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The possibility of inter-spacecraft collisions is a serious concern at geosynchronous altitudes,

where many high-value assets operate in proximity to countless debris objects whose orbits expe-

rience no natural means of decay. The ability to rendezvous with these derelict satellites would

enable active debris removal by servicing or repositioning missions, but docking procedures are gen-

erally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless

means of reducing the rotation rate of objects in the space environment is desired. This dissertation

investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control.

If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it

will impart electrostatic torques that can be used to gradually arrest the object’s rotation.

In order to simulate the relative motion of charged spacecraft with complex geometries, accu-

rate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic

force model called the Multi-Sphere Method (MSM) is developed. This approach uses conducting

spheres positioned throughout a fixed geometry to determine what electrostatic forces and torques

are acting on it. Computation times are orders of magnitude quicker than similar Finite Ele-

ment Analysis (FEA) software, while accuracy to within 1% of the higher order truth models is

maintained for the system parameters considered.

All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a

simplified but representative system in which a spherical servicing craft attempts to remove the one

dimensional (1-D) rotation from a cylindrical debris object. First, appropriate control algorithms

are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed

stability. Baseline simulations suggest that 12 deg/s of rotation can be removed from a 3 m length

by 1 m diameter cylinder in just 3 days, using voltage levels up to ±30 kV. The sensitivity of this
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performance to various system parameters and control strategies is analyzed in order to optimize

an eventual Coulomb de-spin mission. Moreover, the complex interaction of the spacecraft with the

plasma environment and charge control beams is modeled to determine what hardware requirements

are necessary to achieve the desired electric potential levels. It is found that charge up and polarity

switching procedures occur well within the time scales necessary to match the rotation of the debris

object.

Lastly, the 1-D remote de-spin concept is validated experimentally using a scaled down ter-

restrial testbed. High voltage power supplies control the potential on two nearby conductors, a

stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms devel-

oped above are implemented to achieve rotation rate and absolute attitude control. This testbed

is able to remove a 100 deg/s rotation rate from the cylinder in just 10 seconds by application

of Coulomb torques alone, and control the absolute attitude to within 1.5 degrees of a reference

angle. Collectively, these studies decisively validate the feasibility of Coulomb charging for remote

spacecraft attitude control.



v

Acknowledgements

The years spent pursuing this doctoral work at the University of Colorado Boulder constitute

an incredibly rich and influential period of my life. Many thanks are in order to those who have

helped me grow and mature during this time, both academically and personally. First and foremost,

I wish to express the utmost gratitude to my academic advisor Dr. Hanspeter Schaub. The passion

and rigor with which you teach in the classroom is unrivaled, as is the dedication with which you

advise your students. Your guidance has inspired in me a deep devotion to this research topic, and

I am truly proud of the work we have accomplished. Thanks also to the members of my prospectus

and thesis committees, whose professional support and insights have greatly strengthened this

dissertation.

It has been a pleasure to work alongside all the bright and talented students of the AVS lab,

whose support and collaboration have been invaluable. Thanks to Carl Seubert for passing along

his Coulomb charging knowledge and testbed, to Trevor Bennett for delving further into aspects

of this research, and to everyone for constantly maintaining a light and jovial atmosphere in the

lab. Moreover, I am glad to have had the chance to mentor and been assisted by several incredibly

promising high school and undergraduate students over the years.

Mostly, I would be nowhere today without the nurturing support I have always received from

my parents. Growing up in an environment of board games and puzzles, where I was introduced

to counting in binary at age 5, it is hardly a surprise I fell in love with engineering. Thank you

for reading to me every night before bed, and for instilling a distaste for idle time and an affinity

to trying new things. Moreover, I attribute my zeal for the outdoors primarily to our countless



vi

weekend hikes, however little I may have appreciated them at the time. To my older brothers, I

prefer our current comradery to the pestering of our childhood, but I am a stronger person for it.

Lastly, I wish to thank all the amazing people I have met and befriended since I took the

leap of faith in moving to Colorado. Our exploration of this state and beyond have kept me sane

amidst my studies. I cherish every powder turn that has hit our face, every stretch of single track

we have bombed down, every river we have navigated, every rock wall we have scaled, and every

intramural championship shirt we have taken home. Here’s to many more adventures with the ones

I love!

This research was funded by the NASA Science and Technology Research Fellowship

(NSTRF) #NNX11AN47H and the National Science Foundation Graduate Research

Fellowship Program (GRFP) under grant number 1000100047



vii

Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Satellite Charging Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Electrostatic De-spin Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Overview of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Electrostatic Models 15

2.1 Classical Electrostatic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Multi-Sphere Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 MSM Volume Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 MSM Surface Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 MSM Numerical Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Two-Sphere System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Cylinder Sphere System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Boundary Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Satellite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Constant Charge Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.2 Floating Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 ISS Charged Droplet Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



viii

3 Electrostatic De-spin 42

3.1 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Non-linear Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Equilibrium Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Rate Control With Zero Nominal Potential . . . . . . . . . . . . . . . . . . . 48

3.2.3 Rate Control with Nominal Electrostatic Tugging or Pushing . . . . . . . . . 50

3.3 Baseline Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 System Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Single Rotation Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Separation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 System Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Servicing Craft Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.5 Debris Aspect Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Relative Position and Orientation Control Schemes . . . . . . . . . . . . . . . . . . . 63

3.5.1 Variable Separation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Circumnavigation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.3 Non-spherical Control Craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Asteroid De-spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Charge Transfer Analysis 72

4.1 Current Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Power Requirements and Momentum Transfer . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Positive Potential Debris Craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Negative Potential Debris Craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Experimental Testbed 83

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



ix

5.3 Disturbance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Rotation Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion 98

6.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 102

Appendix

A Coulomb Force Determination by Sensing 109

B MSM Code 112

C VMSM Parameter Variation 117

D SMSM Packing Parameter 120



x

Tables

Table

2.1 Parameters of three-sphere MSM for cylinder geometry . . . . . . . . . . . . . . . . . 23

2.2 Setup and computation time for calculation of force and torques between sphere and

cylinder at 82 relative locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Parameters for baseline cylinder de-spin simulation . . . . . . . . . . . . . . . . . . . 55

3.2 Baseline de-spin results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 De-spin control schemes results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Plasma environment parameters for current balance . . . . . . . . . . . . . . . . . . 76

4.2 Charge beam characteristics for positive debris craft . . . . . . . . . . . . . . . . . . 78

4.3 Charge beam characteristics for negative debris craft . . . . . . . . . . . . . . . . . . 81

5.1 Testbed component details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.1 Scalar residual comparison between three-sphere MSM and single sphere model . . . 118

C.2 Scalar residual comparison of scaled parameter variation from numerical simulation . 118



xi

Figures

Figure

1.1 Number of cataloged objects in Earth orbit1 . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Depiction of the GEO debris belt2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustration of various current sources that affect spacecraft charging32 . . . . . . . . 6

1.4 Illustration of the electrostatic tugging concept32 . . . . . . . . . . . . . . . . . . . . 8

1.5 Depiction of the remote Coulomb de-spin concept . . . . . . . . . . . . . . . . . . . . 9

2.1 Comparison of various electrostatic models . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Conceptual depiction of the Multi-Sphere Method . . . . . . . . . . . . . . . . . . . 18

2.3 Maxwell 3D model and parameter sweep for data export . . . . . . . . . . . . . . . . 22

2.4 Three-sphere MSM parameters for cylinder geometry . . . . . . . . . . . . . . . . . . 23

2.5 Methodology for parameter selection of surface populated MSM . . . . . . . . . . . . 25

2.6 Two analytic models for the two sphere system that capture induced effects . . . . . 27

2.7 Various uniform point distributions on the surface of a sphere . . . . . . . . . . . . . 27

2.8 Charge density distribution on two spheres (φ1 = φ2 = +30 kV) . . . . . . . . . . . . 28

2.9 Error in force between two spheres for various electrostatic models . . . . . . . . . . 29

2.10 Charge density distribution on SMSM of cylinder and sphere (φ1 = φ2 = +30 kV) . 30

2.11 Force and torque comparison between MSM models and Maxwell3D . . . . . . . . . 32

2.12 MSM model of a simple satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 Orbital motion of water droplets on the ISS by Coulomb interaction . . . . . . . . . 40



xii

2.14 Simulation of Coulomb orbits modeled by the MSM . . . . . . . . . . . . . . . . . . 41

3.1 Free body diagram for cylinder-sphere system . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Coulomb torques for various orientations and potentials . . . . . . . . . . . . . . . . 45

3.3 Illustration of departure angle with respect to equilibrium orientations . . . . . . . . 47

3.4 Illustration of pulling and pushing configurations. . . . . . . . . . . . . . . . . . . . . 52

3.5 Illustration of Lyapunov function and level sets for unit inertia I2 and gain β . . . . 53

3.6 State Space Flow Illustration In Relation to Lyapunov Level Sets. . . . . . . . . . . 54

3.7 Three sphere MSM for cylinder-sphere system . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Cylinder tug and de-spin simulation using Coulomb charge control . . . . . . . . . . 57

3.9 Surface populated MSM for cylinder-sphere system . . . . . . . . . . . . . . . . . . . 58

3.10 Performance dependency on servicing craft size . . . . . . . . . . . . . . . . . . . . . 62

3.11 Performance dependency on debris aspect ratio . . . . . . . . . . . . . . . . . . . . . 62

3.12 Object separation for constant surface to surface distance . . . . . . . . . . . . . . . 64

3.13 Position of craft in circumnavigation scheme . . . . . . . . . . . . . . . . . . . . . . . 65

3.14 Configuration for windmill control craft . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Coulomb torque dependency on debris and control craft angles . . . . . . . . . . . . 67

3.16 Results from windmill control craft scenario . . . . . . . . . . . . . . . . . . . . . . . 68

3.17 Voltage and charge distribution on the servicer craft and asteroid in de-spin simulation. 71

4.1 Depiction of charge transfer between craft . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Time history of charge control with positive debris craft . . . . . . . . . . . . . . . . 79

4.3 Power optimization for negative debris craft . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Time history of charge control with negative debris craft . . . . . . . . . . . . . . . . 81

5.1 One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Rel-

ative Motion Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Depiction of the experimental setup for charged attitude control . . . . . . . . . . . 87



xiii

5.3 Screenshot of the LabVIEW graphical user interface . . . . . . . . . . . . . . . . . . 88

5.4 Characterization of disturbance torques . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Cylinder rotation rate control, experimental and simulation . . . . . . . . . . . . . . 93

5.6 Cylinder attitude control: experimental and simulation . . . . . . . . . . . . . . . . . 96

A.1 Gaussian surface on conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Charged Conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.1 Optimal packing parameter for Surface MSM on sphere . . . . . . . . . . . . . . . . 120

D.2 Optimal packing parameter for Surface MSM on cylinder . . . . . . . . . . . . . . . 121

D.3 Error in force for various packing parameters . . . . . . . . . . . . . . . . . . . . . . 122



Chapter 1

Introduction

1.1 Motivation

Since the 1957 launch of Sputnik 1, the first synthetic body to orbit Earth, the space sur-

rounding our planet has become more and more densely populated with every subsequent satellite

mission. Currently, the Joint Space Operations Center (JSpOC) tracks more than 16,000 objects

orbiting Earth, via a variety of ground based radars as well as some space based sensors.83 As

these methods are generally capable of detecting only objects larger than 10 cm in diameter, the

total number of man-made objects in space is estimated to be many orders of magnitude larger.

Besides the 1,200 operational spacecraft currently in orbit, the majority of the catalog consists

of inactive satellites and rocket bodies, many of them fragmented by break-up events.44 While

accidental spacecraft explosions are common enough in the challenging operational environment

of space, several anti-satellite (ASAT) missile tests such as the 2007 destruction of the Chinese

Fengyun-1C satellite have contributed significantly to the debris population.38 The increase in

fragmentation debris due to this event can be seen clearly in Figure 1.1, which shows the evolution

of cataloged space objects.

In 1990, Donald Kessler investigated the possibility of the self-sustained growth of space

debris caused by a cascading series of collision events.39 Such a scenario, commonly known as

the Kessler Syndrome, could render the use of satellites and further space exploration unfeasible

for many generations. The unexpected 2009 collision between the satellites Iridium 33 and Cos-

mos 2251, which produced more than 2,000 new debris objects,93 highlighted the reality of such
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Figure 1.1: Number of cataloged objects in Earth orbit1

a self-propagating orbital debris calamity. Extensive procedures are in place to predict the close

approaches of orbiting bodies (conjunction analysis) and maneuver satellites to decrease the prob-

ability of collisions (collision avoidance). With inherent relative velocities on the order of km/s,

even impacts from very small objects can easily penetrate satellite structures and render them

obsolete. Moreover, such collision risks presents an undeniable danger for human operations on the

permanently manned International Space Station (ISS).

While there is little international oversight to enforce debris mitigation policies, the Inter-

Agency Space Debris Coordination Committee (IADC) suggests that satellite operators incorporate

an end of life strategy into their mission. At altitudes below 2,000 km, known as Low Earth Orbit

(LEO), satellites experience considerable atmospheric drag. When the altitude is brought below

100 km, there is sufficient atmospheric density to de-orbit the satellite, generally resulting in its

1 http://orbitaldebris.jsc.nasa.gov/newsletter/pdfs/ODQNv18i1.pdf
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disintegration and destruction. At the much higher 35,786 km altitude Geosynchronous (GEO)

orbits, a lack of atmospheric drag inhibits the natural decay of inoperative satellites. As a result,

this highly desirable orbit regime is quickly becoming overpopulated, as evident from Figure 1.2.

This presents a serious concern for the 18 billion USD worth of insured GEO assets as of 2011

(compared with 1 billion in LEO).17 Since the fuel requirements for re-entry from such high orbits

are cost prohibitive, the preferred end of life strategy is relocation to a graveyard orbit with a

sustained perigee at least 200 km above the GEO belt.3

Figure 1.2: Depiction of the GEO debris belt2

In Reference 47, Liou postulates that active debris removal (ADR) operations with a mini-

mum removal rate of 5 objects per year is necessary to curb the naturally increasing debris situation

in LEO. Analysis of satellite congestion in the GEO environment also suggests that mit-

igation measures must be combined with active remediation to preclude an escalating

scenario similar to that in lower orbits.1,2 Various studies have investigated the feasibility

of ADR missions, including analysis of optimal trajectories and transfer orbits to de-orbit or relo-

cate multiple debris objects.4,12 Many of these missions assume the servicer can capture a debris

object by some soft mechanical interface, such as a net, hook or claw.60,64 Other studies propose

to attach a thrusting module or electrodynamic tether to the tumbling spacecraft in order to move

them into desired orbits.20,56 Many of these studies neglect simple conservation of energy laws -

2 http://orbitaldebris.jsc.nasa.gov/photogallery/beehives/GEO1280.jpg
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a body rotating in space will transfer its rotational momentum to the contacting servicing craft,

thus risking the addition of another uncontrolled object to the debris population.

Several other approaches avoid interfacing with the debris body, rather affecting its orbit by

remote processes. The ion-sheppard method would direct the focused exhaust cone of an ion engine

at a satellite to gradually raise or lower its altitude.10,43 Considering the unstable nature of a push-

ing configuration, this approach will require very precise knowledge of the exhaust characteristics

and monitoring of the debris location and orientation. Another promising method, as discussed

further in the following section, is the electrostatic tractor concept. By generating electrostatic po-

tentials on both craft using charge control devices, a servicing craft would gradually tug the debris

object by means of their electrostatic attraction.72,74 While only feasible at the High Earth Orbit

(HEO) regime, the control requirements of this approach are more forgiving in relative position

and charge level errors.

While the above method could increase the semi-major axis of a GEO debris object by 300 km

in several months,29 a docked Hohmann transfer could achieve the desired orbit correction in just

over 12 hours. An alternative to repositioning derelict satellites into a graveyard orbit is to service

them by replenishing fuel reserves or repairing failed components. Such missions, as investigated by

NASA’s Satellite Servicing Capability Office and DARPA’s Phoenix program, preclude the unnec-

essary insertion of countless replacement satellites. Either approach requires the servicing vehicle

to mechanically interface with the debris object, which is explored in References 51 and 96. These

docking procedures are often hazardous or impractical considering the excessive rotational kinetic

energy of a heavy debris object in an uncontrolled tumble. While pose algorithms and attitude

matching maneuvers for rendezvous are generally restricted to rotation rates below 1 deg/s,18,63

some GEO debris objects exhibit rotation rates greater than 10 deg/s.37,54 In order to expand the

set of viable targets for a physical docking strategy, a touchless method of detumbling is highly

desirable. By remotely reducing the rotation rate prior to rendezvous, collision risks

and guidance and control challenges are greatly reduced during docking operations.
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1.2 Satellite Charging Background

As a result of their interaction with the space environment, all spacecraft naturally experience

accumulation of electrostatic charge. Due to the low density and high energy of molecules at orbital

altitudes, the space environment constitutes a plasma, where negatively charged electrons and

positively charged ions exist as independent charge carriers. Collisions occur constantly between

the mobile charged particles and the surface of the spacecraft, resulting in positive and negative

plasma currents. Because the mass of an electron is several orders of magnitude smaller than that

of protons and ions, while their thermal energies tend to be comparable, electron velocities are

generally much higher than that of positive charge carriers. Therefore, a satellite without solar

irradiation absorbs more electrons and acquires a net negative charge.19,46 In space, Langmuir

probes or electrostatic analyzers can be used to provide measurements of spacecraft potential.45

The ATS-5 and ATS-6 satellite missions, launched to GEO in 1969 and 1974, measured ambient

potential levels up to -10 kV in solar eclipse.52 When illuminated by the sun, meanwhile, the

photoelectric effect serves to eject electrons from the spacecraft, and a net positive charge may

result. Secondary electron emission (SEE) in the form of ejected and backscattered electrons create

further electric currents. Most of the currents described above and depicted in Figure 1.3 are

dependent on the satellite potential. As a result, the spacecraft settles to whatever equilibrium

potential balances the incoming and outgoing currents.74

By emitting beams of charged particles to the space environment, spacecraft are capable of

actively controlling their electrostatic potential. The charge carriers must be accelerated by electron

or ion guns with sufficient energy levels to escape the electrostatic influence of the charged craft,

and achievable potentials are limited by the device energy. In 1979, the SCATHA satellite was

launched carrying a 3 kV electron beam and verified the ability to control spacecraft potential up

to +3 kV with respect to the ambient plasma potential.49 A later study shows that with a charge

control device using only Watt levels of power a vehicle in an average GEO plasma environment

can be charged to a potential of 10s of kV within milliseconds.41 Normally, charge control devices
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the charging model developed in Reference 100 is applied.

A photoelectron current occurs whenever the spacecraft are in sunlight. This current is

modeled by67

Iph(φ) = jph,0A⊥e
−φ/Tph φ > 0 (4.1a)

= jph,0A⊥ φ ≤ 0 (4.1b)

where φ is the spacecraft potential, Tph = 2 eV is the temperature of the emitted photoelectrons,

jph,0 = 20 µA/m2 is the photoelectron flux,100 andA⊥ is the cross-sectional area exposed to sunlight.

For the spherical geometries assumed here, A⊥ = πr2. For potentials in excess of about +10 V,

the photoelectron current is effectively zero because all of the emitted electrons are recaptured.

