New Accurate Algorithms for Singular Value
Decomposition of Matrix Triplets *

Zlatko Drmac

CU-CS-833-97

| |Uniiversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* Department of Computer Science, Engineering Center ECOT 717, University of Colorado at Boulder, Boulder, CO 80309-0430,
(zlatko@cs.colorado.edu; http://www.cs.colorado.edu/-zlatko/). This research was supported by National Science Foundation grants
ACS-9357812 and ASC-9625912, and Department of Energy grant DE-FG03-94ER25215. Parts of this work were presented at the
International Workshop on Accurate Eigensolving and Applications, July 11-17 Split, Croatia, and at the First Congress of the
Croatian Mathematical Society, July 18-20, 1996 Zagreb, Croatia.






ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.






New Accurate Algorithms for Singular Value Decomposition
 of Matrix Triplets

Zlatko Drmac*

March 26, 1998

Abstract

This paper presents a new algorithm for accurate floating—point computation of the singular
value decomposition (SVD) of the product A = B7SC, where B € RP*™ C € R¥*" S ¢
RP*? and p < m, g < n. The new algorithm uses diagonal scalings, the LU factorization with
complete pivoting, the QR factorization with column pivoting and matrix multiplication to
replace A by A’ = B’7.8’C’, where A and A’ have the same singular values and the matrix A’ is
computed explicitly. The singular values of A" are computed using the Jacobi SVD algorithm.
It is shown that the accuracy of the new algorithm is determined by (i) the accuracy of the
QR factorizations of B™ and C7; (ii) the accuracy of the LU factorization with complete
pivoting of S; (#44) the accuracy of the computation of the SVD of a matrix A’ with moderate
min p=diag "2 (A’D). Theoretical analysis and numerical evidence show that, in the case of
rank(B) = rank(C) = p and full rank S, the accuracy of the new algorithm is unaffected
by replacing B, S, C with, respectively, D1 B, D2SD3, DsC, where D;, i = 1,...,4 are
arbitrary diagonal matrices. As an application, the paper proposes new accurate algorithms
for computing the (H, K)-SVD and (H™ !, K)-SVD of S.

1 Introduction

In this paper, we study floating—point computation of the singular value decomposition (SVD) of
the product

A=DB"SC, BeRP™ CecR¥" ScRP p<m, ¢g<n (1)

Our goal is to develop an efficient stable algorithm for computing the SVD of the matrix A, and to
compute the singular values and the singular vectors with high relative accuracy in the following
regular case:

~ rank(B) = p, rank(C) = ¢, rank(S) = p = min{p, q}. (2)

If relation (2) holds, we call the 3—tuple (B, S, C) regular matriz triplet. In that case, the matrix
A has min{m,n} — p well-determined zero singular values. To compute the remaining non-zero
singular values with high relative accuracy means that the computed approximations §; > --- > 6,
of the exact singular values oy > --- > ¢, satisfy an uniform error bound

|6s — il

) e '
fax ——— < f(m,n,p)x(B, S,C)e < 1, (3)
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where (B, S,C) is certain condition number, f(m,n,p) is modestly growing function of the di-
mensions, and € is the round—off unit. We use perturbation theory to identify «(B,S,C) and we
describe a class of regular triplets (B, S,C) for which x(B, S, C) is moderate.

The SVD computation of the product of three matrices arises in a number of applications. It is
an implicit way to compute the (H, K)-SVD, introduced by Van Loan [46], [47]. Given symmetric
and positive definite matrices H € RP*P and K € R%*?, then the (H, K)-SVD of a matrix
S € RP*9 is the decomposition Y "1SZ = D, where D is diagonal and Y"HY = I,, Z7KZ = I,.
It is easy to show that the (H,K)-SVD of S can be computed using the SVD of the product
B7SC~1, where BB™ = H, C"C = K. Positive definiteness of the matrix H is stable in presence
of floating—point rounding errors if and only if H can be written as H = Ay H;Apy, where Ay is
diagonal, H, has unit diagonal and the spectral condition number x2(H;) is moderate (cf. [10]). In
that case, any factorization H = BBT7 yields full row rank matrix B such that B = AgB,, where
Ap is diagonal, the rows of B, have unit Euclidean length and x3(B,) is moderate. Similarly, if
PKP™ = CC" is the Cholesky factorization with pivoting of K, then the rows of C~! can be scaled
so that the scaled matrix is well-conditioned. Van Loan [47], Larimore and Luk [34], Ewerbring
and Luk [23] show that the (H, K)-SVD provides theoretical and computational framework for
solution of linear algebra problems such as weighted least squares, canonical correlations and
optimal prediction. Hence, all these problems can be solved using the SVD from the matrix from
relation (1), where B and C are full row rank matrices.

Computing the SVD of B™SC cannot be simply reduced to the SVD computation of the
explicitly computed matrix A = BT SC. Even if we compute the matrix A as exactly rounded exact
product A = BTSC, and if we compute the SVD of A exactly, the result might have unacceptably
large relative error. For instance, let € # 0 and let

e~ 11 =111 071 1] [14e 1-e€
A=EREE 1 1][0 ell-1 1] 7 [1-e l—i—e}' @)
If || is small (or large) enough, the values of 1 + ¢ are rounded to one (or to =e), and the matrix
A is exactly singular. Thus, even an exact SVD algorithm cannot recover the minimal (non-zero)
singular value of A, omin(A4) = min{2,2le|}. (Note that omin(A) has small relative variation as
function of the parameter ¢.)

To avoid numerical difficulties illustrated in example (4), Ewerbring and Luk [23] and Bo-
janczyk, Ewerbring, Luk and Van Dooren [5] used generalizations of the Kogbetliantz algorithm
[33], [40], [30]. These algorithms start by reducing the problem to the computation of the SVD of
the product of triangular matrices (cf. [30], [23]). In the next phase, these algorithms iteratively
use plane rotations that solve a sequence of 2 x 2 subproblems. More precisely, these algorithm first
use orthogonal transformations to replace the input data B, S, C with a triplet Ai‘”, Aéo), Agg)
of upper triangular matrices such that B”SC and Ago)Aéo)Ago) have the same nonzero singular

values. Then, starting with A’ = A§°> AéO)Ago), the iterative process is defined by
T
(4% = QAP (@), i=1,2:3), k=0,1,2,..., (5)

where ng), i =1,2,3,4, k > 0, are suitable orthogonal plane transformations, and all matrices
Az(»k) are upper triangular. In the limit, limk_mo(Agk) Agk)A:(,)k)) is diagonal matrix with the singular
values of A§°>A§°)A§°) along the diagonal: Numerical experiments presented in {5] show that the
algorithm (5) is more accurate than the computation of the SVD of the explicitly computed matrix
A. Note, however, that the computation and the memory access in algorithm (5) are quite involved:
in each step, the algorithm determines four rotations and applies them to all three matrices both
row-wise and column—wise, using Level 1 BLAS [37], [36]. Furthermore, if the singular vectors are
needed, the algorithm updates two additional square arrays (accumulated products of the matrices

ng), k>0, and Qflk), k > 0, respectively).
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On the other hand, straightforward algorithm that computes A = B7SC explicitly and then
computes the SVD of A is rather simple. It can efficiently use optimized Level 3 BLAS for matrix
products, and the SVD of A can be computed using fast algorithms such as the divide and conquer
algorithm [29]. Unfortunately, the cost of this simplicity is potentially large relative error in the'
computed singular values. This large relative error may be caused by explicit computation of the
product (cf. example (4)), or by inaccuracy of the algorithm for SVD computation (cf. [13]).

