to 
185 +/- 

11 

-- 45 (24%) 

Leg 1 on 25 
September 

305 
+/- 63 

500  
+/- 45 

370 to 
385  +/- 

6 

75 (20%) 125 (33%) 

Leg 2 on 25 
September 

20 
+/- 42 

88  
+/- 33 

12 to 30 
+/- 6 

<5 (25%) 65 (325%) 

Leg 3 on 18 
September 

-20  
+/- 35 

100  
+/- 35 

209 to 
231 +/- 

33 

245 
(108%) 

90 (72%) 

 

Table 6.  COARE-E, COARE-M, (bulk flux algorithms) and UAV SHF (from 
KC2014) are given.  Also shown are the comparisons between the COARE and 
UAV fluxes. Values are in W m-2.  Values in parenthesis are percent differences 
from the UAV values.  Bolded values show the COARE and UAV flux 
comparisons that are within the range of uncertainty of the pair of flux estimates.  
 

 

2.  Data and Methods 

 

a. UAV fluxes methodology 

 

The UAVs flown over TNB in September 2009 were manufactured by Aerosonde®, and 

had a wingspan of 3 m, a payload capacity of 2-5 kg, and a weight of 15 kg (Knuth et al. 2013).  

Temperature, pressure, and relative humidity sensors were on-board the UAVs, while wind 

speed measurements were made using the plane’s pitot tube and GPS sensors.  Wind direction 

was found during aircraft maneuvers. 
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 COARE
-E Flux 

COARE
-M Flux 

UAV 
Flux 

COARE-E 
mean 

compariso
n to UAV 

COARE-M 
mean 

comparison to 
UAV 

Leg 1 on 23 
September 

-- 200  
+/- 22 

151 to 
152 +/- 4 

-- 50 (33%) 

Leg 2 on 23 
September 

-- 58 
+/- 10 

100 to 
101 +/- 4 

-- 45 (45%) 

Leg 1 on 25 
September 

115  
+/- 22 

195  
+/- 12 

56 to 58 
+/- 2 

60 (107%) 140 (212%) 

Leg 2 on 25 
September 

33  
+/- 15 

50 
+/- 10 

117 to 
130 +/- 3 

90 (73%) 50 (41%) 

Leg 3 on 18 
September 

19  
+/- 12 

52  
+/- 8 

98 to 112  
+/- 5 

85 (81%) 55 (52%) 

 

Table 7.  COARE-E, COARE-M, (bulk flux algorithms) and UAV LHF (from 
KC2014) are given.  Also shown are the comparisons between the COARE and 
UAV fluxes. Values are in W m-2.  Values in parenthesis are percent differences 
from the UAV values.  Bolded values show the COARE and UAV flux 
comparisons that are within the range of uncertainty of the pair of flux estimates.  

 

Three UAV missions (on the 18th, 23rd, and 25th) were flown during September 2009 that 

collected useful data for estimating air-sea fluxes (Cassano et al. 2010).  On these flights, the 

plane flew parallel to the coastline, searching for the area of strongest winds.  The UAV was then 

flown downstream from the coast within the strong katabatic jet to sample the area where the 

heat fluxes would be largest (KC2014; Knuth et al. 2013).  Along this downstream flight leg, 

vertical profiles were collected at ~20 km intervals within the jet (Figure 19).  The flights on the 

23rd and 25th both had three profiles, while the flight on the 18th had two.  The 18th originally had 

four profiles collected, but only Profiles 3 and 4 were useful for this study. 

KC2014 developed a methodology for estimating SHF and LHF using only atmospheric 

state observations collected during these flights.  The basic premise behind this method was to 

use the UAV observations within the vertical profiles to estimate how the heat and moisture 

content within the ABL changes as the air mass moves over the polynya.  This approach 
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provides one estimate of heat flux between pairs of profiles.  For example, on 23 September, 

when three profiles were collected, two fluxes are estimated – one between Profiles 1 and 2, and 

one between Profiles 2 and 3 (Figure 19).  The convention of this paper is that Leg 1 refers to 

data collected or fluxes estimated between Profiles 1 and 2, Leg 2 between Profiles 2 and 3, and 

Leg 3 between Profiles 3 and 4.  A summary of the SHF and LHF found on each flight day, 

including the range of uncertainty in the estimates, is given in Tables 6 and 7.   

 

b. Data Description 

 

The surface temperature (Tsfc) data used within this study comes from two sources:  an 

infrared thermometer that flew on the UAVs (Everest Interscience, Inc., model 3800ZL), and 

satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Hall et al. 

2004).  The data produced from the Everest was found to have issues related to the housing 

temperature that were corrected in post-processing (Knuth et al. 2013).  The post-processing 

calibration method found the uncertainty of the Everest infrared Tsfc to be within 2 K.  Everest 

Tsfc data was not available on 23 September.  

Data acquired from the National Aeronautics and Space Administration (NASA) Level 1 

and Atmosphere Archive and Distribution System website (LAADS) was used to calculate the 

Tsfc values from MODIS.  One MODIS product was acquired per day over limited time frames to 

minimize the effects of sun angle on reflectance.  Thermal bands 33 and 34 were used to 

generate a Tsfc image, which was reduced to include only data from the TNB region, with a mask 

applied to exclude land areas.  The data was geo-located to the UAV flight path using Level 3 1-

km data for each pixel of the Level 1B data.  In general, the accuracy (root mean square error) of 
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the MODIS Tsfc data is found to be within +/- 1.3 K (Hall et al. 2004). MODIS 0.25 km visible 

satellite images were also acquired from the LAADS website to allow visual inspection of sea 

ice cover across the western Ross Sea region.  

Satellite observations from the Advanced Microwave Scanning Radiometer for Earth 

Orbiting System (AMSR-E) (Lobl 2001) are used to calculate sea ice concentration. The NASA 

Team 2 and Bootstrap algorithms were applied to the 12.5 km AMSR-E data to determine sea ice 

concentration.  Finally, digital photographs from a Canon SX110 IS digital camera mounted on 

the UAVs provided images of the surface conditions below the UAV during the flight on 23 

September. Low light prevented the availability of these images for the flights on 18 and 25 

September. 

 

c.  COARE bulk flux algorithm 

 

The flux methodology as part of KC2014 estimates the SHF and LHF using only 

atmospheric state information.  In contrast, the COARE bulk flux algorithm uses both 

atmospheric and surface conditions, and through its use, the sensitivity of the heat fluxes to the 

surface state can be further explored.   

SHF and LHF can be parameterized using the bulk aerodynamic formulae through the 

use of mean quantities of atmospheric and surface conditions together with transfer coefficients 

(Pond et al. 1974).  The SHF and LHF (in W m-2) can be expressed by  

 

𝑆𝐻𝐹 = 𝜌𝑐!𝐶!𝑈(𝑇!"# − 𝑇!"#)     (1) 

𝐿𝐻𝐹 = 𝜌𝐿!𝐶!𝑈(𝑞!"# − 𝑞!"#)     (2) 
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where ρ is the density of the air (kg m-3), cp is the specific heat of dry air at constant pressure 

(1004 J kg-1 K-1), CH and CE are the dimensionless bulk transfer coefficients for heat and 

moisture, U is the wind speed, Tsfc and Tair are the surface and ambient temperatures, Lv is the 

latent heat of vaporization at 0°C (2.5x106 J kg-1),  and qsat and qair are the surface saturation and 

air specific humidities.   

 In this work, the COARE 3.0 algorithm represents the bulk flux formulae.  The COARE 

algorithm was initially developed based on measurements taken during a field program over the 

western Pacific, where the algorithm took into account low wind speeds and tropical conditions 

(Fairall et al. 2003).  COARE has since been updated so that version 3.0 is “globalized” in the 

sense that, whenever possible, variables are calculated rather than estimated from tropical 

conditions.  As well, data outside the tropics have been used to estimate inputs to the transfer 

coefficients such that the COARE 3.0 algorithm is valid up to 20 m s-1.  It is important to note 

that the wind speeds during September 2009 in TNB are on the upper end or outside of this range, 

which may impact the quality of the COARE estimated fluxes. 

 To estimate SHF and LHF using COARE, the ambient atmospheric conditions 

(temperature, humidity, pressure, and wind speed) measured by the UAV and collected at heights 

ranging from ~150-240 m were input into the COARE algorithm via the bulk algorithm package.  

Specific humidity was calculated from the UAV observations of relative humidity, temperature, 

and pressure.  Separate COARE estimates were made using Tsfc observations from the Everest 

and MODIS datasets.  

The accuracy of the COARE algorithm is largely dependent on the quality of the MODIS 

and Everest Tsfc data.  It is anticipated that the Everest data, despite some of the issues with the 

instrument (Knuth et al. 2013), is more accurate than the MODIS data over areas where sea ice 
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changes rapidly (such as Legs 1 and 2).  This is largely due to the finer spatial resolution of 

Everest compared to MODIS.  The MODIS data has a 1 km resolution, while the Everest data 

were obtained with a field of view of approximately 30 m, with one observation recorded 

approximately every 10 seconds. All other atmospheric observations from the UAV were also 

recorded approximately every 10 seconds.  The MODIS data is collected at slightly different 

times than the UAV flights (about one hour later on the 18th, an hour and thirty minutes later on 

the 23rd, and about 30 minutes earlier on the 25th) and this increases the uncertainty in the 

MODIS Tsfc values for estimating fluxes coincident with the time of the UAV flights.  Over areas 

with more uniform sea ice, such as parts of Leg 2 and Leg 3, MODIS could produce a better Tsfc 

estimate than Everest due to a smaller uncertainty (+/- 1.3K compared to the Everest +/- 2K), 

and due to issues in post-processing making Everest Tsfc biased toward open water cases (Knuth 

et al. 2013).  

 

3.  Primary Forcing Mechanisms of Heat Exchange – Comparing Atmospheric 

and Surface Conditions 

 

  This section compares the atmospheric and surface conditions to determine which of 

these is dominant in controlling the energy exchange between the ocean-atmosphere interface.  

