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Abstract

Clustering aims at finding hidden structure in data. In this paper we
present a new clustering algorithm that builds upon the local and global
consistency method (Zhou, et.al., 2003), a semi-supervised learning
technique with the property of learning very smooth functions with re-
spect to the intrinsic structure revealed by the data. Starting from this
algorithm, we derive an optimization framework that discovers structure
in data without requiring labeled data. This framework is capable of si-
multaneously optimizing all learning parameters, as well as picking the
optimal number of clusters. It also allows easy detection of both global
outliers and outliers within clusters. Finally, we show that the learned
cluster models can be used to add previously unseen points to the clus-
ters, without re-learning the original cluster model. Encouraging experi-
mental results are obtained on a number of toy and real world problems.

1 Introduction

Clustering aims at finding hidden structure in a dataset and is an important topic in machine
learning and pattern recognition. The problem of finding clusters that have a compact shape
has been widely studied in the literature. One of the most widely used approaches is the
K-Means [1] method for vectorial data. Despite the success these methods have with real
life data, they fail to handle data that exposes a manifold structure, i.e. data that is not
shaped in the form of point clouds, but winds through a high-dimensional space.

In this paper we present a new clustering algorithm based on the local and global con-
sistency method, a semi-supervised learning technique [2] that has demonstrated impres-
sive performance on relatively complex manifold structures. The idea in semi-supervised
learning (or transduction) is to use both labeled and unlabeled data to obtain classification
models.

This paper extends this local and global consistency algorithm to unsupervised learning by
showing that it naturally lead to an optimization framework that picks clusters on mani-
folds by minimizing the mean distance between points inside a cluster, while maximizing
the mean distance between points in different clusters. We further demonstrate that this
optimization framework can simultaneously choose model all parameters, including the
number of clusters. To the best of our knowledge, the proposed algorithm is unique in this
respect. Other key aspects of the proposed algorithm include automatic global outlier de-
tection (i.e. what points in manifold space are furthest way away from all other points) and
cluster outlier detection (what points within a manifold cluster are most on it’s extremes).
Finally, we demonstrate that we can build a clustering model with one set of points and use



this model to cluster a second, as yet unseen, set of points (without rebuilding the original
cluster).

The theoretical formulation for the proposed clustering algorithm is given in Section 2,
which also presents a fast heuristic procedure for solving the proposed optimization prob-
lem. Section 3 presents detailed experimental results on both synthetic and real data. Sec-
tion 4 concludes with future work.

The code implementing the proposed clustering algorithm is available at
http://ucsu.colorado.edu/˜breitenm/clustering.html.
2 Algorithm

2.1 Semi-Supervised Learning

In [2] Zhou et.al. introduced the consistency method, a semi-supervised learning technique.
We will give a brief summary of the technique here.

Given a set of points X ∈ Rn×m and labels L = {1, · · · , c}. Let xi denote the ith
example. Without loss of generality the first l points (1 · · · l) are labeled and the remaining
points (l + 1 · · ·n) unlabeled. Define Y ∈ N n×c with Yij = 1 if point xi has label j and
0 otherwise. Let F ⊂ Rn×c denote all the matrices with nonnegative entries. A matrix
F ∈ F is a matrix that labels all points xi with a label yi = arg maxj≤c Fij . Define the
series F (t+ 1) = αSF (t) + (1−α)Y with F (0) = Y, α ∈ (0, 1). The entire algorithm is
defined as follows:

1. Form the affinity matrixWij = exp(−‖xi−xj‖2/(2σ2)) if i 6= j and 0 otherwise.

2. Compute S = D−1/2WD−1/2 with Dii =
∑n
j=1 Wij and Dij = 0, i 6= j.

3. Compute the limit of series limt→∞ F (t) = F ∗ = (I − αS)−1Y . Label each
point xi as arg maxj≤c F ∗ij .

The regularization framework for this method follows. The cost function associated with
the matrix F with regularization parameter µ > 0 is defined as

