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ABSTRACT

- Measurements to aid user programmers in writing efficient programs
for a single-instruction-stream, multiple-data-stream (SIMD) computer
such as ILLIAC IV, PEPE, or MAP are described. Applications of some
of these measurements to determine when a program could effectively
be implemented on a conventional sequential computer are also dis-
cussed. An archetype hardware monitor to obtain the desired measure-

ments is also outlined.



INTRODUCTION

A recurring problem encountered by computer programmers is the
determination of the performance of their code on a sequential processor,
[1]. A variety of performance monitors have been discussed in the
Titerature which can aid the programmer in understanding how effectively
his program is using the system resources available to him, [2]. The
simplest form of performance feedback is a distribution of memory
addresses referenced during the instruction fetch cycles of the execu-
tion of the program. The programmer can use this information to detect
heavily-used portions of the code and either optimize the code at these
locations, or reorganize the computation to obtain better overall per-
formance.

Programs that are executed on a parallel processor system may
require additional performance measures in order to gain an understand-
ing of the use of multiple processing units. If the parallel processor
is a general purpose multiprocessor, it is likely that the additional
information is of Tittle use to the programmer, since he has no direct
control of the processor scheduling mechanism. If, however, the
parallel processor is a single-instruction-stream, multiple-data-stream
(SIMD) architecture, the user may be able to exert a great deal of
influence as to the use of the multiple processing elements that per-
form computations on the data streams. It is this Tatter class of
machines on which this measurement study concentrates.

In organizing a computation for a SIMD machine, it is sometimes
the case that the number of data streams exceeds the number of pro-
cessing elements. This problem has been frequently discussed,

especially with respect to the 64 processing element array of the



ILLIAC IV, (e.g. see [3]). With the LSI technology improvements in the
last few years, it seems plausible that future SIMD processors will be
able to incorporate much larger numbers of processing elements, and
that the severity of the restriction mentioned above will be reduced
substantially. (Even so, there will always be some problems that re-
quire more processing elements than exist in any given machine.) Be-
cause of the previous work done on this problem and because of the
technology trend, this study concentrates on other aspects of program
measurements in a SIMD environment; in the analysis technique that
follows it is assumed that there are enough processing elements to
execute a computation at Teast once where each data stream employs its
own processing element. After monitoring the computation in this con-
figuration, data can be gathered to indicate if the computation might
as effective1§ be run using fewef p;écessing elements. "Fewer" might
prove to be one, implying that thg cqmputation could be carried out
on a sequential processor as effectively as on a SIMD processor.
Implementing algorithms on a SIMD processor in assembly language
has, in our experience, proven to be a formidable task. The main diffi-
culties have not been so much in recognizing where SIMD parallelism
exists in an algorithm, but rather, in keeping track of the utilization
of processing elements as they perform computations on the data streams.
The immediate problem has often been a coding problem rather than a high
level aTgorithm dééﬁgh‘pkbbTem; ‘Much af'th§s difficﬁ]ty could be a11e—h“
viated with the use of a good high level language for the machine. Even
if a high level language were available, the need for performance moni-

toring of programs would not vanish. By the nature of data streams and



the data structure chosen to write a program, processing element utiliza-
tion and instruction utilization are not as well understood by the pro-
grammer, as is the case in high level language programs written for
sequential processors.

The objectives of the study described here are to derive a set of
measures for SIMD programs that can be used to decide when more than
one data stream can be handled by one processing element; and to
investigate measures that indicate the utilization of machine resources
so that the programmer can tune his SIMD program.

The medium for this study is a hypothetical SIMD machine for
which an interpreter is used to exercise programs. A brief discussion
of this machine is given in the next section, and similarities between
it and other array processors are pointed out. In subsequent sections,
performance measures and their uses are described, followed by a
description of a performance monitor that can take the desired measure-
ments on a real machine. Finally, some experiments using the performance

measures are described.



THE SIMD PROCESSOR

The machine used for the monitoring studies is the Multi
Associative Processor (MAP) system. The details of the architecture
have been discussed elsewhere, [4,5], and only a brief description is
provided here to provide context for the remainder of the paper.

