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Planetary satellites have become the primary targets of proposed missions to the outer planets

as the places in the Solar System most likely to harbor extraterrestrial life. Observations from the

Galileo spacecraft suggest Europa has a subsurface salt-bearing ocean and water plumes have been

observed at Enceladus’s south pole. However, orbits about planetary satellites are known to be

unstable due to the perturbing gravity of the primary body. This work investigates the properties

of phase space in the vicinity of a periodic orbit and examines the effect of these properties on

the orbit evolution and lifetime. Low altitude, near-polar periodic orbits are found in the Circular

Restricted Three Body Problem and a covariance matrix is generated for each nominal periodic

orbit by processing range-rate and altimetry measurement types in a Square-root Information Filter.

Computed Love number estimation uncertainties yield similar or better performance than previous

studies. This processed covariance is used to draw randomly dispersed initial conditions around the

periodic orbit from a multivariate normal distribution in a Monte Carlo analysis. These simulation

results show a bias toward longer lifetime orbits that is associated with the linear manifolds of an

unstable periodic orbit. Lifetimes for both Europa and Enceladus orbiters are increased by an order

of magnitude over the nominal lifetime and long lifetime orbits are not isolated in phase space. A

mathematical development of information accumulation in the orbit determination process is given

for the Europa L2 equilibrium point using the eigenstructure decomposition of the State Transition

Matrix. The covariance matrix for an equilibrium point orbit is shown to collapse along the left

unstable manifold for epoch state estimation and collapse along the left stable manifold for current

state estimation.
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Chapter 1

Introduction

Planetary satellites have become the primary targets of proposed missions to the outer plan-

ets as the places in the Solar System most likely to harbor extraterrestrial life. Observations from

the Galileo spacecraft suggest Europa has a subsurface salt-bearing ocean and water plumes have

been observed at Enceladus’s south pole. The presence of liquid water combined with tidal defor-

mation as a possible heat source point to the possible existence of microbial or other forms of life

at such planetary satellites. Potential missions to Europa have gone through many design itera-

tions under names such as Europa Orbiter, Jupiter Icy Moons Orbiter, and Jupiter Europa Orbiter

(JEO). A descoped version of the JEO mission called the Europa Clipper has now been proposed in-

volving multiple flybys of the moon only, which could confirm the presence of a subsurface ocean [1].

Orbits about planetary satellites are known to be unstable due to the perturbing gravity of

the third body. This effect is dependent on the inclination of the orbit and the strength of the

third body’s gravity. The goal of the JEO [2] mission is to measure the Love numbers, geophysical

coefficients which give insight into whether there is liquid water on the body. Missions like JEO

require near-polar, mapping type orbits which are greatly affected by this gravitational instability.

General low altitude, high inclination orbits impact on the surface of the planetary satellite after

a time span on the order of weeks [3]. Periodic orbits computed in the Restricted Three Body

Problem have the potential to extend this lifetime to the order of months [4]. A JEO type mission

is used here as a baseline for a potential Europa orbiter mission. While there is currently no call
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for an Enceladus mission in the 2013 Planetary Science Decadal survey [5], an Enceladus orbiter

would encounter the same stability challenges and desire similar geodesy measurements.

1.1 Icy Moons Background

Geodesy missions generally require low altitude, high inclination orbits with good spatial cov-

erage for mapping considerations and good temporal coverage for sensing tides. One issue for the

Europa mission is instability due to perturbations on high-inclination orbits from Jupiter’s gravity.

The desired low altitude, polar orbits are highly unstable and lead to impact with Europa after

several weeks. The most recent NASA description of the mission calls for a one month mapping

mission after Europa Orbit Insertion with the possibility of orbit correcting maneuvers. The nom-

inal parameters for the Europa orbit are a 100 km altitude, circular orbit with inclination between

95◦ and 100◦. This high inclination results in a decline of periapsis radius due to an increase in

the orbit’s eccentricity. This is shown in Figure 1.1 where the red line shows Europa’s surface

radius which intersects the blue periapse radius curve after about 13 days. Other studies [6, 7, 8]

use this type of orbit in geodesy simulations for a Europa mapping mission but do not discuss the

effects of this decay of periapse. Thus, there is a need to evaluate the performance of Europa orbits

in terms of orbit lifetime and stability and the measurement precision of desired science parameters.

A low-altitude, near-polar Enceladus orbiter would experience a similar decay of periapsis

due to the perturbing third-body gravity of Saturn. Such orbits would impact on the order of

days. Missions to both Europa and Enceladus would be interested in determining the depth of a

subsurface ocean and the ice shell thickness. These measurements are related to the Love numbers,

geophysical coefficients which characterize the strength of a body’s response to tidal gravity [9]. The

amount of time-varying surface deformation is related to the h2 Love number and can be estimated

through altimetry measurements. Changes in a body’s gravity field due to mass redistribution

is tied to the k2 Love number [10] and can be estimated through Doppler or range-rate tracking.

These measurement types are included in a covariance analysis for Europa to bound the uncertainty
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Figure 1.1: Typical geodesy orbit periapse decay

in measuring the Love numbers for a particular orbit.

1.2 Literature Review

The geophysical structure of icy moons such as Europa and Enceladus has been modeled

by many authors. From geophysical models and Galileo flyby data, Anderson et al.[11] suggest

that Europa’s structure is differentiated into a metallic core, rocky mantle, and an ice-liquid shell

that may vary in thickness from 80 to 170 km. Moore and Schubert [12] give several Love number

models for different ice thickness and ocean depths and show that observing tidal deflection alone

is not sufficient to determine the ice thickness. Similar models for Enceladus ice thicknesses and

Love numbers are given in Olgin et al. [13]. The ability to detect a subsurface ocean from orbit

is examined in Rappaport et al. [14] where a greater than 90% probability is given for validating

the presence of an ocean from determination of the k2 Love number. This work implements Love

number models similar to those in previous work in a realistic covariance analysis and examines

the resulting covariance in position and velocity space. This covariance is used to evaluate the
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statistical lifetime properties of low altitude, near-polar orbits.

Periodic orbits at Europa in particular and also Enceladus are the subject of many published

investigations. Frozen orbits are computed through averaging techniques at Europa to be used as

science orbits in Paskowitz-Possner [15, 16] and San-Juan et al. [17]. Periodic orbits in the Re-

stricted Three Body Problem are computed by Russell at Europa [18] and Enceladus [19] in global

searches but most are of altitudes too great for low altitude mapping missions. Long-lifetime orbits

at Europa are computed in Gomez et al. [20] and in Lara et al. [21] with lifetimes greater than

150 days in the ephemeris model but the question of how isolated those orbits are in phase space is

not answered. This work computes periodic orbits at Europa and Enceladus and generates realistic

covariance matrices about these orbits. Europa orbits with similar maximum lifetimes to previous

studies are found and new, low altitude, long lifetime Enceladus orbits are found. The properties of

periodic orbits are shown to influence the lifetime distribution of orbits in their phase space vicinity.

The stability of Europa orbits is studied in Lara et al. [22] through characterizing the orbits by

the eigenvalues of the State Transition Matrix. The stable and unstable eigenvalues and eigenvectors

of periodic orbits are shown to influence information accumulation in the orbit determination

process. Scheeres et al. [23] investigate the alignment of stable and unstable manifolds of halo

orbits with the direction of maximum uncertainty in phase space. In this work, the left unstable and

stable manifolds of periodic orbits are shown to control the directions of uncertainty compression

for epoch and current state accumulation of information, respectively. Mathematical development

of these characteristics is given and confirmed in simulation at an equilibrium point.

1.3 Summary of Results

This work investigates the properties of phase space in the vicinity of a periodic orbit and

examines the effect of these properties on the orbit evolution and lifetime. Low altitude, near-polar

periodic orbits are found in the Circular Restricted Three Body Problem [24] at the Jupiter-Europa
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and Saturn-Enceladus systems using a differential corrector [25]. A covariance matrix is generated

for each nominal periodic orbit by processing range-rate and altimetry measurement types in a

Square-root Information Filter [26]. Parameters which affect the estimation process but which are

not estimated themselves, called consider parameters [27], are included in the Europa covariance

analysis. Models for Love numbers at Europa are taken from the geophysical studies referenced and

k2 and h2 Love number estimation uncertainties are produced for accumulating measurements about

a Europa periodic orbit. Generation of a realistic covariance is key to the discussion of statistical

lifetime properties of the orbits considered. This processed covariance is used to draw randomly

dispersed initial conditions around the periodic orbit from a multivariate normal distribution in

a Monte Carlo analysis for both Europa and Enceladus. The dispersed orbits are integrated in

the inertial frame including the effects of Europa and Enceladus eccentricity about their primaries,

which would be the main effect of an ephemeris integration. These simulation results show a bias

toward longer lifetime orbits that is associated with the linear manifolds of an unstable periodic

orbit [28]. These long-lifetime orbits are shown to be dense in the phase space vicinity of these pe-

riodic orbits. The concept of manifold coordinates [29] reveals what components of the orbit initial

conditions are aligned with the stable, unstable, and center manifolds associated with the periodic

orbit, respectively. Lifetimes for both Europa and Enceladus orbiters are increased by an order of

magnitude over the nominal lifetime. The nominal periodic orbit at Europa is continued [30, 31]

into a family of periodic orbits to show that no one particular set of manifolds is controlling the

phase space distribution. A mathematical development of information accumulation in the orbit

determination process given at the Europa L2 equilibrium point using the eigenstructure decom-

position of the State Transition Matrix. The covariance matrix for range-rate measurements at an

equilibrium point is shown to collapse along the left unstable manifold for epoch state estimation.

Conversely, the covariance matrix is shown to collapse along the left stable manifold for current

state estimation. This is shown to be a function of mapping measurements and the information

matrix in time via the State Transition Matrix.
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The main contributions of this thesis are:

• Accounting for navigation uncertainties in the design of long lifetime geodesy orbits at

Europa

• Understanding the properties of phase space near a periodic orbit in terms of its stable and

unstable manifolds, orbit lifetime, and orbit determination

• Showing a fundamental structure to information and measurement partial mapping in terms

of the stability properties of an equilibrium point

• Enabling geodesy science at Enceladus by computing statistically realistic long lifetime

orbits



Chapter 2

Restricted Three Body Problem

The specific astrodynamic problem under consideration is the Restricted Three Body Prob-

lem (RTBP). The equations of motion are applied to the Jupiter-Europa system and the Saturn-

Enceladus system. The RTBP equations of motion are expressed in the secondary-centered rotating

frame where the primary and secondary are in circular orbits about their mutual center of mass

[24].

2.1 Equations of Motion

First, the equations of motion are constructed in the barycenter inertial frame.

Figure 2.1: Geometry of Restricted Three Body Problem

Figure 2.1 shows the geometry of the problem. The x̂ direction points away from the primary’s
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initial position on the primary-secondary line, the ẑ direction is aligned with secondary’s angular

momentum vector, and the ŷ direction completes a right-handed coordinate system.

R̈ = −µ1
r1

|r1|3
− µ2

r2

|r2|3

= −µ1
R−R1

|R−R1|3
− µ2

R−R2

|R−R2|3
(2.1)

A coordinate transformation is used to shift the origin of the coordinate system from the barycenter

to Europa’s center of mass.

R = r2 +R2 (2.2)

Taking the inertial derivative of Equation 2.2 gives:

R̈ = r̈2 + R̈2 (2.3)

and the motion of the secondary about the primary, neglecting the mass of the satellite for the

restricted problem:

R̈2 = −µ1
R2 −R1

|R2 −R1|3
= µ1

R21

|R21|3
(2.4)

where the position of the primary with respect to the secondary is R21 = R1 −R2. Substituting

Equations 2.3 and 2.4 into Equation 2.1 gives the equations of motion for a planetary satellite

orbiter in the inertial frame, centered at the secondary. Dropping the 2 subscript designating the

secondary and adding an I subscript denoting the inertial frame yields:

r̈I = −µ1
rI −R21

|rI −R21|3
− µ2

rI

|rI |3
− µ1

R21

|R21|3
(2.5)

Equation 2.5 is used for orbit lifetime integrations and includes the eccentricity of the secondary’s

orbit about the primary. This eccentricity is included in the R21 term where the secondary’s orbit

is stepped in the perifocal frame, assuming the inclination of the secondary-primary orbit is zero.

Now the inertial equations of motion for the three-body system are transformed to a rotating frame

to form the Circular Restricted Three Body Problem. The assumptions made are that the primary

and secondary bodies are in circular orbit about their mutual center of mass, and that the body-

fixed secondary centered rotating frame rotates at a constant rate nS with respect to the inertial
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frame [34].

nS =

√
µ1 + µ2
a3S

(2.6)

Assuming that the two frames are aligned at epoch, the following transformations are applied to

form the rotating frame equations of motion. The I subscript represents inertial frame quantities

and the R subscript represents rotating frame quantities.

rI = rR

ṙI = ṙR + nS ẑ × rR

r̈I = r̈R + 2nS ẑ × ṙR + nS ẑ × (nS ẑ × rR) (2.7)

This results in two quantities involving the cross product of the secondary’s rotation rate being

subtracted from the inertial equations to form the rotating frame equations.

r̈R = −µ1
rR −R21

|rR −R21|3
− µ2

rR

|rR|3
− µ1

R21

|R21|3
− 2nS ẑ × ṙR − nS ẑ × (nS ẑ × rR) (2.8)

The periodic orbits studied in this work are computed in the rotating frame using the RTBP

equations. Equation 2.8 is non-dimensionalized using units derived from system parameters to

facilitate numerical computation. The semi-major axis of the primary-secondary mutual orbit aS

is used as a length unit (LU) and the time unit (TU) is chosen such that the system mean motion

nS is unity. The non-dimensional parameter µ characterizes the system, where µ1 = 1 − µ and

µ2 = µ.

µ =
µ2

µ1 + µ2
(2.9)

The coordinate translation from the barycenter to the secondary affects the x coordinate, such that

x→ x+ 1− µ. The equations of motion for the non-dimensional RTBP centered at the secondary

in Cartesian coordinates then become:

ẍ = 2ẏ + (x+ 1− µ)− (1− µ)
x+ 1

r31
− µ x

r32

ÿ = −2ẋ+ y − (1− µ)
y

r31
− µ y

r32

z̈ = − (1− µ)
z

r31
− µ z

r32
(2.10)
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where the spacecraft distances to the primary and secondary, respectively are:

r1 =

√
(x+ 1)2 + y2 + z2

r2 =
√
x2 + y2 + z2 (2.11)

The RTBP admits an additional integral of motion called the Jacobi integral C. Each scalar

component in Equations 2.10 is multiplied by 2ẋ, 2ẏ, and 2ż respectively with the gravity terms

written in potential form. The three equations are summed resulting in:

2ẋẍ+ 2ẏÿ + 2żz̈ − 2 ((x+ 1− µ) ẋ+ yẏ) =

2ẋ
∂

∂x

(
1− µ
r1

+
µ

r2

)
+ 2ẏ

∂

∂y

(
1− µ
r1

+
µ

r2

)
+ 2ż

∂

∂z

(
1− µ
r1

+
µ

r2

)
(2.12)

This equation forms a total differential. Integrating with respect to time gives the Jacobi integral

or Jacobi energy C.