The plasma electron current is modeled by92

Ie(φ) = −Aqnewe
4

eφ/Te φ < 0 (4.2a)

= −Aqnewe
4

(
1 +

φ

Te

)
φ ≥ 0, (4.2b)

where A is the effective surface area exposed to the plasma environment, Te is the plasma electron

temperature, ne is the plasma electron density, q is the elementary charge, and we =
√

8Te/πme

Figure 1.3: Illustration of various current sources that affect spacecraft charging32

are used to mitigate net spacecraft charging, as electrostatic discharge (ESD) events are one of the

leading causes of on-orbit failures and anomalies.65 These discharges occur as a result of differential

charging, when unequal voltage levels reside at different locations of the spacecraft. If the vehicle is

designed to be fully conducting, with all outer surfaces connected to a common ground, successful

operation is possible at high absolute electrostatic potentials.59

A substantial research effort was initiated more than a decade ago to determine the feasibil-

ity of using Coulomb forces from charged spacecraft for relative position control in close proximity

formations.41,42,73 The use of electrostatic actuation for formation flying is attractive compared to

conventional thrusters because non-renewable fuel reserves are not depleted and plume impinge-

ment issues are avoided. The required mass emission for this Coulomb actuation is so low that

this mode of actuation can essentially be considered propellantless. Applications include Separated

Spacecraft Interferometry (SSI), to achieve large field-of-view planetary imagery with unprece-

dented resolution, and small-body relative orbits with cameras or other robotic devices to inspect

external spacecraft integrity. Several studies analyze the relative motion dynamics of a 2 to multi-

craft Coulomb formation.9,30,92 Control is limited to one parameter per spacecraft (the prescribed

voltage level), and the direction of the resulting forces is predetermined by the relative positions
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in the formation. Complex charge control strategies have been developed that compensate for the

nonlinear nature of the electrostatic forces and coupling with differential gravity.50,55,67,68

One limitation of the Coulomb charging technology is the natural electric shielding that

results from the space environment. Any charged object in a plasma attracts particles of opposite

polarity, which form an electric sheath around the object and diminish the electric fields. This

dropoff is characterized by the Debye length, a coefficient dependent on the densities and energies

of the particles present in the plasma.58 These quantities are highly dependent on the local space

weather, but nominal values are around 1 cm for the colder, denser plasmas in LEO and around

200 m in the hotter, sparser GEO environment.21,90 This restricts the use of Coulomb charge

control at reasonable separation distances to higher Earth orbits, where Debye shielding can be

neglected during nominal conditions. Even within a given altitude, plasma parameters can vary

drastically due to concurrent solar activity,94 so operation may have to be adjusted or suspended

during solar storm events. Inter-satellite arcing presents another concern for charged spacecraft

flying in close formation, but the proposed separation distances are many times larger than the

centimeter levels required in GEO to arc between objects at kiloVolts of potential.16

While only cooperative Coulomb charging scenarios have been discussed so far, the realm

of potential missions can be expanded with the ability to remotely charge noncooperative space

objects. If the charged particle beams considered above can be focused and directed from a servic-

ing craft towards an uncontrolled satellite, the electric potential on both craft can be controlled to

establish an attractive electrodynamic tether between the vehicles as shown in Figure 1.4.72 Refer-

ence 29 discusses the thrust profiles required to re-orbit a GEO debris object to a graveyard orbit

via such an electrostatic tractor, while Reference 74 assesses the charge transfer requirements. Vari-

ous other applications of spacecraft charging have been considered. Flexible conducting membranes

can acquire significant rigidity when they are charged to high voltage levels. These Electrostatically

Inflated Membrane Structures (EIMS) may be used to build large spacecraft assemblies such as

solar sails in orbit.88 Moreover, unique charged modules may be tethered together to create large

rigid networks of sensor systems.79
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Figure 1.4: Illustration of the electrostatic tugging concept32

1.3 Electrostatic De-spin Concept

Most previous studies regarding Coulomb charge control have modeled the electrostatics of

satellites with point charges or spherical conductors. In this case, all forces are assumed to be on-axis

with the center of the spacecraft and result only in translational motion. In reality, most spacecraft

contain decidedly nonspherical features, such as solar panels and communication dishes. When two

such charged vehicles fly in close proximity to each other, the asymmetric charge distributions that

reside on these geometries will induce electrostatic torques on the bodies. If these moments are

generated intentionally, they can be harnessed to arrest the rotation of uncontrolled

space objects and address the need for remote de-spin operations prior to rendezvous.

Figure 1.5 shows an uncontrolled spinning satellite flying in close proximity to a servicing

spacecraft equipped with charge control devices. By directing a focused electron beam toward the

spinning satellite, opposing electrostatic polarities are generated. The two bodies are mutually

attracted by the Coulomb force between them, so the servicing spacecraft must thrust away to

maintain a constant separation distance. Because the large solar panel on the spinning satellite is

closer and experiences a slightly larger force than the rest of the body, a net torque that opposes

the rotation is generated. As the uncontrolled satellite continues rotating, the servicing spacecraft
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emits positive ions into deep space to obtain a negative net charge. The bodies then repel each

other, while the proximity of the large antenna results in further arresting torques.
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Figure 1.5: Depiction of the remote Coulomb de-spin concept

Successful implementation of this concept requires extensive research to address challenges

that span across various disciplines including astrodynamics, electrodynamics, numerical techniques

and control theory. First, a computationally efficient model of the electrostatic interaction between

generic geometries is necessary. This can be used to create 6 Degree of Freedom (6DOF) simulations

of the spacecrafts’ relative motion and attitudes. Algorithms must be developed for the remote

attitude control problem once the extent of controllability is established. This includes analysis

of the active charge transfer process, in order to predict the hardware and power requirements.
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To increase the Technology Readiness Level (TRL)48 of this technology in anticipation of mission

implementation, laboratory experiments are necessary to verify theoretical predictions. Creating

a free motion terrestrial testbed with high voltage capabilities presents considerable challenges.

In addressing the tasks posed above, this body of research advances a technology

that stands to address the serious active debris removal challenge existent in the

astrodynamics field.

Development of the Coulomb charge control concept has progressed rapidly over the past

decade, but financial support for flight testing of these concepts remains elusive. For now, it is

imperative to mature this technology further in theory and by terrestrial experimentation, thus

demonstrating its feasibility to the rest of the astrodynamics community. The research conducted

within this dissertation evolves the remote electrostatic spacecraft attitude control concept from its

inception to such a point, but further studies are required. Within this investigation, the system

dynamics are generally constrained to one dimension in order to focus on the fundamental aspects of

Coulomb attitude control. This is a reasonable approximation considering that space objects tend

to converge to a minimum energy spin state about the axes of maximum inertia. If 3D spacecraft

rotation is considered, the complexity of control algorithms increases drastically. Repositioning of

the servicing craft allows for increased controllability, but it might be impossible to arrest rotation

about symmetric axes.6

Further, development of an adequate sensor suit is required for the servicing craft to acquire

the necessary information about the spinning debris object. Unless launch data is known a priori

about the target satellite, its exact geometry and inertia must be determined by estimation. During

de-spin operations, knowledge of the debris attitude is crucial in order to apply the correct polarity

charge control. This may be acquired using structured light, visual flow methods, or flash LIDAR

sensors. In order to maintain knowledge of the relative motion for collision avoidance and accurate

prediction of the electrostatic force magnitudes, optical and laser ranging techniques can be used.

The servicer’s inertial thrust levels need to be in the milli-Newton range to balance the equivalent

electrostatic forces. It is important that the inertial thrusting solution does not interfere with the
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electrostatic tractor performance. This could be achieved by using neutral gas thrusters, or select

types of electric propulsion systems such as field-emission electric propulsion (FEEP) thrusters. In

both cases care must be taken to analyze the coupled thruster emission flow subject to the charging

on the debris and servicer.7

While fundamental analysis of the charge transfer requirements is being conducted, this as-

pect of the technology stands to benefit from further investigation. Complete efficiency is generally

assumed from the charge transfer, but little is known about the exact interaction of a charged beam

with various materials that may be encountered on the surface of the debris object. Lastly, real

time knowledge of the debris’ potential level must be obtained for accurate prediction of the elec-

trostatic interaction. Because of the absence of conventional sensors that can achieve this type of

measurement, the information may have to be gathered by estimation approaches. Further knowl-

edge of the charge transfer process can be gleaned from terrestrial experimentation conducted in

vacuum chambers.

Electrostatic detumble presents a very promising solution to the issue of rendezvous with

uncontrolled space objects, but several alternatives do exist. First, active debris removal or servicing

operations might focus only on vehicles that rotate at rates within the deg/s limitations of current

pose algorithms. While certain ground based optical methods for estimating spacecraft attitudes

are emerging,66 it is difficult to determine the rotation rate of a specific derelict GEO satellite.

The momentum transfer of the ion-sheppard method may be used to reduce rotation rates by

focusing the ion beam on the appropriate half of the spinning object.11 Lower actuation levels are

achievable by this approach than the electrostatic method. Another method for touchless detumble

is to use magnetic fields emitted from a chaser vehicle to impose braking eddy current torques on

a foreign object. This approach would require very close proximity operations and is reliant on a

fully conducting foreign object.53,89 Due to the commonality in challenges, many of these alternate

technologies benefit from the theories developed in this research effort and vice versa.
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1.4 Overview of Research

The development of Coulomb charge control technology has progressed rapidly over the past

decade. The electrostatic attitude control idea was conceived more recently, but stands out as a

promising means to remotely de-spin derelict satellites. The scope of this dissertation is to

mature Coulomb attitude control in theory and by terrestrial experimentation, thus

advancing its Technology Readiness Level (TRL) and demonstrating its feasibility to

the astrodynamics community. To this end, three research tasks are identified and carried out

in this thesis.

Research Task 1 (Chapter 2): Develop computationally efficient electrostatic models to predict

the Coulomb interaction between multiple bodies with generic geometries.

• Survey existing electrostatic models, analyzing their accuracy and computational efficiency.

• Develop the mathematical framework for a new Multi-Sphere Method (MSM) and program

necessary algorithms.

• Use a nonlinear fitting scheme to optimize the necessary parameters when populating the

volume of simple shapes.

• Expand the MSM population with increasing numbers of spheres for increased accuracy,

using a robust approach to place spheres uniformly on the geometry surface.

• Validate models by rigorously comparing the accuracy and computation times of the new

methods to a higher order electrostatic solution.

• Modify the MSM framework to include insulating materials and conductors with a known

total charge but unknown distribution.

• Apply the above methodology to more complex geometries and highlight the capabilities

beyond the Coulomb attitude control concept.
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Research Goal 2 (Chapter 3-4): Analyze all theoretical aspects of the 1-D remote electrostatic

de-spin concept, validating expected outcomes with high fidelity simulations.

• Derive the dynamics of a simplified de-spin system, where a servicing craft approaches a

cylindrical debris object to remove rotation in one dimension.

• Develop the nonlinear control algorithms required to remotely de-spin the cylinder, and

analyze their Lyapunov stability.

• Simulate the 6DOF motion of the system to determine the baseline performance and re-

quirements, and compare to results extrapolated from simplified models.

• Determine the effect of scaling various system parameters on system performance to deter-

mine optimal design criteria for future missions.

• Explore various relative position and orientation control schemes to determine whether

they may improve the de-spin performance.

• Consider the possibility of removing rotation rates from small asteroid bodies in support

of the Asteroid Retrieval Mission (ARM).

• Analyze the requirements of the charge transfer devices necessary to achieve the desired

potential levels on both vehicles, and simulate the time dependent buildup of charge on the

craft.

Research Goal 3 (Chapter 5): Verify the remote spacecraft attitude control concept by simpli-

fied terrestrial laboratory experiments.

• Survey previous terrestrial spacecraft motion testbeds and determine the requirements for

an experiment to validate the de-spin theories developed above.

• Design and build the hardware necessary to permit low friction 1-D rotational motion of

objects and verify the presence of torques between non-spherical charged objects.
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• Create a software suite to control the high voltage potential levels on the objects and track

the motion of the cylinder.

• Characterize the disturbances on the rotating cylinder and compare to Coulomb actuation

capabilities.

• Test the performance of various rotation and attitude control algorithms and compare

experimental results to computer simulations of the expected system motion.

In achieving these research tasks, the Coulomb attitude control technology has progressed

from infancy to a TRL Level of 3-4. Directions for future research, in anticipation of eventual

on-orbit validation are outlined in Chapter 6.



Chapter 2

Electrostatic Models

2.1 Classical Electrostatic Models

In order to predict the dynamics of multiple charged bodies in space, knowledge of the

forces and torques due to their electrostatic interaction is necessary. For the moment, consider

all bodies to be composed of rigid conducting material, which is a reasonable assumption for the

structural components of most spacecraft. In a conductor, electrons move around freely, resulting

in a configuration where all charge resides on the body surface such that the electric field within

the conductor is zero. The charge distribution is governed by Poisson’s equation for electrostatics:

∇2φ(x) = −ρ(x)

ε0
(2.1)

where φ represents the electrostatic potential, ρ is the volume charge density, and ε0 = 8.85 ×

10−12 F/m is the permittivity of free space. In the volume between the conducting bodies where

the charge density is null, Poisson’s equation reduces to Laplace’s equation. Solving this for the

electrostatic potential, where the physical geometries and applied voltages form the boundary

conditions, allows one to determine the charge distribution from Poisson’s equation. Since the

electric field E(x) is the gradient of the electrostatic potential, it is possible to determine the force

contribution of every differential charge element by

dF = dqE (2.2)
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via which the mechanics of the system van be fully resolved. With the use of Legendre polynomi-

als and Bessel functions, the second order partial differential Laplace equation can be solved for

certain simple non-spherical geometries.85 Multi-body systems or those with more complex geome-

tries, however, cannot be solved analytically. Appendix A discusses how electric field or charge

distribution sensing could be used to determine the electrostatic forces acting on a spacecraft.

Early analysis of in-orbit satellite formations modeled the charged bodies as point charges

experiencing forces according to Coulomb’s law.9,50,55 Later, spacecraft were represented by con-

ducting spheres,79 and the mutual capacitance relationship was used to determine the charge on

each sphere given its voltage as prescribed by the charge control devices discussed earlier.85 Realisti-

cally, spacecraft components such as solar panels and communication antennae result in geometries

that are far from spherical. An Effective Sphere Method (ESM) was developed to determine what

size sphere optimally approximates the capacitance of a given 3D shape,35 but even in spheres,

induced charging effects result in non-symmetric charge distributions that yield large errors at

small separation distances. Most importantly, these approaches fail to capture the electrostatic

torques and off-axis forces that result from non-symmetric spacecraft bodies flying at small separa-

tion distances. Resolving these higher order interactions is crucial in order to develop the remote

electrostatic de-spin technology.

As with other disciplines governed by partial differential equations, numerical methods are

available in electrostatics to provide a computationally expensive but highly accurate solution of

the system. Finite Element Analysis (FEA) software can be used to compute a linearized approxi-

mation of Eq. (2.1) on numerous finite elements distributed throughout the entire 3D space. Global

boundary conditions are formed from the spacecraft geometries and electrostatic potentials, while

the local boundary conditions of each element are prescribed to match those of its neighboring

elements. Once the linearized fields are solved, charge distributions and the resulting forces are

derived using a discretized form of Eq. (2.2). Even at low accuracies, it takes a desktop computer

on the order of minutes to determine the electrostatic forces and torques present in a single configu-

ration of a two-body system. Clearly, 6DOF charged relative motion simulations are not feasible at
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this computation speed, nor is it possible to gain analytical insight into the dynamics and control

of such scenarios.

Therefore, a niche exists for a novel electrostatic model that is computationally efficient

but retains enough spacial fidelity to resolve off-axis forces and torques. The Multi-Sphere Method

(MSM) attempts to bridge the gap in accuracy and computation time between the simplified models

and FEA approaches discussed above, as depicted qualitatively in Figure 2.1. In this new method,

a generic spacecraft shape is modeled by a collection of conducting spheres. Computation is limited

to inverting an [n × n] matrix (where n is the number of spheres in the system) to determine the

charge on each sphere, and forces and torques are subsequently predicted by summation of the

contribution of each sphere by Coulomb’s law. The electrostatic charge essentially distributes itself

among the spheres as determined by their geometry, much like it does with infinite freedom in a

generic conducting geometry. As such, the model is robust for various orientations and separation

distances between objects. Multiple population densities are possible, and increasing the number

of spheres results in greater accuracy at the cost of increased computation time.

MSM Surface
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MSM Volume
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Effective Sphere

Point Charge

Finite Element
Analysis

Computation Time
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Figure 2.1: Comparison of various electrostatic models
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2.2 Multi-Sphere Method

The Multi-Sphere Method, a novel electrostatic model developed during this research effort,

uses a collection of conducting spheres to model a rigid 3D shape. Figure 2.2 depicts a representative

satellite A, modeled by n spheres. Optimal selection of the sizes and locations of the sphere is

discussed in the following section. The goal here is to determine the electrostatic interaction of the

satellite with another charged object B, which is modeled for simplicity by a single sphere. The

finite spheres in satellite A remain fixed with respect to some selected origin O, constrained to

match the translation and rotation dynamics of the actual body.

φA

φB

O

d

rij

ri

Ri

φA

φB

d

Figure 2.2: Conceptual depiction of the Multi-Sphere Method

As discussed in the Introduction, charge control devices may be used to prescribe a specific

electrostatic potential on a given satellite. Here it is assumed that both objects have been brought

to some voltage levels φA and φB. Meanwhile, the Coulomb forces between the spheres depend

on the charge that each holds, which can be deduced from their relative sizes and positions. The

voltage φi on a given sphere is related to the charge qi on that sphere and the charges on its

neighboring spheres. This relation is governed by Eq. (2.3),85 where Ri represents the radius of

the sphere in question and ri,j = rj − ri is the center-to-center distance to each neighbor. The
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constant kc = 8.99× 109 Nm2/C2 is Coulomb’s constant.

φi = kc
qi
Ri

+
m∑

j=1,j 6=i
kc
qj
ri,j

(2.3)

This relationship is most valid when ri,j � Ri. When the spheres are large and closely spaced, the

charge on both spheres is attracted or repelled by that of the neighboring sphere, resulting in a

nonuniform distribution on the surface. This induced charge effect causes the effective separation

distance to be altered, which is not captured by Eq. 2.3. As more spheres are introduced and their

size decreases relative to the system size, results become more accurate.

The linear relations in Eq. (2.3) can be combined for each of the m = n + 1 spheres in the

system in Figure 2.2, resulting in the matrix equation in Eq. (2.4). Here φ = [φA, φA, ..., φA, φB]T

and q = [q1, q2, ..., qn, qB]T represent matrix collections of the voltages and charges in the entire

system.

φ = kc[CM ]−1q (2.4)

The inverse of the Position Dependent Capacitance (PDC) matrix [CM ]−1 is expanded as follows,

where ri,B = d− ri:

[CM ]−1 =




1/R1 1/r1,2 · · · 1/r1,n 1/r1,B

1/r2,1 1/R2
. . .

...
...

...
. . .

. . .
...

...

1/rn,1 · · · · · · 1/Rn 1/rn,B

1/rB,1 · · · · · · 1/rB,n 1/RB




(2.5)

Note that the model for body B could contain multiple spheres or extra bodies could be present in

the system, in which case the extra spheres are appended to the above matrix relation. Moreover,

if there is a voltage differential present on any of the modeled spacecraft, the corresponding spheres

can be held at different voltages.

The next step is to solve for the array of charges q from Eq. (2.4) by inverting this n + 1

size symmetric matrix, a computation that is straightforward but becomes increasingly expensive

when more spheres are used in the model. Coulomb’s law can then be implemented to calculate
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the linear force between each charged sphere. Since the location of the spheres within the modeled

body are held fixed with respect to each other, their equal and opposite contributions cancel. The

total force F and torque L about the origin O on body A due to the object B is given by the

following summations:

FA =− kcqB
n∑

i=1

qi
ri,B3

ri,B (2.6)

LA =− kcqB
n∑

i=1

qi
ri,B3

ri × ri,B (2.7)

While any origin O can be chosen for body A, the force and torque in Eqs. (2.6) and (2.7) are now

defined from this reference origin.

If the MSM of object B contains multiple spheres or there are other bodies present, there is

an extra summation over all spheres that are external to body A, as follows:

FA =− kc
m∑

j=1,j 6⊂A

n∑

i=1

qiqj
ri,j3

ri,j (2.8)

LA =− kc
m∑

j=1,j 6⊂A

n∑

i=1

qiqj
ri,j3

ri,j × ri,B (2.9)

The MSM algorithm described above can be executed in most any computing language. The

MATLAB software suite from Mathworks, Inc. c© is used predominantly for this research effort due

to its proficiency in matrix manipulation. To manage the translation and rotation of the bodies,

a rigid kinematics toolbox with attitude transformation subroutines was utilized.71 The code is

given in Appendix B, with the constant charge modification capabilities explained in Section 2.8

included.

2.3 MSM Volume Population

Given the mathematical framework of the Multi-Sphere Method, the challenge of choosing

an appropriate set of spheres for a given spacecraft geometry remains. When considering simple

shapes, the logical approach is to populate the volume of the geometry with a relatively small

number of spheres. For every sphere used in the model, 4 parameters must to be determined: 3
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spatial coordinates along with the sphere radius. When the symmetry properties of the modeled

geometry are matched by the MSM spheres, the parameter space can be greatly reduced. The

goal then is to find an optimal solution for these parameters such that the MSM output matches

the results of some truth model such as the high accuracy FEA solvers discussed previously. Out

of the wide range of commercially available electrostatic modeling software, Ansoft Maxwell 3D c©

is chosen for verification of the MSM due to its ability to resolve various field parameters (such

as surface charge distribution, force and torque), parameter sweep capabilities, computationally

efficient mesh refinement, and relative ease of use.

Throughout this body of work, a 3 m length by 1 m diameter cylinder is extensively used

as the space object of interest. This simple yet distinctly non-spherical geometry is very effective

in highlighting the dynamics and control challenges of 1D Coulomb attitude control. Moreover,

numerous space debris objects with cylindrical shapes have been identified, such as the once-

popular GEO dual-spinner satellites and various upper stage rocket engines like the Centaur. The

cylinder is modeled as a perfect conductor in Maxwell 3D as shown in Figure 2.3(a). Since the

goal is to accurately predict the Coulomb forces and torques on a body with the MSM, a charged

external sphere is introduced in the system. The forces and torques that result when this sphere is

positioned at various locations around the cylinder, as in Figure 2.3(b), constitutes the truth data

for the regression analysis to optimize the sphere parameters. A voltage excitation of φ = +30 kV

is prescribed on both objects in the simulation, while a sufficiently far removed external surface is

held at zero voltage to complete the boundary conditions.