Q(F ) =
1

2




n∑

i,j=1

Wij

∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥
2

+ µ
n∑

i=1

‖Fi − Fj‖2

 (1)

The first term is the smoothness constraint that associates a cost with change between
nearby points. The second term, weighted by µ, is the fitting constraint that associates a
cost for change from the initial assignments. The classifying function is defined as F ∗ =
arg minF∈F Q(F ). Differentiating Q(F ) one obtains F ∗ − 1

1+µSF
∗ − µ

1+µY . Define
α = 1

1+µ and β = µ
1+µ (note that α+ β = 1 and the matrix (I − αS) is non-singular) one

can obtain F ∗ = β (I − αS)
−1
Y (2)

For a more in depth discussion about the regularization framework and on how to obtain
the closed form expression F ∗ see [2].

2.2 Clustering with Local and Global Consistency

From equation (2), it is evident that the solution to the semi-supervised learning problem
only depends on the labels after the the matrix (I−αS) has been inverted. This matrix only
contains the training data inputs, {x1, ..., xn}, and it is this property that we will exploit to
derive our clustering algorithm. We define a matrix U as:

U = β (I − αS)
−1

=
[
uT1 , ..., u

T
n

]
(3)

and note that U defines a graph or diffusion kernel as described in [3, 4]. In addition, the
columns of U , denoted by uTi , define distances between training points on these graphs,



which can be interpreted as distances along a manifold [5]. The ordering of these distances
along each manifold is maintained independent of scaling. FromU , we create a new matrix
V , by scaling the columns of U to have unit length. We define this V matrix as:

V =
[
uT1
∥∥uT1

∥∥−1
, ..., uTn

∥∥uT1
∥∥−1

]
=
[
vT1 , ..., v

T
n

]
(4)

Note that, by definition, ||vi|| = 1. Finally, we define a distance (along a manifold specified
by U ) between points xi and xj to be:

dM (xi, xj) = 1− vivTj (5)
The intuition behind this distance measure is that two points on a manifold are identical,
if the order of distances between all other points in the training set is identical and the
relative distances are identical. If this is the case for points xi and xj , then dM (xi, xj) = 0.
Conversely, if the point xi has completely different distances along U to other points in the
training data than point xj , then dM (xi, xj) will approach 1. This leads to our definition
of a distance matrix:

DM = 1−




v1v
T
1 . . . v1v

T
n

...
. . .

...
vnv

T
1 · · · vnv

T
n


 =




dM (x1, x1) . . . dM (x1, xn)
...

. . .
...

dM (xn, x1) · · · dM (xn, xn)


 (6)

Given this definition of similarity between any two points xi and xj , our formulation of
clustering is as follows. In clustering, we want to pick clusters of points that are most
similar to one another, while at the same time most different to points in other clusters.
We start by assuming there are c clusters and that each cluster is characterized by a single
point. Thus, for c clusters, we have xl1 , ..., xlc points, where xli ∈ {x1, ..., xn} is a point
in the training data, and xli 6= xlj for i 6= j. These points xl1 , ..., xlc determine clusters as
follows. We define a n by c matrix F ∗V by taking the l1, ..., lc columns of V (see equation
(4)):

F ∗V =
[
vTl1 , ..., v

T
lc

]
(7)

Then, as with semi-supervised learning, we assign a point xi to a class:
yi = arg max

j≤c
F ∗V ij (8)

where F ∗V ij is the entry of F ∗V given by row i and column j.