MAP 1is composed of a Main Memory System to store the instruction
stream(s) and global data used by all processing elements (PEs), (see
Figure 1). The Main Memory also acts as a buffer for Toading data
streams from peripheral devices into PE memories (PEMs), where they
will be used for SIMD computation. The system incorporates eight
control units (CUs) each of which can decode an instruction stream
loaded in the Main Memory. After decoding an instruction, a series of
commands is broadcast over the Distribution Switch to a subset of the
1024 PEs that have been previously allocated to the broadcasting CU.
These commands cause the PE subset to perform a computation on data
loaded in the respective PE memories. PEs are treated as dynamically
allocatable resources to the CUs, thus effective utilization of PEs
by a CU is important to the overall performance of the system. Since
this paper is concerned with monitoring individual programs to be
executed on MAP, further discussion of the architecture describes only
points concerned with one CU and a subset of from 1 to 1024 PEs. The
details of CU coordination, Main Memory design, and the organization
of the Distribution Switch are of no concern to this study, since they
are invisible to (noncooperating) programs.

Although some instructions of a SIMD program are intended to
apply to all data streams, others apply only to some of the data

streams. A mechanism for handling this situation is an activity flag




associated with each PE; if the flag is set by an associatdve instruc-
tion, the corresponding PE participates in all computations (on its
‘data stream) until an associative instruction resets the activity flag.
Flag setting and resetting in an associative instruction can be deter-

~ mined by data dependencies, as in ILLIAC IV[6,7], or by a logical combina-
tion of past data dependencies saved in a SELECT register local to each
PE. It is the presence of this SELECT register that gives rise to the
term "associative" in the name of the machine. The result of allowing
selective activity of each PE is that there is a sequence of times
during which the PE is active, (and a complementary sequence of inactive
times). The activity sequence determines the utilization of a parti-
cular PE.

In order to test MAP programs, an interpreter for an assembly
language for MAP has been implemented on a Control Data 6400. Symbolic
assembly language programs are prepared, assembled, and then executed
by the interpreter. At the end of each instruction cycle, the inter-
preter invokes a simulated monitor so that measurements can be taken on
the program being interpreted. All information kept by the interpreter,
such as instruction counter contents, activation status of each PE, etc.,
is available to the monitor. The monitor used for this study is
described Tater in the paper.

Although the MAP architecture differs in details from other current
SIMD machines, the interpreter handles one CU and a subset of PEs in a
manner similar to program execution on the ILLIAC IV [6, 7] and PEPE[8].
From the viewpoint of a programmer, the measurements and evaluation apply
equally well to any other SIMD machine of this type as to MAP. Each

machine uses the idea of an activity flag to determine the status of a



PE, and each CU operates roughly in the manner described above. One
difference is that the motivation for effective PE utilization may
not be as strong in machines that employ one CU as it is in MAP,

since all PEs can be used only by one CU at a time in the former case.

PERFORMANCE MEASUREMENTS AND THEIR USES

Program Tuning

There are some measurements found to be particularly useful for
tuning programs on sequential processors that are also useful on SIMD
processors. The distribution of memory references by the instruction
counter is one of those measures. By producing a histogram of Main
Memory locations versus the number of instruction references to the
respective locations, the programmer can determine Tocalities in his
code, and the relative use of each locality. As in the case of
sequential processor programs, the programmer should use this informa-
tion to carefully inspect these parts of the program to be sure that
the code is as efficient as possible. The more frequently a given
portion of code is executed, the more careful attention should be paid
to optimization and PE utilization.

The instruction reference histogram can be obtained in a number
of ways; all of these methods require inspection of the instruction
counter through a sampling technique with a software monitor, or through
continuous monitoring of the register with a hardware monitor, [9].

Another simple measure used in sequential processors is the fre-
quency with which each operation code is used. As mentioned by
Drummond, [10], and Lucas, [11], this operation code frequency is prim-

arily used to analyze instruction mixes for machine selection. 1In the



SIMD context, operation code frequencies are useful to determine the
number of arithmetic or logical operations compared to the expected
number of such operations on a sequential processor. It also gives the
programmer an indication of functional unit utilization, and the fre-
quency of PE activity sequence changes through the use of associative
instructions. This measure is not especially useful to the SIMD
programmer, but it is easily obtained and can indicate some trends of
utiTization in the code. As 1in the case of instruction counter moni-
toring, operation code frequencies can be determined by sampling or
continuous monitoring of the instruction word being decoded by the CU.
- In most cases, the instruction word is not program addressable, and so
a hardware monitor is required for obtaining the measure.

