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Introduction: Work on regular sets, sets recognizable by finite automata,

goes back to the middle and late fifties, to the work of Kleene, Rabin,
Scott and others. Most preliminary questions were solved at this early

stage and most of the questions that remain, appear to be quite hard.

dmong the propertiss that regﬁlar sets have are so called pumping
lemmas or iteration thecorems. These theorems follow from the fact that a
finite automaton that accepts long strings must repcat internal states,
i.e. loop. "I‘"ne existence of such a loop implies that the corresponding
portion of the input string may be eliminated or iterated without affecting

acceptance or rejection by the automaton.

The question that we intend to consider in this paper is that
of a converse, i.e. the question whether a given pumping property implies

regularity. We present both positive and negative results and compare

them with recent results by Jaffe [J’m and Beauquier !_BJ.

We close the paper with some open questions and suggestions

for further work.

We arc indebted to Rao Kosaraju for raising this general
question of pumping lommas. We are also indebted to Jaffe, Pratb, and
Meyer for useful discussions.

Notational Remarks: Throughout the paper Zwill be some fixed unspecifiod,

finite alphabet. However, in theorem 1, z is explicitly given. a, b, &
are symbols, x, y, 2z are strings. ;yf is the length of the string y. If

L ¢ ‘Z* then L = Z_“’* ~ L. Letters i,j,k,1,m,n,p denote natural numbers 2» C.

’
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2. MNogative Results: We begin this section by stating the pumping

lemma.

Pumping lemmg: Let L € ¥ * be regular. Then L satisfies the pumping
condition. I,e. there exists a k0 such that for all x,y,z ¢ g * if
Iyl > k then there are u,v,w g §* v # A such that uvw = y and for all
i30

xu(v)tyz €L iff xyz el .

This is a well known result, see({H}ém ) It can be proved
by letting k3 the number of states of oy where 7 is an automaton ﬁhat

recognizes L.

Question (Rao Kosaraju) Does the pumping condition imply regularity?

Theored?! ; (3eauquier) There is a context free language L which

satisfies the pumping condition but is not regular.

We prove below a somewhat stronger theorem.
Theorem 1: There ars EX" languages which satisfy the pumping condition.
Thus the pumping condition does not even imply recursiveness. Some of
these languages are CF but n.ot regular.

Proof: We prove this result by the following device. Let Z,l ={a,b}

*»
and X< E, . We take a 16 letter alphabet { and code X as a subset
L(X) of T *. L(X) satisfies the pumping condition and the map

X = L(X) is 1-1. Since X is an arbitrary subset of ¥ %> there are

L4

ER" possibilities for X and hence the same number for L(X). This proves

the first part of the lemma. We show moreover that if X is the language

{a"* ooy -o,o"i then L{X) is CF but not regular.

'; .

‘Details of proof': z = {84, ; l0€4i,5¢ 3},‘»4’6‘ define two maps f_, f

from § to ¥ .
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£, (ai j) = %441, (mod 4).,
£, (ag 5) = %1, j#1 (mod 4)

The functions fa’fb are permutations of § and have moreover the property

that applying two functions can never have the same effect as applying
ons. E.g. for all §¢ ¥ )
£,(£,(6)) A1 (&) 4 £ (£,(6))

This is because applying two functions increments both sub-
scripts i,j by one (mod 4) or one subscript by two (mod 4) and a single
application of a function can never achieve thig, |

We define a legal string as any string (6'1 )!11 (5’2 ;12 ceed
(6m ) ? o x where 7 iS&O)O and for all 1<n, 551,+1 is either fa<sﬂ.)
or fb(é'x). If we think of the transition from 6\“lw to 6:“1 as being
caused by an a or b, then there are m-1 transitions above and they
correspond to a string y in 2. %, We shall sa& that x codes y. (The
powérs ny are all positive so y is unambiguously determined by x).
= 2, and

2
1'13 = 1. The coded string y is ab, Note that the same y has many

Thus the string X = &0,0 a,;l’oa,}’oahj isg ]_egaj_’ ni =1, n

codes x.

The parity of a string is the sum of all subscripts i,j (mod 2).
Thus the parity of the string x above is 0.