Since execution of the MSM algorithm involves inversion of the capacitance matrix followed

by a complex summation operation, it is not possible to perform a linear regression to determine the

optimal solution of the sphere parameters. Instead, a Gaussian least squares differential correction

method is used,36 also implementing a finite difference method to determine the partial derivatives

of the model output function with respect to the parameters. The input to the regression is the

external sphere position, the outputs are the force and torque values on the modeled body for that

external sphere position, and the parameters are the sphere positions and sizes. Bisquare weights
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(a) Maxwell 3D model
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Figure 2.3: Maxwell 3D model and parameter sweep for data export

are used, which seek to find a curve that fits the bulk of the data using the usual least-squares

approach, while minimizing the effect of outliers.23,34 Moreover, the relative weight of each data

point can be prescribed which is useful if fitting to the correct forces is more important than

obtaining accurate torques, for example.

The nonlinear regression described above is executed to determine the optimal parameters

of a three-sphere model for the aforementioned 3 m x 1 m cylinder. Due to symmetry arguments,

the parameter space is reduced from 12 to just 3 values. A manual search is used to determine an

appropriate set of initial parameters. The parameters of the resulting MSM spheres are listed in

Table 2.1, while the model is shown superimposed on the actual cylinder geometry in Figure 2.4.

Although the spheres intersect each other in physical space, this does not present a problem in the

framework of the MSM. Numerical verification of the solution is presented together with that of

another model in Section 2.5.2. In Appendix C, the MSM results are compared to the FEA solution

as certain parameters such as shape sizes and applied voltages are varied. This ensures that the

model is robust to such variations and can be implemented in a range of simulation scenarios.
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Table 2.1: Parameters of three-sphere MSM for cylinder geometry

Sphere 1 Sphere 2 Sphere 3

X Coordinate (m) 0 0 0
Y Coordinate (m) -1.1454 0 1.1454
Z Coordinate (m) 0 0 0

Radius (m) 0.5959 0.6534 0.5959
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Figure 2.4: Three-sphere MSM parameters for cylinder geometry

2.4 MSM Surface Population

While the Volume population method for the MSM (VMSM) works well to predict the elec-

trostatic interactions of the cylinder shape, capturing the 3D and induced charge effects of more

intricate geometries at small separation distances requires a model with more than three spheres.

Increasing the number of spheres leads to a higher fidelity prediction of the electrostatic interactions

because there is more freedom for redistribution of the charge between the various spheres in the

model, much like there is on the surface of an actual conducting object. In this way, induced charge

effects can be captured in any dimension where multiple spheres are present.

The MSM algorithm for calculating forces and torques can handle models with large numbers
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of spheres, but the nonlinear fitting scheme used to optimize the sphere positions and sizes is not

robust in this domain. As with any nonlinear fitting algorithm, when the parameter set increases,

successful convergence is dependent on the chosen initial conditions and global optimization is not

guaranteed. Since the underlying assumption that the modeled body is fully conducting remains,

it is known that all the contained charge will reside on its surface. Therefore, the approach is taken

to populate only the surface of a given shape with spheres.

In order to minimize the parameters that need to be selected when creating the MSM, it is

desirable to pick a set of spheres that are uniformly distributed along the surface of the geometry.

For complex shapes this is not a trivial task, but several CAD programs contain algorithms to

generate uniform point clouds from solid models. For simple shapes like spheres and cylinders,

specific algorithms are created to uniformly populate the surface. By this approach, the Surface

populated MSM (SMSM) method is significantly faster and more robust to set up than the VMSM.

Since execution of the MSM requires inversion of an [n×n] matrix and an n2 summation operation,

increasing the number of spheres increases the computation time. However, the resulting solutions

are much more accurate, and run-time costs are still significantly lower than for FEA calculations.

With the spheres in the MSM positioned in a uniform manner on the surface of the modeled

geometry, the one remaining parameter to choose is the spheres’ radiusR, which is assumed constant

throughout the SMSM model. Only one scalar invariant quantity is necessary to determine an

optimal radius, which varies with the spacing of the spheres on the surface. The self-capacitance of

an isolated conductor is dependent only on its geometry, and is therefore a good candidate quantity

for determining the optimal sphere radius R. For complex shapes the capacitance can be found

numerically by a higher order electrostatic modeling program such as Maxwell 3D. Meanwhile, the

capacitance of the MSM body can be computed by summation of the charge qi on each sphere in

the model for a given voltage φ:

CMSM =
Q

φ
=

n∑
i=1

qi

φ
(2.10)

An optimizing function based on a golden section search and parabolic interpolation14,25 is used to
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choose a radius R that minimizes

f(R) = CMSM − Cnum (2.11)

The methodology for determining the sphere parameters for a generic spacecraft shape is

summarized in Figure 2.5. The red boxes are processes that must be executed when analytic

solutions are not present for the uniform sphere distribution and capacitance, as is most often the

case. The two components of a full MSM are the location ri and radius Ri of each sphere. For

a generic body, a solid modeling program will be necessary to determine a uniform point cloud

model on the surface. For most shapes, the capacitance is to be found by an electrostatic modeling

program such as Maxwell 3D. The PDC matrix is then used to calculate the capacitance for the

system of spheres to determine an optimal uniform radius R that matches the capacitance from

the numerical solution. At this point, the full model can be used in conjunction with other MSM

objects to calculate electrostatic interactions.

Full MSM
defined
(ri,R)

Find uniform
sphere

locations ri

Solid
modeling
software

Fit optimal
radius R to

match C

Determine
capacitance

C

Electrostatic
modeling
software

Choose
sphere
spacing

Figure 2.5: Methodology for parameter selection of surface populated MSM

2.5 MSM Numerical Verification

2.5.1 Two-Sphere System

To verify the accuracy of the Multi-Sphere Method, its output must be compared to higher

fidelity solutions. First, a simple system with two charged conducting spheres is considered, because
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several analytic solutions exist for comparison. The two spheres are chosen to have a radius RS =

0.5 m while the separation distance d is varied, and equal as well as opposite sphere voltages

φ = ±30 kV are considered. The Position Dependent Capacitance (PDC) model, as in Eq. 2.3,

captures the relationship between the prescribed voltage and the total charge on each sphere, but

not the induced charge effects. The two approaches in Figure 2.6 attempt to offset this anomaly

by ensuring that the spheres form equipotential surfaces. They are valid only for a system where

both conducting spheres are of equal radius and are held at equal magnitude voltages, as is the

case here.

The first order induced charge model, shown in Figure 2.6(a), attempts to capture induced

effects by a one dimensional change in separation distances. The separation d between the charges

qA and qB that are computed using the PDC matrix, is adjusted by an extra distance x. This

distance is chosen such that φL and φR are equal, resulting in a cubic equation in x.81 The figure

shows an increased separation as for the repulsion case; attraction would result in a decreased

separation distance.

In Soules’ Method of Images (MOI), illustrated in Figure 2.6(b), successively smaller image

charges qi are placed at distances xi along the line of centers to approximate the induced charged

distribution:86

qi =± rqn−1

d− xn−1
(2.12a)

xi =
RS

2

d− xn−1
(2.12b)

Here n > 1, q1 is determined for a given voltage using the PDC model, and x1 = 0. In Equa-

tion (2.12b), the successive charges switch polarity (−) for the repulsion case and maintain the

same polarity (+) for attraction.84 The algorithm is implemented using 19 spheres as in Refer-

ence 81.

While the two induced charge models discussed above provide a vast improvement over the

PDC model in force prediction at small separation distances, Maxwell3D is found to produce the

most accurate solution when the simulation is tuned properly. Therefore the Maxwell3D solution is
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RS RS

(a) First order induced charge model (repulsion)

RS RS

(b) Electrostatic Method of Images

Figure 2.6: Two analytic models for the two sphere system that capture induced effects

used as the truth model for verification of the surface populated Multi-Sphere Method. The mesh

and charge distribution is visible in Figure 2.8(a).

To develop a MSM for a spherical geometry by the process in Figure 2.5, it is necessary to

uniformly populate the surface of a sphere with equidistant points, which is a well documented

computer science problem.5 A Golden Section Spiral is used to divide the sphere into parallel

bands of equal width, and points are placed along the spiral at successive longitudes separated by

the golden angle:

ψ = π(3−
√

5) (2.13)

The figure below shows the resulting sphere population for n = 4, 10 and 30 spheres.

n = 30n = 10n = 4

Figure 2.7: Various uniform point distributions on the surface of a sphere

Next, the optimal R is determined by minimizing the relation in Eq. 2.11. For a sphere with

radius RS , the self-capacitance is analytically known to be Csphere = RS/kc. For the two sphere
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densities used, the following radii are determined:

R (10 spheres) = 0.1460 m (2.14)

R (30 spheres) = 0.0835 m (2.15)

As the number of spheres in the model increases, the total surface area on the optimized MSM

spheres is shown in Appendix D to converge to a single value, giving further credence to the

capacitance fit.

Figure 2.8 shows the charge density distribution in both Maxwell3D and on a 30 sphere

surface populated MSM. The charge densities are normalized to the total surface area. This result

qualitatively highlights the ability of the SMSM to capture induced charge effects when enough

spheres are present on the object surface.

(a) Maxwell3D
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Figure 2.8: Charge density distribution on two spheres (φ1 = φ2 = +30 kV)

Figure 2.9 gives the percent error for various models at a range of separation distances, for

the repulsive and attractive cases (2.9(a) & 2.9(b), respectively). Percent error is defined as

Err =
Fmodel − FMaxwell

FMaxwell
(2.16)

The PDC model produces almost 50% error at very small separation distances, but matches

the full solution well at further distances. While the Maxwell 3D solution is used as the truth model,

the slight disagreement with the Method of Images solution is surprising, since this approach should
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closely represent the full series solution according to Reference 84. As more spheres are added to

the MSM however, the errors at close distances converge to zero, thus giving further credence to

the solution given by Maxwell 3D. The first order induced charge method matches Maxwell 3D for

the repulsion case but is equivalent to the Method of Images for the attractive case, which is likely

a coincidence.
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Figure 2.9: Error in force between two spheres for various electrostatic models

The SMSM with 30 spheres results in less than a percent error for repulsion right up to where

the spheres touch at d = 2RS . For attraction, induced effects are known to be even more dominant,

and more spheres are necessary to completely capture these effects. The PDC model shows nearly

twice as much error with attraction as for the repulsion case. The 10 sphere SMSM results in up to

40% error as the spheres nearly touch, but this drops off quickly to less than 2% when d = 3.5RS .

All in all, the surface populated MSM is clearly shown to model the electrostatic interactions of

the spheres to a very high degree of accuracy. It provides a more accurate solution than other

induced charge effect models, while increasing in accuracy as more spheres are added. Moreover,

this method is expandable to generic spacecraft shapes where the others are not. The effect of the

radii of the spheres in the SMSM model on the resulting forces is investigated in Appendix D.
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2.5.2 Cylinder Sphere System

We return now to the system with a 3 m length by 1 m diameter cylinder and a 1 m diameter

sphere that was used to determine optimal sphere parameters for the VMSM. The Maxwell 3D

force and torque data over the range of sphere locations in Figure 2.3(b) is extensively compared

to the output of both volume and surface populated MSM configurations. For the SMSM, the

methodology in Figure 2.5 is again implemented to create a SMSM model for the cylinder. Since

this shape is still fairly simple, manual algorithms are used to populate the surface. For the end

discs, a gold section spiral is utilized much like for populating the spheres in Figure 2.7, while on

the circumference of the body, hexagonal packing is implemented. Maxwell 3D is used to determine

that the self capacitance of the cylinder in space is

Ccylinder = 1.0616× 10−10 C

V
(2.17)

This is used to fit the optimal sphere radius, resulting in a cylinder model with n = 105 spheres

(R = 0.0731 m) and a sphere model with n = 30 spheres as above (R = 0.0835 m). In Figure 2.10,

where both objects are held at φ = +30kV , the induced charge effects are clearly visible from the

charge distribution throughout the shapes.
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Figure 2.10: Charge density distribution on SMSM of cylinder and sphere (φ1 = φ2 = +30 kV)
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Figure 2.11 shows the accuracy of the force and torque (left and right), calculated by the

VMSM model with three spheres and the surface populated model (105 spheres in the cylinder

and 30 spheres in the sphere), compared to the truth data from Maxwell 3D. Figures 2.11(a) and

2.11(b) are 1 to 1 plots between the MSM models and the Maxwell 3D data, where the black line

represents perfect matching between the two models. The three sphere VMSM over-predicts the

larger forces that correspond to small separation distances. The drawback of this visualization is

that it isn’t possible to see where in relation to the cylinder the sphere is located for a given data

point. Figures 2.11(c) - 2.11(f) rectify this shortcoming, as they show the absolute force and torque

errors compared to Maxwell 3D, for the three sphere and surface populated MSM, respectively.

A representative size cylinder and sphere are included for reference, while the color legend is in

logarithmic scale.

It is clear from the figures that the SMSM predicts the forces much better at small separation

distances across the range of angles, but by about 6 m separation (12 craft radii), the difference

between the two models is fairly negligible. For the case of torques, the three sphere model actually

does a slightly better job at separation distances larger than 4 m (8 craft radii). This is encouraging

for executing lengthy 6 Degree of Freedom (6DOF) simulations, where the SMSM model might still

be time prohibitive. Most Coulomb charge control applications that don’t involve docking occur

at separation distances beyond this range.

It is important to weigh the accuracy with computation and setup times of the different

models, as shown in Table 2.2. The first column gives the time for each model to compute a force

and torque value at each of the 82 relative positions. While this computation takes Maxwell 3D

about 1 hour and 14 minutes at fairly moderate accuracy settings, the MSM with three spheres

completes the task in a fraction of a second. Meanwhile, it takes the surface populated model (with

135 spheres in the system) about 16 seconds. The next column shows the numerical calculation

time necessary for the setup of the two MSM models. For the volume populated (3-sphere) MSM,

this requires the complete set of data calculated earlier by Maxwell 3D, while the surface populated

MSM only requires a single numerical computation of the capacitance of the body. The ’Fit’
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Figure 2.11: Force and torque comparison between MSM models and Maxwell3D
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column represents the complex nonlinear fit for the 3-sphere VMSM, and determination of the

sphere positions as well as a fit to match R to capacitance for the surface populated model. As is

clear, computation happens about an order of magnitude quicker for the VMSM, but setup is two

orders of magnitude quicker for the SMSM model. Depending on the requirements on accuracy and

computation time, both approaches are viable for use in the calculation of spacecraft electrostatic

interactions. Both exceed Maxwell 3D or other FEA software in the ability to predict forces and

torques in real time.

Table 2.2: Setup and computation time for calculation of force and torques between sphere and
cylinder at 82 relative locations

[Time in sec] Comp. Setup

Maxwell3D 4434 Num. Fit Total

3-sph VMSM 0.11 4434 + 9.1 = 4443.1
Surface MSM 15.6 54.1 + 4.1 = 58.2

2.6 Boundary Element Method

Comparison to higher order numerical solutions in this work has been focused predominantly

on finite element methods that solves Laplace’s equation ∇2φ(x) = 0 on the free space domain

outside the conducting bodies. While this numerical approach is capable of providing very high

accuracy solution, the Boundary Element Method (BEM)13,19,27,28 is another method with con-

siderable similarities in its mathematical formulation to the SMSM. The BEM differs from FEA

in that unknowns are solved on the boundary of the domain, i.e. on the surface of conducting

elements, not unlike the SMSM.

Applying Green’s function to Laplace’s equation on some surface S with normal n results

in:13

φ(x) =

∫

S

[
G(x,x′)

∂φ

∂n
(x′)− ∂G

∂n
(x,x′)φ(x′)

]
dS(x′) (2.18)
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where the Green’s function G for the Laplacian in 3D is

G(x,x′) =
1

4π|x′ − x| (2.19)

At this point the boundary of the domain is discretized using a set of basis functions to obtain

a solution of the charge distribution σ (which is manifested in Eq. 2.18 in the ∂φ
∂n(x′) term). If

Neumann boundary conditions are prescribed on the entire boundary, the second term in the

integral in Eq. 2.18 disappears and this relation can be discretized to the following matrix form

Aλ = b (2.20)

where λ contains charge distribution (σ) values on the elements and b is a column with the resulting

surface voltage φ on a central point at each element. The matrix A is populated with analytic

solutions to the following integral that results from Eq. 2.18 for every combination of two surface

elements:

φ(x) =

∫

S

σ(x′)
4πε|x− x′|dS(x′) (2.21)

The formulation is similar to the capacitance matrix of the MSM, but if complex basis functions

are used in the BEM, populating A becomes tedious and time consuming, in which case the SMSM

provides a much simpler approach.

In its simplest form, the BEM can be implemented using the following simplifications:27

(1) Within each element, assume that the charge density has a constant value so that σ is

piecewise constant over the surface.

(2) Use a centroidal approximation with the charge in the adjacent element concentrated at a

center point in the patch to solve Eq. 2.21.

In this case, the off-axis terms in the matrix A simplify to kc/ri,j as in the MSM capacitance

matrix, while equating Eq. 2.21 for the self-terms (diagonal elements of the matrix) results in a

geometry-dependent constant. This constant is analogous to the sphere size chosen in the SMSM.
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Considering this simplified form of the BEM, the two methods require the same O(N 2 ) in-

version operation to solve for a set of charges on the boundary of the system, but some fundamental

differences remain. First, setup in the SMSM is simpler because the self-integral for various ele-

ment geometries (which can be computationally intensive for curved elements) is omitted; instead,

a constant sphere size is determined from the single free space capacitance value used from a truth

model. Further, if so desired, selection of sphere placement and size in the SMSM can be tuned to

capture certain electrostatic characteristics, where the BEM is limited to a set of surface elements

that span the entire boundary but do not overlap. This is an especially important distinction when

considering sharp edge and corner features. In this case, spheres in the SMSM can be placed exactly

along or on such features where the charge is expected to be highest, thus capturing the charge

concentration at the right location. The BEM meanwhile is limited to elements that border the

sharp feature rather than being located on it, even if the mesh is discretized to be denser at such

locations. This benefit of the SMSM is especially evident when a relatively small number of sphere

/ elements is used to capture the charge distribution on a given body. The surface populated BEM,

for example, could not capture off-axis forces and torques on a cylinder using only three elements,

as is possible with the VMSM.

2.7 Satellite Model

To demonstrate the ability of the MSM to model spacecraft geometries more complex than

the cylinder and sphere configurations used for verification, a simple satellite with a cylindrical

chassis and two rectangular solar panels is created. The procedure outlined in Figure 2.5 is used

to create separate models for the chassis and the solar panels. Capacitances are determined using

Maxwell 3D, and the sphere spacing is chosen using constant separation algorithms. The resulting

MSM model is shown in Figure 2.12. While a similar spacing is used between spheres, the solar

panel spheres are much larger than that on the spacecraft body. This is because they effectively

capture twice the surface area since the panels are 2D surfaces. Because of the sharp corners and

edges on the satellite geometry, it contains numerous charge concentrations. If extremely sharp
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corners are present at large negative voltages, natural field emission of electrons could occur.95

For the voltages considered in this study, sub millimeter curvatures would be required for such

emission. The electric fields resulting from this satellite model are considerably different than a

simple cylinder of comparable size held at the same voltage. While the cylinder geometry is used

throughout the rest of this dissertation to analyze various aspects of satellite attitude control,

similar arguments can be made for more complex spacecraft geometries like the simple satellite

considered here.
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Figure 2.12: MSM model of a simple satellite

2.8 Constant Charge Modifications

So far, the capability of the Multi-Sphere Method (MSM) has been limited to modeling only

objects of conducting material. While spacecraft considered for electrostatic de-spin operations

should be dominantly conducting, a variety of insulating materials is commonly used for spacecraft

construction. Moreover, augmenting the MSM to model materials of various conductivity extends

its application to several other scenarios. Within conductors, charge carriers move around with
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nearly no resistance so that the charge distribution is always considered to be in equilibrium. For

insulators, the time scales for charges to redistribute are so large that the time dependency can

also be ignored. A look at the first principals of electrodynamics allows for quantification of these

time scales.

Since Coulomb charge is a conserved quantity, the following differential form of the general

continuity equation holds according to the divergence theorem:

∂ρ

∂t
+∇ · j = 0 (2.22)

where ρ is the volume charge density and j represents the charge flux, also known as the electric

current density. The current density is generally assumed to be proportional to the electric field E

by the factor σ, which is the electrical conductivity of the material.

j = σE (2.23)

Combining Eq. 2.22 and 2.23 yields

∂ρ

∂t
= −σ∇ ·E (2.24)

By Gauss’ law, this becomes

∂ρ

∂t
= − σ

ε0
ρ (2.25)

which suggests that a charge accumulation will disperse throughout a medium with an exponential

time constant

τ =
ε0
σ

(2.26)

Most metals have conductivity values ranging from 106 to 108 S/m, which equates to time con-

stants between 10−17 and 10−19 s. Electrically insulating materials such as plastics tend to have

conductivity σ < 10−14 S/m resulting in charge mobility constants τ > 103 s.77 For both these

materials, the charge distribution can be assumed constant for a certain geometry configuration.

