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Abstract: Maps of forest biomass are important tools for managing natural resources and 

reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest 

Colorado as a case study, we evaluate regional biomass maps created using physical 

variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. 

We investigate eight gray level co-occurrence matrix based texture measures (mean, 

variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on 

four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,−1]) on 

four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was 

created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and 

an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The 

correlation of predicted versus observed biomass values for our texture-based biomass map 

is r = 0.86, the Root Mean Square Error is 45.6 Mg·ha−1, and the Coefficient of Variation 

of the Root Mean Square Error is 0.31. We find that models including image texture 

variables are more strongly correlated with biomass than models using only physical and 

spectral variables. Additionally, we suggest that the use of texture appears to better capture 

the magnitude and direction of biomass change following disturbance compared to spectral 

approaches. The biomass mapping methods we present here are widely applicable 

throughout the US, as they are based on publically available datasets and utilize relatively 

simple analytical routines. 
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1. Introduction 

Accurate spatial maps of forest biomass are necessary for managing forest resources, informing 

climate change modeling studies, and meeting national and international reporting requirements for 

greenhouse gas inventories [1,2]. Forest biomass maps are also necessary at the sub-national level for 

purposes such as completing the US Forest Service Climate Change Scorecard that necessitates annual 

estimates of carbon stocks and fluxes for each National Forest [3], and for quantifying changes in 

forest biomass on regional scales in response to disturbance. However, there are few spatially explicit 

regional and local biomass maps available, and as a consequence, relatively few resources available to 

determine how local biomass changes with disturbance. In this study we evaluate an alternative to 

traditional spectral analysis approaches to create local biomass maps.  

There are two primary methods of mapping aboveground forest biomass. The first is an approach 

that assigns a biomass value, or a range of biomass values, to areas of land distinguished by 

characteristics such as vegetation type or land use. This approach, frequently referred to as “stratify 

and multiply”, uses ground-based measurements to determine biomass values, and spatial datasets to 

delineate mapping units. Although the stratify and multiply approach is relatively simple to implement, 

there are some limitations to this technique, namely the ambiguities present in land area classification, 

and the wide range of variability in aboveground biomass within a given land cover type [4]. 

The second common approach to mapping aboveground biomass employs a set of spatially 

continuous variables to predict biomass values at unobserved locations. In this direct mapping 

approach, a relationship is established between aboveground biomass and one or several spatially 

continuous variables, and these relationships are used to predict biomass across the population. The 

direct mapping approach takes advantage of a variety of geospatial variables, such as climate and 

topography, and information from remote sensing platforms. Many types of remotely sensed 

information can be used to aid in mapping biomass such as spectral information from remotely sensed 

imagery [5], backscattered energy from Synthetic Aperture Radar (SAR) [6,7], and Light Detection 

and Ranging (LiDAR) [8]. The two primary advantages to using a direct mapping approach are  

(1) the resulting map will more accurately depict variations in biomass across the landscape;  

and (2) changes to mapped forest biomass are easier to update [4]. 

There are also some limitations to the direct mapping techniques, particularly related to the use of 

remotely sensed information. One limitation is the mismatch of spatial scale between the area 

encompassed by a measurement plot and the area of a remotely sensed pixel. In the case of Landsat 

imagery, the area of a measurement plot only accounts for a small part of the area represented by a 

pixel and the plot measurement value may not accurately represent the aggregate value of biomass 

within that pixel. This disparity in spatial scale can introduce error into the resulting map. Secondly, 

direct mapping techniques that employ spectral band ratios, such as the Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), tend to under-predict forest 

biomass in regions of high biomass and multi-storied forest canopies where NDVI in particular can 
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saturate [9]. SAR is a promising technique for biomass estimation, particularly when used in conjunction 

with methods that model forest biomass by empirically relating backscatter to ground-based biomass 

measurements, and interferometric SAR (InSAR) techniques that can estimate forest height [10]. 

However, SAR biomass estimation techniques also saturate in regions of dense forest canopy [7,10], 

and SAR data is only available on a limited bases. Finally, LiDAR provides a direct measure of forest 

canopy height [8,11], but its wide scale use is currently limited by the expense of acquiring LiDAR 

data at fine spatial scales. Until these data access limitations are resolved, other publically available 

remote sensing products will be required to create regional biomass maps. 

