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Effect of cold collisions on spin coherence and resonance shifts in a magnetically

trapped ultra-cold gas
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We have performed precision microwave spectroscopy on ultra-cold 87Rb confined in a magnetic
trap, both above and below the Bose-condensation transition. The cold collision frequency shifts
for both normal and condensed clouds were measured, which allowed the intra- and inter-state
density correlations (characterized by sometimes controversial “factors of 2”) to be determined.
Additionally, temporal coherence of the normal cloud was studied, and the importance of mean-
field and velocity-changing collisions in preserving coherence is discussed.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 34.20.Cf

With the advent of modern cooling and trapping tech-
niques, the cold collision regime has become readily ac-
cessible. In the cold collision regime quantum statistical
effects due to particle indistinguishability dominate scat-
tering processes. The symmetrization requirement for
identical particles in an ultra-cold Bose gas enhances the
probability of finding two particles nearby, causing den-
sity fluctuations. At lower temperatures the statistical
nature of the Bose gas causes the phenomena of Bose-
Einstein condensation, where all atoms in the conden-
sate share the same wavefunction, suppressing the den-
sity fluctuations found in a noncondensed sample.

Suppression of second-order density fluctuations in a
condensate has been measured through analysis of the
expansion energy of condensates [1, 2]. In a separate ex-
periment, the suppression of third-order density fluctua-
tions was probed by comparing the three-body loss rate
of a condensate to that of a normal cloud [3]. The effect
of cold collisions has also been measured as a density-
dependent energy shift in atomic fountain clocks [4, 5, 6].
These shifts are quite small (∼0.1-10 mHz) due to the low
densities at which the clocks operate, but are measurable
because of their high precision. The uncertainty associ-
ated with these collisional shifts can be problematic; in
fact the next generation of atomic fountain clocks are
based on 87Rb rather than 133Cs because the collisional
shift of 87Rb is ∼ 30 times smaller. In recent ultra-cold
hydrogen experiments the cold collision shift provided
the signature of Bose-condensation; below the transition
a large frequency shift of the 1S-2S transition was seen,
reflecting the high density of the condensate [7].

In this paper we report precision microwave spec-
troscopy performed on ultra-cold and condensed 87Rb
atoms confined in a magnetic trap. Due to the high den-
sities achievable in a magnetic trap, the collisional energy
shifts were 105 greater than those in 87Rb atomic clocks,
allowing a high-precision measurement of the shifts of the
magnetically trappable states to be made with relative
ease. The collisional shifts for both a normal and con-
densed sample were measured, providing a useful probe
of the quantum statistics of the system. Additionally,
magnetic confinement permits long interrogation times,

allowing us to characterize temporal coherence of the nor-
mal cloud under various experimental conditions. Com-
parison of measured coherence times with a collisionless
numerical simulation suggests that collisions preserve co-
herence in normal clouds.

Precision spectroscopy of trapped samples is difficult
because atom trapping relies on spatial inhomogeneity
of the atomic energy levels. Spatial inhomogeneity of the
energy levels broadens the transition frequency, thus lim-
iting the precision attainable through spectroscopy. In
other work, this difficulty has been avoided by confining
atoms in a blue-detuned optical dipole trap, where atoms
spend little time interacting with the trapping fields [8].
In this work spatial inhomogeneity of the transition fre-
quency was minimized through the use of a pair of energy
levels which experience the same trapping potential. At
a magnetic field of ∼ 3.23 G, the |1〉 ≡ |F = 1, mf = −1〉
and |2〉 ≡ |F = 2, mf = 1〉 hyperfine levels of the 5S1/2

ground state of 87Rb experience the same first-order Zee-
man shift. For a normal cloud at 500 nK, each energy
level is Zeeman shifted by ∼10 kHz across the extent of
the cloud; however, at 3.23 G the differential shift of the
two levels across the cloud is ∼1 Hz. Compared to the
differential Zeeman shift, the energy shift due to cold col-
lisions is then a relatively large effect at high densities,
making measurements of collisional shifts in this system
possible. The small inhomogeneity allows for long coher-
ence times, ∼2 seconds and longer for low-density clouds,
making this system attractive for precision measurements
as well as for the study of condensate coherence in the
presence of a thermal cloud.