2.3 Model Selection For Clustering

Next, let pj be the set of points that belong to cluster j. Using matrix DM we can define
the mean distance between points in cluster j as:

D
jj

M = E [DM (pj ,pj)]
whereDM (pj ,pj) denotes all entries ofDM corresponding to columns and rows of points
pj and E[]̇ is the average value of these. Similarly, the mean distance between points in
cluster j and points in cluster k is given by:

D
jk

M = E [DM (pj ,pk)]

Given that our goal is to find clusters that maximize the distances between points in dif-
ferent clusters, while minimizing the distances between points in the same cluster, we can
now state the optimization problem we are solving. Specifically, we want to find σ, alpha,
c, and xl1 , ..., xlc to maximize the following:

Ω (c) = max
α,σ,c


E

[
D
jk

M

]
(
k=1,...,c
j=1,...,c
i6=j

) −E
[
D
jj

M

]
{j=1,...,c}


 (9)



2.4 Outlier Detection

We define a cluster independent outlier point to be one that is, on average, furthest away
to all other points. This can be directly calculated from equation (6) by taking the average
of the columns of DM as follows and defining a outlier cluster independent vector Od as
follows:

Od =
1

n

[∑
DT
M1, ...,

∑
DT
Mn

]
= [Od1, ..., Odn] (10)

where the element Odi is the average distance (in manifold space) between point xi and
all the other points and DM =

[
DT
M1, ..., D

T
Mn

]
. Thus by ordering the vales of Odi in

increasing order, we order the points from furthest to closest, and the points appearing first
in the list constitute the outliers.

Similarly, we can find outliers within a cluster j by looking at the Djj
M = DM (pj ,pj)

matrix defined above. Specifically, we obtain an outlier Ojd vector for cluster j as follows:

Ojd =
1

n

[∑
DjjT
M1 , ...,

∑
DjjT
Mn

]
=
[
Ojd1, ..., O

j
dn

]
(11)

where Ojdi is the mean distance of xj to all other points in its cluster. Thus the point which
has maximum Ojdi is the one which is most inside the cluster, while the point that has
minimum Ojdi is most outside of the cluster.

2.5 Finding Points That Define a Cluster

As outlined above, the points xl1 , ..., xlc are used to specify clusters. These points can
be identified by looking at the cluster independent outlier vector Od defined above. In
this paper we use the following greedy heuristic to identify xl1 , ..., xlc . First we assign
xl1 to the point that is closest to all other points, which is defined by the point that has
the largest value Odi. To find xl2 , we multiply each element of Od by the corresponding
element in the column vectorDT

Ml1
, to obtain an new, re-weighted vector ofO2

d as follows:
O2
d =

[
O1
d1D

T
Ml1

(1) , ..., O1
dnD

T
Ml1

(n)
]

=
[
O2
d1, ..., O

2
dn

]
where O1

di = Odi. The point
xl2 then corresponds to the point which has maximum O2

di. The selection procedure for
re-weighting a point continues until c points are found. An example of how the mean
distances change for each step is given in figure (3.2 a-c).

2.6 Clustering New Points

In order to cluster a new point without adding it to S and re-inverting the matrix (I − αS),
we once more use the property that two points are similar if they have similar distances to
all other points. However, this time we measure similarity using the S matrix as follows.
Given a point xk, we calculate Wkj = exp(−‖xk − xj‖2/(2σ2)), for j = 1, ...n and
obtain a vector Wk. We then calculate the Dk =

∑n
j=1Wk(j) and compute the vector in

the S matrix that is associated with xk), as Sk = D
−1/2
k WD−1/2. Finally we normalize

Sk to have length 1 and call it S1
k and similarly normalize the rows of S to also have length

1, denoting this matrix by S1. We then obtain a set of coefficients Θ = (θ1, ...., θn)T =
S1(S1

k)T . This vector has the property that if xk = xi, then θi = 1, but if xk is very far
away from xi then θi will approach zero. Therefore, θi measures the closeness of xk to
xi in S matrix space (with θi = 1 being really close and θi = 0 really far). We use this
property to assign xk to a cluster by creating an Fk = [v1ΘT , ..., vnΘT ] and assigning
yc = arg maxj≤c Fk.