Texture analysis is an image processing technique that may address some of the existing problems 

with vegetation index saturation and the data acquisition constrains related to mapping forest biomass 

at regional scales. Texture is a measure of variability in pixel values among neighboring pixels for a 

defined analysis window. A primary advantage of texture is that it can be calculated from optical data, 

among other types of raster data. The use of optical imagery in calculating texture is advantageous 

because there are several sources of publically available optical imagery, including Landsat, and, 

therefore, mapping biomass with image texture analysis is not subject to the constraints in obtaining 

data that are present for SAR or LiDAR. Furthermore, image texture has been used to aid in mapping 

forest biomass in dense tropical forests [12], and in some regions texture is a better predictor of 

biomass than spectral vegetation indices [13,14]. Because texture has been shown to be an effective 

method of mapping biomass in dense canopies, and can be calculated on widely available optical 

imagery, texture may be a useful technique for improving biomass maps at local and regional scales.  

In this work we use a case study of San Juan National Forest in southwest Colorado to evaluate 

whether inclusion of image texture features can be used to improve the prediction quality of local scale 

biomass maps for use in land management and research. We evaluate the prediction quality of local 

scale biomass maps constructed with physical variables, spectral variables, and image texture metrics. 

Our methods include only publically available data. The wide range of vegetation types and the 

complex topography of this region make San Juan National Forest an ideal location to evaluate remote 

sensing based biomass mapping methods. 

2. Materials and Methods 

2.1. Study Area 

The San Juan National Forest in southwest Colorado, USA is centered at 37°N and 108°W  

(Figure 1). This forest is roughly 7000 km2 in area and ranges in elevation from 1500 m to 3800 m. 

Total annual average precipitation ranges from 400 mm in the lower elevations to over a meter  

(1150 mm) in the higher elevation forests [15]. Forests of this region contain Ponderosa Pine 

woodlands, Warm-Dry Mixed Conifer forests, Cool-Moist Mixed Conifer forests, and Spruce-Fir 

forests. San Juan National Forest is managed for recreation, timber production and wildfire fuel 

reduction, and is divided into stands that vary in stand age, treatment, and disturbance history. 

Landcover type for this region was determined from the Field Sampled Vegetation  

(FSVeg) database, an online inventory of information on trees, fuels, down woody material,  
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surface cover, and understory vegetation, sampled and maintained by San Juan National Forest [16]. 

Only regions defined as forest were included in this study.  

Figure 1. Location of San Juan National Forest within southwest Colorado, and 

distribution of Forest Inventory and Analysis plots within San Juan National Forest. Scale 

bar applies to regional San Juan National Forest map. Base map for San Juan National 

Forest extent: ESRI shaded relief imagery [17]. Projection: Albers NAD83. 

 

2.2. Field and Satellite Data 

A total of 164 Forest Inventory and Analysis (FIA) Program plots from forested regions within San 

Juan National Forest (SJNF) were used for this study. The FIA Program consists of a system of 

ground-based forest inventory plots that are situated approximately one every 2400 ha throughout the 

coterminous United States, and are measured every 5 to 10 years [18]. FIA ground-based plot biomass 

data was obtained from the FIA online DataMart [19]. FIA plots consist of four 1/24 acre (168.7 m2) 

subplots in which live tree biomass is determined from measurements of tree dimensions. This biomass 

value is hereafter referred to as observed biomass. The observed biomass values for FIA plots within 

SJNF range from 2.1 to 490.2 Mg·ha−1, with a mean biomass of 134.8 Mg·ha−1. Although the exact 

location of FIA plots are not provided to the public, exact locations of the FIA plots within SJNF were 

obtained from the FIA program for the purposes of this study. All FIA plots used in this study were 
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measured between 2002 and 2009. All plot locations were measured by FIA using the Global 

Positioning System (GPS), and have a horizontal accuracy of around 5 m [20]. 