Generally, it is expected that the atmosphere will warm, moisten, and lose momentum as the air 

mass originating from the high polar plateau passes over the open water of the polynya (Roberts 

et al. 2001).  It is also anticipated that sea ice concentrations will increase and Tsfc will decrease 

as sea ice is generated in the polynya and pushed east by the winds (Kurtz and Bromwich 1985; 

Walter et al. 2006; Fiedler et al. 2010).  Both factors should work together to produce a 
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decreasing SHF and LHF with increasing distance along the polynya downwind of the coast 

(Kurtz and Bromwich 1985; Walter et al. 2006; Fiedler et al. 2010; KC2014).  To quickly and 

succinctly identify changes between the atmospheric and surface state, two terms, the “vertical 

temperature difference” and “vertical moisture difference” are defined, representing the 

difference between Tsfc and the atmospheric temperature (Ta; Tsfc – Ta) and the difference 

between the surface saturation mixing ratio (qsfc) and the atmospheric mixing ratio (qa; qsfc - qa), 

respectively. 

It is important to also understand how the data from this study compares to that used in 

estimating the UAV fluxes from KC2014.  Figures 28 and 29 show observations from the UAV 

during low altitude flight legs (Table 8) between concurrent profiles.  The data used to estimate 

the SHFs and LHFs in KC2014 are from the profiles and not from this along flight leg data.  

However, using this data allows for a better examination of changing conditions between the 

atmosphere and the surface both spatially and temporally.  These changing conditions will 

impact the entire ABL, and thus are representative of the conditions measured in the vertical 

profiles.  

 Figure 28 shows the UAV SHF, Ta, Tsfc, wind speed, and sea ice concentration for 18, 23, 

and 25 September.  The observations of Ta and wind speed are from the UAV as it flies along a 

generally constant altitude between profiles (Table 8).  Figure 29 is similar to Figure 28 but with 

LHF and mixing ratio in place of SHF and temperature. 
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Figure 28.  SHF and relevant meteorological parameters for the 18th (blue), 23rd 
(red), and 25th (black) of September, 2009.  X-axis is distance along the flight 
leg.  The data from 18 September actually begins ~40 km downstream of the 
coast, but is plotted to the left of the graph for aesthetic purposes.  Tsfc and 
corresponding data is given from both the MODIS and Everest datasets, where 
the MODIS data is represented by a ⊗  symbol, and the Everest data by a solid 
circle.   
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Figure 29.  LHF and relevant meteorological parameters for the 18th (blue), 23rd 
(red), and 25th (black) of September, 2009.  X-axis is distance along the flight 
leg.  The data from 18 September actually begins ~40 km downstream of the 
coast, but is plotted to the left of the graph for aesthetic purposes.  qsfc and 
corresponding data is given from both the MODIS and Everest datasets, where 
the MODIS data is represented by the  a ⊗  symbol, and the Everest data by a 
solid circle. 
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 Altitude (m) Average Wind Speed 

 (m s-1) 

18 September, Leg 3 237 19.6 

23 September, Leg 1 157 18.2 

23 September, Leg 2 157 16.4 

25 September, Leg 1 164 22.2 

25 September, Leg 2 164 18.7 

 
 
Table 8.  The altitude the UAV was flown and the wind speed averages for each 
flight leg in September 2009. 
 

a. 23 September 

 

On the 23rd (red lines and symbols on Figures 28 and 29), the surface and atmospheric 

conditions behave as outlined above, with Ta, qa, and sea ice concentration increasing and Tsfc, 

qsfc, and wind speed decreasing with increasing fetch.  Considering first the surface conditions, 

Figure 28 (red symbols) shows the MODIS Tsfc data decreases from 270 to 256 K along the 

entire flight leg, while Figure 29 shows the MODIS qsfc data decreasing from 3.0 g kg-1 to 1.0 g 

kg-1.  Only MODIS (no Everest) data is available on this flight.  Sea ice concentrations increase 

from 0.59 to 0.83 along the leg.  In Leg 1, digital photographs (Figure 30) show surface 

conditions changing from open water with minimal ice cover to pancake ice.  In Leg 2, the 

surface is more uniform, making a transition from pancake ice to pack ice. 

The atmospheric conditions shows Ta increases ~1.9 K along the entire flight leg, from 

249.5 to 251.4 K (Figure 28).  The qa increases 0.33 g kg-1 from ~0.16 to 0.49 g kg-1 (Figure 29).   
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a)             b) 

 
c) 

 
Figure 30.  Digital images from a camera on board the UAV during Legs 1 and 2 
on 23 September 2009.  a) depicts an image taken at the location of Profile 1, b) 
at Profile 2, and c) at Profile 3.  

 

Wind speeds decrease ~8 m s-1 from ~24 to 15.9 m s-1.  Both the SHF and LHF values estimated 

from the UAV methodology (Tables 6 and 7) decrease with increasing fetch over the polynya.  

To understand whether the surface or atmospheric state is the primary forcing mechanism 

for heat exchange on this flight, the downstream changes in the components of the vertical 
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temperature and moisture differences are compared (Tsfc and Ta, and qsfc and qa).  The vertical 

differences should decrease with increasing fetch as the atmosphere gets warmer due to heat 

transfer from the ocean and the Tsfc gets cooler due to increased sea ice concentrations 

(Bromwich and Kurtz 1984; Fiedler et al. 2010).   

Figure 28 shows the vertical temperature difference to be 20 K at the beginning of Leg 1, 

falling to less than 5 K by the end of Leg 2.  This 15 K change in the vertical temperature 

difference with increasing fetch is much more representative of the 14 K change in Tsfc along the 

flight leg than the ~2 K change in Ta.  Similarly, the vertical moisture difference changes from 3 

g kg-1 at the beginning of Leg 1 to 1 g kg-1 by the end of Leg 2 (Figure 29), which is more 

representative of the 2.0 g kg-1 change in qsfc than the ~0.3 g kg-1 change in qa.  These results 

show that changes in the surface conditions are more influential in changing the vertical 

temperature and moisture differences than the atmospheric state. 

To quantify whether the 14 K change in the vertical temperature difference or the 8 m s-1 

wind speed change is a primary factor controlling the observed decrease of ~300 W m-2 in SHF 

between Legs 1 and 2 (or similarly the 2.0 g kg-1 vertical moisture difference for the observed 

decrease of ~50 W m-2 in LHF between Legs 1 and 2) (Table 6), sensitivity studies were 

conducted with the COARE algorithm to understand how changes in the vertical temperature and 

moisture difference and wind speed would impact heat fluxes. When the sensitivity study is run 

decreasing the vertical temperature difference by 14 K, the COARE SHF decreases by ~450 W 

m-2.  Decreasing the wind speed 8 m s-1 results in a decrease of the COARE SHF by ~200 W m-2.  

A 2.0 g kg-1 decrease in vertical moisture difference results in a ~155 W m-2 decrease in the LHF.  

Decreasing the wind speed by 8 m s-1 results in a ~50 W m-2 decrease in the LHF.  While the 

magnitude of the SHF and LHF changes calculated as part of this sensitivity study do not match 
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the observed change in fluxes between Legs 1 and 2 (a more detailed comparison of the COARE 

and UAV estimated fluxes is given in Section 4) this sensitivity study indicates that the decrease 

in UAV observed fluxes between the two flight legs is dominated by the decreasing vertical 

temperature and moisture differences with the decrease in wind speed playing a secondary role. 

Based on this sensitivity analysis as well as the dependence of the vertical temperature and 

moisture differences on the surface conditions, it is determined that the changes in the surface 

state is the primary forcing mechanism for changes in heat exchange between the ocean and 

atmosphere on 23 September. 

 

b. 25 September 

 

The primary forcing mechanism for heat exchange on the 25th (black lines and symbols 

on Figures 28 and 29) can be found similarly to the method on the 23rd.  On the 25th, both 

Everest and MODIS Tsfc values are available. The MODIS Tsfc values (black ⊗ symbol in Figure 

28) show a decrease of 14 K along the flight leg, from 270 to 256 K.  The Everest values (black 

filled circles) also show a 14 K decrease over the flight leg, with a decrease from 266 to 252 K.  

The MODIS qsfc decreases by 2.0 g kg-1 from 3.0 to 1.0 g kg-1, and the Everest qsfc decreases 1.5 

g kg-1 from 2.3 to 0.8 g kg-1 (Figure 29).  Sea ice concentrations increase from 0.6 to 0.83 

(Figures 28, 29, and 31).  Examining the atmospheric values, the Ta increased 1.2 K (from 250.8 

to 252 K) over Legs 1 and 2, while qa shows an increase of ~0.36 g kg-1 in both Legs 1 and 2 

(Figures 28 and 29).  Wind speeds along the flight leg decrease approximately 11 m s-1, from 28 

to 17 m s-1. 
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Figure 31.  MODIS Terra Visible 0.25 km satellite image from 25 September 
2009 at 21:30 UTC.  This image is valid approximately 9 hours and 30 minutes 
after the UAV flights were flown, due to the lack of a 0.25 image during the 
flight. 

 

Figure 28 shows a 15 K decrease in the MODIS and Everest calculated vertical 

temperature differences along the flight leg, which more closely matches the Tsfc change 

downstream (14 K) than the Ta change (1.2 K).  The MODIS and Everest vertical moisture 

differences decrease by ~1.9 g kg-1 downstream, more closely matching the qsfc differences (1.5-

2.0 g kg-1) than qa difference (0.36 g kg-1).  Sensitivity studies conducted also show the vertical 

temperature difference change to have a greater impact on heat fluxes than the wind speed 
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change (with results mirroring the sensitivity study on the 23rd), further demonstrating that the 

surface state is the primary forcing mechanism on this flight day. 

