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Abstract 

 

 

 In pursuit of optical arbitrary waveform generation (OAWG), line-by-line pulse 

shapers use dynamic masks that can be modulated at the repetition rate of an input pulse 

train.  The pulse-to-pulse control of the output pulse train with the waveform fidelity 

provided by line-by-line pulse shaping creates the most arbitrary waveform output 

possible, OAWG.  This thesis studies the theoretical dynamic effects of such a pulse 

shaper and presents efforts towards realization of OAWG.  Pulse shaping theory is 

extended to include rapid waveform update for line-by-line pulse shaping.  The 

fundamental tradeoff between response speed and waveform fidelity is illustrated by 

several examples.  Line-by-line pulse shaping is demonstrated at a repetition rate of 890 

MHz on a mode-locked titanium sapphire laser.  This pulse shaper relies on a virtual 

imaged phased array (VIPA) to obtain the necessary high spectral resolution.  The details 

of the VIPA's ideal and nonideal performance are analyzed, simulated and tested.  

Individual frequency modes from the mode-locked titanium sapphire laser are also 

resolved using the same VIPA paired with a diffraction grating creating a 2-D spectral 

brush with a resolution of 357 MHz.  The advantages and nonideal effects of VIPA-based 

pulse shaping are investigated.  Analysis of several high speed modulation techniques are 

explored.  The optical system required to separate adjacent comb lines into different 
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single mode (SM) fibers necessary for several modulation techniques is designed and 

tested. 
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Chapter 1 

Introduction 

1.1  Overview 

 The ability to manipulate the shape of broadband optical pulses has impacted many fields 

such as coherent control of chemical processes, high field physics, nonlinear fiber optics, and 

ultrafast spectroscopy [1].  Many methods have been invented to shape pulses, but the most 

widespread and general method for pulse shaping is spectral decomposition.  In this method, the 

spectral components of the laser pulses are spatially dispersed using an element such as a grating, 

and then a mask is applied to modify the phase and/or amplitude of each component.  Finally, the 

components are recombined to reconstruct the new, modified pulses [1].  Using high resolution 

spectral dispersers such as a virtually imaged phased-array (VIPA) [2], the individual frequency 

modes that comprise the spectral comb produced by a mode-locked laser can be resolved [3].  In 

this regime one can fully control the shape of a stream of pulses with line-by-line pulse shaping 

[4,5].   

 Line-by-line pulse shaping is an important step toward optical arbitrary waveform 

generation (OAWG) [6,7], where the spectral mask is updated at the repetition rate of the input 

laser in addition to resolving individual comb lines (note that some authors use “static OAWG” 

to designate line-by-line shaping and “dynamic OAWG” to designate the more difficult goal of 

updating the mask for every input pulse).  The ability to perform line-by-line pulse shaping on 

the output of a mode-locked laser has been enabled by the development of femtosecond comb 

techniques [8,9].  As elaborated in section 2.4 by stabilizing frep and the offset frequency, f0, of a 

femtosecond comb source, the frequency brush can be made stable enough to perform line-by-
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line pulse shaping.  Substantial progress has been made towards OAWG [10,11], although it has 

not been demonstrated yet due to the difficulty of simultaneously achieving high spectral 

resolution and high modulation rate.  To balance these two extremes a 890 MHz repetition rate 

mode-locked titanium sapphire laser is used in this thesis, providing a high enough repetition rate 

that adjacent frequency modes can be  separately controlled, yet low enough so it is within the 

reach of modulator technology.   

 Current line-by-line pulse shapers work for input pulse trains with high repetition rates 

around 10 GHz. Decreasing the repetition rate of the input pulse train requires an increase in the 

spectral resolution to resolve the individual comb lines. Previous high resolution setups resolved 

the individual modes from a 3 GHz pulse train [3]. The static line-by-line pulse shaping setup 

described here resolves the individual modes from an 890 MHz repetition rate mode-locked 

titanium sapphire laser, modifies them and recombines them into a pulse-shaped output. This 

line-by-line pulse shaper with 357 MHz resolution [12], corresponding to a resolving power of 

~10
6
, periodically maps a static mask pattern onto the optical spectrum. The spectral resolution 

demonstrated here is, to the best of our knowledge, the highest reported in pulse shaping.  This is 

an important step toward OAWG.   

 The low repetition rate line-by-line pulse shaping must be combined with high speed 

modulation to realize OAWG.  Several high speed modulation techniques capable of these 

modulation speeds are explored.  Many of the high speed modulation technologies rely on the 

spatial confinement afforded by single mode (SM) fiber.  The design, implementation and 

analysis of the optical system required to separate adjacent frequency modes into separate SM 

fibers is presented. 
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 This thesis analyzes the dynamics of the shaped pulses as the update rate approaches the 

repetition rate of the laser, frep.  Results illustrate that there is a fundamental tradeoff between 

response speed and waveform fidelity when high speed modulators are merged with line-by-line 

resolution.  Central to this fundamental limitation is the spectral recombination of the pulse.  For 

some pulse shaping schemes where few comb lines are modulated at high speeds, a pulse shaper 

with spectral-independent recombination of the pulse provides a novel approach that circumvents 

the waveform-fidelity and response-speed limitations enforced by a spectral recombination. 

 

1.2  Thesis outline 

 Chapter 2 covers the fundamentals of pulse shaping.  The basics of classic pulse shaping 

are explained through the development of static pulse shaping theory.  As the limits are expanded 

to include control of a pulse train over the entire period of the pulse train (static OAWG), it 

becomes clear that the individual frequency modes that make up the pulse train spectrum must be 

controlled.  This requirement leads to a description of frequency combs and specifically the laser 

source used in this project.  Finally, other OAWG designs are presented to show the usefulness 

of this work and how it fits into the field of dynamic line-by-line pulse shaping. 

 Chapter 3 develops the dynamic pulse shaping theory and provides understanding of the 

theory's implications through the use of a dynamic pulse shaping simulation.  The time-

dependent output of the pulse shaper is modeled for several dynamic masks, showing a tradeoff 

between response speed and waveform fidelity.  

 Chapter 4 elaborates the details of a VIPA, the heart of the high spectral resolution pulse 

shaper.  Everything from the optimized design of the VIPA to an analysis of its nonideal 

behavior is described.  Finally, by analyzing the VIPA output, reasonable limitations on the 

allowed bandwidth of the pulse shaper are calculated. 
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 Chapter 5 presents the VIPA-based pulse shaper with the highest known spectral 

resolution.  The details of the cross-correlation technique used to measure the pulse shaper 

output are described.   To illustrate how dispersion inside the VIPA-only pulse shaper works, a 

simulation is compared to the bursts of pulses measured from the high resolution VIPA-based 

pulse shaper. 

 Chapter 6 provides an overview of several current modulation techniques capable of GHz 

speeds required to perform OAWG for the pulse shaper described in chapter 5.  The experiments 

and analysis exploring the potential of several of these modulation technologies are presented. 

 Chapter 7 offers a solution to separate adjacent groups of modes into fiber, a necessary 

step for several modulation technologies.  The design takes advantage of a microlens array to 

individually image groups of modes into separate fiber channels.  The performance of the 

physical setup is measured and analyzed. 

 Chapter 8 concludes the thesis with an overall discussion of the work presented and 

offers suggestions for future work.   
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Chapter 2 

2 Fundamentals of pulse shaping 

2.1  Classic pulse shaping 

 Pulse shaping is the art of transforming an input pulse train into a pulse train with 

controlled shapes.  There are several ways to simply shape pulses.  For example, when a short 

pulse passes through a material with normal dispersion, blue light travels slower through the 

material.  This dispersion introduces chirp (low frequency light followed by higher frequency 

light), that has the effect of broadening the pulse.  To compensate for this common phenomenon 

a prism pair can be used to introduce negative dispersion can be used to augment the shape of a 

train of pulses.  These simple methods for controlling a train of pulses do not allow for much 

flexibility in creating a totally custom pulse train.  This is why this thesis focuses on a more 

powerful and general method for pulse shaping: spectral masking. 

 The idea behind spectral masking is that by controlling the frequency composition, or 

spectrum, of a pulse train, the time domain output can be shaped.  A simple diagram of this 

process is visualized in Figure 2.1.   
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The input pulse train first hits a spectrally dispersive device such as a grating.  Different 

wavelengths leave the grating at different angles.  So by placing a lens a focal length away from 

the grating, the angular wavelength dependence is converted into spatial dependence.  Another 

way to consider this is that the lens is performing a Fourier transform of the grating output.  By 

placing a lens one focal length away from a source, the Fourier response of that source is created 

a focal length away from the lens.  A mask can be placed in this Fourier plane to selectively pass 

or block different frequencies or change their phases.  Finally, when the pulse is reconstructed 

using another lens and grating the temporal output pulse train has been modified from the 

original as a result of the Fourier relationship between frequency and time. 

 Spectral mask pulse shaping is analogous to linear, time-invariant filtering.  By 

selectively blocking certain frequencies the output can be controlled.  Mathematically, spectral 

mask pulse shaping is described by the convolution of two time dependent signals [1] 

 ')'()'()(*)()( dttthtethtete ininout    (2.1) 

 

 

where eout(t) is the output electrical signal for a given input signal ein(t) and h(t) is a filtering 

function that acts on the signal.  In the case of a spectral mask, it makes more sense to think 

 
 

Figure 2.1: Spectral mask pulse shaper diagram. 
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about the filtering function as a function of frequency instead of time.  Because the physical 

mask blocks or passes frequencies it is already naturally a function of frequency.  So an 

equivalent way to consider this convolution is multiplication in frequency space given by 

 )()()(  HEE inout   
(2.2) 

 

 

where Ein(ω) is the input signal, Eout(ω) is the output signal and H(ω) is the filtering function as a 

function of frequency given by the Fourier transform pairs 

 
 dtethH ti )()(  (2.3) 

 

 

and 

  


 deHth ti)(
2

1
)(  

(2.4) 

 

 

 To better understand this convolution process, consider a few simple filters and their 

effects on an output signal.  If the filtering function is simply a delta function in time, the 

frequency response is one that passes all frequencies.  This corresponds to a signal output that is 

the same as the input, or the case where no filtering is performed. Another interesting case is one 

where the spectral filter is narrowed to only pass a small band of frequencies.  The smaller the 

band of frequencies, the more blurred the output signal is from the original input in time.  In 

other words, quick changes in the input signal become longer, slower changes in the output 

signal.  The extreme case of this is when all but one frequency is filtered out of the original input 

signal.  The result is an output signal that has a constant value equal only to the amplitude of that 

frequency in the input. 

 The spectrum of an input pulse train is a frequency comb as described in section 2.2 .  If 

the resolution of the spectrally dispersive device inside the pulse shaper is lower than the 

repetition rate of the pulse shaper input, the discrete frequency modes of the comb will be 
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separately resolved in the mask plane of the pulse shaper.  Since a narrow filter in frequency is 

required to have a long effect in time, as described in the previous paragraph, in order to achieve 

control over the entire period of an input pulse train, the individual frequency modes of the comb 

must be controlled.  This limit is called line-by-line pulse shaping.  Any repeating waveform, 

within the bandwidth of the input pulse train, can be produced by individually controlling the 

discrete frequency modes that comprise the pulse train [4]. 

2.2  Femtosecond combs 

 Spectral decomposition pulse shaping requires that the spectrum of an input pulse train be 

modified to create the desired output waveform.  In order to have full control of a waveform over 

the entire period of the pulse train, the individual frequency components that make up that 

frequency spectrum must be controlled.  The frequency spectrum of a pulse train of short pulses 

is often called a frequency comb or a femtosecond comb (when pulses that makeup the pulse 

train are approximately 5-100 fs in duration).  The individual frequency modes that make up that 

comb are also referred to as comb lines.  These terms are used throughout this thesis.  The 

purpose of this section is to explain what a frequency comb is and how it is created for use in this 

project. 

 Although short pulse trains can be produced in a variety of ways, the source used in this 

project is a mode-locked Ti:sapphire (Ti:sapph) laser, as elaborated in section 2.4  Mode-locking 

a laser establishes a fixed phase relationship between all of the lasing longitudinal modes [9].  In 

other words, all the allowed frequencies of the laser are locked together with fixed phase 

resulting in pulsed laser operation.  This process can be considered in time as well, where a 

narrow in time, but broad in frequency, pulse propagates through the laser cavity, resulting in an 

output of narrow pulses separated by the round trip time of the laser cavity.  The repetition rate 
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of the laser, frep, can then be calculated by inverting this round trip time.  Mode-locking a laser 

requires that loss inside the laser cavity is greater for continuous wave (CW) operation than for 

pulsed operation.  To achieve this difference, typically Ti:sapph lasers rely on the nonlinear 

index of refraction of the Ti:sapph crystal: the Kerr-lens effect.  Basically, the higher the 

intensity of light, the larger the index of refraction is inside the Ti:sapph crystal.  This effect 

results in intense light of a pulse being self focused by the crystal, while less intense CW light is 

not focused.  By misaligning the Ti:sapph cavity slightly so that light that is self focused by the 

crystal due to this effect has less loss than light that passes straight through, higher net gain for 

pulsed operation is achieved. 

 The spectrum of the ultra-short pulse train is the frequency comb.  To understand how it 

is created, first consider a single pulse of light where the spectral width is inversely proportional 

to width of the temporal envelope, τ, of that pulse.  This means that short pulses in time have a 

broad spectral response.  Consider the spectrum of a series of pulses all equally spaced by the 

pulse train period, T, pictured in Figure 2.2.   
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 The carrier-envelope phase, φ, is the phase shift between the peak of the pulse envelope 

and the closest peak inside the carrier wave.  If the pulse propagates through any dispersive 

material, the difference between phase and group velocities results in φ evolving as the pulse 

propagates.  The change in φ from pulse to pulse is given by Δφ.  The Fourier transform of the 

comb of pulses in time separated by the period 1/frep, is a comb in frequency separated by frep.  

This comb is pictured in Figure 2.3.  The evolution of the carrier envelope phase has the effect of 

shifting this comb in frequency.  This offset frequency, f0, can be calculated from the phase 

evolution of the pulse described in Figure 2.2 by 

 


 repff
2

1
0  

(2.5) 

 

 

 
 

Figure 2.2: Time domain portrait of a pulse train, showing phase evolution of the electric field 

inside the Gaussian envelope of the narrow pulse train.  Adapted from [9]   
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The source of this offset frequency is the difference between group and phase velocities of the 

pulse, a result of the pulse propagating through any dispersive media.  The frequency of a given 

mode is 

 0fnfrepn   (2.6) 

 

 

 where n is an integer that indexes the frequency of the n
th

 mode.  Note that optical frequencies 

are on the order of 370 THz (at λ = 810 nm) and frep is approximately 1 GHz.  This means n is 

approximately 370,000 for the mode in the center of the spectrum.  Also, observe that the width 

of the Gaussian that encompasses the individual spectral modes is 1/τ, so the shorter the pulses 

are in time, the broader the spectrum. 

  

The discrete frequencies that make up ultra-short pulse trains make them excellent sources 

for pulse shaping.  The shorter the pulses of the input pulse train the finer the temporal control 

over the pulse shaper output becomes.  This means that the ability of pulse shapers to create 

arbitrary waveforms is limited by the bandwidth of the input.  The more broadband a pulse train 

 
 

Figure 2.3: Frequency comb showing the spectral response of a pulse train.  Adapted from [9]   
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source, the more general waveforms that can be produced using a pulse shaper.  In order to 

create an output with a fast response (short in time), large optical bandwidth is required.  

 

2.3  Grating resolution 

 

 A key component to any spectral masking pulse shaper is the use of a spectrally 

dispersive element.  A standard grating can be used for this purpose in classic pulse shapers 

where line-by-line pulse shaping is not necessary.  In this section, the resolving power of a 

grating is explored and through calculations the necessity of another spectrally dispersive device 

is made apparent. 

 The resolution, Δλ, of a simple grating can be calculated by 

 
lm




  
(2.7) 

 

 

where λ is the center wavelength, m is the grating order, Λ is the spatial frequency of the grating, 

and l is the width of the spot on the grating.  This equation shows that the resolution of the 

grating can be improved by illuminating more lines on a grating (Λl).  A grating with Λ = 1200 

l/mm can achieve a resolution of Δλ  = 0.05 nm at λ = 810 nm in the first grating order by 

illuminating a 12 mm spot on the grating.  However, even this resolution is not nearly enough to 

resolve the individual frequency modes that make up the frequency comb for a laser running at 1 

GHz.  A quick calculation using c = λν shows that a change of 1 GHz for 810 nm light 

corresponds to a change of only .0021 nm.  To illustrate why a grating is not used in the high 

resolution pulse shaper, consider how large a grating would have to be to achieve the necessary 

resolution.  In order to achieve the high resolution necessary for line-by-line pulse shaping at 1 

GHz using only a grating imaged in its first order with Λ = 1200 l/mm at λ = 810 nm, the size of 
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the imaged spot on the grating would need to be 32.1 cm.  While it is not impossible to create 

such a grating, it would be very expensive and difficult to work with such large scale optics to 

acquire the necessary resolution.  This grating size can be reduced by increasing the number of 

lines by increasing Λ of the grating or by using a higher diffraction order of the grating.  

However both of these parameters increase the angle of diffraction from the grating given by 

  )sin(arcsin inout m    
(2.8) 

 

 

The maximum angle possible from the grating is 90° (input angle to the grating would is 90° and 

the output order would be 90° from that).  At this limit the maximum grating frequency is Λ = 

2469 l/mm for first order diffraction.  This means the illuminated spot size on the grating would 

still need to be 15.62 cm.  Alternatively if the second order diffraction is used the maximum 

grating  frequency Λ = 1234 l/mm with input and output angles set to 90°.  Meaning that to 

achieve enough resolution to resolve 1 GHz frequency modes from one another, still an 

illuminated spot size of 15.62 cm is required.  The invariance of the necessary spot size to the 

diffraction order can be seen by plugging equation (2.8) into equation (2.7).  Note that in 

addition to the large grating, a very large lens would also be required to image the grating to an 

output which would individually resolve the 20,000 individual modes that comprise the laser 

spectrum in a straight line.  This is why a virtually imaged phased array is used to achieve the 

high spectral resolution required to achieve line-by-line pulse shaping at 1 GHz.  See chapter 4 

for more details on the VIPA.  

 

2.4  Frequency comb source 

 The frequency comb source used for this project is a mode-locked titanium-sapphire 

(Ti:sapph) ring laser [13].  Before jumping into the specifics of this laser, consider typical 
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Ti:sapph lasers.  The size of the laser cavity determines the amount of time it takes for a pulse to 

propagate through the cavity which in turn sets the repetition rate.  So the repetition rate of the 

laser can be calculated by the inverse of the round trip time inside the laser cavity.  Commonly 

Ti:sapph lasers are built to operate around 70-90 MHz.  This typical repetition rate is the result of 

the laser cavity size built to accommodate a prism pair.  This is so the normal dispersion from the 

Ti:sapph crystal can be mitigated through the use of a prism pair inside the laser cavity to 

introduce anomalous dispersion.  By adjusting the spacing between the prism pair the dispersion 

inside the laser cavity can be carefully controlled.  Additionally, the prism pair spatially 

separates the spectrum of the laser onto the back mirror allowing for control of f0 by tilt of this 

back mirror, frep by the length of the cavity, and through the use of a slit, the spectrum and 

bandwidth of the laser can be tuned.  However, the small repetition rate of these lasers will make 

the individual comb lines close together in frequency (separated only by 70 MHz or so) which 

makes it difficult to achieve line-by-line pulse shaping where these individual modes must be 

separated from one another.   

 To make it easier to separate adjacent frequency modes from one another, a higher 

repetition rate laser is desired.  The laser is designed to have with a repetition rate of 890.4 MHz 

by reducing the cavity length to about 33.7 cm.  One convenient solution to creating a small laser 

cavity is to build it with ring geometry.  In ring geometry the pulse inside the laser cavity can be 

made to bounce off of several mirrors in a small amount of space.  Several negatively chirped 

mirrors are necessary to control the dispersion inside the laser cavity as described later.  Also, 

unlike many other laser geometries where light is double passed through space (cavity length is 

two times the physical length), in ring geometry there is no retro-reflecting mirror.  Light 

circulates through the cavity, meaning the length of one circulation is the cavity length (thereby 
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assisting in the goal of a shorter cavity).  The ring configuration illustrated in Figure 2.4 shows 

how a pulse circulates when mode locked.  Note, in the ring laser configuration, mode-locking 

behavior can occur for both clock wise (CW) and counter-clock wise (CCW) propagating pulse.  

There is a 50% chance that the laser will mode-lock CCW (desired output direction).  In the 

event that the laser mode-locks CW, mode-lock can be broken by interrupting the beam and 

reacquired by perturbing the laser mirror again.  Eventually, the laser will randomly mode-lock 

in the desired direction.  Once the laser is mode-locked in one direction the laser is stable and the 

pulse train continues to propagate in that direction. 

 

The limited amount of space in the laser cavity means there is no room for a prism pair to 

introduce the negative dispersion necessary to cancel out the dispersion from the Ti:sapph 

 
 

Figure 2.4: Ring laser diagram, showing how the direction of the Ti:saph output depends on 

the propagation direction of the pulse inside the laser cavity. 
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crystal.  This is why 5 negatively chirped dielectric mirrors are used instead to control the 

dispersion inside the laser cavity.  The 2.2 mm Ti:sapph crystal induces approximately 148 fs
2
 

group delay dispersion (GDD) onto the pulse [13].  Each negatively chirped mirror provides -45 

fs
2
 GDD per reflection, corresponding to -225 GDD from the mirrors which means the total 

GDD for a round trip inside the ring cavity is -77 GDD.  This means the ring laser is operating in 

the anomalous dispersion regime, a common and stable regime for mode-locked Ti:sapph lasers 

[9].   

The bandwidth of the laser output can be used to estimate the width of pulses in time as 

shown in Figure 2.5.  The center of the laser output spectrum is 815 nm with a FWHM of 40 nm 

corresponding to a pulse duration of approximately 54 fs.  As explained in section 4.7 this is 

more bandwidth than can be used in the high resolution pulse shaper. 
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2.5  State of the art of pulse shaping 

 Many labs worldwide explore and advance the capability of pulse shaping.  A common 

problem with telecommunication is the broadening of short pulses as they propagate through 

fiber due to dispersion.  Since arbitrary dispersion can be applied to a pulse train using spectral 

mask pulse shaper, the dispersion of the fiber can be canceled by negative dispersion from the 

pulse shaper [14].  Using a pulse shaper to perform this pulse compression is superior to the use 

of a simple prism pair to introduce anomalous dispersion since a pulse shaper can program 

custom dispersion that better compensate for the fiber [15,16].   