Observed biomass values from eight independently sampled plots within or near forest stands  

clear-cut in the 1970’s were used to validate biomass predictions for clear-cut stands and adjacent 

untreated forest. Of these eight plots, five plots were located in untreated forest and three plots were 

located in stands clear-cut in the 1970s. Aboveground biomass measurements consisted of 50 m 

diameter circular plots (1963.49 m2) surveyed in 2012. Within each plot the diameter of every tree 

over 1.37 m tall was measured at 1.37 m to obtain a measure of diameter at breast height (DBH) for all 

trees within the plot. Aboveground live tree biomass was calculated from tree DBH using allometric 

equations [21,22]. Total observed aboveground live tree biomass was determined as the sum of all 

trees present within plot. 

2.3. Landsat TM Image Analysis 

For each FIA plot, spectral information was obtained for the corresponding geographic location 

from Landsat 5 TM imagery. Images from two adjacent Landsat TM paths were necessary to cover the 

entire spatial extent of the study area; the two images were acquired in June and July of 2011 (18 June; 

21 July). The two scenes used in this study were selected because they are high-quality, cloud-free 

scenes acquired at similar dates and processed with Level 1T Standard Terrain Correction. All Landsat 

TM scenes were converted to top of atmosphere (TOA) reflectance using post-launch calibration 

coefficients [23], and an atmospheric correction was applied using Dark Subtraction Method [24].  

A C-correction [25] was applied to correct for illumination differences due to sun-earth-sensor 

geometry across the variable topography of these two Landsat scenes using a 30-m resolution digital 

elevation model [26]. 

In this study, we evaluate the prediction quality of regional biomass maps constructed from physical 

variables, spectral variables, and image texture variables. The physical variables used included slope, 

aspect, and elevation calculated from regional digital elevation models [26], vegetation type 

determined from the SJNF FSVeg database, and precipitation obtained from the PRISM Climate 

Group [15]. The spectral information used included both the Normalized Difference Vegetation Index 

(NDVI) and the Enhanced Vegetation Index (EVI) calculated from Landsat TM imagery. Finally, 

image texture metrics were generated statistically using a Gray Level Co-occurrence Matrix (GLCM) 

computed from a relative displacement vector (d, θ) that describes the spatial distribution of grey level 

pairs separated by distance d in direction θ. Many textural metrics can be derived from the GLCM; we 

use the eight metrics of mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment 

and correlation [27] as these eight have previously been used to good effect in mapping forest biomass 

in dense tropical forests [12,13,28]. In addition to d and θ, texture metrics are also dependent on the 

window size, or the number of pixels, used to calculate the GLCM. A small window size will identify 

fine-scale variations in pixel brightness while a large window will be sensitive to larger-scale 

variations. Therefore, a window that is too small may identify variations in pixel brightness that are 

irrelevant for the task at hand, whereas a window that is too large may overlook important variations in 

pixel brightness. For purposes of mapping forest biomass, the optimal window size was determined by 

the window size that had the strongest correlation between texture-predicted biomass and observed 
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biomass. In order to determine the optimal window size for our study, all texture metrics were 

calculated on four Landsat TM bands (Bands 2–5) using four window sizes: 3 × 3, 5 × 5, 7 × 7, and  

9 × 9 pixels. For each window size, texture was also calculated at four offsets, (θ), represented in 

Cartesian coordinates as [0,1], [1,1], [1,0], and [1,–1]. All GLCMs were constructed using a 64 gray 

level quantization; this value was chosen to reduce computational effort during GLCM construction, 

and to avoid creating sparse GLCMs [29]. 

2.4. Biomass Prediction 

Physical variables, spectral vegetation indices, and texture metrics were used to predict 

aboveground forest biomass using feedforward neural networks built in Statistica12 (StatSoft, Inc., 

Tulsa, OK, USA). Neural networks are advantageous for this sort of modeling because they do not 

require any assumptions about the distribution and independence of input data. Our neural network 

model was constructed using FIA biomass values, and the corresponding physical, spectral and image 

texture information for that plot location. The observed biomass values from FIA plots were randomly 

divided into three groups: training, testing and validation data. Seventy percent of the plots were used 

as training data (116 plots), 15% as testing data (24 plots), and the remaining 15% as validation data 

(24 plots). Training data were used to build the network, testing data were used to refine the network 

as it was being built, and validation data were withheld from the training process and used to evaluate 

the map. The correlation between observed and predicted values for the training and testing groups 

was carefully monitored as the networks were being built in order to avoid over fitting; the correlation 

between the testing data and observed data was maintained below 0.7. The relative importance of each 

variable used in the neural network was evaluated using a global sensitivity analysis in Statistica.  