The experimental setup has been previously described
[9] and will be briefly summarized here. Approxi-
mately 109 87Rb atoms are loaded into a vapor cell
magneto-optical trap (MOT). The atoms are then op-
tically pumped into the |F = 1〉 state by turning off
the repump beam while MOT beams remain on. Then
the trapping beams are turned off and the MOT coils
are ramped to a high current forming a 250 G/cm gra-
dient to trap |1,−1〉 atoms in the quadrupole field of
the coils. The quadrupole coils are mounted on a lin-
ear servo-motor controlled track which then moves the
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coils 44 cm, from the MOT region to a Ioffe-Pritchard
trap in the ultra-high vacuum region of the system. The
Ioffe-Pritchard trap consists of two permanent magnets
which provide a 450 G/cm radial gradient. Two pairs of
electromagnetic coils, a pinch and a bias, provide con-
finement in the axial direction, which is aligned perpen-
dicular with respect to gravity. At a typical bias field of
3.23 G, atoms in the |1,−1〉 state experience {230, 230, 7}
Hz trap frequencies. The sample is further cooled by rf
evaporation, and condensates of up to 106 atoms can be
formed. Imaging is performed by the use of adiabatic
rapid passage to transfer atoms from the |1,−1〉 state to
the |2,−2〉 state. Anti-trapped |2,−2〉 atoms rapidly ex-
pand for 2-5 ms and then are imaged through absorption
by a 20 µs pulse of 5S1/2 |2,−2〉 → 5P3/2 |3,−3〉 light.

A two-photon microwave-rf transition is used to trans-
fer atoms between the |1〉 and |2〉 states. A detuning
of 0.7 MHz from the |2, 0〉 intermediate state provides
a two-photon Rabi frequency of ∼ 2.5 kHz. Ramsey
spectroscopy of the |1〉 → |2〉 transition is performed by
measuring the total number of atoms remaining in state
|1〉 after a pair of π

2 pulses separated by a variable time
delay are applied [10]. The frequency of the resulting
Ramsey fringes is the difference between the transition
frequency ν12 and the two-photon drive frequency. In
previous work we measured local variations of ν12 by de-
tecting the number of atoms remaining in state |1〉 at
specific spatial locations along the axis of the normal
cloud [9]. By analyzing the spatio-temporal variations
of ν12, combined with the measured evolution of the |1〉
state after a single π

2 pulse, we were able to spatially
resolve the evolution of spin waves [11]. In this work,
in order to perform measurements of ν12 insensitive to
spin waves, one of the following two techniques was used.
With one technique the entire cloud, rather than specific
spatial locations, was monitored to average out the ef-
fects of spin waves. Alternatively, Ramsey spectroscopy
was restricted to interrogation times short compared to
the spin wave frequency [12].

One effect which shifts the transition frequency ν12 is
the differential Zeeman shift. The Breit-Rabi formula
predicts a minimum in ν12 at B0 = 3.228917(3) Gauss,
thus the differential Zeeman shift between the |1〉 and |2〉
energy levels is first-order magnetic field independent at
B = B0. The differential Zeeman shift about B0 can be
approximated as ν12 = νmin+β(B−B0)

2 [13]. Measuring
ν12 for different magnetic fields allows us to calibrate our
magnetic field from the expected dependence, see Fig. 1.
By working in the vicinity of B = B0 we greatly reduce
spatial inhomogeneity of ν12 and also become first-order
insensitive to temporal magnetic field fluctuations.