For conductors, it is a function of the electric potential and geometry, while charge remains on

insulators regardless of external influences. For materials with conductivity values within these



38

bounds, a time dependency exists for the charge density, which is outside the capability of the

MSM and outside the scope of this research effort. Various semiconductors, glasses, and liquids fall

in this category, which are not found in large quantities on most spacecraft.

2.8.1 Insulators

Assuming the system consists only of conductors and insulators, the Multi-Sphere Method

(MSM) can be modified to include constant charge materials. For spheres within the insulator,

a charge is specified rather than a voltage, which are compiled in the vector qI . Combining the

mutual capacitance relationship in Eq. 2.3 for each of the conducting spheres yields

φC = kc[CC ]−1qC + kc[CC,I ]
−1qI (2.27)

where [CC,I ]
−1 is the mutual capacitance matrix populated with separation distances between the

conducting spheres and insulated spheres, with no self capacitance terms. This relationship can

be solved for qC so that the charge on all spheres in the system is known, at which point Eq. 2.8

and 2.9 can be equated to determine the force and torque on all bodies in the system. If knowledge

of the resulting voltage on the insulating components is desired, it can be determined by:

φI = kc[CI ]
−1qI + kc[CI,C ]−1qC (2.28)

where [CI ]
−1 is populated with sphere sizes and relative distances between the insulator spheres,

and [CI,C ]−1 is the transpose of [CC,I ]
−1.

2.8.2 Floating Charge

Another scenario that requires augmentation to the MSM is the case of an object modeled

by multiple spheres that contains a total floating charge. The first iteration of the experimental

testbed discussed in Chapter 5 presented such a situation. Since no active charging was possible

on the rotating cylinder, its potential was brought to a certain level before the control experiment,

at which point the connection with the power supply was removed. A certain amount of charge is
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then left within the conducting body, but the charge distribution and potential level is determined

by its orientation and the influence from other charged objects in the system.

Assuming the three sphere model discussed above is used to model the cylinder (spheres a-c

in body 2), the charge on all the spheres sums to a total known charge q2 determined by the system

configuration when the charge lead is removed:

q2 = qa + qb + qc (2.29)

Now φ2 is an extra unknown, dependent on φ1 and the relative position and orientation of the two

conductors. However, there is also an extra linear equation in Eq. (2.29). The matrix equation

from Eq. 2.4 and 2.5 is elegantly modified as follows to isolate all the unknowns into a single column

vector:



φ1/kc

0

0

0

q2




=




1/R1 1/r1,a 1/r1,b 1/r1,c 0

1/r1,a 1/Ra 1/ra,b 1/ra,c −1

1/r1,b 1/ra,b 1/Rb 1/rb,c −1

1/r1,c 1/ra,c 1/rb,c 1/Rc −1

0 1 1 1 0







q1

qa

qb

qc

φ2/kc




(2.30)

It is necessary to incorporate the factor kc with the electric potential terms prior to this modification

to ensure that the matrix to be inverted remains well-conditioned. This approach can be extended

for any system where a conductor contains a floating charge rather than being held at a specific

voltage.

2.9 ISS Charged Droplet Experiment

Besides its intended use for modeling remote satellite de-spin dynamics, the MSM can be

applied to a wide range of systems whose the kinematics are influenced by electrostatic interaction.

With the modifications outlined in the previous section, charged insulators can be considered along

with conductors. If the MSM is included within a structural dynamics framework, charged flexible

membranes such as Gossamer structures can even be modeled.88
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Recently, astronaut Don Pettit performed a collection of educational science experiments on

the International Space Station (ISS), by the name Science Off the Sphere. In one interesting

experiment, he creates Coulomb orbital motion with water droplets about a knitting needle, as

can be seen in Figure 2.13. The triboelectric effect is used to charge the teflon knitting needle

to negative voltages, while the water droplets are introduced with a syringe next to a positively

charged nylon needle. The water droplets exhibit some very interesting chaotic motion about the

knitting needle, which can not be readily predicted analytically.

Figure 2.13: Orbital motion of water droplets on the ISS by Coulomb interaction

The MSM, however, is the perfect tool to simulate the Coulomb orbital motion of these

droplets. The knitting needle is modeled by a row of spheres. Since Teflon is an insulator, the

constant charge formulation of the MSM from Section 2.8.1 is used. It is assumed that a constant

charge is deposited along the length of the needle so that the average voltage along the surface is

-10 kV. The water droplet is assumed to have a constant charge equivalent to +1 kV in an isolated

environment. An initial position and velocity is chosen to match those in the Pettit’s video, and

the motion is integrated with an RK-45 integrator in MATLAB, where the electrostatic dynamics

are calculated using the MSM. The resulting motion, shown in Figure 2.14 closely matches those

experienced by the droplets in the video, although further comparison is difficult because only a

single view is available of the physical experiment.
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Figure 2.14: Simulation of Coulomb orbits modeled by the MSM



Chapter 3

Electrostatic De-spin

3.1 System Dynamics

Before considering the full three dimensional Coulomb attitude control problem for a complex

spacecraft body, it is necessary to develop the mathematical framework using a simplified scenario.

Figure 3.1 shows the cylinder-sphere system that will be analyzed in detail throughout this chapter.

Body 2 represents a rotating debris object with cylindrical geometry such as a Centaur upper stage

rocket. Assuming the body of length h and radius r has a uniform density with mass m2, its

transverse moment of inertia is given by:

I2 =
1

12
m2(3r2 + h2) (3.1)

The servicing spacecraft is modeled to be a spherical conductor of mass m1 with a center to center

separation distance d from the debris, whose angular deviation from the parallel configuration is

given by θ. Angular motion of the cylinder is limited to 1-D rotation about its major axis of inertia,

which represents the minimum kinetic energy case that an uncontrolled space object is likely to

acquire.71 Both bodies are free to translate as if the system is located in deep space. It is assumed

that the control craft is capable of enforcing the desired electrostatic potential φ1 and φ2 on the

two bodies. The specifications and power requirements of the charge transfer devices necessary to

achieve those voltages are discussed in Chapter 4.

The free body diagram in Figure 3.1 shows the electrostatic forces and torques that result

when potential levels of opposite polarity are applied to the two craft. Because the electrostatic
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Figure 3.1: Free body diagram for cylinder-sphere system

force is conservative and internal to the system, the two craft experience equal and opposite net

Coulomb forces F1 = −F2. Since the charge distribution on the nearby end of the cylinder causes a

greater differential attractive force than that from the far end, the forces are offset and the cylinder

experiences a control torque L2 which can be utilized to arrest its rotation. The total translational

and rotational momentum in the system due to electrostatic interactions is conserved, but the

vehicles approach each other in free space. A thrusting force on body 1 is necessary to maintain a

constant relative position within the system:

Fthrust = −F1(1 +
m1

m2
) (3.2)

In the end, it is this force that provides the energy necessary to adjust the attitude of the cylinder.

If the appropriate control strategy is implemented, the system will continually move in space, but

the craft are fixed relative to each other and can be assumed stationary for the following control

development. When the system employs equal polarity potential levels, the forces and torques are

reversed and the vehicles are electrostatically repelled.

For a body with inertia matrix [I] and angular velocity vector ω rotating freely in space, the

rotational equations of motion are

[I]ω̇ = −ω × [I]ω +L (3.3)
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With the cylinder constrained to one dimensional motion in the plane of the control craft, the

dynamics reduce to

I2θ̈ = L2 (3.4)

In order to gain insight into the system dynamics and develop robust attitude control algorithms,

further knowledge of the electrostatic torque L2 is desired. The Multi-Sphere Method requires

inverting the Position Dependent Capacitance matrix, followed by a summation of the Coulomb

force due to the charge on each sphere in the model. Even using the simplest three sphere MSM

model developed in Section 2.3, analytic expressions of the torque are incredibly complex. However,

if some simplifying assumptions are made regarding the potential levels, it becomes evident that

dependency on the voltages and cylinder orientation are separable.

Without loss of generality, it is assumed that the voltage applied to the control sphere is

φ1 = φ and the voltage applied to the debris cylinder is φ2 = |φ| ≥ 0. As a result, negative

φ implies opposite polarity, attractive control while positive φ implies equal polarity, repulsive

control. When this condition is satisfied, the expression for the torque L2 can be separated into

dependencies on the control voltage φ and cylinder rotation angle θ:

L2 = γf(φ)g(θ) (3.5)

If the separation of potential φ and orientation θ can not be done, extracting the required control

potential from the charged attitude feedback is significantly complicated. For the cylinder shape,

this separation is justified by restricting the potentials to φ2 = |φ1| and assuming the cylinder is

symmetric.

Fig. 3.2 shows the Coulomb torque L2 exerted on a 3 m by 1 m cylinder for various cylinder

orientations θ and applied potentials φ. The separation distance from the 1 m diameter control

craft is chosen to be d = 3 m to highlight the asymmetry between opposite and equal polarity

configurations due to induced charging effects. This data could be used as a lookup table to

determine the necessary potentials for a desired torque, but for nonlinear stability analysis, a more

analytic formulation is desired.
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Figure 3.2: Coulomb torques for various orientations and potentials

For larger separation distances, where the torque is equal and opposite for positive and

negative φ, the Coulomb torque on the cylinder can be modeled with high accuracy using the

analytic expression

f(φ) = φ|φ| (3.6)

and

g(θ) = sin 2θ (3.7)

From the asymmetry in Fig. 3.2, it is clear that the formulation above does not hold for smaller

separation distances. Due to the proximity of the shapes and the resulting induced charging effect,

the torques produced by the attractive configuration are considerably larger than those imparted

by electrostatic repulsion. To capture this asymmetry, a polarity dependent coefficient γ(sign(φ))

is proposed, where γ remains always positive:

γ(sign(φ)) =





γa for φ < 0

γr for φ > 0

(3.8)

Reference 6 explores alternative formulations of g(θ) to capture the non-symmetric orientation

dependency at small separation distances. A summation of higher order terms of the form sin(2mθ)
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is used, which are normalized with respect to the maximum torque angle. It turns out that this

function is also polarity dependent, and the coefficients must change with attraction or repulsion

much like γ does. Importantly, inclusion of the higher order terms does not affect the sign of

g(θ), which remains positive in the first and third quadrants and negative in the second and fourth

quadrants of θ. Using the polarity dependent coefficient γ and function g as described above, we

obtain

L2 =





γaf(φ)ga(θ) for φ < 0

γrf(φ)gr(θ) for φ > 0

(3.9)

where the f function remains f(φ) = φ|φ| and is readily invertible to obtain the required electro-

static potentials for a desired f .

3.2 Non-linear Control Theory

3.2.1 Equilibrium Configurations

For the following developments, it is assumed that the relations in Eq. 3.6 & 3.7 hold. The

constant γ is positive for a prolate geometry such as the cylinder. The one-dimensional rotational

equation of motion that results is

Iθ̈ − γf(φ)g(θ) = 0 (3.10)

To evaluate the equilibrium orientations and study the associate local stability, let θe,i be the

set of orientation angles such that g(θe,i) = 0. These orientations, as shown in Figure 3.3, occur

every 90◦ at the parallel and perpendicular orientations. Let a small departure angle ∆θ be defined

as

∆θ = θ − θe,i (3.11)

then the linearized rotational equation of motion about an equilibrium orientation θe,i is given by

I∆θ̈ + k∆θ = 0 (3.12)

where the local stiffness k is defined as:

k = −γf(φ)
∂g

∂θ

∣∣∣
θ=θe,i

(3.13)
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Figure 3.3: Illustration of departure angle with respect to equilibrium orientations

The sensitivity of g with respect to θ is

∂g

∂θ
= 2 cos(2θ) (3.14)

To study the local stability of departure motions about equilibrium orientations, the sign

of k is investigated for different scenarios. Consider first the in-line debris orientation shown in

Figure 3.3(a) with θe,i = 0◦ or 180◦. The local stiffness k in this case is

k = −2γf(φ) (3.15)

For a repulsive force setup with φ > 0 and f(φ) = φ|φ| > 0, a negative stiffness k < 0 results,

indicating an unstable equilibrium. This instability can be understood because the near-end of the

cylinder experiences a stronger repulsion force than the far end, and thus the resulting electrostatic

torque will cause a destabilizing effect. If the sphere potential is negative with φ < 0, the attractive

electrostatic force causes a locally stable equilibrium with k > 0.

Next, consider the equilibria shown in Figure 3.3(b) where the cylinder tall axis is orthogonal

to the line-of-sight axis. Here the g sensitivity is

∂g

∂θ

∣∣∣
θ=±90◦

= 2 cos(±180◦) = −2 (3.16)
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Assuming a repulsive force configuration with f(φ) > 0, the local stiffness is

k = 2γf(φ) > 0 (3.17)

Thus, if bodies 1 and 2 are electrostatically pushing on each other, then θe,i = ±90◦ are locally stable

orientations. Finally, assuming the cross-track scenario in Figure 3.3(b) and a pulling configuration

with f(φ) < 0, the local stiffness is

k = 2γf(φ) < 0 (3.18)

indicating that such an orientation is locally unstable.

3.2.2 Rate Control With Zero Nominal Potential

For the following developments, the function f in Eq. 3.5 must be invertible, which is satisfied

by the relation in Eq. 3.6. First, the scenario is investigated where the nominal spacecraft potential

is zero. Thus, when the tumbling motion has been arrested, no electrostatic pulling or tugging

should be present. The inertial thrust to maintain a fixed separation distance will also go to zero

as the tumbling ceases. The control development assumes that the tumbling angle θ and rate θ̇ are

measured and that the potential φ is the control variable.

Let α > 0 be a constant rate feedback gain. The function h is chosen such that

h(x)x > 0 if x 6= 0 (3.19)

forms a positive definite expression. Then, the following tumble rate feedback control f(φ) is

proposed:

f(φ) = −sgn(g(θ))h(αθ̇) (3.20)

Because the function f is invertible, it is possible to determine from Eq. (3.20) the required potential

φ1 = φ and φ2 = |φ| on both bodies. Note that if the approximate electrostatic torque did not

have the separation of potential and relative orientation, as formulated in Eq. (3.5), then the

potential feedback control development becomes significantly more complex. In particular, due

to the coupling between orientation and potential, it may not be possible to extract the control
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potential φ analytically, in which case numerical solvers are required to determine the control. As

is, the potential control development only requires f and g to satisfy some simple conditions to

guarantee stability. In particular, the g(θ) function approximation could be further refined, without

having to develop a new rate feedback control strategy.

The function h is introduced to yield a general feedback control whose performance can be

modified. For example, the simple linear function h(αθ̇) = αθ̇ can be used. However, the resulting

control potentials will grow large if large initial tumble rates θ̇ are considered. If the available

potentials are bounded to be less than φmax, then the following h function will smoothly limit or

saturate the control without impacting the following stability discussion:

h(αθ̇) = f(φmax)
tan−1(αθ̇)

π/2
(3.21)

As the tumble rate θ̇ →∞, tan−1(αθ̇)→ π/2, and

lim
θ̇→∞

h(αθ̇) = f(φmax) (3.22)

Thus, the control effort for large rates θ̇ is smoothly limited with this h function in Eq. (3.21) by

lim
θ̇→∞

f(φ) =





f(φmax) if g(θ) 6= 0

0 if g(θ) = 0

(3.23)

To investigate the stability of the feedback control law in Eq. (3.20), the rotational kinetic

energy is used as a globally positive definite Lyapunov candidate function V (θ̇).71

V (θ̇) =
I

2
θ̇2 (3.24)

The presented control only aims to arrest the spin rate, and does not seek to achieve a particular

relative orientation angle θ. Taking the time derivative of V , and substituting the equations of

motion in Eq. (3.10) leads to

V̇ (θ̇) = L2θ̇ = γf(φ)g(θ)θ̇ (3.25)

Substituting in the control expression in Eq. (3.20) and simplifying leads to

V̇ (θ̇) = −γ|g(θ)|h(αθ̇)θ̇ ≤ 0 (3.26)
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This V̇ expression is globally negative semi-definite as h(αθ̇)θ̇ is a positive definite expression and

γ > 0. Note that V̇ can become zero at the equilibrium orientations θei where g(θe,i) = 0. Thus,

Eq. (3.26) guarantees globally stable closed loop dynamics with regard to tumbling rate.

To study convergence, LaSalle’s invariance principle is employed.40 The Lyapunov rate V̇ is

zero if either the rate θ̇ is zero and the control goal is achieved, or if g(θ) = 0. The latter condition

forces V̇ to zero regardless if θ̇ is zero. Since all but four equilibrium orientations result in g(θ) 6= 0,

it is not possible for the condition g(θ) = 0 to remain true unless θ̇ = 0 as well. Thus, the largest

invariant set where V̇ vanishes is (θ, θ̇) = {θ̇ = 0}. As a result, this potential feedback control

achieves global convergence in driving the rates to zero. The final orientation, however, is arbitrary

with this control.

3.2.3 Rate Control with Nominal Electrostatic Tugging or Pushing

Electrostatic forces have been proposed to reorbit large geosynchronous debris objects to

disposal orbits.29,31,72 Because the large, bus-sized GEO debris can be tumbling at 10s of degrees

per second, not having to mechanically touch the debris is a significant advantage. While the

pulling configuration with a nominal attractive electrostatic force is the preferred configuration,69

pushing configurations are also feasible. The rate-control from the previous section is modified

such that the nominal potential φ is non-zero, allowing for continuous pulling (φ < 0) or pushing

(φ > 0).

To investigate detumbling a rigid body while also electrostatically pulling or pushing the

object, the following Lyapunov candidate function is considered:

V (θ, θ̇) =
I

2
θ̇2 + γβ

∫ θr

0
g(x)dx (3.27)

where β represents a feedforward constant. The integral term of this V expression is locally positive

definite if a reference orientation θ = 0 is chosen such that

∂g(θ)

∂θ

∣∣∣
θ=0

> 0 (3.28)
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This condition has an impact on the final convergence of the rate control. Note that this Lyapunov

function depends on the orientation θ as well as the rate θ̇ because the pushing/pulling condition

impacts the final orientation of the debris body.

Taking the time derivative of Eq. (3.27), and substituting Eqs. (3.5) and (3.10), yields the

following Lyapunov rate expression:

V̇ (θ, θ̇) =
(
γf(φ)g(θ) + γβg(θ)

)
θ̇ (3.29)

Let the new potential control expression be:

f(φ) = −β − sgn(g(θ))h(αθ̇) (3.30)

Given a nominal potential φnom, the feedforward gain β is chosen to be

β = f(φnom) (3.31)

resulting in the appropriate nominal control effort.

Substituting Eq. (3.30) into Eq. (3.29) yields the following Lyapunov rate expression:

V̇ =
(
−γβg(θ)− γsgn(g(θ))h(αθ̇)g(θ) + γβg(θ)

)
θ̇ (3.32)

= −γ|g(θ)|h(αθ̇)θ̇ ≤ 0 (3.33)

Note that the integral term in the Lyapunov expression causes a cancellation with the feedforward

potential term, resulting in a negative semi-definite V̇ expression. The feedforward/feedback control

in Eq. (3.30) is thus at least locally stable. Considering V depends on both θ and θ̇, this implies

that the system is stable when it comes to rest at the equilibrium orientations, as depicted in

Figure 3.4.

Next, the convergence of this feedback/feedforward control is investigated. As before, V̇

vanishes if either θ̇ = 0 or g(θ) = 0. The earlier control resulted in θ̇ → 0 for all cases, but the final

orientation was arbitrary depending on the initial conditions. With the feedforward component

included, the attitude will converge to discrete orientations. The closed loop dynamics using the
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Figure 3.4: Illustration of pulling and pushing configurations.

control in Eq. (3.30) is

Iθ̈ + γβg(θ) + γ|g(θ)|h(αθ̇) = 0 (3.34)

Again, it is not possible for g(θ) = 0 to remain true if θ̇ 6= 0. However, can g(θ) remain non-zero if

θ̇ is zero, i.e. can the cylinder come to rest at one of the non-equilibrium orientations? Setting the

rate to zero in Eq. (3.34) yields

Iθ̈ = −γβg(θ) (3.35)

This indicates that θ̈ cannot remain zero unless both θ̇ = 0 and g(θ) = 0. Thus, the largest

invariant set where V̇ vanishes is θ = θe,i and θ̇ = 0. In contrast to the rate-only feedback, this

feedforward/feedback control has the rate converge to zero, and the orientation converge to a torque

equilibrium orientation. For the torque shape function g(θ) = sin(2θ) two of these equilibria were

unstable, and two were stable. If small perturbations are considered, the second body will not

remain at an unstable equilibrium, but eventually converges to a stable equilibrium.