Table 6 shows a decrease in the SHF on the 25th with increasing fetch over the polynya 

(by ~370 W m-2), as expected, but an increase in the LHF of ~75 W m-2.  The increase of the 

LHF along the flight leg is not completely clear, but it is suspected that a sensor lag in the 

relative humidity values within the profiles impacts the qa values along Leg 2, leading to a dry 

bias.  Closer examination shows a large decrease (0.2 g kg-1) in the mixing ratio over a very 

small distance (~1 km) at Profile 2, located at ~20.5 km in Figure 29.  The dry bias is manifest as 

the UAV relative humidity sensor adjusts too slowly as the UAV descends at profile 2 from the 

drier air aloft to the moister near surface air.  As the UAV moves downstream from Profile 2, the 

sensor is “catching up” to the larger relative humidity values, and falsely showing a larger 

mixing ratio change downwind.  Difficulties in estimating the time lag yield this as only 

speculation at this time.   

Efforts to reduce the sensor lag on all other flight legs were made by only using matching 

profile data (for example, only using ascent data from the two profiles), but for this flight leg, 

only descending data in Profile 2 and ascending data in Profile 3 were available.  Because it is 

anticipated that the sensor lag will vary for both ascents and descents, the dry bias might be 

enhanced. Therefore, the UAV LHF estimates in Leg 2 are likely over estimated values.   

 

c. 18 September 

 

On the 18th, the atmospheric and surface conditions also behave as expected, and do not 

vary much over the course of the flight leg (blue lines and symbols on Figures 28 and 29).  As 
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this flight leg is ~40 km downstream of the coast (the furthest of all legs), over sea ice 

concentrations greater than 0.8 (Figures 28 and 29), and just east of the polynya (Figure 32), it is 

expected that the surface and atmospheric conditions will be less variable than the upwind flight 

legs.  Examining first the surface conditions, the MODIS and Everest Tsfc show a ~3 K and ~2 K 

decrease, respectively (blue symbols in Figure 28) over the flight leg.  The MODIS qsfc decreases 

by ~0.3 g kg-1 from 1.3 g kg-1 to 1.0 g kg-1 and the Everest qsfc decreases by ~0.2 g kg-1 (Figure  

 
 
Figure 32.  MODIS Aqua Visible 0.25 km satellite image from 18 September 
2009 at 5:35 UTC.  This image is valid approximately 6 hours before the UAV 
flights were flown, due to the lack of a 0.25 image during the flight.  
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29).  Sea ice concentrations increase from 0.81 to 0.83.  For the atmosphere, Ta increases ~1 K 

along the flight leg (Figure 28), while qa increases by ~0.3 g kg-1 (Figure 29).  Wind speeds also 

decrease over the flight leg, starting at approximately 20 m s-1, increasing quickly to 24 m s-1, 

and then dropping back to ~18 m s-1.   

Comparing the surface and atmospheric components of the vertical differences reflects 

the similarity between the atmosphere and surface expected over this more downwind flight leg.  

The MODIS vertical temperature difference decreases 3 K along the flight leg, and the Everest 2 

K (Figure 28).  The vertical temperature differences again more closely follow Tsfc (3 and 2 K, 

respectively) than Ta (1 K) changes downwind.  However, the Tsfc and Ta values are quite similar, 

showing that the atmosphere is becoming much more important than in previous flight legs 

considered.  

Examining the vertical moisture differences is a bit more complex.  The MODIS vertical 

moisture difference decreases 0.5 g kg-1, while the Everest data decreases 0.6 g kg-1 over the 

flight leg.  Because the MODIS and Everest qsfc values decrease by 0.3 and 0.2 g kg-1, 

respectively, while the qa value increases by 0.3 g kg-1, these values also do not show a clear 

dependence on either the atmospheric or the surface state.  Again, the uniformity of the 

conditions on this downwind flight leg makes this a reasonable assessment. 

 

d. Boundary Layer Structure 

 

Another way to enhance our understanding of air-sea interactions in TNB is to examine 

changes in the ABL structure between flight days and relating this to changes in the surface 

fluxes.  Understanding the changes that must have occurred in the atmospheric and/or surface 
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states, which translates to changes in the ABL structure, can improve our knowledge of large 

variability in energy exchange, and therefore, air-sea interactions.  During the 60 hours between 

the flight on the 23rd (red lines and symbols on Figures 28 and 29) and the flight on the 25th 

(black lines and symbols on Figures 28 and 29), the UAV SHF decreases for both flight legs, 

while the LHF decreases in Leg 1 and increases in Leg 2.  The SHF in Leg 1 decreases 87 W m-2 

(Table 6) and the LHF decreases 95 W m-2 (Table 7) between the two flight days.  In Leg 2, the 

SHF decreases ~173 W m-2 and the LHF increases ~30 W m-2 between the two flight days.  It is 

expected that the LHF increase from the 23rd to the 25th is spurious due to the dry bias discussed 

in Section 3b, and is not discussed further here. Below we will examine differences in the ABL 

structure on the 23rd compared to the 25th to determine if the reduction in the heat fluxes 

described in this paragraph are consistent with the idealized model of ABL behavior.   

As described in Section 1 as an air parcel moves off the continent and over TNB, it 

carries with it the characteristics of the ABL that developed over the plateau, which in an 

idealized case, consists of a strong temperature inversion (Heinemann 2008).  The entire ABL 

consists of the inversion, which is within a few hundred meters of the surface (Heinemann 2008; 

Raddatz et al. 2011).  As the air parcel descends through the mountains west of TNB, its 

characteristics will be modified through both adiabatic warming and mixing as mechanical 

turbulence increases.  

Once this colder continental air moves over the warmer polynya surface, convection will 

ensue and a convective internal boundary layer (CIBL) will be formed (Chang and Braham 1991; 

Renfrew and King 2000; Heinemann 2008; Raddatz et al. 2011).  Within the CIBL the 

atmosphere is well mixed, with a temperature somewhere between the cold katabatic layer and 

the warm surface over the polynya.  The top of the CIBL, zc, will increase with height as the air 
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parcel moves over the polynya due to the entrainment of air from the free troposphere (Chang 

and Braham 1991; Hartmann et al. 1997; Renfrew and King 2000; Heinemann 2008).  This layer 

will erode the original katabatic layer that existed on the plateau.  Above zc, the residual layer 

from the plateau remains.  The CIBL is the new top of the ABL. 

Once the air parcel has moved a sufficient distance downstream, zc will be the same 

height as the top of the original katabatic layer from the polar plateau, and the entire residual 

katabatic layer is eroded.  There will be a new inversion present at the top of the ABL that is no 

longer related to the original katabatic layer but simply exists due to the transition between the 

colder ABL air and the relatively warmer free atmosphere.  This idealized case also does not 

account for advection, entrainment, or cloudy conditions. 

This conceptual model of ABL modification can be used with the data collected over the 

polynya in 2009 to understand the evolution of the ABL.  On 23 September, the ABL matches 

overall with the idealized case.  Potential temperature profiles show a well-mixed layer 

extending from flight level to approximately 240 m in Profile 1 (Figure 33a).  Above this layer is 

a stable layer that is likely the residual katabatic layer.  Profile 2 also shows potential 

temperatures increasing with height above a well-mixed layer that extends to at least 480 m 

(Figure 33a).  Profile 3 shows the height of the well-mixed layer to be at 540 m.  The increase in 

the ABL top from 240 to 480 to 540 m downstream matches well with the idealized case with zc 

increasing with increasing downwind distance.  

On 25 September, the potential temperatures from Profile 1 show a stable layer existing 

from flight level throughout the depth of the profile (Figure 33b).  In Profile 2, a slightly stable 

layer is shown to extend from flight level to 240 m.  Above 240 m the atmosphere is generally 

stable with conditions nearly identical to those observed in Profile 1.  Profile 3 shows a more  
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a)              b) 

 
       c) 
 
Figure 33.  Potential temperature profiles from 23, 25, and 18 September.  

 

well-defined mixed layer extending to 250 m (the height of the BL), with a stable layer 

extending above this level.  It is likely that if a mixed layer exists at the location of Profile 1 it is 

below flight level, but that once the air parcel has moved 20 km downstream to Profile 2, the 
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well mixed layer is becoming more established.  The stability of the ABL is weaker in Profile 2 

than Profile 1, indicating that the residual katabatic layer is being eroded.  In Profile 3, the 

atmosphere is exhibiting a well-defined CIBL that has increased in depth from Profiles 2 to 3.   

On the 23rd, zc is higher (240-480-540 m; Figure 33a) than on the 25th (below flight level 

– 240-250 m, Figure 33b), suggesting more active mixing and entrainment on the 23rd compared 

to the 25th. The well-defined mixed layer extending to 540 m by the end of the flight leg on the 

23rd also supports the idea of enhanced convective mixing on the 23rd. These observations of the 

ABL depth and structure are consistent with the larger SHF on the 23rd compared to the 25th 

(Tables 6 and 7).  

Another example of comparing flight days leading to a furthering of our understanding of 

air-sea interactions in TNB is comparing the 18th data to that from Leg 1 on the 23rd or 25th.  The 

vertical temperature and moisture differences and wind speeds given in Figures 28 and 29 

indicate that the fluxes on the 18th should be smaller than both of the other flight days.  This is 

found for the SHF, but the LHF on the 18th is larger than that on Leg 1 on the 25th. 

While the presence of the stable layer is consistent with the surface state, upward heat 

fluxes estimated from the UAV are inconsistent with this ABL structure.  However, it is possible 

that entrainment of warmer (and drier) air aloft or subsidence warms the ABL downstream, 

which then results in a positive heat flux being estimated from the UAV profile data.  An 

examination of wind speed profiles (Figure 34) shows an increase in the wind speed between 350 

and 457 m, with a sharp decrease in wind speed above 457 m.   This increase in wind speed, and 

the corresponding well-mixed layer at this level, could indicate the mechanical mixing of higher 

and drier potential air from aloft.  It is possible that this could explain the spuriously larger LHF 
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on the 18th as compared to Leg 1 on the 25th, although it is unclear why this is not also reflected 

in the SHF.  Further analysis must be conducted to better understand this potential discrepancy. 