C = (x+ 1− µ)2 + y2 −
(
ẋ2 + ẏ2 + ż2

)
+ 2

(
1− µ
r1

+
µ

r2

)
(2.13)

The Jacobi energy is used to distinguish different periodic orbits. The parameters for each system

such as length and time units and gravity coefficients are given in the chapters for each planetary

satellite examined.

2.1.1 Spherical Harmonics

The equations of the RTBP include point-mass gravity terms for the primary and secondary

bodies. For a planetary satellite orbiter, any non-sphericity of the secondary body has an effect

on the spacecraft orbit. One way of expressing the non-spherical components of a gravity field is

through a spherical harmonic potential U . Each Cnm and Snm is a Stokes coefficient of degree

n and order m and expresses some component of the gravity field. In these simulations, the

Stokes coefficients are non-dimensionalized using the radius of the secondary body to the nth

power but remain unnormalized. The ∆Cnm and ∆Snm terms represent time-variable gravity due

to tidal forces acting on the secondary. This expansion is an infinite series in Stokes coefficients
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and associated Legendre polynomials Pnm, which are part of the solution to Laplace’s equation in

spherical coordinates. The 2 subscript indicates parameters of the secondary body, φ and λ are the

orbiter latitude and longitude, and r is the magnitude of the orbiter position.

U =
µ2
r

N∑
n=2

n∑
m=0

(
R2

r

)n
Pnm (sin(φ)) [(Cnm + ∆Cnm) cos(mλ) + (Snm + ∆Snm) sin(mλ)] (2.14)

The associated Legendre polynomials are defined as follows.

Pnm (x) =
(−1)m

2nn!

(
1− x2

)m/2 ∂n+m

∂xn+m
(
x2 − 1

)n
(2.15)

In the case of the gravitational potential, the x in Equation 2.15 is sin(φ). The spherical har-

monic gravitational potential is converted to Cartesian coordinates using the definition of spherical

coordinates given in Equations 2.16 and trigonometric substitution to reduce the cos(mλ)/ sin(mλ)

terms to single λ arguments.

x = r sin(φ) cos(λ)

y = r sin(φ) sin(λ)

z = r cos(φ) (2.16)

The gradient of the potential of Europa’s extended gravity field is taken in the rotating frame with

respect to r, the rotating frame position vector. For inertial integrations, the potential gradient

is transformed into the inertial frame using a rotation R3 about the secondary body’s angular

momentum axis ẑ with magnitude nSt, the secondary sidereal angle.

2.1.2 Time-variable Gravity and Love Numbers

The instability of orbits about planetary satellites is due to the perturbing gravity of the

primary mass or third body. This perturbing gravity also raises tides on the surface of the secondary

body. Tides redistribute mass on the secondary which in turn changes the gravity field. This can

be represented by fluctuations in the Stokes coefficients of the spherical harmonic gravity potential.

The physical parameters which characterizes a body’s tidal response are the Love numbers. The
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Love numbers h2 and k2 are coefficients of the tide-raising potential which measure the amplitude

of the elastic response of a deformed body. These are dimensionless coefficients and are related to

the spherical harmonic expansion of a gravitational potential. Just as the second degree oblateness

coefficient of a spherical body will dominate the gravitational perturbation spectrum, the second

degree tidal potential and thus the second degree Love numbers dominate tidal perturbations. For

the second degree coefficients, the k2 Love number applies to all orders [10]. The h2 Love number

measures the strength of the tidal surface deformation of a body and the k2 Love number measures

the strength of the time-variation in gravitational coefficients [9].

∆Cnm − i∆Snm =
knm

2n+ 1

µ1
µ2

(
R2

r1

)n+1

Pnm (sin(φ1)) e
−imλ1 (2.17)

Equation 2.17 represents the time-variation in the Stokes coefficients Cnm/Snm which are

coefficients of the spherical harmonic gravitational potential of degree n and order m. This variation

involves the associated Legendre polynomial Pnm and is a function of the Love number k2, the

position of the primary with respect to the secondary in spherical coordinates (r1, φ1, λ1), and other

system parameters. The complex notation is used to denote that the cosine terms are associated

with ∆Cnm and the sine terms are associated with ∆Snm. While time variations in the gravity

coefficients are necessary for sensing k2 in the estimation process, care must be taken with ∆C20

and ∆C22 as both have nonzero time averages. This effectively changes the nominal value of these

coefficients, so the time average component must be subtracted in the dynamics.

sR (t) =
h2
ge
U2 (2.18)

Equation 2.18 shows the dependence of radial surface uplift sR on the h2 Love number, the surface

gravity of Europa ge, and the tidal potential of degree two U2 used in Wahr et al.. This tidal po-

tential in Equation 2.19 is expanded to the lowest order in the secondary’s eccentricity as described

in Kaula [33].

U2 =
3µ1eR

2
2

4a312

(
r

R2

)2 [(
1− 3 cos2(φ)

)
cos(nSt) + sin2(φ) [3 cos(nSt) cos(2λ) + 4 sin(nSt) sin(2λ)]

]
(2.19)
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Through geophysical models, a linear combination of the k2 and h2 Love numbers places bounds

on the estimate of the possible ice thicknesses of a planetary satellite with a subsurface ocean [8].

Measurement of these numbers is a primary goal of the JEO mission.

2.2 Equilibrium Points

The RTBP contains five equilibrium points known as Lagrange points. These points are

solutions to the equations of motion which remain constant for all time. The dynamics of a system

must be time invariant in general to have an equilibrium solution. Therefore, equilibrium points

are associated with systems that have a Jacobi integral. Figure 2.2 shows the general location of

the five Lagrange points in the plane of a three-body system. The L4 and L5 points are located

at the points of equilateral triangles formed between the primary and secondary, represented by

the orange stars. The collinear Lagrange points L1, L2, and L3 are shown as green stars along the

extension of the line connecting the primary and secondary.

Figure 2.2: Schematic of Lagrange points in RTBP
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The equilibrium points of most interest involving planetary satellite orbiters are the collinear

Lagrange points L1 and L2. The locations of these points are obtained by setting all time deriva-

tives to zero and solving the x scalar equation of motion. This requires y = z = 0 and velocity

components equal to zero as well. The x values of the collinear points are obtained by solving:

(x+ 1− µ)− (1− µ)
x+ 1

r31
− µ x

r32
= 0 (2.20)

2.3 Periodic Orbits

Periodic orbits are trajectories which exactly repeat themselves after some specified time

period T . Equilibrium points are a special case of periodic orbits with period T = 0. Such orbits

have the potential to extend orbit lifetime in the unstable environment near planetary satellites

such as Europa [18, 20, 21] and Enceladus. Previous studies have found a wealth of periodic orbits

in the vicinity of these planetary satellites but few if any are low-altitude, near-polar orbits. This

section focuses on the computation of these types of orbits and their properties, since they are

desired for geodesy-type missions.

2.3.1 Computation

A search is conducted in the CRTBP for circular, near polar orbits that make an integer

number of revolutions N for every orbit of the secondary, such that the period of the orbiter Tsat

is commensurate with the period T2 of the secondary’s orbit about the primary.

N

D
=

T2
Tsat

=

√
µ2 a312

(µ1 + µ2) a3sat
(2.21)

Equation 2.21 expresses this number of revolutions N as a function of the orbiter’s semi-major

axis asat. Since the primary-secondary semi-major axis a12 is fixed, the number of revolutions about

the secondary is specified for different values of spacecraft altitude. The process for searching out

periodic orbits is as follows. First, generate Cartesian initial conditions of the orbit from the chosen
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orbit elements. Searching around the altitude specified by the two-body approximation given above,

zero eccentricity, polar orbits are numerically integrated until the required number of revolutions

are completed. For near-polar orbits, the xy coordinate plane is taken as a Poincare surface of

section and the number of crossings are counted until the desired N value is reached. At the Nth

crossing, the spacecraft state and partials of the Jacobi integral are used to differentially correct

the initial conditions of the orbit to be more periodic using an algorithm given in Scheeres et al

[25]. A visualization of the Poincare map is shown for a Europa orbit in Figure 2.3.
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Figure 2.3: z = 0 Poincare surface of section for 215 km altitude Europa orbit

The Poincare map is then defined as the discrete mapping of one crossing of z = 0 in the

positive ż direction to another. The objective is to match the final surface of section crossing with

the initial crossing to form a periodic orbit. The integration of the STM along with the nominal

trajectory is necessary to map the full position and velocity state from one crossing to the next. In

the case for Europa and Enceladus, the STM will have two unity eigenvalues which form a barrier

to the computation of periodic orbits. The monodromy matrix, or the STM evaluated at the system



16

period time T can be reformulated as a 4x4 matrix with unity eigenvalues removed. This process

and the computation of the initial state correction is described below. For the purposes of the

orbits given in the paper, the l coordinate used, z, corresponds to l = 3. The desired orbit is

integrated until the final surface of section crossing and the state dynamics are evaluated at this

crossing. The partial derivatives of the Jacobi integral with respect to the state are also required

for the computation. The monodromy matrix is formed as follows using the STM evaluated at the

periodic time T :

Mij = Φij (T )− Ẋi

ṙl (T )
Φlj (T )− 1

∂Jl+3 (0)

[
Φi,l+3 −

Ẋi (T )

ṙl (T )
Φl,l+3 (T )

]
∂J

∂Xj
(0) (2.22)

Then, the correction to the initial state in Equation 2.25 is calculated using the difference between

the reduced nominal initial state y0 in Equation 2.24 and the reduced final state y1 in Equation

2.23 integrated to the periodic time. The l and l + 3 coordinates correspond to z and ż in these

calculations. Thus, they do not appear in the reduced state y.

y1 = [x (T ) y (T ) ẋ (T ) ẏ (T )]T (2.23)

y0 = [x (0) y (0) ẋ (0) ẏ (0)]T (2.24)

δy0 = [I4x4 −M ]−1 (y1 − y0) (2.25)

The Poincare surface of section constrains the l coordinate z to be zero at the final time. To

ensure that the computed state correction maintains the Poincare map, a correction to the l + 3

velocity component ż is computed in the final equation.

δṙl = − 1

∂Jl+3

 3∑
j=1,6=l

∂J

∂ṙj
δy0 (2 + j) +

3∑
j=1,6=l

∂J

∂rj
δy0 (j)

 (2.26)

These state corrections are applied to the nominal initial conditions and this process is iterated

until convergence, which is defined by a user set tolerance of the maximum absolute value of the

difference between initial and final states. For the orbits computed in this work, a tolerance of

1 mm in position and 1 mm/sec in velocity was used. The y coordinate is generally the most

difficult to converge for the types of orbits examined here, making position the limiting factor for
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setting the tolerance. The Europa periodic orbits are also corrected for the effects of Europa’s

estimated non-spherical gravity field. This involves repeating the differential correction procedure

subsequently for the C20, C22, and C30 gravity coefficients [15].

2.3.2 Continuation

Periodic orbits are generally isolated at a given level of Jacobi energy. However, neighboring

periodic orbits may exist with slightly different Jacobi energies. By incrementing the Jacobi energy

in small steps, a family of periodic orbits can be constructed. This process in general will change

the eigenvalues and repeat period associated with the periodic orbit. A periodic orbit can also be

continued if there exists some other free parameter in the system, such as the µ in the RTBP or

C22 for a body orbiter. The process for continuing a periodic orbit in Jacobi energy is outlined

here.

The function h is a Poincare map. The condition to satisfy for a periodic orbit is:

y? = h (y?, C) (2.27)

such that the state after one mapping is identical to the initial state, conserving the Jacobi energy.

A new periodic orbit is computed by incrementing the Jacobi energy δC while maintaining the

Poincare map for the modified state y? + δy such that:

y? + δy = h (y? + δy, C + δC) (2.28)

The increment in Jacobi constant δC is the control variable and the increment to the reduced state

δy is derived. Expanding this condition in a Taylor series to first order gives:

y? + δy = h (y?, C) +
∂h

∂y
|?δy +

∂h

∂C
|?δC (2.29)

where the partial of the Poincare mapping with respect to the state evaluated at the periodic orbit

is the monodromy matrix M and the |? notation represents evaluation on the nominal periodic

orbit. Recognizing that y? = h (y?, C) and simplifying:

[I −M ] δy =
∂h

∂C
|?δC (2.30)
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As long as the matrix [I −M ] is invertible, a state correction can be computed to obtain

a continued periodic orbit. For periodic orbits about planetary satellites, the monodromy matrix

will in general contain unity eigenvalues. Thus, the same reduction procedure as in the differential

corrector algorithm is employed to reduce the monodromy matrix to a 4x4 matrix, removing the z

and ż coordinates. The partial of the Poincare map with respect to Jacobi energy is necessary to

proceed.

∂h

∂C
=
∂y1
∂C

=
∂y1
∂ż

∂ż

∂C
+
∂y1
∂t

δT

δC
(2.31)

Here y1 is the first iteration of the Poincare map over one system time period T , ∂y1

∂t is the partial

of the state dynamics with respect to time, and δT is the variation in the mapping time to enforce

that the state lies on the Poincare surface of section, z = 0 in this case. Enforcing the condition:

z1 =
∂z1
∂C

δC +
∂z1
∂t

δT = 0 (2.32)

so that the mapped z1 state lies on the surface of section and

∂z1
∂C

δC =
∂z1
∂ż1

∂ż1
∂C

δC = −ż1δT (2.33)

taking the partial of the Jacobi constant with respect to ż,

∂C

∂ż1
= −2ż1 (2.34)

and simplifying gives us an expression for the variation in mapping time δT , where φij corresponds

to the element of the STM in the ith row and jth column.

δT =
φ36
2ż1

1

ż1
δC (2.35)

For the orbits considered here, the surface of section chosen is z = 0, with the corresponding

momenta ż removed in the reduced state. The details are given in Scheeres [31], where the final
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computed correction to the reduced state of the nominal periodic orbit is:

δy = [I −M ]−1





φ16

φ26

φ46

φ56


−



ẋ

ẏ

ẍ

ÿ


φ36
ż


1

−2ż
δC (2.36)

The continuation δy is applied to the initial state, and the resulting state is then input to the

differential corrector from the previous section. This process ensures another periodic orbit is the

outcome. The properties of continued periodic orbits for the Europa orbiter are discussed in a later

section.