To study this stability behavior, consider the Lyapunov surface illustration in Figure 3.5

where unit inertia and unit feedforward gain are used with the tugging configuration where β < 0

and g(θ) = sin(2θ). The largest Lyapunov level about the origin is highlighted for convenience.

For initial conditions outside this level set, it is possible for the debris body to stabilize about the
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stable equilibrium θe = 180◦. This illustrates that the control in Eq. (3.30) is indeed only locally

stable. However, if the control objective is to arrest the rate and align the body with either θ = 0◦

or 180◦, then the control is globally asymptotically stabilizing, although it is arbitrary which of the

two orientations the system will converge to.
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Figure 3.5: Illustration of Lyapunov function and level sets for unit inertia I2 and gain β

The contour plot in Figure 3.6(a) illustrates the closed loop trajectories if the control in

Eq. (3.30) is active. Depending on the initial conditions, the trajectories can either converge to

the stable equilibria at 0 or 180 degrees, or approach the ±90 degree unstable equilibria. If it is

important that the tumbling body settle with a particular end (either θ = 0◦ or 180◦), then the

following strategy can be employed. Figure 3.6(b) illustrates the state trajectories if no control is

present, and the debris body continues to tumble at a constant rate. The horizontal flow lines can

be exploited to move the states of the tumbling body into a preferred zone where convergence to a

particular equilibrium orientation is guaranteed. This process is highlighted in red in Figure 3.6(a).

The rate control is first employed until the rates are small enough to guarantee convergence to

an equilibrium. If this is not the desired equilibrium, turning off the potential control will allow

the body to tumble onward. As the state trajectory enters the local area of convergence of the

desire equilibrium orientation, the feedback control is re-engaged to arrest the final rates, and drive

θ → θe.
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Figure 3.6: State Space Flow Illustration In Relation to Lyapunov Level Sets.

Further control developments to achieve a desired rate or attitude are discussed in the Chap-

ter 5, in context of the experimental testbed.

3.3 Baseline Simulation

To verify the performance of the Coulomb attitude control laws developed above, they are

executed within a simulation of the simplified cylinder-sphere system. The representative debris

cylinder with a length of 3 m and diameter of 1 m is used, with a control craft of 1 m diameter.

Assuming an average density of 100 kg/m3, this results in a 235.6 kg debris object with a 1, 038.43

kg-m2 transverse moment of inertia and a 52.4 kg control vehicle. A d = 7 m separation is

considered, which represents a surface to surface separation of 10 craft radii when the cylinder

is oriented parallel and at closest approach. It is assumed that the debris object has an initial

counter-clockwise rotation rate of ω = θ̇ = 2 rpm = 12 deg/s. These parameters are summarized

in Table 3.1.

The de-spin operation is modeled from start to finish using a custom RK-45 integration

scheme with a 0.1 second time step, executed in MATLAB. The three sphere MSM outlined in

Section 2.3 is used to model the electrostatic interaction in the system. The charge distribution for

a single configuration is shown in Figure 3.7. The debris’ attitude is restricted to rotation about

its minor geometrical axis, but both objects have full translational freedom. The thrust control

in Eq. (3.2) is implemented along with a proportional derivative feedback on the desired relative
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Table 3.1: Parameters for baseline cylinder de-spin simulation

Parameter Value Units Description

d 7 m Center-to-center separation

ρ 100 kg/m2 Object densities

m1 52.4 kg Sphere mass

m2 235.6 kg Cylinder mass

I2 191.4 kg·m2 Cylinder transverse moment of inertia

ω0 12 deg/sec Initial cylinder rotation rate

α 5×105 – Gain in h function

φmax 30 kV Max voltage in h function

P 0.3 – Position control proportional gain

D 0.6 – Position control derivative gain
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Figure 3.7: Three sphere MSM for cylinder-sphere system

position, as follows:

Fthrust = m1

(
−F1

m1
+
F2

m2
+ P (ρ− ρdes) +D(ρ̇− ρ̇des)

)
(3.36)

where ρ represents the separation vector from the servicing craft to the debris object, with ρdes = d
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and ρ̇des = 0. The attitude control algorithm in Eq. 3.20 from Section 3.2.2 is applied, with h

defined by Eq. 3.21. The required voltages are determined as follows:

φ1 =





√
−f(φ) if f(φ) < 0

−
√
f(φ) if f(φ) > 0

(3.37)

φ2 = |φ1| (3.38)

Since a very large gain α is chosen, this control essentially reduces to a maximum performance

quadrant dependent polarity switching voltage control.

From Figure 3.8(a) and 3.8(b) it is clear that the cylinder stops spinning after roughly 75

hours or just over 3 days, during which time 4522 full rotations have been completed. A complete de-

spin from 12 deg/s by electrostatic actuation in this time is impressive considering the momentum

of the cylinder and separation distance between the craft. As to be expected with this form of

rate control, the cylinder comes to rest at an arbitrary angle, at which point the voltage control

drops to nil. Figure 3.8(d) shows that the entire system has been displaced roughly 35 km during

the operation, even though no nominal voltage control was implemented. Because of the induced

electrostatic effects and complex capacitance relationship between charge and voltage, there is a

noticeable difference in performance between the pulling and pushing configurations in different

quadrants. Namely, 62.4% of the arresting torque comes from the quadrants in which the debris

object and control craft have opposite polarity (pulling configuration), while only 37.6% of the

effort comes from the equal polarity (pushing) configuration. The resulting difference in forces

accounts for the net system displacement. This displacement could be used to raise the orbit of a

GEO debris satellite and benefit the eventual goal of placing the object into a disposal orbit. If the

system displacement is not desired, the control craft could reposition itself to opposite sides of the

rotating debris in order to achieve a net zero system displacement.
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Figure 3.8: Cylinder tug and de-spin simulation using Coulomb charge control

3.4 System Parameter Optimization

3.4.1 Single Rotation Simulation

The simulation in the previous section serves to prove the feasibility of the remote Coulomb

de-spin concept and validate the voltage control algorithms developed for the servicing craft. So

far the study has only considered a single system configuration. To optimize the design of future

mission implementations, knowledge of the impact of various system parameters on the de-spin
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performance is necessary. First, variations in separation distance as well as size and shape scaling

of both spacecraft are studied to determine what effect they have on the system’s de-spin time,

displacement, and required stationkeeping maneuvers.

Instead of simulating the full mission de-spin operation with varying parameters, which would

quickly become computationally prohibitive, a high fidelity simulation of a single cylinder rotation

is conducted. Since only a single rotation is considered, the higher fidelity surface Multi-Sphere

Model (SMSM) from Section 2.4 is used. Figure 3.9 shows the charge distribution existent in one

orientation, with 50 evenly distributed conducting spheres along the surface of the debris cylinder

and 13 spheres used to model the control craft. The charge control algorithm is simplified so

that φ1 = −30 kV and φ2 = +30 kV when 0◦ < θ < 90◦, while φ1 = φ2 = +30 kV when

90◦ < θ < 180◦, ensuring constantly arresting torques. This mimics the more complicated control

law from Section 3.2.2 very well for large α and considerable rotation rates.

As the cylinder completes its rotation, the electrostatic forces and torques are tracked. The
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average torque L2,ave, which is independent of rotation rate, is used to calculate the de-spin time

∆t =
I2∆ω

L2,ave
(3.39)

Assuming the thrust profile from Eq. 3.2 is implemented to maintain a constant separation distance

between the objects in space, the entire system will accelerate by

asys =
F2

m2
(3.40)

Given the de-spin time, the total system displacement in deep space can be calculated

∆X =
1

2
asys,ave∆t

2 =
1

2

(
F2,ave

m2

)
∆t2 (3.41)

The results for the single rotation simulation can be seen in the bottom line of Table 3.2, as com-

pared to the full temporal and spatial simulation from the previous section. Clearly, the Coulomb

torques and the total de-spin time agree to within a fraction of a percent with the time dependent

simulation. The Coulomb force results agree to within 2.7% while system displacements deviate by

about a kilometer, which likely results from the discrete position feedback control algorithm used

above. An average thrust magnitude of 1.30 mN is required to maintain the relative position in

the system. If an ion thruster with ISP = 3000 s is utilized, this results in only 11.9 g of propellant

expelled over the duration of the de-spin operation.

Table 3.2: Baseline de-spin results

F2,ave [mN] L2,ave [mNm] ∆t [hrs] ∆X [km]

Time Dependent Simulation 0.225 0.150 75.17 34.37

Single Rotation Average 0.219 0.150 74.43 33.37

3.4.2 Separation Distance

It is important to understand the effect of separation distance on de-spin performance to

determine what collision risks are warranted when conducting a remote electrostatic de-spin mission.

Logically, the average force and torque experienced by the debris object decrease when the servicing
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craft is situated farther away. When varying the separation distance in the single rotation simulation

discussed above, it is possible to fit the following functions with high correlation to the averaged

Coulomb force and torque acting on the debris cylinder:

F2,ave ≈ 0.2136 d−3.573, R2 = 0.9974 (3.42)

L2,ave ≈ 0.1076 d−3.407, R2 = 0.9985 (3.43)

Since the time to remove a given rotation rate varies inversely with the average Coulomb torque,

and combining Eqs. (3.39) and (3.41) yields

∆X =
1

2

(
I2

2∆ω2

m2

)(
F2,ave

L2,ave
2

)
(3.44)

both the de-spin time and system displacement increase by a high power with the separation

distance. As such, as close as possible a formation is desirable for the de-spin operations, while

successfully mitigating collision risks.

3.4.3 System Scale

Next, consider what happens when the entire system scales up or down in size, while the

relative object sizes and separation distance stay constant. This exercise proves useful when con-

sidering the downsized terrestrial experiments conducted in Chapter 5, hereby relating the results

to the full scale mission design. While the capacitance of each object increases with increasing

size, resulting in higher charge levels for a given voltage, the increased separation distance reduces

the electrostatic effects. Interestingly, the Coulomb force averaged over one cylinder rotation stays

constant with a varying system size scale, while the average arresting torque increases linearly as

the system size increases. Assuming that the craft maintain a constant density of 100 kg/m3 as

the sizes scale, the cylinder mass and inertia increase accordingly:

m2 ∼ scale2
3 (3.45)

I2 ∼ scale2
5 (3.46)
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Previous work suggests a linear correlation between satellite launch mass and equivalent radius,70

in which case the mass scales linearly while the inertia scales cubicly. From Eq. (3.39) and (3.44),

the de-spin time and system displacement increase drastically as the entire system size increases,

making it harder to de-tumble large debris satellites even if the control craft increases equally in

size.

3.4.4 Servicing Craft Size

A likely mission scenario is one where the goal is to de-spin a given satellite with specific

dimensions. In this case, when designing the mission, the servicing spacecraft must be sized to

optimize de-spin performance. The averaged single rotation simulation is run for various servicing

craft diameters (where the baseline is a 1 m diameter), while the surface to surface separation

distance is held constant at 5 m. Because the MSM spheres used to model the servicing craft

spread further and further apart as the craft grows, a higher fidelity model is used with 138 spheres

on the debris cylinder and 100 spheres on the control craft. As can be seen in Figure 3.10, the

averaged Coulomb force and torque initially grow with increasing servicing craft diameter, because

the capacitance and the charge increase for a given control voltage. At larger diameters, however,

the Coulomb torque drops back off because the charge that is distributed along the nonadjacent

surface of the control craft becomes further and further removed from the debris cylinder. As a

result, the optimal de-spin performance considering this particular cylinder occurs with a control

craft diameter of 7.9 m, with diminishing returns evident at larger sizes. The system displacement

is minimized at a control craft diameter of 2.6 m. Besides this tradeoff, one must consider the added

structural complexity, launch cost, and charging power requirements of flying a large servicing craft.

3.4.5 Debris Aspect Ratio

While not a mission design parameter, it is important to consider what effect the aspect

ratio of the debris object has on performance, so that suitable targets for de-spin operations may

be selected. Figure 3.11 shows how the simulation results depend on a varying cylinder length,
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Figure 3.10: Performance dependency on servicing craft size
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while the diameter is held constant at 1 m. It is assumed that the same minimum surface to

surface separation distance is maintained to mitigate the collision risk. Again, the higher fidelity

MSM is used, with the same sphere spacing as above (the number of spheres used on the cylinder

now depends on cylinder length). Interestingly, the shortest de-spin time occurs with a cylinder of

length 1.6 m, which represents a relatively small aspect ratio. While a longer aspect ratio results

in higher Coulomb torques due to a larger moment arm, this trend is only roughly linear because

the center to center separation distance also increases as the cylinder length grows. Mass increases

linearly with cylinder length, while the moment of inertia increases to higher order. As a result the

de-spin time and system displacement become larger for more slender cylinders.

3.5 Relative Position and Orientation Control Schemes

Besides designing the remote electrostatic de-spin mission with optimal sizing parameters as

deduced from the previous section, the servicing spacecraft has the freedom to control its position

and orientation in space with respect to the rotating debris object. The effects of several novel

control schemes are herein analyzed. Generally, these approaches result in improvements in de-

spin performance, which come at the cost of increased control forces and torques and therefore

greater expenditures of fuel or power. Because this analysis deals with varying relative positions,

the full temporal simulation with translational freedom from Section 3.3 is employed. The results,

as discussed in the following sections, are compared to the baseline simulation and outlined in

Table 3.3.

Table 3.3: De-spin control schemes results

∆t [hrs] ∆X [km] Fthrust,ave [N] Latt,ave [Nm]

Baseline 74.32 34.37 0.001296 N.A.

Variable Separation Distance 65.27 31.29 2.073 N.A.

Circumnavigation 37.56 N.A. 5.402 N.A.

Non-spherical Control Craft 56.88 29.62 0.001185 0.09974
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3.5.1 Variable Separation Distance

In the baseline control scheme, the center to center separation distance between the two craft

is held constant. In order to mitigate the collision risk that poses a threat to mission success,

it is actually the surface to surface separation distance that should be maintained at a minimum

distance. Therefore, a position control scheme is envisioned where the control craft moves back

and forth along the straight line of separation as the cylindrical debris rotates, maintaining a

constant separation from the closest surface. Figure 3.12 shows the resulting desired center to

center separation distance of the objects over one full rotation of the cylinder. As is evident, the

control craft moves slightly further away than the baseline 7 m separation when the edge of the

spinning cylinder is at closest approach.
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Figure 3.12: Object separation for constant surface to surface distance

A proportional-derivative position feedback control is implemented, utilizing the analytic

derivative of the desired separation. This control maintains the relative position of the craft to

within 0.021 m of the desired separation. Table 3.3 shows that the time to de-spin 12 deg/s of

rotation decreases to 65.27 hours, which represents a 12.1% increase in performance. However, the

average required thrusting force increases dramatically to 2.073 N, which falls outside the range

of most existing fuel-efficient propulsion technology, and would require several hundred kilograms

of expended fuel using conventional bi-propellant thrusters. One can conclude that the marginal

gains in performance are not worth such a large cost in fuel requirements.
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3.5.2 Circumnavigation Scheme

As the nonspherical debris object rotates, there are certain configurations for which the

Coulomb control torque diminishes. Namely, when the cylinder is oriented parallel or perpendicular

to the spherical servicer, no electrostatic moment is achievable. This presents the motivation for

the following position control scheme, where the servicing craft circumnavigates the debris object

as it rotates in order to maintain the optimal relative angle to the cylinder for maximum control

torque. The same position control algorithm as before is used with larger gains to maintain a

relative angle of θ = 42.38◦, at which the cylinder experiences the maximum torque. As can be

seen in Figure 3.13, this scheme results in a very minute system displacement because the net

Coulomb forces cancel out as the servicing craft rotates around the debris object. Because the

system constantly experiences the maximum achievable torque, de-spin time is reduced by 49.5%

to a mere 37.56 hours. As in the previous simulation, the thrusting force necessary to maintain this

relative orbit increases several orders of magnitude to 5.402 N. In this scenario, the fuel requirement
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might be reduced if certain natural circumnavigation formation flying orbits are employed, as will

be addressed during future investigations.

3.5.3 Non-spherical Control Craft

Next, a scenario is considered wherein the control craft is no longer modeled as a conducting

sphere. If de-spin gains can be achieved by adjusting the attitude of the servicer, it may be

possible to improve mission performance by use of rechargeable attitude control devices rather than

expending thruster fuel reserves. While a cylindrical control craft was first considered, the desired

attitude profile is much more efficient using the windmill configuration depicted in Figure 3.14.

While the dimensions of the three sphere MSM are used, it is assumed that each of the external

spheres can be charged independently. A constant relative position d = 8 m is maintained between

the spacecraft, which represents the same surface to surface separation as before. Now, however,

the control craft can adjust its relative orientation to the rotating debris cylinder and specify a

voltage φ1,i = ±30 kV on any of the four external craft while the rest of the body is held at 0 kV.

This will require a complex configuration of charge control devices and charge isolation surfaces.

φ2 = +30 kV

θ2

θ1
d

φ1,b = −30 kV

φ1,c = 0

φ1,a = 0

φ1,d = 0

Figure 3.14: Configuration for windmill control craft



67

In order to determine an appropriate control strategy, Figure 3.15 shows the Coulomb torque

experienced by the debris cylinder, dependent on the orientation of both objects. The control craft

angle θ1 varies between −90◦ and +90◦, which corresponds to one of the two closest spheres in

Figure 3.14 being charged. With the potential of the debris cylinder held at φ2 = +30 kV, the

left plot shows the attractive torques resulting from φ1,i = −30 kV while the right plot shows

the lesser torques that result from φ1,i = +30 kV. The superimposed lines show the maximum

achievable counter-clockwise (red) and clockwise (blue) torque that is possible for a given debris

object orientation θ2. From this, one can deduce the desired servicing craft attitude θ1 and which

sphere should be charged. If the cylinder in Figure 3.14 with orientation θ2 ≈ 80◦ is spinning

counter-clockwise, we wish to arrest it with a clockwise torque. Accordingly, an attractive torque

should be applied with θ1 ≈ −45◦; thus an electric potential φ1,b = −30 kV must be applied to

sphere b.
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The results for the first minute of the scenario where the control craft can determine its

relative orientation and which component is charged up are displayed in Figure 3.16. The top plot
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shows what desired angle is determined from the data in Figure 3.15, what angle this corresponds

to for the craft once the appropriate sphere to charge is chosen, and what angle is achieved by the

attitude control algorithm during the simulation. A proportional-derivative control algorithm is

implemented, where the desired rotation rate is assumed to be equivalent to the debris rotation (a

linearization of the curves in Figure 3.15). The middle plot in Figure 3.16 shows which sphere is

given what voltage, and the bottom plot shows the required control moments on the servicing craft.
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In Table 3.3, it is clear that the time to remove a 12 deg/s rotation on the debris object takes only

56.88 hours, a 23.5% improvement in performance. System displacement and required thrusting are

reduced, while only an average of less than one tenth of a Nm control moments are required, easily

achievable using conventional reaction wheels. Moreover, since the required torques are symmetric,

the control moment devices will not require frequent momentum dumping. Therefore, this scenario

represents a considerable performance benefit without a significant fuel cost.

3.6 Asteroid De-spin

NASA has recently considered retrieving a small asteroid 10s of meters in size, and returning

it to the near-Earth environment. In light of this Asteroid Retrieval Mission (ARM), the logical

question is posed whether the technology to electrostatically detumble man made objects in Earth

orbit may be extended to perform a de-spin maneuver on a near Earth asteroid (NEA). The goal is

to robotically capture a suitable asteroid within the decade and transport it to a high lunar orbit

so that a crewed mission may rendezvous with it to collect and retrieve samples. According to

NASA’s Summer 2013 Asteroid Initiative Request for Information (RFI), “NASA is interested in

concepts for systems to capture and de-spin an asteroid with the following characteristics:

(a) Asteroid size: 5 m < mean diameter < 13 m; aspect ratio < 2/1.

(b) Asteroid mass: up to 1,000 metric tons.

(c) Asteroid rotation rate: up to 2 revolutions per minute about any axis or all axes.

(d) Asteroid composition, internal structure, and physical integrity will likely be unknown until

after rendezvous and capture.”

A significant challenge of such a mission is how to capture the tumbling asteroid. A feasibility

study sponsored by the Keck Institute for Space Studies proposes to capture the asteroid using a

high strength ‘bag’ held open by several arms and a ring to constrain the asteroid position and

attitude.15 The spacecraft guidance subsystem would use Radar-Altimeter aided relative position
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estimates to match the surface velocity and spin state of the target during capture. Considering

that these pose algorithms are largely untested, and an asteroid of the dimensions and spin rate

mentioned above exhibits up to 6 MJ of rotational kinetic energy, it would be beneficial to reduce

the rotation of the asteroid as much as possible.