A second effect which shifts ν12 arises from atom-atom
interactions. In the s-wave regime, where the thermal
de Broglie wavelength of the atoms is greater than their
scattering length, atoms experience an energy shift equal

to α4πh̄2

m an, where α is the two-particle correlation at
zero separation, n is atom number density, a is the scat-
tering length, and m is the atom mass. Therefore for a
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FIG. 1: Differential Zeeman shift at low magnetic fields for the
|1〉 → |2〉 (|F = 1, mf = −1〉 → |F = 2, mf = 1〉) transition.
The solid line is the predicted splitting from the Breit-Rabi
formula. The inset plot expands the bias field region where
most studies are performed.

two-component sample the expected energy shift of each
state is

δµ1 =
4πh̄2

m
(α11a11n1 + α12a12n2) (1)

δµ2 =
4πh̄2

m
(α12a12n1 + α22a22n2), (2)

where n1 and n2 are the |1〉 and |2〉 state density and

αij =
〈Ψ†

iΨ
†
jΨiΨj〉

〈Ψ†
iΨi〉〈Ψ†

jΨj〉
. (3)

The shift of the transition frequency in Hz can then be
written as

∆ν12 =
2h̄

m
(α12a12n1 + α22a22n2 − α11a11n1 − α12a12n2)

=
h̄

m
n(α22a22 − α11a11 +

(2α12a12 − α11a11 − α22a22)f), (4)

where f = n1−n2

n and n = n1 + n2.
For noncondensed, indistinguishable bosons, α = 2 due

to exchange symmetry, therefore αnc
11 = αnc

22 = 2 in a cold
normal cloud (where the superscript c or nc refers to
condensed of noncondensed atoms respectively). Distin-
guishable particles do not maintain exchange symmetry,
making αnc

12 = 1 for an incoherent two-component mix-
ture. However if a two-component sample is prepared by
coherently transferring atoms from a single component,
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such as in Ramsey spectroscopy, then the excitation pro-
cess maintains exchange symmetry, and we might expect
αnc

12 = 2 [14]. In this scenario the collisional shift should
be calculated using αnc

11 = αnc
22 = αnc

12 = 2, leading to a
predicted frequency shift of

∆ν12 =
2h̄

m
n(a22 − a11 + (2a12 − a11 − a22)f). (5)

This result can also be obtained by solving the trans-
port equation [15, 16]. From spectroscopic studies [17]
the three 87Rb scattering lengths of interest have been
determined to be a22 = 95.47a0, a12 = 98.09a0, and
a11 = 100.44a0, where a0 is the Bohr radius. The fre-
quency shift can then be written as

∆ν12 =
2h̄

m
a0n(−4.97 + 0.27f). (6)

If on the other hand the |1〉 and |2〉 states do not main-
tain exchange symmetry, such that αnc

12 = 1, then the
frequency shift would instead be

∆ν12 =
2h̄

m
a0n(−4.97 − 97.82f). (7)

These two models are clearly distinguished by the depen-
dence of ν12 on f .

When we perform Ramsey spectroscopy with a pair of
π
2 pulses, the populations of the |1〉 and |2〉 states are
equal, and thus f = 0 during the interrogation time.
From Eq. (4) it is apparent that with f = 0 the colli-
sional shift is sensitive only to αnc

ii and aii terms. For
these measurements the bias field was set to B0, and the
transition frequency was measured for a range of den-
sities. To adjust density of the sample, the number of
atoms in the initial MOT load was varied. All normal
cloud data was taken at the same temperature of 480 nK,
and all condensate data was taken with high condensate
fractions in order to minimize effects due to the normal
cloud. The density for the normal cloud was found by fit-
ting Gaussian profiles to absorption images of the clouds
and extracting the number, temperature, and density. To
measure condensate density, Thomas-Fermi profiles were
fit to absorption images of the condensates and the total
number, N0, in the condensates and the Thomas-Fermi
radius along the long axis, Z, were extracted.