 

4.  Comparison to COARE flux estimates 

 

The following section will compare the UAV fluxes to fluxes estimated from the COARE 

bulk algorithm (Figures 35-39).  These results aid in our understanding of the role of surface and 

atmospheric conditions in September 2009 in TNB, as well as offer a comparison between fluxes 

estimated from observational data to those estimated with a bulk flux algorithm.  Two COARE 

fluxes are used – those with MODIS (COARE-M) and Everest (COARE-E) Tsfc as inputs. The  

 
 
Figure 34.  Wind speed profiles for 18 September. 
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Figure 35.  SHF and LHF estimates from COARE-M and UAV-E for Leg 1 on 23 
September 2009.  The x-axis is the distance along the flight leg.  UAV-E 
estimates are values from Table 5 with the uncertainty incorporated. 
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Figure 36.  SHF and LHF estimates from COARE-M and UAV-E for Leg 2 on 23 
September 2009.  The x-axis is the distance along the flight leg.  UAV-E 
estimates are values from Table 5 with the uncertainty incorporated. 
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Figure 37.  SHF and LHF estimates from COARE-M and UAV-E for Leg 1 on 25 
September 2009.  The x-axis is the distance along the flight leg.  UAV-E 
estimates are values from Table 5 with the uncertainty incorporated. 
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Figure 38.  SHF and LHF estimates from COARE-M and UAV-E for Leg 2 on 25 
September 2009.  The x-axis is the distance along the flight leg.  UAV-E 
estimates are values from Table 5 with the uncertainty incorporated. 
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Figure 39.  SHF and LHF estimates from COARE-M and UAV-E for 18 
September 2009.  The x-axis is the distance along the flight leg.  UAV-E 
estimates are values from Table 5 with the uncertainty incorporated.  
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mean values of each flux are plotted with a thicker line, while the uncertainties in the UAV 

fluxes (found in Tables 6 and 7) and the COARE fluxes are plotted with a thinner line.  The 

uncertainty in the COARE fluxes are estimated by varying the Tsfc data within the range of 

uncertainty described above (+/-1.3 K for MODIS and +/-2 K for the Everest). The method for 

determining the uncertainty in the UAV estimated fluxes is described in detail in KC2014.    

Across all five flight legs, the UAV and COARE SHF overall are comparable, with the 

COARE and UAV SHFs within the range of uncertainty on both flight legs on the 23rd (Figures 

35 and 36) and 25th (Figures 37 and 38) for at least one of the two COARE calculated SHF 

values.  Whether the COARE-E or COARE-M SHFs are more comparable to the UAV SHF 

depends on the flight leg.  As discussed in Section 2c, it is expected that the Everest data will 

provide a better estimate of Tsfc in conditions where the surface state is highly variable, such as 

in Leg 1 or possibly Leg 2 on the 23rd or 25th.  In areas such as Leg 3 on the 18th that are 

expected to have more uniform Tsfc values, the MODIS estimates might be more accurate.   

On the 23rd (Figures 35 and 36), only the COARE-M fluxes are available, and show 

differences of ~50 W m-2 on Legs 1 and 2, which is an 11% and 24% difference, respectively, 

from the UAV SHF (Table 6).  On the 25th (Figures 37 and 38), the COARE-E SHFs are more 

comparable than COARE-M to the UAV SHF in both flight legs.  In Legs 1 and 2, the COARE-

E SHFs differ from the UAV SHF by 75 W m-2 (20%) and less than 5 W m-2 (25%). In contrast 

the COARE-M to UAV SHF differences are 125 W m-2 (33%) and 65 W m-2 (325%), for Legs 1 

and 2 respectively (Figures 37 and 38, Table 6).  On the 18th (Figure 39), the COARE-M SHF is 

more comparable to the UAV SHF than COARE-E, where the COARE-M value differs by 90 W 

m-2 (72%) and the COARE-E values differs by 245 W m-2 (108%) (Table 6).  This analysis 

reflects the discussion in Section 2c, showing that the UAV and COARE-E SHF provide similar 
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estimates in areas where Tsfc is expected to be more highly variable (Figures 27 and 30), than in 

areas where Tsfc values are more uniform (Figure 32). 

Unlike the SHF, the COARE and UAV LHFs are never within the range of uncertainty of 

each estimate.  Leg 1 on 25 September is the only leg where the COARE-E LHF is more 

comparable to the UAV LHF than the COARE-M value (60 W m-2, 107%, compared to 140 W 

m-2, 212%) (Figure 37 and Table 7).  In Leg 2 on the 25th, the COARE-M LHF differs from the 

UAV LHF by 50 W m-2 (41%) compared to COARE-E (90 W m-2, 73%) (Figure 38, Table 7).  

On the 18th, the COARE-M LHF differs by 55 W m-2 (52%) compared to the COARE-E fluxes 

(85 W m-2, 81%) (Figure 39, Table 7).  On the 23rd, where no COARE-E fluxes are available, the 

COARE-M LHF differs from the UAV LHF in Legs 1 and 2 by ~50 W m-2 (33% and 45%) 

(Figures 35 and 36, Table 7).  The LHFs might be less comparable than SHF for two reasons:  

(1) the UAV LHF might have issues due to challenges in achieving accurate relative humidity 

observations during flights due to a sensor lag issue (Knuth et al. 2013), and (2) the COARE flux 

is less reliable for the LHF than the SHF (Fairall et al. 2003).     

On most flight days, the COARE-E values have a larger range of uncertainty compared to 

the COARE-M values, which both almost always have a larger range of uncertainty than the 

UAV estimates (Tables 6 and 7).  The COARE-E SHFs have a range of uncertainty of 125 and 

85 W m-2 in Legs 1 and 2 on the 25th, compared to the COARE-M SHFs of 90 and 65 W m-2 

(Figures 37 and 38, Table 6).  The UAV range of uncertainty is 27 W m-2 in Leg 1 and 30 W m-2 

in Leg 2 (Table 6).  For the LHF, the range of uncertainty in the COARE-E values is 45 and 30 

W m-2 in Legs 1 and 2, and in COARE-M is 45 and 20 W m-2 (Table 7).  This is larger than the 6 

and 19 W m-2 range of uncertainty in the UAV LHFs.  On the 18th (Figure 39), the range of 

uncertainty is comparable between the two COARE fluxes (70 W m-2 for the SHF and ~20 W m-
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2 for the LHF), which are both smaller than the range of uncertainty in the UAV fluxes (88 W m-

2 for the SHF and ~25 W m-2 for the LHF) (Table 6).  The UAV range of uncertainty on the 18th 

is larger due to issues with the pressure measurements on this day (KC2014).  On the 23rd, only 

the COARE-M fluxes are available, which show a larger range of uncertainty than the UAV 

fluxes (Figures 35 and 36).  The range of uncertainty in Legs 1 and 2 for the SHF is 100 and 65 

W m-2 for COARE-M, compared to 40 and 30 W m-2 for the UAV estimates (Table 6).  For the 

LHF, the range of uncertainty in Legs 1 and 2 for COARE-M is 45 and 20 W m-2, compared to 9 

W m-2 for the UAV estimates (Table 7). 

 There are two key points when considering the comparison of COARE to the UAV 

estimated fluxes.  The first is that there is a large amount of uncertainty in COARE compared to 

the UAV fluxes due to the large amount of uncertainty in the Tsfc.  This comparison has shown 

that varying the Tsfc by up to 2 K can provide uncertainties in the COARE fluxes of 125 W m-2 in 

the SHF and 45 W m-2 in the LHF (Figures 35-39).  These fluxes are therefore much less robust 

than the UAV fluxes without having more accurate Tsfc observations.  In KC2014, the 

uncertainty in the UAV estimates is, at most, 88 W m-2 for the SHF and 24 W m-2 for the LHF. 

 Second, the average wind speeds for the 2009 TNB flights are at the upper end of 

COARE’s tested accuracy (Fairall et al. 2003) (Table 8).  It is therefore possible the COARE 

estimates might differ from the UAV estimates for this reason.  The COARE algorithm might 

also provide more comparable estimates by including data from this work to adjust input 

coefficients at higher wind speeds.   
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5.  Summary 

 

In September 2009, UAVs were flown over a polynya located in TNB that is present due 

to strong, cold, and dry winds that advect sea ice away from the coast.  The UAVs sampled the 

atmosphere at various locations downwind to measure the evolution of the ABL as it passed over 

the polynya.  KC2014 used this data to estimate SHFs and LHFs based on changes in the ABL as 

the air mass passed over the polynya.   

This study examined the atmospheric and surface conditions during three flights in 

September 2009 to understand their role in controlling temporal and spatial variations in heat 

fluxes.  It was determined that surface conditions play a primary role during most of these flights, 

as greater variability in the surface state compared to the atmosphere was present on all flight 

days but one.  On 18 September, variations in the atmosphere were shown to be comparably 

important to the surface conditions.  The atmospheric variables, such as temperature and mixing 

ratio, were generally far less variable compared to the Tsfc and saturation mixing ratios (with the 

exception of the 18th).  In areas with more open water present, fluxes were greater than in areas 

with greater sea ice concentrations, which is consistent with expectations. Additionally, the 

atmospheric boundary layer temperature structure was used to assess, from a qualitative 

standpoint, the heat flux input at the ocean-atmosphere interface.  Days with a well formed 

mixed layer coincided with days that experienced higher heat fluxes from the surface  

The UAV estimated fluxes, calculated using only mean atmospheric state data, from 

KC2014 were compared to those estimated using the COARE bulk flux algorithm (Fairall et al. 