2.3.3 Properties of Eigenvectors

Periodic orbits are characterized by the eigenstructure of the STM. The eigenvalues and

eigenvectors of the STM determine the stability of a periodic orbit and the behavior of trajectories

in the vicinity of the periodic orbit. Before discussing the properties of periodic orbits, it is necessary

to present some properties of eigenvectors.

A right eigenvector u is a column vector that satisfies the following property:

Φu = λu (2.37)

where λ is its associated eigenvalue. A left eigenvector v is a row vector which satisfies a similar

property:

vΦ = λv (2.38)

The STM can be decomposed into matrices of its right eigenvectors V , left eigenvectors U , and

eigenvalues L.

Φ = ULV T =

[
u1 u2 · · · un

]

λ1 0

. . .

0 λn





v1

v2

...

vn


(2.39)
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The sets of right and left eigenvectors are not self-orthogonal but span the STM. A useful property

exists between the sets of left and right eigenvectors.

vi · uj =


1, if i = j.

0, i 6= j.

(2.40)

From Equation 2.40, all left eigenvectors are orthogonal to all right eigenvectors except for those

pairs generated with the same eigenvalue. Effectively, the set of left eigenvectors is the inverse

transpose of the set of right eigenvectors.

U = V −T (2.41)

2.3.4 Properties of Unstable Periodic Orbits

The STM of a periodic orbit near a planetary satellite will in general have two unity eigen-

values, a conjugate pair of complex eigenvalues, and one eigenvalue each greater than one and less

than one. The complex eigenvalues and eigenvectors represent the center manifold of the periodic

orbit, the eigenvalue greater than one and its eigenvector represent the unstable manifold, and the

eigenvalue less than one and its eigenvector represent the stable manifold. Using the eigenvectors of

the State Transition Matrix associated with the stable, unstable, and center manifolds, a set of local

dynamic coordinates associated with these manifolds can be constructed [29]. Right eigenvectors

control the evolution of trajectories in the vicinity of a periodic orbit forward in time. So, the left

eigenvectors of the monodromy matrix (the STM evaluated at the periodic time T ) are used in

the manifold coordinate decomposition computation due to the orthogonality properties of left and

right eigenvectors. The components of an orbiter’s state aligned with the right stable, unstable, and

center manifolds can be extracted by taking the dot product of the state with the corresponding

left eigenvector. Since the left stable eigenvector is orthogonal to every right eigenvector except

for the right stable eigenvector, dotting the state with the left stable eigenvector yields only the

component aligned with the right stable eigenvector.
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The STM is integrated in the rotating frame of the RTBP and evaluated at the system

repeat period. Since the Monte Carlo lifetime runs presented later are conducted in the inertial

frame for realism, the state must be transformed back to the rotating frame for this computation.

The manifold coordinates au and as representing the unstable and stable components of the state

are computed by taking the dot product of the left unstable vu and left stable vs eigenvectors with

the difference between the dispersed state Xdisp and the periodic orbit state XPO as in Equations

2.42.

δx = (Xdisp −XPO)

au = vu · δx

as = vs · δx (2.42)

The representation of the center manifold includes a magnitude and a phase difference since the

center eigenvalues have imaginary components. The center magnitude ρ and center phase γ are

computed using the center eigenvector vc in Equations 2.43.

α = real (vc)

β = imag (vc)

ρ =
[
(δx ·α)2 + (δx · β)2

]1/2
γ = atan (δx · β/δx ·α) (2.43)

The left eigenvectors are normalized to have magnitude one while the orbiter state difference retains

it’s magnitude. The orbiter states are non-dimensionalized since the STM is integrated using non-

dimensional equations of motion. The coordinates themselves are intended to show whether orbits

are primarily aligned with the stable or unstable manifolds. The numerical values do not denote

how unstable a particular orbit is, more so its relative alignment. The methodology for plotting

the computed manifold coordinates is developed in Appendix A.



Chapter 3

Covariance Analysis

One of the motivations for a potential mission to icy planetary moons is to measure the tidal

Love numbers, which give insight into the presence of liquid water below the body’s surface. In

addition to measuring the Love numbers, accurate knowledge of a spacecraft’s position and velocity

is necessary for any space mission. A covariance analysis is implemented to estimate the accuracy to

which the orbiter state, the secondary’s extended gravity field, and the Love numbers k2 and h2 can

be known for this type of mission. The particular implementation is a square-root information filter

(SRIF) where the square-root of the information matrix is updated with range-rate and altimetry

measurement types. Information is accumulated into the square-root information matrix using an

orthogonal transformation known as a Givens rotation. Parameters which affect the estimation

process but are not themselves estimated are considered in the Europa covariance computation.

The generation of this realistic covariance is critical to the discussion of the lifetime properties of

periodic orbits.

3.1 Square-root Information Filter

For a covariance analysis we process no actual observations so a batch processor is sufficient

for computing the epoch state covariance matrix. However, there are well known numerical issues

with inverting the information matrix at the final step of a batch processor [26]. We use the batch

formulation of the Square Root Information Filter (SRIF) such that all information is mapped to the

epoch state. The SRIF accumulates the square root information matrix R, where the information
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matrix Λ is decomposed as in Eq. 3.1.

Λ = RTR (3.1)

A batch formulation of the SRIF is used to compute an epoch error covariance associated with the

orbiter position and velocity, the extended gravity field coefficients, and the Love numbers. The

state vector X is shown in Equation 3.2.

X = [ r v µ2 Cnm Snm k2 h2 ]T (3.2)

The State Transition matrix (STM) Φ maps small deviations δx from the nominal state from

time t0 to time t and controls the local dynamics about an orbit. The STM is used to map all

measurement partials back to epoch for addition to the information matrix.

δẋ (t) = Φ (t, t0) δx0 (3.3)

The STM is defined as the partial of the estimated state with respect to the initial state.

Φ(t, t0) =
∂X(t)

∂X(t0)
A(t) =

∂Ẋ(t)

∂X(t)
(3.4)

The STM Φ is integrated along with the state and is used to map measurement partials back to

epoch.

Φ̇(t, t0) = A(t)Φ(t, t0) (3.5)

Equation 3.5 shows the differential equation for the STM which involves the matrix of dynamic

partial derivatives A given in Equation 3.4 .

H̃x =
∂G
(
X
)

∂X
(3.6)

The observation-mapping matrix H̃x is formed by taking the partial derivatives of the mea-

surements G
(
X
)

used with respect to the state. These measurement partials are mapped to the

simulation epoch t0 by postmultiplying by the STM, weighted by premultiplying with the square-

root of the observation weighting matrix W , and then accumulated in the SRIF procedure.

Hx (t) = W 1/2H̃x (t) Φ (t, tk) (3.7)
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A Cholesky decomposition is applied to the a priori covariance matrix P̄x, to form the initial

square root matrix R̄x. The square root information matrix is accumulated by an orthogonal

transformation T such as the Givens transformation used here. This transformation is applied at

each measurement update step.

Chol
(
P̄−1x

)
= R̄x (3.8)

T

R̄x
Hx

 =

R̂x
0

 (3.9)

All information from the measurement partial is accumulated into the square-root information

matrix. This matrix R̂x is used to compute the final covariance after all measurements are processed.

Px = R̂−1x R̂−Tx (3.10)

The details of the measurement models and the additional contribution of the consider parameters

to the information accumulation process are described in the following section.

3.2 Measurement Types

The measurement types used in this covariance analysis are Earth-centered range-rate and

nadir-pointing Europa altimetry.

ρ̇ =
(r +REE) · (v + VEE)√
(r +REE) · (r +REE)

(3.11)

The range-rate measurement assumes that Earth is in the direction of the negative x axis for

the duration of the simulation, where REE and VEE are the Earth position and velocity vectors

with respect to Europa or Enceladus. The standard accuracy of 0.1
√

∆t/60s mm/s for Doppler

measurements is used, with measurement partials accumulated every minute in eight hour arcs,

representing access to one Deep Space Network antenna. For range-rate, the measurement partials

with respect to orbiter position and velocity become:

dρ̇

d (r,v)
=

[[
I
ρ −

ρ̂ρ̂T

ρ

]
(v + VEE) R̂EE

]
(3.12)
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where ρ =
√

(r +REE) · (r +REE). Partials of range-rate with respect to the remaining state

entries are zero. However, information on the k2 Love number is obtained through determining

the gravity field. Range-rate tracking gives information on the orbiter position and velocity which

allows the filter to fit the gravity field. Fluctuations in the gravity field due to the Love number

k2 are included in the dynamic partials which make up the A matrix. The STM which maps the

measurement partials is integrated using the A matrix, and distributes part of the measurement

contribution to the k2 slot in the information matrix.

h = |r| − (R2 + sR) (3.13)

The altimetry measurement in Equation 3.13 includes a time variable surface deformation sR due

to the third body’s tidal gravity, where R2 is the secondary body’s radius, and r is the position

of the orbiter about the secondary. Altimetry partials are accumulated every 150 seconds with an

accuracy of 10 meters. The Love number h2 is included in the computation of the surface uplift

sR. So, the measurement partial for altimetry becomes [6]:

∂h

∂h2
=

∂h

∂sR

∂sR
∂h2

=
−sR
h2

(3.14)

with all other state partials equal to zero. In this way, information about the h2 Love number

appears in the information matrix.

3.3 Consider Analysis

Parameters that affect the estimation process but are not themselves estimated can be con-

sidered in the filtering process [27]. For the Europa orbiter the following effects are considered:

uncertainty in Jupiter’s gravitational parameter µJ , a potential bias in the altimeter measurement

∆h, and a potential non-gravitational acceleration az constrained to the ẑ direction for near-polar

orbits. This possible non-gravitational acceleration would be due to the sparse atmosphere [32]

on Europa but is not implemented in the dynamics. The gravitational coefficients to degree four

are also considered since no reliable estimates of their numerical values are available. These are
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represented in the consider state vector in Equation 3.15. The detailed construction of the SRIF

covariance analysis can be found in Boone and Scheeres [4].

C = [Cnm, Snm, µJ , az ∆h] (3.15)

The consider STM ψ is defined in a similar way as the usual STM by taking the partial of

the estimated state with respect to the epoch consider state.

ψ (t, t0) =
∂X (t)

∂C (t0)
B (t) =

∂Ẋ

∂C
(3.16)

The differential equation for the consider STM, shown in Equation 3.17, takes a slightly different

form with an additional B matrix term, the partial of the dynamics with respect to the consider

state.

ψ̇ (t, t0) = A (t)ψ (t, t0) +B (t) (3.17)

The consider observation-mapping matrix is formed analogously to the H̃x matrix but is not

mapped to epoch using the STM.

H̃c =
∂G
(
X
)

∂C
(3.18)

Hc (t) = W 1/2
(
H̃x (t)ψ (t, t0) + H̃c (t)

)
(3.19)

A Cholesky decomposition is applied to the full a priori covariance matrix, including the consider

covariance contributions to form the initial square-root matrices. The Pxc and Pcx terms are

usually set to zero and the Pcc term represents the a priori accuracies of the considered terms. The

square-root information matrix is accumulated by an orthogonal transformation T such as a Givens

transformation. This transformation is applied at each measurement update step.

Chol


 P̄x P̄xc

P̄cx P̄cc


−1 =

R̄x R̄xc

0 R̄c

 (3.20)

T

R̄x R̄xc

Hx Hc

 =

R̂x R̂xc

0 R̃c

 (3.21)
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The usual estimation error covariance P is computed using the accumulated square root information

matrix as usual in the SRIF process [26]. The consider covariance matrix Pc is computed using

the accumulated square-root information matrix and the sensitivity matrix S shown in Equations

3.22. The final Pc matrix is applied to Europa orbiters in a subsequent chapter.

P = R̂−1x R̂−Tx

S = −R̂−1x R̂xc

Pc = P + SP̄ccS
T (3.22)

The a priori values for the consider parameters are shown in Table 3.1. The first value

is taken from the uncertainty in Jupiter’s mass and the next two are best estimates based on

results from published papers on Galileo data [32]. The uncertainty in the gravitational coefficients

comes from an initial seven day SRIF run with coefficients from C31 up to C40 in the estimate

list. The third order and higher Stokes gravity coefficients are not included in the dynamics since

numerical estimates are not available. The Stokes coefficients in the covariance analysis are non-

dimensionalized using the radius of Europa raised to the power of the coefficient degree n. These

parameters are used in the SRIF consider covariance process for constructing covariance matrices

for evaluating periodic orbits at Europa.

Table 3.1: Consider a priori uncertainties

Parameter σ
µJ (km3/s2) 1.001142
az (km/s2) 1× 10−09

∆h (m) 100
C31 1.98613× 10−09

S31 3.10642× 10−09

C32 1.74740× 10−09

S32 9.05493× 10−10

C33 2.87245× 10−11

S33 6.40779× 10−11

C40 2.08224× 10−07
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3.4 Current State SRIF

A current state formulation of the SRIF is used as part of the study of information processing

at Europa Lagrange points. In this form, the measurement partial is not mapped in time, but the

square-root information matrix is mapped between measurement update times. Since a spacecraft

placed at an equilibrium points remains stationary, all time derivatives in the dynamics are zero

and the A matrix is constant. This simplifies the filtering process. The STM can be expressed as

the matrix exponential of this constant A matrix, eliminating the need to integrate Φ along with

the equations of motion.

Φ (t2, t1) = eA(t2−t1) (3.23)

The measurement partial is generated as described in the preceding section. The square-root

information matrix is mapped between measurement times using the STM as:

R̄x (t2) = R0 (t1) Φ−1 (t2, t1) (3.24)

This measurement partial is then accumulated into this mapped square-root information matrix

using an orthogonal transformation.

T

R̄x
Hx

 =

R̂x
0

 (3.25)

The covariance matrix Px for that time is computed as usual.

Px = R̂−1x R̂−Tx (3.26)

The computed square-root information matrix R̂x then becomes the a priori square-root information

matrix for the next measurement accumulation step.

R0 = R̂x (3.27)

Consider parameters are not included for this covariance study at equilibrium points. The following

section focuses on how information in the orbit determination process is accumulated along stable

and unstable manifolds associated with the Europa L2 point as an example.



Chapter 4

Information Processing at Equilibrium Points

Equilibrium points are a special case of the periodic orbits discussed earlier. As an intro-

duction to the phase space properties of periodic orbits, equilibrium points are examined because

the eigenvectors associated with them, and thus the manifold directions, are constant, simplifying

some of the analysis. The collinear Lagrange points at Europa are computed and the L2 point

is chosen for investigation as an example of how the local manifold structure of a periodic orbit

affects information accumulation in the orbit determination process. The covariances generated for

Europa and Enceladus orbits are affected by the stable and unstable manifolds a similar manner,

with the difference being the manifold directions are rotated in time in phase space. Future work

in this area will focus on mapping the manifold directions in time using the STM. This analysis is

conducted in the xy plane of the Jupiter-Europa three body system.