 
Figure 2.5: Pulse train source, 890.4 MHz Titanium sapphire laser, spectrum.  The 40 nm 

FWHM corresponds to a pulse width of approximately 54 fs in time. 
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 Line-by-line pulse shaping becomes possible when the individual frequency modes that 

comprise an input pulse train can be independently controlled.  This limit enables the full time 

record, T, of the pulse train to be controlled.  Creating static OAWG, a waveform that is as 

arbitrary as one can create only repeating every period.  Repeating customized pulse trains have 

uses in ultrafast spectroscopy, nonlinear fiber optics and high field physics [17]. 

 The current challenge in this field is to completely control the spectrum and have control 

over the spectrum at the repetition rate of the laser or OAWG.  Several labs are currently 

working on dynamic pulse shaping systems.  M. Akbult at University of Central Florida has done 

dynamic pulse shaping work using injection locked vertical cavity surface emitting laser 

(VCSEL) diodes as modulators [10].  Akbult's setup begins with a 12.5 GHz source and using a 

virtually imaged phased array (VIPA), the individual frequency modes of the source are 

separated from one another.  Then each mode is reflected off different VCSELs in the array and 

by controlling the voltage of the VCSEL near threshold, the phase of the individual modes can 

be controlled between -π/2 to π/2.  The fast response of the VCSEL array has been able to 

achieve update rates of up to 1 GHz.  This rapid update rate is enough to perform OAWG in our 

setup since we have the high spectral resolution capable of resolving adjacent modes of a 1 GHz 

pulse train.  Akbult's setup uses a fiber pigtailed VIPA with 100 GHz FSR.  This only allows for 

6.25 GHz channel separation between adjacent modes.  In other words, his setup does not have 

the spectral resolution necessary to resolve adjacent modes from a 1 GHz source.   

 Another limitation of Akbult's setup is the use of the injection locked VCSEL diode array 

as the modulator.  When a VCSEL is used as a modulator [18], the injection current is modulated 

very quickly which in turn modulates the phase and amplitude of the seed light that is incident to 

the VCSEL.  The primary effect is phase modulation and this modulation is limited by only 
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being able to swing from -π/2 to π/2.  This limits the full arbitrary nature of the waveforms that 

can be produced.  To be fully arbitrary, one must be able to control the phase of each mode from 

-π to π. 

 A completely different approach to achieving OAWG spectrally shapes alternating pulses 

independently from one another and then fuses the combined output to create a 5 ns window of 

arbitrary waveform output.  This creative approach is the work of R. Scott at the University of 

California Davis [11].  First, three individual pulses of a 10 GHz pulse train are temporally 

separated from one another and sent down different fiber optic lines.  Then, an electronic arrayed 

waveguide grating (eAWG) is used in each path to shape the spectrum of each pulse 

independently.  The three pulses are brought into sync with one another by adding 10 ns of delay 

to the first pulse and 5 ns of delay to the second pulse.  Finally, an output is created by 

combining the three pulses using an arrayed waveguide grating (AWG).  By temporally 

separating out the pulses prior to modulating the spectrum of each one and using variable delays 

in each path to recombine the pulses temporally, Scott is able to make use of the additional 

information to create a more arbitrary optical waveform (33ps features) than would be possible at 

10 GHz (100 ps features).  This clever approach circumvents the limitations derived in chapter 3 

since there is never any modulation at or faster than the spectral capacity of the input.  In other 

words, by combining the spectra of three pulses, at 10 GHz, one is able to achieve the speed of a 

30 GHz pulse train (30 GHz of optical bandwidth), but limited to a period of 5 ns. 

 The major limitation to this technique is that it is not continuous, the arbitrary nature of 

the output is limited to 5 ns every 15 ns.  This is because it takes 3 pulses worth of information to 

produce only one period of output. 
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Chapter 3 
 

3 Dynamic line-by-line pulse shaping 

3.1  Dynamic line-by-line pulse shaping theory 

 The naïve expectation of pulse shaping is that the instantaneous optical pulse will 

correspond to the instantaneous spectral mask; however this is not the case. Fast modulation 

creates sidebands that should interfere with adjacent comb lines to create an instantaneous 

response.  Line-by-line spectral mask pulse shaping relies on a high spectral resolution dispersive 

device to resolve the individual frequency modes of the input pulse train.  When this high 

spectral resolution device is used to recombine the pulse, these sidebands are filtered out 

resulting in an output with a slow response.  The Fourier time-frequency limit constrains how 

quickly the waveform can change given high spectral resolution.   

 In this section, a theoretical expression for Fourier transform pulse shaping with a time-

varying mask is derived. This derivation begins by reviewing the theory for the familiar case of a 

time-independent mask, then showing how to extend the theory to include time variation.  This 

treatment draws on previous publications analyzing grating pair compressors [19] as well as 

pulse shapers with static masks [20,21].  

First, assuming the input field can be separated in space and time, the input field 

immediately before the first diffraction grating can be expressed as  

 ( ) ( ) ( ) ( )ˆ o oj t j t
inin ine x t Re x t e Re a t s x ee

    
   
   

     (3.1) 

 

 

where x is spatial position in one dimension, t is time, ain is the input pulse train, and ω0 is the 

angular frequency of the input carrier.  For simplicity, the notation 
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 ˆ( ) ( ) oj t
F x t Re F x t e

  
 
  

    (3.2) 

 

 

is used.  The spatial profile of the input can be approximated as Gaussian, a reasonable 

approximation for a typical laser source operating in (transverse electromagnetic) TEM00 mode 

(lowest order or fundamental transverse mode).  Then 

 
2 2

( ) inx w
s x e

 
  

(3.3) 

 

 

where win is the input spot radius.  Consider the standard pulse shaping configuration, in which 

the grating and the pulse shaping mask are placed at the front and back focal planes of the lens, 

respectively. The field at the Fourier plane is  
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where ( )inA   is the Fourier transform of ( )ina t ,  is the optical frequency, and 
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is the radius of the focused beam at the Fourier plane (for any single frequency component), and  

 
2

2 cos D

f

cd




 
  

(3.6) 

 

 

is the spatial dispersion parameter which describes the proportionality between spatial 

displacement and optical frequency. The grating input and output (diffraction) angles are 
i  and 

D  respectively for a reference ray at frequency 0  traveling along the optical axis, d  is the 

grating periodicity, and f  is the focal length [1].  This analysis ignores chromatic aberrations by 

assuming the same focal length and spot size for all frequency modes imaged by the pulse 

shaper.  This assumption is reasonable since experimentally only 10 nm FWHM of optical 

bandwidth are imaged and over such narrow optical bandwidth the effects of varying focal length 



22 

 

 

and spot size are negligible.  The spatial mask, with a complex transmission, ( )M x , is key to the 

pulse shaping action. The field directly after the mask is simply  

 2 1( ) ( ) ( )ˆ ˆx t M x x te e   . 
(3.7) 

 

 

The spot size is always finite at the masking plane for any specific frequency.  In general, the 

electric field subsequent to the spatial mask is a nonseparable function of space and frequency. 

This nonseparability occurs because the spatial profiles of the focused spectral components may 

be altered by the mask - i.e., some spectral components may experience spatially varying 

amplitude or phase, while others may not.  This variation leads to different diffraction effects for 

different spectral components and results in an output field which couples space and time beyond 

the simple and reversible effects of spectral dispersion [21,22].  

From an applications perspective, one is usually interested in generating a spatially 

uniform output beam with a single prescribed temporal profile.  In order to obtain an output field 

that is a function of frequency (or time) only, one must perform an appropriate spatial filtering 

operation.  In the following, consider the case where such spatial filtering is implemented by 

focusing into a single-mode optical fiber placed in a Fourier plane of the second diffraction 

grating [1,20] which is the pulse shaper output shown in Figure 2.1.  This situation is of practical 

interest for applications related to optical communications.  In a fiber-pigtailed reflection 

geometry pulse shaper, for example, the input beam is collimated from and the output beam is 

coupled back into the same physical fiber [23,24]. A similar mode selection operation could also 

be performed by coupling into a regenerative amplifier for high-power applications.  

Approximately, such spatial filtering can be performed simply by placing an iris after the pulse 

shaping setup.  
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In this analysis the masked field is propagated back to a second grating placed at the back 

focal plane of a second lens.  Then the electric field is focused through a Fourier transforming 

lens into a single mode fiber.  A Fourier transforming lens is a lens placed one focal length away 

from a source which creates the Fourier response of that source a focal length away from the 

lens.  The portion of the field that corresponds to the single guided spatial mode of the fiber is 

transmitted; any remaining portion of the field is not guided and is therefore eliminated.  

Denoting the spatial mode of the fiber as Fu  and the field at the fiber plane as 3ê , the coupled 

field is  

 3
( ) ( )ˆ

( ) ( )ˆ
( ) ( )

F

out F

F F

dx x t u xe
x t u xe

dxu x u x






 




 

(3.8) 

 

 

Here the first factor gives the complex amplitude of the coupled field, and the second is the 

spatial mode.   The most interesting case is when the input field as transformed by the pulse 

shaper and the subsequent lens is mode-matched to the fiber. In this case the output complex 

spectral amplitude function becomes  
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x
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 



     
    

     


.

 (3.9) 

 

 

Note that in the absence of masking, the entire input field is successfully coupled into the fiber 

without loss.  The effective filter in the frequency domain is the square of the convolution of the 

mask function ( )M x  and the spatial field profile of the beam at the masking plane.  The spatial 

field profile enters once through the spectral dispersion of the first grating and lens and a second 

time (together with an integral over x) through the mode matching with an assumed Gaussian 

fiber mode. Any physical features on the mask smaller than w0 are smeared out by the 

convolution.  This smearing limits what features can be transferred onto the spectrum.  Only 
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features that are larger than w0 can be transferred onto the spectrum.  Wavelength components 

impinging on mask features that vary too fast for the available spectral resolution are diffracted 

out of the main beam and eliminated by the spatial filter.  This process can lead to phase-to-

amplitude conversion in the pulse shaping process [19,23].  Conversely, in the limit w0  0, the 

apparatus provides perfect spectral resolution, and the effective filter is just a scaled version of 

the mask.  

The theory may now be extended to include a time-varying mask, ( )M x t , with Fourier 

transform  

 ( ) ( ) j tM x dt M x t e     .
 (3.10) 

 

 

The complex spectral amplitude of the field immediately after the masking operation may be 

written as  
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(3.11) 

 

 

Assuming an input field prior to the grating as given by equation (3.1), the field immediately 

after the grating may be written as [19]  
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Here )0(

i and )0(

D are the input and output (diffraction) angles for a reference ray at frequency 

o  traveling along the optical axis, and d  is the grating periodicity. The 
j xe 

 factor imparts the 

variation in diffraction angle with frequency; and the beam size is scaled by the inverse of an 

astigmatism factor a , which results from the difference in input and output angles.    
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Propagation from the grating at the front focal plane of the lens to the masking plane at the 

back focal plane may be analyzed using the Fourier transform property of a lens [25,26].  This 

analysis is formalized for a one dimensional field in the direction the frequency modes are spread 

out by the spectrally dispersive device, in the x direction.  In the y direction, the field is a 

Gaussian profile with no spectral dependence as it is orthogonal to the spectrally dispersive 

device.  Specifically, for a scalar, monochromatic, one-dimensional field ( )ins x  at a plane a 

distance f in front of a thin lens with focal length f, the resulting field at an output plane a 

distance f  behind the lens is given by  

 ( ) ( ) ( )jkxx f

out in in

j kx
s x dx s x e S

f f

     
(3.14) 

 

 

Where 2k c      , and ( )in xS k  refers to the spatial Fourier transform of the input spatial 

profile ( )ins x , and the Fourier transforms are defined by  
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Using this Fourier transform property in conjunction with equation (3.1) for the field just after 

the grating, the field at the masking plane of the pulse shaper, equation (3.4), is obtained. 

The time-varying mask modifies the frequency content at the various spatial locations.  

Mode matching at the output of the pulse shaper is taken into account as earlier, giving  
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(3.16) 

 

 

The interpretation is that for large frequency shifts, the new frequencies induced through the time 

variation of the mask will be focused at a position transversely shifted with respect to the fiber 

mode.  This is a direct result of how the pulse is reconstructed.  Since a spectrally dispersive 

device is used to combine the spectrum, a change in the frequency (from the modulation) results 
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in a shift in the location where the pulse is reconstructed.  Since the output of the pulse shaper is 

restricted to be a Gaussian profile, higher modulation frequencies of the time-varying mask are 

partially suppressed.  

 To better understand how these high modulation frequencies are suppressed, consider the 

simple situation of a CW source being modulated in time.  One observes sidebands in the 

frequency spectrum of this modulated light separated from the central frequency, fcent, by the 

modulated frequency, fmod, as pictured in Figure 3.1.  Note that these sidebands carry essential 

information about the modulated beam.  In other words if these sidebands are eliminated, the 

CW source would no longer be modulated in time.  If this modulated CW signal is passed 

through a sufficiently narrow spectral filter, such as an interference filter, the sidebands will be 

suppressed.   

 

The faster the modulation, the farther these sidebands are from the central frequency and the 

more suppressed the sidebands are for a given spectral filter.  This simplified situation is no 

 
 

Figure 3.1: Temporally modulated CW light, solid black curve, carries modulation 

information in the side bands in frequency, solid orange curves, separated from the central 

frequency by the modulation frequency.  The spectral filter, dashed blue curve, shows that a 

sufficiently narrow filter will filter out the sidebands and thereby eliminate the temporal 

modulation of the signal. 
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different from what happens inside a dynamic pulse shaper.  The individual frequency modes 

that make up the laser are phase locked CW sources separated by frep.  Modulations in the 

dynamic mask create sidebands on each of these CW sources.   Since these sources are 

recombined using a spectrally dispersive device (i.e. VIPA), only frequencies close to the center 

frequency are imaged to the correct location in the VIPA output.  By restricting the spatial output 

of the pulse shaper (such as into fiber, or using a spatial mode filter), incorrectly located outputs 

are eliminated.  This has the effect of applying a spectral filter to each frequency mode with a 

width corresponding to the resolution of the spectrally dispersive device.  The higher the 

modulation frequency, the less of an effect it has on the output. 

A very simple case is when the mask is time-varying but uniform in space; the time-

varying mask is simply a modulator placed into a pulse shaper. Replacing ( )M x   in equation 

(3.11) with ( )M   yields  

  
2 2 2( ) 2

( ) ( ) ( )
2

ow

out in

d
A M e A

 
  






     
(3.17) 

 

 

Here the modulation spectrum is multiplied by a low-pass filter function.  As the radius of the 

spot size at the masking plane gets smaller, the low pass filter cuts off at lower frequencies (in 

the Fourier plane of the pulse shaper frequency is dispersed into space).   

 This analysis reveals a fundamental trade-off in pulse shaping: very high spectral 

resolution implies a limit to the rate at which the pulse shaping function may be modified.  In 

line-by-line shaping, the implication is that one may not fully update pulse shapes at speeds 

corresponding to the laser repetition rate while simultaneously fully resolving individual comb 

lines.  
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3.2  Dynamic line-by-line simulation setup 

 The dynamic effects of a pulse shaper can be illuminated by numerical simulation.   The 

simulation numerically calculates the double integral in equation (3.16).  The input and output 

spectra are represented by arrays that contain the input and output frequency comb of the pulse 

train, while the spectral mask is a matrix that fully describes the mask in space and time.  In the 

integral, the mask is represented as a space and ω’ dependent matrix, which is equivalent to 

taking the one-dimensional Fourier transform of the temporal response of the mask at each 

spatial point.  An array size of 256 pixels was chosen to balance resolution and computation 

time.  The details of this simulation can be seen in appendix A.  The input spectrum is an array of 

0’s with a spike of 1 every 8 pixels enveloped in a Gaussian.  By taking the Fourier Transform of 

this array we can construct the input train of pulses as a function of time as shown in Figure 3.2. 

 

 The relationship between α and w0 sets the width of the Gaussian “smearing” functions in 

equation (3.16) that determine the response of the pulse shaper.  The narrower the Gaussians, the 

slower the response to changes in the mask.  Conversely, the broader the Gaussians are, the more 

blurred or poorly resolved the spectral response of the mask.  Poor resolution results in low 

 
 

Figure 3.2: Input spectrum and pulse train. 
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waveform fidelity and excessive resolution results in slow response speeds.  The result is a 

fundamental trade-off between spectral resolution and response time.   

 To investigate the effects of the smearing functions on pulse shaping, w0 is varied, which 

changes the width of the smearing functions.  Both α and w0 are set by the specific design of a 

given pulse shaper with a dependence on parameters like wavelength and focal length of the lens 

used in the pulse shaper as described by equations (3.5) and (3.6).  Since we are looking at a 

narrow band of frequencies, the effect of wavelength on this ratio is not important to the 

illustrated fundamental trade-off.  The variation of w0 is can be realized by setting the spacing 

between the comb lines on a spectral mask then adjust the focus of the comb lines to change their 

size.  For generality w0 is expressed as a fraction of  

 2rep repw f  (3.18) 

 

 

For example, for a 1 GHz laser with the individual comb lines by dispersed by 20 μm, wrep = 20 

m, and so, if w0 is set to be 1/2 the distance between comb lines or 10 μm, the spatial dispersion 

parameter α can be calculated to be 10/π  μm / GHz from  the expression w0= ½ wrep = π frepα. 

 

 

3.3  Dynamic line-by-line simulation results 

 

 In a first set of test cases, dynamic effects are seen in the response of the pulse train to a 

step.  A sample of pulses is analyzed by abruptly changing the spectral mask at time 0.  Before 

time 0, the spectral mask allows the full spectrum to pass, and after time 0, it blocks every other 

comb line as shown in Figure 3.3. 
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The mask pattern for t > 0 doubles the separation between comb lines in frequency space, which 

makes the time between pulses half as long, or in effect doubles frep.  This is referred to as double 

pulsing.  Figure 3.4 shows the switching behavior of the pulse train at various smearing function 

widths or spot sizes, w0.  Due to the periodic nature of the Fast Fourier Transform algorithm, 

transient effects were observed at both edges of time aperture used in the simulation.  These 

 
Figure 3.3: Dynamic mask and effective spectral filter functions.  Left: the dynamic mask  

illustrates the abrupt change in the mask at time 0.   Two cases are considered.  For spectral 

amplitude masking, the mask is set to block every other comb line for t > 0; the blue regions 

in the figure correspond to a mask value of 0.  For spectral phase masking, the mask is set to 

impart a phase shift of π to every second comb line as illustrated by the blue regions in the 

figure.   Right: the static filter functions corresponding to times t > 0 illustrate the blurring of 

the effective mask for larger spot sizes.  The effective spatial masks are calculated by 

convolving the smearing function in equation (3.16) with the spatial mask. 
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expected edge effects are cropped out of the final pulse trains in order to simplify the appearance 

of Figure 3.4.  This simplification was done by doubling the sample size of the input and then 

cropping the final output by deleting the first and last quarter leaving the same number of pulses.  

For large spot sizes such as w0= wrep, the spectral blurring due to a broad smearing function is 

quite evident.  In the spectral domain, this effect is seen in Figure 3.3, which plots the effective 

static filter functions corresponding to the mask at time t > 0.  The edges of the filter function 

become increasingly rounded for increasing w0 due to the convolution of the mask with the 

smearing function.  In the time domain, as the spot size increases and the smearing function 

becomes broader, the ability of the shaper to produce clear double pulses is diminished.  In 

Figure 3.4, observe the red dotted line for the larger spot sizes and how it peaks at two different 

heights; this poor waveform is due to the overlapping of the power associated with different 

comb lines at the same position on the mask.  At smaller spot sizes the spectral resolution is 

improved, with the result that the pulses in the doubled repetition rate region (t > 0) have equal 

intensities.  However, the dynamic response suffers.  The w0 = 1/8 wrep case shows how slowly 

the pulse train responds to change when the smearing function is narrow; the system takes about 

4 repetition periods to shift to double pulsing while at w0 = wrep it shifts almost instantly.  The 

key point is that response to an abrupt change in the mask occurs over a time duration that scales 

inversely with the spectral resolution. Qualititatively speaking, the optimum spot size for the 

system described above that balances speed and spectral resolution (waveform fidelity) is 

approximately w0 = 1/3 wrep.  This qualitative observation agrees well with numerical 

optimizations for w0 performed in section 3.4 This means that the spot size of the comb lines on 

the spectral mask should be approximately 1/3 the distance between comb lines, although the 

exact choice will depend on the specific merit function of interest. 
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It is worth mentioning that this analysis assumes infinitely fast modulation.  Even with 

ideal instantaneous modulation, the response is far from instantaneous.  This means that with a 

spot size of w0 = 1/3 wrep the modulator speed need only a rise time of 1/4 the period (1/frep).  A 

faster modulator will not improve the temporal response of the pulse shaper output. 

We note that the pulse train output appears to be affected prior to the step in the mask at 

time 0.  However, due to the large delay in propagating through the pulse shaper (not portrayed 

in the figures), there is no violation of causality.  Apparent changes in the output waveform prior 

to t = 0 simply correspond to the components of light being deflected or diffracted to shorter 

paths through the shaper.  Consistent with this interpretation, the analysis in [21]  for a static 

pulse shaper shows a direct linkage between delay time in the shaped output waveform and 

spatial offset in the output beam (here without spatial filtering).  Angular dispersion from a 

grating or other spectral disperser is linked fundamentally to delay gradients across the beam 

[27].   Waveform changes in response to a step in the mask occur within a time region 

approximately equal to the inverse of the spectral resolution, which is consequently within the 

total time variation across the beam just after the spectral disperser. 
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In a second example, we consider a stepped phase mask.   A phase shift of π between 

alternating comb lines is turned on abruptly at t = 0.  Both the physical phase mask and the static 

spectral filter function (corresponding to t > 0) are also shown in Figure 3.3. The filter function is 

 
 

Figure 3.4: Response of the pulse train to an alternating amplitude mask, turned on abruptly at 

t = 0, at various spot sizes, w0.  The dashed blue line shows the static pulse train where the full 

spectrum is allowed to pass which yields the expected single pulsing behavior.  The dotted red 

line shows the static pulse train when every other comb line in the spectrum is masked out.  

This results in double pulsing behavior, with waveform fidelity that depends on w0.  The solid 

black line shows the dynamic response of a pulse train to the mask that abruptly switches at t 

= 0. 