2003) with UAV observations of the atmospheric and surface conditions.  Overall, the COARE 

algorithm showed larger uncertainty compared to the UAV estimates due to uncertainty in the 
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surface input data.  Tsfc data from both the MODIS satellite and an Everest infrared thermometer 

on board the UAVs showed variations from the UAV SHF of more than 325% and 212% for the 

LHF.  This study shows that accurate measurements of surface conditions are crucial in 

understanding heat exchange in TNB and that the method presented by KC2014 of using mean 

state atmospheric data over the depth of the boundary layer provides a more accurate assessment 

of surface turbulent fluxes than bulk flux algorithms for the 2009 TNB data. 
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Chapter 5:  Conclusions  

  

Using data collected from a series of UAV flights over the TNB region of Antarctica, this 

dissertation explores air-sea interactions in the ABL during the late austral winter month of 

September 2009.  TNB is a region of interest in the Antarctic, as cold, dry air originating from 

the continental interior is modified by a relatively warm and moist surface present due to open 

water.  The open water occurs due to a recurring polynya that forms from strong offshore winds 

in the region.  The modification of the continental air mass by the underlying warm, moist 

surface leads to great implications on the atmosphere, ocean, and cryosphere due to air-sea heat 

exchange, the formation of high-density shelf waters that become part of Antarctic Bottom Water, 

and due to large amounts of sea ice production.  The UAV flights provided the first ever winter 

measurements of the ABL in TNB, and offered invaluable information regarding the atmospheric 

structure over the polynya.  This study used these measurements to estimate heat exchange 

between the ocean and atmosphere, and to understand the primary forcing mechanisms of this 

heat exchange and the ABL response. 

Chapter 2 provides a comprehensive study of the typical atmospheric conditions of TNB 

from a 15-year analysis.  The purpose of this study was to put the observations from the field 

campaign into context to understand whether September 2009 was a typical or anomalous year.  

Wind and temperature data collected from Rita AWS, located just west of TNB, was examined 

from 1993-2007 to determine dominant weather conditions in the region.  As well, an analysis of 

cyclone density, size, and shape in the Ross Sea from NOAA LAC (1 km) resolution satellite 

data was conducted, as these systems also have great impacts on the region.  This study found 

that 55% of winds were west to northwesterly, with speeds less than 20 m s-1.  Strong wind 
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events were categorized based on those that had wind speeds greater than 20 m s-1 for at least 10 

hours.  83% of the strong wind events were from directions consistent with downslope flow, with 

the majority of these events (68%) occurring during the winter months.  Temperatures were 

influenced by wind fluctuations, with most (39%) between -15°C and -25°C.  The cyclone 

climatology revealed most cyclones were less than 1000 km in size, with a high density in the 

southwestern Ross Sea (including TNB). 

When comparing the analysis from 1993-2007 to AWS and satellite data in September 

2009, an increased number of strong winds and an eastward shift in cyclone activity indicated 

that September 2009 was an anomalous year.  Further analysis revealed a shift in the upper level 

trough in September 2009 due to changes in the Southern Hemisphere Rossby wave pattern.  The 

increased intensity of the 500 mb trough enhanced downslope flow over TNB, and its eastward 

shift contributed to a corresponding shift in the cyclone activity.  The results from this study 

showed that air-sea interactions during September 2009 might be uncharacteristic of typical 

years. 

The atmospheric conditions in TNB, combined with the unique surface conditions of the 

polynya, lead to strong air-sea interactions in the region.  The results from the contextual study 

showed that air-sea exchange during 2009 would be part of an anomalous weather pattern.  To 

understand the response of the atmosphere to the energy input from the ocean, heat fluxes were 

estimated in the region.  The atmospheric data collected by the UAVs were used to develop an 

innovative methodology to estimate heat exchange in TNB that did not require the use of bulk 

flux algorithms that can have large uncertainties.  This method estimated the heat and moisture 

content within the ABL based on profile measurements that were collected from the UAV flights.  

The heat fluxes were estimated based on how much the heat or moisture content changed 
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between pairs of profiles collected in the downwind direction away from the coast.  The 

underlying polynya was assumed to have the greatest impact on modifying atmospheric 

properties.   

This study initially estimated fluxes that were “uncorrected”, in that all heat content 

changes measured were assumed to be diabatic and due to surface turbulent fluxes, and that the 

UAV followed the background airflow perfectly.  Subsequent modifications to these uncorrected 

fluxes were made to account for adiabatic (for SHF) and non-Lagrangian (SHF and LHF) 

processes, as well as corrections to account for the heat content of the air below the minimum 

UAV flight level.  This method implemented a spatial technique for correcting the fluxes where 

two different, but scientifically appropriate, versions of this method were tested.  These two 

versions provided flux estimates within 5 W m-2, showing the robustness of this methodology.  

Examining the impact of instrument inaccuracy on the resulting SHF and LHF tested further 

uncertainties of the method, with variability in the results of less than 15 W m-2 (in most cases).  

The estimates of the heat fluxes, including corrections accounting for adiabatic processes, non-

Lagrangian processes, and the heat content below the UAV minimum flight level, showed SHFs 

ranging from 11 to 373 W m-2, while the LHF ranged from 19 to 121 W m-2.  These estimates 

were from 18, 23, and 25 September 2009 and were chosen because their flight missions were 

designed to measure heat and moisture content changes.  These estimates are generally lower 

than previous studies discussed in Chapter 1 that assumed largely open water conditions. 

Once the heat fluxes were quantified over the region, an understanding of the primary 

forcing mechanisms causing temporal and spatial variability in the heat fluxes was necessary.  A 

thorough examination of the surface and atmospheric states from UAV and satellite data was 

conducted in Chapter 4 to determine how variability in each leads to variability in the estimated 
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fluxes.  The sensitivity of the heat flux estimates to the surface state was also determined using 

the TOGA-COARE bulk flux algorithm. 

This study showed that the fluxes estimated for September 2009 varied more due to 

changes in the surface state than to changes in the atmosphere.  This was primarily due to the 

larger variability in surface conditions compared to the atmosphere.  Surface temperatures 

typically varied 15 K from the coast to the end of the downstream UAV flight path (~40 km), 

while over this same distance atmospheric temperatures typically only changed ~2-4 K.  

Similarly, surface saturation mixing ratios changed ~1.5 g kg-1 along the flight path, with an 

atmospheric change of only 0.4 g kg-1.  Fluxes were typically higher over areas with more open 

water, consistent with expectations.   

Using the TOGA COARE bulk flux algorithm, the sensitivity of the fluxes to the 

underlying surface state was quantified.  Two sets of surface temperatures were used as input 

data to the algorithm – one from MODIS satellite data, and one from Everest infrared 

thermometers mounted on board the planes.  The uncertainty in the TOGA COARE fluxes was 

over 150 W m-2 for the LHF and 400 W m-2 for the SHF.  Much of this variability was due to the 

uncertainty in the surface temperature measurements.   

The atmospheric response to air-sea interactions over TNB was explored by examining 

the structure of temperature profiles over the region.  It was shown that a convective boundary 

layer forms near the surface when the cold, dry continental air passes over the relatively warm, 

moist polynya.  The convective layer erodes the continental layer, and increases with depth as 

the fetch increases.   

The purpose of this dissertation is to examine air-sea interactions based on aircraft 

measurements over TNB.  The results from this work have enhanced our knowledge of these 
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interactions, and the ABL response, over this important area of the Earth’s climate system.  The 

estimates of SHF and LHF provided as part of this work represent the first fluxes calculated from 

in situ data over TNB during the winter months.  Prior to this work, all estimates of fluxes during 

the winter months were estimated based on model simulation. These previous estimates are 

consistently larger than the fluxes estimated from the in situ UAV data.  Additionally, the 

methodology used to estimate these fluxes has widespread applicability to other regions where 

surface data might not be present.  Finally, the understanding of the forcing mechanisms of heat 

exchange in TNB allows a better understanding of how this heat can influence other areas of the 

atmosphere, such as cyclone development or precipitation formation.  Carrasco et al. (2003) has 

shown the TNB region to be a region of strong mesocyclone activity, which can have 

implications on the local and regional atmosphere.  The results from examining the response of 

the ABL during cold air outbreaks in TNB can be applied to other areas of the globe.  Changes in 

the atmosphere can lead to changes in ocean currents, which can have implications on climate 

and weather across the globe. 

There are several areas where the work completed as part of this dissertation can be 

expanded in the future.  With the lessons learned from the data collected from the 2009 flights 

and the studies conducted in Chapters 3 and 4, a second set of flights to measure the three 

dimensional atmospheric boundary layer were conducted in September 2012.  One of the largest 

improvements of the 2012 data from the 2009 data is that Eulerian measurements were collected 

along the flight path to also understand changes over time.  The exact flight path over the 

polynya was flown twice approximately one hour apart to understand how quickly the boundary 

layer evolves. 
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These flights collected measurements over the region that will allow some of the 

limitations highlighted in Chapter 2 to be better understood.  With the data collected during 

September 2012, a temporal methodology can also be used to estimate the fluxes.  In Chapter 2, 

heat fluxes estimations are corrected to account for non-Lagrangian processes, wherein the 

difference between the UAV and the air parcel following the background flow as both move 

downstream from the coast are corrected by accounting for the difference in space.  The UAV 

and air parcel travel at different speeds, and this correction accounts for their difference in space 

after a certain amount of time has passed.  A variation on this method incorporating Eulerian 

techniques can be used in which the difference in time between when it takes the air parcel and 

the UAV to traverse a certain distance can also be used to correct the fluxes.  This version was 

broadly tested as part of the work presented in Chapter 3, but a lack of accurate and available 

data prevented a full comparison to the spatial methodology presented as part of this work.  It is 

anticipated that adding corrections to account for time as well as space will further prove the 

robustness of this methodology. 