2.7 Implementation Details

A Matlab implementation of this algorithm can be obtained from
http://ucsu.colorado.edu/˜breitenm/clustering.html. The opti-
mization problem in equation (9) can be solved as follows. For c = 1, ...., cmax, find σ,
α, and xl1 , ..., xlc that maximize Ω(c) and then choose the value of choosing the c which
has maximum Ω(c). As this is computationally intensive we choose an approximation of
this algorithm for the current paper. Specifically, we maximized (9) for σ by assuming that
there is only one cluster and assigning α = 0.99 - this amounts to a 1-D optimization. If
the experiment required optimizing for σ and alpha together, we did a 2D optimization
using the optimal values to find the c that maximized Ω(c). If the experiment didn’t
optimize for α, we simply found the c that maximized Ω(c) without changing the current
value of σ or α. This clearly is a suboptimal algorithm and an open research question that
we are addressing is to improve it.

3 Experimental Results

We evaluate our method using both toy data problems and real world data. In all the prob-
lems the desired assignment to the classes is known and we use this to report an error rate.
The parameters σ, α and C are found by using our algorithm unless noted otherwise. We
evaluate the assignment to clusters by computing an error rate, i.e. given the correct number
of clusters, how many examples are assigned to the wrong cluster. Since the clusters may
be discovered in a different order than originally labeled (e.g. clusters are discovered in or-
der 3, 2, 1 instead of 1, 2, 3), we use the permutation on the algorithm’s label assignments
that results in the lowest error rate.

3.1 Toy Data

In this experiment we consider the moons toy-problem as depicted in figure 1 (b). We
allowed σ and α to be optimized as described in section 2.7. Using all three moons (σ =
0.0354, α = 0.9999) we see that our algorithm perfectly determined the number of clusters
as described in section 2.7. The three classes have been separated out perfectly with no
errors. The centroid points determined by our algorithm have been marked with a star. The
size of the dots are proportional to their largest value in F ∗. We can see that these three
points have the maximum distance from each other. The outliers of each class is denoted
as circles and are located furthest away from the class centroid at the ends of each of the
moons. If we allow only the optimization of σ and set α = 0.99, we see how the outlier
measurements in figure 1 (d)-(f) change to a lower value, i.e. the separation of the data
becomes more difficult. In this case σ was determined to be 0.0553.

We also use the spiral data that was used in [6]. The algorithm determined σ = 0.0724
and α = 0.9989 for the two spirals. The number of clusters was correctly determined as
C = 2. In the case of three spirals the heuristic splits each spiral into two clusters so we
had to provide the number of clusters in this case. Outliers are located at the end of the
spirals since the centroid of each spiral is in the middle.

Note that these toy data problems can not be clustered in a meaningful way by methods
that assume a compact shape for the data like K-means [2, 6].

3.2 USPS Digits Data

In this experiment we address a classification task using the USPS dataset. The set consists
of 16x16 images of handwritten digits. We use digits 1, 2, 3, and 4 in our experiments
with the first 200 examples from the training set and the following 200 examples as unseen
examples that will be added to the clusters.
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Figure 1: Toy Data Experiments: (a) two clusters with (σ, α, C) determined by the al-
gorithm; (b) three clusters were found with (σ, α, C) determined by the algorithm. The
moons were labeled in the order they were discovered; (c) spiral data with (σ, α, C) deter-
mined by the algorithm; (d)-(f) the outlier measurements for optimization of α and σ vs.
optimization of σ only for the three moons; (g) three spirals with (σ, α) determined by the
algorithm

In figure 2 (a)-(c) we can see how the mean difference develops in each step. In each step
the point with the largest distance is chosen, the points are re-weighted and the process is
repeated as described in section 2.5.

We first use our algorithm to discover the different classes and label one example of each
class. Using the consistency method the remaining points were labeled. Our algorithm
determined σ = 0.811396 and α = 0.999981. The number of clusters was not fixed and
determined to be C = 4. This results in an error rate of 0.0238 which is a slightly better
error rate than the consistency method had with 4 marked points. The outliers found for
digit 1 to 4 are shown in figure 2 (f)-(i) marked with stars. We can see how some points in
the right side of the plot are obviously misclassified, other outlier points have very small
values. Many of the outliers are not just misclassified examples, but digits written in an
unusual way as we can see in figure 2 (d) and (e). We assign the unseen examples to the
existing clusters (without recomputing F ∗) using the method in section 2.6 and obtain an
error rate of 0.0425.