In this paper, we show that it is possible to follow the simplicity of the straightforward algorithm
and, with proper preconditioning of the input matrices, to preserve the numerical stability. In our
new algorithm, we first replace the triplet (B, S, C) with an equivalent triplet (B',I,C") = (B',C"),
and we compute the SVD of B7C” using an algorithm from [15]. In that algorithm, the pair
(B’,C") is replaced by an equivalent pair (B”,C"), and the SVD is computed by an application
of the Jacobi SVD algorithm to the explicitly computed matrix B”7C”. In the transformation
of (B, S,C) to B""C", we use diagonal scalings, the LU and the QR factorizations with pivoting
and the standard matrix multiplication that involves triangular or trapezoidal matrices. We use
similar strategy to compute the (H, K)-SVD of a rectangular matrix S, where we use the Cholesky
factorizations of H and M to reduce the problem to the computation of the SVD of matrix triplet.
Modular structure of the new algorithms makes them suitable for LAPACK [1] and ScaLAPACK
[4] style implementations on top of high performance libraries such as BLAS [14] and PBLAS [7].

We show that the accuracy of the new algorithm for the SVD of B7SC is determined by our
ability to compute (i) accurate QR factorizations of B™ and C7; (i) accurate LU factorization
with complete pivoting of S; (iii) accurate SVD of a matrix A with moderate min p=diag 52 (AD).
Our theoretical analysis and numerical evidence show that the accuracy of the new algorithm is
unaffected by replacing B, S, C with, respectively, D1 B, DS D3, D4yC, where D;, i = 1,...,4 are
arbitrary diagonal matrices. Similar conclusion holds for the computation of the (H, K)~-SVD of
S and scalings D1HDy, D2SD3, D4yK Dy.

The paper is organized as follows: In § 2, we review the algorithm from [15] for for accurate
computation of the SVD of the product of two matrices. The new algorithm is described and
analyzed in § 3. We give a backward error estimate for the general case (1) and we prove that
in the case of the regular triplet (B, S,C) the new algorithm is capable of achieving high relative
accuracy. In § 4, we use the technique developed in § 3 to develop new accurate algorithms for
computation of the (H, K)-SVD of general rectangular matrix S. We also analyze a new algorithm
based on the generalized SVD (GSVD, cf. [46], [47] [41]) of regular matrix pairs. In § 5, we show
that floating—point implementations of the new algorithms run as predicted by the theory.

2 The SVD of the product B"C

The SVD of the product of two matrices (product induced SVD, [24]) arises in a number of
applications. An example is computation of the canonical correlations of normally scaled matrix
pairs; see [28]. Further, if M = CC7 and H = BB" are the Cholesky factorizations of positive
definite matrices M and H, then the eigenvalue problem M Hz = Az can be reduced to the SVD of
B7C. The eigenvalue problem M Hxz = Az has applications in computation of the contragredient
transformation in the design of reduced order linear systems, see [35], or in statistical computation
such as principal relations, see [48]. In this paper, we use the SVD of the product of two matrices
in process of computing the SVD of the matrix product in relation (1).

We compute the SVD of B™C using the following algorithm from [15].

Algorithm 2.1 PSVD(B,C)
Input Be RP*™, C e RP*", p < min{m,n}.

Step 1 Compute Ap = diag(]|B7e;||2) and B, = AEB, Cy = AgC.
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Step 2 Compute the QR factorization of C7 with column pivoting,

R

n="q,p

CTIl = Q[ o ] , Re R"P? rank(R) = 7, Q orthogonal.

Step 3 Compute the matrix F' = BJIIR", using the standard matrix multiply algorithm.

Step 4 Compute the QR factorization (optionally, with column pivoting) of F:
_ Rp
Fllp = QF { o } :

Step 5 Apply the Jacobi SVD algorithm to R} to compute the SVD of Rp as ¥ = VT RpW.

Output The SVD of B"C is { EGSO } = [VT 1] QE(BTCHQW & In_p)).

Algorithm 2.1 replaces the computation of the SVD of B”C with the computation of the SVD of
the explicitly computed matrix F'. Since F' = B7C(Q, the first three steps of Algorithm 2.1 can
be viewed as a way to find an orthogonal matrix @Q such that the product F = B7(CQ) can be
computed without loss of accuracy. The key idea is to combine diagonal scaling and the following
two important properties of the QR factorization of a general full column rank matrix Y: (%)
IfY =Y. Ay, where Ay is diagonal matriz and Y, is well-conditioned matriz with unit column
norms, then floating—point QR factorization of Y is accurate independent of ko(Ay) (cf. [17],
[31]). (i1) If YIL = QRy is the QR factorization with column pivoting [26], then the matriz Ry is
of the form Ry = D(Ry),, where D is diagonal and (Ry), is well-conditioned independent of Y.
The resulting matrix F' is of the form F = F.Ap, where A is diagonal and x2(F,) is moderate
if ko(B,) is moderate. Accurate SVD of F is possible independent of x2(Ap) due to excellent
stability properties of the Jacobi SVD algorithm (cf. [13], [18]).

In Step 1 of Algorithm 2.1 we use the generalized inverse ATB for the case that some rows of B
are zero. In that case, z (say) zero rows of B produce z zero columns in C7. The pivoting in the
QR factorization of CT ensures that the zero columns in C] are permuted to the last z positions.
As a result, the matrix F equals F = [F', O], where F'is m x (p — z), and the corresponding z zero
singular values are deflated without. error.

The QR factorization of C7 is computed with column pivoting as in [26]. If we use the LA-
PACK’s procedure SGEQPF() (cf. [1]), the matrix @ is computed in factored form, as product of
Householder reflections. The Householder vectors that define these reflections are stored in the
lower trapezoidal part of the array C7. In Step 5, the Jacobi SVD algorithm computes the SVD of
Rp as WX = RV, where V denotes the accumulated product of the Jacobi rotations, and WX
is the limit matrix. Note, however, that in the case of trapezoidal Rp (that is, rank deficient F')
we need the QR factorization of the limit matrix R%V, in order to obtain p x p orthogonal matrix
W. As the output from Algorithm 2.1 indicates, the Jacobi rotations are accumulated only if both
the left and the right singular vectors of B"C are needed. Indeed, if only the left singular matrix
is needed, we can apply Algorithm 2.1 to the matrix C™B.

To analyze Algorithm 2.1 in floating—point arithmetic, we use the standard model

flla©b) =(a0b)(1+¢), fl(Ve)=vec(1+(), Kll<e, - (6

where a, b and ¢ are floating—point numbers, ® denotes any of the four elementary operations +,
—, - and +, and € is the round—off unit. From relation (6) it follows that the floating-point product
Z of an m x n matrix X and an n X p matrix Y satisfies

Z=XY+E, |El<eum®)|X| Y], 0<emm(n) <(l+e)"t -1, (7)



NEW ACCURATE ALGORITHMS FOR SVD OF MATRIX TRIPLETS 5

and that the Euclidean length ||z]|2 of a floating—point vector z € R™ is computed as
FUllelz) = llzll2(1 +€), el S eg(n) < (1+e)"D2 -1, (8)

Further, floating—point QR factorization of a n- X p matrix Y can be represented as

veoy=Q[ 5| Iovels < contnpvels, 1<i<5, (9

where @ is certain orthogonal matrix, Ry is the computed triangular factor, and egr(n,p) is
bounded by roundoff £ times a modest polynomial in n, p (cf. [17], {31]). Similarly, if the Jacobi
SVD algorithm is applied to a p x p matrix G, then the computed matrix G that satisfies the
stopping criterion (all columns mutually orthogonal up to a given tolerance tol, cf. [13]) can be
represented as

GO = (G +6Q)U, |(5G)eills < es(p)|GTeilla, 1<i<p,

where U is certain orthogonal matrix and € ;(p) is bounded by roundoff € times a modest polynomial
in p. (For more details about the Jacobi SVD algorithm see [13], [17], [18].) ;
Accuracy and stability properties of Algorithm 2.1 are given in the following theorem from [15].