Additionally, data collected from the 2012 flights (and some data from 2009) will be used 

to estimate basic characteristics of the continental air passing over the polynya, such as the 

horizontal dimensions of the downslope wind jet.  The ABL structure and heat flux forcing 

mechanisms during these flights will also be examined and compared to the 2009 data.  The 

2012 data will also be compared to the idealized structure outlined in Chapter 4 to determine 

whether the boundary layer follows this pattern.  As well, the atmospheric and surface data will 

be compared to determine whether surface conditions are also the primary forcing mechanism in 

2012. 
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Preliminary work has been completed to compare the fluxes estimated from the UAV 

methodology and from TOGA-COARE to that from model data.  Comparisons to the flux 

algorithm as part of the Antarctic Mesoscale Prediction System (AMPS) have showed mixed 

results, varying from the UAV fluxes by ~250 W m-2.  Further work needs to be conducted to 

better evaluate the AMPS model forecasts.  The flux algorithm code used to estimate the AMPS 

values will be compared to the UAV estimates and the COARE data in a similar manner as 

described in Chapter 4.  As well, a comparison to reanalysis data will be conducted.  Preliminary 

analysis shows the reanalysis data underestimates the UAV data by 400-500 W m-2.  Further 

study on this will also be conducted in a manner similar to that of Chapter 4. 

Finally, understanding what, if any connection exists between the heat fluxes estimated 

over TNB and synoptic patterns is underway.  The work discussed in Chapter 2 showed that 

100% of the strong wind events studied occurred when a synoptic system was present in the Ross 

Sea.  Closer examination of the three September 2009 flights studied as part of Chapters 3 and 4, 

however, show that synoptic systems in the Ross Sea do not significantly impact wind, pressure, 

or temperature patterns in TNB, and that most patterns appear to be largely influenced by local 

factors. Variations in wind speed, pressure gradient, and temperature patterns will be studied in 

TNB and compared to the location of synoptic systems in the Ross Sea.  This study will examine 

whether the synoptic systems have an impact on these variables.  As well, large-scale weather 

patterns on the polar plateau will be used to understand the impacts in TNB.  The katabatic 

forcing term (Parish and Cassano 2001) will be quantified to determine the role of its impact on 

flow in TNB compared to synoptic forcing.  The inversion strength on the polar plateau will also 

be studied using AWS or satellite data to understand the strength of the katabatic flow.  Changes 

in these patterns can then be used to understand variability in the air-sea interactions over TNB. 
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Appendix:  Unmanned Aircraft System Measurements of the Atmospheric 

Boundary Layer over Terra Nova Bay, Antarctica  

 

ABSTRACT.   In September 2009, a series of long-range unmanned aircraft system (UAS) 

flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica.  Air 

temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational 

aircraft data were collected and quality controlled for scientific use.  The data has been submitted 

to the United States Antarctic Program Data Coordination Center (USAP-DCC) for free access 

(doi: 10.1594/USAP/0739464). 

 

1.  Introduction 

 

Within the Terra Nova Bay (TNB) region of Antarctica, strong air-sea interactions occur 

during the winter months due to the presence of a persistent latent heat polynya generated largely 

due to strong downslope winds originating from the interior of the continent (Kurtz and 

Bromwich 1983, Ciappa et al. 2012).  These air-sea interactions are strongest during the winter 

months as the downslope and katabatic winds bring cold, dry air in contact with the relatively 

warmer and moister air overlying the polynya.  Typical ice conditions in the region consist of 

open water immediately offshore, with areas of pancake and pack ice further away from the coast 

(Figure 40).  However, ice conditions within TNB can vary greatly depending the strength of the 

prevailing winds, where calm winds can result in pack ice being present up to the coastal edge.  

Understanding the impact of the interaction between the cold, dry continental air with the open 

water of the polynya on atmospheric storms, energy transfer to and from the atmosphere, and the  
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Figure 40.  One kilometer Aqua True Color satellite image from 24 September 
2009.  The Drygalski Ice Tongue, located in the center of the image, extends 
approximately 50 km from the coastal edge into the sea.  North is at the top of 
the image.  Data collected from the National Aeronautics and Space 
Administration (NASA)’s website. 

 

changing properties of oceanic water are important for furthering our knowledge of both local 

and large-scale meteorological, glaciological, and oceanographic changes.  

In September 2009, a series of unmanned aircraft system (UAS) flights were undertaken 

over the TNB polynya to measure changes in the atmospheric layer overlying the polynya 

(Cassano et al. 2010).  The UAS used for these flights were built and designed by Aerosonde®, 

and collected atmospheric measurements (air temperature, skin temperature, u- and v-
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components of the wind, atmospheric pressure, relative humidity, and shortwave and longwave 

radiation), geo-reference data (latitude, longitude, altitude), and aircraft specific information (roll, 

pitch, yaw, aircraft height, and ground speed).  A Canon SX110 IS digital camera was mounted 

on the UAS to collect images of the sea surface and ice state in the polynya.  The data were 

recorded on board the aircraft using data loggers and memory cards and also telemetered back to 

the field team in real-time (except for digital photographs) during the flights using Iridium 

satellite communication (when over the horizon) or 900 MHz radio (when within line of sight).   

The purpose of these flights was to document the downstream evolution of the boundary 

layer over Terra Nova Bay and to study air-sea interactions in the winter months over the Terra 

Nova Bay polynya (Figures 40 and 41).  The meteorological data collected by the UAS are 

sufficient to allow us to document the downstream evolution of the temperature, humidity, winds, 

and the boundary layer over the polynya. The data collected are also sufficient to allow us to 

estimate the turbulent sensible heat, latent heat, and momentum fluxes as well as to estimate all 

of the terms in the horizontal momentum equation.  The method for estimating these terms from 

the UAS data will be described in separate papers that are currently in preparation.  Turbulent 

flux instrumentation was not carried during the flights due to weight restrictions and to keep the 

instrumentation simple and robust. 

Various data loggers on the UAS collected the data with varying sampling rates.  As part 

of the quality control process, the data was rigorously checked for false or spurious data as well 

as streamlined into cohesive sampling rates.  The final dataset is provided to the general public in 

two different formats at a sampling rate of ten seconds.  A description of the UAS and flights, the 

quality control process, and the publically available dataset is provided below. 
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Figure 41.  Map of the entire UAS flight region, from Pegasus Runway to Terra 
Nova Bay. 
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2.  UAS Description and Flights 

 

During September 2009, the Aerosonde® UAS flew sixteen flights – eight flying north 

from the Pegasus ice runway near McMurdo Station to TNB (Figure 42), six flights flown near 

Pegasus (Figure 43), and two unsuccessful flight missions (Figure 44).  The six flights near 

Pegasus were largely test flights used to ensure proper aircraft instrument operations, while the 

eight flights to TNB were science flights (Table 9).   

The following describes the standard flight pattern for the science flights to TNB.  During 

the flights to TNB, the aircraft followed the Transantarctic coast north to TNB, and telemetered 

data back to the field team at Pegasus Runway via Iridium satellite.  Once the aircraft did a 

complete south to north transect of TNB near the coast, the mission scientist used the telemetered 

meteorological data to locate the position of strongest winds across TNB.  Based on this, a 

revised set of waypoints and altitudes were then uploaded in real time to the Aerosonde’s 

autopilot, and the UAS then flew parallel to the strongest winds (as determined from the 

telemetered data stream) across TNB (Figure 45).  Finding the area of strongest winds was 

important for meeting the scientific goals of the project, which included estimating the largest 

air-sea fluxes over the polynya.  As air-sea fluxes are (in part) controlled by wind strength, 

flights within the area of strongest winds provided the data to calculate the largest fluxes within 

TNB.  This flight strategy also documented the downstream evolution of the fluxes when moving 

from stronger to weaker winds within the jet.  

Along this flight path the UAS performed soundings of the atmosphere at several 

locations.  Figure 46 shows examples of three specific humidity profiles taken along the flight 

path measured by a UAS on 23 September.  Each of these profiles consisted of a spiral ascent, a  
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d) 
Figure 42a-d.  Flight path for the eight science flights from Pegasus Runway to 
Terra Nova Bay. Gaps in the flight path indicate a lack of data.  Profile 
locations are marked with a black dot. Flight altitude is indicated by the color 
scale shown in each panel.  
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c)  
Figure 43a-c.  Flight path for the six local flights near Pegasus Runway.  Gaps 
in the flight path indicate a lack of data.  Profile locations are marked with a 
black dot. Flight altitude is indicated by the color scale shown in each panel.  
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Figure 44.  Flight paths for the two flights that did not reach Terra Nova Bay.  
Gaps in the flight path indicate a lack of data.  Profile locations are marked with 
a black dot. Flight altitude is indicated by the color scale shown in each panel.  
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Science Flights Local/Unsuccessful TNB Flights 

Start – End Times UAS Number Start – End Times UAS Number 

Start:  14 Sept. 04:37:28 

End:   14 Sept. 19:39:45 

214 Start:   7 Sept. 00:14:38 

End:    7 Sept. 01:04:08 

217 

Start:  18 Sept. 03:02:54 

End:   18 Sept. 19:39:00 

214 Start:   8 Sept. 21:02:20 

End:    9 Sept. 03:47:30 

217 

Start:  21 Sept. 18:51:54 

End:   22 Sept. 05:51:32 

214 Start:   9 Sept. 00:56:57 

End:    9 Sept. 05:29:31 

214 

Start:  23 Sept. 19:09:10 

End:   24 Sept. 06:24:48 

215 Start:  10 Sept. 05:58:57 

End:   10 Sept. 06:26:07 

214 

Start:  23 Sept. 20:08:09 

End:   24 Sept. 06:13:28 

216 Start:  12 Sept. 04:02:24 

End:   12 Sept. 04:52:24 

215 

Start:  25 Sept. 06:50:11 

End:   25 Sept. 19:41:38 

215 Start:  13 Sept. 04:38:49 

End:   13 Sept. 21:44:35 

214 

Start:  26 Sept. 18:33:46 

End:   27 Sept. 04:35:04 

214 Start:  16 Sept. 03:20:19 

End:   16 Sept. 06:30:39 

215 

Start:  26 Sept. 19:23:40 

End:   27 Sept. 04:19:51 

216 Start:  22 Sept. 04:52:04 

End:   22 Sept. 06:18:34 

216 

 

Table 9.  Start and end times (in UTC) and the UAS aircraft number for science 
flights to TNB and local flights near Pegasus ice runway. 
 