The sensitivity analysis is designed to test how the neural network predictions respond to changes in 

the input variable. The dataset is repeatedly submitted to the network, but each time one variable is 

replaced with its mean as calculated from the training data. The error in the resulting network is 

recorded, and the most important variables are identified as those that, when modified, result in the 

greatest increase in network error.  

Forest biomass was predicted on a pixel-by-pixel basis for all forested regions of SJNF by using 

physical variables, spectral information and Landsat TM texture calculations as input to the neural 

network model. The model feature selection process is as follows: initial models were constructed 

using all combinations of physical, spectral, and texture variables. The model complexity was 

systematically reduced using the global sensitivity analysis to identify the most important variables in 

the model. We continued reducing the model complexity by removing the least important predictors as 

long as reductions continued to improve the model. Model quality was repeatedly evaluated using the 

four measures of error described below, and these measures were used to choose the final model.  

2.5. Statistical Analyses 

We used four statistical measures to evaluate model performance: Pearson’s Correlation (r),  

r = 
∑ሺ௫೔ ି௫̅ሻሺ௬೔ି௬തሻ

ඥ∑ሺ௫೔ି௫̅ሻమඥ∑ሺ௬೔ି௬തሻమ
 (1)
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where x is the observed value, ̅ݔ is the average of the observed values, y is the predicted value and ݕത	is 

the average of the predicted values; the Root Mean Square Error (RMSE): 

RMSE =ට
∑ሺ௫೔ି௬೔ሻమ

௡
 (2)

where n is the number of observed values; the Coefficient of Variation of the Root Mean Square Error 

(CV-RMSE),  

CV-RMSE = 
ோெௌா

௬ത
 (3)

where RMSE is the root mean square error; and Akaike’s Information Criteria (AIC),  

AIC = n ∙ ln ൬
SSE

n
൰+ 2k (4)

where SSE is the summed square error of the model and k is the number of model parameters. AIC is a 

relative measure of model quality for a given dataset and it provides a means for model selection based 

on both model fit and model parsimony. In other words, AIC values aid in identifying the model that 

provides the best description of the data using the smallest number of parameters. Higher quality 

models are identified by lower AIC values; generally AIC values that differ by >2 indicate that the 

model with the lower AIC is superior, whereas models with AIC values differing by <2 are similarly 

effective in describing the data [30]. 

Biomass prediction quality was also evaluated at fine spatial scales within two regions of the forest 

with a history of forest disturbance. Forest biomass predicted by the best performing texture-based 

map was compared to the biomass predicted by the best performing physical-spectral based map for 

two regions: a region with five forest stands clear-cut in the 1970s, and a region of forest burned by a 

wildfire in 2002. In each case the average predicted biomass within the disturbed stand was compared 

to the average predicted biomass in an adjacent undisturbed stand. Stand delineations were obtained 

from the SJNF FSVeg database.  

3. Results 

3.1. Biomass Prediction from Image Texture 

Our final biomass map was constructed using the best performing neural network model 

constructed from the texture metrics of entropy, mean and correlation calculated from Landsat  

Band 2 on a 3 × 3 window and an offset of [0,1], and the physical variable slope (Table 1). The best 

performing network was determined as the model with the lowest RMSE and CV-RMSE,  

45.6 Mg·ha−1 and 0.31 respectively, the highest correlation between predicted and observed biomass 

values, 0.86, and the lowest AIC, 199.0 (Table 1; Figure 2). The AIC value of our best performing 

model differs from the next smallest AIC value of 204.2 by >5 indicating this model is preferable to 

the other models investigated (Table 1). Our biomass model predicts a wide range of aboveground 

biomass values across SJNF, with a maximum biomass value of 394 Mg·ha−1. Generally the greatest 

biomass values were predicted in the high elevation regions and smaller biomass values in the lower 

elevations (Figure 3). A global sensitivity analysis was used to determine the importance of each 

variable in the context of this neural network. The texture variable mean contributed the most to this 
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model, followed by correlation, the physical variable slope and the texture variable entropy.  