A simulation is created to estimate the time scales required to de-spin an asteroid with

the specifications given in NASA’s RFI regarding asteroid capture. Developing a realistic aster-

oid surface charging model is very challenging. The most optimistic case treats the surface as

fully conducting. Naturally, the asteroid surface is not conducting, and only local charging of the

regolith would be achieved. A balanced charging scheme where local surfaces obtain charge as

described below is implemented. If this optimistic scenario leads to detumble times that are too

long to be practical, it would illustrate that a more realistic charging model would only yield worse

performance.

A surface populated MSM is used to determine the electrostatic interaction between a cylin-

drical asteroid and a nearby spherical control craft. The spacecraft uses a focused electron gun to

induce an electric potential of −30 kV on the adjacent half of the asteroid, while using a separate

charge control device pointed to deep space to maintain a +30 kV potential on its own body. It is

assumed that the composition of the asteroid is such that the affected surface (within the field of

view of the charge transfer device) will acquire the desired potential while there is sufficient insu-

lation within the body that the rest of the asteroid maintains zero potential. The current balance

for the asteroid assures that an asteroid MSM sphere not targeted by the electron gun balances to

the nominal zero potential. The charge resides only on the spheres targeted by the electron gun

emission. This scheme is maintained for a full rotation of the asteroid around its minor axis to

determine the average achievable torque. One frame of this simulation is shown in Figure 3.17,

with the electrostatic potential and charge distribution visible on both bodies each populated with

107 MSM spheres.

The cylindrical asteroid is chosen to have a 12 m length and 6 m diameter, giving it a mass

of 678 metric tonnes, assuming an average density of 2000 kg/m3. The representative asteroid
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Figure 3.17: Voltage and charge distribution on the servicer craft and asteroid in de-spin simulation.

geometry and assumed simple density model resides in the middle of the size and weight range

from the NASA RFI, with the most favorable torque aspect ratio of 2:1. The servicer craft is

modeled as an 8 m diameter sphere, which is reasonable given that it is meant to capture the

asteroid and transport it back to a lunar orbit. Using a surface to surface separation distance of

one spacecraft diameter, an average torque of 19.5 mNm is achievable, which means that it would

take 600 days, nearly 2 years, to remove one revolution per minute about the minor inertia axis

of the asteroid. While adjusting certain simulation parameters might result in slight increases in

performance, it is fairly unfeasible that the asteroid retrieval mission will allow for this much time

for detumble operations. If long duration missions are implemented, such detumble durations can

be simultaneous with a tugging effect allowing a low thrust trajectory to be simultaneously utilized.

In general, the achievable torques are quite impressive and could be utilized for de-spin maneuvers

on wayward GEO satellites in days or weeks. However, the inertias involved with a rotating asteroid

are simply too large, yielding detumble times of a year or longer even with the highly optimistic

assumption that the surface is conducting.



Chapter 4

Charge Transfer Analysis

In the previous chapter’s control and sensitivity developments, it has been assumed that

electrostatic potentials on both craft to φi = ±30 kV are achievable. In this section, analysis

is performed to determine how to achieve those voltage levels using charge transfer devices on

the servicing satellite. The voltage attained by a spacecraft is a complex function of the various

currents to which it is exposed in the space plasma environment. These currents, which result from

electron and ion plasma flux, the photoelectric effect, incoming and outgoing charged beam currents,

and secondary electron emissions from incoming beams, must balance to create a steady state

system, which in turn determines the achieved voltage levels.46 The currents depend significantly

on a multitude of parameters that describe the behavior of the space environment. Constants

representative of a nominal environment at GEO altitudes are chosen for this development, but

it is important to remember that these parameters may change during solar storm events, which

would significantly affect the results. If the actual conditions are prohibitive to the intended de-spin

operations, actuation may be suspended until more favorable weather returns.

Previous studies have analyzed the charge transfer capabilities when a single electron beam

is directed from a servicer craft to a debris object, primarily to achieve an attractive Coulomb

force for electrostatic tugs.32,33,74 These efforts determine what voltage levels were achievable on

both vehicles for a given electron beam energy and current, and highlight that the capabilities are

largely dependent on the relative sizes of the craft. If a second charge transfer device is added

to the control satellite, as in Figure 4.1, a greater range of potential levels is achievable. In this
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analysis, the goal is to determine the transfer and external beam currents and energy necessary to

achieve the desired voltage levels assumed previously. Moreover, consideration is given to the total

power expelled by the charge transfer devices, as well as the momentum that the beams impart on

the craft.

Itr
Etrφ2

φ1

Iex
Eex

Figure 4.1: Depiction of charge transfer between craft

4.1 Current Balance

The charging model developed in Reference 74 is used to compute the various currents expe-

rienced by the spacecraft. The nominal GEO plasma parameter values used are given in Table 4.1.

A photoelectron current occurs whenever a craft is in sunlight, given by:

Iph(φ) = jph,0A⊥e
−φ/Tph φ > 0 (4.1a)

= jph,0A⊥ φ ≤ 0 (4.1b)

where Tph is the temperature of the emitted photoelectrons, jph,0 is the photoelectron flux, and A⊥

is the cross-sectional area exposed to sunlight. For the cylinder, an average between the transverse

and longitudinal cross-sectional areas is used to capture both orientations it may have with respect

to the sun. The exponential term in Eq. 4.1a decays so rapidly that in this study the photoelectron

current is assumed to be negligible for positive voltages, i.e. Iph = 0 for φ > 0.
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The plasma electron current is modeled by

Ie(φ) = −Aqbnewe
4

eφ/Te φ < 0 (4.2a)

= −Aqbnewe
4

(
1 +

φ

Te

)
φ ≥ 0, (4.2b)

where A is the total surface area exposed to the plasma environment, Te is the plasma electron

temperature, ne is the plasma electron density, qb is the elementary charge, me is the electron mass,

and we =
√

8Te/πme is the thermal velocity of the electrons. Similarly, the plasma ion current is

computed using

Ii(φ) =
Aqbniwi

4
e−φ/Ti φ > 0 (4.3a)

=
Aqbniwi

4

(
1− φ

Ti

)
φ ≤ 0, (4.3b)

where the subscript i denotes ions instead of electrons in each of the parameters mentioned above,

and wi =
√

8Ti/πmi. As in previous studies, the ion population is assumed to consist solely of

protons. For positively charged spacecraft, the current is negligible the due to the exponential term

in Eq. 4.3a, such that Ii = 0 for φ > 0.

The charge control exerted by the servicing spacecraft comes from either ion or electron

beams. These charge control devices emit a current of particles IB with an energy EB relative

to the craft potential. IB > 0 denotes that electrons are emitted from the control craft, while

IB < 0 denotes expulsion of ions. In order to achieve emission, the energy of the beam must be

sufficiently large for the particles to escape the electric influence of the charged craft. Assuming

the beam energy is always positive (EB > 0) and q represents the charge of the particles (electrons

are negative, ions are positive), the total energy of the particles must be positive for successful

emission, i.e. EB + qφ1 > 0 or EB > −qφ1. Using this relation, which holds for both the transfer

and external beam, electrons are emitted from a negative craft with only minimal beam energy, as

with ions from a positive craft.

In order to achieve charge control on the passive debris object, the transfer beam must be

focused on the surface of the cylinder. They will be absorbed if there is enough energy left after



75

leaving the servicer to overcome the debris’ electrostatic potential barrier. This is modeled by

Itr,2(φ2) = −αItr Etr > q(φ2 − φ1) (4.4a)

= 0 Etr ≤ q(φ2 − φ1) (4.4b)

where α represents the efficiency of the transfer, which is assumed to be 1, and the current on the

debris is opposite that experienced by the servicer.

When the transfer beam consists of electrons and impacts a negatively charged debris object,

the incoming electrons result in the emission of secondary electrons. Because of the negative

potential of the debris object, these electrons will escape, resulting in a significant current source.

This secondary electron emission is modeled by22

ISEE(φ2) = −4YMItr,2(φ2)κ φ2 < 0 and Itr > 0 (4.5a)

= 0 φ2 ≥ 0 or Itr < 0, (4.5b)

where

κ =
Eeff/Emax

(1 + Eeff/Emax)2

and Eeff = Etr− q(φ2−φ1). YM is the maximum yield of secondary electron production, and Emax

is the impact energy at which this maximum occurs.

It is important to understand the simplifications inherent in the charge transfer model defined

above. The electron and ion plasma flux are derived using the conservation of momentum of

particles that come in the vicinity of the spacecraft. This approach is valid for low density plasmas

with high Debye lengths, also known as the orbit limited regime, because the attracted plasma

sheath exists relatively far away from the spacecraft.46 When two oppositely charged spacecraft

are located nearby within this sheath, as is the case for our study, the averaged dynamics of

the incoming particles could be significantly different. Full particle-in-cell simulations would be

required to model this system with higher fidelity. Also, the interaction of secondary electron

emission particles between the two craft is not considered here, which may occur when the debris

object is charged negatively and the servicer is positive. As such, this study serves more as an
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Table 4.1: Plasma environment parameters for current balance

Parameter Value Units Description

Tph 2 eV Temperature of emitted photoelectrons

jph,0 20 µA/m2 Photoelectron flux

qb 1.60x10−19 C Elementary charge

me 9.11x10−31 kg Electron mass

Te 1250 eV Plasma electron temperature

ne 0.6 cm−3 Plasma electron density

mi 1.67x10−27 kg Ion (proton) mass

Ti 50 eV Plasma ion temperature

ni 9.5 cm−3 Plasma ion density

YM 2 – Maximum yield of SEE

Emax 300 eV 300

initial investigation into the approximate charge transfer requirements than a prediction of the

actual electron and ion gun operation.

4.2 Power Requirements and Momentum Transfer

The power required to operate the charge transfer devices is a function of the adjustable

beam energy and current, as follows:

PB =
EB|IB|
qb

(4.6)

Besides the power used to accelerate the expelled ions or electrons, charge transfer guns also require

a considerable amount of overhead power that is larger than the acceleration levels determined in

this study. Moreover, ion guns are much more complex and require higher power levels to operate

than electron guns.

Meanwhile, the expulsion or absorption of particles by a spacecraft results in a transfer of

momentum to the craft. The force imparted can be computed using Newton’s second law:

FB =
dp

dt
=
IB
qb
mpv∞ (4.7)

where the momentum of the particles once they’ve left the electric influence of the craft is used

(mpv∞) and the beam current gives the rate at which particles leave the craft (IB/qb). The velocity
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is determined by an energy balance between the particles’ initial potential energy and final kinetic

energy:

v∞ =

√
2(EB + qφ1)

mp
(4.8)

Argon is selected as the low mass species for the ion gun, with particle mass mp(Ar+) = 6.63 ×

10−26 kg. The momentum imparted on the debris object by the incoming transfer beam is equal to

that felt by the servicing craft, because the particles impact the debris at the same rate and with

the same far field momentum as they leave the servicer.

There are two possible ways to achieve attractive control (positive debris, negative servicer, or

negative debris, positive servicer) and two ways to achieve repulsive control (both positive or both

negative). The approaches are interchangeable with regard to the system dynamics and attitude

control development, but distinctions do exist when considering the charge transfer requirements.

For now, let’s assume that the debris craft is held at a constant potential, while the polarity of the

control craft is switched to alternate between attraction and repulsion. For simplicity, the desired

magnitude is always assumed to be |φi| = 30 kV for both craft.

4.3 Positive Potential Debris Craft

First, analytic current balance methods are used to determine the equilibrium transfer and

external beam currents and energies to achieve the desired potentials. If the debris potential is held

positive, the only currents acting on the craft are the transfer beam current and the plasma electron

flux. Other currents such as the photoelectric effect, plasma ion flux, and secondary electron effects

are nonexistent or negligible. By enforcing a net zero current balance

Itr,2 + Ie,2 = 0 (4.9)

the required transfer beam current can be solved analytically. Itr = −156.3 µA, which represents

that the beam needs to consist of ions as is logical to achieve a positively charged debris object.

For a negative control craft, the energy of the transfer beam must be 60 keV to achieve charge

transfer according to Eq. 4.4a. As a result, the transfer beam draws 9.38 W of power, which is a
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minimal amount in the scheme of most spacecraft power budgets. This ion beam does impart a

24.63 µN force on both vehicles in the system, which is an order of magnitude smaller than the

average Coulomb forces involved.

Equating the current balance on the control craft yields an analytic solution for the external

beam current:

Iex = −Itr − Iph,1 − Ie,1 − Ii,1 (4.10)

This results in a positive external current Iex = 61.26 µA, meaning a beam of electrons is required

to offset the transfer current and achieve the desired φ1 = −30 kV. These electrons are naturally re-

pelled by the negative craft, so they require minimal energy and the electron gun requires negligible

power. These results are summarized in the top half of Table 4.2.

If repulsive control is desired with a positive debris object, the transfer beam current is

identical via Eq. 4.9, but the transfer ions don’t require any excess energy and the power is minimal.

A much higher external electron current is necessary to bring the control craft to a positive potential,

as determined using Eq. 4.10 where the ion plasma and photoelectron current can be neglected.

The external electron beam requires an energy of Eex = 30 kV to escape the craft, which draws

6.03 W of power and imparts no force on the control craft because the electrons have no excess

energy.

Table 4.2: Charge beam characteristics for positive debris craft

Transfer External Ptot

Itr = −156.3 µA (ions) Iex = 61.26 µA (e−)

9.38 W
φ2 = +30 kV Etr = 60 keV Eex = 0 keV

φ1 = −30 kV Ptr = 9.38 W Pex = 0 W

Ftr = 24.63 µN Fex = 0.036 µN

Itr = −156.3 µA (ions) Iex = 200.9 µA (e−)

6.03 W
φ2 = +30 kV Etr = 0 keV Eex = 30 keV

φ1 = +30 kV Ptr = 0 W Pex = 6.03 W

Ftr = 24.63 µN Fex = 0 µN

To gain insight into the charge up process, a simulation of the time history of the charge and
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voltage on both spacecraft is created. The state vector of this simulation is the charge on the debris

and the servicer. At each time step, the MSM is used to determine the voltage on both craft. Since

the total charge is distributed in some unknown way between the spheres in the cylinder MSM

model, the floating charge approach outlined in Section 2.8.2 is used. The net current on each

craft is calculated using the electric potentials, which yields the time derivative of the state vector.

Transfer and external beam currents and energies given in Table 4.2 are used. The simulation starts

from net zero charge levels, and switches between attractive and repulsive polarity every quarter

of a second.

As is evident from the results in Figure 4.2, the desired voltage levels are achieved in roughly

0.1 seconds. This is a much faster than the polarity switching necessary to match the expected

rotation rates of the debris. When the polarity control is switched, the debris potential first dips

because the transfer beam energy has reduced to 0 eV. Once the control craft potential reaches

the same potential, charge transfer is re-engaged and both craft quickly climb to the desired levels.

This occurs during parallel or perpendicular orientations of the debris, at which point the control

moments are minimal anyway.
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Figure 4.2: Time history of charge control with positive debris craft
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4.4 Negative Potential Debris Craft

If the debris spacecraft is kept at negative potential levels, its current balance relationship

becomes more complicated:

Iph,2 + Ie,2 + Ii,2 + Itr,2 + ISEE,2(Itr, Etr) = 0 (4.11)

This equation is a function of both the transfer current Itr and energy Etr, so multiple combinations

exist to achieve the desired debris voltage φ2 = −30 kV. The required current can be solved

analytically for a given transfer beam energy:

Itr =
Iph,2 + Ie,2 + Ii,2
1− 4YMκ(Etr)

(4.12)

Figure 4.3 shows the transfer beam current at various energies, for a positive control spacecraft

(φ1 = +30 kV) on the left and a negative control craft (φ1 = −30 kV) on the right. The optimal

combination is chosen so that the expended power by Eq. 4.6 is minimized, using a golden section

search and parabolic interpolation.14,25 The results for the attractive and repulsive scenario with a

negative debris object are summarized in Table 4.3. The transfer beam current is sufficiently large

in the attractive configuration that it would lead to excessive positive charging for the control craft.

As a result, the external beam consists of ions for both cases.
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Figure 4.3: Power optimization for negative debris craft
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Table 4.3: Charge beam characteristics for negative debris craft

Transfer External Ptot

Itr = 377.7 µA (e−) Iex = −333.0 µA (ions)

27.94 W
φ2 = −30 kV Etr = 73.97 keV Eex = 0 keV

φ1 = +30 kV Ptr = 27.94 W Pex = 0 W

Ftr = 0.267 µN Fex = 52.48 µN

Itr = 684.6 µA (e−) Iex = −779.6 µA (ions)

26.01 W
φ2 = −30 kV Etr = 3.83 keV Eex = 30 keV

φ1 = −30 kV Ptr = 2.62 W Pex = 23.39 W

Ftr = 0.424 µN Fex = 0 µN

As before, the power optimal results above are implemented in a time dependent simulation of

the charge and voltage accumulations, shown in Figure 4.4. The debris quickly reaches the desired

negative potential because of the higher transfer beam energy and current necessary to overcome

the secondary electron emission. The kink in the control craft voltage at around 0.5 seconds is a

result of the external beam engaging due to sufficient particle energy once the craft potential has

reached zero. Generally, the operation shows stable and efficient charge buildup when switching

between polarities.
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The clear difference between the two charging options presented above is that maintaining a
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positive debris craft potential requires about one third of the power consumption. This is primarily

because of the secondary electron emission associated with exposing the debris object to an electron

beam. Moreover, the interaction with the space plasma depends significantly on the polarity of

the spacecraft potential. The maximum momentum transfer is roughly the same, considering the

52.48 µN external force for the negative debris, positive servicer scenario acts only on the control

craft, rather than the 24.63 µN transfer beam force that acts on both vehicles with a negative debris

object. For both cases, a single electron gun and a single ion gun are required on the servicing

satellite. Only the energy and currents must be altered to switch the polarity of the control.

Different charging combinations are possible if the control craft is held at a constant voltage while

the polarity on the debris craft is switched, but this would require alternating which beams are

directed where, a needless complication.



Chapter 5

Experimental Testbed

5.1 Background

Validating spacecraft technology through economical terrestrial experiments is critical before

costly on-orbit operations are performed. Simulating the low-friction microgravity space envi-

ronment on Earth represents a ubiquitous challenge within this effort. Translational modes are

generally required only when considering the relative motion of multiple spacecraft in formation

flight, while rotational freedom is necessary to test the attitude control capabilities required by

most satellites. The most common approach to generating frictionless motion is by use of air bear-

ings, which have been incorporated into many spacecraft simulation testbeds since the beginning

of the space age.76 These testbeds range from low cost university efforts,62 to complex government

laboratory systems such as the Jet Propulsion Laboratory’s Formation Control Testbed.61 A high

precision flat surface allows for horizontal translation and one degree of rotational motion. The air

barrier can be supplied by pores in the stationary table or from within the mobile craft. Further

rotational motion is possible via concentric spherical surfaces75 or 1-D spindle air bearings.8 When

multiple modes are combined, systems with full translational and rotational freedom are possible.26

Actuation for air bearing testbeds is generally created by cold gas thrusters for translational

motion and reaction wheels or control moment gyroscopes for attitude control. When validation

of low thrust devices such as ion electrospray thrusters is required, other options such as magnetic

levitation may be utilized.57 Validating Coulomb actuation with a terrestrial testbed presents

several additional challenges. In order to characterize the very low magnitude electrostatic forces
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and torques, a high signal to noise ratio must be maintained by minimizing disturbances. Reducing

the mass of any moving objects can help to increase their acceleration and discernible motion.

Moreover, the system must be free of extraneous conducting parts in the presence of the high

voltage components. The large electric fields can induce a non-uniform charge distribution within

any metal parts, which in turn affects the performance of the system. Lastly, the charged objects

require some connection with a high voltage power supply, which represents an extra disturbance

for moving objects.

Recently, Seubert developed a dedicated terrestrial testbed for 1-D electrostatic relative mo-

tion in the Autonomous Vehicle Systems (AVS) lab at the University of Colorado Boulder.80,82

This system, depicted in Figure 5.1, is designed to validate the fundamentals of the charged forma-

tion flight concept. The left side of the figure shows a stationary conducting sphere and one that

slides freely on a custom air bearing track. Its position is tracked using a ranging laser system.

Both spheres are connected to electrostatic power supplies that enable low current charging up to

±30 kV. The entire system is operated from a desktop computer that interfaces with the electronics

by means of a data acquisition card and a custom GUI developed with objective C code. Some

limitations of the system are the noise in the laser measurement and a considerable time delay when

Figure 5.1: One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative
Motion Experiments
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switching polarity with the power supplies. Seubert characterizes the disturbances caused by the

air bearing track and charging cable on the mobile sphere, as well as electrostatic interference due

to ionization of the air and polarization of the plastic testbed components.78 Ultimately, the physi-

cal electrostatic interaction is modeled with a force model that exhibits plasma-like characteristics,

and the sphere position is controlled with Coulomb forces using autonomous feedback algorithms.

In order to validate the remote electrostatic attitude control concept, a rotational Coulomb

testbed is required. This system is developed in the AVS lab using the heritage of the translational

testbed described above. The qualitative design requirements of this novel system are as follows:

(1) Low friction rotational motion of nonspherical object.