The extended measures for SIMD processors considered here all have
to do with PE utilization. The simplest figure of merit is the average
number of PEs that were active throughout the computation. In order to
obtain this measure, the following approach is taken: Assume that a
computation consists of n tasks, T]’TZ""’Tn each corresponding to the
execution of some portion of the instruction stream on one of n data
streams. By a previous assumption, each task is to be carried out on a
unique PE, thus the computation requires n PEs. During the computation,
PE, is assumed to have been allocated to the CU at time to and deallo=
cated at time Lot (for 1<isn). Each PE, executing Ty will then be
active at a sequence of time blocks, w(T) denoted as

w(T) = [tystolsltgst,lsnnislty q5to0]

i. e. PEk executing Tk is inactive during the times

Et03t])50 e e ﬂ(tz.iﬂtz-i_l_'l)S'"’(t2m9t2m+'|]‘



The amount of time that PE, 1s actively computing T, is expressed as

(Tl = 2 (mtp5.9)

R

i=1

Thus, the expected number of active PEs is

lo(Ty) |

IIMD

k=1
t2m +1 to

In order to determine &, a monitor must determine the allocation/
deallocation times, (to and t2m+]), and the activity sequences (m(Tk)).
These data can be gathered by an interrupt-intercept software monitor,
[9],triggered by allocation/deallocation events and activation/deactiva-
tion events, or by a hardware monitor as discussed in the next section.
In any case, a more descriptive representation of program utilization
of the PEs is a two dimensional plot of the number of PEs active versus
CU processing time, as used by Lloyd and Merwin, [12].

Although a and the two dimensional plot indicate PE utilization,
they do not suggest where to look into the code to improve utilization.
To accomplish this, PE utilization should be correlated with memory
locations containing instructions being executed. An extension to the
instruction memory reference monitor provides the needed insight. At
the time the instruction counter is inspected to build the instruction
fetch histogram, a monitor should also determine the number of PEs
active and enter this number into an array indexed by the instruction
counter. This allows the user to determine the average number (and
maximum number) of PEs active when a given block of instructions is
being executed; thus the code can be tuned for PE utilization as well

as operation code execution in heavily-used portions of the program.



As in obtaining data to determine g, these measures imply that a monitor
is able to inspect the activity flags of each PE involved in the compu-
tation.

Comparative Performance

The measures described above are concerned with SIMD program tun-
ing; one would also Tike to obtain measures that give an indication of
when two or more tasks should be implemented on one PE. In considering
such measures, it is useful to first make some basic observations about
parallelism in computer programs.

The execution of a program may result in a number of tasks that
can be done in parallel, e. g. at the expression level, two or more
functional units cou]d be performing addition and multiplication
in parallel as is possible in the Control Data 6600 CPU [13]. 1In
other programs, distinct statements or tasks could be executed in
parallel on multiple processors where each task is concerned with a
possibly different computation. Both of these cases are examples of

independent parallelism, i.e. the parallel tasks are independent compu-

tations. For parallelism withinkprograms on a SIMD processor, simul=
taneous computation for two or more tasks can take place only if the
single instruction stream can be applied to multiple data streams;
independent parallelism will not necessarily result in simultaneous
operation on a SIMD machine, and in general will result in sequential

operation. Thus, SIMD parallelism is a restriction of independent

parallelism, and is the property that needs to be emphasized for
machines Tike MAP, ILLIAC IV, and PEPE. Attention is now turned to the

investigation of SIMD parallelism in programs.
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tet o(T) = [tai12 8110004y tor] - [ty gt ]

- be a partial activity sequence of the task T on some PE. If there

exists T' such that w(T) and w(T') are partial activity sequences

where o(T) = w(T'), then T and T' are SIMDAéquivé1ent fdr”the time

- period (t,,t.) where t = max(ty; 1sty5: 1) and b, = min(t, L qstypg) -
Denote the set of tasks that are SIMD-equivalent for (ta,tb) as

{T}g = {T'|T and T' are SIMD-equivalent for (ta,tb)}

Now, let {Ti}b be the partitions generated on T1,...,Tn by SIMD-
a

equivalence. 1If l{Ti}§m+][ = n, then the program is full SIMD
parallel, i.e. all PEs are active at exactly the same times, and in-
active at the same times.

Only a hygenic example is Tikely to illustrate full SIMD
parallelism; a measure of distance between two activity sequence can be
used to investigate the amount of SIMD parallelism that exists in a pro-
gram. Let w(T) and w(T') be full activity sequences; then the sets

of(T) v o(T") and o(T) N w(T') are well-defined. The activity distance,

of T to T', denoted d(T,T') is
lo(Tew(T') - w(T)aw(T")]
lo(Tw(T") |- lu(T)u(T")].