Theorem 2.1 Let R € RY*P be the computed triangular (generally, trapezoidal) factor in Step
2 of Algorithm 2.1, and let R, = diag(|R7e;||1) "' R. Let F be the floating—point approzimation
of the matriz F in Step 3, and let Rp be the computed upper triangular factor in floating—point
QR factorization of F. Let the Jacobi SVD algorithm be applied on G = R}, and let the columns
of the output matriz G be mutually orthogonal up to T(p) < tol + O(pe). Let FO) = (G®)7.
Then there exist backward perturbations 6B, 5C such that the diagram in Figure 1 commutes.

floating
point () o
(B,C) | oF Orns
On-55 O
backwar exact computation

error

(B+6B,C +56C)

Figure 1: Commutative diagram of PSVD(B, C).
Furthermore, it holds, for all 1, that

10B)eill2 < nplBeill2,  [I(6C)eill2 < nelCTell2, (10)
with ne < eqr(n,p)(1 +¢€) +¢, and

_ 14 ng(m)

B =T e, (m)

(1+e) {eMM(p)l! B[R] |loo + n(m,p)(1 + EMM(p))”(ET,l)THOO} +e,

where n(m,p) = eqr(m,p) + es(p) + eqr(m,p)es(p). Let o1 > .-+ > o, > 0 be the singular
values of BTC and let 51 > --- > &, be the sorted floating—point approzimations of the Euclidean
column norms of FY. Let B = diag(||B"e;||2)B,, C = diag(]|CTe;ll2)Cr. If vonel|Bill2 < 1,
vPnellClll2 < 1 then

6; — 0

L T (1 + Vsl Blll2)(1 + vpnelClll)

1+ €4y (p)

=) - 1. (11)
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Note that Algorithm 2.1 has the same error bound in the family of matrices {B"DC, D € D},
where D, is the set of p x p diagonal nonsingular matrices. If B and C are not full row rank
matrices, then the angle between the column spaces of B and C plays an important role in the
stability of the singular values of B"C. More precisely, if the column spaces of B and C are
nearly mutually orthogonal, computation with high relative accuracy is not possible. For a proof
of Theorem 2.1 and further discussion see [15], [28].

3 The SVD of the product B"SC

In this section, we analyze the new algorithm for the SVD of B"SC. In § 3.1, we give detailed
description of the algorithm. In § 3.2, we give a backward error analysis of a floating—point
implementation of the new algorithm, and in § 3.3 we estimate the relative errors in the computed
singular values and singular vectors. In § 3.4 we briefly discuss applications of the new algorithm
to computation of the SVD of B7S~1C (S square and nonsingular).

3.1 The algorithm

The main idea in the new algorithm is to reduce the triplet (B,S,C) to an equivalent triplet
(B',I1,C") = (B',C"). We use diagonal scalings, the LU factorization with complete pivoting, and
matrix multiplications. The new pair (B’, C’) is then given as input to Algorithm 2.1.

Algorithm 3.1 PSVD(B, S, C)

Input BeRPX™ CeRI*", SeRPY p<m,qg<n

Step 1 Compute Apg = diag(]|B7e;|l2) and A¢ = diag(]|C"e;||2). Then compute B, = AEB, Cr =
ALC, S1 = ApSAc.

Step 2 Compute the LU factorization with complete pivoting of S,
8111, = LU, L e RP*? U € R?*, p=rank(L) =rank(U), Ly =1, 1<i<p.

Step 3 Compute M = L1 B,, N = UII;C,, and apply Algorithm 2.1 to the pair (M, N).

Output Let Q, Qp, V and W be as in Algorithm 2.1. The SVD of B7SC is

[z%o ] _ {VT 1] T (B"SC) QW & I_,)).

The key idea in Algorithm 3.1 (and in Algorithm 2.1) is to ensure that important condition numbers
of certain scaled matrices do not increase too much after explicit computation of matrix products.
For instance, due to pivoting in the LU factorization, the matrix U is a product of a diagonal
matrix and a well-conditioned matrix, and, as a result, the matrix N = U(II3C,.) is the product
of diagonal matrix and a well conditioned matrix. Similar conclusion holds for the matrix M.

Algorithm 3.1 is simple and efficient. Its efficiency depends on the efficiency of the LU and the
QR factorizations, matrix multiplication that involves triangular or trapezoidal matrix and on the
efficiency of the ordinary SVD computation. This high—level structure of the algorithm also allows
easy adaptation to modern computer architectures.

Our next observation is that Algorithm 3.1 computes the SVD of B”SC without any additional
square array. To illustrate this feature, we give brief description of the memory usage in Algorithm
3.1. On input, B and C are stored in transposed form, that is, we are given B” and C” as
m X p and n X g arrays, respectively. The matrices L and U are stored in the standard way: L is
stored in the lower trapezoidal part of S, while U occupies the upper trapezoidal part of S. The
matrix M7 is stored in the leading m x min{p, ¢} submatrix of the initial array BT, and N7 is



NEW ACCURATE ALGORITHMS FOR SVD OF MATRIX TRIPLETS 7

stored in the n x min{p, ¢} leading submatrix of C™. Both M7 and N7 are efficiently computed
using the Level 3 BLAS procedures STRMM(), SGEMM (), and without additional working space. In
the algorithm PSVD(M, N) (Algorithm 2.1), most of the computation can be performed without
additional square arrays. If we need the accumulated product of the Jacobi rotations, we can use
the leading min{p, ¢} x min{p, ¢} submatrix of S.

3.2 Backward error analysis

Although Algorithm 3.1 reduces the triplet (B, S, C) to a single matrix by explicit computation of
matrix products, we can show that, in certain well conditioned cases, the computed singular values
approximate the true values with high relative accuracy. Furthermore, we show that floating—point
computation is equivalent to exact calculations with a triplet (B+46B,S+65,C +46C), where 6B,
0S and 6C are small backward errors.

Theorem 3.1 Let Ag, Ac, By, C., L, U, M and N be the computed values of Ag, A¢, By, Cy,
L, U, M and N, respectively. Furthermore, let L = L, diag(||Le;|l1) and U = diag(||U7e;||1)Uy 1
and let rank(L) = rank(U) = p. Let F® be the matriz computed as the output matriz from
Algorithm 2.1 in Step 8 of Algorithm 3.1 (c¢f. Theorem 2.1), and let 6M and SN be the backward
errors, where for some small constants ng and ng (cf. Theorem 2.1),

I(6M)"eill2 < nggl MTeillz, [(SN)eill2 < ngliNTeill2, 1<i<p. (12)

There exist perturbations 6B, 6C and 65 such that the diagram in Figure 2 is commutative. More

floating floating
point _ _ point JalG) o PO
B,S,C M,N p=p
(B,5,C) - (4, ) o %
backward backg{%&j l exact computation
error

exact

(B+46B,S+6S,C+6C) (M + M, N +6N)

Figure 2: Commutative diagram of PSVD(B, S, C).

precisely, there exist orthogonal matrices W' and V' such that

[ F® Opn-p

Om-55 Om—pn-p

} — W' (B + 6B)7(S + 65)(C + 6C)V",

and such that, for all i, |(6B)7e;ll2 < ng||BTeill2, [|(6C)7eill2 < ncl|C7eill2, where

v L RLATIER P R TS
o = et (14e @O0 lo 200 s e IGulll
Furthermore, 85 is such that
| 1651 < 36lS| + 20 (@)A5 I |- (DI A" (15)
Proof: From relation (7), it follows that
= LB +&um, [Em| <emmp)L|™ I -|B,, (16)

2 =

= Uﬂgér + &N, IgNI SEMM(q)IU]ﬁglérl (17)
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On the other hand, from Theorem 2.1, it follows that there exist orthogonal matrices W', V'’ such

that =(0)
F Opn-s

Om_ss Om-f;,n-ﬁ] = W'T(M + 6M)™(N + NV, (18)
and such that relation (12) holds. Further, we can write M + §M as
M +6M = L'TL(B, +6B,), 6B, ={(L7) em + 0(L7)16M,
where (L7)t = (L')” = L(L"L)~!. Note that
[T (L7 Enal < earns ()T - |ET) - L7 11y - By,

and that, for all 1 and i’ such that I e; = ey,

(T (LHTOM) el < Z | Lt ks | ¥ e (19)
< (1t enrn(p) max [|Ble;]ls ZiLlez' | Lexlls (20)

k=1
< 771\7[(1+SMM(p))llél?é(p“B:ejl]QH( Lea)t 1 (21)

Here we have used the fact that, for any diagonal nonsingular D, (f/D)Jr = D=Lt Thus, we can
estimate 6B, by {|(6B;)7e;|l2 < (B, 1 < i < p, where

e )| L] - 1LY |y + g (1 + EMM(p))“(Ec,l)THl;

= (14¢€) e, ()

(22)

Hence, M + 6M = L'TLAZY(B + 6B, + AgdB,), |0B.| < €|B|, and the estimate for 6B follows
by defining 6B = 6B, + ABcSB and np = € + (B.