4.1 Europa Libration Points

For Europa, the reduced mass describing the three body system is µ = 2.52802 · 10−5. To

find the locations of the collinear libration points, the x scalar equation of motion is solved, with

time derivatives set to zero along with the y and z coordinates set to zero. The roots of Equation

4.1 yield the locations of Europa’s L1, L2, and L3 points.

(x+ 1− µ)− (1− µ)
x+ 1

|x+ 1|3
− µ x

|x|3
= 0 (4.1)

The x coordinates of the collinear libration points are given in Table 4.1. A spacecraft placed at

these locations with zero velocity will remain there indefinitely in the RTBP.
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Table 4.1: Europa collinear libration point x coordinates

x (km)
L1 −1.35593 · 104

L2 +1.37445 · 104

L3 −1.34179 · 105

Since the dynamics are identically zero at an equilibrium point, numerical integration is not

necessary. The local dynamics are characterized by the STM which itself is integrated using the

dynamic partials matrix A. However, the A matrix is constant since its values depend only on the

orbiter position, and an eigenvector of the A matrix is also an eigenvector of the STM. There is a

simple relationship between the eigenvalues σ of the A matrix and the eigenvalues λ of the STM.

λi = eσit (4.2)

So, the eigenstructure of the L2 equilibrium point is available from the analytical description of the

A matrix. Equation 4.3 shows the components of the A matrix and Equation 4.4 gives the partials

of the potential

A =



0 0 1 0

0 0 0 1

Uxx Uxy 0 2

Uyx Uyy −2 0


(4.3)

Uxx = 1− 1− µ
r3J
− µ

r3E
+ 3 (1− µ)

(x+ 1)2

r5J
+ 3µ

x2

r5E

Uxy = Uyx = 3µ
xy

r5E
+ 3y (1− µ)

x+ 1

r5J

Uyy = 1− 1− µ
r3J
− µ

r3E
+ 3 (1− µ)

y2

r5J
+ 3µ

y2

r5E
(4.4)

The eigenvectors and eigenvalues are computed from this analytical A matrix using the eig

command in Matlab. The eigenvalues σ of the A matrix are shown in Table 4.2 to illustrate the

instability of L2. One eigenvalue has magnitude greater than one, corresponding to the unstable

manifold, one eigenvalue has magnitude less than zero, corresponding to the stable manifold, and

the final two eigenvalues are a complex conjugate pair representing the center manifold.
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Table 4.2: Eigenvalues of A matrix for Europa L2

Value
λu 2.46012
λs -2.46012
λc1 0 + 2.04233i
λc2 0− 2.04233i

A simplified range-rate model is used to explore the processing of information from measure-

ment partials at this equilibrium point. For the time periods considered in this simulation, Earth’s

position vector is fixed along the û direction in the Jupiter-Europa system. Equation 4.5 shows the

range-rate measurement as the dot product of the Earth range direction and the orbiter velocity

where TRI is the transformation from the rotating frame to inertial frame.

ρ̇ = û · vEE = û · [TRI (vR + ω × rR)] (4.5)

For a spacecraft at an equilibrium point, the rotating frame velocity vR is zero. Equation

4.6 shows the partial of the range-rate measurement with respect to the rotating frame position

and velocity where Ū is the unity dyad and ω̃ is the cross product matrix of the system angular

velocity.

∂ρ̇

∂ (rR,vR)
= û · TRI

[
ω̃ Ū

]
= [1 0 0]

cos(nSt) − sin(nSt)

sin(nSt) cos(nSt)

 [ω̃ Ū] (4.6)

This results in a 1x4 partial since the xy plane is used for the equilibrium point analysis.

∂ρ̇

∂ (rR,vR)
= [−nS sin(nSt) − nS cos(nSt) cos(nSt) − sin(nSt)] (4.7)

This range-rate measurement partial is accumulated in the SRIF in epoch and current state

formulations to explore how the manifolds of the equilibrium point influence the resulting covariance

matrix. The following section gives the mathematical basis for the expected behavior of mapped

partials.
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4.2 Influence of STM Structure on Information Matrix

In a batch formulation of the square-root information filter, the information matrix Λ is

updated with each processed measurement via the measurement partials H̃. These measurement

partials are mapped to the epoch state by means of the STM which is integrated along with the

equations of motion. The update is as follows:

Λ′ = Λ + ΦT (t, t0) H̃
T H̃Φ (t, t0) (4.8)

As discussed previously, the STM can be decomposed into a product of matrices of right

eigenvectors, left eigenvectors, and a diagonal matrix of eigenvalues.

Φ = [u] diag(λ)
[
vT
]

=

[
u1 u2 · · · un

]

λ1 0

. . .

0 λn





vT1

vT2
...

vTn


(4.9)

A range-rate measurement partial is decomposed into components along the left eigenvectors

of the STM since these vectors span the measurement space. Using a summation to represent the

different eigenvector contributions to the partial:

H̃ =
∂ρ̇

∂ (rR,vR)
=

N∑
i

αiv
T
i (4.10)

Decomposing the STM and the measurement partials using the eigenvalues and eigenvectors gives

the information matrix update equation in this form:

Λ′ = Λ +

N∑
i

[v] diag(λ)
[
uT
]

(αivi)
(
αiv

T
i

)
[u] diag(λ)

[
vT
]

(4.11)

where [u] is a matrix of right eigenvectors and [v] is a matrix of left eigenvectors. Using the

properties of left and right eigenvectors, this update relationship can be simplified. The dot product

of a left eigenvector and right eigenvector is zero unless their indices are equal. In other words,

all left and right eigenvectors are orthogonal to one another except for those paired with the same
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eigenvalue.

vi · uj =


1, if i = j.

0, i 6= j.

(4.12)

Using this property, only the eigenvector(s) aligned with the particular measurement partial

will contribute to the addition to the information matrix. The left eigenvectors which make up the

measurement partial will select out only their paired right eigenvectors and will dot to zero with all

other STM eigenvectors. Using the matrix exponential form of the STM, where σi is the eigenvalue

of the dynamics partials matrix A corresponding to λi:

Λ′ = Λ +
N∑
i

vie
σit
(
αiu

T
i vi
) (
αiv

T
i ui

)
eσitvTi (4.13)

= Λ +
N∑
i

α2
i e

2σitviv
T
i (4.14)

Since the batch formulation of the SRIF references the epoch time, all subsequent measure-

ments will be mapped backward in time. Mapping backward in time along the unstable manifold

is expected to decrease uncertainty or increase information content, the opposite of mapping for-

ward in time [23]. Assume the measurement partial in Equation 4.14 is aligned with the unstable

left eigenvector, which has a positive real eigenvalue λ greater than one. The natural logarithm

of λu > 1 is positive and the measurements aligned with the unstable manifold direction will be

mapped according to the exponential eσut. This will result in an increase in the amount of infor-

mation in Λ along the left unstable manifold direction greater than any other direction since the

exponential mapping will be greatest for the λu > 1 component. Correspondingly, the amount of

information increase along the stable manifold direction will be less due to the stable eigenvalue λs

being less than one. A series of measurements such as range-rate should sample across phase space

and not predominantly align with any particular eigenvector. It is not as clear what the effect of

STM mapping would be on measurements aligned with a right eigenvector. Returning to Equation

4.11, if the measurement partial is replaced with right eigenvector components:

Λ′ = Λ +
N∑
i

[v] diag(λ)
[
uT
]

(αiui)
(
αiu

T
i

)
[u] diag(λ)

[
vT
]

(4.15)
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In this case, the orthogonality properties of left and right eigenvector properties do not

simplify the analysis. The measurement partial will generally have nonzero dot products with all of

the right eigenvectors in the [u] matrix portion of the STM, leaving no clear direction for enhanced

information accumulation.

An analogous result comes out of the mathematics for current state measurement accumu-

lation. In this case, the information matrix is mapped in time between measurement updates.

Accumulating a measurement at epoch with no a priori information and then mapping to the next

measurement time gives the following, where the mapping relation for the information matrix is

the inverse of that for the covariance matrix:

Λ′ = Φ−T H̃T H̃Φ−1 (4.16)

Due to the definition of the STM and the properties of left and right eigenvectors discussed earlier,

the inverse of the STM can be expressed as:

Φ−1 = [u] diag(e−σt)
[
vT
]

(4.17)

such that the mapped information matrix becomes:

Λ′ = [v] diag(e−σt)
[
uT
]
H̃T H̃ [u] diag(e−σt)

[
vT
]

(4.18)

Since the inverse of the STM is used in mapping the information matrix between update

times, the exponential controlling the mapping has a negative sign. This effectively reverses the

trends for information accumulation discussed for the epoch state case. If a measurement partial

aligned with a left eigenvector is substituted for H̃ in Equation 4.18, the exponential term associated

with that eigenvector will have σ > 0 for the unstable direction or σ < 0 for the unstable direction.

With the negative sign present in the mapping exponential, the left stable direction will accumulate

information and reduce uncertainty more than the unstable direction. Again, due to the overall

structure of the STM, measurement partials aligned with right eigenvectors do not produce any

definite trends for information accumulation. This mapping effect of the STM is expected to
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dominate the overall shape of the covariance with respect to the left stable and unstable manifolds.

In the following section, experiments are performed to test this hypothesis.

4.3 Covariance Evolution

This section investigates how the covariance accumulated from a series of range-rate mea-

surement partials at the Europa L2 point evolves in time. The range-rate partial developed in

Equation 4.7 is used here. In general, this partial will have projections on to both the left and right

eigenvectors. Both the epoch state and current state formulations of a SRIF are used to generate

the covariance. A spherical a priori covariance of 1000 · I4x4 is used for both cases. The focus

here is on the evolution of the covariance relative to the manifolds rather than a numerical value.

The left and right stable and unstable manifolds are computed for Europa L2 and the covariance

is projected into the plane of intersection of the left stable and unstable manifolds as described in

Appendix A.

4.3.1 Epoch State Mapping

Starting from a spherical a priori covariance, range-rate measurement partials are accumu-

lated at the Europa L2 equilibrium point and an epoch covariance is computed. Partials are

accumulated every 10 minutes and an epoch covariance matrix is computed using a SRIF at ev-

ery time step. Dispersions around the equilibrium point are drawn from the covariance matrix

10000 times and decomposed into manifold coordinates using the methodology in section 2.3.4.

The mathematics involving the manifold structure of the STM suggest that there will be reduced

uncertainty in this covariance draw along the left unstable manifold direction. In the plots, the

left manifolds are plotted as dotted lines and the right manifolds are plotted as solid lines. The

stable directions are shown in green and the unstable directions are shown in red. The blue dots

each represent one trajectory in the vicinity of the equilibrium points drawn from the covariance.

In this way, the relative alignment of the covariance with any particular manifold can be seen.

For epoch accumulation, the times given in the figures represent the last time a measurement
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Figure 4.1: Epoch state covariance at t = 10 min

partial was accumulated into the information matrix. The specific times shown are chosen for

comparison between epoch and current state formulations. All partials are mapped to epoch using

the STM. After one measurement partial, the covariance distribution is still nearly spherical as

shown in Figure 4.1. After more partials are accumulated, the covariance starts to take on an

orientation with the long axis slightly aligned with the right stable manifold as in Figure 4.2.

At t = 300 minutes in Figure 4.3, the covariance is definitely compressed along the left unstable

manifold and has its greatest extent along the right stable manifold.

As the mapping time increases, the effect of the unstable eigenvalue becomes more and

more important. Continuing to accumulate partials stretches the covariance even more along the

right stable manifold and compresses most along the left unstable direction. Since Earth follows

a cyclic pattern in the range-rate model, all eigenvectors of the STM should be sampled equally

in this covariance computation. However, the results verify the prediction that the left unstable

eigenvector will have the most influence on the epoch covariance. This makes intuitive sense as

any errors along the right stable manifold direction would be expected to contract when mapped



37

−60 −40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

x
m

y
m

 

 

Left Unstable

Left Stable

Right Unstable

Right Stable

Figure 4.2: Epoch state covariance at t = 50 min
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Figure 4.3: Epoch state covariance at t = 300 min

forward in time. With the measurement partials being mapped backward in time for the epoch

covariance, errors along the right stable manifold are expanded.
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4.3.2 Current State Mapping

Starting from a spherical a priori covariance, range-rate measurement partials are accumu-

lated at the Europa L2 equilibrium point and a current state covariance is computed. Partials are

accumulated every 10 minutes and the covariance matrix is computed using a current state SRIF.
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Figure 4.4: Current state covariance at t = 10 min

Dispersions around the equilibrium point are drawn from the covariance matrix 10000 times

and decomposed into manifold coordinates. For the current state formulation, the mathematics

involving the manifold structure of the STM suggest that there will be reduced uncertainty in

this covariance draw along the left stable manifold direction. Figure 4.4 shows the covariance

decomposition after a single measurement has been taken at t = 10 minutes. The distribution is

still spherical, but compressed from the a priori since this measurement has not yet been mapped

in any way. For the current state filter, the entire information matrix is mapped between updates

and in this study there was no measurement at epoch.

After mapping the covariance and accumulating additional measurements, the properties of

the STM mapping begin to manifest in Figure 4.5. The distribution is no longer spherical and
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Figure 4.5: Current state covariance at t = 50 min

there is some compression along the left stable manifold direction. Each measurement partial adds

information and reduces the volume of the uncertainty but the information matrix is also mapped in

time between measurement updates, expanding along the direction of the right unstable manifold.

This right unstable manifold controls evolution forward in time.

Figure 4.6 shows the covariance being stretched even more along the right unstable manifold

and compressing along the left stable manifold. This confirms the mathematical prediction based

on the structure of the STM mapping in the SRIF process. The reason for compression along the

left stable manifold in this case is due to the negative sign imparted to the exponential mapping

in the time update equation for the information matrix. Similar behavior would be expected

for covariance analyses conducted around unstable periodic orbits since they possess stable and

unstable manifolds. However, the manifold structure for periodic orbits would also have to be

mapped in time. Numerical difficulties arise in mapping the manifolds of the monodromy matrix

which controls the local dynamics around a periodic orbit. The angle between the stable and

unstable manifolds would be constant at each point in the orbit although rotated in phase space.
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Figure 4.6: Current state covariance at t = 300 min

This is difficult to enforce numerically when many applications of the STM would be required for

manifold decomposition at many measurement times. A libration point was chosen for this study

because of the constant manifold properties. Such a study for periodic orbits may be the subject

of future work.