1]

d(T,T")

I

The activity distance is the length of the symmetric difference of
w(T) and w(T'), i.e. it is an accumulation of the times at which T is
active (inactive) and T' is inactive (active). The activity distance
has the following properties:

d(T:,T)

1]

i d(T9TI )

It

- d(T,T") = 0 <=> w(T)=w(T")

<=> T and T' are full SIMD-equivalent
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d(T,T")={w(T)ou(T') [=]o(T) [+|u(T' )<= w(Thaw(T)=A
0=d(T,T") = |w(T)ow(T")]

as d(T,T') tends to 0, the amount of SIMD parallelism

between T and T' increases.

as d(T,T') tends to |w(T)ww(T')|, the amount of sequential
operation of T and T' 1ncreases

Before using the act1v1ty distance as a measure of efficiency note

that
lo(Mwo(T") [=[w(T) [+]o(T") |- o(T)Au(T") |
=|o(T) [+]u(T") |~ Jo(Tow(T") [+d(T,T")
=[w(T) [+]w(T') [+d(T,T")
2
and
lw(T)aw(T l~l (Myw(T") [-d(T,T")

T) [+]o(T") |+d(T,T")-
= . (T T‘)

=[o(T) [+]o(T") |-d(T,T")

2
If d(T,T') is tending toward |w(T)ew(T')|, then the quantitative
effect of executing tasks T and T' on one PE can be computed. The

fractional PE utilization of executing each task on its own PE is the

fraction of the time when one or both of the PEs are active, and is

expressed as

lo(Thuw(T") |

tomt17%
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assuming that both PEs are allocated and deallocated at the same time.
The fractional utilization of executing both tasks on one PE, U(T,T'),

is expressed as

sy = MU 0T D+ [u(Tau(T)

[
max( [o(T) |, [w(T") )+ /¢ (P [+e(T) [-d(T,T")
= 2
t2m+1-to

and if, for convenience, it is assumed that |w(T)|Z|w(T")|,
3la(T) [+lw(T") [<d(T,T")

2t -t

u(T,T') =

Then, the ratio of utilizations, S(T,T'), can be expressed as
o 2He(Mye(T!
S(T,T') = o(Dos(T) |

3w(T) [+|o(T) |-d(T,T")

lo(T) [+]w(T") [+d(T,T")

3lo(T) [+{w(T') [-d(T,T")
where |w(T)|Z|w(T")]. When S(T,T')>1, fractional utilization is better
using only one PE, than with using two PEs. This expression ignores
the additional overhead involved with implementing both tasks on one
PE; to include overhead involved with h "context changes" between the
two task, each requiring g additional time units,
C 3w(T) [+ e (T |-d(T,T" ) +2hg

0T
2(t2m+17to)

1]

and
; lw(T) [+|w(T") [+d(T,T")
S'(T,T")
3o(T) [+]w(T") |-d(T,T")+2hg
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Hence, two tasks, T and T', can be merged with no loss in fractional
utilization if

SYT,T')>1

|o(T) [+]a(T") [+d(T,T")

L

3|w(T) [+|(T") [-d(T,T")42hg ]
and  [o(T) [+]o(T*) [+d(T,T)53|a(T) [+]w(T") |-d(T,T")+2hg
and thus

d(T,T")>}u(T) [+hg
implies that T and T' should be executed on the same PE, on the basis
of activation sequences.

The above analysis ignores a crucial aspect of programming on the
computer, viz. data dependencies determine the resource utilization.
What the analysis shows is that for the execution of a program on a given
set of data, conditions can be found under which two tasks can be
executed on the same PE.

Given that one accepts the applicability of the above analysis
despite data dependencies, the effect of combining many (all) tasks
onto one PE can be computed. Define w(T+T') to be the resulting activity

n

sequence of executing T and T' on one PE, and thus, let w(.z Ti) be the
activity sequence for executing n-tasks on one PE. Then, =
d(leTi’Tn) can be computed and compared to
i=1 .
l1§1 w(T;) [*(n-1)hg

to test the condition for merging all tasks on to one PE. if

n-1 n-1
d(_Z]Ti,Tn)>|.Z] (Ti)|+(n-1)hg
i- i-
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then the computation can be done as effectively on one PE as on n PEs,
and should be executed on a sequential processor rather than an SIMD
machine.