Similarly, we can write N + 6N as N +46N = UIITAC (C +46C, + AcsC, ), where, for all 4,
1(6C,)7esll2 < ¢o with

enn (@I U]+ 0] oo + 1 (1 + earna (@) (Tr1) I

Cc=1+¢) o0 ()

(23)

The estimate for §C follows by defining 6C = 6C, + AcéC, and nc = € + (¢. Thus, we have

F® Opn-s

o =W’ (B +6B)"AZ ] LU A (C + sC)V’ (24)

m—p5  Om=pn—p

It remains to estimate the backward error in S. If S, is the approximation of Sy, then S, =
Ap(S + §S.)Ac, where |6S.| < 3¢|S|. Furthermore, the computed triangular factors L and U
satisfy the relation

LU = 10,510, + 6(,5:110,),  |6(11,5:112)| < erv(q)|L] - |U], (25)
where e117(q) < ge/(1 — ge). Hence, if we define 65" = A TI76(I1; S111,) I3 ALY, we can write
L0 = T, Ap(S + 65, + 68')AcTls, (26)

where 65" satisfies [0.57] < erv(q)AZMIT|L] - lU|HTAC . Now, define §S = 65, + 65" and use
relation (26) to replace LU in (24) with I} Ap(S + §S)AcIL,. Q.E.D.
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Remark 3.1 From relation (25), we see that the transition from S to LU can be equivalently
described using mixed error analysis: after small rounding errors (|0S.| < 3¢|S|) followed by exact
scaling and pivoting (II; Ag(S + 6S,)A¢Il,), we have backward perturbation followed by exact
LU factorization.

Remark 3.2 Using the results from [43], [2], [19], [8], we conclude that in Step 2 of Algorithm 3.1
we can also use the QR factorization with complete pivoting of Powell and Reid to obtain similar
accuracy in many cases. However, the LU approach is generally more accurate.

Remark 3.3 If the matrix C7 in Algorithm 2.1 does not admit accurate QR factorization, i.e."if
k2(C,.) is large, or if the Powell-Reid complete pivoting does not improve the accuracy of the QR
factorization, we can first compute the LU factorization with complete pivoting of C; = AgC,
PP PP = LeUg, and then call PSVD(PY B,, Lo, Uo(PP)7). Let B (Cy + 6C1)PY =
(I +EL)LcUc(I + Ey) be the computed LU factorization, where Ci = FU(ApC). Then on input
to Algorithm 3.1 we seek the SVD of

(1+ BrBOY ELBD)') By (B LU BEY (1+ PP Bu(PE)T).

C1

Similarly, if PJ(;)BPJ(;) = LgUpg is the LU factorization with complete pivoting of B, then we can
use PSVD(Ug (P}(BZ))T, Lz, Pg)C). Combining the two LU factorizations yields an application of
PSVD(Up (Pg))T, LE,P]&I)(PS))TLC, UC(Pé?))T). These procedures can be easily analyzed using
the results and techniques from previous sections.

3.3 Relative error estimate for the singular values and vectors

In this section, we examine the sensitivity of the singular values of A = B™SC from relation (1), if
B, S and C are changed to B+6B, S+6S and C + §C, respectively. Since we are interested in the
relative accuracy of the singular values computed by Algorithm 3.1 in floating-point arithmetic, we
deduce singular value perturbation estimates for perturbations § B, §S and §C from the backward
error analysis of Algorithm 3.1 (cf. Theorem 3.1).

We start with an estimate of the accuracy of the floating—point LU factorization in Step 2 of
the algorithm. For the sake of simplicity, we assume that ¢ = p and rank(S) = p.

Proposition 3.1 Let the notation of Theorem 3.1 hold, and let L and U be p x p nonsingular
matrices. Furthermore, let

S& = ﬁ1A35A0ﬁ2 = LlU, (27)
be the exact LU factorization of Si, and let 6S] = I, AgdS.AcIly + 6(f11§11:[2). Note that
S{+ 681 = LU, and that

1051] < 3e[Si] +erv(p) [L] - U. (28)
If the spectral radius of |L=16S,U 1| is less than one, there exist a strictly lower triangular matriz
Er and an upper triangular matriz Ey such that S{+ 651 = (I + EL)S{(I + Ey), and such that

|EL|

IA

eoo() [Eleeil (B B |01 074 17 406, (29

N

Bul < erw()[U""" o (1271 |E]- |01 (0711 0] + O(?). (30)

Here triu(’) and tril(-) denote, respectively, the upper and the strictly lower triangular parts of a
matriz.
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For the proof of Proposition 3.1 see [11], [20]. Next important fact is that the LU factorization of
S} is accurate if S7 can be written as D;ZDs, where D;, Dy are diagonal matrices with nonin-
creasing diagonal elements and the LU factorization of Z is accurate. Hence, if S has accurate LU
factorization, we can also expect similar accuracy in the LU factorization of S{. For the proofs and
further details on the accuracy of the LU factorization and its application in SVD computation
see [11], [20], [19].

Proposition 3.1 and Theorem 3.1 yield the following theorem.

Theorem 3.2 Let (B, S,C) be regular matriz triplet, let §B, S and 6C be perturbations described
in Theorem 3.1, and let o1 > -+ > o5 and 61 > -+ > G, be the singular values of (B, S,C) and
(B+6B,S +6S,C +6C), respectively. Let B, = Az'B, C/. = AZ'C and let

mo= 1BYBla, = ma(BD Bl < e waB)| il (31)
mo= 1CTCls, m =Bl < 1 (OOl Eo e (32)

If max; |n;| < 1, then
max 22 f1<1 ) -1, (33)

Furthermore, let ma = Ny + 72 + 17102, N34 = N3 + Na + 1304, N = max{nia, N3a} and 7= 2n+n?. If
7 < gap(o;) = min {min M,Q}
’ i# 0y

then the acute angles between the corresponding perturbed (4;, U;) and unperturbed (u;, v;) singular
vectors satisfy

. o . 1+7 n )
max{sin Z(u;, @;),sin Z (v;, 7;)} < \/§< — . —+n]. 34
fon (s ), sin 2o 0)} < VE (FEL Ty (34

Proof: Using the notation from the proof of Theorem 3.1, we can write the perturbed matrix
A+8A=(B+0B)"(S+05)(C+4C) as

A+6A=(A5'B+ AZ'B)II (S, + 65)M3(Ag C + AS'sC), - (35)

where 8] + 08} = LU = (I + Ez)S;(I + Ey) is as in Proposition 3.1. Using B. = Aj'B,
C! = A;'C, we easily obtain the relation

A+0A = (I+B%B)(B.) (I +0]E.I)ApSAc(I + L, EyIIE)CL(I + C15C)
(I + B'%B) (I + (B.)']ELT, B.)"B"SC(I + (C)MTLEyTI5;CL)(I + CT60).

Finally, note that for any nonzero z € R" and y = (I + (C)TLEyII;C!)(I + C16C)z it holds
that

Ayl 11,0y NA+ 6Dzl _ IAvl2 77, L
e L0 =) < T < s e+,

and relation (33) follows from the variational characterization of the singular values (see [25,
Lemma 6.4 and Corollary 6.1], [32, Problem 12 in § 3.3], [22], [38]). To prove (34), note that
A+5A= I+ E)A(I + F), where ||E|l2 < ma2, ||F|l2 < 734, and apply a result from [39]. Q.E.D.
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3.4 Application to SVD computation of B"S™!C

In this section, we show that a modification of Algorithm 3.1 can be used for accurate computation
of the singular values of the product

A=B"S7C, BeRP*™, CeRP™ SeRPP, det(S) #0. (36)

The singular values of the product B™S~1C arise in the restricted singular value computation. The
restricted singular values are used in rank estimation in the presence of structured perturbations,
see [49]. For a general matrix triplet (S, C, B™) with compatible dimensions, the restricted singular
values are defined by

Ge(S,C, B7) = min{|[ X |z : rank(S + CXB") Sk -1}, k=1,2,...