Now we let
L(X) =*§.xf x is legal and x codes a y such that ye Xj )

T -
¥l x is 11legal and parity of x = 03

Clearly the map L is 1-1, for suppose X = X‘I and say x & X—-XT.
Then let y code x and yeL({X) - L(Xll). We shall now show that L(X) always

satisfics the pumping condition, Lot k = 6.
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Let gya' € 5§ * and | y13 6. We consider cascs :
(1) (a) zyz' is legal and y contains a doublet 66 . Let y = uEw
where the last symbol of u is also € and let V= &. Then for all i,

zu(S)in' is legal and codes the game x that zyz' does.

Hence zu(6 )1 .z € L(X) iff zyz' € L(X).
(b) 2ys' is logal but y contains no doublet. We now have to consider
paritivs. Say for oxample that zyz'¢ L(X) and has odd parity. lNow ¥
itself must contain a symbol of odd parity. Let & be that symbol and
Yy =uvw . Wo can choose v 80 that it is not an end symbo;A iihen for
all i3 1, -

Ku(v)iwz' codes the game string as zyz' and is legal so
2u(v) w2t € L(x).

For i = 0, zu(v)iwz’ = Zuwz' has zero parity and is il cgal
0 again gu(v)iyg! € L(X),

The cases where 7yz! has even parity and/or ayz'fgL(X) are
gimilar,
(2) zyz' is illegal. The illegality may be caused by the initial
symbol being other than ao,o or by a bad transition. In any case zyz'
contains a subpisce y! of length £ 2 such that preserving that
piece will prescrve illegality. Hence since }yi > 6, we can find a
v'! such that
(a) v’ is disjoint from y'. (This would be automatic if y! were in z
¢r z' and e also be achioved if y' overlaps y)
(b) vt =2,

Now 1lat v be a subpices of v! of parity O. There must be
a nontrivial such subpivce with one or two cy2bels, Let y = uvw. Then

for all i3.0,
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zu(v)iwz’ has the samo parity as zyz' and is illegal.
Honeo zu(v)iwz’ iz in L(X) iff zyz' is,

This proves the first part of the lemma. To show tho second
part, consider first the strings x = a"b”  yhere n is divisible by 4 and
the strings y which reprcesent them. Consider the CF rules

8 = AO,O A1,O 41'2,0 A310 S AO;T Ao,!z AO;B AOO

4,5 =» A

Thoe set generated is CF and is the sot of y which represent
somz ab" where n =0 mod 4. The casesn 1 mod 4 for i =1, 2, 3
arc similar. Hence L(X){) Legal is CF, being a union of four CF scts.
But then

L(X) = (L(X)nlﬁ‘g@) ) (not Legal N O-—paz‘ity)) and not Logal,
O-parity arc regular., Thus L(X) is CF, being a union of two CF sets.

But the set canﬁot be regular, for consider strings yl such
that y; reprosents ai and z; such that z; represents bt and 1 is
divisible by 4. (This is for convenicnce since ao,o is the starting
symbol of all logal strings, and is also the last symbol of v, 1f 4
divides i). Now for all i, j, if i # j %hen

Y52 € L(X) and 25 é L(X). Hence, by Myhiil'a thoorem [ Rs 1

or Nerode's theorem iN] , L(X) is not regular. Q.E.D,

3. Positive results: Wo saw in the last scction that the pumping
lemna docs not imply regularity. This is also trus (&f. footnote @) of

a somowhat stronger "marked pumping lomma". Thus the question arises
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whathor thero is any form of pumping that is a nccossary and sufficicnt
condition for regularity. We begin tho discussion by defining the notion
of a pump and quoting a rocent reglt of Jaffo.
Dof: Lot LESH¥ x¢e ¥% and x = uv»}_,then v is a pump for x relative
to L iff for all 13,0,

u(v)iv €L iff x € L.
Note that being a pump is really a property of the particular occurrence
of v . x may have two occurrences of w of which one is a pump, the
other not.
Theorem (Jaffe): L is regular if there is a k such that for all
x €7 %, if ixt > k then b/u,v,w, X = Uvw, Vv qé,\ and for all z, v is
a pump for xz relative to L. I.e. for all 130, all z €5 ¥,