4.4 Information Accessibility via Eigenvector

The previous sections show a dichotomy between how measurements aligned with left and

right eigenvectors map in time. For epoch state filtering, the left unstable direction is best known

and the right stable direction is least known. For a current state filter, the left stable direction is

best known and the right unstable direction is least known. In this section, the possibility of having

deficient measurement directions in phase space is explored. For measurements composed of left

or right eigenvectors, epoch and current state mapping is examined in more detail to determine if

there exists a direction in phase space where no information is available.
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4.4.1 Left Eigenvectors

First, a measurement partial composed of left eigenvectors in a two degree of freedom system

such as the planar CRTBP is examined under current state filtering, where any of the αi constants

may be zero.

H̃ =
4∑
i=1

αivi =

[
α1 α2 α3 α4

]


vT1

vT2

vT3

vT4


= [α]

[
vT
]

(4.19)

In the absence of a priori uncertainty, the information matrix becomes:

Λ′0 = H̃T H̃ (4.20)

The resulting covariance is then mapped forward in time to the next measurement update.

Λ1 = Φ−TΛ′0Φ
−1 = Φ−T H̃T H̃Φ−1 (4.21)

The mapping of the measurement partial is simplified due to the orthogonality properties of

left and right eigenvectors,
[
vT
]

[u] = I4x4.

H̃Φ−1 = [α]
[
vT
]

[u] diag(e−σt1)
[
vT
]

= [α] diag(e−σt1)
[
vT
]

(4.22)

Substituting the relation in Equation 4.22 and its transpose into Equation 4.21 gives:

Λ1 =
(
H̃Φ−1

)T (
H̃Φ−1

)
= [v] diag(e−σt1) [α]T [α] diag(e−σt1)

[
vT
]

(4.23)

The product of α coefficients becomes a matrix of products.

[α]T [α] =



α1α1 α1α2 α1α3 α1α4

α2α1 α2α2 α2α3 α2α4

α3α1 α3α2 α3α3 α3α4

α4α1 α4α2 α4α3 α4α4


(4.24)
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If a given measurement has no component along a particular eigenvector direction, the cor-

responding row and column of this matrix are zero. For example, if α1 = 0,

[α]T [α] =



0 0 0 0

0 α2α2 α2α3 α2α4

0 α3α2 α3α3 α3α4

0 α4α2 α4α3 α4α4


(4.25)

The update to the information matrix then becomes,

(
H̃Φ−1

)T (
H̃Φ−1

)
=

[
e−σt1v

]


0 0 0 0

0 α2α2 α2α3 α2α4

0 α3α2 α3α3 α3α4

0 α4α2 α4α3 α4α4


[
e−σt1vT

]
(4.26)

which results in,

(
H̃Φ−1

)T (
H̃Φ−1

)
= 04x4 +Ae−σ2t1vT2 +Be−σ3t1vT3 + Ce−σ4t1vT4 (4.27)

where the terms A, B, and C are linear combinations of v2, v3, and v4 mapped by the exponential

of their corresponding eigenvector and multiplied by the constant αi as follows:

A = α2
2e
−σ2t1v2 + α2α3e

−σ3t1v3 + α2α4e
−σ4t1v4

B = α2α3e
−σ2t1v2 + α2

3e
−σ3t1v3 + α3α4e

−σ4t1v4

C = α2α4e
−σ2t1v2 + α3α4e

−σ3t1v3 + α2
4e
−σ4t1v4 (4.28)

In this example, there are no terms in this measurement update containing v1. However, the

left eigenvectors are not self-orthogonal, and there may be some information along the v1 direction

in phase space. The right eigenvector u1 dotted with this update to the information matrix will

produce a zero result since the only vectors present are those which do not share an eigenvalue with

u1. In other words, no information is present along the u1 direction because the measurement par-

tial does not contain v1. This is verified numerically by constructing a measurement partial out of
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the stable, and two center manifolds of the Europa L2 point but omitting the unstable component.

The result of mapping the information update to a subsequent time and dotting with the right

unstable eigenvector is identically zero. This means that a series of measurements deficient in any

left eigenvector direction will never have information along the paired right eigenvector direction

in phase space, even under mapping in time.

If measurement partials composed of left eigenvectors are accumulated at epoch a similar

result is found. Modifying Equation 4.11 for current state mapping:

Λ1 = ΦT H̃T H̃Φ = [v] diag(eσt1)
[
uT
]

[v] [α]T [α]
[
vT
]

[u] diag(eσt1)
[
vT
]

(4.29)

Again, this is simplified using the orthogonality properties of left and right eigenvectors.

Λ1 = ΦT H̃T H̃Φ = [v] diag(eσt1) [α]T [α] diag(eσt1)
[
vT
]

(4.30)

The only difference between Equation 4.30 and Equation 4.23 is the negative sign in matrix

of exponential terms. Working through the math results in the same outcome as for the current

state formulation in terms of information accessibility. If any left eigenvector was not a component

of the measurement partial, then the direction of the right eigenvector paired with the missing left

will contain no information. This is again verified by numerical experiment by constructing a left

eigenvector measurement partial with one left omitted. The dot product of the information update

mapped to epoch and dotted with the right eigenvector corresponding to the omitted left is zero.

4.4.2 Right Eigenvectors

A different strategy is taken with measurements composed of right eigenvectors since the

structure of the STM does not yield simplifications in the information update. To determine

whether there are directions in phase space deficient in information due to right eigenvector mea-

surement partials, a series of measurements composed of the same right eigenvector are accumulated
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and mapped in time. Using a range-rate partial composed of a single right eigenvector:

H̃ =
∂ρ̇

∂ (rR,vR)
= αuT (4.31)

A series of identical partials described in Equation 4.31 are accumulated into the information

matrix, which is mapped forward in time between measurement updates. For current state accu-

mulation the inverse of the STM is used and the partials are mapped according to Equation 4.32

and its transpose.

H̃Φ−1 = αuT [u] diag(e−σt)
[
vT
]

(4.32)

Here the measurement partial composed of a single right eigenvector will have nonzero dot

products with the matrix of right eigenvectors in the decomposition of the STM. The same mea-

surement partial constructed from a right eigenvector is used for each H̃ in Equations 4.33 through

4.36.

Λ1 = H̃T H̃ (4.33)

Λ2 = Φ−TΛ1Φ
−1 + H̃T H̃ (4.34)

Λ3 = Φ−TΛ2Φ
−1 + H̃T H̃ (4.35)

Λ4 = Φ−TΛ3Φ
−1 + H̃T H̃ (4.36)

The rank of the resulting information matrices are examined and the same dot product tests

as were administered to the left eigenvector accumulations are applied. The ranks of the resulting

information matrices are rank(Λ1) = 1, rank(Λ2) = 2, rank(Λ3) = 3, and rank(Λ4) = 4. For the

two degree of freedom system in the plane at Europa L2, the final information matrix has full rank.

This shows that measurements composed of right eigenvectors are rotated in phase space due to

the properties of the STM. Taking the dot product of the final Λ4 information matrix with each left

eigenvector v gives a nonzero result. There is no information deficient phase space direction in terms

of eigenvectors resulting from this process. This property is not true for a series of measurements

constructed from a left eigenvector. Each information matrix in that case would have rank(Λi) = 1
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due to the orthogonality properties of left and right eigenvectors. Repeating this process for epoch

mapping of a series of the same right eigenvector measurements yields similar results.

H̃Φ = αuT [u] diag(eσt)
[
vT
]

(4.37)

In this case, each measurement partial is mapped to epoch using Equation 4.37 and its

transpose. Again, the measurement partial composed of a single right eigenvector will have nonzero

dot products with the matrix of right eigenvectors in the STM decomposition.

Λ1 = ΦT H̃T H̃Φ (4.38)

Λ2 = Λ1 + ΦT H̃T H̃Φ (4.39)

Λ3 = Λ2 + ΦT H̃T H̃Φ (4.40)

Λ4 = Λ3 + ΦT H̃T H̃Φ (4.41)

The final information matrix Λ4 is full rank. Dotting the final information matrix with any

of the left eigenvectors v gives a nonzero result. Accumulating a series of the same measurement

allows determination of the full state due to the STM mapping properties. At an equilibrium point,

working in four dimensions, it may be possible to construct a measurement perpendicular to the

position components of a center manifold. If measurements are taken in that direction, the full

state in the rotating frame can never be obtained. The measurement will lie along the other three

eigenvectors in general but the resulting information matrix would be singular.



Chapter 5

Europa Orbiters

In this chapter, Europa periodic orbits are investigated as a means for extending orbit lifetime

in the unstable environment of the Jupiter-Europa system. Periodic orbits are computed in the

RTBP and corrected to be periodic with the effects of Europa’s extended gravity field. The values

of the Jupiter-Europa system parameters are given in Table 5.1. The nonzero Stokes coefficients

[16] used in these simulations have been non-dimensionalized by Europa’s radius raised to the n

power, the coefficient degree.

Table 5.1: Jupiter-Europa system parameters

Parameter Value
RE (km) 1560.8

eE 0.0094
nE (rad/s) 2.048 ·10−5

TE (days) 3.55
LU (km) 6.709 ·105

TU (s) 4.882 ·104

µE (km3/s2) 3.20273 ·103

µJ (km3/s2) 1.26686 ·108

C20 −4.2748 · 10−4

C22 1.2847 · 10−4

C30 −1.3784 · 10−4

A consider covariance analysis is conducted about a nominal periodic orbit to obtain esti-

mation state uncertainties for the orbiter position and velocity, Europa’s gravitational coefficients,

and the tidal Love numbers. This covariance is used to disperse the nominal orbit in a Monte

Carlo simulation which reveals a bias toward longer lifetime orbits. The phase space structure of
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these orbits is examined through the application of manifold coordinates. The realistic covariance

is shown to be influenced by the structure of the stable and unstable manifolds of the nominal peri-

odic orbit. This manifold structure is shown to be sensitive to changes in system initial conditions,

specifically the initial position of Jupiter. The nominal periodic orbit is continued to form a family

of periodic orbits, all of which have similar manifold structures. This shows that the covariance is

not controlled by one particular periodic orbit. The Monte Carlo simulations are iterated by apply-

ing the nominal covariance to the long-lifetime orbits computed from the scaled covariance draws.

This increases the maximum orbit lifetimes found in the distribution by a factor of three over the

nominal lifetime. As a check on numerical accuracy, orbits are constructed from dispersions along

the stable manifold. The lifetimes of these orbits are comparable but less than the longest lifetime

orbit found in the covariance draw.

5.1 Europa Periodic Orbits

Periodic orbits are computed using the differential corrector algorithm discussed in Section

2.3.1. Figure 5.1 below shows the number of Europa revolutions of the orbiter as a function of the

orbit altitude given by Equation 2.21. The altitude currently under consideration by JEO for a

Europa orbiter is 100 km, which corresponds to N = 41 in the commensurate period approximation.

The periodic orbits in this study are converged in the Europa-centered rotating frame with

the effects of the higher order Europa gravity terms. The CRTBP form of the equations of motion is

non-dimensionalized using the length (LU) and time (TU) units given in Table 5.1. The final fully

converged orbit represented by the orbit elements in Table 5.2 is used for the covariance analysis

and Monte Carlo simulation detailed in the following section. The variation in the two-body orbit

elements a, e, i,Ω, ω, and M for this periodic orbit are shown over one Europa orbit period in

Figures 5.4, 5.5, and 5.6.

The eigenvalues in Table 5.2 are computed from the full STM evaluated at Europa’s repeat

period. The eigenvalues λu > 1 and λs < 1 show that the orbit is fundamentally unstable with λu

representing the unstable manifold and λs representing the stable manifold. The complex pair of
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Table 5.2: Two-body elements and eigenvalues for 97 km altitude periodic orbit

Parameter Value
a (km) 1658.31
e 0.026917

i (deg) 90.794
Ω (deg) 0.070868
ω (deg) 274.653
M (deg) 82.277
λu 1.29157
λs 0.774249
λc1 0.99999998 + 0.000186358i
λc2 0.99999998− 0.000186358i
λ1 0.999763
λ1 1.00024

θ (deg) 60.4064
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−1000

0

1000

−1000

0

1000

−1500

−1000

−500

0

500

1000

1500

X (km)Y (km)

Z
 (

k
m

)

Figure 5.2: Europa 97 km altitude periodic orbit

eigenvalues represent the center manifold and the final eigenvalues are numerically unity, indicating

that the orbit is a fixed point in the RTBP. The first unity eigenvalue represents invariance when
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Figure 5.4: Semi-major axis and eccentricity for 97 km over one system repeat period
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Figure 5.5: Inclination and RAAN for 97 km over one system repeat period
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Figure 5.6: Argument of periapsis and mean anomaly for 97 km over one system repeat period
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moving along the periodic orbit and the second unity eigenvalue is due to the existence of the

Jacobi integral in the RTBP. The manifold structure described above is valid only for this particular

nominal periodic orbit; however, multiple periodic orbits will reside in the vicinity of this orbit in

phase space. This orbit is continued into a family of periodic orbits for analysis in the manifold

decomposition in Section 5.4.

5.2 Covariance Results

Table 5.3 shows the 1σ state accuracies for a seven day SRIF covariance run. The position

accuracies are on the order of meters and the velocity accuracies are on the order of mm/s. These

accuracies may be challenging to realize for an outer planet type mission. The gravity field coef-

ficients are very well known with uncertainties four orders of magnitude smaller than the actual

non-dimensionalized values used in the dynamics.

Table 5.3: 97 km altitude Europa periodic orbit initial state uncertainties

x (km) 1.402× 10−04

y (km) 3.952× 10−03

z (km) 3.649× 10−03

u (km/s) 2.502× 10−06

v (km/s) 5.693× 10−07

w (km/s) 2.594× 10−07

µE (km3/s2) 1.230× 10−04

C20 6.965× 10−08

C21 6.141× 10−08

S21 1.273× 10−08

C22 1.473× 10−09

S22 2.842× 10−10

C30 4.062× 10−06

k2 1.330× 10−06

h2 2.536× 10−02

Figure 5.7 shows the covariance envelope for the Love numbers k2 and h2. The flat portions in

the k2 evolution represent time periods where range-rate measurements are not accumulated. The

k2 Love number is tied to fluctuations in Europa’s gravity field, and the range-rate measurement

partials give information on the orbiter position and velocity, and thus the gravity field. The

Love number accuracies vary from those reported in other published results due to differences in
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Figure 5.7: Consider covariance envelope accumulated over seven days

simulation time and dynamics models. The Love number accuracy for k2 computed here, which

has a nominal value of 0.25 in this simulation, is more accurate than the 0.0004 accuracy reported

in Wu et al. The h2 accuracy, which has a nominal value of 1.25 in this simulation, is not accurate

enough per NASA objectives. Altimeter crossover measurements may improve this performance by

removing orbital errors and capturing time-varying topography [35].