If B, S, C are as in relation (36), and if 7 > - - > 0, are the nonzero singular values of B7S™1C,
then the (finite) restricted singular values of (S,C, B7) are 1/0, > --- > 1/071.

The following algorithm computes the SVD of B7S~!C with similar accuracy as Algorithm
3.1.

Algorithm 3.2 PSVD(B, S™1,C)
Input B e RPX™ C ¢ RP*", S € RP*P, rank(S) = p.

Step 1 Compute Ag = diag(|B7eill2) and Ac = diag(]|C7e;ll2). Then compute B, = A3'B,
C,. =AZ'C, S = AZ'SAR

Step 2 Compute the LU factorization with complete pivoting of Sy,

H151H2 = LU, L” = 1, 1 S ) S p.

Step 3 Compute M = U~"II;B,, N = L7'II]C,, and apply Algorithm 2.1 to the product M"N.
Output Let Q, Qr, V and W be as in Algorithm 2.1. The SVD of B"S~1C is

-
S M T )

The error analysis of Algorithm 3.2 is similar to the analysis of Algorithm 3.1. The only difference
is in the analysis of Step 3. We estimate the errors in the computation of M and N using the
perturbation estimate for floating—point inversion of triangular matrices. As in Theorem 3.1, we
use " to denote the computed quantities. Obviously, there is no major difference in the analysis
of the LU factorization. Consider the backward errors in B and C. From [31, Theorem 8.5] it
follows that the computed matrix M satisfies U™ M — 2B, = &}y, |E4] < er(p)|T|7|M], that is,
M = U~"My(B, + 113€},). On the other hand, an easy calculation shows that

(1~ ex@G(T| - [01) L) (Fl4)) < erG)TEO0 - 0 Tl Bl (37)

Since (I —er(p)5(|UY - [(]’I)be) is an M-matrix, it follows that

i33l€fs] < erp) (1 - er) 500 [0)70L) " B50"-[O)MlB).  (39)
Note that for all 7 it holds that

Fir | o 5 7 3 LT 101 |
IIZ1&y 1) eilla £ max || Blej|2e , = = = .
(516317 eule < oo 1B7es laer IO, X(O) = 1 e
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If 6M is the backward error from the algorithm PSVD(M, N) (Algorithm 2.1), then for all i holds
that [|(6M)7e;ll2 < 57l M7eill2 (cf. Theorem 2.1) and we can write

M +6M = U™y (B, + 34, + T5UTSM).

Furthermore, for all ¢ and ¢’ such that [se; = ey it holds that

r
Mir U || M7 |2

(5076 M) ez <
k=1
< (1 + erX(0)) max | Breslall @) e,
<i<p
where | - |lg, is the £; vector norm of a matrix. Hence, the backward error defined by 6B, =

M3&4, + T3UT6M satisfies max; ||(5B.)7e;||2 < (j, where

Ch=(1+e)T

)X + 15 (1 + ex@XONITrr)er
1-— [>r2% (m> ’

The value of (}; is comparable with the value of {¢ in the proof of Theorem 3.1. A similar analysis
applies to C. We omit the details for the sake of brevity.

4 The (H,K)-SVD of S

Let H € RP*P, K € R%%? be symmetric and positive definite and let |lylg = vy Hy, ||zllxk =
vz™ Kz be the corresponding elliptic norms. Consider the weighted least squares problem

ISz — bl — min, |z||x — min, (39)

with the coefficient matrix § € R?*9, p > q. Let H = R};Ry, K = R} Rk be the Cholesky
factorizations of H and K and let WTRHSR;{lV =Y be the SVD of A = RHSR;(I. It is known
that the solution of the problem (39) is obtained using the solution of the simple problem

Iz — cllz — min, |z|l2 — min.
and the substitution z = V" Rgx, ¢ = W™ Ryb. The matrices Y = R;IIW and Z = Rl}lV satisfy
Y 1SZ =%, YTHY =1, Z7KZ =1, (40)

Relation (40) defines the (H, K)-SVD of S. Note that for the solution of the least squares problem
(39) we need 3, Y1 and Z. The (H, K)-SVD of S also implicitly solves the eigenvalue problem
for the pencil STHS — AK. In that case, only the matrices ¥ and Z are of interest.

Ewerbring and Luk [23] describe an algorithm that computes the decomposition (40). In the
first phase (reduction to triangular form) this algorithm computes the Cholesky factorizations of

H and K, H = R;Ry, K = R Rk, the QR factorization of S, § = Qg [1(%)3}, and the QR
factorization of RyQs, RuQs = Qg R);. In the second phase, the algorithm computes the SVD
of the product R}IRSR;, where R}{ is the leading ¢ x g submatrix of R}. To avoid loss of
accuracy, the product R}{RSR;{I is not explicitly computed. Instead of that, the algorithm uses
plane rotations to generate a sequence of triplets of triangular matrices, (ng), Rék) , ng)), k>0,
((Rgo), R;O), Réo)) = (R4, Rs, Rx)). For sufficiently large &, the matrix Cy = R&k)Rék)(ng))”l is
close to diagonal form and its diagonal entries approximate the singular values of ZA%{RSR;Q.
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4.1 On sensitivity to perturbations of H and K

Before we proceed with the analysis of numerical properties of algorithms for computation of
the decomposition (40), let us briefly analyze some necessary conditions for accurate floating—
point computation. Demmel [10] shows that smallest € such that there exists a perturbation éH,
|6H| < €|H|, for which H + §H is singular is between ||[H![|;'/p and |H 1|5, where H, =
AF HAG, Ay = diag(v/Hy). Furthermore, it is shown in [10] that, in the case ||[H |z > 1/,
there exist rounding errors (|0 H;;| < €|H,;|) such that H + 6H is not positive definite, and that
if |H; Y2 < 1/(pec(p)) the Cholesky factorization is guaranteed to succeed in floating—point
arithmetic. Here the factor ec(p) estimates the backward error in the floating—point Cholesky
factorization: If the factorization completes without breakdown, the computed triangular factor is
the exact factor of H + §H, where max; ;(|0H;;|/v/HiiH;;) < ec(p) < (p + 5)e. Hence, in this
section we make a reasonable assumption that the matrices

Hy = AP HAR, and K, = A KA, (41)

where Ay = diag(v/Hy;), Ax = diag(v/K;;), have inverses bounded in the spectral norm by a
modest constant. In that case we say that H and K are well-conditioned. If Ry and Rk are the
floating—point Cholesky factors of H and K, then there exist upper triangular matrices Qg and
Qp such that Ry = (I + Qu)Ry, Rk = (I + Qx )Ry and such that |Qull2 < v2pec(®)||H 2,
19k]l2 < V2¢ec(q)| K |2 Since RuSRE' = (I + Qx)ReSREHI + Qx)~', we see that using
computed triangular factors of H and K introduces an O(||Qg |2 + |Qxk]l2) relative error in the
(H, K)-singular values of S. Hence, any algorithm that computes the singular values of RHSR;(l
with relative accuracy of the order of f(p,q)e(||H |2+ ||K!|l2) in the practice is almost as good
as exact computation, because even an exact computation generally cannot correct the initial
uncertainty. (Here f(p,q) is a modestly growing polynomial in p and q.)

4.2 Illustrative examples

To illustrate the accuracy of the floating—point Cholesky factorization, consider the matrix

H = 5; g] = E (1)] [g }] , & arbitrary nonzero scalar. (42)

The Cholesky factorization of H is as accurate as the Cholesky factorization of the matrix Hy =
AFHAG,

g [1E 0 1€ €ue o 1_[ 1 13

*TLo N2 e 2|0 12T V21

or the Cholesky factorization of

1 -1
=[] »
The QR factorization of the matrix S is accurate if the columns of S can be scaled so that the
resulting matrix is well conditioned (cf. relation (9)). For instance, if S is

) N A I RS

then the floating-point QR factorization of S is accurate for any (.