To carry out the evaluation, it is necessary to measure programs
for their activity sequences. This may result in a volumous amount
of data, and the processing of these activity sequences to obtain
distances is an algorithm that requires on the order of n2 computations
for an n data stream program. Thus, the cost of analysis can only be
justified if the program is to be used repeatedly after it has been

executed at Teast once with one PE per data stream.

A POSSIBLE USER PROGRAM MONITOR

There are basically three classes of monitors that can be used
for obtaining performance data: software monitors,-hardware monitors
and hybrid monitors, [9]. Because system software and the machine
instruction set depend heavily on the machine, software monitors will
not be discussed here; knowledge of these components is also necessary
to design a hybrid monitor. However, a hardware monitor to take the
measurements described in the previous section can be designed based
on the architectural description given in an earlier section.

The goals of this monitor are to measure and record the following
variables:

- CU instruction counter contents

- CU instruction word operation codes

- PE activity flags
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These measurements allow one to generate:

CU instruction counter histogram

Operation code use

Average number of PEs active, a

PE activity versus instruction address
Number of PEs active versus processing time
PE utilization

Activity sequences

Activity distances.

The hardware monitor that is sketched out in this section will

be considered to be a case of "overkill" by some readers, but it is

justified for the following reasons:

Because

made of

It is extendable to a more complete monitor for system monitor-
ing of MAP (as opposed to user program monitoring).

It is applicable to SIMD machines other than MAP.

It illustrates that the measurements indicated in the

previous section can be made by some monitor.

of the cost trend in semiconductor memories, free use has been

small memory modules. An unspecified processor (i.e. a mini-

computer or a microcomputer)is also assumed to implement many of the

monitoring tasks, although the detailed algerithms for such a processor

are not discussed.

Figure 2 is a diagram of the hardware monitor; it is composed of

six modules to accomplish:

Instruction counter monitoring for all instructions.
Instruction counter monitoring for associative instructions.

Operation code monitoring.
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- PE activity flag monitoring for status

- PE activity counting

- Monitor supervision and mass storage handling.
A brief discussion of each module follows.

Module A: Instuction Counter Monitor

In monitoring the instruction counter values, the following as-
sumptions are made about the Main Memory System: An 18-bit address
is used to reference a maximum of 128K Main Memory words; each instruc-
tion counter content is an address relative to a base register, (such
as the RA register in the Control Data 6000 series computers, [13]),
where the base register is internal to the CU; the content of the base
register can be made known to the hardware monitor. These assumptions
imply that the instruction register contents are relative to address 0,
making it unnecessary to perform a transformation on the address based
on where a CU's program is loaded in Main Memory. If the length of
the program is also known, the position of the 12 most significant
(nonzero) bits of an instruction address can be determined. The cycle
time of the CU for MAP is assumed to be approximately 100 ns, and the
minimum number of such cycles required to execute a MAP instruction
is two cycles, with the average number of cycles being about 6. Module
A uses the specified 12 bits of the instruction counter to address a
4Kx16 bit random access memory (RAM) which has a memory cycle time less
than or equal to 200 ns(2 cycles). After the address is determined,
the content of the corresponding memory Tocation is incremented by one.
This is a rapid operation and, in all cases must be performed before
the instruction counter is changed to reflect the next Main Memory

address used by the CU. In the case of overflow, one of two strategies
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can be employed, (not specified here); either the CU can be blocked
while the monitor processor, Module F, dumps the RAM contents to mass
storage, or Module A can be disabled, losing monitor data as the CU
continues operation, while Module F unloads the RAM. The RAM contents
specify the instruction counter histogram.

Module B: Instruction Counter for Associative Instructions

Module B operates in exactly the same manner as Module A,
except that counts are made only when the current operation code is
~an associative instruction as determined by Module C. This is used
to specify the number of instruction counter samples that also cause
the number of active PEs to be monitored by Module D.

Module C: Operation Code Monitor

“WPE status need only be monitored when the status changes due
to an associative instruction. Assuming an 8-bit operation code as
used in MAP, an 8x256 decoding network is used to detect associative
operation codes. The result of detecting an associative instruction
is used by Module B as mentioned above, by Module D to sample PE
activity flags, Module E to monitor the number of PEs active at any
given time, and by Module F to save a record of information indicating
the activity sequence of each PE on a mass storage device. Since
Module C must employ this decoder, a table of operation code frequencies
can easily be generated by including a 256x16 bit RAM and increment
unit similar to that used in Module A. Overflow of a word in the RAM
is again assumed to be handled by Module F as described above.