5.3 Monte Carlo Lifetime Simulation

To evaluate the statistical properties of an orbit’s lifetime, the initial position and velocity

of the orbit are dispersed by drawing a random vector from the multivariate normal distribution

with zero mean and covariance specified by the output of the consider covariance analysis. This

process is repeated in a Monte Carlo simulation 10000 times and the time to impact along with

the integrated spacecraft state are saved for each run. Figure 5.8 shows the eventual decay of the

radius magnitude of the nominal 97 km altitude periodic orbit, yielding an 83.3 day lifetime.



54

0 10 20 30 40 50 60 70 80 90
1500

1550

1600

1650

1700

1750

1800

Time (days)

O
rb

it
 r

a
d
iu

s
 m

a
g
n
it
u
d
e
 (

k
m

)

Figure 5.8: Orbit radius decay for 97 km orbit

Figure 5.9 shows the lifetime distribution produced by the nominal seven day covariance

applied to the 97 km altitude periodic orbit. 10000 dispersed trajectories are integrated until

impact. There is very little variance from the nominal lifetime of 83.3 days.

Figure 5.10 shows the covariance of a generic geodesy type orbit applied to a polar, 100 km

altitude orbit. The periodic orbit has an average lifetime of around 83 days, already much greater

than the 13 day average lifetime of a random geodesy orbit.

Neither Monte Carlo simulation produces much variance in their respective lifetime distribu-

tions. Investigating this, the entire covariance of the periodic orbit is scaled by a factor of 100 in

both position and velocity terms to see the qualitative effect on the distribution. This produces a

level of uncertainty of hundreds of meters in position and and tens of cm/s in velocity that is more

realistic for the targeting of a deep space orbiter.

Figure 5.11 shows the lifetime distribution of a 97 km altitude periodic orbit with initial

conditions dispersed by a covariance matrix scaled by factors of 100 in position and velocity. The

intention of scaling the covariance in this way is to achieve 1σ accuracies that are 100 times larger



55

82.9 83 83.1 83.2 83.3 83.4 83.5 83.6 83.7
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5.9: 97 km orbit with nominal covariance perturbation

12.3 12.4 12.5 12.6 12.7 12.8 12.9 13
0

1000

2000

3000

4000

5000

6000

7000

Lifetime (days)

F
re

q
u
e
n
c
y

Figure 5.10: Typical geodesy type orbit with covariance dispersal

numerically than the nominal run. The mean of the distribution is lowered from the nominal 83
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Figure 5.11: 97 km orbit with covariance perturbation scaled by 1002

days but the distribution is skewed toward greater lifetimes. In addition to this long lifetime bias,

none of the orbits dispersed by this augmented covariance matrix reach the 13 day lifetime of a

generic polar orbit. If this process is repeated with a scaled covariance for the typical geodesy-type

orbit, no increase in lifetime is observed.

Figure 5.12 shows the results of a Monte Carlo simulation conducted with only the diagonal

terms of the processed covariance applied to the distribution. In this case, the mean of the dis-

tribution drops to around 76 days without the covariance (off-diagonal) terms. While some long

lifetime orbits are present in this distribution, the lowest observed lifetime for this case, 45 days,

is much lower than the minimum lifetime of 69 days from the full covariance draw. This suggests

that the covariance terms which are based on tracking data, serve to remove the lowest lifetime

orbits in the distribution.

Figure 5.13 shows the effect on orbit lifetime of shifting Jupiter’s initial true anomaly away
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Figure 5.12: 97 km orbit with diagonal covariance perturbation scaled by 1002

from periapsis such that the initial distance from Jupiter to Europa equals the semi-major axis of

the Jupiter-Europa system. This is the circular system value for which periodic orbits are designed.

Dispersed orbits are drawn from the scaled covariance matrix and the resulting lifetimes are much

less than the other distributions. The lifetime distribution for this case is Gaussian, with a mean of

around 56 days and very little variance. This shows the system is very sensitive to initial conditions

and that the change in Jupiter true anomaly was too drastic.

Table 5.4: Monte Carlo lifetime statistics for shifting initial Jupiter true anomaly

∆νJ Min (days) Mean (days) Max (days)
+15◦ 76.58 101.0 238.5
+12◦ 74.93 105.7 244.5
+10◦ 72.86 102.6 225.2
+5◦ 69.03 90.33 225.7

0 67.99 85.71 191.87
−5◦ 70.77 90.44 219.7
−10◦ 70.95 98.48 221.5
−12◦ 73.11 103.5 226.1
−15◦ 75.89 104.3 220.3
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Figure 5.13: 97 km orbit with Jupiter initial true anomaly shifted by ∆νJ = cos−1(−e)

The initial Jupiter true anomaly is shifted in small increments to determine whether positive

or negative changes increase or decrease orbit lifetime. Some selected results are shown in Table

5.4. Greater mean lifetimes and greater maximum lifetimes are found by shifting the initial Jupiter

true anomaly in both positive and negative directions. The mean and maximum lifetimes obtained

from this process appear to peak for the ∆νJ case. The lifetime distribution for this case is shown

in Figure 5.14.

The maximum lifetime for this Monte Carlo simulation is 244 days, more than 50 days greater

than the maximum of the original scaled covariance dispersal. The mean lifetime is also raised to

105 days, a desirable trait for a Europa orbiter in an unstable system. The significance of the 12◦

value for shifting Jupiter’ initial true anomaly is discussed in the following section. As a potential

means of increasing the lifetime statistics of the distribution, the longest lifetime orbit from the

scaled covariance draw selected as the nominal orbit of a new Monte Carlo simulation and dispersed
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Figure 5.14: 97 km orbit with Jupiter initial true anomaly shifted by ∆νJ = +12◦

with the unscaled covariance.

Figure 5.15 shows the lifetime distribution produced by the covariance dispersal around this

long lifetime orbit. The mean lifetime is shifted much higher to 168 days and the maximum lifetime

in the eccentric inertial frame is 271 days. The same process is repeated for the maximum lifetime

orbit from the shifted Jupiter true anomaly dispersal. Applying the nominal covariance to this long

lifetime orbit yields a lifetime distribution in Figure 5.16 similar to that in Figure 5.15. Both have

maximum orbit lifetimes near 270 days and increased mean lifetimes of 150 days.
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Figure 5.15: Long-lifetime orbit dispersed with nominal covariance matrix

120 140 160 180 200 220 240 260 280
0

500

1000

1500

2000

2500

3000

3500

4000

Lifetime (days)

F
re

q
u

e
n

c
y

Figure 5.16: Long-lifetime orbit from ∆νJ = +12◦ simulation dispersed with nominal covariance
matrix
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5.4 Manifold Coordinate Decomposition

The bias toward longer lifetime orbits is an effect of conducting orbit determination in the

vicinity of a periodic orbit. Seeking to find the cause of the increased orbit lifetimes observed in the

processed covariance, coordinates other than position and velocity are investigated. Orbit elements

are a natural first step. The initial eccentricity and argument of periapsis of the dispersed orbit

distribution are shown in Figures 5.17 and 5.18 without the effect of Europa’s eccentricity in the

lifetime integrations.
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Figure 5.17: Initial eccentricity distribution

The nominal eccentricity and argument of periapse fall in the middle of both distributions.

There is a definite trend toward a long lifetime eccentricity while the corresponding argument of

periapse trend is not as pronounced. Figures 5.19 and 5.20 show the same plots with the effect of

Europa’s eccentricity included in the lifetime integrations. The trend toward a preferred eccentricity

and argument of periapsis for greater lifetimes is still present but the symmetry of the distribution

is broken by Europa’s eccentricity.
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Figure 5.18: Initial argument of periapsis distribution
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Figure 5.19: Initial eccentricity distribution with Europa eccentricity

Figure 5.21 shows the distribution of Jacobi energy versus lifetime for the dispersed orbits.
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Figure 5.20: Initial argument of periapsis distribution with Europa eccentricity
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Figure 5.21: Jacobi energy distribution with lifetime
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The energy of the nominal orbit is shown as the dotted line in the middle of the distribution.

Since short and long lifetime orbits are both present for these values of eccentricity, argument of

periapsis, and Jacobi energy, specific orbit elements and energies are not the driving force behind

the increased lifetime. Orbits in the vicinity of the stable manifold associated with a periodic orbit

are expected to have longer lifetimes. So, the stable and unstable manifolds of the nominal periodic

orbit are computed and the initial conditions generated by covariance dispersal in the Monte Carlo

simulation are projected into manifold coordinate space using the methodology in Appendix A.
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Figure 5.22: Dispersed orbit manifold coordinate projection distribution. Blue: L < 70 days, Cyan:
70 ≤ L < 100 days, Magenta: 100 ≤ L < 150 days, Yellow: L > 150 days

Figure 5.22 shows the manifold coordinate decomposition for the covariance scaled by 1002

lifetime integrations without Europa eccentricity in the dynamics. The projections of the manifold

coordinates are color coded based on the lifetime of the dispersed orbits. Blue denotes orbits with

lifetimes L less than 70 days, cyan denotes lifetimes greater than 70 but less than 100 days, magenta

denotes lifetimes greater than 100 but less than 150 days, and yellow denotes orbits with greater
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than 150 days lifetime. The critical result comes from the properties of left and right eigenvectors.

The left stable eigenvector (corresponding to the stable manifold) is orthogonal to all other right

eigenvectors of the monodromy matrix except the right stable eigenvector. Similarly, the left

unstable eigenvector is orthogonal to all right eigenvectors besides the right unstable eigenvector.

In this projection, the right stable eigenvector is perpendicular to the left unstable eigenvector. It

is likely that the orbits along the line formed by the yellow longest lifetime orbits in the distribution

are aligned with the right stable eigenvector. In addition, other demarkations for increased lifetime

are parallel to the left stable manifold as seen by the strips of color coded lifetime areas. When

mapping forward in time, orbits aligned with the stable manifold approach the periodic orbit and

orbits aligned with the unstable manifold depart from the periodic orbit [23]. The long lifetime

orbits produced by the covariance dispersal follow the stable manifold toward the periodic orbit

and then depart along the unstable manifold, effectively doubling the nominal lifetime of 83 days

to greater than 150 days.
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Figure 5.23: Dispersed orbit manifold coordinate projection distribution with Europa eccentricity.
Blue: L < 70 days, Cyan: 70 ≤ L < 100 days, Magenta: 100 ≤ L < 150 days, Yellow: L > 150
days
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This manifold structure is strictly valid only in the rotating frame with a circular Europa

since the characteristic directions are computed in the RTBP. However, some of this structure will

persist in the eccentric inertial frame. Figure 5.23 shows the manifold coordinate distribution for

inertial integrations including Europa eccentricity. The lifetime distribution is similar in character

to the circular Europa integrations with the main difference being the longer lived orbits are shifted

away from the fixed point origin but are still parallel to the stable manifold.

Next, the nominal periodic orbit is continued into a family of periodic orbits to verify that

there is no other manifold structure controlling the lifetime properties of the distribution. The

orbit is continued by varying the Jacobi energy to find new periodic orbits and compare their

eigenvalues, periods, and orbit elements. Small steps in Jacobi energy are required numerically to

continue the orbit within its same family. The algorithm for this process is given in Section 2.3.2.

The same Poincare map of z = 0 is used and the correction to the nominal periodic orbit is iterated

to convergence using the same differential as the original computation. This process of continuing

a family of periodic orbits is applied to the nominal periodic orbit with 1000 steps of δC = 10−6

in the positive and negative energy directions. This process converges in both energy directions

with the average difference in Jacobi energy of the newly converged orbit δC = 1.7 · 10−6. The

characteristics of the nominal periodic orbit and the longest lifetime orbit from the Monte Carlo

covariance draw are shown in Table 5.5. The difference in Jacobi energy is on the order of 10−4 and

the resulting eigenvalues of the monodromy matrix and angles θ between the stable and unstable

manifolds are nearly identical, varying only in the sixth decimal for eigenvalues.

Table 5.5: Continued Europa periodic orbit characteristics

C (km2/s2) θ (deg) λu λs
Original PO 568.4293 60.4064 1.291574 0.774249
191 day orbit 568.4294 60.4090 1.291576 0.774248

Figure 5.24 shows the decrease in orbit period resulting from a change in Jacobi energy from

continuing the periodic orbit family. Figure 5.25 shows changes in the eigenvalues of the monodromy
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matrix, with most of the change occurring in the complex eigenvalues associated with the center

manifold. The near-unity real eigenvalues are maintained through the continuation process as are

the stable (λs < 1) and unstable (λu > 1) real eigenvalues. The variation in the complex eigenvalues

is on the order of 10−5 .
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Figure 5.24: Change in orbit period vs. Jacobi energy for continued periodic orbits

The decrease in orbit period shown in Figure 5.24 suggests that the continued orbits are

faster in some sense than the nominal periodic orbit. Since the number of Europa revolutions

per orbit about Jupiter is conserved (N = 41), the semi-major axis should decrease. This is

observed in the orbit elements shown in Figure 5.26 where the semi-major axis decreases and the

eccentricity increases with the increase in Jacobi energy. Figure 5.27 shows that the inclination and

argument of periapse also decrease with the increase in Jacobi energy. So, while the eigenstructure of

the monodromy matrix is basically conserved in the continuation process, the resulting continued

periodic orbits have slightly different orbital elements. Orbit eccentricity increases slightly but

remains near the long lifetime value.

Since this continuation process reaches the Jacobi energy level of the long lifetime orbit from
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Figure 5.26: Changes in semi-major axis and eccentricity with continuation

the scaled covariance draw, the manifold characteristics for that orbit are computed and applied
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Figure 5.27: Changes in inclination and argument of periapsis with continuation

to scaled covariance distribution. Figure 5.28 shows this application.
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Figure 5.28: Manifold structure for 191 day lifetime orbit applied to scaled covariance draw. Blue:
L < 70 days, Cyan: 70 ≤ L < 100 days, Magenta: 100 ≤ L < 150 days, Yellow: L > 150 days
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This manifold coordinate distribution is not vastly different from that resulting from the

nominal periodic orbit structure. The location of long lifetime orbits within the distribution is

slightly shifter to the left but it is hardly noticeable.