Consider now the following experiment: We use the above described algorithm of Ewerbring
and Luk to solve the problem (39) with H as in (42), S as in (44) and with K asin (43). Let { =1
and let |€] < g, so that fI(1+ &) = 1. For the sake of simplicity, we assume that the computation
is exact with the exception of the computation of the matrix Ry(Qg. The perturbed value of the
matrix RyQgs is set to be element—wise rounded exact product, that is,

~14+€ 1+€

1 . . - 1 -1 1
RuQs = 7 [ 1 1 } is replaced with RyQs = —= { } : (45)

2 l-1 1
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Obviously, |RgQs — RpQs| < €|RyQs}. However, R;@S is exactly singular. If we want to
explain this singularity in “backward mode” of the analysis, we must conclude that the backward
_ error in Ry has made Ry (and, hence, H) exactly singular. Thus, in the overall backward error
analysis, the actually solved problem is posed using semidefinite norm || - || g+sx-
A closer look at the matrix product RyQgs shows that the infinitely ill-conditioned result
(singular matrix) is caused by linear combinations between vectors with different lengths. This is
precisely the same problem that occurs in the computation of RyS:

Ry o L [€-1 c<1+35)}~ L [—1 c],

GEl-1 ¢ [Tl ¢

Remark 4.1 Note that Qg is exactly orthogonal matrix. It is very often overlooked (or ignored)

fact that a multiplication by an orthogonal matrix can increase the condition number of a well—
conditioned matrix problem.

Also note that the singular values of A = R HSR;(l are well determined by the data since

1 —
RuSRy = — [ the 405} .

To avoid the loss of accuracy illustrated in relation (45), we may scale the columns of Ry to
equilibrate their £2 norms. In other words, we write Ry = (Rpy).Apn and consider the SVD of
(RH)C(AHS)R;, where we compute the QR factorization AyS = QgRg and ensure that the
multiplication (Rg).Qs is accurate. However, the matrix Ay S,

o= 6 %]-[47 72

has almost linearly dependent columns and the QR factorization is not guaranteed to be accurate.
Generally, even if S is well-conditioned for the floating—point QR factorization, the matrix ApyS
might be ill-conditioned with respect to the QR factorization. In addition, for a reliable floating—-
point Householder QR factorization it is necessary to use row pivoting. This is well known problem
in the least squares computation community. On the other hand; in the factorization

0 1|11 0 -1 1|1 0
w5 =1 o]0 ol 73] o <] «
we see how two-sided scaling combined with pivoting reveals the structure of a well-conditioned
problem (cf. [11}).

4.3 A new algorithm based on the product induced SVD
We propose the following algorithm for the computation of the (H, K)-SVD of a real matrix S.

Algorithm 4.1 (H, K)-SVD(S)
Input H e RPXP, K ¢ R?%9, § ¢ RP*?, H and K positive definite.

Step 1 Compute Ay = diag(vHy) and Ag = diag(v/Ky). Then compute H, = AI_JIHA;II,
Ky = AFKARY, S1 = AuSAR.

Step 2 Compute the LU factoriz‘ation with complete pivoting of S1,
M5, = LU, Ly =1, 1<i<p=rank(L)=rank(U).

Also, compute the Cholesky factorizations Hy = (R )L (Ra)e, Ks = (Rr)I(RK )e-
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Step 3 Compute M™ = (Ry) L, N = UII5(Rg);*
Step 4 Apply Algorithm 2.1 to the product M™N. (Note that M”N = Ry SRy'.)

Output Let W7 (M™N)V = X be the computed SVD of M™N. Compute ¥ = RI_JIW and Z = Rl}lV.
The (H,K)-SVD of S is Y157 = 5.

The analysis of Algorithm 4.1 is straightforward application of the technique developed in the
previous section. Let H.,=H, + 0H,, K. =K.+ oK., Sy =S + 6S1 be computed in Step 1.
Then [0H,| < e1|H,|, |0K.| < e1]K.], [0S1| < €1]S1], where 0 < &1 < (1+¢€)(1 —¢)™® — 1. For
snnphmty, we exphcmly set the dlagonals of H, and K, to one. Hence, the computed Cholesky
factors (RH) and (RK) satisfy (RH) (RH) = H, +0H,, (R ) (RK)c = K. + 0K, where
max;,; |§H.|i; < ec(p), max; ;|6K.|i; < ec(q). We conclude that the (exact) SVD of the matrix

(Ri)eS1(Ri)e  is equivalent to the (exact) (H + 6H, K + §K)-SVD of S + 65, where

[0 Hij| 0K
05| < e1|S], max ——<e + &1, max —————
l | - 1l I 1<i,5<p \/HZ'Z‘H]']' C(p) ! 1<4,5<q \/Kquj
(This conclusion follows from undoing in exact arithmetic the scaling in Step 1. We first note that

— . — 1 . - . S
the SVD of (Ry):S1(Rk). s equivalent to the (H.+6H,., K.+ §K.)-SVD of S;. Then, we undo
the scaling.) Furthermore, there exist upper triangular matrices I'y and T'x such that (cf. [21])

<eclq) +er.

(Rir)e = (I +Tu)(Rur)es (Ri)e = (I +Ti)(Ri)e, (47)

and such that |[Tgll2 < \/_psc(p)HH Yz, ITkll2_ < V2gec ()| K7 2. If we replace Sy with
HTLUH2, then we compensate the uncertainties in L and U by replacing S; with Sy + 85;, where
the structure of §5) is explained in § 3.

Consider now the computation of M = M +6M and N = N +6N. Using relation (7), we conclude
that there exists an error matrix £ such that

= (Rm) T+ Enr,  1Em| < enrne(0)|(Rar)[TIT|E], (48)

or, equivalently, ,
-1
M7 = (I +Ty)(Ry) 7L, Ty =&EnIiM(Ry)e . (49)
Relation (49) has two—fold interpretation. In the forward mode of the analysis, it gives multiplica-

tive error in the computed value of the product (]/%—;)cfl{ﬂ In the backward mode, it states that
MT is the exact product of (I + I )(RH) and TI7 L. Since

ITll2 < errne @I [(Radel lal(Rire Nl 121+ 1E1] [

the column—wise relative uncertainty in (I + I‘},)(ﬁ; )¢ is comparable with the uncertainty already
present in (Ry). = (I +Ty)(Ry).. To represent the error in the computation of M in terms of
the backward error in H, we first rewrite relation (48) to M7 = ((RH)C + 8Mﬁﬁ1) 17 L and then

we note that e o
max llExLiThells <y’ = eanns ()1 + ITarll2)l| 12117 1

Hence, the matrix (é\H/)c + Ep LT, is an exact factor of H, + 6H, + 51?[:, where

max (1)) < 205 (1 + ec(p) + (15))2(1 + ec(p))®. (50)



16 i Z. DRMAC

(The fact that ({%AH/)C + Ey LTI, is not triangular does not matter here.) The analysis of the
computation of N is similar. From (31, Theorem 8.5] it follows that there exists an error matrix

En such that N(é;)c — U} = En, |En| < ep(q)|N] - t(é;)ci, or, equivalently,

~ -1 e~ . e =1

N =UML(Rx)e (I+T%), Th = (Rr)JLUE8(RE): . (51)

An easy calculation shows that (cf. (37) and (38))

Ex] < en(@) D11 (Rr)e |- [(Rr)el (I Cer@)l(ER) 1(15;%1)— R )
Hence,
—_— -1 —
ITll2 < er@ra(Br)o) [T - (0] [lo—LER)e LI Ex)elllz g

- @l [(Rr), |- [(Rae)el 2

The bound in relation (53) remains valid if the Cholesky factorization of K, is computed with

—_— 1 —
pivoting. In that case, the factor || [(Rk), |- [(Rk)c| ||2 is bounded by a function of the dimension

g and it can be much smaller (and it is never much larger) than Ka(( RK ~ +/ko(H.). Hence,
the relative perturbations of the singular values in Step 3 are comparable w1th the perturbatxons
caused by the initial Cholesky factorizations. For the overall error estimate in the first three
steps, we need to analyze the accuracy of the LU factorization of S1. We use the representation
L= (I+EL)L, U =U((I+Ey), where 1,.9:11; = LU is the exact LU factorization. (For estimates
of By, and Ey see [45], [20], [11]. For the sake of brevity, we omit the details.) Now, as in the
proof of Theorem 3.2, we can write '

M™N (I +Ty)(Rp) ] LUT(R), (I+P’ )

= I+ +EIT +Tu)RuSRMI +Tr)™ I + E[)(I +T%),

i

where E] = (RK)Cﬁ{ELﬁl(RK)C 1, E; = (RK)CI:IQEUIE(RK)C 1. Hence, the accuracy of the
first three steps is determined by the accuracy of the Cholesky factorizations of H, and K,, and
by the accuracy of the LU factorization with complete pivoting of S;. (Note that S; and S have
the same zero pattern and the same sign distribution. Hence, the LU of S; inherits the propertles
of the LU of S which are based on zero and sign structures of S; cf. [11].)