We rerun the algorithm again without letting it optimize for α and fix α to 0.99. The
algorithm determines the optimal σ as 0.0553. In this case we get similar results with the
same number of clusters. The error rate on the training set increased to 0.0388, but the error
rate for the previously unseen points changed to 0.035. This demonstrates that optimizing
for both σ and α gives better results. Again we can see in figure 2 (f)-(i) that the separability
of the data gets worse if only σ is optimized.
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Figure 2: USPS handwritten digits data: (a)-(c) Mean distance for all digits, changing in
each step; (d) the left-most digit is the centroid for each class followed by the worst outliers
for the class; (e) overall worst outliers; (f)-(i) values for outliers with different optimization
parameters (α, σ vs. fixed α)

3.3 20 Newsgroups Dataset

In the first experiment we will try to cluster natural language text from the 20 news-
groups dataset (version 20-news-18828). Analogous to the experiments with the consis-
tency method, we choose the topics in rec.∗ which contains autos, baseball, hockey and
motorcycles. The articles were preprocessed using the Rainbow software package using
the following options: (1) skipping any header as they contain the correct newsgroup; (2)
stemming all words using the Porter stemmer; (3) removing words that are on the SMART
system’s stop list; (4) ignoring words that occur in 5 or fewer documents. Removing docu-
ments that have less than 5 words, we obtained 3970 document vectors in 8014 dimensional
space. The documents were normalized into TFIDF representation and the distance matrix
was computed, as in [2], using Wij = exp(−(1− < xi, xj > / ‖ xi ‖ ‖ xj ‖)/(2σ2)).

Our algorithm discovers two clusters on this dataset that do not make sense intuitively so
we fixed the number of clusters to C = 4. We let the algorithm optimize for α and σ and
obtain an error rate of 0.5659. We rerun the same experiment and set α = 0.99 and obtain
the same error rate of 0.5659.We attribute this to the fact consistency method required more



labeled examples in the semi-supervised learning scenario than we have provided. We did
not want to set a higher number of clusters as it would generate a model that is very difficult
to interpret.

3.4 Control Data
We use the Synthetic Control Chart Time Series dataset from the UCI database as it was
suggested for clustering. The dataset contains 600 examples of control charts that have
been synthetically generated. The clusters that are supposed to be found have 100 examples
each.

We first find that our method does not determine the number of clusters correctly so we fix
it to C = 6. Working with a fixed number of clusters, we determine σ to be 0.145351 and
α = 0.999963. However, the assignment to the clusters does not work satisfactorily with a
0.4117 error rate. We therefore used equation (10) to remove the 50 worst outliers and rerun
the same experiment. The values for σ and α change to σ = 0.22723 and α = 0.992217.
The error rate sinks to 0.2764. This clearly demonstrates that our method can successfully
identify outliers that interfere with the clustering process.

4 Conclusion

We have proposed a new clustering algorithm that 1) directly optimizes for all model pa-
rameters; 2) can detect both global outliers and outliers within each cluster; and 3) builds a
cluster model that can cluster previously unseen points without relearning or modifying the
original model. The proposed framework is based on a recently proposed semi-supervised
learning technique [2] which frames learning as a search for local and global consistency.
In this paper we show that this framework naturally leads to an optimization framework for
clustering unlabelled data. Experimental evidence on both real and synthetic data supports
the proposed algorithm.

This paper opens a number of interesting theoretical questions. The first of these concerns
obtaining efficient algorithms for solving the proposed optimization problem (this paper
introduced a fast heuristic solution which leaves much room for improvement). Second, our
optimization framework can optimize a different set of model parameters for each cluster, a
concept that may have wide ranging consequences. Finally, we measure closeness between
points on a manifold not by a standard measure on a manifold, but by how each point orders
distances to other points in the manifold. This is a unique distance metric that needs further
theoretical study.
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