(2) Minimize moment of inertia of conducting geometry to increase accelerations.

(3) Accurate sensing of angular position without disturbing motion.

(4) Charge transfer from high voltage power supply without disturbing motion.

(5) Quick polarity switching from power supplies.

The specifics of the testbed are described in the following section. Although they are outside

of the scope of this research effort, several goals for expanding the capabilities of this system during

future work have been identified. Operating the system within a vacuum chamber would allow for

verification of the charge transfer model outlined in Chapter 4. Moreover, this would eliminate

the atmospheric disturbances and create a more representative plasma environment. However, this

would clearly prevent the use of any air bearing system for frictionless motion. Lastly, a testbed that

allows for both translational and rotational motion would be necessary to verify the stationkeeping

requirements for maintaining the desired relative motion between two craft.

5.2 Experimental Setup

A prototype testbed allowing rotational Coulomb charge control experiments was first intro-

duced in Reference 87. While this testbed demonstrated that touchless de-spin control experiments
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are feasible in a 1-G atmospheric environment, several hardware limitations were identified in this

setup that restricted the performance to rotation rate control only. First, knowledge of the rotating

object’s angular positions was collected using a range-finding laser, which yielded noisy attitude

data with insufficient accuracy. Second, active charge control was not implemented on the rotat-

ing cylinder. Rather, an initial voltage was applied to the cylinder whose gradual charge drain

was characterized and modeled in the simulations. This resulted in a lack of repeatability and

an inability to modulate the voltage on the cylinder during the experiment for precise control of

the Coulomb torques. Lastly, the high voltage power supplies exhibited a time delay of up to one

second when switching voltage polarity, thus considerably reducing the control authority in the

case of large rotation rates.

Fig. 5.2 depicts the improved rotational testbed for Coulomb attitude control experiments,

wherein all the above limitations are addressed. The conducting cylinder is attached with a threaded

interface to a rotating shaft, which is secured by the two low friction ceramic bearings. A magnetic

hub is mounted to the bottom of the shaft, whose orientation is measured to within 0.35◦ accuracy

by the absolute 10-bit analog encoder. Analysis and testing show that the magnetic fields produced

by the charged rotating cylinder are sufficiently small and do not interfere with the operation of

the encoder. Charge is transfered to the rotating cylinder from a Spellman CZE 2000 high voltage

power supply (HVPS) via a < 1 mm gap between the charging cable and a copper bushing situated

on the rotating shaft. This results in ionization of the surrounding air, effectively reducing its

dielectric breakdown voltage. To prevent electrical damage to the magnetic encoder in the case

of an electrostatic discharge, a grounding cable is mounted underneath the encoder. The cylinder

has a 15 cm diameter and a 45 cm length. The mass of the rotating components is 156.8 g, with a

transverse moment of inertia of 2.867 g·m2.

The 15 cm diameter stationary sphere is located at d = 45 cm from the cylinder, which results

in a 15 cm surface to surface separation at a parallel orientation with θ = 0◦. The entire system

is scaled down from the baseline mission configuration in Section 3.3, with the separation distance

reduced even further. As such, this system is expected to have a much greater attitude control
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Figure 5.2: Depiction of the experimental setup for charged attitude control

authority than the baseline system. Since the stationary sphere experiences frequent polarity

changes, it is charged using the Masusada CZ9-30R power supply, which is capable of an order

of magnitude quicker polarity switching than the Spellman, with verified delays lower than 0.1

seconds. Both power supplies are capable of supplying ±30 kV at up to 300 µA, which results in

power levels well within typical safety limits when proper precaution measures are practiced. To

prevent any interaction between the operator and the charged objects, a large plastic cage surrounds

the experimental setup.

Input and output control for the power supplies and angular encoder is achieved by a PCI

express based 16-Bit multi-channel NI DAQ card. National Instruments LabVIEW software is

utilized to monitor and interact with the hardware. Data sampling at 66.66 Hz is achieved, which

far exceeds the time constants evident in the dynamics of the system. Differentiation of the cylin-

der’s angular position is performed within LabVIEW using a discrete derivative with switching
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Figure 5.3: Screenshot of the LabVIEW graphical user interface

logic to handle the multiple revolution discontinuity, which is passed through a third order lowpass

Chebyshev filter. The custom graphical user interface shown in Fig. 5.3 allows for various opera-

tion modes, including manual voltage control, angular position control, and rotation rate control.

Table 5.1 identifies the manufacturer and model numbers for all the hardware mentioned above.

Table 5.1: Testbed component details

Contactless charge transfer HVPS cable and copper bushing

Magnetic encoder US Digital MAE3 Absolute Encoder

Ceramic bearing VXB.com ZrO2 8x14x4 & 688 8x16x5 full ceramic sealed bearing

High voltage power supply Matsusada Precision CZ9-30R

Spellman Voltage Electronics CZE 2000

DAQ system National Instruments PXI-6259 data acquisition card

(2X) NI SCB-68 shielded breakout boxes

5.3 Disturbance Characterization

Besides the Coulomb interaction with the sphere, the clearly identifiable disturbances act-

ing on the cylinder as it rotates about its axis are the friction torque from the bearing and the



89

atmospheric drag force acting on the cylinder surface.

The friction torque MB in a rolling bearing is due to a combination of radial forces and axial

forces Fi, the friction coefficient µi and the average of the bore and outside diameter of the bearing

d̄ = di+do
2 , as follows:

MB = µr
d̄

2
Fr + µa

d̄

2
Fa (5.1)

Since the expected radial force due to the Coulomb interaction with the sphere never exceeds

13.90 mN, whereas the weight of the cylinder and laser disc is equal to a 1.786 N axial force, the

radial component can be neglected. If the bearing diameter is incorporated into a new combined

bearing friction coefficient Cb, the total bearing friction is written

MB = CbFa (5.2)

where Cb will be determined empirically, because there is no readily available way to isolate the

bearing friction torque from other disturbance torques such as atmospheric drag.

For high Reynolds number flows, the drag force FD on a body with surface area A and drag

coefficient Cd moving at velocity V through a medium with density ρ is given by

FD =
1

2
ρV 2CdA (5.3)

Consider a cylinder with length L and diameter D rotating at angular rate ω = θ̇. A differential

slice of width dr located at a distance r away from the cylinder axis of rotation experiences a drag

force

dFD =
1

2
ρ(ωr)2Cd(Ddr) (5.4)

The differential torque from each slice is dM = rdF and the total torque from both halves of the

cylinder due to atmospheric drag is

MD = ρω2CdD

∫ L/2

0
r3 dr (5.5)

MD =
ρω2CdDL

4

64
(5.6)
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A typical atmospheric air density ρ = 1.194 kg/m3 is used and Cd is found to be 1 for an infinite

cylinder at mid-range Reynold numbers.91 The parasitic drag across the two ends of the cylinder

must be considered. Since the ends move at V = ωL2 relative to the ambient air, this effect can be

incorporated into Cd, which is then determined empirically.

Five sets of data are collected by giving the cylinder an initial rotation and allowing it

to de-spin naturally while the electric potential on both the cylinder and the adjacent sphere

are held at zero. Fig. 5.4(a) shows the angular rates of the cylinder for each experimental run

and a simulated de-spin using the modeled disturbance torques from Eq. (5.2) and (5.6). The

corresponding coefficients are tuned until the resultant angular velocity curve optimally fit the

experimental data, resulting in Cb = 0.000024 and Cd = 0.92. Fig. 5.4(b) shows the resulting

disturbance torques in the simulation, suggesting that the drag force is dominant at angular rates

(a) Angular velocity, simulated and experimental
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higher than 33 deg/s.

5.4 Rotation Rate Control

In this development, the goal is to maintain a constant angular rate of rotation on the cylinder

θ̇r. The error in rotation rate relative to the reference can be defined δθ̇ = θ̇− θ̇r. This is similar to

the development in Section 3.2.2, but here the option of nonzero desired rotation rates is included.

5.4.1 Control Development

For the moment, the disturbance forces are omitted from the system dynamics, which take

the form

Iθ̈ = γf(φ)g(θ) (5.7)

The following energy based positive definite Lyapunov function is chosen:

V (δθ̇) =
I

2
δθ̇2 (5.8)

The time derivative of this function becomes

V̇ (δθ̇) =δθ̇(Iθ̈) (5.9)

=δθ̇ (γf(φ)g(θ)) (5.10)

where it is assumed θ̈r = 0 and the system dynamics from Eq. 5.7 are used. At this point, a control

function f(φ) is chosen, which is implemented via the control voltages φ1 = φ and φ2 = |φ|. Similar

to the developments in Section 3.2.2, the following control is chosen:

f(φ) = −fmax

π/2
sign(g(θ)) tan−1

(
Pδθ̇

)
(5.11)

The arctangent function is used so that the control voltages are smoothly limited at their saturation

levels. The sign of g(θ) is included so that the correct polarity voltage control is utilized in any

given quadrant. The resulting Lyapunov rate is

V̇ (δθ̇) = −γfmax

π/2
|g(θ)|δθ̇ tan−1

(
Pδθ̇

)
(5.12)
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This function is negative semi-definite because tan−1(Pδθ̇) has the same sign as δθ̇, thus implying

global stability to the desired rotation rate. While g(θ) can be periodically zero, it is not possible

for g(θ) to remain zero unless δθ̇ = 0 as well. Thus, the largest invariant set where V̇ = 0 is δθ̇ = 0,

and the system is globally asymptotically stable. Remember that both γ and g(θ) take different

forms depending on whether attractive or repulsive control is used, but their signs are unaffected.

When the experimental testbed disturbance torques are included in the equations of motion,

closed-loop rate tracking errors will only be bounded or Lagrange stable. It is not possible to con-

tinually compensate for these arresting torques because the control authority via Coulomb charging

vanishes at the four equilibrium points (θ = nπ4 ) during every rotation. When the cylinder reaches

these orientations, the rotation speed will decrease until control authority is regained, at which

point the control law in Eq. 5.11 will raise the rotation rate to match the desired rate. Freeflying

spacecraft will not experience significant rotation torques, lending themselves more readily to these

control algorithms.

5.4.2 Experimental Results

The control algorithm in Eq. 5.11 is implemented on the experimental testbed described

above, using the gain P = 2.0. As shown in Fig. 5.5(a), a reference rate θ̇r = 30 deg/s is prescribed

for the first 54 seconds, at which point the reference is changed to θ̇r = −60 deg/s. The results are

compared with a numeric simulation conducted in MATLAB which implements the three sphere

MSM, including disturbance torques as described above. There is significantly more error in the

rotation rate of the experimental system than in the simulation, which is due to the noise in the

magnetic angular encoder and the filtering used to determine the resulting rotation rate. In both

the physical system and the simulation, it takes about 8 seconds to attain the 30 deg/s rotation

rate, and 18 seconds to reverse the rotation and achieve the 60 deg/s rotation rate in the other

direction. Fig. 5.5(b) shows the Coulomb and disturbance torques (bearing friction and atmospheric

drag) as calculated by the simulation. The Coulomb torques are periodic with angular rotation,

and sporadic even in the simulation because of the inconsistent control authority as the cylinder
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rotates through the parallel and perpendicular configurations.

(a) Angular velocity
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Figure 5.5: Cylinder rotation rate control, experimental and simulation

5.5 Attitude Control

Ultimately, the novelty of this testbed is its ability to control the exact attitude of the rotating

cylinder. The goal is to track a reference orientation θr, or minimize the error in angular position

δθ = θ−θr, which was not considered in Chapter 3. The reference angle is assumed to be constant,

i.e. θ̇r = 0.

5.5.1 Control Development

The involved nature of the system dynamics that result from the g(θ) function complicates

the stability control arguments. One possible control algorithm has been identified for which local
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nonlinear stability arguments can be made. The proposed Lyapunov function is:

V (θ̇, δθ) =
1

2
Iθ̇2 +

K

2
g2(θ)δθ2 (5.13)

This function is positive definite only within a given quadrant, as g2(θ) vanishes at θ = nπ4 . If the

electric potentials are chosen such that

f(φ) = −1

γ

(
g(θ)P θ̇ + g(θ)Kδθ + g′(θ)Kδθ2

)
(5.14)

where g′(θ) denotes differentiation with respect to θ, the resulting Lyapunov rate is

V̇ (θ̇, δθ) = θ̇
(
Iθ̈ +Kg(θ)g′(θ)δθ2 +Kg2(θ)δθ

)
(5.15)

= −g2(θ)P θ̇2 (5.16)

where several terms cancel when the system dynamics from Eq. 5.7 are included using the control

in Eq. 5.14. This Lyapunov rate is negative semi-definite within any quadrant, implying local

stability within that quadrant. The same approach can be taken as in Section 3.2.3 however, where

the cylinder is allowed to coast without charge control until it reaches the appropriate quadrant,

at which point the attitude control described above is implemented.

The control described above has been shown in simulations to converge to the desired reference

attitude, but it is impractical for physical implementation because it requires exact knowledge of

the higher order g function as well as its angle derivative. It is preferable to use a control based only

on the sign of g, which is readily known for a given quadrant. Moreover, better time performance is

provided using a control law of the following form, where K and P are chosen to be positive gains.

f(φ) = −fmax

π/2
sign(g(θ)) tan−1

[
Pδθ̇ +Kδθ

]
(5.17)

The arctangent function is again chosen so that control voltages are smoothly limited to their max-

imum levels without abrupt saturation. While it is difficult to make Lyapunov stability arguments

regarding this nonlinear control, we can analyze the closed loop dynamics, which take the form

Iθ̈ = −γfmax

π/2
|g(θ)| tan−1

[
Pδθ̇ +Kδθ

]
(5.18)
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If we make the assumption that the reference trajectory is to maintain a constant orientation, i.e.

θ̇r = 0, the closed loop dynamics can be linearized about the reference angle θr as follows:

δθ̈ + βPδθ̇ + βKδθ = 0 (5.19)

where

β =
γfmax|g(θr)|

(π/2)I
(5.20)

Note that both γ and |g(θr)| take different forms depending on whether the system is in an elec-

trostatically attractive or repulsive state. Their signs remain unchanged however, and β is always

a positive coefficient. Therefore, the roots of this second order differential equation always have

negative real components, and the system is assumed to be locally stable in the linearized neigh-

borhood of the reference angle. The natural frequency ωn and damping coefficient ζ in this vicinity

are

ωn =
√
βK (5.21)

ζ =
P

2

√
β

K
(5.22)

Because β changes depending on the voltage polarities, the system will have different closed-loop

response characteristics (stiffness, damping, etc.) depending on from which direction the cylinder

approaches the reference orientation. Linear stability is guaranteed in either case.

5.5.2 Experimental Results

The results in Fig. 5.6 demonstrate the ability to prescribe a specific angular orientation on

the rotating cylinder using Coulomb actuation. The cylinder is given an initial rotation rate of 100

deg/s, at which point the charge control algorithm in Eq. 5.17 is implemented via the high voltage

power supplies. A reference angle of θr = 45 deg is prescribed while the gains are set to K = 0.08

and P = 0.2. Within 10 seconds the cylinder is brought to rest, and after a slight overshoot, the

desired reference angle is achieved to within 1.5 deg. From Fig. 5.4(a) it can be seen that it takes 60

seconds for the cylinder to come to rest from this rotation rate by disturbance torques alone. As is
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Figure 5.6: Cylinder attitude control: experimental and simulation

evident from Fig. 5.6(a), the simulation conducted using MATLAB matches the experimental results

with formidable accuracy. This simulation implements the full system dynamics using the three

sphere MSM, including disturbance torques from bearing and atmospheric drag. Fig. 5.6(b) depicts

the prescribed electric potentials, where blue denotes the sphere voltage φ1 and green denotes the

cylinder voltage φ2. Here a slight deviation is evident between the simulation and experiment when



97

the cylinder comes to rest, which is likely the result of sensor noise at low velocities.

At 20 seconds into the simulation, the reference angle is changed to 225 deg, representing a

180 deg switch in the desired angle. Within 12 seconds the target orientation is achieved, this time

with a 5.5 deg attitude error. This is because the reference angle is approached from the direction

where repulsive control is required to remove the remaining error, which produces lower torques

than the attractive configuration (as seen in Fig. 3.2) that are unable to overcome the bearing

friction. The simulation demonstrates a lower error of 2 deg, suggesting there is some unmodeled

stiction present in the ceramic bearings. Fig. 5.6(c) displays the friction and Coulomb torques

calculated in the simulation, which suggests a maximum Coulomb torque of roughly 1 mNm, which

matches well with the expected torques predicted by the MSM.

The terrestrial testbed described in this chapter is an extremely important tool in verifying

the electrostatic de-spin concept. Using only Coulomb interaction, the system is able to swiftly

bring the cylinder to rest from a large rotation rate, and position it in a desired angular orientation.

Hereby, both the electrostatic models developed in Chapter 2, and the expected system dynamics

including control algorithms derived in Chapter 3 are validated.



Chapter 6

Conclusion

6.1 Dissertation Summary

This dissertation addresses various aspects of remote spacecraft attitude control by Coulomb

charging. The goal is to remove rotational kinetic energy from an uncontrolled space object with

a nearby servicing spacecraft, without making contact. This operation is to be carried out prior to

conducting a physical rendezvous with the derelict satellite in order to reposition or service it. Such

a mission involves a multitude of challenges. The servicing craft must establish large electrostatic

potentials on both vehicles. The magnitude and polarity of the voltages depends on the orientation

of the rotating debris craft, so that the resulting electrostatic torques serve to arrest the rotation

of the object.

The first task is to model the electrostatic interaction between the charged three dimensional

spacecraft. Conventional high fidelity models are too time intensive to use for 6DOF simulations,

while sphere and point charge models are incapable of discerning Coulomb torques. A new approach

named the Multi-Sphere Method (MSM) is herein developed to predict the electrostatic interaction

in a computationally efficient way. Spheres are placed within the volume or along the surface of

a conducting geometry, and the charge on each sphere is determined according to their position

dependent capacitance, from which Coulomb forces and torques can be derived. This model is

rigorously compared to higher order FEA software, thereby validating its use for predicting the

electrostatics of the satellite de-spin concept. Even the simplified model predicts the electrostatic

torque to within a percent at the separation distances expected in operation.
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In order to validate various aspects of this technology, a simplified system is introduced

whereby a spherical servicing craft attempts to remove the 1-D rotation about the minor axis of a

spinning cylinder debris object. Analytic expressions for the torque exerted on the cylinder aid in

creating nonlinear control algorithms to arrest the cylinder rotation. Lyapunov theory is utilized

to determine the stability of various control laws, including those where Coulomb interaction is

used to exert nominal tugging forces on the debris object. A baseline simulation indicates that

a 12 deg/s rotation on the cylinder can be removed in roughly 3 days with reasonable system

parameters. The sensitivity of the performance to various changes in size and separation distance

is also investigated. Several approaches to optimizing the performance are identified, including

relative position and attitude control schemes to be executed by the servicing craft. Lastly, the

physical hardware necessary to achieve the desired potential levels is investigated. The servicing

craft requires both an electron and an ion gun, but charge up and polarity switching procedures

occur in roughly a tenth of a second, with no significant instabilities.

Besides theoretical analysis and computer simulations, the electrostatic detumble concept is

verified experimentally. A scaled down version of the cylinder sphere system is created with physi-

cally conducting shapes in the laboratory. The cylinder is free to rotate with minimal disturbance

torques, and the potential on both shapes is actively controlled using high voltage power supplies.

Using control algorithms similar to those developed earlier, the testbed is capable of achieving ro-

tation rate control and absolute attitude control on the cylinder. A 100 deg/s rotation is arrested

in roughly 10 seconds, while the desired attitude is matched within 1.5 deg. This experimental vali-

dation along with the extensive system simulation performed represents a significant stride towards

realization of the remote Coulomb attitude control concept.

6.2 Suggestions for Future Work

The electrostatic attitude control concept has progressed within this research effort from its

inception to a 3-4 Technology Readiness Level (TRL).48 All aspects of the system have been exam-

ined via first principles, and most key elements are analytically explored in further detail. Several
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components of the technology have been integrated for experimental validation in a laboratory

environment. While feasibility of the concept has matured significantly, the remaining path to

successful implementation of a Coulomb de-spin mission is considerable.

The logical next step in the progression of this research is to expand the dynamics and

control analysis to three dimensions. While the MSM and dynamics simulations presented in this

dissertation are capable of full dimensionality, the control analysis so far has been limited to a single

dimension. Reference 6 expands the motion of the cylinder-sphere system to three dimensions and

proves that the 1-D tumble considered before can still be removed. Arresting any rotation in the

plane perpendicular to the control craft position, however, would require relocation of the control

craft. Meanwhile, the control authority to arrest a spin about the axis of symmetry of the debris

object is questionable. This might be achieved by first inducing a nutating motion on the object,

at which point some control authority is restored, but requires further investigation. Lastly, the

complexity of the charge control requirements is dependent on the geometry of the spacecraft

being considered for de-spin operations, so various shapes with features that differ from the simple

cylinder should be considered.