The relative importance of each variable is represented by the ratio of model error when the model is 

constructed excluding and including the variable in question. The relative sensitivities of mean, 

correlation, slope and entropy are 3.7, 1.8, 1.5, and 1.3, respectively. 

Table 1. Correlation between predicted and observed biomass (r), Akaike’s Information 

Criteria (AIC), Root Mean Square Error (RMSE) and Coefficient of Variation Root Mean 

Square Error (CV-RMSE) for the five best performing neural network models constructed 

with texture metrics (top 5 rows), and the five best performing neural network models 

constructed without texture metrics (lower 5 rows). The architecture of each neural network 

is indicated in the form of input-hidden-output units. The Gray Level Co-occurrence Matrix 

(GLCM) texture metrics used in the highest preforming models were calculated on Band 2, 

on a 3 × 3 window at an (0,1) offset; they are: 1-mean, 2-variance, 3-homogeneity,  

4-contrast, 5-dissimilarity, 6-entropy, 7-second moment, and 8-correlation. 

Parameters 
Network 

Architecture 
r AIC RMSE CV-RMSE 

6, 1, 8, Slope 4-10-1 0.86 199.0 45.6 0.31 
1, 6, 7, Slope, 8, 5 6-9-1 0.81 204.2 52.7 0.36 

1, 8, Slope, 6, 5 5-6-1 0.84 207.4 51.9 0.36 
1, Slope, 6 3-4-1 0.78 209.1 58.1 0.40 

1, Slope, Aspect, 6, NDVI 5-9-1 0.79 211.7 56.4 0.39 
Elevation, NDVI, Aspect, Slope 4-8-1 0.57 224.9 76.5 0.53 

Elevation, Slope, Aspect 3-3-1 0.44 224.9 79.7 0.55 
Elevation, Aspect, Slope, EVI, Precipitation 5-9-1 0.51 226.7 76.3 0.53 

Elevation, Aspect, Slope, EVI 4-5-1 0.43 227.6 80.8 0.56 
Vegetation Type, Aspect, Slope, Elevation 9-3-1 0.34 229.5 83.9 0.58 

Models including texture metrics performed better than those constructed with only physical 

variables (slope, aspect, elevation, precipitation and vegetation type) and spectral variables (NDVI and 

EVI; Table 1). The best-performing model constructed without any texture information was produced 

by a network including slope, aspect, elevation and NDVI (Table 1), and had a lower correlation, 

higher error and higher AIC than models including texture. 

3.2. Biomass Prediction in Areas of Forest Disturbance 

The texture-based biomass map also appears better able to capture the magnitude and direction of 

biomass change due to forest disturbance compared to spectral approaches. Our texture-based map 

predicted a larger difference in biomass between untreated stands and adjacent clear-cut stands than 

the physical-spectral map (Figure 4). The observed biomass values suggest an average difference of 

64.5 Mg·ha−1 between untreated and clear-cut stands. The texture-based biomass predicted an average 

difference of 65.3 Mg ha−1 between the clear-cut and untreated stands, whereas the physical-spectral 

map predicted an average difference of 23.53 Mg ha−1 between the clear-cut and untreated stands 

(Figure 4).  
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Figure 2. Observed versus predicted biomass values for Landsat TM image texture based 

biomass map.  