The results of this measurement are shown in Fig. 2.
Comparing the collisional shift measured for the normal
cloud to that measured for a condensate gives αnc

ii /αc
ii =

2.1(2). If instead we assume αnc
ii = 2 and αc

ii = 1, then
the data for both the condensate and normal cloud can
be used to obtain a value for the difference in scattering
lengths of a22 − a11 = −4.92(28)a0, in agreement with
values determined from molecular spectroscopy [17].

Many systematics can plague density measurements
made through absorption imaging. In order to test in-
dependently our density calibration for both the nor-
mal and condensed samples, each of which can suffer
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FIG. 2: Measurement of the cold collision shift. Solid and
open circles represent measurements of the normal cloud and
condensate respectively. The solid line is a fit to the normal
cloud data ∆ν12 = 0.1(0.4)−3.9(0.3)10−13n; the dashed line is
a fit to the condensate data ∆ν12 = −0.1(1.4)−1.9(0.2)10−13n
where ∆ν12 is in Hz and n is in cm−3.

from different errors, we used the Bose-condensation phe-
nomenon. The density of normal clouds was tested
through measurement of the critical temperature, and
condensate density was tested with the Thomas-Fermi
approximation. Assuming that disagreements are due
only to errors in estimation of atom number, the worst
case scenario, leads us to reduce normal cloud density by
11(4)% and increase condensate density by 11(3)%. Ad-
justing the cold collision shifts accordingly would yield a
worst-case corrected value of αnc

ii /αc
ii = 1.7(2) [18]. The

adjusted normal and condensate density shifts can be
combined as above to give a value for the difference in
scattering lengths of a22 − a11 = −4.85(31)a0; not signif-
icantly different from our unadjusted measurement.

The remaining significant systematic is atom loss due
to |2〉-|2〉 collisional dipolar relaxation. In order to min-
imize effects of this loss, interrogation times were kept
as short as possible. Nevertheless for the highest density
condensate measurements the |2〉-|2〉 loss causes the total
density to drop by 3% in 20 ms, the maximum interroga-
tion time. For all other densities the loss was no larger
than this, and in most cases much smaller. Finally, the
|1〉 and |2〉 states begin undergoing spatial separation in
the condensate after the first π

2 pulse [19]; however, the
timescale for the separation is much longer than our 20
ms interrogation time.

Exchange symmetry between the |1〉 and |2〉 states can
be tested by working at a fixed density and varying the
relative |1〉 to |2〉 population by varying the length of the
first Ramsey pulse [20]. In this case the first term in
Eq. (4) will be constant and the measurement will test
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FIG. 3: Testing the exchange symmetry between the |1〉 and
|2〉 states. The transition frequency is measured as f = n1−n2

n

is varied for a normal cloud at fixed peak density of 7 × 1012

cm−3 and temperature of 510 nK. The solid line is the fit,
which yields αnc

12/αnc
11,22 = 1.01(2), which is to say, inter- and

intra-state density correlations are quite accurately the same.
The dotted line indicates the expected slope for αnc

12/αnc
11,22 =

1/2.

αnc
12 and a12 as well as the αnc

ii and aii terms (see Eq. (6)
and (7)). To minimize systematics the interrogation
times were kept short, making precise frequency determi-
nation difficult. Nevertheless, our measurement (Fig. 3)
indicates αnc

12/αnc
11,22 = 1.01(2), where we have used the

spectroscopically determined scattering lengths. This
clearly indicates that exchange symmetry is maintained
between the |1〉 and |2〉 states. A similar measurement
was made on the |F = 1, mf = 0〉 → |F = 2, mf = 0〉
transition by Fertig and Gibble [5].