Module D: PE Activity Monitor

Because the set of 1024 PEs in MAP can be dynamically allocated

to any of eight CUs, a mechanism must be included in the monitor to
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save only the status of those PEs currently allocated to the CU
executing the target program. MAP must also resolve such problems,
and the approach is to include an 8-bit ID register in each CU and an
8-bit OWNER register in each PE. If PEj is currently allocated to CUi,
then the OWNER register of PEj matches the ID register of CUi' In

~ Figure 2, Module D incorporates 8K exclusive-NOR gates and 3K AND
gates to compare ID-OWNER registers and to multiplex the activity
flags of allocated PEs into a 1024 bit activity register. Since
associative operations occur relatively infrequently, the gate count
could be reduced considerably by sharing ID-OWNER recognition hard-
ware among j PEs. Then, only 8i exclusive-NOR gates and 3i AND gates
are required to set statuses in an i-bit activity register, where
ixj=1024. But, the activity register would have to be loaded, (and
processed by Module F as indicated in Figure 2), j times for each
associative instruction.

Module E: PE Activity Counter

Since Module F must ultimately store the trace data from the
activity register settings determined by Module D, it is a simple matter
to have Module F count the number of PEs active each time Module D is
invoked, and write the integer value to a PE count register within
Module E. Using the instruction address determined by Module A,
another 4Kx16 bit RAM is addressed so that the content of the PE
count register can be added to the corresponding location to keep a
cunulative sum of the number of PEs active when the program is
executing an associative instruction from a given area of Main Memory.
Used in conjunction with data stored in the RAM in Module B, the

average number of PEs active, indexed by the instruction counter, can
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be computed by a postprocessor. Overflow must again be handled by
Module F, as described in the Module A subsection.

Module F: Monitor Processor

Module F is composed of a general purpose, programmable mini-
computer (possibly a microcomputer) that performs overflow processing
for Modules A, B, C, and E as the need occurs. It is conceived as
being invoked for overflow processing by an interrupt from one of the
other modules, where processing consists of writing the contents of
the given RAM onto a mass storage device, e.g. a 10 mbyte disk. The
other primary function of the processor is to store activity register
information, as determined by Module D, on the mass storage device.
Each block of data written to the mass storage device would be prefaced
by a header describing the semantics of the block and a real time
clock reading. The only nonstandard interface required to the
processor is the activity register. Note that Module F could easily
be used for postprocessing whenever it is not being used to supervise
monitoring.

An Alternative Hardware Monitor

It is clear that most of the functions of the modules of the
monitor described above could be implemented on a minicomputer, pro-
vided that the measurement probes have a suitable I/0 interface. The
increment unit used in Modules A, B, and C is already included in most
modern minicomputers. The most restrictive constraint is that of
timing, i.e. the minicomputer would have to be able to retrieve infor-
mation from an I/0 bus, and add to memory in a time period that is
shorter than the cycle time for most minicomputer memories. The
existence of microprogramming to tailor these operations would almost

be required.
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EXPERIMENTS WITH THE MEASUREMENTS

Although no hardware monitor for MAP has been constructed, (MAP
hardware itself has not even been built), the functions described in the
previous section have been implemented as a simulated hardware monitor
invoked by the MAP program interpreter. The simulated monitor produces

the following data about each program executed by the interpreter:

Histogram of Main Memory References

i

Operation code frequency count

]

Histogram of average and maximum PE activity versus

instruction counter address

Trace data describing PE activity status for each PE.
From this trace data, postprocessors produce:
- Plot of PE activity for each PE versus processing time.
- o(T) for each task T allocated to a PE.

- d(T,T') for each task T, T' allocated to its own PE.

Some examples of user program monitoring on two MAP programs are
now given. The first program implements the Gauss-Jordon algorithm,
with full pivoting,for solving a linear system of equations. For a
system of n equations and n unknowns, the program employs n+l PEs,
each storing a column of the coefficient matrix or else the column
vector representing the right hand sides of the system. The program
works for any system where n is less than or equal to 1023, and the
results discussed here are for a problem with n=10,i.e.11 PEs are
used.