Spiral descent, or both.  The top altitude of each spiral ascent or descent pattern varied by flight 

but was chosen to ensure that the entire depth of the boundary layer was sampled.  The local 

flights near Pegasus Field had no regular and consistent pattern between flights (Figure 43). 

The Aerosonde® UAS (Maslanik et al., 2002; Curry et al., 2004; Inoue and Curry, 2004; 

Inoue et al. 2008) are designed and built in Australia for commercial use, and for these flights  
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Figure 45.  Winds observed during the 23 September 2009 UAS flight over Terra 
Nova Bay. 
 

Required a field team of four to fly. Extensive, previous use in the Arctic demonstrated the 

potential of the Aerosonde system for polar operations (Curry et al., 2004).  The UAS used for 

the TNB missions in 2009 had a wingspan of 3 meters, a weight of 15 kg, and a payload capacity 

of 2-5 kg.  The aircraft had a range of over 1000 km, and an endurance of 18 hours, and were 

flown between approximately 150 and 3000 m altitude during the flights.  Typically, the 

downwind flight transects were flown at an approximately constant altitude between 150 and 250 

m.  Figures 42 to 44 also now indicate the flight altitude along the entire flight path for each 

UAS flight.  The UAS were not flown at a lower altitude due to concerns about the presence of 
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tall icebergs in the area as well as inaccuracies in the GPS altitude data. The planes were 

manually pilot controlled at take-off and landing and operated in full autonomous mode during  

 
 
Figure 46.  Specific humidity profiles from the 23 September 2009 (UAS #216) 
flight.  Profile 1 was measured at approximately 1:35 UTC, Profile 2 was 
measured at approximately 1:52 UTC, and Profile 3 was measured at 
approximately 2:18 UTC on 24 September 2009.  
 

Most of the flight, with real-time telemetry to the ground station and pilot in command.  The 

pilots had the ability to take over controls or alter the flight plan at any time. 

The instruments on board the UAS include both the instruments internal to the UAS as 

well as additional meteorological instruments added specifically for the 2009 flights.  The 

internal UAS flight management system, including the autopilot, GPS navigational system, flight 

sensors, communications, and payload interfaces were Piccolo components developed by Cloud 
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Cap Technologies, Inc.  Data from the Piccolo system were available on all flights, and were 

telemetered back in real time.  The meteorological instruments added to all of the UAS included 

pressure data (Vaisala PTB110), skin temperature (Everest Interscience, Inc. Everest 3800ZL), 

air temperature and relative humidity (Vaisala HMM213), and a nadir-viewing digital camera 

(Canon Powershot SX110 IS).  The u and v components of the wind were calculated during 

aircraft maneuvers.  The autopilot navigation system contains a Kalman filter, which estimates 

the wind vector continuously during the flight.  Periodic ‘wind finding’ maneuvers are performed 

during the flight to improve the wind estimates which otherwise degrade in accuracy over time 

whilst flying a constant heading, as the aircraft heading is not directly observable without 

magnetometer input.  It is important to note that the response time of the relative humidity sensor 

is likely slower than stated due to the cold temperatures in the region and this may present some 

issues when interpreting the data collected during the quick ascent/descent of the profiles (Table 

10).  The use of this data in the soundings should, as such, be used with caution. 

One UAS was also outfitted with a Kipp and Zonen CNR2 radiometer to measure 

shortwave and longwave radiation.  An additional GPS, a Canmore GT-730F, was also added to 

several UAS.  Finally, a laser altimeter was used to measure sea ice freeboard and wave state.  

This laser altimeter, part of the CU LIDAR Profiling and Imaging System (CULPIS), was 

designed by the University of Colorado (Crocker et al. 2012).  The CULPIS profilometer was 

designed specifically to collect fine-resolution surface elevation measurements from small UAS 

in polar environments (Crocker et al. 2012). The system consists of a single-beam near infrared 

LiDAR sensor that measures the distance from the aircraft to the ground surface at 400 Hz, a L1 

GPS unit that detects the aircraft’s altitude and location at 10 Hz, and an inertial measurement 
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unit (IMU) that determines the aircraft’s attitude and the LiDAR pointing angle at 100 Hz.  Due 

to payload capacity, however, the altimeter was only present on two flights.   

  

Instrument Accuracy  Response Time Operating Temperature 

Range 

Piccolo Autopilot -- -- -40 to +80°C 

Vaisala PTB110 +/- 1.5 hPa (at +20°C) 500 ms (at +20°C) -40 to +60°C 

Everest 3800ZL +/- 0.5°C 0.25 s -40 to +100°C 

Vaisala HMM213  +/- 2-3% (RH), +0.1°C 

(Temperature) (at +20°C) 

60 s (at +20°C) -70 to +180°C 

Kipp and Zonen CNR2 10-20 µV/W/m2 <10 s -40 to +80°C 

 

Canmore GT-730F 5 m 1s -40 to +85°C 

CULPIS 1 m globally -- -15 to 50°C 

 
Table 10.  Instrument specifications for the equipment carried on board the UAS. 
 

The extreme conditions during the end of the Antarctic winter led to aircraft issues on 

several flights.  Aircraft #217, flown on 8 September, crashed on the sea ice near 76.62°S 

165.89°E on its return flight to Pegasus Runway.  It is suspected that a fuel pump failure caused 

the engine to fail and the plane to crash.  On 10 September, aircraft #215 indicated a generator 

belt failure shortly after take off.  The Aerosonde® pilots were able to make an emergency 

landing at Pegasus Runway without incident.  On 13 September, aircraft #214 lost Iridium 

communications with the ground team at Pegasus Runway.  After a half hour of lost 

communications, the aircraft returned to Pegasus where 900 MHz radio communications were 
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reestablished, and flew over the runway for over 12 hours until daylight permitted safe landing 

by personnel.   

A variety of conditions were sampled during the sixteen flights to TNB or near Pegasus 

Runway.  A summary of these conditions (maximum, minimum, and mean temperature, 

maximum and mean wind speed, mean wind direction, and maximum flight altitude) is listed in 

Table 11.  Figure 47 shows the National Centers for Environmental Prediction/National Center 

for Atmospheric Research (NCEP/NCAR) reanalysis mean sea level pressure for the six days 

flights were flown to TNB.   

 

3.  Data Description 

 

There were five data streams in which the data were collected from the UAS – four 

logger data streams, and one telemetered (Table 12).  The telemetered data stream was sent back 

to the field team in real-time to monitor the aircraft and the weather (specifically temperature, 

wind speed and direction, and relative humidity) in which it was flying.  The data sent back in 

real-time consisted of latitude, longitude, altitude, ground speed and direction, roll, pitch, and 

yaw data, air pressure, air temperature, relative humidity, u- and v-components of the wind, skin 

temperature, longwave and shortwave radiation, and other data relevant to monitor the aircraft 

(such as box temperature or instrument voltages).  The latitude, longitude, altitude, ground speed 

and direction, roll, pitch, yaw, air pressure, and u- and v-components of the wind were sourced 

from the Piccolo avionics.   The remaining data was typically the same as that logged onboard 

the aircraft, but telemetered at a different sampling rate (generally lower) than was logged. The 
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one exception is the u- and v-components of the wind, which were only telemetered and not 

logged by the on-board data logger. 

 
Table 11.  Maximum, minimum, and average values for various meteorological 
variables during each of the sixteen UAS flights. The first column lists the day 
of September 2009 for the start of each flight and the UAS number.  
 
 
 

Date and 
UAS 

number 

Temperature (°C) Wind Speed (ms-1) Wind 
Direction (º) 

Altitude 
(m) 

 Max Min Mean Max Mean Mean Max 

7, #217 -19 -26.4 -21.48 12.82 6.63 291.33 712.17 

8, #217 -18.6 -34 -22.16 12.01 4.44 244.26 753.84 

9, #214 -21.3 -35.1 -24.83 16.48 2.83 197.81 1355 

10, #214 -28 -37 -28.85 8.77 3.93 176.43 587.03 

12, #215 -13.3 -26.2 -14.91 18.35 6.13 223.87 577.95 

13, #214 -4.3 -29.17 -10.95 14.84 4.87 210.49 654.95 

14, #214 -12.97 -34.43 -19.07 28.29 8.19 176 1554.03 

16, #215 -17.6 -33.1 -25.15 12.61 5.07 137.43 3054.16 

18, #214 -15.94 -28.54 -20.86 25.65 10.39 202.7 1567.35 

21, #214 -21.38 -29.76 -24.31 24.98 7.81 200.85 1560.43 

22, #216 -24.36 -27.74 -26.27 9.19 4.65 85.84 985.12 

23, #215 -21 -35.35 -24.23 26.56 6.63 266.03 2557.18 

23, #216 -21.37 -36.62 -23.96 25.98 6.38 267.91 1559.15 

25, #215 -15.53 -33.38 -19.08 27.97 6.06 232.08 2056.87 

26, #214 -17.39 -34.28 -23.24 34.84 10.1 231.03 1833.5 

26, #216 -17.7 -34.2 -23.79 39.89 8.85 214.5 2567.25 
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Figure 47.  NCEP/NCAR reanalysis mean sea level pressure data for the days on 
which flights were flown to TNB.  Image provided by the NOAA/ESRL Physical 
Sciences Division, Boulder Colorado (Kalnay et al.  1996).  
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Data Stream Measurements 

Telemetered (0.33-1 Hz) 

Latitude Air Temperature 

Longitude Air Pressure 

Altitude Relative Humidity 

Ground Speed Longwave Radiation 

Ground Direction Shortwave Radiation 

Roll Skin Temperature 

Pitch u-Component of Wind 

Yaw v-Component of Wind 

GPS (1 Hz) 
Latitude Altitude 

Longitude Ground Speed 

ADC (10 Hz) 
Longwave Radiation Air Pressure 

Shortwave Radiation Skin Temperature 

RS232 (0.10 Hz) Air Temperature Relative Humidity 

CULPIS Laser Altimeter  

 
Table 12.  Data available in the four logger and one telemetered data streams.  
Sampling rates are also given. 
 