As a thought experiment, imagine distinct thermal
populations of |1〉 and |2〉 atoms, separately prepared,
then mixed together, with the energy of interaction (pro-
portional to αnc

12 ) measured for instance calorimetrically.
Surely in this case the density fluctuations in state |1〉
and in state |2〉 would be uncorrelated, and αnc

12 would
be determined to be 1, not 2. We lack the experimental
sensitivity to make such a calorimetric measurement, and
our Ramsey-fringe method of measuring energy differ-
ences obviously would not work for incoherent mixtures.
We speculated, however, that if αnc

12 = 2 for coherent
superpositions, and if αnc

12 = 1 for incoherent mixtures,
then for partially decohered samples, αnc

12 would take on
some intermediate value. So by performing a measure-
ment similar to that in Fig. 3 we might expect to see a
more negative slope for a partially decohered sample; al-
ternatively a frequency chirp in the Ramsey fringes may
be seen as the sample decoheres.

We probed the time evolution of αnc
12 in a way similar
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FIG. 4: A data set of Ramsey fringes probing for frequency
shifts as a function of coherence. For this measurement nor-
mal clouds at a temperature of 480 nK and a peak density of
3.2 × 1013 cm−3 were used.

to Fig. 3; however rather than varying f we set f ≃ 0.8
then measured ν12 with long interrogation times, looking
for a frequency chirp as the fringe contrast decreased.
This method has the advantage that there is a relatively
small |2〉 state population, so effects arising from |2〉 loss
are minimized. Seven data sets were taken for this mea-
surement; an example is shown in Fig. 4. By allowing a
linear frequency chirp in the fit of the Ramsey fringes, the
frequency shift can be constrained to −0.2(3) Hz by the
time the fringe contrast has reduced to 1/e [21]. However
if we hypothesize that αnc

12 goes from 2 to 1 linearly as
fringe contrast goes from 100% to 0% we would expect a
frequency shift of −20(2) Hz as the fringe decayed, while
the experimental limit is 40 times smaller. Clearly this
appealing but unrigorous model is far too naive.

Ramsey spectroscopy not only allows us to probe the
energy difference between the two states, but also per-
mits the measurement of the coherence between the two
states. Coherence measurements were performed using
the same time domain method used to measure ν12; how-
ever, interrogation times were extended until the Ramsey
fringe contrast was lost. The resulting data was fit to a

e−(t/τ)2 decay, where τ is the coherence time. Addition-
ally, fitting allowed for both a loss in total atom number
and a linear frequency chirp of ν12. To ensure that the
1/e atom loss times were much longer than the coherence
times fractional transfers (f ≃ 0.8) to the |2〉 state were
used for the high density data points. The results of co-
herence measurements for different magnetic fields and
at three different densities are shown in Fig. 5.

We expect that the primary source of decoherence is
inhomogeneity in ν12 across the cloud, to which both
the differential Zeeman and collisional shifts contribute.
The collisional shift scales directly with density, and thus
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FIG. 5: Coherence times in a normal cloud. The temperature
was ∼ 480 nK and the normal cloud peak density for each
plot is: (a) 4× 1012 cm−3; (b) 1.3× 1013 cm−3; (c) 3.2× 1013

cm−3. The solid line in each plot corresponds to the 1/e times
obtained from a numerical simulation (see text). The noise
in the simulation data is due to the finite number of particles
used and the random initialization.

provides a Gaussian-shaped ν12 profile across the cloud
[9]. Inhomogeneity arising from the differential Zeeman
effect depends on the bias field. The magnitude of the
magnetic field near the bottom of the trap can be writ-

ten as B(z) = B′′

2 z2 +Bbias, thus the inhomogeneity due

to the Zeeman shift is ν12 ∝ B′′2

4 z4 + (Bbias − B0)B
′′z2.

By setting Bbias(>, <, =)B0 the curvature of ν12 can be
adjusted to be positive, negative, or nearly zero, respec-
tively. This allows inhomogeneity due to the collisional

shift to be roughly cancelled by an opposing Zeeman in-
homogeneity [9]. This cancellation can be seen in Fig. 5;
as the density is increased from (a) to (c), the inhomo-
geneity induced by the collisional shift increases, so that
a larger opposing Zeeman inhomogeneity is necessary for
cancellation. Therefore the bias field for peak coherence
time decreases as cloud density increases.