34 

 

 

the same as for the amplitude mask case, but only with a slight change to the vertical axis: 

instead of alternating between 0 and 1, the phase of the mask alternates between 0 and  

(complex transmission alternates between (1,0) and (-1,0)).   The output pulse train can be seen 

in Figure 3.5.  For high resolution static pulse shaping, the mask is expected simply to shift the 

output in time by half the period of the pulse train.  Similar to what was seen in the amplitude 

case, we have fast response for large w0 but with waveform fidelity compromised (this is evident 

in this case as a reduction in intensity).  Conversely, for small w0 there is high spectral resolution 

and good waveform fidelity (negligible loss of intensity), but a slow response.  Again the 

optimum spot size appears to be approximately 1/3 the distance between comb lines verified in 

section 3.4  
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Another test case that illustrates the dynamic behavior of the pulse shaper is its response to a 

sweeping bandpass spectral filter.  Here the mask blocks the full spectrum except for a square 

window.  This pass window is then shifted spatially as a function of time allowing different 

 
 

Figure 3.5: Response of the pulse train to an alternating phase mask, turned on abruptly at t = 

0, at various spot sizes, w0.  The dashed blue line shows the static pulse train where the full 

spectrum is allowed to pass with no phase shift.  The dotted red line shows the static pulse 

train when every other comb line in the spectrum is phase shifted by π; this yields the 

expected shift of half the period in the output pulse train.  The solid black line shows the 

dynamic response of a pulse train to a mask that abruptly switches between the two at t = 0.   
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portions of the spectrum to pass at different times.  The window scans through the center of the 

spectrum at a rate of 2/9 wrepfrep.  For this case, a larger α was used to give greater separation of 

the comb lines. Thus, instead of having a comb line every 8 pixels, there is a comb line every 24 

pixels.  For this calculation, all the input comb lines were set to unity amplitude, so the spectral 

envelope is flat rather than Gaussian.  The width of the window was set to 24 pixels 

corresponding to wrep in space or frep in frequency, such that ideally, one comb line is allowed 

through the mask at a time.  The response of the pulse train to this sweeping filter can be seen in 

Figure 3.6.  At the top of this figure is the ideal case, a pseudo-spectrogram that shows how one 

might naïvely expect the system to respond to the moving filter, allowing one comb line through 

at a time.  This pseudo-spectrogram is created simply by multiplying the input spectrum by a 

scaled version of the time-dependent mask (no smearing taken into account), and then the comb 

line is broadened appropriately by the inverse time window chosen to construct the figure.  
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 The spectrograms for the actual simulated output signals at various spot sizes were 

created using a gate function set equal to the Hanning window [28] with a size of 32 pixels; this 

means that the spectrogram at each point in time is the result of the frequency response of the 

sample inside this window 16 pixels before and 16 pixels after the point in time being calculated.  

The behavior of these spectrograms may be explained in terms of the smearing function, as 

 
 

Figure 3.6: Spectrogram response of a pulse train with equal size comb lines to a sliding 

spectral window of size frep for various spot sizes, w0.  The ideal case is a pseudo-spectrogram 

of what one would naively expect from a moving spectral filter.  
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previously discussed.  When the spot size is small, the static filtering function that would be 

obtained for a stationary bandpass mask is sharp, as seen in Figure 3.7.   On the other hand, the 

narrow smearing function slows the response of the pulse train to changes in the mask.  This 

slowing of the response is evident in the w0=1/24 wrep spectrogram where the traces are elongated 

along the time axis.  As w0 increases, the spectrograms initially shrink along the time axis, 

attaining a minimum extent around w0=1/3 wrep, but then elongate once again.  This minimum in 

duration is explained on the basis of the blurring of the equivalent static filtering functions 

depicted in Figure 3.7.  For large w0 the equivalent static filters are unable to resolve individual 

lines, and the filter must be tuned over a larger frequency range (which requires more time) 

before a given comb line is cut off.  Thus, the seemingly slow response at w0 = 4/3 wrep arises due 

to the rounded edges of the effective mask.  Since the system is responding to a moving filter, the 

spectral blurring affects how the system appears to respond in time.   

 

 

 

 
 

Figure 3.7: Sliding filter effective masks at various w0 as the window crosses the center of the 

spectrum. 
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The magnitude of the output waveform is shown in Figure 3.8 for three spot sizes.  The ideal 

case where only a single frequency is selected at a time would result in a constant, time-

independent field amplitude.  Again, this behavior is most closely approximated by the w0=1/3 

wrep test case. However, in all cases where multiple frequencies are present there is modulation in 

the time domain field magnitude.  This effect is minimized for intermediate values of spot size 

such as w0=1/3 wrep. When the spot size is either substantially decreased or increased, more 

frequencies are simultaneously present.  More structure is then observed in the time domain 

waveforms.  

 

 The dynamic effects of fast pulse shaping have been analyzed and explored in three 

representative cases.  In all these test cases, the spot size of the comb lines on the spectral mask 

is varied to adjust the width of the smearing function and thereby observe the effects on the 

output pulse train.  The first case is a step in amplitude of alternating comb lines.  By removing 

 
 

Figure 3.8: Electric field magnitude of a pulse shaper output with a sliding spectral window of 

size frep for various spot sizes, w0.  Since the tunable filter ideally allows only one comb 

through at a time, the ideal pulse train would be converted to a constant magnitude, with no 

oscillation.  w0=1/3 wrep  is the closest to this ideal response with minimal oscillations in the 

region where the tunable filter shifts between comb lines. 
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every other comb line, the shaper produces a double pulsing output.  The pulse train responds 

quickly with poor spectral resolution when the smearing function is broad.  The second case also 

illustrates this effect by an abrupt phase shift in alternating comb lines by π, which shifts the 

output pulse train by half the period.  Again, we see similar dynamic effects.  The final case 

describes the response of the pulse train to a sliding spectral filter.  Interestingly, we see similar 

effects for broad and narrow smearing functions; this is explained through the dynamic spatial 

nature of the mask.  All these test cases demonstrate that there is an optimum spot size or width 

of the smearing function that balances speed and spectral resolution.  This optimum is achieved 

when the radius of the spot size of the comb lines on the spectral mask is approximately one third 

the distance between comb lines. 

It is worth emphasizing that our analysis applies specifically to the case where the output 

Gaussian mode filter is precisely matched to the field that propagates through the pulse shaper in 

the absence of masking.  Usually this will be the most interesting case, as it minimizes loss.  

However, new effects may be possible for other choices of the output mode filter.  For example, 

if the mode filter is spatially offset from the optimum position, it will lead to bandpass rather 

than low-pass filtering action of a rapidly varying pulse shaping mask.  In this case, a simple 

time-varying amplitude or phase mask could be used, for example, to impose single-sideband 

modulation in parallel onto an entire set of optical comb lines. 

3.4  Solving for the optimum spot size 

 The optimum spot size, w0, chosen for a pulse shaper depends on the demands of the 

pulse shaper output.  Maximum response speed is achieved with spot sizes greater than wrep, 

however crosstalk between adjacent mode adversely affects the ability of the pulse shaper to 

perform line-by-line pulse shaping.  Maximum waveform fidelity is achieved with very narrow 
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spots sizes with w0 smaller than 1/24th wrep.  A reasonable ideal waveform to strive towards is an 

idealized output that instantly changes from one mask to another with perfect waveform fidelity 

pictured in Figure 3.9 and Figure 3.10.  

 

While this ideal waveform cannot be produced as described by the smearing function in section 

3.2 , the difference between the idealized output and a realistic output can be minimized.  Poor 

 
Figure 3.9:  Artificial idealized magnitude output of a pulse shaper that instantly switches, at 

time 0, from single pulsing to double pulsing output with perfect waveform fidelity. 
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response speed or poor waveform fidelity will increase the difference between realistic and 

idealized waveforms.  Since w0 affects both of these parameters the optimum spot size that 

balances these competing effects can be solved. 

 

 A minimization routine is run on the pulse shaper simulation described in section 3.2 .  

While keeping all values set except for the free parameter, w0, the optimum spot size is found 

 
Figure 3.10:  Artificial idealized phase output of a pulse shaper that instantly switches, at time 

0, from single pulsing to double pulsing output with perfect waveform fidelity. 
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when a minimum is found for a given merit function.  Four normalized merit functions are 

explored: difference in complex spectra (CS), difference in complex electric field (CE), 

difference in magnitude of the spectra (MS), and difference in the magnitude in the electric field 

(ME).  CS and MS compare the output spectra in frequency while CE and ME compare the 

output in the time domain.  Depending on the application, optimizing for either the spectral or 

temporal response may be of more importance.  This analysis explores both.  The optimum spot 

size for CS is w0 = 0.4575 wrep and for MS is w0 = 0.4659 wrep.  As expected, both of the spectral 

difference merit functions return similar optimum values for w0.   The optimum spot size for CE 

is w0 = 0.2503 wrep and for ME is w0 = 0.2498 wrep.  Again the temporal difference merit 

functions return similar values for the optimum spot size.  The temporal response of the 

optimized spot size to w0 = 0.25 wrep is illustrated in Figure 3.11.  This optimized spot size allows 

for rapid response and high waveform fidelity.  All four merit functions are important when 

evaluating the overall response of the pulse shaper.  The average of the four merit functions 

explored is w0 = 0.3558 wrep which is close to the ideal spot size of w0 = 1/3 wrep estimated from 

observations of the many simulations in section 3.3 .  
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Figure 3.11:  Temporal response for optimized spot size, w0 = .25 wrep 
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Chapter 4 

4 Virtually imaged phased arrays 

4.1  Virtually imaged phased array theory 

 

 In order to achieve the high spectral resolution necessary for line-by-line pulse shaping 

[1], a virtually imaged phased array (VIPA) is used [29].  Although it is possible to get high 

spectral resolution from other spectrally dispersive devices, see section 2.3 , a VIPA provides 

large angular dispersion with high resolution in a practically sized device.  The excellent spectral 

resolution comes at the cost of efficiency.  Typical insertion loss of a VIPA is 6 db and when 

used in a pulse shaper with reflective geometry, this loss is doubled. 

 A VIPA can be thought of as a tilted Fabry-Perot etalon [30] with a window.  By imaging 

a focus over and over inside the etalon, an array of virtual images is produced.  These images 

then constructively and destructively interfere with one another resulting in an output with 

angular dependence on wavelength see Figure 4.1.   
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This technique is analogous to what is done with phased radio antenna arrays [31], where by 

controlling the delay of a given radio signal between each antenna the direction of the radio 

beam can be controlled.    Instead of having real sources (antennae), a VIPA has virtual sources 

(images) and with a broadband input signal the result is an output direction that depends on 

wavelength.  The output direction, θout, of a phased antenna array  

 









d
out






2
arcsin  (4.1) 

 

 

depends upon the wavelength, λ, of the signal, the spacing between antennae, d, and the delay or 

phase shift of the signal between each antennae, φ.  Since the wavelength of the radio signal and 

physical spacing of the array are set, it is the phase delay of the signal between each antenna in 

 
Figure 4.1: Phased array of sources, showing constructive interference at a particular angle, 

θout, that depends on wavelength.  For a given array of sources with a set distance between 

each source, d and a set delay between each source, φ, observe how the shorter wavelength of 

blue CW light results in constructive interference of the blue sources at a smaller output angle 

than that of the red CW light.  Phase fronts for a given wavelength add up at a particular angle 

allowing for high resolution spectral dispersion. 
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the array that is used to control the direction.  In many situations it is useful to use a single 

antenna array to broadcast multiple frequencies, but emit them in the same direction (i.e. sending 

radio / TV signals to a city).  In this case, it is essential that the delay of each signal be set 

independently from one another so that all signals are emitted in the same direction.  However, if 

the delay is set to be the same for multiple frequencies (as is the case for the VIPA), then the 

antenna array would operate much like a VIPA where different frequencies are emitted at 

different angles. 

 The delay between each source in the VIPA is set by the thickness of the Fabry-Perot 

etalon.  The more space between the reflective surfaces, the more time delay there is between 

each successive source.  The tilt of the VIPA, illustrated in 

Figure 4.2, allows light into the VIPA and provides an offset of each source from one another 

creating the vertical distance, d, between each source 

 )sin(2 itd 
,
 (4.2) 

 

 

where t is the thickness of the VIPA and θi is the input angle.  The reflectivity of the front of the 

VIPA is denoted by R, typically this reflectivity is chosen to be 100% and the reflectivity of the 

back reflector is denoted by r, typically around 98% this parameter is optimized to maximize 

resolution and VIPA efficiency in section 4.2 .  The combination of the two reflectivities 

determines the intensity of subsequent images created inside the VIPA as described by equation 

(4.35). 

 



48 

 

 

 

The thickness of the VIPA along with the input angle determine the horizontal spatial distance 

between each image, or the additional space light must travel to form each successive image 

 )cos(2 itz   
(4.3) 

 

 

The time it takes light to travel between images can also be thought of as the round trip time light 

travels inside the VIPA as described by, 

 
c

nt
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round

)cos(2 
  

(4.4) 

 

 

where n is the index of refraction of the material inside the VIPA and c is the speed of light in a 

vacuum.  The inverse of the time delay between images gives the free spectral range (FSR) of the 

VIPA: 

 
)cos(2

1

iround nt

c

T
FSR


  (4.5) 

 

 

  

 

 
 

Figure 4.2: VIPA diagram showing how virtual sources are formed inside the VIPA. 
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Commonly, the FSR of the VIPA is chosen to be small (~25-100 GHz) in comparison to the 

large optical bandwidth (~20 THz) associated with ultra-short pulses.  The periodic structure of 

the VIPA causes wavelengths separated by exactly the VIPA FSR to be imaged to the same 

location.  This means in order to fully separate all frequencies from one another, a second 

spectrally dispersive device is necessary.  A detailed analysis of this can be seen in section 4.4 .  

Further, due to the periodic nature of the images produced inside the VIPA, a single frequency is 

imaged at multiple angles.  Similar to what is seen in the many diffraction orders from a simple 

grating, the VIPA too creates multiple orders in the axis the VIPA is tilted (vertical direction in 

Figure 4.3).  

 To transform the angular wavelength dependence of the VIPA output to position, Xf, a 

lens is placed a focal distance away from the VIPA.  This produces an image a focal length away 

from the lens that has a positional dependence on wavelength.  In addition to having the expected 

spectral dependence on position there is power dependence resulting from the imaging optics 

that form the VIPA output. 

 

In Figure 4.3 W is the radius of the collimated input laser, f is the focal length of the cylindrical 

lens that focuses the input into the VIPA and F is the focal length of the spherical imaging lens.  

A cylindrical lens is used to at the input of the VIPA to create a line focus that when repetitively 

 
Figure 4.3: Diagram relating parameters necessary for calculating the envelope function of the 

VIPA output. 
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imaged by the VIPA creates a collimated output from the VIPA, more detail on how this is 

produced can be seen in section 4.5 .  A spherical imaging lens creates a wavelength dependent 

image a distance F after the spherical lens.  The f-number of the spherical lens used is about 20 

so spherical aberration in the Fourier plane is minimal.  The envelope that defines how much 

power peak power is in each mode is 

 
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The intensity profile of the VIPA for infinite bounces, infinite number of virtual images inside 

the VIPA, is given by the paraxial wave model [32, 33] of a VIPA 
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where 
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in free-space and 
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This intensity profile of the VIPA output can then be used to calculate the wavelength 

dependence.  When the argument to the sine function is equal to some integer times 2π the next 

VIPA FSR is imaged,  
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where m is an integer.  The paraxial approximation 
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where θ0 is the output angle for some the central wavelength, λ0,  yields 
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By plugging in  

 )cos(20 itm    
(4.13) 

 

 

an expression for the VIPA angular dependence of wavelength can be derived 
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where θλ is the output angle of the VIPA for some wavelength λ.  The resolution can then be 

calculated by taking the derivative of equation (4.14) with respect to the central wavelength, λ0, 

which yields 
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This analysis can be extended for a solid VIPA where the internal angle, θint, inside the VIPA is 

slightly different from the input angle, θi, as calculated from Snell’s Law 

 intsinsin  nn iair   
(4.16) 

 

 

where n is the index of refraction of the solid VIPA.  The angular dependence of a solid VIPA 

[32] becomes 
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Incorporating this internal angle for a solid VIPA into equation (4.15) yields the angular 

dispersion for a solid VIPA 
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Note that equations (4.17) and (4.18) for a solid VIPA reduce to previous equations (4.14) and 

(4.15) when n=1 for an air spaced VIPA. 

 The intensity profile can be generalized for finite bounces to yield the following 

expression [32] 
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where b is the number of bounces inside the VIPA calculated by the limited size of the VIPA by 

equation (4.26).  By comparing the two expressions for the intensity profile of the VIPA 

equations (4.7) and (4.19), illustrated in Figure 4.6, it is evident that more images are created 

inside the VIPA.  More images improve the resolution and intensity of the VIPA output.  This is 

explained in detail in the next section where the intensity profile of the VIPA is used to optimize 

the VIPA design. 

   

4.2  Design and optimization 

 Using the theory outlined in the previous section, a solid fused silica VIPA is designed to 

have enough spectral resolution to resolve the individual comb lines separated by 890.4 MHz.  

Many parameters must be considered – the chosen thickness t, the reflectivities, R, r and the 

window size of the VIPA.   
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The edge of the window that allows the input into the VIPA is very important as it determines 

the smallest input angle to the VIPA.  With a smaller input angle, more virtual images are 

created inside the VIPA, and therefore the resolution of the VIPA is higher and there is more 

power in the resolved peaks.  Typical fabrication techniques dictate that the window edge will 

have a transition length of approximately 100 μm (at the company Precision Photonics),  

meaning that it takes 100 μm to transition between having no reflective edge to having the 

designed R reflectivity of the back surface see Figure 4.4.  Gaussian beam propagation is used to 

calculate the radius of the beam at the edge w1 as compared to the radius of the image at the 

focus, w0 
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where 

 

Figure 4.4: VIPA input window detail. 
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To maximize the number of images the beam waist at the window edge needs to be minimized.  

The smaller w1 is the more images that can be packed into the limited size of the VIPA resulting 

in higher efficiency and resolution of the VIPA.  This happens when the thickness of the VIPA, t, 

equals the Rayleigh range of the input beam. 
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Since any loss of light from the first reflection at w1 is propagated to all the VIPA images it is 

important to not clip this first spot.  Clipping of the first spot can be reduced by minimizing w1.  

The smaller w1 is, the smaller the input angle into the VIPA can be without losing light from the 

window edge.  Solving for w0 results in the ideal spot size: 
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Using this value for w0, w1 is calculated to be the expected value for the waist a Rayleigh range 

away from the w0 
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This is left as an expression in terms of VIPA thickness, t, so the resolution of the VIPA can be 

studied as a function of VIPA FSR.  The spot size along with the length of the transition of the 

edge of the window, h, yields the vertical separation of images inside the VIPA: 

 hwx  12  
(4.25) 

 

 

This places the 1/e value of the Gaussian spot w1 at the edge where the window fully transitions 

to being 99.9% reflective.  The length of the VIPA, L, is another parameter that is set by the 
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limitations of the fabrication of the VIPA at Precision Photonics.  The more variance there is in 

how parallel the two reflective surfaces are to one another, the larger the resolved mode shape of 

the VIPA output.  To reduce this variance to λ/10 and keep fabrication costs reasonable, the 

length of the sides is set to 1 cm.  Larger structures can be produced at additional costs and larger 

tolerance (λ/5) in the parallelism between the two reflective surfaces.  From this, the number of 

images, b, produced inside the VIPA is calculated by 
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The VIPA output intensity and resolution are calculated for varying FSR and r.  Using equation 

(4.19) the output intensity of the VIPA is plotted as a function of FSR in Figure 4.5.  The larger 

the FSR, the smaller the thickness of the VIPA which results in a smaller waist (w1) after 

traveling through the VIPA.  This means the VIPA can be placed at a smaller angle and more 

images are created inside the VIPA, and as shown in Figure 4.5 a more intense output is the 

result. 



56 

 

 

 

The increase in output intensity with increasing VIPA FSR must be balanced with the loss in 

resolution.  A plot of equation (4.14) with varying FSR shows decreasing resolution with 

increasing FSR, see Figure 4.6.  Note, resolution is measured in frequency and the larger the 

value the larger the FWHM resolved modes, the worse the resolution.  In order to resolve 

adjacent modes separated by 1 GHz, a resolution of at least 500 MHz is necessary.  Of course 

this assumes that the VIPA is made perfectly to design specifications; even a slight error in the 

parallelism of the two reflective surfaces has an adverse affect on the resolution.  Further, having 

higher resolution allows the modes to be better separated from one another which reduces the 

amount of cross-talk between adjacent modes.  For these reasons the VIPA was designed to have 

a resolution, Δν, of 250 MHz, corresponding to a FSR of 25 GHz as shown by the finite bounce 

calculation in Figure 4.6.  From this the Finesse of the VIPA is F = FSR / Δυ = 100. 

 

 
Figure 4.5: VIPA output intensity as a function of FSR.  Output intensity is normalized to the 

intensity of the VIPA output with a 50 GHz FSR.  Plotted with back reflectivity, r = 0.985 
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This provides more than enough resolution to resolve adjacent modes at 1 GHz with margin for 

fabrication imperfection without suffering too much loss as shown by the output intensity Figure 

4.5.  Other solid VIPAs have been designed at 50 GHz and typically have 6 db of insertion loss, 

meaning for a VIPA at 25 GHz using equation (4.19) there is about half the total intensity as for 

a 50 GHz VIPA.  This additional 3 db of loss for the 25 GHz VIPA means the 25 GHz VIPA has 

an estimated insertion loss of 9 db. 

 
Figure 4.6: VIPA resolution as a function of FSR.  Both finite and infinite bounce calculations 

are shown with varying FSR. 
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 Another parameter to be considered is the reflectivity of the output surface of the VIPA, 

r.  Increasing r increases the output intensity as shown in Figure 4.7.  However increasing r also 

reduces resolution of the output as shown in Figure 4.8.  Therefore a compromise must be made 

between output intensity and resolution.  Since the output intensity grows as the reflectivity r 

approaches 1, r needs to be as large as possible but not so large that the resolution of the VIPA 

gets larger than the necessary 250 MHz.  With the FSR set to 25 GHz, the largest value for r that 

can be chosen to yield the necessary 250 MHz resolution is r = 0.985.  

 

 

 

 

 

 
Figure 4.7: VIPA output intensity as a function of back surface reflectivity, r.  VIPA output 

intensity is normalized to the output intensity when r = 1.  The FSR is set to 25 GHz. 
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 Combining design constraints set by Precision Photonics fabrication techniques along 

with the calculated optimizations creates the overall VIPA design.  The solid fused silica VIPA is 

10 mm wide by 10 mm high.  With an index of refraction for fused silica of 1.453 at 810nm a 

thickness of 4.13 mm is necessary to get a FSR of 25 GHz with an optimal input angle of 1.21°.  