The accuracy of the algorithm PSVD(M, N) (Step 4 of Algorithm 4.1) is determined by the
condition numbers || M]||2 and || N}||2 where M, and N, are obtained from M and N, respectively,
by scaling their rows to have unit Euclidean norms. Simple estimates for || M|z and ||[N}||, are
derived as follows. Let U = diag(lj@»i)ﬁd. Then

1Nl < < Ol (RR). (04 T) < Vra@ama((Fa) ) T,

[FrAY/PIE ﬁnﬂi%((@g%.

This implies that Algorithm 2.1 computes the SVD of M™N with the relative error that is com-
parable with the uncertainty on input to PSVD(M, N).

To analyze the overall backward error, one can use the technique from the proof of Theorem 3.1.
We omit the details for the sake of brevity. The results of numerical experiments with Algorithm
4.1 are given in § 5.
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4.4 Application to canonical correlation analysis and (H~!, K)-SVD

In the canonical correlation analysis, we are given two sets of random variables, x = (z1,...,z,)7,
Yy =(Y1,...,Y¢)", p > ¢, with joint distribution and the covariance matrix
o=|g= =Bz | & ol (54)
Cyz ny ’ ST K

The goal is to find certain mutually uncorrelated linear combinations of the first set of variables
that maximize correlations with certain mutually uncorrelated linear combinations of the second
set of variables. Application of canonical correlations include, for example, well log analysis where
the two sets of interest might be (cf. "[9]) {gamma ray intensity, sonic transmisswity, electrical
resistance of the rock} and {permeability, porosity, oil saturation, water saturation}.

Canonical correlation problem is related to the SVD of Cgle/QC’myCﬁl/2 = HY2SK-V2 Tt
is shown in [48] that the canonical correlation problem can also be solved as principal relations
problem with the weighting matrix M = C_l & C yl. Here we work in. the framework of the
(H71,K)-SVD of S, where H, K and S are as in (54) The (H~!, K)-SVD of S implicitly solves
the elgenvalue problem for the pencil STH~1S — AK and the Welghted least squares problem (39)
with || - || replaced with || || z-1. These problems arise in such applications as aircraft wing flutter
analysis, system identification and optimal prediction (cf. [34], [23]).

We propose the following algorithm for accurate computation of the (H~1, K)- ~SVD of S.

ST K

Algorithm 4.2 CC(z,y,C) = (H~!, K)-SVD(S) (C = [H 5] )

Input He RP? K c R, S e RP*Y. H and K positive definite.

Step 1 Compute Ay = diag(v/H;;) and Ax = diag(v/Kj;). Then compute Hy = Al"{lHA;,
K, = A KAR, 81 = AFSAL

Step 2 Compute the LU factorization with complete pivoting of S1,
IS I, = LU, L; =1, 1<i<p=rank(L) = rank(U).

Also, compute the Cholesky factorizations (with pivoting) 11§ H Il = (Ryg)7(Rpy)., and
7K Iy = (Rk)7(RK)e.

Step 3 Compute M™ = (Ru);™ (I 03) L, N = U(T54)(Rk);*
Step 4 Apply Algorithm 2.1 to the product M™N. (Note that M™N = RI}TSRIQI.)

Output Let W™ (M"N)V = X be the computed SVD of M7 N. Compute Y = RLW and Z = R'V.
The (H™',K)-SVD of Sis Y 71SZ = %.

Note that Step 1 implicitly replaces the covariance matrix C with the scaled covariance matrix
T

C = AE.ICAEI, A¢ = diag(y/Ci;). In Step 4, C; is implicitly replaced with [N’{M MIN
and the problem is reduced to the SVD of M™N. If the input data are given as observation data
matrices X and Y (instead of the covariance matrix C), then the canonical correlations (the cosines
of the principal angles between the spans of X and Y') are best computed using an algorithm of
Bjorck and Golub [3], [19]. In the Bjérck—-Golub algorithm, the problem is reduced to the SVD of
Q7 Qy, where X = Qz R, and Y = QyR, are the QR factorizations. This rather elegant reduction
to the ordinary SVD is possible because of the special choice of the weighting matrices. On the
other hand, in Algorithm 4.1, as well as in the algorithm of Ewerbring and Luk [23], the covariance
matrices Cy, and Cyy may be replaced with general positive definite weighting matrices.
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Remark 4.2 If X and Y are normally scaled, that is, if X7Y = I, = I;, then the canonical
correlation problem reduces to the SVD computation of Y X7. Indeed, if X = Q R, and Y = Q R,
are the QR factorizations of X and Y, then R, and R, are nonsingular and the covariance matrix

1 (RyR7)™

X'X I,
| iy ™

I, YTYJ can be replaced with

(This corresponds to the change of bases in span(X) and span(Y).) Hence, the cosines of the
canonical angles between span(X) and span(Y’) are the inverses of the singular values of R,RI.
The later are the nonzero singular values of Y X7. (Golub and Zha [28] derived the same result
using the GSVD of (X,Y).)

It can be easily shown that the accuracy of Algorithm 4.2 is nearly the same as of Algorithm
4.1. We omit the details for the sake of brevity.

4.5 An algorithm based on the GSVD

In this section we show that computation of the (H, K)-SVD of a full column rank matrix S can
be accurately reduced to computation of the GSVD of certain regular matrix pair. The GSVD
based algorithm uses a tangent GSVD algorithm from [16].

Algorithm 4.3 (H, K)-SVD(S)
Input H e RPXP, K ¢ R9%9, S ¢ RP*?, H and K positive definite.

Step 1 Compute Ay = diag(vHy;) and Ax = diag(v/K;;). Then compute Hy = A;IlHAgll,
Ky =AY KAR, S1 = AgSAZ!.

Step 2 Compute the LU factorization with complete pivoting of St,
LS\l = LU, Ly =1, 1<i<g=rank(L) = rank(U).

Also, compute the Cholesky factorizations Hs = (Ry)T(Ru)e, Ks = (Ri)I(RK)e.

Step 3 Compute M™ = (Rg) JI]L, N = (Rg) I, U L.

Step 4 Apply GSVD algorithm to the pair (M™, N). (Note that GSVD(M7™, N) means the SVD of
MTN™' = RuySRE'.)

Output Let W™(M™N~1)V = ¥ be the computed SVD of M"N~! (via the GSVD of (M7, N)).

Compute Y = Rg'W and Z = R'V. The (H,K)-SVD of S is Y157 = %.