In an attempt to compare the measured decoherence
times to the known spatial inhomogeneity of the tran-
sition frequency, we performed the following numerical
simulation: consistent with a Maxwell-Boltzman distri-
bution, we randomly assign initial positions and veloci-
ties to ten thousand simulated atoms. Ignoring the effects
of collisions, we calculate the three-dimensional trajec-
tory of each atom for several simulated seconds, keeping
track of the time integral of ν12 along the trajectory. At
each point in time, we calculate the spatially integrated
transverse magnetization and, as inhomogeneities cause
this magnetization to wash out, find the time it takes
the integrated transverse magnetization to reduce to 1/e
of its original value [22]. This model should correctly
account for the effect of motional averaging except that
all collisional effects are explicitly excluded. The result-
ing modelled damping times are plotted as a solid line
along with the experimentally measured damping times
in Fig. 5. While the model does a reasonable job predict-
ing the value of the bias field for which the coherence time
peaks, it consistently underestimates (in some cases by
a factor of eight) the actual value of the coherence time.
Our model neglects both velocity-changing collisions and
the exchange-type collisions that lead to spin waves; it
appears that these effects contribute significantly to pre-
serving coherence across the trapped atom cloud.

The extreme aspect ratio of our trapped cloud com-
plicates a proper quantitative analysis of the effects of
collisions on coherence. Along the axial direction, our
previous work has shown that the effects of spin-waves
are to keep local magnetization across the cloud from
straying too far from its spatially averaged value [see in
particular Fig. 2(a) of Ref. [11]]. In the radial directions,
the motional oscillation frequency exceeds the mean-field
exchange frequency in the cloud, and thus the effects
of spin-waves are probably not relevant. On the other
hand, velocity-changing collisions are likely important –
in their absence, atoms with small transverse energies
would stay near the axis of the trap, while atoms with
large transverse energies would preferentially sample the
larger magnetic fields and lower densities further from the
axis. Velocity-changing collisions which re-randomize the
transverse trajectories of these different classes of atoms
(before they have a time to accumulate a radian or more
of relative phase-difference) will serve to extend the co-
herence time of the sample. In the highest density data
set presented [Fig. 5(c)] the mean elastic collision rate
was 74 Hz, which should be compared the measured co-
herence times of around 0.5 to 1.2 seconds.

It is interesting to consider the usefulness of magnet-
ically trapped atoms for precision metrology. Peak co-
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herence times of approximately 2.5 s were realized with
cold, low density samples. An interrogation time of 2.5
s provides a 0.2 Hz linewidth, which naturally leads one
to consider using such a system for precision measure-
ments. By working at Bbias = B0, coherence times are
slightly reduced. However, perturbations of ν12 due to
magnetic field fluctuations become very small, on the
order of 4 mHz for current typical experimental condi-
tions. With careful design of the confinement coils, the
current supply, and magnetic shielding of external fields,
it should be possible to suppress fluctuations of the bias
field below 1 mG, reducing Zeeman-induced frequency
shifts to below 0.1 mHz. Perturbations of ν12 due to the
cold collision shift are more significant; shot-to-shot den-
sity fluctuations will introduce frequency noise, so it is
advantageous to work with the minimum possible den-
sity. However as atom number is reduced the maximum
signal-to-noise ratio will decrease due to shot-noise [23],
therefore the optimum strategy is to work with an atom
number such that the frequency uncertainty due to shot-
noise is on the order of the uncertainty due to density
fluctuations.