As a result of a fabrication error, the thickness of the VIPA is slightly thicker than the necessary 

4.13 mm necessary to achieve a 25 GHz VIPA.  The measured FSR is 24.931 GHz at 810 nm; 

the additional thickness is calculated to be approximately 11.4 μm using equation (4.5).  The 

transition between the high reflector and window on the input surface is less than 100 μm.  Thus 

the optimal spot size to maximize light coupled into the VIPA w0 is calculated to be 27.1 μm and 

 

 
Figure 4.8: VIPA resolution as a function of back surface reflectivity, r.  The FSR is set to 25 

GHz 
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the waist at the back reflector w1 = 38.3 μm.  56 virtual images are produced inside the VIPA as 

calculated from w1 and the length of the VIPA using equation (4.26).  The reflectivity of the 

output surface was designed to be 98.5% while the input side is over 99.9% reflective.  These 

parameters result in a theoretical resolution of 250 MHz and an estimated 9 db insertion loss. 

 

4.3  Measuring VIPA resolution 

 To validate the design of the VIPA the resolution of the VIPA was tested.  One method to 

measure how well different wavelengths are separated from one another is to image the output of 

the VIPA onto a single mode fiber and use a tunable continuous wave (CW) source [33].  When 

the wavelength is varied, the location of the imaged spot is shifted as a result of the wavelength 

dependence of the VIPA and the geometry of the setup.  By monitoring the optical power 

coupled into the single mode fiber as a function of wavelength, the resolving power of the VIPA 

can be tested. 

 

The layout of the VIPA measurement setup is illustrated in Figure 4.9.  A collimated 5 mm 

diameter beam is focused into the VIPA tilted at 1.21° using a 25 cm focal length cylindrical lens 

(corresponding to an f number of 50 to reduce aberrations).  The output of the VIPA is then 

imaged by a 50 cm focal length lens placed 50 cm from the VIPA and 50 cm before the fiber.  

 

 
Figure 4.9: VIPA resolution measurement setup 
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By using a Toptica DL 100-L external cavity laser diode as a light source one can make small 

changes to the wavelength of the laser diode by adjusting the current through the diode.   The 

wavelength being imaged by the VIPA is monitored using a Burleigh Wavemeter WA-100.   

 

 Figure 4.10 shows the results of monitoring the power coupled into the fiber as a function 

of frequency of the laser.  Due to mode hops in the external cavity laser diode, it is difficult to 

continuously tune wavelength; hence why Figure 4.10 shows clusters of data grouped near 

specific frequencies as well as gaps in measured frequencies.  Although the resulting plot 

represents a convolution of the Gaussian mode accepted into the fiber and the actual resolved 

 
Figure 4.10: VIPA resolution measurement.  Black squares represent data points of measured 

power through detection fiber as a function of frequency.  The red line is a Gaussian fit to the 

data with a FWHM of 393 MHz.  The Gaussian function does not go to zero due to an offset 

in the measured power of approximately 30 nW. 
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VIPA mode, the VIPA mode is quite large in comparison to the core of the SM fiber.  The VIPA 

mode is 88 μm wide in the y axis and 572 μm wide in the x axis due to the asymmetric mode 

shape of the VIPA output.  The fiber core is only 5.6 μm in diameter.  The large mode shape is 

the expected size given the 50 cm focal length lens used to view the Fourier plane of the VIPA.  

This mode shape is by design so the accepted light into the fiber can be approximated as a delta 

function which when convolved with the VIPA mode simply returns the VIPA mode itself.  The 

small core size in comparison to the mode size is also the source of huge loss in the measured 

spot, hence why the measured power is so low in comparison to the source.  The red line in 

Figure 4.10 is a Gaussian fit to the data with a FWHM of 393 MHz with a reasonable R-squared 

value of 0.92.  Obviously, this measured resolution is worse than the ideal calculated resolution 

of 250 MHz.  This discrepancy is likely due to the tolerance in the parallelism of the two 

reflective surfaces of the VIPA (λ/10).  The angular wavelength dependence of the VIPA is 

dependent upon the array of virtual images spaced a regular distance apart from one another with 

a regular time delay.  Any change in the parallelism of the VIPA changes both of these 

parameters and results in a single wavelength being output at several angles or in other words, a 

blurring of the ideal spot width.  An alternate method for measuring the resolution of the VIPA is 

carried out in the following section where the individual comb lines of an 890.4 MHz repetition 

rate laser are imaged onto a charge coupled device (CCD) camera.   

 

4.4  Imaging the 2-D spectral brush at 890 MHz 

 

 The high spectral resolution setup shown in Figure 4.11 uses two spectrally dispersive 

elements to resolve the individual lines of an 890 MHz frequency comb.  The input pulse train is 

focused by a 25 cm focal length cylindrical lens into the window of the VIPA designed in section 
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4.2 .  While a VIPA provides very high spectral resolution, it overlaps comb lines separated by 

integer multiples of the FSR [34]; if individual comb lines are to be resolved, another dispersive 

element is necessary.  A grating is used to separate the repeated modes of the VIPA, where the 

dispersive directions of the grating and VIPA are orthogonal.  The grating must have a resolution 

better than 25 GHz = 0.05 nm at 800 nm in the horizontal direction (x) to resolve the repeated 

modes of the VIPA.  To achieve this resolution for a grating with 1200 lines/mm, at least 12 mm 

of the grating must be illuminated.  This requirement is met by inserting a horizontal beam-

expanding telescope before the grating.  It is important to avoid expanding the beam in the 

vertical direction (y) after the VIPA as expansion before the spherical imaging lens affects the 

separation of comb lines in y. For this reason, cylindrical lenses, separated by the sum of their 

focal lengths (10+100=110 cm), are used to expand the beam by a factor of 10 in the horizontal 

 
Figure 4.11: The high resolution 2-D setup resolves individual comb lines spaced by 890.4 

MHz. The VIPA with a FSR of 25 GHz separates adjacent comb lines in the y direction and 

the grating separates repeated orders of the VIPA along the x direction.  The white arrows 

show adjacent comb lines with increasing frequency. 
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direction only.  Finally, the light from the grating is imaged with a 50 cm focal length spherical 

lens onto a CCD camera.  Figure 4.12 is an image of these individually resolved frequencies.  

Using the fine resolution of the VIPA to separate adjacent comb lines in y and the coarse 

resolution of the grating to separate repeated modes of the VIPA in x, a two-dimensional 

frequency ‘brush’ is created [35, 36, 37]. 

 

4.4.1  Measuring VIPA FSR using the 2-D brush 

 The FSR of the VIPA can be measured very accurately in the 2-D brush setup when 

imaging the spectral brush of a source with a known repetition rate.  Since the frequency spacing 

of a pulsed source is so regular, frep, the spacing between modes can be used as a standard.  The 

regular grid-like pattern in Figure 4.12 is no accident; in fact the repetition rate of the input 

titanium sapphire laser was tuned to be exactly 1/28th of the VIPA FSR in order to generate such 

a pattern.  When the FSR is exactly an integer number of modes (N) times frep, the 2-D setup 

images a regular grid; thus the FSR can be measured, 

 
 

Figure 4.12: Images showing a frequency brush of the resolved discrete frequencies of an 890 

MHz pulse train.  The image on the left shows the entire VIPA FSR and the image on the 

right shows a zoomed-in section of the spectrum. 
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 repNfFSR   (4.27) 

 

 

However, if the FSR is a non-integer times frep the grid becomes skewed.  When the grating 

resolves a repeated order of the VIPA in the horizontal direction (every VIPA FSR), if there is a 

non-integer number of frep in the VIPA FSR there will be a shift in y as well as the shift in x from 

the grating.  This results in a grid with a slope in the horizontal lines as illustrated in Figure 4.13. 

 

Small changes in the repetition rate of the laser have a noticeable effect on this pattern, a change 

in frep of merely 10 kHz is enough to be measureable.  Because the slant of the grid is very 

sensitive to the repetition rate of the laser, the repetition rate of the source laser can be tuned 

while monitoring the slant of the grid; only when the FSR of the VIPA is an integer number of 

frep does the grid become horizontal.  In other words the modes align themselves with the x and y 

axis set by the dispersion directions of the grating and VIPA respectively.  Using equation (4.27) 

the FSR of the VIPA can be calculated to within 10 kHz*N = 280 kHz.  This effect is also 

sensitive enough to observe effects of dispersion on the VIPA FSR as elaborated in section 4.7 . 

 

 
 

Figure 4.13: Effects of having an integer and non-integer number of frep in the VIPA FSR.  

Observe how a non-integer number forms a slanted grid while when the frep is tuned to exactly 

1/N of an integer, a regular grid is formed. 
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4.4.2  2-D brush calibration 

 A tunable continuous wave (CW) laser is used to calibrate the frequency sensitivity, 

measure the resolution and analyze the crosstalk between frequency modes of the brush image.  

First, the frequency sensitivity of the brush image can be calculated by measuring the number of 

pixels between repeated orders of the VIPA in the y axis.  Figure 4.14 shows an image of the 

camera imaging a single CW frequency.  Dividing the known VIPA FSR (measured to be 24.93 

GHz at 810nm in section 4.4.1 ) by the number of pixels between the two peaks (702 pixels) 

yields the average frequency sensitivity (28 pixels / GHz).   

 

 
 

Figure 4.14: Camera image of a CW source.  The vertical space between the two spots 

corresponds to one VIPA FSR.  By dividing the known VIPA FSR by the measured number 

of pixels between the two peaks, an average frequency sensitivity is calculated to be 28 pixels 

/ GHz. 
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Next, the spectral resolution can be measured from the FWHM of the lineshape.  The FWHM in 

Figure 4.15 is 10 pixels, which corresponds to a resolution of 357 MHz.  Finally, by comparing 

two wavelengths separated by the comb spacing, 890 MHz, the crosstalk between adjacent comb 

lines can be estimated.  As seen in Figure 4.15, each line has a tail toward higher frequency (for 

reference, the tail can be seen in the brush in Figure 4.12, the tail of a lower frequency comb line 

almost touches the higher frequency comb line directly above it).  This asymmetric tail, also 

visible in other publications [33], is a result of the asymmetric power dependence of the array of 

VIPA images.  For more details see section 4.5 .  This tail is the main cause of crosstalk between 

modes. 4% of the peak intensity of each comb line appears at the location of the adjacent higher 

frequency line.  In contrast, each mode only images 0.5% of its peak power to the adjacent comb 

line lower in frequency.   
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4.5  VIPA mode shape analysis 

 To explore the non-ideal effects of the VIPA as well as to verify the approximations 

made in the optical design, a simulation was made.  The model (code can be seen in appendix B) 

works with one CW frequency at a time and constructs the VIPA by creating a tilted array of 

Gaussian modes.  This is done by constructing the electric field as a function of z, beam 

propagation direction, and y, plane of the VIPA tilt.  Since the behavior of the VIPA is the same 

in the y axis, this simulation only maps out a 2-D electric field. A single Gaussian mode takes the 

form 

 
 

Figure 4.15: Camera image slices of two CW sources separated by 900 MHz.  The resolution 

of the VIPA is apparent in the width (357 MHz) of each resolved mode.  Also, the amount of 

cross-talk between adjacent modes can be measured.  4% of the peak power is imaged to the 

adjacent mode of higher frequency. 
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where x0 is the location in y and z0 is the location in z of a Gaussian mode with a width of w0 in y.  

Using values for ideal VIPA performance calculated in section 4.2 such as spot size and VIPA 

input angle, the location of each Gaussian mode is placed as the simulation steps forward in z.  

At every step the simulation calculates the diffraction and refraction of the electric field to 

calculate the next slice in z as the beam propagates.  The electric field at the next slice of z from 

diffraction is 

 zjkzeyzEyzzE


 *),(),(  
(4.29) 

 

 

where * stands for the convolution, Δz is the step size in the z direction, and kz is wave vector in 

the z direction given by 

 22

0 xkkk   
(4.30) 

 

 

where wave vectors k0 and ky are given by 
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(4.32) 

 

 

where Y is the total distance simulated and n(y) describes the index of refraction as a function of 

y.  In the simulation the convolution at each step is performed by taking the fast Fourier 

transform (fft) of both E and zjkze
 then multiplying the two together before taking the inverse 

Fourier transform to reconstruct the E of the next slice.  Note the simulation is written in Matlab 

and it is very important that shifts are performed to properly take the convolution of the two 
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signals.  For more details on this, see the simulation source code in appendix B.  Finally, the 

effects of refraction are then taken into account by 

 

 )(2

),(),(

yznj
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
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 . 
(4.33) 

 

 

This refraction is how the imaging lens is simulated.  75 cm after the last image of the VIPA the 

effect of a lens is given by 
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(4.34) 

 

 

where f is the focal length of the lens. Figure 4.16 shows the 2-D electric field as the angled 

array of Gaussian modes interfere with one another.  The tilted array of Gaussian modes is 

imaged by a thin lens at the red line to form spots in the Fourier plane at the blue line.  Note only 

a CW source is used.  This means each spot formed in the Fourier plane is an order of the VIPA.  
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 The edge of the VIPA is simulated by multiplying the electric field at the output of the 

VIPA by a mask that only passes light within the length of the VIPA, 1 cm in the y axis.  Light 

that extends past the finite size of the VIPA is reflected out the top of the VIPA and is lost.  The 

mask in the simulation effectively simulates this effect by eliminating light lost by the edge. 

 
Figure 4.16: VIPA simulation: 810 nm CW light is dispersed by the VIPA and imaged using a 

75 cm focal length spherical lens.  The red line emphasizes the location of the spherical lens 

75 cm after the last VIPA image and 75 cm before the Fourier plane shown by the blue line. 
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 The Fourier plane shown by the blue line in Figure 4.16 shows where the CW input to the 

VIPA forms images.  Each spot is another order of the VIPA.  The expected nonlinear dispersive 

behavior of the VIPA is evident in the change in distances between these VIPA orders.  A similar 

spreading of the modes is evident inside each order when multiple frequencies are plotted.   

 By running the simulation for two different CW wavelengths and plotting a slice of the 

electric field at the Fourier plane (blue line in Figure 4.16), the separation and mode shape of the 

resolved modes is investigated.  Figure 4.17 shows the slice of the modes at the Fourier plane.  

The two CW wavelengths are chosen to have a separation of 890.4 MHz, the same as the 

repetition rate of the laser.   Details of the center VIPA order shown in Figure 4.18 illustrate the 

asymmetric mode shape seen in the experiment. 
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 Observe the array of Gaussian sources in Figure 4.16, sources closer to the top of the 

array are weaker than spots at the bottom.  This is due to the reflectivity of the two surfaces of 

the VIPA.  The reflectivity of the output surface, r, is 98.5% while the input surface reflectivity, 

 
 

Figure 4.17: Full image plane of two frequencies showing how modes separated by 1 GHz are 

dispersed by the VIPA. 
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R, is 99.9%.  As the spots are created inside the VIPA light is lost so the intensity of the images 

gets successively weaker.    The intensity of the n
th

 image is 

 
n

n rRII )(0  
(4.35) 

 

 

where I0 is the intensity of the first image.  This asymmetry in the intensity of the array of images 

that form the VIPA is the source of the asymmetry in the mode shape.  Simulation results show 

that the asymmetry in the mode shape is directly related to the reflectivity chosen for the VIPA.  

Higher reflectivity reduces the asymmetry of the mode shape as all Gaussian spots become more 

identical, while reducing the reflectivity exaggerates the asymmetry of the resolved spots from 

the VIPA. 
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4.6  Non-linear output analysis 

Careful inspection of the entire VIPA FSR brush image in Figure 4.12 reveals that modes 

near the bottom of the image are farther apart from one another in comparison to modes near the 

top of the image. Although these modes are equally spaced in frequency, the paraxial dispersion 

 
Figure 4.18: Close up of how well resolved the two frequencies are separated from one 

another in the first order of the VIPA. 
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equation for the VIPA output angle has a nonlinear dependence on frequency [32].  To verify 

that the spacing between modes is as expected, the brush data is fit to the expected dispersion 

relation equation (4.14).  This fit is done by first taking a vertical slice of the brush to measure 

the separation between modes dispersed by the VIPA as shown in Figure 4.19.   

 

The physical peak position of each mode is found by finding the maximum value of each 

peak.  Then the location of each peak is measured by multiplying the size of each pixel, 4.65 μm, 

by the number of pixels it is away from a starting peak.  This position is then converted into the 

angle that the mode left the VIPA by using the thin lens approximation for a lens and standard 

ray tracing formalism.  Since this analysis only considers the vertical effects of the VIPA 

 
 

Figure 4.19: Vertical slice of the camera image following peaks of 890.4 MHz spectral brush.  

Observe how these peaks of regular frequency spacing (frep) are not equally spaced in the y-

axis of the image.  This expected effect is described by the non-linear dispersive behavior of 

the VIPA derived from paraxial wave theory [32,33]. 
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dispersion, there is no need to take the horizontal beam expanding cylindrical lenses into 

account.  The array of peak angles are given corresponding wavelengths since the spacing of 

each mode is known to be frep = 890.4 MHz.  The center frequency is set to 808 nm and each 

mode is separated by 890.4 MHz = 0.0019 nm (at 808 nm).  Figure 4.19 shows a plot of the 

measured wavelength versus angle as well as a fit to the paraxial VIPA dispersion equation 

(4.14).  The fit yields an angle of incidence of 1.0102° which is consistent with the measured 

angle of incidence of 1.01°. 

 

 
Figure 4.20: VIPA output wavelength vs. angle showing the expected non-linear behavior as 

described by the paraxial wave theory of VIPA dispersion [32,33]. 
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4.7  Solid VIPA dispersion effects 

 The dispersion of fused silica inside the solid VIPA results in a wavelength dependence 

of the FSR of the VIPA.  While this effect is small over narrow regions of the spectrum (what is 

captured by the camera), when imaging the full spectrum (40 nm FWHM as seen in Figure 2.5), 

this effect is significant and cannot be ignored.  The camera in the 2-D brush setup images 

approximately 100 VIPA orders or 2500 GHz which corresponds to merely 5.7 nm.  While ideal 

VIPA-based pulse shapers can be used to correct for chromatic dispersion [38], the effect 

described in this section explains how nonideal effects of a solid VIPA limit the VIPA’s ability 

to perform pulse shaping.  In other words, the effect of a wavelength dependent VIPA FSR is 

very different from dispersion introduced by the pulse shaper.  This analysis begins with the 

wavelength dependence of fused silica.  The index of refraction of fused silica can be described 

by the Sellmeir equation [39] 
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(4.36) 

 

 

where n is the index of refraction and λ is the wavelength in microns visualized in Figure 4.21. 
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By plugging in the wavelength dependent index of refraction into equation (4.5) the wavelength 

dependent FSR is assembled to be 
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Figure 4.21: Index of refraction of fused silica as a function of wavelength 
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 Small changes in the VIPA FSR, shown in Figure 4.22, result in a shift in the VIPA output.  The 

details of these calculations can be seen in appendix C. 

 

It is important to determine how much change in the VIPA FSR is acceptable.  In the 2-D 

frequency brush setup, the individual modes are resolved in 2 axes so the change in FSR is 

evident by a bending of the 2-D grid of modes.  Instead of regularly spaced modes in the 

 

Figure 4.22: VIPA FSR as a function of wavelength 
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horizontal and vertical axes, the spacing of vertical modes changes as one scans through the 

spectrum in the horizontal direction.  This effect is very small over the 5.7 nm bandwidth 

captured by the camera imaged in Figure 4.12, so a cartoon (Figure 4.23) better emphasizes this 

effect: 

 

Recall in previous descriptions of the 2-D brush where the FSR of the VIPA is 

considered to be constant, the FSR can be calculated from the repetition rate, frep, by equation 

(4.27).  When the number of modes, N, is an integer and the FSR of the VIPA is unchanging, 

repeating VIPA orders are separated in only the x dimension creating the square grid seen in 

Figure 4.13.  This grid becomes skewed when the FSR of the VIPA depends on wavelength as 

illustrated in Figure 4.23.  The difference between where a perfectly horizontally resolved spot 

would be and where the actual spot is can be thought of as the offset, o, 

 
Figure 4.23: Change in mode placement in each VIPA order, Δf(λ), is a measure in frequency 

of the skew of the grid. 
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If the offset is equal to 0.5, the horizontal mode (repeated VIPA order) that should be just to the 

right of the original mode is instead half of the distance to the next vertical mode.  This is close 

to the exaggerated picture in Figure 4.23.  If the difference were off by an integer the grid would 

become square again only with fewer repetition rates in every VIPA FSR.  The separation 

between adjacent modes is the repetition rate of the input laser.  Using this calibration, o can be 

used to find the skew value Δf(λ) 
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Δf(λ) is cumulative, every time the VIPA repeats it is shifted by Δf(λ).  This means if one 

compares the location of the second imaged mode (separated horizontally), it will be offset from 

the first imaged mode by 2* Δf(λ).  So to calculate where a spot is imaged, the sum Δf(λ) of each 

VIPA FSR (repeated VIPA order) must be totaled.  In a 2-D pulse shaper where one uses a 2-D 

spatial light modulator (SLM) with a regular square grid of pixels to control the spectral mask it 

is important to know when this skew results in spots being imaged to improper pixels in the 

regularly spaced grid.  When the total skew or sum of Δf, visualized in Figure 4.24, is equal to 

the repetition rate of the laser, the location of the VIPA mode will vertically shifted by the 

repetition rate of the laser.  Since this is the original location of the mode that should be just 

above it one uses a regularly spaced grid, modes will be improperly shaped.  The mask that 

should be applied to one mode will be applied to its adjacent mode instead.  Obviously, this 

would have less than desired effects on the resulting shaped output.  To control this effect the 

spectral bandwidth of the input can be reduced.   



83 

 

 

 

 A reasonable limit to how much total skew is acceptable is when an adjacent mode is 

imaged a FWHM away from the next location.  This is the point where one mode crosses into the 

expected location of its adjacent mode.  This limit is chosen because the rest of the spectrum will 

still be imaged properly and at this point only a few modes at the wings of the spectrum begin to 

improperly masked.  This occurs when the total skew = frep-FWHM, using numbers from this 

 
Figure 4.24: Calculated total skew for a 4.14 mm thick fused silica VIPA with 1.01° input 

angle as a function of wavelength 
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experiment  890 - 357 MHz = 533 MHz.  To calculate the acceptable bandwidth, find the 

wavelength that results in this skew using Figure 4.24.  533 MHz corresponds to 824 nm which 

is 14 nm away from the center wavelength of 810 nm.  Since this skew effect is quadratic and 

symmetric, this is only half the acceptable bandwidth.  So the total FWHM of the input spectrum 

is calculated to be 28 nm. 