Satisfied that there is no neighboring Jacobi energy periodic orbit that fits the distribution

better, other methods of refining the manifold structure are explored. The manifold coordinate

distribution for shifting the initial Jupiter true anomaly is shown in Figure 5.29. All of the dispersed

orbits are color-coded blue because none avoid impact for longer than 70 days. From the lifetime

histogram in the previous section, these orbits have lifetimes which vary little from 56 days.
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Figure 5.29: Manifold coordinate projection for ∆νJ = cos−1(−e). Blue: L < 70 days

Since this change to the system initial conditions has too drastic an impact on lifetime

statistics, the distribution for ∆νJ = +12◦ is shown in Figure 5.30. This distribution resembles

the zero Europa eccentricity case, where the phase space location of long lifetime orbits is shifted

nearer the origin and back along the stable manifold. The effect of changing the initial position of

Jupiter has the effect of shifting the lifetime distribution and raising the overall mean lifetime and

maximum lifetime.
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Figure 5.30: Manifold coordinate projection for ∆νJ = +12◦. Blue: L < 70 days, Cyan: 70 ≤ L <
100 days, Magenta: 100 ≤ L < 150 days, Yellow: L > 150 days

An additional method of increasing the lifetime statistics of the overall distribution is selecting

the longest lifetime orbit from the original scaled covariance draw as the nominal and running

another Monte Carlo simulation drawing from the original unscaled covariance as representative of

a periodic orbit. Figure 5.31 shows the manifold coordinates of this distribution.

The unscaled covariance is used for this draw, so the extent of the distribution in phase space

is much smaller than the other cases examined. The only colors present in the distribution are

magenta and yellow, showing that all of the orbits have lifetimes at least greater than 100 days,

with a much larger percentage of long lifetime orbits. The maximum lifetime from this distribution

is 271 days, longer than the 191 day lifetime of the dispersed orbit used as the nominal for this

simulation. Similarly, the nominal covariance is applied to the longest lifetime orbit from the shifted

Jupiter initial true anomaly case. This again produces increased minimum, mean, and maximum

lifetimes. Figure 5.32 shows the manifold coordinates of this case.

The maximum lifetime from this distribution is near 270 days also. While no orbit used in
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Figure 5.31: Manifold coordinate projection for nominal covariance drawn around 191 day lifetime
orbit. Magenta: 100 ≤ L < 150 days, Yellow: L > 150 days
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Figure 5.32: Manifold coordinate projection for nominal covariance drawn around ∆νJ = +12◦

long lifetime orbit. Magenta: 100 ≤ L < 150 days, Yellow: L > 150 days
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a mission would be uncontrolled for 270 days, this lifetime represents an orbit that remains in the

vicinity of its nominal trajectory for much longer than a generic orbit of the type useful for geodesy

science.

5.5 Numerical Accuracy

Trajectories falling on or near the right stable manifold are expected to have desirable lifetime

properties. Orbit initial conditions constructed using an extension of the linear right stable manifold

should have comparable lifetimes to orbits found in the Monte Carlo distribution. The longest

lifetime orbit from the Monte Carlo orbit simulation is dispersed in small increments along the

right stable manifold. Since the long lifetime orbits from the simulation have manifold coordinates

up to 10−7, the increment used is ε = 10−9 up to 10−7 along either extent of the stable manifold,

resulting in 201 trajectories. Again, the z = 0 surface of section is used and the resulting points

are decomposed into manifold coordinates. This integration is carried out 100 days backward in

time and a representative trajectory is shown in Figure 5.33.
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Figure 5.33: z = 0 manifold coordinates shown for long lifetime orbit integrated backward in time
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The manifold coordinates themselves circulate and repeat about every 3.55 days which is the

system repeat period for Europa about Jupiter. The general trend carries the trajectories slightly

off the stable manifold but every 3.55 days or N = 41 revolutions, the coordinate decomposition

falls on or nearly on the stable manifold again.

As a check on numerical accuracy, orbits are integrated backward and then forward along

the stable manifold over time intervals corresponding to multiples of the system repeat period and

the resulting state is compared with the initial condition. This is shown in Figure 5.34.
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Figure 5.34: Integration error along the stable manifold

The magnitude of the position and velocity deviations are plotted against the number of full

system repeat periods which each represent 3.55 days integration time. The numerical error is

approximately linear up until around 15 repeat periods and then changes to a quadratic character.

This is an expression of the instability of orbits in the Jupiter-Europa system. Better accuracy

may be obtained along the stable manifold with a higher order integrator, such as an RK7(8) as

opposed to the RK4(5) used here.

Since the points which occur at multiples of the system repeat period fall back on the stable



75

manifold, they are used as initial conditions for forward integration. Starting near the fixed point

origin, each trajectory return on the stable manifold is integrated forward in time until impact with

the surface.
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Figure 5.35: Forward integration orbit lifetime for initial conditions on the stable manifold

The orbit lifetimes for integration of these points on or near the stable manifold are shown

in Figure 5.35. Interestingly, the trajectory closest to the fixed point does not give the longest

lifetime. The longest lifetime orbit achieved from this process is generated by the 25th full system

repeat point on the stable manifold. This point is called out as a data point on Figure 5.33. The

lifetimes peak with this 25th repeat point which corresponds closely to the change in character of

the error associated with integrating along the stable manifold. However, the maximum lifetime

found this way is less than the original 191 day orbit found in the scaled covariance Monte Carlo

and much less than the 271 day orbit from the iterated Monte Carlo.



Chapter 6

Enceladus Orbiters

In this chapter, periodic orbits are investigated as a means for extending orbit lifetime in

the unstable environment of the Saturn-Enceladus system and enabling geodesy science. Other

studies have examined periodic orbits at Encealdus [19] but not found orbits as highly inclined or

as low altitudes as those presented here. Periodic orbits are computed in the RTBP without the

effects of an Enceladus extended gravity field since no reliable estimate exists. The values of the

Saturn-Enceladus system parameters are given in Table 6.1.

Table 6.1: Saturn-Enceladus system parameters

Parameter Value
RE (km) 256.3

eE 0.0047
nE (rad/s) 5.3036 · 10−5

TE (days) 1.371
LU (km) 238040
TU (s) 18855

µE (km3/s2) 7.2095
µS (km3/s2) 3.794 ·107

A covariance analysis is conducted about a nominal periodic orbit using a SRIF to obtain

estimation state uncertainties for the orbiter position and velocity. This covariance is used to

disperse the nominal orbit in a Monte Carlo simulation which reveals a bias toward longer lifetime

orbits. The phase space structure of these orbits is examined through the application of manifold

coordinates. This manifold structure is shown to be sensitive to changes in system initial conditions,

specifically the initial position of Saturn. By iterating the Monte Carlo simulation using different
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nominal orbits, the maximum lifetime achieved increases from 14.5 days to 26 days. This is an

order of magnitude improvement over the lifetime performance of a low-altitude geodesy type orbit

at Enceladus.

6.1 Enceladus Periodic Orbits

Periodic orbits at Enceladus are computed using the differential corrector discussed in Section

2.3.1. The resonant orbit period relation is illustrated in Figure 6.1. Since there is no published

NASA report at the level of detail similar to JEO documents, several periodic orbits are computed

at different altitudes corresponding to N = 11, N = 10, N = 9, and N = 8 revolutions per

Enceladus orbit.
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Figure 6.1: Number of orbiter revolutions N per Enceladus orbit

Figure 6.2 shows the change in the stable and unstable eigenvalues of computed periodic

orbits at Enceladus. The magnitude of the unstable eigenvalue increases with altitude and the

magnitude of the stable eigenvalue, which is the reciprocal of the unstable, slowly decreases. This

increase in unstable eigenvalue corresponds to an increase in characteristic instability time, meaning

the orbit will in general decay more quickly. For this reason, the 21 km altitude periodic orbit is
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chosen for analysis. The 3D integrated periodic orbit is shown in Figure 6.3 and the top view is

shown in Figure 6.4.
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Figure 6.2: Variation in eigenvalues with altitude for Enceladus periodic orbits
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Figure 6.3: 21 km altitude Enceladus periodic orbit



79

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

x (km)

y
 (

k
m

)

Figure 6.4: 21 km altitude Enceladus periodic orbit top view

There are some differences between this orbit and the Europa periodic orbit from the previous

section. The body coverage is not quite as global since only N = 11 orbiter revolutions are made

for each orbit of Enceladus about Saturn. Also, the inclination is 85.1◦, giving a prograde orbit

instead of a retrograde orbit. Table 6.2 shows the two-body orbit elements and eigenvalues for the

21 km altitude periodic orbit. The unstable eigenvalue is greater than that of the Europa periodic

orbit in the previous section. The angle of intersection of the stable and unstable manifolds is

also greater than the Europa orbit’s, which will change the character of the manifold coordinate

decomposition plots.

The variations of the two-body elements are shown over one repeat period, which is about

33 hours, in Figures 6.5, 6.6, and 6.7.
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Table 6.2: Two-body orbit elements and eigenvalues for 21 km periodic orbit

Element Value
a (km) 279.26
e 0.017096

i (deg) 85.11
Ω (deg) 359.26
ω (deg) 0.36808
M (deg) -0.355660
λu 2.8977
λs 0.345103
λc1 0.999999967 + 0.00025579 i
λc2 0.999999967 - 0.00025579 i
λ1 1.0001
λ1 0.99991

θ (deg) 76.303
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Figure 6.5: Semi-major axis and eccentricity 21 km periodic orbit
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Figure 6.6: Inclination and RAAN for 21 km periodic orbit



82

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

A
rg

u
m

e
n

t 
o

f 
p

e
ri
a

p
s
is

 (
d

e
g

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−200

−100

0

100

200

Time (days)

M
e

a
n

 a
n

o
m

a
ly

 (
d

e
g

)

Figure 6.7: Argument of periapsis and mean anomaly for 21 km periodic orbit

6.2 Covariance Results

Range-rate measurement partials are accumulated in a SRIF to generate a covariance matrix

about the 21 km altitude Enceladus periodic orbit. The only parameters included in the state list

are the orbiter position and velocity. The extended gravity field terms are omitted from the state

since they are not included in the dynamics and the Europa covariance results show that the Stokes

coefficients up to C30 are sensed very accurately using range-rate data. Consider parameters are

not included here either, for simplification. As seen in the Europa Monte Carlo simulation, the

overall shape of the covariance, especially when projected into the manifold coordinate frame is of

most interest.

Table 6.3 shows the 1σ state accuracies for a three day or two repeat period covariance run.

The position uncertainties are on the order of centimeters and the velocity uncertainties are on the

order of less than mm/s and again, may be challenging to realize for an outer planet type mission.

The very small numerical state uncertainty values are the result of tracking a spacecraft so deep
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Table 6.3: 21 km altitude Enceladus periodic orbit initial state uncertainties

x (km) 9.1073× 10−06

y (km) 1.0711× 10−04

z (km) 1.8368× 10−05

u (km/s) 9.2547× 10−09

v (km/s) 1.2222× 10−07

w (km/s) 1.1409× 10−08

within a gravity field. The closer the orbiter is to the body, the greater gravitational force the body

exerts and the better the state can be fit to the observed accelerations. These uncertainties will be

scaled along with the overall covariance matrix to obtain greater spread in orbit initial conditions

in the following Monte Carlo simulations.

6.3 Monte Carlo Lifetime Simulation

To evaluate the statistical properties of an orbit’s lifetime, the initial position and velocity

of the orbit are dispersed by drawing a random vector from the multivariate normal distribution

with zero mean and covariance specified by the output of SRIF covariance analysis. This process is

repeated in a Monte Carlo simulation 10000 times and the time to impact along with the integrated

spacecraft state are saved for each run. Figure 6.8 shows the eventual decay of the radius mag-

nitude of the nominal 21 km altitude periodic orbit, yielding a 7.47 day lifetime when the radius

curve intersects the red line representing Enceladus’s surface radius. The Monte Carlo results for

the nominal covariance draw are shown in Figure 6.9. Similar to the nominal Europa covariance

results, there is very little variance in the lifetime results. All dispersed trajectories have the nom-

inal lifetime with variation in the fifth decimal place.

To obtain variation in the lifetime statistics, the nominal covariance is scaled to increase

the uncertainty levels in the orbiter position and velocity. The scale factor used here is much

greater than that employed at Europa since the generated covariance is so reduced. Scaling the

entire covariance matrix by 100002 results in increasing the 1σ uncertainty levels by factors of
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Figure 6.8: Orbit radius decay for 21km periodic orbit
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Figure 6.9: Lifetime distribution for nominal covariance draw

10000, yielding hundreds of meters dispersion in position and m/s dispersion in velocity. This

scaled covariance draw results in a bias toward longer lifetimes as well as raising the mean of the

distribution. The lifetime histogram is shown in Figure 6.10 with a maximum lifetime of 14.47
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days.

6 7 8 9 10 11 12 13 14 15
0

1000

2000

3000

4000

5000

6000

Lifetime (days)

F
re

q
u

e
n

c
y

Figure 6.10: Lifetime distribution for 21 km altitude orbit dispersed with covariance scaled x100002
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Figure 6.11: Lifetime distribution for δνS = −2◦ dispersed with covariance scaled by 100002

The lifetime distribution can be further modified by adjusting the Saturn-Enceladus initial

conditions by stepping the Saturn initial true anomaly. Since Enceladus is much closer to its primary
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and much smaller physically than Europa, the overall system is more sensitive to configuration and

a smaller ∆νS produces the most desirable lifetime distribution. Figure 6.11 shows this lifetime

distribution for ∆νS = −2◦ dispersed with the scaled covariance, with a maximum lifetime of 21.69

days. The same strategy for further improving the lifetime distributions used at Europa is then

employed at Enceladus. The longest lifetime orbits from both the scaled covariance draw and the

shifted Saturn true anomaly draw are dispersed using their respective covariances scaled by factors

of only 1002. The first result for the covariance scaled by 1002 applied to the 14.47 day long lifetime

orbit is shown in Figure 6.12.
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Figure 6.12: Lifetime distribution for covariance scaled x1002 applied to long lifetime orbit

The mean and maximum of this distribution are raised from the levels of the larger scaled

covariance draw. This is due to drawing orbits from a smaller phase space area surrounding the

long lifetime orbit. The maximum lifetime of this draw is 17 days, which is still not greater than

the maximum obtained from shifting νS . Thus, we repeat the process using the long lifetime orbit

from the shifted true anomaly draw. Figure 6.13 shows the result of applying the covariance scaled

by a factor of 1002 to the 21 day long lifetime orbit from the shifted true anomaly draw. The mean

of this distribution is raised over 15 days and the maximum lifetime is 26 days, more than tripling
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the lifetime of the nominal periodic orbits selected.
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Figure 6.13: Lifetime distribution for covariance scaled x1002 applied to δνS = −2◦ long lifetime
orbit

A summary of the lifetime statistics from these varied Monte Carlo simulations is given in

Table 6.4. By applying the nominal covariance scaled by a factor of 1002 to the longest lifetime orbit

of the shifted Saturn true anomaly distribution, the longest lifetime of the simulations is obtained.

Successively scaling the initial covariance, shifting νS , and applying the scaled covariance to long

lifetime orbits as the nominal raises the mean of the distribution with each iteration. The final

achieved mean is over 15 days, which is double the nominal orbit lifetime value.