The program occupies 68 Main Memory locations (multiple instruc-

tions are stored in each location) and requires 24,290 CU cycles to
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input data into the Main Memory, load the 11 PEs, obtain a solution,
and print the solution. Figure 3 shows the instruction counter histo-
gram for the execution of the program. Memory locations 46-55 contain.
code to eliminate coefficients, and locations 23-32 contain instruc-
tions to determine the pivot element for full pivoting. The code to
(sequentially) Toad PE memories is stored at locations 20-21. The
applicability of MAP in determing the pivot element is apparent from
the data. Operation code frequencies are not given here, since they
have Tittle meaning to those unfamiliar with the machine instruction
set.

Figure 4 is the PE activity histogram where activity is correlated
with instruction counter contents. The data indicates that no PEs are
active for significant portions of the time in locations 46-55; however,
all PEs are active at locations 48-49 within the code to eliminate
coefficients. PE utilization is low on the average, but all 11 PEs
are required for some parts of the computation. This is a common
occurrence in an SIMD program, i.e. all PEs are not used all of the
time.

As might be expected, the plot of PE activity versus processing
time has so many status changes that in order to plot the data to show
all such changes, the plot loses its descriptive value since it is too
large. Although others have used this method to indicate PE utiliza-
tion, we find it not too be very helpful.

Table 1 shows the lengths of activity sequences, |w(T)|, for all
11 tasks, and Table 2 shows d(T,T'). Here, t0=© and t2m+1=24’290’ thus
the average number of PEs active is a=8.74 PEs, or about 79% of the

PEs are expected to be active at any given time. Using Tables 1 and 2,
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S(T,T') can be computed for each pair of PEs. Some sample values,

th column

where T,, is the righthand side vector and t1(151$10) is the i
vector of the coefficient matrix, are

S(T],Tz) = 0.53

S(TT,T]])= 0.57
S(T,T') for both cases implies that merging tasks onto a single PE will

degrade performance. This is also observable directly by noticing that

d(T;,75) = max([m(Ti)I,!w(Tj)l) for 154,351,

We have ignored context switching time, (it could only make the
inequality more severe).

The conclusion based on monitor data is that no two tasks should
be executed on one PE, and that code/PE optimization efforts should be
concentrated on the portions of the program stored in Main Memory
locations 23-32 and 46-55.

As a second example, a program to compute a shortest weighted
path between to nodes of a graph (where each edge has a weight) was
monitored. The particular execution of the program searched a graph
composed of 64 nodes, and required 64 PEs. The program used 114kMa1n
Memory locations for instructions and required 72971 cycles to execute.
In this program, the instruction counter histogram indicates that 38%
of the references were to 15 locations (20-35) and 50% of the refer-
ences were to another 19 locations (44-63). The first locality was
to load the graph description into PE memories, and upon inspecting
this code it was discovered that a relatively inefficient approach
was taken to perform this loading. This proves to be costly computa-
tion since PE utilization is very low during loading (i.e., it is
essentially a sequential process). The other heavily-used portion of

code does take good advantage of PEs.
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The expected number of PEs active at any given time was
a=11.63 PEs, or about 18%. Even though the expected number of active
PEs 1is only 11.63, only a few cases were observed where S(T,T')
exceeds 1, e.g.

d(¥y,T55)=9,953

w(T;) =1,239

w(T55)=9,778
thus S(T],T55)=1.02.

This program represents a case where one would not Tikely coms
bine tasks on a single PE at any rate, because the nature of the problem
makes it impossible to detect which arbitrary tasks should be combined
because of data dependencies. The power of the SIMD architecture is
being used for a search process while subsequent computation will

naturally result in a small fraction of PEs being active.

SUMMARY

Several aspects of measuring user programs for a SIMD processor
have been discussed. Some measures used in sequential processor
programs have been shown to be useful for SIMD programs. Additional
measures of PE utilization have been introduced to help the programmer
understand how effectively this resource is being used. In order to
convince the reader that the required measurements can be taken with-
out undue difficulty, an outline of a hardware monitor has been
provided.

Some conditions under which a given program operating on a given
set of data were investigated, and it was shown how to determine if

the program could have as effectively been executed on a sequential
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processor. Although this represents an application of hindsight, it
can help one recognize cases where more effective utilization of com-
puting resources can be applied if patterns of utilization tend to
repeat themselves. In some cases it will allow the SIMD programmer
to detect cases where his code should be executed on'a sequential

processor.
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