In the VIPA only pulse shaper where repeating orders of the VIPA overlap one another 

described in Chapter 5, it is essential that the change in VIPA FSR does not change the position 

of output modes by enough to cause adjacent mode groups to be mixed together.  This is 

analogous to the 2-D pulse shaper described previously when only a regularly spaced grid can be 

used.  Once adjacent mode groups are mixed together, the line-by-line pulse shaping condition 

will not be met.  So to still achieve line-by-line pulse shaping one can limit the bandwidth of the 

input pulse, which reduces how much the FSR changes and results in better separation of the 

mode groups.  The more cross-talk there is between adjacent modes the less control there is on 

how arbitrary of a waveform can be formed.  When this location is off as a result of the total 

skew, see Figure 4.24, by frep FWHM, too much of adjacent modes will be mixed to the mode 

above.  Again, this results in an acceptable input bandwidth of 28 nm.  While this is a reasonable 

limit to the maximum optical bandwidth for this solid fused silica VIPA, at this limit in the 

VIPA-only pulse shaper there is no dead space between mode groups in the Fourier plane of the 

VIPA.  This makes it difficult to diagnose pulse shaping issues like how well the mask aligns 

with the periodicity of the groups of modes.  For this reason only 10 nm FWHM of bandwidth is 

used in the following pulse shaping experiment.  This provides separation of the groups of modes 

necessary for diagnostic purposes.  This reduced bandwidth also effectively eliminates (mode 
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groups are well separated from one another) any nonideal effects from the dispersion of fused 

silica inside the VIPA. 
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Chapter 5 
 

5 VIPA-only-based pulse shaping 

5.1  VIPA-only pulse shaping advantages 

 Static OAWG requires that each frequency that makes up an input pulse train be 

independently controlled from one another.  However, many useful waveforms can be produced 

using masks with a repeating spectral pattern.  For example, if one would like to produce a pulse 

train at twice the repetition rate of the original pulse train, every other spectral component of the 

input pulse train should be masked out.  To achieve this output waveform, line-by-line pulse 

shaping is necessary to separate adjacent lines from one another, only the very simple pattern is 

repeated over the entire spectrum.  

 In the case where the desired output waveform is created from a repeating spectral 

pattern, it is not necessary to separately control each of the thousands of individual comb lines 

that make up spectrum, rather groups of comb lines can be controlled together.  Recall from 

chapter 4 that another spectrally dispersive device such as a grating is necessary to separate 

repeated orders of the VIPA.  A frequency mode that is separated by exactly one VIPA FSR 

from another will be emitted at the same angle from the VIPA.  This repetitive nature of the 

VIPA is useful in how it naturally creates groups of modes illustrated in Figure 5.1.   
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This means using a VIPA-only pulse shaper, any mask that repeats every VIPA FSR over the 

entire spectrum of the input laser can be applied.  Note, that line-by-line pulse shaping is still 

being achieved since adjacent comb lines are controlled independently from the next.  The 

modes in each group are separated from one another by the VIPA FSR.  Figure 5.2 illustrates 

how adjacent comb lines are in different control groups, meaning they can be modulated 

independently from each other.  This is not the case for non line-by-line pulse shapers. 

 

 
 

Figure 5.2: Line-by-line pulse shaping in groups is different from non line-by-line pulse 

shaping.  Numbers above comb lines show control groups.  Observe how adjacent frequency 

modes are controlled independently from one another in the line-by-line pulse shaping in 

groups, while adjacent modes are in the same control group for non line-by-line pulse 

shaping. 

 
 

Figure 5.1: 2-D spectral brush being collapsed so that modes spaced by the VIPA FSR 

overlap one another.  Using a spectral mask with this setup creates an output with a repeating 

spectral pattern every VIPA FSR. 
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In order for the groups of modes to be well separated from adjacent groups of modes, it is 

essential that the condition described by equation (4.27) is met.  This requirement is met by 

tuning the repetition rate of the laser to be 1/28th that of the VIPA FSR.  This integer number of 

repetition rates that add up to the FSR of the VIPA is important to so that a square grid pattern 

shown in Figure 5.1 is produced when using two spectrally dispersive elements to create the 2-D 

spectral brush.  That way when only the VIPA is used, modes that are a VIPA FSR away from 

one another will overlap in the same location.  If the VIPA FSR is not equal to an integer number 

of repetition rates the skewed 2-D spectral grid shown in Figure 4.13 will collapse into a blob 

and adjacent groups of modes will not be separated from one another.  For this reason, the 

repetition rate of the laser is tuned to 1/N of the solid VIPA FSR, where N is an integer. 

 

5.2  VIPA-only pulse shaping setup 

 The VIPA-only pulse shaping setup is similar to the 2-D spectral brush setup described in 

section 4.4 only without the horizontal beam expander or the grating.  As explained in the 

previous section, removing the grating overlaps repeating orders of the VIPA.  The groups of 

modes can be modulated and allow for line-by-line pulse shaping with a spectral mask that 

repeats every VIPA FSR over the spectrum of the input pulse train. 

   The setup begins with the 890.4 MHz repetition rate Ti:sapph laser described in section 

2.4 .  The optical bandwidth of the input to the pulse shaper is reduced 10 nm to eliminate effects 

from dispersion of the VIPA as described in section 4.7  by passing the output of this laser 

through an interference filter centered at 808 nm.  This reduction in bandwidth is important so 

that adjacent groups of modes do not mix together due to the dispersion inside the solid fused 

silica VIPA.   The details of this phenomenon as well as the calculations of acceptable bandwidth 

are expounded upon in section 4.7 .  This spectrally filtered laser beam is passed through a 
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spatial mode filter to pass only a TEM00 spatial profile of the beam (Figure 5.3).  Since the 

VIPA-only pulse shaper operates in reflection geometry, the output must be separated from the 

input.  To accomplish this separation, a polarizing beam splitter (PBS) is used in conjunction 

with a quarter-wave plate with its fast axis rotated 45° from the polarization of light passed by 

the PBS as illustrated in Figure 5.3.  Together these elements separate the retro-reflected output 

of the pulse shaper from its input. 

 

The rest of the pulse shaper setup is very similar to the 2-D brush setup where a 25 cm focal 

length cylindrical lens is used to create a line focus into the VIPA and a 50 cm focal length 

spherical lens images the output of the VIPA onto a mirror where a mask may be placed to 

augment the retro-reflected output as pictured in Figure 5.4.   

  

 

 
Figure 5.3: Diagram of polarization routing inside the VIPA-only pulse shaper output used to 

separate the retro-reflected output from the input.  Polarization is noted in green, dimensions 

and devices in black, and the beam path in red.  The 890 MHz Ti:sapph laser output is 

spectrally filtered down to 10 nm FWHM centered at 808nm then a spatial mode filter (SMF) 

provides a clean mode shape to the polarizing beam splitter (PBS) that reflects the s-polarized 

pulse shaper output generated from the 45° tilted quarter-wave plate (QWP). 
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Several different retro-reflecting mirrors were used in this setup to observe the effects of static 

line-by-line pulse shaping using the VIPA-only pulse shaper.  In addition to a fully reflecting 

mirror, mirror masks were created to selectively retro-reflect frequency mode groups.  These 

selective mirror masks were created by depositing reflective chrome on an anti-reflection coated 

window with different patterns to create a desired output.  More details on these mirror masks 

and the results can be seen in section 5.7 . 

 

5.3  Solid VIPA temperature sensitivity 

 As explained in section 4.7 , a small change in the index of refraction or thickness of the 

VIPA results in a change in its FSR.  Temperature changes affect both of these parameters and 

 
Figure 5.4: The 1-D VIPA-only-based pulse shaper shows how by removing the grating and 

horizontal beam expander from the 2-D brush setup, Figure 4.11, adjacent frequency modes 

are resolved into separate groups.  These groups of comb lines can then be modified to 

perform line-by-line pulse shaping with spectral masks that repeat every VIPA FSR. 
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therefore change the FSR of the VIPA.  Small changes in VIPA FSR result in a vertical shift in 

the VIPA output location of images a first order effect.  The skew effect described in section 4.7 

is a result of changing FSR as a function of wavelength a second order effect. 

  

The typical change in temperature in the lab is only about 0.1°C every 8 minutes due to 

air conditioning cycle (Figure 5.5).  A small and slow drift in the location of imaged comb lines 

in the 2-D brush can be corrected for by taking images quickly.  However this drift is a serious 

problem when building a pulse shaper that depends on the location of these images.  In this 

situation, the efficiency of the pulse shaper will drift over time as the location of VIPA modes 

drift into and out of alignment.  This effect was observed in the lab by measuring the power 

 

Figure 5.5: Typical air temperature fluctuations in the lab. 
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coupled into a fixed fiber.  Drift in the location of the output modes results in a dip in coupling 

efficiency as measured in Figure 5.6. 

 

The coefficient of thermal expansion for fused silica, α=5.5×10
−7

/°C [40], can be used to 

calculate the thickness of the VIPA as a function of temperature 

 0 0 0( ) ( )t T t t T T    
(5.1) 

 

 

Where T is the temperature of the VIPA, and t0 is the thickness of the VIPA at a temperature T0.  

The index of refraction of fused silica also changes as a function of temperature 

 0 0 0( ) ( )n T n n T T    
(5.2) 

 

 

 
Figure 5.6: Non-insulated (green) and insulated (blue) VIPA output power coupled into 

stationary SM fiber as a function of time demonstrating changes in VIPA FSR from 

temperature fluctuations in the lab.  The repetition rate of the input laser is stabilized to 890.4 

MHz. 
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Where n0 is the index of refraction at T0 and the thermal coefficient of the index of refraction 

β=1.26×10
−5

/°C at 800nm [41].  Combining equations (5.1), (5.2) and (4.5) yields the 

temperature dependent VIPA FSR 

 
  0 0 0 0 0 0

( )
2 ( ) ( )cos( ) 2 ( ) ( ) cos( )i i

c c
FSR T

n T t T n n T T t t T T   
 

   
 (5.3) 

 

 

The change in FSR is dominated by the change in index of refraction.  The FSR after a 

temperature increase of 0.1° can now be calculated to be 24.93116 GHz using values from the 

experiment: t0 = 4.14×10
−3

 m, T0=23.3°C, T=23.4°C and θi = 1.01°.  Since this value is so close 

to the FSR at T0, FSR0= 24.9312 GHz, it makes more sense to look at the change in FSR, ΔFSR 

= 32.784 kHz.  To investigate how this change affects the placement of modes in the VIPA 

output the change in FSR is converted to change in repetition rate of the laser 

 
N

FSR
frep


  

(5.4) 

 

 

where the number of modes in a VIPA FSR, N = 28, which results in Δfrep = 1.17 kHz.  Although 

the actual repetition rate of the laser is the same, this shows how the change in FSR affects the 

location of the modes.  The change in frequency and thereby location of the modes can be 

calculated from Δfrep.  This effective change in frep is converted into change in optical frequency, 

Δυ, by the relation 

 
rep

rep

f

f
   (5.5) 

 

 

where the optical frequency υ = c/λ = 370.37 THz and the repetition rate of the laser frep=890.4 

MHz.  υ / frep is the number of repetition rates in the optical frequency so this yields the 

multiplication factor used in calculating Δυ = 487 MHz.  Since each mode is separated by 890.4 
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MHz when the temperature changes by 0.1°C, the output is shifted by approximately half a 

period. 

To relate this to the power measurements made in Figure 5.6 it is important to consider 

how much of the resolved Gaussian modes is coupled into the fiber as the mode is shifted.  The 

width, w, of the resolved modes is calculated from the FWHM by the relation 

 
35482.2)2ln(22

FWHMFWHM
w   (5.6) 

 

 

Using the measured FWHM = 357 MHz from the 2-D brush setup, the width w = 151.6 MHz.   

The power coupled into the fiber from a single mode can be calculated by integrating the 

Gaussian equation  
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where the c is the acceptance frequency bounds of the integral are set by the acceptance angle of 

the fiber, x is a measure of frequency as it is spread out in space (image of the VIPA) hence why 

x is used.  The lens used to couple into the single mode fiber is one of the lenses in a microlens 

array used to couple adjacent groups of modes into separate fiber channels as described in detail 

later in section 7.1 .  When imaging frequencies that are too far away from the optical axis of the 

microlens array the numerical aperture (NA) is too large for the fiber and the light is not coupled 

into the fiber.  The numerical aperture is calculated by 

 )sin(nNA   
(5.8) 

 

 

Where n is the index of refraction of the medium being focused through and θ is the angle of the 

focus with respect to the optical axis.  The acceptable NA of the SM fiber being used is 0.11 and 

this setup focuses through air, n = 1, so the focus angle is calculated to be 6.31°.  Since the 
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microlens array is placed a distance, d = 826 μm from the fiber, the radius of accepted light, r, is 

calculated to be  

 dr )tan(  
(5.9) 

 

 

This spatial radius must be converted into an acceptable frequency difference.  This is done by 

noting that each lenslet is spaced by 250 μm and the spacing of the modes is frep = 890.4 MHz 

this yields a frequency sensitivity of 3.56 MHz / μm. By multiplying the acceptable radius by the 

frequency sensitivity the acceptance frequency bound, c, is calculated to be 325.5 MHz. 

The power from adjacent modes should also be considered.  For the centered case this 

becomes 
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The contribution from adjacent modes in the centered case is very small since the modes are well 

separated from one another.  What is more interesting is when this pattern of Gaussian modes is 

shifted where the mixing of adjacent modes is more substantial and must be taken into account 
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where Δυ is the shift in Guassian modes calculated to be 487 MHz due to temperature fluctuation 

of the VIPA.  By taking the ratio of the shifted Gaussian mode coupled into fiber over the 

centered Gaussian mode, the loss in coupling efficiency can be calculated. 
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Using the values w = 151.6  MHz, frep = 890.4 MHz, and Δυ = 487 MHz the loss in coupling 

efficiency is calculated to be 0.461.  In Figure 5.6 the coupled power drops by 0.10 of the 

original signal in approximately 8 minutes.  This drop in power is less than the calculated drop in 

power from a temperature fluctuation of 0.1°C.  This is likely due to the thermal mass of the 

VIPA keeping the internal temperature of the VIPA more stable than the air temperature in the 

lab.  

To mitigate the effects of a changing VIPA FSR a box was built to thermally insulate the 

VIPA from lab temperature fluctuations.  The results of this passive temperature stabilization are 

shown in by the blue line in Figure 5.6.  Clearly, the power fluctuation over 8 min lab thermal 

cycle is reduced to only 5% of peak power as compared to 10% from the non-insulated VIPA.  It 

is estimated from these results that the VIPA now only fluctuates by .01°C. 

 

5.4  Detection: cross-correlation setup 

 To get the sensitivity and high temporal resolution necessary to resolve the output of the 

VIPA-only line-by-line pulse shaper, a cross-correlator was built.  Cross-correlation is a process 

of signal detection that uses a short pulse as a reference to sample a signal at different times.  By 

using a translation stage to change the delay of the reference pulse, different times of the signal 

can be measured, see Figure 5.7.   
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 In this experiment, the signal being measured is the output of the VIPA-only pulse shaper 

and the reference is simply the original pulse train from the 890 MHz repetition rate Ti:sapphire 

laser.  Using a 50/50 beam splitter half of the Ti:sapphire laser output is used as a reference and 

the other half is used as input for the VIPA-only pulse shaper.  A long translation stage of over 

66 cm is used in the experiment to allow the cross-correlator to scan through more than just one 

period of the output pulse train.  Since pulses are spaced by 33.68 cm for a 890 MHz pulse train, 

over 4 pulse periods can be scanned through (change in path length = 2X translation stage 

distance).  Note, that in order to only have only one reference pulse over this time window it 

would be necessary to pulse pick only one out of every four pulses in the reference arm.  This 

was not done since in the static case the output pulse train simply repeats every period.  A 

focusing lens of 10 cm is used to focus the two beams into 5mm thick β-BaB2O4 (BBO) crystal 

and is then detected using a photomultiplier tube (PMT) to maximize sensitivity. 

 Cross-correlation relies on creating a signal only when both signal and reference pulses 

are present.  Although each pulse train individually creates a second harmonic signal that 

propagates with the beams, only when signal and reference pulses overlap in time is another 

signal created between the two as illustrated in Figure 5.7.  Commonly, a BBO crystal works 

 
 

Figure 5.7: Cross-correlation diagram.  The SHG signal is generated only when the signal and 

a short pulse reference is present.  By scanning a translation stage in the reference path, the 

time response of the signal can be measured with high temporal resolution. 
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well for this due to its large non-linear coefficient and convenient indexes of refraction.  The 

BBO crystal generates a detection signal at twice the frequency of the signal and the reference 

pulse, but only when the pulses interact with one another inside the crystal (arrive at the same 

time and are spatially overlapped).  BBO makes such an excellent choice for a doubling crystal 

because the extraordinary index of refraction at 800 nm can be made equal to the ordinary index 

of refraction at 400 nm (doubled frequency).  This means as the reference and signal pulses 

propagate inside the crystal they continually add to the second harmonic generation (SHG) 

detection signal.  This type I phase matched condition [42] 

 )cos(2 
oeff nn   

(5.13) 

 

 

where neff is the effective extraordinary index of refraction and no is the ordinary index of 

refraction, and θ is the angle of the incident beams from the optical axis as illustrated in Figure 

11.1 in appendix D.  The effective index of refraction as a function of θ is calculated 
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where ne is the extraordinary index of refraction on the optical axis.  To visualize how the index 

of refraction changes as a function of angle see Figure 5.8a. 
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 The BBO crystal used in the experiment was cut so that its optical axis is 26.6° from the 

normal so that it achieves this phase matching condition for 880 nm light at normal incidence.  

For this experiment we need to double 810 nm light.  Using equation (11.2) from appendix D an 

angle of 28.7° from the optical axis will meet the phase matching condition at 810 nm.  This 

angle is also made clear by the k-space diagram in Figure 5.8b.  So that means the crystal must 

be tilted 2.1° from normal incidence to adjust the optical axis to the angle necessary for colinear 

type I phase matching.  Since the two beams inside the BBO crystal are not collinear, rather 

offset from the optical axis by 0.1 rad, special care must be taken to calculate the interaction 

length of the two beams inside the crystal.  The phase matching condition is still very close to the 

collinear case since the angle is so small at .1 rad so the optimum tilt of the BBO crystal is still 

 
Figure 5.8: Ordinary and Extraordinary index of refraction as a function of angle from the 

optical axis (a).  k-space diagram of ordinary index of refraction at 800 nm (ω1) and 

extraordinary index of refraction at 400 nm (ω2), showing necessary angle from optical axis to 

achieve collinear type I phase matching (b).  Images from [42] 
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2.1°.  For more details on interaction length of pulses inside the BBO crystal and its effect on 

bandwidth see appendix D.   

 When detecting such a small signal as is the output of the pulse shaper, it is essential that 

the SHG signal be isolated from any other signals.  This is achieved in three different ways.  The 

signal is isolated spatially due to the geometry of the cross correlator the cross-correlation SHG 

signal propagates directly to the right, not the reference and signal beams as seen in Figure 5.7.  

After the BBO crystal, an iris is used to block the off axis signal and reference beams and only 

pass the SHG signal of interest.  The signal is isolated spectrally through the use of Schott glass 

filter placed in front of the detector which absorbs light with a wavelength larger than 500 nm, 

but passes the SHG light around 400 nm.  Finally, through the use of a lock-in amplifier, further 

noise can be rejected by only measuring the response of the PMT at a specific frequency.  The 

signal beam is modulated using a beam chopper.  By using the modulation rate of the signal as a 

reference for the lock-in amplifier, only signals that correlate to that frequency and phase are 

measured.  This isolation further increases the PMT's sensitivity and allows very weak signals 

(10 μW) to be detected.  Since the reference and signal pulses are so narrow in time, I can 

achieve very high temporal resolution.   
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The pulses measured in Figure 5.9 show the fine details of the output of the VIPA-only pulse 

shaper.  The high temporal resolution of the cross-correlator, the result of a convolution of the 

reference pulse and the signal pulse gives a cross correlation FWHM of 600 fs as shown in 

Figure 5.10. 

 
Figure 5.9: Typical cross correlation signal.  Observe the high temporal resolution shows the 

detail of pulse shaper output 
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5.5  Optimization of pulse shaper dispersion 

 Inside every Fourier pulse shaper there must be some spectrally dispersive element that 

separates different colors of the spectrum to enable some form of masking to take place which 

controls the shape of the beam.  Simply by having the spectral components of a pulse train 

separated from one another allows for the possibility of introduced dispersion.  Any difference in 

the path length between the separated colors inside the pulse shaper results in a time delay 

between different colors, dispersion.  This idea is analogous to the use of a prism pair used to 

introduce anomalous dispersion by first separating out the spectrum and by geometry forcing red 

light to take a longer path than blue light before reflecting back through the prism pair to 

 
Figure 5.10: Cross-correlation zoomed in view showing high temporal resolution.  The width 

of the narrow pulses shown in Figure 5.9 is shown here to have a FWHM of 600 fs. 
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reconstruct the pulse train.  Similarly, pulse shapers can be used to correct for dispersion [43].  A 

line-by-line pulse shaper allows for control of the delay of each individual frequency that makes 

up the pulse train, allowing for programmable dispersion [44]. 

 In this experiment, there is not any significant source of dispersion that the pulse shaper 

needs to correct.  Rather it is desired that the pulse shaper not introduce dispersion on the pulse 

train which would have the effect of broadening the width of the narrow pulses.  So the goal is to 

reduce any dispersion introduced by the pulse shaper as much as possible.  To achieve this, the 

geometric details inside the VIPA-only pulse shaper, illustrated in Figure 5.11, must be carefully 

controlled and optimized to prevent different groups of modes from taking different length paths 

inside the pulse shaper [45]. 

Inside a VIPA-only pulse shaper the zero dispersion condition is [45] 

 
 

Figure 5.11: VIPA-only pulse shaper dispersion management parameters.  Red lines show 

light focused into the VIPA-only pulse shaper and black lines show dimensions and angles of 

interest.  The input angle of the VIPA, θi, focal length of the imaging lens, F, angle of the 

retro reflecting mirror, θm, the distance the focusing lens is closer than F to the VIPA, d, and 

the height of the beam after the VIPA, L all need to be carefully controlled to manage 

dispersion from the VIPA-only pulse shaper. 
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where the input angle of the VIPA is θi, the focal length of the imaging lens is F, angle of the 

retro reflecting mirror is θm, the distance the imaging lens is closer than F to the VIPA is d, and 

the height of the beam after the VIPA is L.  The height of the beam after the VIPA depends on 

the length of the VIPA as well as the location of the input window and the input angle of the 

VIPA.  In the VIPA-only pulse shaper, this height is measured to be 0.7 cm.  The focal length of 

the imaging lens is chosen to be 50 cm.  The input angle of the VIPA is set to 1.2 to get 

maximum resolution and the retro reflecting mirror angle is set to 0.1 degrees to maximize the 

output power of the VIPA.  d can be adjusted to minimize the dispersion inside the pulse shaper 

while not having an adverse affect on the pulse shaper resolution or efficiency.  Using the 

measured values from the experiment, the optimum position d is calculated to be 7.5 cm.  

Experimentally, the smallest dispersion was observed when d =  7 cm which agrees well with the 

calculated value. 