 

Figure 3. Landsat TM image texture-based map of aboveground biomass within forested 

regions of San Juan National Forest. The boxes labeled 4 and 5 indicate the location of 

Figures 4 and 5, respectively. 
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Figure 4. (a) True color image from National Agricultural Imagery Program acquired by a 

Leica ADS80 Airborne Digital Sensor; (b) image texture-based biomass map; and  

(c) physical-spectral (slope, aspect, elevation, Normalized Difference Vegetation Index) 

based biomass map for a region of San Juan National Forest containing forested stands 

clear-cut in the 1970s. Color bar and scale bar apply to (a), (b), and (c); (d) Observed  

and modeled stand-average aboveground biomass from adjacent untreated and treated 

(clear-cut) forest stands. Observed values are calculated from nearby stands of the same 

vegetation type. Modeled stand-average biomass of treated stands was compared to the 

stand-average biomass of the untreated stand located directly to the west. Letters indicate 

locations of biomass comparisons, shown on (a). 

 

The texture-based biomass map also improved prediction quality over the physical-spectral map in 

a region of San Juan National Forest burned in a wildfire in 2002 (Figure 5). In the eastern portion of 

the Missionary Ridge Fire burn area, the texture-based map predicted a 52.64 Mg·ha−1 decrease in 

biomass between the burned area and the adjacent unburned forest, where as the physical-spectral 

based biomass map predicted a 14.0 Mg·ha−1 increase in the amount of biomass present in the burned 

forest relative to the adjacent unburned forest (Figure 5). 
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Figure 5. (a) True color image from National Agricultural Imagery Program, acquired  

by a Leica ADS80 Airborne Digital Sensor; (b) image texture-based biomass map; and  

(c) physical-spectral (slope, aspect, elevation, Normalized Difference Vegetation Index) 

based biomass map for a region of San Juan National Forest burned by a wildfire in 2002. 

Color bar and scale bar apply to (a), (b), and (c); (d) Modeled stand-average biomass of the 

burned region was compared to the unburned region to the East of the fire.  

 

4. Discussion 

In this study we demonstrate the utility of image texture analysis on Landsat TM imagery as a 

method of improving local biomass estimates. Biomass maps including image texture variables 

perform better than biomass maps created from physical and spectral variables only. Furthermore, our 

texture-based biomass map is better able to capture biomass change in response to disturbance than 

maps created excluding image texture. Our analysis provides an alternative avenue for advancing the 

development of more accurate local biomass maps through a novel application of a widely established 

remote sensing tool. 

4.1. Biomass Prediction from Image Texture  

Aboveground biomass predicted by the texture-based model was greatest in high elevation regions, 

and smallest in the low elevation regions (Figure 3). This pattern is generally spatially consistent with 

national scale biomass maps for this region [18,31], however, the greatest biomass value predicted by 
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the texture-based map, 394 Mg·ha−1, is lower than the highest observed biomass for this region  

(490 Mg·ha−1). The correlation between our texture-based model biomass predictions and observed 

biomass values was r = 0.86 (Table 1; Figure 2).  

Our successful use of texture to map biomass in SJNF is encouraging for several reasons. First,  

our texture-based model was constructed using only publically available data and Landsat TM 

imagery, whereas most existing biomass maps are constructed from a large suite of geospatial 

predictors. Although we recognize that many spatial predictors are needed for national scale maps, we 

suggest that alternate approaches, such as use of texture analysis, may be more appropriate for local 

maps. Secondly, we believe that texture analysis may be able to improve biomass estimation in regions 

of forest where spectral indices such as NDVI can saturate. Unlike NDVI, which is calculated on a  

pixel-by-pixel basis, texture is calculated from a small neighborhood of pixels and the size of this 

neighborhood can be adjusted to maximize the potential for texture to predict biomass. We find that 

texture is particularly useful in regions of disturbed forest (Figures 4 and 5), where the texture-based 

map is more sensitive to changes in forest biomass than a map produced from physical and spectral 

variables. Furthermore, texture analysis also has the potential to be sensitive to changes in forest 

biomass even in regions of dense canopy; studies from tropical forests indicate that texture correlates 

with biomass more strongly than spectral indices [13], and texture is correlated with biomass in some 

regions where spectral signatures are not [14]. Finally, we also acknowledge the possibility that the 

success of texture in predicting forest biomass is partially due to the aggregation process of the 

window used in texture analysis accounting for errors between image geo-rectification and GPS field 

locations. If the Landsat image is offset by even just one pixel, the plot locations will be 30 m removed 

from the corresponding pixel in the Landsat image. In this case texture analysis may help account for 

this geographic error by aggregating pixel values over the window used in texture analysis (i.e., 3 × 3). 