The final four data streams were from various logger systems on the UAS, with the first of these 

from the Canmore GPS.  The data within this stream consisted of latitude, longitude, altitude, 

and ground speed, and was only available on certain flights (Table 13).  The second data stream 

was the logged analog-to-digital converter (ADC) data that consisted of longwave and shortwave 

radiation, static air pressure, and skin temperature.  The third logged data stream was from the 

RS232 logger interface consisting of temperature and relative humidity data.  The final data 

stream consisted of the laser altimeter data from the CULPIS instrument. Surface elevation 

measurements were derived from the LiDAR range data, the GPS position data, and the IMU 
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pointing data during post-processing, although these data have not undergone full post-

processing.  

  

Date and UAS 
number 

RS232 GPS ADC Telemetered 

7 Sept., #217    X 

8 Sept., #217    X 

9 Sept., #214   X X 

10 Sept., #214    X 

12 Sept., #215    X 

13 Sept., #214 X   X 

14 Sept., #214 X X X X 

16 Sept., #215    X 

18 Sept., #214 X X X X 

21 Sept., #214 X X X X 

22 Sept., #216 X X X X 

23 Sept., #215 X  X X 

23 Sept., #216 X X X X 

25 Sept., #215 X  X X 

26 Sept., #214 X X X X 

26 Sept., #216  X X X 

 
Table 13.  Available data for each of the sixteen September 2009 flights.  
 

The data logged onboard and telemetered to the field team were collected at varying 

sampling rates.  The telemetered data was sent back at a sampling rate of 1 Hz when within line 

of site using the 900 MHz radio link, and at 0.33 Hz when using Iridium connectivity.  The 

logged data from the RS232 was collected at a rate of 0.10 Hz, while the ADC logged data was 
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collected at 10 Hz.  The GPS data was logged at a rate of 1 Hz.  When the data in the logger file 

is at a lower sampling rate than the rate at which the telemetered data is provided, the data in the 

telemetered file is repeated.  When the data in the logger file is at a higher sampling rate than the 

telemetered data, not all of the logger data is included in the telemetered file. 

 Data was logged and telemetered during pre-flight operations as well as the actual flight 

of the aircraft.  Using the ground speed and altitude data to determine when the UAS was 

airborne, the five data streams were concatenated to only include data during the actual flight 

time.  

  

4.  Quality Control  

 

Quality control (QC) was performed on the data in four of the five data streams as well as 

synced for similar sampling rates.  Spurious data points, unit changes, and other corrections 

needed to be made in each data set.  The CULPIS data provided is the raw LIDAR, GPS, and 

IMU measurements, and post-processing and QC has not been performed on this data.  A 

summary of the QC process for all other data is provided below. 

 

a. RS232 Data (Temperature and Relative Humidity) 

 

The data within the RS232 data stream was not time stamped when logged, and extra 

processing was needed to ensure proper accuracy when adding time markers to this data.  To 

accomplish this, the RS232 logged data was compared to the telemetered temperature and 

relative humidity to determine a matching point between the two files.  Because the RS232 
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logger had a step counter, once an initial matching point was determined, subsequent time 

markers could be added.  This application of time markers could yield an inaccuracy of up to 1-2 

seconds.  This is because the telemetered data is occasionally repeated, and when searching for 

the initial time marker, it can be difficult to determine which value in the telemetered file is the 

true initial start time.   

 

b. ADC Data (Air Pressure, Longwave and Shortwave Radiation, and Skin Temperature) 

 

The data within the ADC logger file was also not time stamped, but also did have a step 

counter.  However, there were no common data values between the telemetered and ADC logger 

data to set an initial time stamp, as was true with the RS232 data.  In order to set an appropriate 

time stamp to the ADC logged data, a manual record of when the ADC logger was switched on 

was used to time stamp the initial value reported in the ADC logged data stream. 

The unavailability of comparable data within the two data streams existed for several 

reasons.  First, when the skin temperature and longwave and shortwave radiation voltages from 

their respective instruments were reported through the telemetered and logger process, the data 

was compared to two different reference values and calibrated, and thus the final reported value 

was slightly different for each.  Secondly, there were two types of pressure data – the air pressure 

provided by the Piccolo avionics package, and the air pressure provided from the Vaisala 

meteorological sensor.  Both values were telemetered, but the Vaisala pressure that was 

telemetered needed to undergo a conversion process, and thus a direct comparison between the 

two could not be made.   



 

 

162 

The Everest skin temperature was also calibrated and corrected via post processing steps 

due to issues discovered during flight operations.  It was determined that when the infrared probe 

was in a cold environment and sensing a relatively warmer environment (such as when flying 

above open ocean) the thermometer would report an incorrect value (i.e., instrument housing 

temperature affected the estimated radiometric temperature). This problem was identified 

through ground calibration tests done on site.  The post-processing corrections were carried out 

by determining the sensor readings that corresponded to a known low temperature target and a 

high temperature target.  The high temperature target was represented by open water areas during 

flight, as determined using the Canon aerial photographs.  These were assumed to be at a sea-

water freezing point of -1.8°C.  Low temperature tie-points were determined by comparing the 

Everest readings to cold land ice, with temperatures given by near-coincident MODIS satellite 

data.  A linear fit between voltages associated with the low and high temperature targets was 

then used to convert all voltages to temperatures.  This process was done for each flight 

individually.  The estimated error associated with this ad-hoc calibration is about 2 degrees. 

Longwave and shortwave radiation data was only available on the flights on 23 

September #216 and 26 September #216.  This data has not been quality controlled or corrected 

for aircraft orientation.  It is suggested that users carefully evaluate this data prior to use. 

 

c. GPS Data (Latitude, Longitude, Altitude, Ground Speed) 

 

The Canmore GPS altitude data was reported as height above the WGS84 ellipsoid rather 

than altitude above the surface.  Consequently, the ellipsoid height needed to be converted to 

topographic altitude by correcting with the EGM96 datum geoid height, which was found at each 
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latitude and longitude location along the flight path.  This correction does not provide the exact 

height above the surface due to the variable influence of ocean dynamic topography, tides, and 

atmospheric pressure loading, but it does provide the aircraft mean sea level (MSL) altitude. 

 

d. Telemetered Data 

 

Very little processing was required of the telemetered data.  The altitude reported as part 

of the Piccolo system was also the ellipsoid height, and also needed to be corrected by the geoid 

height to obtain the true altitude above mean sea level.  As well, the u- and v-components of the 

wind provided from the Piccolo were converted into wind speed and direction.  The telemetered 

data was repeated at times such that several different time stamps might have the same data over 

a given time span.  In these cases, the first repeated data and time stamp was kept.   

Additionally, there are a few instances where one time stamp might report two different 

values of data – for example, a single time stamp might have two different temperature values.  

This seemingly repeating time data is actually not repeating data at all, but rather an issue that 

occurred when the data was telemetered back in real time.  Sometimes there would be delays in 

the transmission of telemetered data that would cause several data packets to be sent at once.  

Typically when there is repeating data there is a data gap that occurs adjacent to the data.  

However, because the correct time of the repeated data cannot be accurately determined, the data 

in the file has been left as is. 
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5.  Data Availability 

 

The data from the September 2009 Antarctica flights has been submitted to the United 

States Antarctic Program Data Coordination Center (USAP-DCC) (doi: 

10.1594/USAP/0739464).  The available data is in text and csv formats, and is provided at ten-

second intervals, representing the lowest sampling rate of the logged data, with an accuracy to 

within five seconds (Table 14).  The data from the flights provided in these files are:  date and 

time, latitude, longitude, altitude, temperature, relative humidity, pressure, wind speed, wind 

direction, u and v components of the wind, longwave and shortwave radiation, skin temperature, 

ground speed and direction, roll, pitch, and yaw, and laser altimeter.   

As described in Section 3, there are several instruments that might provide duplicate data 

(for example, on flights when the Piccolo and Canmore GPS are used).   As such, there is a 

hierarchy to the type of data that is provided in the final dataset.  Typically, data provided by 

instruments that are not part of the Piccolo system, and were added specifically as part of the 

2009 flights, are used whenever available.  This impacts latitude, longitude, altitude, pressure, 

and ground speed data.  If the Canmore GPS data is available, the latitude, longitude, and altitude 

from that device will be used over the Piccolo GPS data.  The only exception to this is the 

ground speed data.  Because the Canmore GPS did not provide ground direction data, the ground 

speed and direction data reported is always from the Piccolo system.  

Because the Piccolo air pressure was not used during flight operations and therefore was 

not properly calibrated, the Vaisala air pressure was used whenever available.  In instances 

where the Piccolo air pressure needed to be used, the data was rigorously analyzed to ensure  
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Table 14.  A sample of the data available in the USAP-DCC repository.  Data 
has been truncated in this table to save space.  
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validity.  The air pressure at flight take-off and landing was compared to a local automatic 

weather station at the Pegasus ice runway to determine both accuracy and that any differences 

between the two pressures at take-off were the same when the aircraft landed.  For all flights 

where the Piccolo air pressure was used, it was deemed to be accurate. 

 

5.  Summary 

 

In September 2009, a series of long-range unmanned aircraft system flights were made to 

Terra Nova Bay, Antarctica to study the downstream evolution of the atmospheric boundary 

layer over a latent heat polynya during winter conditions.  Eight flights were flown on science 

missions to Terra Nova Bay, with an additional six flights flown near the Pegasus ice runway 

(the origin of the UAS flights) as test flights to ensure proper aircraft operations.  Two additional 

flights were attempted to TNB, but were unsuccessful.  The data was quality controlled and 

processed, and has been submitted to the USAP-DCC data repository for public use.  The data 

available at the USAP-DCC consists of date and time, latitude, longitude, altitude, temperature, 

relative humidity, pressure, wind speed, wind direction, u and v components of the wind, 

longwave and shortwave radiation, skin temperature, ground speed and direction, and roll, pitch, 

and yaw provided at ten second intervals for all sixteen flights.  The laser altimeter data for two 

of the flights is also provided. 
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