 

5.6  Experimental simulation 

 Under ideal conditions there is no difference between the 1-D VIPA-based pulse shaper 

and one that separately resolves the individual comb lines from one another and uses a mask that 

repeats every VIPA FSR. In either case, dispersion inside the pulse shaper causes oscillations in 

the output spectrum with a period equal to the VIPA FSR. Although essentially dispersion free 

operation can be achieved [46], our results suggest some dispersion remained in the current 

experiments. A simulation illustrates the spectral and temporal effects that dispersion has on the 

pulse shaper output. 
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 The input to the simulation is an optical frequency comb with a Gaussian envelope. The 

blue comb in Figure 5.12c shows a 50 GHz section of this input spectrum; since the width of the 

Gaussian envelope is very broad (1.2 THz) compared to the spacing between comb lines (890 

MHz), the comb lines appear to have the same intensity.  A figure that captures the full spectrum 

would show the overall Gaussian envelope, but comb lines would not be resolved.  In the 1-D 

VIPA-based pulse shaper, every 25 GHz section is treated the same. Thus only 50 GHz of the 

full spectrum is shown for each spectrum in Figure 5.12. 

Taking the Fourier transform of this simulated optical comb with constant phase, blue comb 

and green line illustrated in Figure 5.12c, yields the ideal time domain pulse train shown in 

Figure 5.12a.  As expected, this ideal pulse train is identical to the input pulse train.  To simulate 

how dispersion inside the pulse shaper affects the output pulse train, the input optical comb 

spectrum is multiplied by a phase mask that repeats every 28 spectral lines, or 25 GHz, as shown 

by the black curve in Figure 5.12c.  The product is then Fourier transformed into the time 

domain (Figure 5.12b).  The effects of this phase mask that repeats every VIPA FSR is consistent 

with previous work on 1-D VIPA-based pulse shapers where dispersion is present [45].  Due to 

the geometry of the pulse shaper, different groups of comb lines separated by the VIPA FSR take 

different paths.  This results in a phase shift in the spectrum that repeats every VIPA FSR.  The 

periodic nature of this modulation results in a temporal output that consists of bursts of pulses, as 

shown in Figure 5.12b.  The pulses in each burst are separated by 40 ps, which is the inverse of 

the VIPA FSR.  The peaks of the pulses map out an envelope that corresponds to what the output 

would be if the spectral width were restricted to one VIPA FSR. 
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 Figure 5.12d and Figure 5.12f show the ideal temporal and spectral effects of a mask that 

blocks every other comb line.  As expected, the separation in frequency doubles, which halves 

the time between pulses in time.  Likewise, an ideal mask that blocks 3 out of every 4 comb lines 

quadruples the separation in frequency and quarters the separation of pulses in time, Figure 5.12i 

and Figure 5.12g respectively.  The time domain response of the output when dispersion is 

present for the alternating comb mask, Figure 5.12e, is realized by taking the Fourier transform 

of the spectrum with periodic phase, blue comb and black curve shown in Figure 5.12f.  Each 

output pulse becomes a burst of narrow pulses under a Gaussian envelope similar to what was 

seen previously with dispersion in the no mask case.  Since the mask doubles the comb spacing, 

 
 

Figure 5.12: Simulation of the temporal (first two columns) and spectral (last column) output 

of the 1-D VIPA-based pulse shaper under ideal and nonideal conditions for several masks.  

No mask (a-c), alternating comb mask (d-f), and a mask that blocks 3 out of every 4  comb 

lines (g-i) are shown.  Time zero is chosen to be the time half-way between two pulses of the 

original pulse train.  Under ideal conditions there is no phase modulation of the spectrum (flat 

phase illustrated in green) and when dispersion is present inside the pulse shaper there is 

periodic phase in the spectrum (illustrated in black). 
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we see half the time between pulse bursts.  The time between the narrow pulses that comprise the 

pulse burst is still inverse the VIPA FSR, 40 ps.  Finally, the Fourier transform of Figure 5.12i 

with the periodic phase represented by the black curve is taken to produce the output pulse train 

for the mask that blocks 3 out of every 4 comb lines with dispersion, Figure 5.12h.  Again we see 

the characteristic broadening of the pulses due to dispersion. 

 

 

5.7  Static line-by-line pulse shaping 

 Figure 5.13 shows the intensity cross-correlations for the 1-D VIPA-based pulse shaper 

described in Figure 5.4.  A beam splitter is used to send 50% of the input train of 217 fs pulses 

(reference) to a delay stage which is then focused into a 5 mm thick BBO crystal along with the 

output of the pulse shaper to generate a second harmonic cross-correlation signal only when two 

pulses are present.  As described in detail in appendix D, the geometry of the cross-correlator, 

the length of the overlap region inside the large BBO crystal is only 0.164 mm, corresponding to 

a phase matching bandwidth of 262 nm, more than enough to capture the full 10 nm FWHM 

spectrum of the pulse shaper output.  By scanning the delay stage of the reference pulse, different 

time positions can be sampled.  The cross-correlation data is then normalized by dividing the 

data by the peak intensity of the unmasked output. 
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The output pulse train with no mask, Figure 5.13a, is not simply a reproduction of the input 

pulse train.  As explained above by the simulation, the broadening of the pulse can be attributed 

to dispersion inside the pulse shaper.  Similar to the simulation results, there is a burst of 600 fs 

pulses separated by 40 ps, the inverse of the VIPA FSR, under a Gaussian envelope.  The smaller 

sidebands on each of these narrow pulses are the result of reflections in the reference beam.  

While dispersion inside the pulse shaper can be managed by adjusting the position of the retro-

reflecting mask and the imaging lens [45], it is difficult to remove completely. 

Figure 5.13b illustrates the effect of a mask that blocks alternating comb lines in the plane of 

the mirror.  The retro-reflecting mirror mask was created using photolithography to deposit an 

 

 
 

Figure 5.13: Cross-correlation scans of pulse trains shaped by different line-by-line masks.  

Time zero is chosen to be the time half-way between two pulses of the unmasked pulse train.  

The first row (a) shows the output of the pulse shaper with no mask in place.  An alternating 

comb line mask is used for the second row trace (b).  The last row shows the output of the 

pulse shaper where 3 out of every 4 comb lines are blocked (c). 
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array of 150 m wide by 3 cm long chrome rectangles separated by 150 m onto an anti-

reflection-coated piece of glass.  This combination reflects every other group of frequencies 

within a single VIPA FSR.  The peak intensity of the Gaussian envelope is close to the expected 

value of 1/4 the intensity of the no mask case. Figure 5.13b has a double pulse structure as well 

as discrete broadening of the pulse due to dispersion as was seen previously with the no mask 

case.  The additional structure of the pulses can be attributed to the effect of imperfect mode 

matching of all 28 modes in the VIPA FSR to the mask.  The dispersion law that defines how the 

VIPA separates adjacent comb lines from one another makes some adjacent comb lines closer 

together than others [32].  Since this difference in separation is minor, the static mask used in 

this experiment is a simple linear mask with a constant spatial period.  However, spectral lines 

near the edges of every VIPA FSR are likely attenuated due to this mismatch between the mask 

and the spectral modes.   

Other masks also demonstrate line-by-line pulse shaping.  As demonstrated in Figure 5.13c, 

by blocking 3 out of every 4 comb lines, the expected quadruple pulse output is obtained.  As 

expected, the peak intensity of the Gaussian envelope is approximately 1/16 of the intensity of 

the no mask case.  Again, the effects of dispersion and imperfect mask matching is evident on 

the output pulse train.   

 A high resolution spectral disperser with resolution of 357 MHz has been demonstrated 

and used to resolve individual lines from an optical frequency comb.  Line-by-line pulse shaping 

has been demonstrated for a mode-locked Ti:sapphire laser at 890 MHz repetition rate, the 

lowest rate for which line-by-line pulse shaping has yet been achieved.  Such low repetition rate 

pulse shaping is an important step toward OAWG as it would potentially allow waveform 
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updating to be achieved on a pulse-by-pulse basis with modulator arrays with relaxed speed 

requirements. 
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Chapter 6 
 

6 Modulator Technology 

6.1  Modulator overview 

  A key component to dynamic line-by-line pulse shaping is the type of dynamic mask 

used to modulate the signal.  Commonly, spatial light modulators SLMs are used to control the 

phase of individual modes as they pass through separate pixels.  However, this liquid crystal 

technology is limited by the milliseconds of time it takes for the liquid crystal molecules to move 

into position and change the phase, meaning SLM technology can only modulate up to kHz 

speeds.  This results in static OAWG since the mask cannot be changed from pulse to pulse. 

 Several modulation technologies exist that are capable of the modulation speeds 

necessary to achieve OAWG in our setup.  Using a 890 MHz frequency source, a modulation 

speed of 445 MHz is required to modulate every other pulse.  An ideal modulator would be one 

that can operate as fast as 445 MHz, but with enough modulation bandwidth to operate down to 

direct current (DC) so that static-OAWG waveforms can be created in addition to fully OAWG 

waveforms.  In addition to the lofty speed performance, the modulator must also be as efficient 

as possible.  Inside the VIPA-based pulse shaper described in section 5.2  there is only 24 μW of 

average power in each mode group,.  Any attenuation of the signal further increases the high 

insertion loss of the pulse shaper making detection difficult.  Several of the following 

technologies rely on the confinement afforded by coupling of the signal into fiber to operate at 

the speed required. 
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6.2   Saturable Bragg Reflector 

 A pulse shaper operating in reflection geometry, such as in section 5.2 , has a retro-

reflecting mirror at the location of the spectral mask.  Clearly, the placement of a mirror mask 

enables control of the reflected spectrum.  The idea behind the saturable Bragg reflector is a 

mirror that can be modulated quickly creating the dynamic mask necessary for OAWG.  One 

cannot simply use a microelectromechanical system (MEMS) device since the time required for 

micro mirrors to change position is on the order of milliseconds.  This means only kHz 

modulation speeds can be obtained.  Instead, a saturable Bragg mirror relies on a control laser to 

quickly saturate an absorbing medium, such as Gallium Arsenide (GaAs), allowing an incident 

signal to be retro-reflected as illustrated in Figure 6.1.  When the control laser is turned off, the 

GaAs absorbs the incident signal and no light is reflected.  The saturable Bragg reflector was 

made at NIST by Kevin Silverman. 

 

 To investigate how quickly the GaAs layer responds to the control beam, a pump-probe 

experiment is constructed.  Using pulses 66 fs in duration from a mode-locked Ti:sapph laser 

with a repetition rate of 100 MHz, pump and probe pulse paths are formed and imaged to the 

same location on the saturable Bragg reflector.  By translating a delay stage in the probe path and 

 

 
 

Figure 6.1: Saturable Bragg reflector, showing how a control beam can be used to control the 

amount of the retro-reflected light inside the pulse shaper. 
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measuring the reflected probe light, the temporal response of the saturable Bragg mirror is 

measured (see Figure 6.2).  The control laser to be used in the pulse shaper has a center 

wavelength of 810 nm.  To more accurately test the response of the saturable Bragg reflector 

under operating conditions, the pulsed pump is spectrally filtered down to 810 +/- 5 nm.  Note, 

that the pump is different from the actual control beam.  The pump is a short pulse that only lasts 

66 fs as opposed to the CW control beam that is modulated like a square wave.  This is important 

as the modulator needs to be able to hold a state for at least the time between pulses of the input 

pulse train, 1.1 ns.  Meaning that if the CW beam had the same average power as the control 

beam, it will have approximately 10
5
 times the peak power in the pulse.  The details on power 

needed to saturate the saturable Bragg reflector will be explained later. 
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 The pump-probe data, in Figure 6.2, show a fast decay constant of 518 fs.  This is much 

faster than the necessary response time of 1 ns to shape each pulse independently from the next 

at 1 GHz.   

 

 
 

Figure 6.2: Saturable Bragg reflector pump-probe data. 
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 Observe how in Figure 6.1 the saturable Bragg reflector has Bragg stack layers both 

above and below the saturable layer.  Having a partial reflector on top of the GaAs allows the 

control beam to have a greater effect at lower power on the absorption, but at the cost of the 

spectral bandwidth of the saturable Bragg reflector.  The enhancement cavity also helps achieve 

a good contrast ratio (on vs. off intensity) of the signal incident to the saturable Bragg reflector.  

This enhancement is important because the high speed CW laser diode that was to be used as a 

control laser has a maximum output power of 100 mW.  When focused to a very small waist 

diameter of 5.6 μm (core of single mode fiber at 800 nm), this corresponds to a maximum control 

beam intensity of 400 kW/m
2
.  This CW intensity is much smaller than the peak intensity of a 

pulse with the same average power.  To fully saturate the saturable Bragg reflector, it was found 

that approximately 200 mW average power from a 100 MHz Ti:sapph laser focused to a 5.6 μm 

diameter spot is needed.  This corresponds to a peak intensity of nearly 81.2 GW/m
2
.  This high 

intensity is what was used in the pump probe experiment to examine the fast response of the 

saturable Bragg reflector.  In the pulse shaping setup it is important that the saturable Bragg 

reflector be saturated for 1.1 ns, the entire period of the input pulse train.  It is not practical to use 

a pulsed source to generate the high intensity needed to saturate the saturable Bragg reflector.  

Further note that if this high of an intensity was not from a pulse but from a CW source, the spot 

would heat up and thermally damage the saturable Bragg reflector.  So for the saturable Bragg 

reflector to be feasible, the enhancement cavity effect needs to be exaggerated to reduce the 

intensity of the control beam needed for effective saturation.  Increasing the reflectivity of the 

partial reflector on the top surface of the saturable Bragg reflector would accomplish this; 

however, it would also further limit the bandwidth of the reflector.  The reflectivity of the 

saturable Bragg reflector at normal incidence can be seen in Figure 6.3.  Using the existing 
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saturable Bragg reflector, the 10 nm optical bandwidth of the pulse shaper would have to be 

reduced to 2 nm.  This limitation to the pulse shaper bandwidth would reduce the available 

power by a factor of 5.  As mentioned at the beginning of section 6.1 it is already difficult to 

measure the output of the pulse shaper with the full 10 nm of bandwidth.  Constructing a new 

saturable Bragg reflector with an enhancement cavity with a higher quality factor, so that less 

control power is required would also result in further narrowing this bandwidth. 
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 In conclusion, the saturable Bragg reflector will not work as a modulator for a dynamic 

line-by-line pulse shaper.  The existing saturable Bragg reflector requires a control beam of 200 

mW from a Ti:sapph laser source to saturate the absorber.  This power requirement is 

significantly greater than the high speed diode laser output power of only 100 mW.  While 

 

 
 

Figure 6.3: Saturable Bragg reflector reflectivity spectrum at normal incidence showing 

absorbance at 815 +/- 1 nm, 2 nm of bandwidth. 
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adding more layers to the Bragg stack above the saturable absorber increases the enhancement 

effect and reduces the amount of power needed to saturate it, it also further reduces the 

bandwidth of the saturable Bragg reflector from the already limiting bandwidth of 2 nm.   

 

6.3  Vertical cavity surface emitting laser 

 Another device that can be used as a high speed modulator is a vertical cavity surface 

emitting laser (VCSEL).  These laser diodes typically have a fast response (easily up to 3 GHz 

modulation) due to the miniature size of around 100 μm.  Also, since the laser cavity is grown 

vertically, many devices can be grown on a single wafer.  Instead of using the VCSEL array as a 

light source, they can be used as a modulator.  In place of a mirror in the reflection geometry 

VIPA-based pulse shaper described in section 5.2 one can place an array of VCSELs.  Each 

group of modes can be imaged onto different VCSELs in the array.  The phase of the retro-

reflected light from the VCSEL array is sensitive to the voltage applied to the VCSEL is 

powered to and thanks to the rapid response of the VCSEL it can be modulated very quickly.  

Previous research [10]  successfully uses VCSELs to modulate up to 1 GHz speeds.  When the a 

VCSEL is used as a modulator the phase modulation is limited by only being able to swing from 

-π/2 to π/2 [18].  This limits the full arbitrary nature of the waveforms that can be produced.  To 

be fully arbitrary, one would like to be able to control the phase of each mode from -π to π. 

 Both VCSELs and the saturable Bragg reflector described in the previous section do not 

require that the individual groups of modes be coupled into fiber.  However, due to the 

limitations of each of these methods the following technologies are explored which do require 

coupling groups of modes into fiber. 
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6.4  Gain chip 

 A gain chip is a laser diode that has an anti-reflection coating on its output facet.  This 

coating effectively eliminates the mirror required to make the laser diode a laser.  When the laser 

diode is turned on it does not lase, rather the gain medium inside the diode laser can now provide 

amplification for light injected into the laser.  The gain chip can then be used as an amplitude 

modulator through electrical control of the gain.  Working with Qphotonics, a laser diode with a 

center wavelength of 811.5 and a rise time of 0.5 ns was chosen so that the gain chip could be 

modulated up to the necessary 445 MHz.  An anti-reflection coating was applied to the front 

facet of the laser diode reducing the backward reflection to less than 0.05 %.  Finally, since these 

gain chip diodes are not on a single wafer as in the case of VCSELs, it is necessary to fiber 

couple them so adjacent groups of modes can be sent to one gain chip separately from another. 

 

 In testing the gain chip, any backward propagating reflection to the gain chip will cause it 

to lase.  Therefore it is critical that all sources of backward reflection be removed.  Since the 

laser is coupled into SM fiber, the first obvious source of reflection is from the use of any fiber-

 

 
 

Figure 6.4: Gain chip testing setup. 
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optic connector / physical contact (FC/PC) fiber connections.  The flat surface from fused silica 

to air results in a 4% reflection which is more than enough to work as a front mirror for the gain 

chip and cause it to lase.  Of course this reflection is reduced when two fiber surfaces are brought 

into direct contact with one another; however, back reflection can be reduced even further 

through the use of angle cleaved fiber.  The gain chip fiber was cleaved at an angle of 8% 

reducing the backward reflection to more than -60 db, while only reducing the power coupled 

through the fiber by 40% or -2 db.  As pictured in Figure 6.4, a free-space circulator is then used 

to eliminate any further backward reflections explained in section 5.2 .  Seed light from a Toptica 

DL-100 external cavity is tuned to precisely the gain chip center frequency of 811.5 nm and 

passed into the gain chip.  The output spectrum of the gain chip is then monitored using a 

HP7000 optical spectrum analyzer.  At full power the output spectrum of the gain chip can be 

seen in Figure 6.5.  At full power the gain chip ignores the seed and produces the same spectrum 

with or without a seed input.   
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This lack of sensitivity to the input seed is expected when the gain chip is fully powered.  When 

the gain medium is fully powered (injection current is 43 mA) amplified spontaneous emission 

(ASE) dominates the output of the gain chip.  The ASE depletes the population that would 

ordinarily amplify the seed light.  Typically, this type of gain chip is powered with an injection 

current around threshold of the laser diode before the anti-reflection coated was added to make it 

 

 
Figure 6.5: Gain chip output with no seed at full power 
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a gain medium (20 mA).  Threshold is also the maximum current the gain chip can be powered 

to before ASE dominates the output of the gain chip.  This way maximum population inversion 

can be achieved without ASE dominating the output.  Figure 6.6 shows the spectrum of the gain 

chip when powered at threshold without seed light.  Notice the peak power at only -55 dbm and 

the 4 nm bandwidth of the gain chip.  The spectrum at threshold shows how the gain chip will 

not amplify all wavelengths with the same gain; the closer the wavelength is to the center of the 

spectrum at 811 nm, the more gain it will receive.  Also, with the ASE gone, there is a clear 

ripple in the spectrum with a period of 0.118 nm.  This type of interference is typical when some 

reflection of the gain chip output interferes with itself.  A quick calculation of the distance that 

would cause such a period shows that a double passed spacing of about 2 mm is enough to cause 

this effect.  It is reasonable to picture that there is some spacing of that magnitude between the 

gain chip itself and the fiber pigtail assembled by Qphotonics.  Simply not having the fiber angle 

cleaved before coupling light out of the gain chip is enough to cause this type of reflection and 

result in the ripple shown in Figure 6.6.  
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 Figure 6.7 shows the response of the gain chip to a 5 mW seed input circulated into the 

gain chip.  Notice here that with the gain chip turned off the seed is absorbed by the gain media 

of the gain chip, as is expected, reducing the circulated signal to merely -67 dbm.  Keep in mind 

that when measuring the seed directly (mirror in place of gain chip) using the same OSA the 

 

 
Figure 6.6: Gain chip output with no seed at threshold.  The ripple in the spectrum has a 

period of 0.118 nm 
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peak power is -18 dbm, with the seed FWHM of 0.3 nm and the resolution bandwidth of the 

OSA set to 0.1 nm.  This is considerably less than the 5 mW fed into the system, but this reading 

is due to loss in double passing the Faraday rotator (only 90% transmission), any coupling losses 

in the system, and the OSA measurement.  When using the OSA to measure power the peak 

power measured for a CW signal is typically 7% of the total power when measured using a 

power meter.  This is because the OSA measures optical power as a function of wavelength and 

the power meter measures the spectrally integrated total power.  With the gain chip off, the 

signal is attenuated by 49 db.  This loss can be controlled by powering the gain chip to threshold 

to get maximum population inversion before ASE dominates the gain chip output.  The green 

line in Figure 6.7 shows the gain chip spectrum when powered at threshold.  The seed peak 

power is now -43 dbm, which is 24 db larger than when the gain chip is turned off.  This increase 

in power still is not enough to provide gain to the seed which was originally -18 dbm.  So in 

conclusion, the gain chip provides the ability to rapidly modulate an incident signal between 49 

db of loss to 25 db of loss with 4 nm of optical bandwidth centered at 811 nm.  Although this 

provides the speed necessary for modulating pulse to pulse, the overall loss of 25 db is 

unacceptable for use in the pulse shaper. 
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Figure 6.7: Gain chip response to a 5 mW seed.  The green line shows the gain chip spectrum 

when powered at threshold and the blue line shows the retro-reflected seed light from the gain 

chip when turned off.  This shows controllable loss, but not gain of the original seed. 
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6.5  Lithium niobate modulators 

 Due to the large electro optic coefficient of Lithium niobate (LiNbO3), it is often used in 

electro-optic modulators.  The change in index of refraction of LiNbO3 due to an electric field is 

very fast, so the speed of LiNbO3 is limited by the size of the device and the electrodes that 

provide the changing electric field.  The smaller the LiNbO3, the lower the voltage that is 

required to provide the necessary electric field inside the LiNbO3.  For this reason, the fastest 

LiNbO3 modulators (up to 40 GHz) couple light into a LiNbO3 waveguide where electrodes can 

be placed very close to the waveguide to provide a phase shift of π with only around 1 V.   