There are several opportunities for introduction of error into our texture-based biomass model. First, 

the ground-based FIA plots used in our model were sampled between 2002 and 2009, whereas the 

Landsat scenes used for the texture calculation were acquired in 2011. While the Landsat scenes we 

used in our analysis are temporally consistent with the recently sampled FIA plots, there is almost a 

10-year lag between the sampling date of the earliest plots, and the time of Landsat image acquisition. 

During this time the amount of biomass on the landscape could have changed due to growth or 

disturbance, thereby introducing error into the resulting map. However, the direction of the map errors 

(the map under predicts biomass) is not consistent with errors introduced due to forest disturbances 

that remove biomass, such as forest treatment or wildfire. In the case of disturbances including 

treatment and wildfire, forest biomass on the landscape would decrease, and therefore the biomass map 

would over predict forest biomass for disturbed areas. In contrast, our map under predicts forest 

biomass in some regions.  

4.2. Texture Analysis for Local Biomass Maps 

The texture-based biomass map we present here is an effective method for developing local forest 

biomass maps, and could have substantial implications for carbon accounting and land management 

purposes. Local biomass maps are important for tracking biomass stocks and carbon fluxes in regions 

such as National Forests, which are sites of frequent land management and disturbance. Our texture-based 
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biomass map is particularly sensitive to changes in biomass following disturbance, and actually 

improves biomass predictions within disturbed regions relative to maps made from exclusively 

physical and spectral variables. Specifically, the texture-based map produced biomass predictions that 

closely match observed biomass values from nearby forest stands of the same vegetation type and 

treatment history (Figure 4). Furthermore, the physical-spectral map predicted an increase in forest 

biomass in a region of recently burned forest relative to the adjacent unburned forest, whereas the 

texture-based map predicted a decline in forest biomass in the burned region (Figure 5). We believe 

this result is due to high prevalence of understory vegetation growing in the burned region, resulting in 

high NDVI but low biomass. Because texture appears to be sensitive to changes in forest biomass 

following disturbance in SJNF, we suggest that texture may be an important tool not only for creating 

biomass maps in regions such as national forests, but also for updating these maps following 

disturbance or management. The Landsat data used to construct this map are available on sub-annual 

timescales so map updates are not subject to constraints in data acquisition. Potential future climate 

change mitigation policies enacted through forest management, or trading schemes introduced under 

cap-and-trade type policy, will rely on biomass maps to inform decisions, and image texture analysis 

provides a potential avenue to make necessary improvements to local biomass estimates.  

5. Conclusions 

Local forest biomass maps are necessary for understanding and anticipating the effects of 

disturbance and management on forest area, habitat, and local carbon stocks and fluxes. In this study 

we use a combination of physical variables, spectral information and image texture metrics calculated 

from Landsat TM imagery to create a local forest biomass map within San Juan National Forest in 

Southwest Colorado, USA. Aboveground biomass maps were created using neural networks 

constructed from Forest Inventory and Analysis Program ground-based biomass observations and the 

corresponding physical, spectral and image texture information for each plot location. We draw the 

following conclusions:  

 Biomass models constructed including image texture variables are more strongly correlated with 

observed biomass than those constructed using physical and spectral information alone. 

 Our texture-based biomass model is sensitive to changes in forest biomass following disturbance 

such as logging and wildfire; the texture-based model we present in this paper is better able to 

predict the direction and magnitude of biomass change following disturbance than biomass 

models constructed without the use of image texture. 

 Because the Landsat data used to construct this map are available on sub-annual timescales, 

texture may be an important tool for creating and updating biomass maps following local forest 

disturbance or land management actions. 

 The methods we present here are widely applicable across the US because we use entirely 

publically available data processed with relatively simple analytical routines. 

The next steps of this research will include evaluating the transferability of this local texture-based 

biomass model to other geographic regions with varying vegetation and disturbance regimes. 
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