Implementation and error analysis of Algorithm 4.3 are similar as in the case of Algorithm 4.1.
Here we compute N using BLAS 3 procedure STRSM() instead of STRMM(), and the computation
completes with GSVD(M ™, N) instead of PSVD(M, N). For an analysis of GSVD(M™, N) see [16].
We omit the details for the sake of brevity. :

5 Numerical examples

In this section, we present software that implement algorithms from this paper. Since all operations
in our algorithms are standard matrix operations, most of them can be efficiently implemented using
BLAS and LAPACK libraries. The only two exceptions are the LU factorization with complete
pivoting and the Jacobi SVD algorithm. Our procedure for the LU factorization with complete
pivoting is a modification of the LAPACK’s procedure SGETF2(). The Jacobi SVD algorithm is
implemented following the analyses from [13], [18].
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5.1 Test matrix generation

The main characteristic of the algorithms presented in this paper is that their accuracy depends
on the condition numbers of equilibrated matrices. For instance, the accuracy of the algorithm
PSVD(B, C) (Algorithm 2.1) depends on sa(B,) and ky(C,), where B = diag(||B7e;l|2) By, C =
diag(||C7e;]|2)Cr. In order to show that our estimates are sharp and that they are almost attainable
in the practice, we need to generate test examples with prescribed values of all relevant condition
numbers. Thus, to test PSVD(B, C), we need pairs (B, C) with specified values of k2(B,) and
K2 (Cr)

To generate test matrices, we use an algorithm X = RANDOM(p, m, w1, p1,ws, t2) which
generates a random full row rank matrix X = Ax X,, where Ax = diag(||X7e;l|2), k2(X,) = wr,
ko(Ax) = wq, and with distributions of the singular values of X, and Ax determined by the
parameters py and po, respectively. The values of p; and g are from the set of admissible values
of the parameter MODE in the procedure DLATM1() from [12]. The algorithm RANDOMY() is based
on [27, P.8.5.3 and P.8.5.4], and it has been frequently used in recent years in connection with the
design an analysis of accurate Jacobi~type methods [13], [44], [42], [17].

It is difficult to generate an S with prescribed accuracy of the LU factorization with complete
pivoting of S. Let PSP, = D1ZD; € RP*9, p > q, and let Z = LzUyz, where Lz is unit lower
trapezoidal and Uz is ¢ X ¢ upper triangular and nonsingular. Then

1ZH2 < ILL 120U ]2 < IL2l2| Uzl 2113 (55)

On the other hand, let S = A;S5yAz, where Sy has equilibrated rows and columns, and Aj,
Ay are diagonal scalings. Then P1SP, = D1ZDy = (PiA1P])P1SoPo(P] AsPy), and we hope
that an estimate similar to (55) holds with Z replaced with Sp. Therefore, in our tests we. use
S of the form S = A;SpAy. In this way, we nearly control the impact of the matrix S to the
accuracy of the SVD of B"SC and B7S™IC (in the case of square and nonsingular S). Since
B7T5C = BIApA15,A:AcCT, we simplify our generator of test examples by setting Ap := ApAq,
Ac = AyA¢, B"SC = (ApB,)"So(AcC,), and by controlling the values of k2(B;), k2(Ag),
/{/2(‘5‘0)’ K2(C’r’)a K/Z(AC)-

5.2 FError measures

We measure the forward error in the computed singular values. As usual, we test the single precision
procedure and we use the double precision procedure as a reference. However, to ensure that the
double precision approximations are good enough to be used as reference values for the single preci-
sion procedure, we use the following strategy: First, each test matrix triplet (B, S, C) is generated
in double precision arithmetic and with the value of cond(B, S, C) = max{ka(B;), k2(Cr), k2(S0)}
below 107. This ensures that the double precision procedure can compute the singular values with
nearly seven or eight correct digits. Then, we test the consistency of the double precision procedure.
The consistency is in the framework of the theory of § 3 defined as follows: If we use the same pro-
cedure to compute the singular values of B7SC and C7S7 B in floating point arithmetic with the
round-off unit €, then the computed approximations match in roughly —log,, (¢ - cond(B, S, C))
decimal places. In all tests, the double precision procedure passed the consistency test. Therefore,
ifol > > o, and Gy > --- > G, are the double and the single precision approximations of the
singular values of B”SC, we measure the accuracy of the single precision procedure by

!

5‘ e Ui .
e(B,S,C) = fox I;a’.—‘l-' (p = min{p, q}) (56)

(The input to the single precision procedure is (B, S, C) rounded to single precision.) Theoretical

prediction is that the value of e(B, S,C) = 0—6;—(%5—’% is, up to a factor of dimensionality, of the

order of the machine precision . For the purpose of the test, cond(B, S, C) is computed in double
precision arithmetic, using the LAPACK’s procedure DGESVD ().
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Figure 3: The values of x(2, 7, k) and x(5, j, k), 2 < j,k < 6. The double precision procedure has
passed the consistency test and it can be used with confidence as reference for the single precision
procedure.

5.3 Results

We now present the numerical results. All experiments in Example 5.1 were done in Sun FORTRAN
on a Sun 4 workstation. The experiments in Example 5.2 were done on a DEC Alpha workstation.
The figures are produced using MATLAB.

Example 5.1 In this example, we set the dimensions to be m = 80, p = 50, ¢ = 40 and
n = 100. The triplet (k2(By), k2(So), k2(Cy)) of condition numbers takes all values from the set
{102,10%,10%,10°,10}3, while the condition numbers (k2(Ap), ko(Ac)) of diagonal scalings are
chosen from the set {10%,10%2,1016} x {10°,10',10'®}. The modes of distributions of the singular
values of B, Ag, Cy, Ac, So, respectively, are chosen from the set {5,3} x {5,4} x {5, -4} x {5, 3}2
Combining all values of the above described parameters we obtain 36000 test triplets, divided into
125 classes, where each class C;jx, has fixed (k2(B;), k2(5), k2(Cy)) = (10%,107,10%), 2 < i, 5,k < 6.
We first show the results of the consistency test for the double precision procedure. In Figure 3,
we display some of the values of

’ R T
X(i7j7 k) — 10g1o < max max ;O-I(Ba‘s"? C) O'l(C,S aB)t> (57)

(B,S,C)€Cs;, 1<1<p 0)(B,S,0)

where (07(B,S,C));_; and (0](C,S7, B))}_, are the ordered double precision approximations of
the singular values of B"SC and C7S7B, respectively. In Figure 4, we display the values of
e(B, S,C).

Next, we plot the relative error (B, S, C) versus (k2(B.,), k2(S0), k2(Cr)). More precisely, we plot
the values of

g k) = B,S,C). 58
e(i, j, k) mﬁﬁ%ﬂ,v) (58)

Note the similarities between the behaviors of the errors shown in Figure 3 and Figure 5.
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m =80, p=40,9=40

¢(B,S,C

o] 0.5

1.5 2 2.5
ordered test triplets (B,S,C)

21

Figure 4: The values of (B, S, C) for all test triplets. (Test triplets are generated in a sequence
of nested loops, and the order of generation defines their ordering in the figure.)

epsilon (2,j,k)

Figure 5: The values of €(2, j, k) and €(5, 4, k), 2 < j,k < 6. Note that the measured relative errors

behave as predicted by the theory.
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epsilon (2,j,k)

Figure 6: The values of €(2, 7, k) and €(5,5,k), 2 < 4,k <6 in (H, K)-SVD algorithm based on the
PSVD(:,-) computation.

Example 5.2 In this example, we test Algorithm 4.1 and Algorithm 4.3. We set the dimensions
tom = p = 200, n = q = 100. We follow the same strategy as in Example 5.1: We generate
9000 test problems, divided into 125 classes, where each class has fixed (k2 (H..), £2(So), k2 (K.)) =
(107,107, 10%) € {102,10%,10%,10°,105}3. For fixed class, we choose diagonal scalings Ay, Ak with
(k2(Apr), ka(AK)) chosen from {108,102 1016} x {10°, 1013, 10'°}. The modes of distributions (cf.
Example 5.1) are chosen from {5,3} x {5} x {5, -4} x {5} x {5,3}. We first compare the results of
double precision computations using Algorithm 4.1 and Algorithm 4.3. Since in all test examples
the double precision eigenvalues computed by the two algorithms agree to more that ten decimal
places, we use double precision Algorithm 4.1 as a reference for single precision computation. The
measured error bounds, shown in Figure 6 and Figure 7, are are slightly better than the theoretical
predictions from § 4. This is probably related to the fact that the main part of the error is due to
the Cholesky factorization which is usually more accurate than the theory predicts (cf. [6]).
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