 Since this project requires that several modulators be used in very close proximity to one 

another, it makes sense to create a custom waveguide that allows groups of modes to be 

individually modulated.  The idea is by placing a reflective (mirror the back surface of the 

waveguide) LiNbO3 waveguide array where a reflective mirror mask would be in the VIPA-only 

pulse shaper, the individual groups of modes can be phase modulated and reflected back to the 

VIPA.  This means a traveling wave modulator [47] design will not work for this setup, since the 

signal will propagate in both the forward and backward directions inside the modulator.  So a 

lumped type [47] electrode is the logical choice for electrode type as shown in Figure 6.8.   
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 The specifics of the electrode design must be chosen carefully to provide enough 

bandwidth and lowering of the voltage required to create a phase shift of π (Vπ).  To calculate 

modulation bandwidth of the LiNbO3 modulator one must consider how the impedance of the 

electrodes affects the voltage at the modulator Vm given by [47] 
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where Vs is the voltage of the source, C is the capacitance of the electrodes, R is the resistance of 

the electrodes, and ω is angular frequency of the electrical signal.  The bandwidth of the signal, 

Δf can then be calculated by the frequency that reduces Vm by 2
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Where C is the net capacitance of the electrode, which is equal to the capacitive constant C0 

times the length, L, times the dielectric constant ε=n
2 

[47].  Plugging in reasonable values R = 

50Ω, ε=28 (value for z-cut LiNbO3), the width of the electrodes is set to 10 μm and the gap 

 

 
 

Figure 6.8: LiNbO3 electrode design where all units are all in microns. 
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between electrodes 7 μm which gives a capacitance per unit length of electrode 3 pF / cm [47].  

This yields a bandwidth of 2 Ghz cm length of electrode.  The shorter the electrode, the faster it 

can be modulated.  However this requires Vπ to be larger, calculated by 
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where Δn is the change in index of refraction of LiNbO3 given by 
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when converted into units of volts per micron.  The double pass geometry of this waveguide 

creates an active region of 4 cm while only using a 2 cm long electrode.  Allowing lower Vπ 

while maintaining high bandwidth.  So for an active region of 4 cm and physical length of only 2 

cm, Vπ = 0.6 V (easy to modulate at 500 MHz) and Δf =1 GHz (twice the necessary bandwidth). 

 Other high speed LiNbO3 modulator waveguides have been made by diffusing titanium 

into the LiNbO3 creating a slightly higher index of refraction region that guides the beam inside 

the LiNbO3.  The process required to diffuse the titanium into the LiNbO3 requires baking the 

LiNbO3 wafer at 1000° C for 8 hours.  When this process was performed on the waveguide array, 

the extreme heat destroyed the LiNbO3.  A temperature gradient from the baking process created 

internal stresses that were great enough to crack the waveguide.  The edges of this cracked 

waveguide were tested to see how well light could be coupled into each waveguide.  In general, 

the oblong spatial mode shape of light in a LiNbO3 waveguide typically causes around 3 db of 

loss when coupling from a TEM00 mode as in the pulse shaper.  However, in testing the 

waveguide it was found to have around 7 db of coupling loss.  The depth of the titanium doped 

waveguide depends on the length of time and temperature to which it is baked.  The depth of the 

waveguide array was more shallow at only 4 μm deep as compared to the ideal 7 μm.  Even if the 
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waveguide array had not been destroyed, this coupling loss is unacceptable for pulse shaping 

where the high loss of double passing the VIPA already introduces 15.2 db typically.  Further 

losses from coupling into and out of modulators would cause the insertion loss to be too great to 

measure the pulse shaper output.  Since the loss of the commercial LiNbO3 modulators can be 

guaranteed to be less than 2 db (each pass), commercial fiber units were purchased to be used in 

place of the waveguide array.   
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Chapter 7 
 

7 Coupling adjacent modes into fiber 

 

 

 The confinement of the signal beam when it is coupled into fiber makes it possible for 

several modulation technologies discussed in chapter 6  to impart a phase and / or amplitude 

modulation to the signal.  Specifically, the commercial fiber coupled phase modulators and the 

gain chip modulation techniques require single mode confinement of the individual groups of 

modes. 

 

7.1  Optical system design 

 Separating adjacent mode groups only 890 MHz from one another and coupling into fiber 

is no simple task.  Careful consideration of the separation of the mode groups as well as the 

mode shape of the beams needs to be taken into account for efficient coupling.  First, Figure 7.1 

shows the spatial size and separation of groups of modes when imaging the VIPA using a 50 cm 

focal length lens as was done in chapter 5.  Due to the resolution of the VIPA (357 MHz) and 

how close adjacent modes are in frequency (890 MHz), the width of each group (88 μm) of 

modes is roughly equal to half the separation distance (175 μm) between modes.  Clearly, if this 

mode shape profile is scaled down to 5.6 μm to couple into SM fiber, adjacent modes will be 

only 11.2 μm away from one another.  Given that the cladding diameter of SM fiber is 125 μm, it 

is not easy to put the cores of the fibers close enough together.   
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Even if a custom multi-core fiber were made to have 11.2 μm core separation to suit our needs, 

there would be issues with coupling of one mode into another mode.  Reducing the distance 

between cores of the two fibers and controlling the length of fiber the cores interact over, one can 

mix one fiber signal into another.  A 11.2 μm core separation is very close and will certainly mix 

the two signals.  In order to achieve line-by-line pulse shaping, adjacent modes must be 

separated from one another and modulated separately.  The VIPA image cannot simply be scaled 

down to be imaged into fiber, but individual modes need to be focused separately.  The necessary 

separation is accomplished using a microlens array.   

 The design for the optical system necessary to couple adjacent groups of modes into 

separate fibers begins with a fiber array.  The 8 channel custom fiber array is made out of Quartz 

by Senko Advanced Components Inc. with a 250 μm pitch.  To image individual modes into 

separate fiber channels, an anti-reflection coated microlens array with 250 μm pitch and NA of 

0.18 corresponding to a focal length of 684 μm made by Suss Microoptics is used.  It is 

necessary to separate adjacent modes from one another by the 250 μm pitch so individual 

 

 
 

Figure 7.1: Mirror mask plane of the VIPA-only-based pulse shaper using a 50 cm focal 

length lens. 
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microlenses in the array are able to separate adjacent mode groups into different fiber channels 

shown in Figure 7.2.  The separation of the modes is achieved using a 75 cm focal length 

imaging lens.  The greater focal length not only increases the separation of the modes but as 

expected increases their width.   

 

 If the imaging lens is used without the horizontal beam expansion, shown in Figure 7.3, 

the result is a scaled up mode shape shown in Figure 7.1.  The x-y asymmetric Gaussian (oval 

shape) beam profile as shown in Figure 7.1 would suffer considerable loss when coupled into the 

x-y symmetric beam profile of the fiber.  To correct for this, the asymmetry of the beam profile 

before the imaging lens is fixed by expanding the beam in x to match the spread of the beam in y 

(due to the VIPA).  Two cylindrical lenses separated by the sum of their focal lengths 

accomplish this task (8 cm + 30 cm = 38 cm separation) providing a magnification in the 

horizontal direction of 30/8 = 3.7 times.  This expands the beam from 10 mm to 37 mm in x, 

roughly correcting for the difference in mode shape at the imaging lens as pictured in Figure 7.3. 

 

 
 

Figure 7.2: Optical layout separating adjacent groups of modes into separate SM fiber.  

Letters denote locations where the mode shape is measured see Figure 7.3. 
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 The physical dimensions of the optical layout are calculated using the thin lens 

approximation for the lenses and the standard imaging equation.  The output from the VIPA 

comes to a focus 75 cm after the imaging lens, at this location the groups of modes are separated 

by the necessary 250 μm with a width of approximately 125 μm as illustrated by C in Figure 7.3.  

The roughly x-y symmetric modes now need to be imaged down to a spot size of the SM fiber 

core of 5.6 μm, but maintain the separation of 250 μm.    The microlens array with a focal length 

of 694 μm is placed a distance 0.42 cm away from the imaging lens focus creating an image of 

the groups of modes at the fiber array a distance 0.0826 cm after the microlens array.  The 

diameter of the formed image at the fiber array is approximately 6.4 μm in diameter with a NA 

of 0.15 (reasonable NA for SM fiber input).  Also, note that the location of the microlens array 

from the imaging lens focus of 0.42 cm is as far away as the micro lens can be such that the 

width of each mode does not surpass the 250 μm separation of the modes.  If the microlens were 

placed any further away, some of the power of adjacent groups of modes would be mixed into 

adjacent channels. 

 

 
 

Figure 7.3: Mode shape profiles at various locations in the optical layout separating adjacent 

groups of modes in Figure 7.2. 
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7.2  Coupling efficiency results 

 When measuring the amount of power coupled into a channel of the fiber array it is 

important to note that the location of the modes on the fiber array is very sensitive to the 

repetition rate of the mode-locked Ti:sapph laser.  This is an expected result given that the 

frequency of a given comb line depends so heavily on the repetition rate of the laser given by 

equation (2.6).  Figure 7.4 shows a plot of the power coupled into a single channel of the fiber 

array while the repetition rate of the laser is increased by about 7 kHz by steadily decreasing the 

size of the laser cavity.  The power coupled into the fiber oscillates with a period of 2150 Hz 

because changing frep by that amount will change the frequency of the n
th

 mode by the frep 

resulting in imaging the next group of modes into the fiber channel. 
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 The sensitivity of the location of modes to frep is used to fine tune the periodicity of the 

modes to match the periodicity of the lenslet array so maximum power is obtained for four 

channels of the fiber array simultaneously.  By changing frep and monitoring the power in 

channels simultaneously it is clear that only when all the channels are at a maximum for the 

 
 

Figure 7.4: Power coupled into fiber array channels: 1 in blue and 4 in green as a function of 

change in the repetition rate, Δfrep. 
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same frep is the periodicity of groups of modes the same as the spacing between fibers in the 

array.  Small changes to the VIPA input angle (less than 0.1°) alter the spacing of the modes at 

the lenslet array so this can be tuned to the desired 250 μm mode separation.  Shown in Figure 

7.4 the phase difference between channel 1 and channel two is merely 0.7 radians.  This 

corresponds to the shift in period over all four channels of the fiber array.  So it makes sense that 

when looking at the center two channels in Figure 7.5, the phase difference (.2 radians) is 

approximately 1/3 that over all the channels. 
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The coupling efficiency of this setup can be calculated by comparing the power coupled into 

each channel as compared to the total power of a single channel.  First the total power of a single 

group of modes needs to be measured.  Using a slit at the focus of the 75 cm focal length lens, as 

shown in Figure 7.2, a single group of modes is isolated and the power measured by focusing the 

light into a power meter.  The optical power of a single group of modes is measured to be 24 

 
Figure 7.5: Power coupled into fiber array cannels: 2 in green and 3 in blue as a function of 

change in the repetition rate, Δfrep. 
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μW.  The measured voltages in Figure 7.4 and Figure 7.5 can then be converted into optical 

power, P, using the relation 

 
rR

V
P   

(7.1) 

 

 

where R is load, r is the responsivity of the detector, and V is the voltage detected.  The voltages 

were measured using the alternate inputs to a Stanford Research Systems 830 Lock-in which 

have an input impedance of 1 MΩ.  The detector used to measure channels 1 and 3 is a Thorlabs 

DET210 with a responsivity of 0.35 A/W at 810 nm and the detector used to measure channels 2 

and 4 is a Thorlabs DET10c with a responsivity of .2 A/W at 810 nm.  Using these values the 

maximum power coupled into each power is calculated: 

 

Channel 

number 

Peak voltage 

(V) 

Power (μW) Efficiency (%) Coupling loss 

(db) 

1 6.5 18.5 77 -1.1 

2 1.5 7.5 31 -5.1 

3 2.8 7.8 32 -4.9 

4 1 5 20 -7.0 
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7.3  Fiber thermal drift and phase control 

 As seen previously in section 5.7 any difference in path lengths of the groups of modes to 

be shaped inside the pulse shaper introduces dispersion in the pulse shaper.  In other words it is 

critical that the phase between these modes be controlled for pulse shaping to occur.  Now that 

these modes have been separated into individual fibers, stabilizing this phase becomes an 

important issue that needs to be addressed.   

 Small changes in temperature cause small changes to the length and index of refraction of 

the glass that makes up the fiber.  This in turn, causes the phase between separated modes to drift 

with respect to one another.  To better study this effect, a test setup is built which uses CW 810 

nm light as a source and a 50/50 fiber coupler to split the beam into two fiber paths and then after 

traveling 1 m another 50/50 fiber coupler is used to recombine the light as shown in Figure 7.6.   

 

 

Cleary, any drift in the phase between the split modes will result in constructive or destructive 

interference of the source causing the power to shift from one output to the other output of the 

final 50/50 coupler.  Figure 7.7 illustrates the natural phase drift in fiber.  Observe the expected 

effect of how as the phase drifts between the two fibers, power shifts from one channel to the 

other.  Keep in mind that the entire phase sensitive region of fiber is wrapped together, taped to a 

 
 

Figure 7.6: CW phase drift test setup, used to test phase stabilizing solutions necessary for 

control in the pulse shaper. 
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copper plate, and insulated on all sides with 2 inch thick foam.  This was done in an attempt to 

minimize the difference in temperature between the two fibers, to reduce the measured phase 

drift.  There is still a substantial drift in the phase by 2π approximately every 5 seconds, the 

period of both of the measured signals in Figure 7.7. 

 

 To solve this problem many techniques were explored.  One technique takes advantage of 

the index of refraction's temperature dependence and by actively controlling the temperature of a 

section of phase sensitive fiber.  To study this, a nichrome heater wire was wrapped very tightly 

to a 2 cm section of the phase sensitive fiber.  By controlling current through the wire, the 

 
 

Figure 7.7: Free running CW phase drift setup data.  The blue and green signals show the 

power detected in each output as a function of time.  If the phase were constant between the 

two separate paths these signals would not fluctuate. 
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temperature of the wire can be controlled.  Changing the temperature of this section of fiber 

slowly affects the phase.  It takes about half a second for the phase to start changing due to a 

change in the current in the nichrome wire and about 40 seconds for the temperature in the wire 

to reach thermal equilibrium.  The slow response makes using this heater wire alone for active 

phase control a poor choice.  To achieve a tight phase lock faster control is needed.  Another 

technique explored was a fiber stretcher which makes use of a piezoelectric ceramic to physically 

stretch the optical fiber and alter its length.  This much faster control over the length of the fiber 

enables much tighter phase locks to be obtained; however, the additional length of fiber (around 

20 m) introduces unwanted normal dispersion to the groups of modes when used in the pulse 

shaper.  So finally, a high speed delay and phase control device was designed and constructed 

using a fiber bench.  A fiber bench couples fiber into free-space and then back into fiber, useful 

for placing free-space optics into a fiber system.  In the setup shown in Figure 7.8 the space 

between the collimators of the fiber bench is used to control the delay and phase. 
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The delay of the free-space region is set by the adjustable placement of the fiber bench mounts 

and the phase is controlled by adjusting the voltage of a piezoelectric device attached to one of 

the collimators.  Of all these techniques, the fiber bench provides the most robust control of the 

delay and phase of a fiber line.  

 To test the ability of the fiber bench to maintain a constant phase, a phase locked loop is 

constructed where the difference between voltages measured by the two outputs of the CW phase 

drift setup is used as an error signal.  This error signal is then passed through a loop filter and 

used to control the voltage of the piezoelectric ceramic to maintain constant phase between the 

two phase sensitive fibers.  Figure 7.9 shows data taken while stressing the loop.  

 
 

Figure 7.8: Fiber bench illustrating delay and phase control over a fiber line. 
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At 130 seconds the phase sensitive fiber is jostled; while this does propagate into some noise in 

the error signal, the phase locked loop is able to maintain lock.  Then by heating the path of 

phase sensitive fiber that is not connected to the fiber bench with simply the warmth from two 

fingers, the voltage applied to the piezoelectric device is increased to expand the other path 

thereby maintaining phase lock.  To verify the range of the piezoelectric device (17 μm) is 

adequate the phase sensitive setup is tested without insulation.  The insulation from the CW 

phase drift setup is removed and the phase locked loop is again used to maintain the phase of the 

output.  Results shown in Figure 7.10 show that the control voltage swings a maximum of 4 V, 

corresponding to 60 V applied to the piezo which is only 40% of the maximum 150 V that can be 

 
 

Figure 7.9: Phase locked loop data using the fiber bench in the CW phase drift test setup.  The 

control voltage in blue is 1/15 the actual voltage applied to the piezoelectric transducer and 

the error signal in green is the difference between each measured output of the CW phase drift 

setup. 
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applied.  In other words, the piezo only needs to stretch 7.2 μm to maintain the phase locked loop 

accounting for laboratory thermal fluctuations. 

 

 

 

 

 

  

 

 

 
 

Figure 7.10: Phase locked loop data using the uninsulated fiber bench in the CW phase drift 

test setup.  The swing in control voltage of 4 V corresponds to the piezoelectric device 

stretching by 7.2 μm. 
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Chapter 8 
 

8 Conclusion and future work 

8.1  Conclusion 

 Dynamic line-by-line pulse shaping is a useful technique in creating optical arbitrary 

waveform generation (OAWG).  Having control over an optical waveform is a useful tool in a 

variety of fields.  For instance, the accuracy of light detection and ranging (LIDAR) systems 

would be improved if custom tailored light waveforms were available.  This is similar to what is 

already done with radio waves in radar systems.   

 This thesis has covered many aspects of dynamic line-by-line pulse shaping.  Beginning 

with the basics of pulse shaping and frequency combs, the dynamic pulse shaping theory is 

developed.  Then simulations are used to illustrate the nontrivial relationship between waveform 

fidelity and response speed of a dynamic line-by-line pulse shaper.  Lowering the repetition rate 

of an input laser relaxes the high speed modulation requirements, but to achieve line-by-line 

pulse shaping, the individual modes that make up the frequency comb must be spectrally 

resolved from one another.  The high spectral resolution required to achieve this for an 890 Mz 

repetition rate Ti:sapph source is achieved using a VIPA.  This thesis presents the design, 

analysis and simulation of the VIPA used in the high spectral resolution line-by-line pulse 

shaper.  Nonideal VIPA behavior is discussed as well as its effects on the VIPA-based pulse 

shaper.  In working toward making the pulse shaper dynamic, several modulation technologies 

are explored and discussed.  The VIPA-based pulse shaper is then modified to couple adjacent 

groups of comb lines into separate SM fibers in preparation for high speed modulation.  Once 

groups of modes are coupled into separate fibers phase stabilization becomes necessary.  The 
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custom fiber bench designed to control the delay and phase of a fiber path is shown to provide 

the necessary phase stabilization in a phase-locked loop.   

 Substantial progress has been made towards OAWG, although it has not been 

demonstrated due to the difficulty of simultaneously achieving high spectral resolution and high 

modulation rate.  A combination of this project's success with high spectral resolution and work 

done with high speed VCSELs [10] would result in OAWG. 

 

8.2  Future work 

 The next step for this project is to demonstrate static line-by-line pulse shaping using the 

optical setup where adjacent groups of comb lines are coupled into SM fibers.  This requires that 

the phase between modes is locked using the aforementioned fiber bench so the intended output 

waveform can be created.  Once successful, high speed fiber modulators can be installed to 

generate dynamic line-by-line pulse shaping.  Note the high insertion loss of the VIPA in 

addition to its bandwidth limitations result in very low power (24 μW) in each group of modes.  

Successful amplification of the optical signal would not only help account for the loss of power 

due to losses in the high speed modulators, but provide additional signal strength to more easily 

measure the dynamic response of the pulse shaper. 

 As expounded upon in section 3.1 the compromise that must be made between waveform 

fidelity and response speed is a result of the high resolution spectral recombination of the pulse.  

It is here that the high speed sidebands of the modulated individual comb lines are filtered out 

reducing the response speed of a dynamic line-by-line pulse shaper.  A solution to circumvent 

this limitation is to build a pulse shaper in transmission geometry.  This means instead of retro-

reflecting shaped comb lines back to the original spectrally dispersive device, the individual 
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modes of the pulse are recombined using non-spectral means, for example using beam splitters 

or fiber couplers.  This has the advantage of not filtering out the high speed sidebands, thereby 

enabling instantaneous control over the pulse shaper output with fully arbitrary waveform 

capability provided by line-by-line pulse shaping.   

 In general this enhanced response comes at the price of pulse shaper efficiency.  By the 

constant radiance theorem, as the modes are spatially recombined using spectral independent 

methods, half of the power is lost at each 50/50 coupler.  This would devastate the signal if each 

individual mode were recombined with every other mode, however the VIPA-only pulse shaper 

described in section 5.2 already groups modes together (separated by the VIPA FSR) over the 

entire spectrum and many useful waveforms can be created by simply modulating 4 adjacent 

groups of modes (section 5.6 ) Remember that the insertion loss through the VIPA is 

approximately 9 db, if only 4 modes need to be recombined, this can be done at a cost of only 6 

db of loss using simple 50/50 fiber couplers (3 db loss per 50/50 coupler) as illustrated in Figure 

8.1.  In the case that only 4 modes are recombined, it is more power efficient to recombine the 

pulse train using standard 50/50 beam splitters than it is to use the VIPA.  

 

 
 

Figure 8.1: Transmission geometry of a dynamic pulse shaper, where the pulse shaped output 

is combined using standard 50/50 fiber couplers instead of a spectrally dispersive device. 