Table 6.4: Monte Carlo lifetime statistics for different Enceladus covariance draws

Case Min (days) Mean (days) Max (days)
Nominal 7.47662 7.47663 7.47664

Nominal x100002 6.372 7.578 14.48
∆νS = −2◦ 6.319 9.490 21.69
∆νS = −1◦ 6.864 8.850 17.80
∆νS = −5◦ 5.577 6.550 7.669
∆νS = +5◦ 5.504 5.876 7.368

Scaled LL x1002 11.02 11.96 17.08
∆νS = −2◦ LL x1002 12.49 15.17 26.02
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6.4 Manifold Coordinate Decomposition

The bias toward longer lifetime orbits is an effect of conducting orbit determination in the

vicinity of a periodic orbit. Again, coordinates other than position and velocity are investigated

as the cause of the increased orbit lifetimes observed in the processed covariance. The initial

eccentricity and argument of periapsis of the dispersed orbit distribution are shown in Figures 6.14

and 6.15 with the effect of Enceladus’s eccentricity in the lifetime integrations.
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Figure 6.14: Initial eccentricity distribution for covariance scaled x100002

As seen in the Europa distributions, there is a trend toward a longer lifetime eccentricity,

and for Enceladus, the argument of periapsis is qualitatively similar. However, there are both long

and short lifetime orbits present at the center of the eccentricity and argument of periapsis distri-

butions. Thus, two-body orbit elements are not the controlling parameter for long lifetime orbits.

The initial state dispersals of each Monte Carlo simulation in the previous section are decomposed

into manifold coordinates using the stable and unstable manifolds associated with the nominal 21

km altitude periodic orbit.
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Figure 6.15: Initial argument of periapsis distribution for covariance scaled x100002

Figure 6.16 shows the manifold coordinate distribution for the covariance scaled by a factor

of 100002 applied to the nominal periodic orbit. The color-coding for different lifetime levels is:

Blue ≤ 7 days, Cyan 7 days < L ≤ 8 days, Magenta 8 days < L ≤ 9 days, Yellow L > 9 days. For

the 21 km altitude periodic orbit, the angle of intersection θ of the stable and unstable manifolds

is 76.3◦, greater than the analogue at Europa. This changes the relative orientation of the left

and right eigenvector directions. The eigenvector orthogonality properties are preserved, with the

left stable manifold perpendicular to the right unstable manifold and the left unstable manifold

perpendicular to the left stable manifold. For Enceladus, the overall extent of the covariance is

along the right stable manifold. This gives a greater likelihood of drawing a long lifetime orbit from

the covariance, since the Europa results and Enceladus results confirm that such orbits are aligned

with the right stable manifold. The same delineations in lifetime levels are present in Figure 6.16,

where the long lifetime orbits are slightly offset from the fixed point origin and the different lifetime

levels are parallel to the right stable manifold.

Figure 6.20 shows the manifold coordinate decomposition for the Monte Carlo simulation
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Figure 6.16: Manifold coordinate distribution for covariance scaled x100002

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−6

−1

−0.5

0

0.5

1

x 10
−6

x
m

y
m

 

 

Left Unstable

Left Stable

Right Unstable

Right Stable

Figure 6.17: Manifold coordinate distribution for δνS = −2◦

with Saturn’s initial true anomaly shifted by δνS = −2◦. The yellow long lifetime orbits have been

shifted back over the right stable manifold as we expect to see in the circular Enceladus case and
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is the cause if the overall improvement in lifetime performance for the distribution. Very few blue

orbits with less than 7 day lifetimes are present and the mean lifetime of this distribution is 9.49

days.
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Figure 6.18: Manifold coordinate distribution for covariance scaled x1002 applied to long lifetime
orbit

Seeking to improve the lifetime distribution further, the longest lifetime orbit from the scaled

covariance draw is used as the nominal for a new simulation with the original covariance scaled by

1002 applied to it. Figure 6.18 shows the manifold coordinate decomposition for this simulation.

The manifold coordinate location of the long lifetime orbit used as nominal here was in the upper

left quadrant of Figure 6.16 and has a smaller volume covariance applied to it in the Monte Carlo

process. Thus, a cluster of longer lifetime orbits is formed around this nominal long lifetime orbit.

Figure 6.19 shows the same plot zoomed in on the cluster of dispersed orbits. All orbits are color-

coded yellow, with lifetimes greater than 9 days. The mean of this distribution is nearly 12 days

and the maximum lifetime is 17 days. This is better lifetime performance than the original scaled

covariance dispersal but doesn’t produce a maximum lifetime as great as the shifted Saturn true

anomaly draw. This is likely due to the specific location targeted in manifold coordinate phase
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space by using the scaled covariance long lifetime orbit. Higher lifetime statistics are obtained by

applying the covariance scaled by 1002 to the long lifetime orbit from the shifted νS simulation.
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Figure 6.19: Manifold coordinate distribution for covariance scaled x1002 applied to long lifetime
orbit - zoom

Figure 6.20 shows the manifold coordinates for the dispersed long lifetime ∆νS orbit Monte

Carlo simulation. The nominal orbit for this case is located in the lower right quadrant of Figure

6.20. Again, applying the covariance scaled by a smaller factor results in a tighter distribution,

with all orbits having lifetimes greater than 12 days. The mean and maximum lifetimes from

this distribution eclipse the mean and maximums from all others at 15 and 26 days respectively.

Figure 6.21 shows the same distribution zoomed in on the location of the dispersed orbits. This

section has developed a method of iterative Monte Carlo simulations for increasing orbit lifetimes

at Enceladus. The maximum lifetime of 26 days combined with a statistical mean of 15 days within

the associated covariance would enable geodesy orbiter type missions to Enceladus where previously

no low-altitude, near-polar orbits were known.
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Figure 6.20: Manifold coordinate distribution for covariance scaled x1002 applied to δνS = −2◦

long lifetime orbit

4.5 5 5.5 6 6.5

x 10
−7

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

x 10
−7

x
m

y
m

 

 

Left Unstable

Left Stable

Right Unstable

Right Stable

Figure 6.21: Manifold coordinate distribution for covariance scaled x1002 applied to δνS = −2◦

long lifetime orbit - zoom



Chapter 7

Conclusions and Future Directions

In this thesis, orbit design and navigation are investigated for planetary satellite orbiters,

specifically Europa and Enceladus. Low-altitude, near-polar orbits are computed in the RTBP

using a differential corrector and covariances are computed using a SRIF for both Europa and

Enceladus orbits. These orbits have lifetimes comparable to long lifetime orbits found in other

studies and much longer lifetimes than previous studies for low altitude Enceladus orbits. A devel-

opment of information processing in the orbit determination process is given for the Jupiter-Europa

system L2 equilibrium point. The left unstable and stable manifolds associated with a fixed point

are shown to control information accumulation at epoch and current state respectively. The gener-

ation of a realistic covariance is the key to evaluating long lifetime orbits in the vicinity of a periodic

orbit. Monte Carlo simulations draw 10000 orbits from processed covariances and integrate them

to impact in the eccentric inertial frame. Other studies fail to address how isolated long lifetime

trajectories are in phase space. Manifold coordinates are used to show whether orbits are primar-

ily aligned with the stable or unstable manifold associated with the periodic orbit. Iterating this

Monte Carlo lifetime simulation increases the maximum orbit lifetime found.

7.1 Conclusions

The main contributions of this thesis are:

• Accounting for navigation uncertainties in the design of long lifetime geodesy orbits at
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Europa

Periodic orbits computed in the RTBP have nominal lifetimes in the inertial eccentric frame

much greater than generic, geodesy-type orbits. Long lifetime orbits are present within a realistic

covariance generated for an orbiter tracked using range-rate measurements about a periodic orbit.

The overall statistical lifetime distribution is improved for orbits in the vicinity of a periodic orbit.

This property is not found in covariances generated for a random low-altitude, near-polar orbit in

the same system.

• Understanding the properties of phase space near a periodic orbit in terms of its stable and

unstable manifolds, orbit lifetime, and orbit determination

These long lifetime orbits are offset from the manifold coordinate origin which represents the

periodic orbit and are aligned with the stable manifold of the nominal periodic orbit. The phase

space location of long lifetime orbits is shown to be sensitive to the initial position of the primary

in the three-body system and can be shifted back over the origin through incrementing the initial

true anomaly of the primary. These Monte Carlo simulations are iterated by applying the nominal

covariance to a long lifetime orbit from a previous simulation. Using this method, lifetimes of up

to 271 days for Europa are found in these Monte Carlo covariance dispersals.

• Showing a fundamental structure to information and measurement partial mapping in terms

of the stability properties of an equilibrium point

The computed stable and unstable manifolds of an unstable fixed point, which includes the

Lagrange equilibrium points in the RTBP, are shown to affect the accumulation of information in

the orbit determination process. Information is preferentially accumulated along the left unstable

manifold for measurements mapped to epoch and along the left stable manifold for covariances

mapped to the current state. This is due to the orthogonality of left and right eigenvectors and

the eigenstructure of the STM, which can be decomposed into matrices of right eigenvectors, eigen-

values, and left eigenvectors. An asymmetry in information mapping is shown between left and



96

right eigenvectors. A full rank information matrix can be constructed from a series of the same

measurement aligned with a right eigenvector. However, a series of measurements missing a left

eigenvectors will have a deficient measurement direction along the right eigenvector paired with the

omitted left eigenvector.

• Enabling geodesy science at Enceladus by computing statistically realistic long lifetime

orbits

The process used for designing long-lifetime orbits at Europa also applies to Enceladus. The

covariance associated with a low altitude, near-polar periodic orbit at Enceladus contains longer

lifetime orbits. The location of these long lifetime orbits in manifold coordinate space are sensitive

to shifts in the initial Saturn true anomaly. Taking the longest lifetime orbit from a scaled covari-

ance Monte Carlo simulation and applying the nominal covariance to the orbit produces an orbit

with 26 days lifetime. This is an order of magnitude improvement over random low altitude, near-

polar orbits with lifetimes of only days. These long lifetime orbits also have mean and minimum

lifetimes over 10 days in statistical lifetime draws. Such long lifetime orbits can be used as nominal

orbits for geodesy mission designs.

7.2 Future Directions

There are several areas open to future work for this thesis. The discussion of information ac-

cumulation is not only relevant to equilibrium points. The same manifold structure exists around

periodic orbits but the manifold directions are not constant in time as they are at equilibrium

points. The angle of manifold intersection must be preserved between time steps although the

manifold directions themselves will rotate in phase space. This is a challenge numerically since

multiple mappings with the STM are required even for only a handful of measurements. Numer-

ically integrating a monodromy matrix for each measurement time in the simulation is also not

computationally feasible. A method of mapping manifolds in time which preserves the relative
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eigenstructure is necessary but not currently available.

Once the problem of mapping manifolds in time is solved, the interaction between the in-

formation accumulation process and the specific phase space location of the long lifetime orbits

computed here can be investigated. If the influence of stable and unstable manifolds on the ac-

cumulation of the orbiter position and velocity covariance is understood, nominal orbits can be

designed to produce a specific covariance orientation which gives improved lifetime statistics. For

example, designing a nominal orbit whose manifold coordinate covariance projection is aligned with

the right stable manifold. This would produce more long lifetime orbits in the statistical distribu-

tion.

The information mapping theory can be applied to specific real measurements such as a po-

sition measurement along a given direction. If that direction is perpendicular in phase space to the

eigenvector describing a left manifold, there will be a deficient phase space direction in the paired

right manifold direction. Also, a particular direction or measurement schedule could be developed

to gain the most information on the estimated state from the smallest number of measurements.

Depending on the type of estimation, taking measurements where the partial is aligned with the

left stable or unstable manifolds can yield information compression.

Since the most likely candidate for a Europa mission, the Europa Clipper, is now designed

for multiple flybys, other planetary satellite targets can be studied as potential orbiter missions.

Enceladus was chosen for analysis here because of the severity of the unstable orbital environment.

Planetary moons such as Titan and Dione are both viable options for an exploration mission due

to the methane sea and ice cliffs respectively. The techniques for designing long lifetime orbits

developed for Europa and verified at Enceladus in this thesis would be applicable to either of these

bodies.
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Appendix A

Manifold Coordinate Decomposition

In this Appendix, the manifold coordinate decomposition used to plot the stable and unstable

manifold coordinates is discussed. Taking the dot product between the state deviation and the

stable and unstable eigenvectors yields the stable and unstable coordinates as and au. These

coordinates are plotted in the plane of intersection of the stable and unstable eigenvectors with the

x axis bisecting the angle of manifold intersection θ. This is a non-orthogonal coordinate frame but

gives insight into where the initial conditions lie in phase space. A coordinate system for plotting

is established involving unit vectors aligned with (û, ŝ) and perpendicular to (ûp, ŝp) the unstable

and stable manifolds as shown in Figure 1.

Figure A.1: Coordinate system for manifold decomposition
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û = cos(θ/2)̂i+ sin(θ/2)ĵ

ûp = − sin(θ/2)̂i+ cos(θ/2)ĵ

ŝ = cos(θ/2)̂i− sin(θ/2)ĵ

ŝp = sin(θ/2)̂i+ cos(θ/2)ĵ (A.1)

The point of intersection of the projection of the stable and unstable coordinates along

the perpendicular to their respective manifolds is represented by the orange star in the figure. So,

equating the two plotting representations using the stable, unstable, and perpendicular unit vectors

where t and r are scalars gives the magnitude along the perpendicular directions.

auû+ tûp = asŝ+ rŝp (A.2)

In the xy coordinate framework, this looks like:

î : au cos(θ/2)− t sin(θ/2) = as cos(θ/2) + r sin(θ/2)

ĵ : au sin(θ/2) + t cos(θ/2) = −as sin(θ/2) + r cos(θ/2) (A.3)

Solving for the t scalar in terms of r:

î : t =
au cos(θ/2)− as cos(θ/2)− r sin(θ/2)

sin(θ/2)
(A.4)

and substituting into the ĵ equation gives an expression involving only the r unknown.

ĵ : au sin(θ/2) +
au cos(θ/2)− as cos(θ/2)− r sin(θ/2)

sin(θ/2)
cos(θ/2) =

−as sin(θ/2) + r cos(θ/2) (A.5)

Solving for r yields the magnitude along the ŝp vector to add to the extent along the stable

manifold direction.

r =
au sin(θ/2) + (au cos(θ/2)− as cos(θ/2)) cos(θ/2)

sin(θ/2) + as sin(θ/2)

2 cos(θ/2)
(A.6)
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The point plotted in the initial condition distribution figures is x?M which corresponds to the orange

star in Figure 1. This process is repeated for each initial condition projected into manifold space.

x?M = asŝ+ rŝp (A.7)