u(v)iwz{{ L iff xz¢ L .,
Jaffe himself gives a direct proof of his result though it can also be
shown from Nercde's theorem and the following taree observations.
(1) It is sufficient to show that if = is the Verode equivalence
relation, then for every x there is an x' such that | x'f <k and
X =z x', For then the index of = must be finite. There are only
finitely many x' with jx't &< k.
(2) It is sufficient to show for (1) above that if {xl > k then there
is an x" such that fx"{{ix] and x = x", for repeating this will even-
tually yield the desired x' as above.

(3) However, if u,v,w,x are as in Jaffe's theorem then x = uw and

juwl & xf.

..u-»-um.«-mw.m—-m«...n—u.n..u.qummnma—umwuounwom—-m_u«-n-«»-.«”..m....«--..—...nq....-«.-u...w-».u...um-mm

(The "only if" part of the theorem is also true but quite easy)
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However, Jaffe's pumping condition is not lgcal. Given an x
we don't need a pump just for x but a uniform pump for all xz, z & I%.
30 the question that arises is whether we can find a local pumping condi-
tion that is equivalent to regularity . Our theorem 2 below gives a
positive solution to this question.

Def: L« § * has the block pumping property if there is a k such that

e

for all x,w,y,, -~ , Yo whin § %, if x = ATER ykw' then there exist
1,3, Tgl{j &k such that y:":yLﬂ veo yJ. is ‘a punp for x relative to L.
(Note that because the x,w etc. are universally quantified over, we need

not specify that the y‘j be nonempty. The fact that some cases under the

condition are vacnous .does not imoly that the condition itself is vacuous).

Def: LET* has the block cancellation property if there is a k such

that for all KaWy¥g oo Vi w!oin %, if x = wy",.ykw' then there exist

1, §, 1€0¢ i<k such that wy{..yﬁmfy w'€ L iff x€L.

if ot %k
Notation: If L has the block cancellation property for a particular k
we shall say that L& [,

Theorem 2: Reguiarity, the block pumping property and the t;lock cancel-
lation property are equivalent.

Proof: (1) If L is regular, let A4 be an automaton accepting L and let
k be the mmber of states of A. Let gd bz the state just after reading

Yj then 80,34, o sk are k+1 occurrences of states and there must be 4, ]

such that 1 # j but s+

Lo 3 . .
= 8%, Then v Y941 °* yJ. is the required pump
for x relative to L.

(2) If L satisfies the block pumping property, then by taking i = 0, it

- satisfies the block cancellation property.

Thus the theorem roduces to the lemma below:
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Lomma 1: Tho cancoellation proporty implios regularity.

Wo shall use the following finite version of Ramsey's thcorem,
If X is a set, X[2]denotes the set of all two clement subsets of X,

If X has n elaments then XE}'ﬂ has %n (n-1) elements.

Thoorem: (Ramsey) For every k there is a number r(k) such that if a
set X has r(k) clements or more and X[R] = Z{J2' then therc is a a Y€X

such that Y has at least k+1 clements and Y[2]¢z  or ¥Y(2] €z'.

The number r (k) is usually denoted N(k+‘?,k+1,2) corresponding to
a more gencral statement of the theorem, but we shall use the simpler

notation. In Lemmas 2 ard 3, Z is fixed.

Lemma 2t ﬁ)k is finite. To be precise, if L,L' are in 81{ and for all

strings x with { x}< r(k), x¢L iff x ¢ L' than L = L1,

EEQQ«’Q’ The lemma claims that a language L in C k is completely deter-
mined by a finite subpicce of it. If Z has n clements, ny 1, there are

r{k) strings of length € r(k) and hence at most 2% sets of

at mstm =n
such strings. Thus the lemma claims that @ k has at most 2% languages
in it.

Claim: We will show by induction on n that if }x{=n then x¢L iff

x €LYy This is clear if n<r(k). d4ssume the claim for all p<n.