148 

 

 

 Removing the constraint of spectral recombination enables the transmission geometry 

pulse shaper to circumvent the limitations imposed by the dynamic pulse shaping theory (based 

on spectral recombination).  However, a transmission type pulse shaper is only efficient when 

few modes (or groups of modes) are used for shaping.  The constant radiance theorem dictates 

that non spectral recombination of the pulse will result in an output that has only as much power 

as a single mode or mode group, limiting the scalability of this scheme. 
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Appendix A: Dynamic pulse shaping simulation 

% General Pulse Shaping Simulation 
% Double Integral implementation 

  
clear all 
close all 

  
% Input spectrum 
sample = 256; 
width=sample/16; 
A=(rem(((1:sample)-sample/2-1),8)==0).*exp(-((1:sample)-1*sample/2-

1).^2/width^2); 

  
% create indexes for plotting 
timestep=0.0313*10^-9;                                     
xi=1:sample; 
xt=xi*timestep;                                     %in s 
xw=(xi-sample/2-1)/(sample*timestep);               %in Hz  center freq = 0 

but in reality everything is offset by 375THz since we are at 800nm 
xx=(xi-sample/2-1)*2.5*10^-6;                       %20um spacing between 

modes 

  
% View the input 
figure(1) 
plot(xw,A) 
title('Input A(w)'); 

  
figure(2) 
plot(xt,real(fftshift(ifft(fftshift(A))))) 
title('At: real'); 

  
% Create a space-time mask Mst and the temporal fft Msw 
Msw=zeros(sample);  % frequency response in time 
Mst=zeros(sample);  % time diagnostic 

  
% Modulate in time 

  
%better F tranform if in fractions of 1/8 so we get an integral number of 

cosine functions and therefore a repeating pattern 
%timemodulationfrequency=10^9*2*pi*2/(8);        %2/8*10^9=250MHz 

  
Mt=1*(1-cos(10^9*2*pi*3/(8)*xt))/2;         

  
figure(10) 
plot(xt, real(Mt)) 
title('Mt: real'); 

  
% Turn off time modulation by uncommenting the next line 
% Mt=ones(sample,1); 
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% Convert to phase modulation by uncommenting the next line 
% Mt=exp(i.*Mt); 

  
Mtempw=fftshift(fft(fftshift(Mt))); 

  
figure(11) 
plot(xw, real(Mtempw)) 
title('Mtempw: real'); 

  
%static combline in time needs to be converted to frequency for the mask 
Mxs=ones(sample,1)'; 
% Convert to phase modulation by uncommenting the next line 
% Mxs=exp(i.*Mxs); 
Mxsw=fftshift(fft(fftshift(Mxs))); 

  
% Create spatial frequency mask 
flip=1; 
for ci=1:sample 
    if(rem(ci-sample/2-1+3,8)==0) 
        if flip==1 
            flip=0; 
        else 
            flip=1; 
        end 
    end 
    if flip == 0 
       Msw(ci,:)=Mtempw(:)'; 
       Mst(ci,:)=Mt(:)'; 
   else 
        Msw(ci,:)=Mxsw; 
        Mst(ci,:)=Mxs(:)'; 
    end 
end 

  
% View the mask 
figure(70) 
pcolor(xw,xx,real(Msw)) 
title('Msw real'); 

  
figure(71) 
pcolor(xw,xx,imag(Msw)) 
title('Msw imaginary'); 

  
figure(72) 
pcolor(xt,xx,real(Mst)) 
title('Mst real'); 

  
figure(73) 
pcolor(xt,xx,imag(Mst)) 
title('Mst imaginary'); 

  
figure(74) 
plot(xx,Mst(:,1)) 
hold on 
plot(xx,A) 
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hold off 

  

  
% PULSE SHAPER VALUES 

  
%Mask that is always on  (make more effiecent) 
Mon=zeros(sample); 
for ci=1:sample 
    Mon(ci,:)=fftshift(fft(fftshift(ones(sample,1)'))); 
end 

  
% gaussian values 
alpha=20*10^-6/(1*10^9);       %frequency to um conversion 20um to 1GHz for 

example 
w0=5*10^-6;                  %spot size radius 

  
%spectral smear squash, this value reduces the effect of spectral smearing 
ss=1; 

  
dw = abs(xw(1)-xw(2)); 
dx = abs(xx(1)-xx(2));   %abs(1/256); 

  
% SHAPER EVALUATION 
pi=10; 
for ci=1:pi 
    w0=ci*2.5*10^-6; 
    Aout = shaper(A,Msw,sample,alpha,w0,ss,dw,dx,Mon); 
    sideband(ci)=abs(Aout(sample/2+1+8+3)); 
    sideband_c(ci)=abs(Aout(sample/2+1+8)); 
end 

  
sideband_p=sideband/abs(A(sample/2+1+8))*100; 
sideband_cp=sideband_c/abs(A(sample/2+1+8))*100; 

  
% SHAPER OUTPUT 
figure(4) 
plot(xw, real(Aout)) 
title('Aout real') 

  
figure(40) 
plot(xw, abs(Aout)) 
title('Aout abs') 

  
figure(5) 
plot(xw, imag(Aout)) 
title('Aout imag') 

  
figure(6) 
plot(xt, real(fftshift(ifft(fftshift(Aout))))) 
title('Aout_t: real'); 

  
figure(7) 
plot(xt, imag(fftshift(ifft(fftshift(Aout))))) 
title('Aout_t: imag'); 
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figure(8) 
plot(xt, real(fftshift(ifft(fftshift(Aout)))).^2) 
title('Aout_t: intensity'); 

  
% Smearing Function 
smear = exp(-(0-alpha.*((1:sample)-sample/2-1).*dw).^2/(w0^2)); 
smear2 = exp(-ss*(0-alpha.*((1:sample)-sample/2-1).*dw).^2/(w0^2)); 
figure(9) 
plot(xw,smear.*smear2) 
title('Smearing Function at x=0, w shift=0'); 

  
figure(10) 
plot(5*10^-6*(1:pi),sideband_p) 
title('sideband power vs w0') 

  
figure(11) 
plot(5*10^-6*(1:pi),sideband_cp) 
title('center power vs w0') 
 

 

----------------------------------------------------------------------- 

 

 

%shaper.m 
%Heart of the pulse shaping simulation 
%performs the double integral 

  
function [Aout]=shaper(A,Mst,sample,alpha,w0,ss,dw,dx,Mon) 

  
Aout=zeros(sample,1); 

  
for q=1:sample 
    total=0; 
    norm=0; 
    for qw=1:sample 
        if((q-(qw-sample/2-1))>=1 & (q-(qw-sample/2-1)) <= sample) 
            total=total+dx*dw*A(q-(qw-sample./2-1))*sum(exp(-(((1:sample)-

sample/2-1)*dx-alpha*(q-sample/2-1)*dw).^2/(w0^2)).*exp(-ss*(((1:sample)-

sample/2-1)*dx-alpha*((q-sample/2-1)*dw-(qw-sample./2-

1)*dw)).^2/(w0^2)).*Mst((1:sample),qw)'); 
            norm=norm+dx*dw*                        sum(exp(-(((1:sample)-

sample/2-1)*dx-alpha*(q-sample/2-1)*dw).^2/(w0^2)).*exp(-ss*(((1:sample)-

sample/2-1)*dx-alpha*((q-sample/2-1)*dw-(qw-sample./2-

1)*dw)).^2/(w0^2)).*Mon((1:sample),qw)'); 
        end 
    end 
    Aout(q)=total/norm; 
end 
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9 Appendix B: Gaussian beam VIPA construction 

 
%John Willits 
%VIPA simulation 
%setup an array of Gaussian images to reproduce a VIPA 

  
% close all 
% clear all 
clear x z E 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%set constants 

  
lambda = .815;                  %value in microns 
%lambda = .81500022;               %value in microns for adjacent mode 

(100MHz) calculated from: (3*10^8/(3*10^8/(815*10^-9)+100*10^6))*10^6 
%lambda = .815002;                %value in microns adjacent mode (about 1 

GHz) 
%lambda = .815052;                %value in microns a full VIPA FSR 

difference (25GHz)     

  
thickness = 4.1*10^3;       %VIPA thickness in um (4.1 orig value vs 42) 

  
index=1.44;                 %index of refraction for fused silica, eventually 

make this dep on wavelength to show dispersion 1.44 

  
d=10*10^3;                 %a bit less than 1 inch long surface (23.5*10^3 

for Aero-VIPA) 

  
w0 = sqrt(thickness*lambda/(pi*index))     %calculate ideal input spot size 

on back mirror of VIPA 
%w0 = 27;                     %Gaussian waist input (27 orig value) 

  
edge = 100;                %transition on window 
safety = 1;                %safety factor on the window 1 = 1/e value for 

both input and first reflection 
theta_in=atan((2*sqrt(2)*w0*safety+edge)/(thickness*2))         %calculate 

ideal input angle in rad 
theta_in*180/pi 
theta_in=1.01*pi/180;                                            %set input 

angle into the VIPA in radians (1.21 deg orig value) 

                            

                            
spatial_delay=2*index*thickness*cos(theta_in)  %*299792458*1/(FSR)*10^6;    

%distance in z to offset images in um 
x_offset = 2*index*thickness*sin(theta_in)  %distance in x to offset images 

in um (this should work), but sometimes it isn't the same as the other 
x_offset0 = (2*sqrt(2)*w0*safety+edge) 

  
% bounces = 57;               %number of VIPA spots to image (57 orig value) 
% d = bounces*x_offset        %distance between upper and lower most images 
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bounces = floor(d/x_offset)         %calculate number of bounces for a given 

input angle... 

  
last_image = (bounces-1)*spatial_delay   %location of end of VIPA in um 

  
boundary = 1;               %value 1 turns absorbing boundary on, 0 for off 

  
z0 = last_image+1.55*10^6                  %Distance to travel in z in 

microns 

  
expon = 6; 

  
nx = 2^12;                   %number of samples in x helpful in powers of 2 

(old value 2^13) 
delta_x = 8;%lambda;           %sample spacing (old value = 4) 

  
nz = 2^11;                   %number of samples in z (10 = old value) 
delta_z = z0/nz          %step size in z 

  
focus=0.75*10^6;                %imaging focal point in um 
lplace=last_image+0.75*10^6;                %lens placement in um 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%array of x and z values used for graphing 
x=delta_x.*(-nx./2):delta_x:delta_x.*(nx./2-1); 
z=0:delta_z:delta_z.*(nz-1); 

  
%air 
n1(1:nx)=1; 

  
%  
% figure 
% plot(x,n1) 

  
%step function 
ko = 2*pi/lambda;   %maybe use an n here? 
delta_kx = 2*pi*n1/(nx*delta_x); 
kx=delta_kx.*(-nx./2):delta_kx:delta_kx.*(nx./2-1); 
kz = sqrt(ko^2-kx.^2); 

  
%non-paraxial 
H=exp(-i*kz*delta_z); 

  
%first image 
E(1,:) = exp(-(x-d/2).*(x-d/2)/(w0)^2); 

  
%E(1,:) = exp(-(x).*(x)/(w0)^2); 

  
w = 20;         %taper value for boundary conditions (10 original value) 

  



159 

 

 

qq=1;           %image number 

  
correction = 0; 

  

  
for n=1:1:nz-1 
    if(abs((n)*delta_z-(lplace+focus+correction))<delta_z)  
        if(((n)*delta_z-(lplace+focus+correction)) < 0) 
            %just before image plane 
            %transition perfectly to the plane (different delta_z) 
            E(n+1,:) = ifft(ifftshift(fftshift(fft(E(n,:))).*exp(-

i*kz*abs((n)*delta_z-(lplace+focus+correction))))); 
            iplane=n+2  %I thought it should be just n+1.. 
        else      
            %transition to next slice (rest of the way), second hit 
            E(n+1,:) = ifft(ifftshift(fftshift(fft(E(n,:))).*exp(-

i*kz*(delta_z-abs((n-1)*delta_z-(lplace+focus+correction)))))); 
            n 
        end 
    else 
        %normal propagation 
        %Diffraction 
        E(n+1,:) = ifft(ifftshift(fftshift(fft(E(n,:))).*H)); 
    end 

     
    %multiply by pos_dep_phase (resulting from inhomogenous part of n) 
    Refraction 
    E(n+1,:) = E(n+1,:).*exp(-i*2*pi/lambda*delta_z*n1); 

     
    %simulate a lens to focus the VIPA 
    %http://www.iue.tuwien.ac.at/phd/kirchauer/node51.html 
    %phase change: exp(-i*ko*(x^2+y^2)/(2F)), we only have the x axis, F=(n-

1)(1/r1-1/r2) (but we only care about f) 

     
%     if(n==nz*3/4) 
    if(abs(n*delta_z-lplace)<=delta_z/2)  
        %place lens 
        n 
        %perfect lens 
        E(n+1,:) = E(n+1,:).*exp(i*ko*((x).*(x))/(2*focus)); 
        correction = n*delta_z-lplace; 
        %spherical lens 
        %E(n+1,:) = E(n+1,:).*exp(-i*ko*(sqrt((focus)^2-((x).*(x)))-

(focus))); 
    end 

     

     

     

     
    %Boundary code 
    if (boundary == 1) 
        for c=1:1:floor(nx/20) 
            E((n+1),c) = E((n+1),c)*exp(-(c-floor(nx/20))^2/w); 
        end 
        for c=(nx-ceil(nx/20)):1:nx 
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            E((n+1),c) = E((n+1),c)*exp(-(c-(nx-ceil(nx/20)))^2/w); 
        end 
    end 

     
    %add another image 
    if(mod(n*delta_z,spatial_delay)< delta_z & (qq*x_offset<d)) 
        E(n+1,:)=E(n+1,:)+exp(-(x-d/2+x_offset*qq).*(x-

d/2+x_offset*qq)/(w0)^2); 
        qq=qq+1; 
        if (qq == bounces) 
            disp('end VIPA, location:') 
            n*delta_z 
            n 
        end 
    end 

     
end 

  

  
%make plots 
figure 
pcolor(z,x,abs(E)'); colormap((gray)); shading interp; 

  

  
figure 
plot(abs(E(iplane,:))) 
title('abs(E) at image plane') 
xlabel('distance (um)') 
ylabel('magnitude of E') 

10 Appendix C: VIPA spectral and temperature dependence 

 
%VIPA FSR changes due to fused silica index of refraction changes 
%spectral (fused silica dispersion) 
%temperture (index of refraction change with temp and VIPA thickness) 

  
close all 
clear all 

  
lambda=0.750:.0001:0.850; 

  
for ci=1:length(lambda) 
    n(ci)=sqrt(1+0.696166300*lambda(ci)^2/(lambda(ci)^2-4.67914826*10^-

3)+0.407942600*lambda(ci)^2/(lambda(ci)^2-1.35120631*10^-

2)+0.897479400*lambda(ci)^2/(lambda(ci)^2-97.9340025)); 
end 

  
lambda0=0.810; 
n0=sqrt(1+0.696166300*lambda0^2/(lambda0^2-4.67914826*10^-

3)+0.407942600*lambda0^2/(lambda0^2-1.35120631*10^-

2)+0.897479400*lambda0^2/(lambda0^2-97.9340025)); 
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c=3*10^8; 

  
FSR0=890.4*10^6*28 

  
t0=c/(FSR0*2*n0) 

  
FSR=c./(2.*t0.*n); 

  
delta_FSR=FSR-FSR0; 

  
figure 
plot(lambda,n) 
ylabel('index of refraction') 
xlabel('wavelength (\mum)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda,n-n0) 
ylabel('\delta index of refraction') 
xlabel('wavelength (\mum)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda,FSR) 
ylabel('VIPA FSR') 
xlabel('wavelength (\mum)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda,delta_FSR) 
ylabel('\delta VIPA FSR') 
xlabel('wavelength (\mum)') 
set(gcf,'position',[700,100,800,800]) 

  
Show how change in VIPA FSR affects mixing of modes in VIPA-only pulse 

shaping 

  
clear n,ci,FSR 

  
lambda0=0.810; 
c=3*10^8; 
n0=sqrt(1+0.696166300*lambda0^2/(lambda0^2-4.67914826*10^-

3)+0.407942600*lambda0^2/(lambda0^2-1.35120631*10^-

2)+0.897479400*lambda0^2/(lambda0^2-97.9340025)); 
FSR0=890.4*10^6*28 
t0=c/(FSR0*2*n0) 
lambda2=zeros(1000,1);     %array length determines how many steps to take in 

the horizontal direction (each step is another mode of the VIPA) 

  
lambda2(1) = lambda0;   %start at the center 

  
%manually calculate first values 
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n(1)=sqrt(1+0.696166300*lambda2(1)^2/(lambda2(1)^2-4.67914826*10^-

3)+0.407942600*lambda2(1)^2/(lambda2(1)^2-1.35120631*10^-

2)+0.897479400*lambda2(1)^2/(lambda2(1)^2-97.9340025)); 
FSR(1)=c./(2.*t0.*n(1)); 
%delta f calculations 
delta_f(1)=(FSR(1)/(890.4*10^6)-28)*(890.4*10^6); 
total_f(1)=delta_f(1); 

  
for ci=2:length(lambda2) %VIPA step number (horizontal motion) 
    %calculate next wavelength (from changing VIPA FSR) 
    v=c/(lambda2(ci-1)*10^-6);                %calculate last optical 

frequency from wavelength in um 
    lambda2(ci)= (c/(v-FSR(ci-1)))*10^6;      %add VIPA FSR and calculate 

next wavlength in um 
    delta_lambda(ci)=lambda2(ci)-lambda2(ci-1); 

     

     
    n(ci)=sqrt(1+0.696166300*lambda2(ci)^2/(lambda2(ci)^2-4.67914826*10^-

3)+0.407942600*lambda2(ci)^2/(lambda2(ci)^2-1.35120631*10^-

2)+0.897479400*lambda2(ci)^2/(lambda2(ci)^2-97.9340025)); 
    FSR(ci)=c./(2.*t0.*n(ci)); 
    %delta f calculations 
    delta_f(ci)=(FSR(ci)/(890.4*10^6)-28)*(890.4*10^6); 
    total_f(ci)=total_f(ci-1)+delta_f(ci); 
end 

  

  
figure 
plot(delta_lambda) 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda2) 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda2,n) 
xlabel('wavelength (\mum)') 
ylabel('frequency (Hz)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda2,FSR) 
xlabel('wavelength (\mum)') 
ylabel('frequency (Hz)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda2,delta_f) 
xlabel('wavelength (\mum)') 
ylabel('frequency (Hz)') 
set(gcf,'position',[700,100,800,800]) 

  
figure 
plot(lambda2,total_f) 
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xlabel('wavelength (\mum)') 
ylabel('frequency (Hz)') 
set(gcf,'position',[700,100,800,800]) 

 

11 Appendix D: Calculating β-BaB2O4 phase matching bandwidth 

 

 The beta barium borate, β-BaB2O4, (BBO) crystal used in the cross-correlation setup is 5 

mm thick.  This thick crystal was used to increase the sensitivity of the cross-correlator since the 

output of the VIPA-only line-by-line pulse shaper is so weak at only 30 μW.  The longer the 

interaction length of the signal and reference beams, the less optical bandwidth of the signal that 

is detected.  This reduction in bandwidth is due to differences in the index of refraction between 

the generated second harmonic light and the signal and reference.  To begin this analysis, the 

geometry of the BBO crystal is examined. 

 

 
 

Figure 11.1: Beam geometry inside BBO crystal.  The details of how these beams are 

imaged inside the BBO crystal are used to calculate the active region, L, inside the crystal. 
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The full length of the crystal alone does not determine the bandwidth of the cross-correlation 

signal.  Imagine a long crystal with beams propagating through it, only when these beams 

overlap one another, or interact with one another, is a cross-correlation signal created.  The 

beams interact with one another while the separation between the beams is less than the radius, 

w, of the beam.  Gaussian beam propagation yields the spot size as a function of the propagation 

direction, z, to be 
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where w0 is the beam waist radius of the spot at the focus and ZR is the Rayleigh range of the 

signal and reference calculated by 
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where λ is the wavelength.  The separation, s, between the modes is calculated geometrically to 

be 
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(11.3) 

 

 

Equations (11.1) and (11.3) are set equal and rearranged to solve for z 
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Note that this relation is valid only when θ > λ/π.  The interaction length, L, can now be solved 

from z 

 )cos(2 zL   
(11.5) 
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This calculation for L assumes that the crystal is thicker than L.  If the crystal is thinner than L, 

then the crystal itself limits this interaction length.   

 

 

 From the beam geometry, we can calculate the beam converge angle (θbeam = 0.033 rad) 

and the angle each beam is from the optical axis (θ = .1 rad).  The spot size at the focus can be 

calculated to be 

 mw
beam





77.70   (11.6) 

 

 

Where λ is the wavelength equal to 810 nm.  From this we can calculate the Rayleigh range 

using equation (11.2) to get ZR =0.234 mm.  These values can now be used to calculate the active 

length using equation (11.5) to yield L = 0.1642 mm.  This interaction length can then be used to 

calculate the phase matching bandwidth.  Note that spherical aberration and non-paraxial 

 
 

Figure 11.2: Details of signal and reference beams as they are focused to the BBO crystal.  

The physical dimensions of the beams in addition to the converging angle of each beam 

θbeam are used to calculate the Rayleigh Range of the beams inside the BBO crystal. 
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imaging effects have been ignored in this analysis which is a reasonable approximation since the 

signal and input beams are close to the optical axis and imaged using a lens with an f number of 

6. 

 The phase mismatch between the generated second harmonic light and the signal and 

reference beam is [42] 

 02
[ (2 ) ( )]k n n

c


     

(11.7) 

 

 

where ω0 is the input frequency, c is the speed of light, n(2ω) is the index of refraction for the 

doubled frequency and n(ω) index of refraction for the input frequency.  Convert this to a 

function of wavelength using the relation 

 2
c

 


  
(11.8) 

 

 

This yields the expression for phase mismatch as a function of wavelength 

 0 0

0

4
[ ( ) ( / 2)]k n n


 


    (11.9) 

 

 

Consider what the phase mismatch will be at λ=λ0+δλ.  Keep in mind that for a given change in 

wavelength δλ there will only be a change of δλ/2 in the second harmonic signal so the phase 

mismatch becomes 
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If it is assumed that the process is phase matched at λ0, then n(λ0)-n(λ0/2) = 0 and the above 

equation simplifies to 
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The intensity of the generated second harmonic signal is 

 
2 2 2 2

2 0 sin ( )
2

kL
I I L c 


   

(11.12) 

 

 

where I is the intensity of the input, L is the interaction length and Γ contains constants that scale 

the intensity correctly such as the effective nonlinear coefficient for BBO [42].  The phase 

matching bandwidth can now be calculated from this intensity by finding what wavelength 

causes this peak intensity to be attenuated by a factor of 2.  This yields half of the FWHM.  By 

doing this for both sides of the center, the FWHM can then be calculated.  To do this, consider 

the argument of the sinc squared function.  Solve for what value of the argument of the sinc 

squared function is equal to 0.5 ((sin(1.39)/1.39)^2 =0.5).  This means we have half the intensity 

when the argument of the sinc squared function becomes 

 1.39
2

kL
  

(11.13) 

 

 

To solve for the phase matching bandwidth of the BBO crystal, set the phase mismatch when 

λ=λ0+δλ and solve for δλ.  This occurs when the intensity is at half yielding 
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Finally, as mentioned before, to turn this into FWHM we must double it (δλ is only one side 

away from λ0). 
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To calculate how the index of refraction varies as a function of wavelength we need the 

Sellmeier equations for a BBO crystal [48] 
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(11.17) 

 

 

Where λ is in microns.  Solve for n and take the derivative with respect to wavelength to get the 

relation 
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The second harmonic light will use the ordinary index of refraction n0 while the fundamental will 

use the extraordinary index of refraction so we need to solve 
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(11.19) 

 

 

Use these values to calculate the FWHM of the phase matching bandwidth 
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The absolute value is taken since only the magnitude of the difference between the dn/dλ values 

is needed.  The calculated phase matching bandwidth (262 nm) is 26 times broader than the 

bandwidth of our pulse shaper output (10 nm FWHM) so the full output is measured.  This 

means the measured SHG signal from the cross correlation is an accurate representation of the 

signal being measured by the reference.  Or to put this another way, the spectral filter function 
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H(Ω) [42] that represents the SHG process is sufficiently broad in comparison to the signal so 

there is minimal distortion in the measurement. 