The relative motion simulations performed in this dissertation have assumed deep space con-

ditions. To improve the fidelity of this analysis in preparation for on-orbit mission implementation,

the orbital relative motion dynamics must be considered. This will affect the station-keeping re-

quirements for the servicing craft, but certain natural relative orbits may be utilized to aid with

desired position control schemes. Furthermore, the experimental testbed may be expanded to ad-

ditional dimensions to validate the relative motion dynamics and study the interaction of Coulomb

forces and torques. This could be done by combining the current rotational setup with the linear air

bearing testbed previously created in the AVS lab, or with a new design that allows planar motion

on an air bearing slab. Integrating frictionless motion with high voltage capabilities presents a

serious challenge for this approach, but might be achieved with self-contained vehicles.

Thus far, the analysis of the charge transfer devices required to achieve desired voltage

levels on the satellites in the system contains inherent approximations. The assumptions and
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simplifications must be verified using higher fidelity particle-in-cell plasma simulations. Moreover,

the performance of charged beams and interaction with various material surfaces should be tested

experimentally in vacuum chambers that replicate the space plasma environment. This approach

could culminate in a test campaign that includes relative motion along with active charge control

of the bodies within the vacuum environment. Incorporating all these aspects inside the vacuum

chamber while mitigating electrostatic interference between the charged objects and the conducting

chamber walls presents a considerable challenge.

Ultimately, on-orbit technology demonstration presents the best validation of the system

concepts required for electrostatic de-spin operations. With the miniaturization of components and

increasing use of Commercial Off The Shelf (COTS) hardware for space applications, it may be

possible to test certain aspects of the technology in the GEO environment with low cost satellites

such as CubeSats.24 In order to apply the appropriate Coulomb charging and position control

algorithms, the servicing spacecraft will require an expansive suite of sensing instruments. Besides

accurate knowledge of the geometry and material composition of the uncontrolled spacecraft, the

servicer must be able to sense its relative position and orientation. This would require robust

visual algorithms, or more complex sensors such as radar, LIDAR, or structured light. Moreover,

real time knowledge of the potential levels on both craft must be measured by Langmuir probes

or electrostatic analyzers. The hardware requirements of these sensors has to be determined, and

interference with the high voltage environment must be characterized.

Many of the tasks proposed above can be performed in a university laboratory setting, but

eventually progress will be driven by financial support. When the severity of satellite conjunctions

in GEO reaches critical levels, the funding for on-orbit validation missions may well be provided

by government agencies. It is in the best interest of the entire aerospace engineering community

to develop technologies such as remote Coulomb attitude control to combat the escalation of the

GEO debris population.



Bibliography

[1] Paul V. Anderson and Hanspeter Schaub. Local orbital debris flux study in the geostationary
ring. Advances in Space Research, 51(12):2195–2206, 2013.

[2] Paul V. Anderson and Hanspeter Schaub. Local debris congestion in the geosynchronous
environment with population augmentation. Acta Astronautica, 94(2):619–628, Feb. 2014.

[3] L Anselmo and C Pardini. Space debris mitigation in geosynchronous orbit. Advances in Space
Research, 41(7):1091–1099, 2008.

[4] Brent W Barbee, Salvatore Alfano, Elfego Pinon, Kenn Gold, and David Gaylor. Design of
spacecraft missions to remove multiple orbital debris objects. In Aerospace Conference, 2011
IEEE, pages 1–14. IEEE, 2011.

[5] Robert Bauer. Distribution of points on a sphere with application to star catalogs. Journal of
Guidance, Control, and Dynamics, 23(1):130–137, 2000.

[6] Trevor Bennett and Hanspeter Schaub. Touchless electrostatic three-dimensional detumbling
of large geo debris. In AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, New Mexico,
Jan. 26–30 2014. Paper AAS 14-378.

[7] Trevor Bennett, Daan Stevenson, Erik Hogan, Lauren McManus, and Hanspeter Schaub.
Prospects and challenges of touchless debris despinning using electrostatics. In 3rd European
Workshop on Space Debris Modeling and Remediation, CNES, Paris, June 16–18 2014. Paper
#P8.

[8] Dennis S Bernstein, N Harris McClamroch, and Anthony Bloch. Development of air spindle
and triaxial air bearing testbeds for spacecraft dynamics and control experiments. In American
Control Conference, 2001. Proceedings of the 2001, volume 5, pages 3967–3972. IEEE, 2001.

[9] John Berryman and Hanspeter Schaub. Analytical charge analysis for 2- and 3-craft coulomb
formations. AIAA Journal of Guidance, Control, and Dynamics, 30(6):1701–1710, Nov.–Dec.
2007.

[10] Claudio Bombardelli and Jesus Pelaez. Ion beam shepherd for contactless space debris removal.
AIAA Journal of Guidance, Control, and Dynamics, 34(3):916–920, May–June 2011.

[11] Claudio Bombardelli, Hodei Urrutxua, Mario Merino, Eduardo Ahedo, Jesús Peláez, and Joris
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Appendix A

Coulomb Force Determination by Sensing

Because there exists an inherent relation between surface charge density and the local external

electric field, discretized knowledge of either quantity is sufficient to discern the electrostatic forces

acting on a body. If either of these quantities can be measure along the surface of a spacecraft, the

complete Coulomb mechanics can be constructed without knowledge of neighboring objects and

surrounding electrostatic fields.

Consider the Gaussian surface on a conductor in Figure A.1. The electric field adjacent to

the surface is known to be perpendicular, because any orthogonal component would rearrange the

charge distribution until the field is perpendicular. Moreover, the electric field inside the conductor

is zero by similar arguments. If Gauss’ law in Eq. A.1 is applied to the cylindrical surface in Figure

A.1 with infinitesimal height and small radius R, Eq. A.3 results.

Figure A.1: Gaussian surface on conductor.

∮
E · dA =

Q

ε0
(A.1)
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EnπR
2 =

σπR2

ε0
(A.2)

En =
σ

ε0
n̂ (A.3)

Consider the conducting body in Figure A.2 with varying charge distribution σ(r). The force

on a differential section of surface area dA is the product of the adjacent electric field En and the

differential charge dq. Using the relation in Eq. A.3, summed over the entire body’s surface, the

total electrostatic force on the body in Eq. A.7 results. Similarly, one can determine the total

moment on the body, given in Eq. A.8.

Figure A.2: Charged Conductor.

dF = Endq (A.4)

= EnσdA (A.5)

=
σ2

ε0
dA = ε0En

2dA (A.6)

F =

∮
σ(r)2

ε0
dA =

∮
ε0En(r)2dA (A.7)

L =

∮
σ(r)2

ε0
r × dA =

∮
ε0En(r)2r × dA (A.8)
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If the local charge distribution σi or the local electric field En,i can be measured at discrete

points along the surface of a body, it is possible to approximate the force and moment due to the

associated fraction of surface area.

F =
∑ σi(r)2

ε0
A =

∑
ε0En,i(r)2A (A.9)

L =
∑ σi(r)2

ε0
r ×A =

∑
ε0En,i(r)2r ×A (A.10)

The benefit of this method is that no knowledge of the electrodynamic surroundings of the

sensing body is required to determine the Coulomb mechanics. Debye shielding due to plasma

effects is inherently included in the calculated forces and moments, as well as any bias forces solely

due to space weather. The forces imparted on a foreign object are equal and opposite to those

determined from the charge distribution on the sensing spacecraft, because of Newton’s third law.
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MSM Code

function [bodyout, posout] = multisphere2(body, pos)

% MULTISPHERE function to compute the electrostatic interactions between n

% conductors & insulators each approximated by a finite number of spheres.

%%%%%%%%%%%%%%%%%%

%

% INPUTS

% For each body i, input the structure "body" with the following fields:

%

% body(i).sphs = [x_1 ... x_n

% y_1 ... y_n

% z_1 ... y_n

% R_1 ... R_n]

% * coordinates from body origin & radius of the n spheres in the MSM of body i

%

% body(i).Vq = [V_j ... NaN ... NaN NaN

% NaN ... q_j ... NaN NaN

% NaN ... NaN ... q_tot1 q_tot1]

% * number of columns needs to be same as sphs field

% * each column above represents a different option for the spheres

% * 1. conductor: voltage is specified in 1st row

% * 2. insulator: charge is specified in 2nd row

% * 3/4. set of spheres that share a total fixed charge (and part of the same conductor)

%

% body(i).r = [r_x; r_y; r_z]

% * position in space of body origin

%

% body(i).C = DCM of body rotation in space (optional)

%

% pos = [pos1_x ... posn_x

% pos1_y ... posn_y

% pos1_z ... posn_z]

% * optional positions in space at which the function will return Voltage & E-field
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% information

%

%

% OUTPUTS

% bodyout(i).F = [Fx; Fy; Fz] *force on body i

%

% bodyout(i).L = [Lx; Ly; Lz] *torque on body i

%

% bodyout(i).Vq = [V_1 ... V_n

% q_1 ... q_n]

% * voltage and charge on each sphere in body i

%

% bodyout(i).sphs_abs = [r1_x ... rn_x

% r1_y ... rn_y

% r1_z ... rn_z]

% * absolute positions in space of each sphere in body i

%

% posout.V = [V1 ... Vn]

% * Voltage in space at the points defined by pos

%

% posout.E = [E1_x ... En_x

% E1_y ... En_y

% E1_z ... En_z]

% * Electric field in space at the points defined by pos

b=length(body);

bodyout(b).Vq=[];

% Coulomb’s constant [Nm^2/C^2]

kc=8.987551e9;

%initiate C & r field if doesn’t exist

if ~isfield(body,’C’)

body(1).C=[];

end

if ~isfield(body,’r’)

body(1).r=[];

end

Vq=[];

%loop through bodies to initialize

for h=1:b

%populate C if not specified

if isempty(body(h).C)

body(h).C=eye(3);

end

if isempty(body(h).r)

body(h).r=zeros(3,1);
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end

%check if columns of sphs = columns of Vq

if size(body(h).sphs,2)~=size(body(h).Vq,2)

error(’ERROR: number of spheres and voltage/charge information do not...

match’)

end

%check if either q or V is given for all spheres

if sum(sum(isnan(body(h).Vq))==size(body(h).Vq,1))

error(’ERROR: invalid voltage or charge specified’)

end

%rotate & translate spheres

body(h).sphs(1:3,:)=body(h).C’*body(h).sphs(1:3,:); %rotation - adjust...

% input for torque calc later

bodyout(h).sphs_abs=[body(h).sphs(1:3,:)+repmat(body(h).r,1,size...

(body(h).sphs,2));body(h).sphs(4,:)]; %translation, write to output

%build Vq (expand rows to furthest)

if size(body(h).Vq,1)>size(Vq,1)

Vq=[padarray(Vq,size(body(h).Vq,1)-size(Vq,1),NaN,’post’),body(h).Vq];

elseif size(Vq,1)>size(body(h).Vq,1)

Vq=[Vq,padarray(body(h).Vq,size(Vq,1)-size(body(h).Vq,1),NaN,’post’)];

else

Vq=[Vq,body(h).Vq];

end

end

sphs=[bodyout.sphs_abs]; %for position dependent capacitance matrices

%find conducting & insulated spheres

sphs_c=sphs(:,isnan(Vq(2,:)));

sphs_i=sphs(:,isfinite(Vq(2,:)));

%initialize

q_i=Vq(2,isnan(Vq(1,:)))’;

V_c=Vq(1,isnan(Vq(2,:)))’/kc; %scale by kc to avoid poor conditioning

V_c(isnan(V_c))=0; %for constant charge conductors

%add conductors with total charge

if size(Vq,1)>2

qtots=zeros(size(Vq,1)-2,1);

for i=3:size(Vq,1)

qtots(i-2)=Vq(i,find(isfinite(Vq(i,:)),1));

end

V_c=[V_c;qtots];

else

qtots=[];

end
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a=size(sphs,2);

m=size(sphs_c,2);

n=size(sphs_i,2);

q=length(qtots);

Cc_inv=zeros(m+q,m+q);

Ci_inv=zeros(m+q,n);

Ca_inv=zeros(a,a);

m_ind=1;

n_ind=1;

%loop through all spheres

for i=1:a

%populate full cap matrix

Ca_inv(i,i)=kc/sphs(4,i);

for j=1:i-1

Ca_inv(i,j)=kc/norm(sphs(1:3,j)-sphs(1:3,i));

Ca_inv(j,i)=Ca_inv(i,j);

end

if isnan(Vq(2,i)) %conducting sphere, build cap matrix

Cc_inv(m_ind,m_ind)=1/sphs(4,i); %kc omitted for conditioning

for s=1:m_ind-1

Cc_inv(m_ind,s)=1/(norm(sphs_c(1:3,m_ind)-sphs_c(1:3,s)));

%kc omitted for conditioning

Cc_inv(s,m_ind)=Cc_inv(m_ind,s);

end

m_ind=m_ind+1;

elseif isnan(Vq(1,i)) %insulated sphere, build cap matrix

for t=1:m

Ci_inv(t,n_ind)=1/(norm(sphs_i(1:3,n_ind)-sphs_c(1:3,t)));

%kc omitted for conditioning

end

n_ind=n_ind+1;

end

end

%expand matrices for qtot spheres

for r=1:length(qtots)

Cc_inv(m+r,isfinite(Vq(r+2,:)))=1;

Cc_inv(isfinite(Vq(r+2,:)),m+r)=-1;

end

%calculate qs

if n==0 %no insulated spheres

q_c=Cc_inv\V_c;

elseif m==0 %no conducting spheres
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q_c=[];

else %combined

q_c=Cc_inv\(V_c-Ci_inv*q_i);

end

q_a=Vq(2,:)’;

q_a(isnan(q_a))=q_c(1:m);

V_a=Ca_inv*q_a;

Vq_out=[V_a,q_a]’;

%populate pos E & V

if exist(’pos’,’var’)

posout.V=zeros(1,size(pos,2));

posout.E=zeros(size(pos));

for g=1:size(pos,2)

for f=1:a

rho=pos(:,g)-sphs(1:3,f);

posout.V(g)=posout.V(g)+kc*q_a(f)/norm(rho);

posout.E(:,g)=posout.E(:,g)+kc*q_a(f)*rho/norm(rho)^3;

end

end

end

%populate forces & torques

a_ind=1;

for h=1:b

p=size(body(h).sphs,2);

bodyout(h).Vq=Vq_out(:,a_ind:a_ind+p-1);

F=zeros(3,1);

L=zeros(3,1);

lp=1:a;

lp(a_ind:a_ind+p-1)=[]; %index all but spheres in this body

%calculate forces & torques

for e=a_ind:a_ind+p-1

for f=lp

rij=sphs(1:3,e)-sphs(1:3,f);

F=F+kc*q_a(e)*q_a(f)*rij/norm(rij)^3;

L=L+tilde(body(h).sphs(1:3,e-a_ind+1))*kc*q_a(e)*q_a(f)*rij/norm(rij)^3;

end

end

bodyout(h).F=F;

bodyout(h).L=L;

a_ind=a_ind+p;

end

end



Appendix C

VMSM Parameter Variation

While the visual approach to quantifying the Multi-Sphere Method in Section 2.5.2 is useful

for analyzing the quality of a single parameter fit, when multiple scenarios are compared to each

other, it is desirable to have a single value for the quality of the fit for each scenario. The following

scalar residual sums RESF and RESL for the model forces and torques are therefore defined. Here

n is the number of external sphere locations di where data points are considered, and F and L

refer to the forces and torques from the MSM and the Maxwell truth data.

RESF =

n∑

i=1

|FMSM(di)− Ftruth(di)|

n∑

i=1

Ftruth(di)

(C.1)

RESL =

n∑

i=1

|LMSM(di)− Ltruth(di)|

n∑

i=1

Ltruth(di)

(C.2)

Dividing by the denominator ensures that this scalar residual sum is independent of the

resolution of the data set. Table C.1 compares the residuals of the three-sphere MSM fit shown

above and a single sphere model (equivalent to the Effective Sphere Method in35). The single sphere

size is determined using the same non-linear fit, resulting in R = 0.9974 m. It is clear that the

single sphere results in much higher residuals than the three-sphere model, and RESL for a single

sphere is unity because it lacks the ability to predict any non-zero torques.
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Table C.1: Scalar residual comparison between three-sphere MSM and single sphere model

3 sphere MSM Single sphere model

RESF 0.0155 0.0972
RESL 0.0485 1.0000

An important step to validating the Multi-Sphere Method is to verify whether a model with

specific parameters scales with some of the arbitrary constants that were chosen when using Maxwell

to develop a truth model data set. While the geometry of the modeled shape is specified in the

problem statement, the size of the external sphere RB and the model and external sphere voltage φA

and φB, were chosen arbitrarily, though they represent typical spacecraft charge control parameters.

When the MSM is utilized in simulations, these conditions are liable to change. Moreover, the

external sphere could take on a generic 3D shape of its own, which can in turn be modeled with

the MSM. To verify that the specific model holds when these parameters are changed, the outputs

of the MSM with the optimized sphere parameters are compared to numerical simulations while

individually varying the parameters RB, φA and φB and replacing the external sphere with a

duplicate of the 3D body at two orientations. Remember that the nominal values are an external

sphere with RB = 0.5 m, φA = φB = 30 kV, and the same three-sphere model outlined in Table 2.1.

The results are concisely summarized using scalar residual values in Table C.2.

Table C.2: Scalar residual comparison of scaled parameter variation from numerical simulation

RB variation 0.25 m 1m

RESF 0.0150 0.0578
RESL 0.0639 0.0749

φA variation −30 kV 10 kV 50 kV

RESF 0.0281 0.0225 0.0242
RESL 0.0370 0.1021 0.0745

φB variation −30 kV 10 kV 50 kV

RESF 0.0275 0.0733 0.0241
RESL 0.0424 0.2454 0.0481

External cylinder Parallel Perpendicular

RESF 0.0355 0.0305
RESL 0.0350 0.0744

The residual values for all the scaled scenarios are an improvement over the single sphere
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residuals in Table C.1. The only scenario that yields less than desirable results are the combination

of V = +30 kV and V = +10 kV. The induced charge effects are largest for this combination

of charges, which are not captured by a three-sphere MSM. Future models with multiple spheres

may capture these effects better. For now, it is still clear that the three-sphere model provides an

improvement over other models because of its ability to resolve torques and forces more accurately

than a single sphere approximation.



Appendix D

SMSM Packing Parameter

In order to analyze the optimal sphere size across various geometries, comparing the total

surface area 4πR2n of every sphere in the MSM to the total surface area S of the modeled geometry

provides geometric insight. This relation is represented by the packing parameter γ:

γ =
4πR2n

S
(D.1)

For the spherical spacecraft being modeled with the SMSM, the optimal packing parameter

is plotted against the number of spheres in the model in Figure D.1. Interestingly, even though the

number of spheres in the model and therefore the spacing between them changes, the parameter γ

appears to converge to a constant value.

γ
=

4
π

R
2
n

S

n = # of spheres in MSM

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

Figure D.1: Optimal packing parameter for Surface MSM on sphere

The same plot is given for the cylinder geometry in Figure D.2. Clearly, the optimal γ values

do not match those for the sphere in Figure D.1. For this reason, R must be fit for a specific sphere
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distribution to match the capacitance of a given model shape.

γ
=

4
π

R
2
n

S

n = # of spheres in MSM
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Figure D.2: Optimal packing parameter for Surface MSM on cylinder

In Section 2.5.1, the calculation error in the force between two spheres is analyzed for various

models. These results beg the question, how does the uniform sphere radius R, and thus the packing

parameter γ = 4πR2n
S , affect the resulting force computations? In Figure 2.9, this parameter is

optimized such that the capacitance of the MSM matches the capacitance of the sphere that it is

intended to model. If a different R is chosen, might the model match the true forces better at close

separation distances? Figure D.3 shows the error in force at three separation distances, for a range

of γ values, comparing both the 10 and 30 sphere model. The repulsion configuration is chosen

with V1 = V2 = +30 kV.

At the larger separation distance (d = 15RS), the force error is minimized when γ = 0.8464

for n = 10 and when γ = 0.8273 for n = 30, as shown by the red circle. This corresponds within a

fraction of a percent to the optimal values in Figure D.1, suggesting that fitting the model-sphere

radii to the body capacitance results in the optimal force prediction at larger separation distances.

To match the induced charge effects and forces at closer distances, the optimal packing parameter

γ (and therefore R) is smaller. Choosing R on this basis, however, would result in significant errors

at larger separation distances. In the end, spacecraft proximity missions would rarely operate at

fewer than 10 craft radii separation unless docking is considered, so the best approach is to choose

the sphere radii by matching to the spacecraft body’s self-capacitance in deep space as outlined in
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Figure D.3: Error in force for various packing parameters

Section 2.4. Notice that the sensitivity in force error to γ is appreciably decreased for the model

with more spheres, which is a promising feature of the new method.