For example a normal cloud of 400 nK and a peak den-
sity 1.5 × 1012 cm−3 has 6 × 104 atoms. The shot-noise-
limited signal-to-noise ratio is then 245:1. With an inter-
rogation time of 1 second the single-shot statistical uncer-
tainty is then 0.65 mHz; including the effects of decoher-
ence and atom loss will increase this to approximately
0.9 mHz. Assuming that shot-to-shot number fluctua-
tions are also shot-noise limited, then statistical uncer-
tainty from the density shift is 0.84 mHz. Combining
these gives a total single-shot uncertainty of 1.24 mHz;
with our current 30 second evaporation time, the duty-
cycle is such that an absolute precision of 6.8 mHz/

√
Hz

can be realized. This corresponds to a relative precision
of 1 × 10−12 /

√
Hz, which in terms of measurement pre-

cision does not reach the level of atomic fountain clocks.
This system however has the advantage that small energy
shifts can be measured in a compact, stationary spatial
position; a 400 nK cloud occupies approximately only a
1040×32×32 µm region of space. It is certainly feasible
to perform spectroscopy at this level within 100 µm of
a surface, which might allow the measurement of short
range atom-surface interactions.

In future work we plan on measuring coherence times
in finite temperature condensates to study the role of the
normal cloud in decoherence. We anticipate this system
will be quite rich due to the existence of spin waves in the
normal component, phase separation in the condensate,
and the interaction between the two. The complexity
of this interaction may partially account for the anoma-
lous density shift of the condensate seen in the hydrogen
experiments [7, 14].

We have demonstrated precise spectroscopy in an
ultra-cold magnetically trapped gas. This permitted
measurement of the cold collision shift in both a conden-
sate and a normal cloud, allowing a probe of the quantum
statistics of the system. Working at low densities mini-
mizes the effect of the collisional shift, allowing long co-
herence times and precise determination of ν12; however
the measurement of any quantity not related to atom-
atom interactions will at some level be limited by this
shift. An intriguing alternative would be to instead use
a fermionic atom, which should have no collisional shift,
and thus density induced frequency noise will not be an
issue. On the other hand, the lack of collisions may also
lead to more rapid decoherence: collisions appear to pre-
serve our bosonic system from the decohering effects of
spatial inhomogeneity.

We acknowledge useful conversations with the other
members of the JILA BEC collaboration. This work was
supported by grants from the NSF and NIST.
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[15] M. Ö. Oktel and L. S. Levitov, Phys. Rev. A 65, 063604
(2002).

[16] J. E. Williams, T. Nikuni, and C. W. Clark, Phys. Rev.
Lett. 88, 230405 (2002).

[17] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J.
Heinzen, and B. J. Verhaar, Phys. Rev. Lett. 88, 093201



7

(2002).
[18] The Thomas-Fermi radius (and to a lesser extent the

critical temperature) are of course interaction depen-
dent, and therefore using measurements of these quan-
tities to calibrate densities in order to characterize inter-
action strengths is somewhat circular. Our directly mea-
sured value of αnc

ii /αc
ii = 2.1(2), on the other hand, is

based predominantly on measured spatial extent of the
cloud and on an absolute determination of the absorp-
tion depth, and therefore it is only weakly model de-
pendent. We quote the “worst-case corrected value” of
αnc

ii /αc
ii = 1.7(2) in order to put a reasonable limit on

the size of possible systematic errors, and not because
we feel it is the preferred value.

[19] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman,
and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[20] When we changed the length of the first Ramsey pulse,
the second pulse length was also changed such that the

two pulses combined to form a π pulse, which gives us
the maximum signal-to-noise.

[21] The quoted chirp limit of -0.2(3) Hz includes a correc-
tion to account for a small frequency change associated
with decay of total atom number during the measurement
time. For each data set the number decay was found by
allowing an exponential decay in the fit of the Ramsey
fringes (not to be confused with the decay in Ramsey
fringe contrast associated with decoherence), resulting in
a correction amounting to -0.74 Hz on average.

[22] Fitting the decay of the integrated transverse magnetiza-

tion to e−(t/τ)2 , the same functional form as we fit to the
actual experimental data, gives values typically within
5%, and at worst 12%, of the 1/e time.

[23] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilli-
gan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J.
Wineland, Phys. Rev. A 47, 3554 (1993).