Suppose |x| =n and n3 r(k). Write x = Y4 Yn(k) w'! where all
tha vy are nonampty; Let X ={o,..., r (k)}amd for 4,jé€ X, !l(j)gxl,j}ez
if W Vg yj““yr(k) w' &L and otherwise{!lij } & Z'.

Then X[2] = 2U2' and by Ramsey's thooram, there is a ¥ with at

least k+1 clements such that Y[21€ 2 or Y{E]fgz',
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In any casc tho clements of Y split x into k+2 piccos, the pleco
u boforo the first clement of ¥, the pisco yt after tho last element,

and all ths k intermediate piucgs, z‘f*“z Thus % = uzd.q“ Zk ul. Wa

"
have two cascs.
(i) Y[2] <€ Zz. Then removing any comsccutive block of z's from x corres-
ponds to somo set {l,j} in Y[2] and the shortensd string x' is glways
in L. However, by the cancellation condition, there is somg consecutive
block of z's, whose removal leads to an x' such that x'€ L 1ff xg L.,
Hence x & L.
(i1) Y[Ejé 2'. A similar argument tells us that xé% L. Hence xé€L
iff there is a ¥ with k41 elements oete. Such that Y[Z}“{-_:, Z.

Similarly for L',

Howsver, note that the condition on the right of the "iff" is tho
same for L and L' since for all strings x' shorter than x, x'& L
iff x'& L', Thus for x also, we get, x¢ L iff x¢ L'. This proves the
claim and the lemma.

Lemma 3: (1) LQZ‘Z i Tel,
() Ae L orA € T
(3) Letl = {zt xz€ L} then if L€ @k then Lx€§k~

Proof: (1, 2) arc obvious. To see (3), note that zé_Lx iff xz ¢ L.
Now suppose that z € P *oand z = WYy eese ¥ w's  Consider xz mw"y1,.ykw'
where w't=xw . Then 30,j, 141<jgk such that

WY Vg Ty ey €LAEE xz &L

Since L € tk'

3ut than

' I3
WY g oYy 1Y R 4 Lx iff = ﬁLX «

j+1

Henca Lx: is also in et
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wo nxy
PROOF OF L&MA 1: If L has the cancollation property/as wall assumo

that A ¢ Lo since othorwisc wo can work with io which i3 also in t’k
and the rogularity of I':Q will imply that of L . Wo define tho automaton
A as follows: '

s =Y, , .

B, = Start state = Lo?

M(L, ) = next language (state) after resding &

= Llf

F = set of accepting statos

{L!Aé L},

Clearly M(L, x) =L,. For Ly =L andl o= (L )z =H0MLx),6 )

li

(induction hypothesis) = M(L,x&)

Thus
A sccepts x  iff M(LO, x)€ F
irs Ag M( L, x)
e Ae) et xAet,
iff x€L,

Q.E.D.
We close this s:ction by listing some open questions:
(1) Is therc an analoguc of theorem 2 for context frec languages?
(2) Tho automation that we have construct:d in tho proof of theorem 2
which rccognizes the langueage LO, has a very lar%m;)number of states.

r
For a two clement Z , the number would be 22 . 3y considering

C e . k
nendeterninistic ~utom~ta we scc thet there is a lower bound of 2.

Can we bridgo this gap?
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(3) e block pumping Lomma d:p:nds for its strongth principally on
the concullation property, ie.c. the casu 1 = 0, Is thare a
pumping property which is positive, i.o. usos i21 only and which

is cquivalint to rugularity?

Footnoteg:

1. Theorem 1 and an approximate formulation of the blosk pumping condition
are duz to Parikh. The precisc formulation of the block pumping condition

and tha proof of theorem 2 are duec to Ehrenfeucht and Rozenborg.

2. Actually Beauguier's countor example is somewhat stronger. Thors is
a marked pumping lemma whore k distinct symbols in y arc markéd and the
pump  is requir:d to contain one of the marked symbols. SBeauquicr shows
that there is a OF language that satisfius the marked pumping condition
but is not regular, Subscquent to our thoorem 1, Vaughan Pratt showed
(private communic-tion) that thore arc QN” languages  having the marked

pumping property.
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