
Modeling Solar Wind Mass-Loading Due to Dust in the

Solar Corona

by

Anthony P. Rasca

B.A., Carroll College, 2007

M.S., University of Colorado at Boulder, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2013



This thesis entitled:
Modeling Solar Wind Mass-Loading Due to Dust in the Solar Corona

written by Anthony P. Rasca
has been approved for the Department of Applied Mathematics
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Collisionless mass-loading was first discussed to describe interactions between the solar wind

and cometary atmospheres. Recent observations have led to an increased interest in mass-loading

occurring in the solar corona, due to both sungrazing comets and collisional debris production

by sunward migrating interplanetary dust particles. Direct coronal wind observations from future

space missions, such as Solar Probe Plus, may reveal such dust sources, motivating the need of a

theoretical model for mass-loading in the coronal wind.

This dissertation begins with developing a simple 1D hydrodynamic solar wind mass-loading

model, demonstrating the effects of mass-loading dust into the wind. Second, the mass-loading

model used in the 1D code is adapted for use with an MHD Solar Corona (SC) component of the

Space Weather Modeling Framework (SWMF), with initial results compared to 1D results. The

new SC component is then used for a sungrazing cometary dust source example, utilizing orbital

and mass loss estimates from the recent sungrazer, Comet C/2011 W3 (Lovejoy). Both a point

source and tail source (a dust source spread across a syndyne/synchrone-defined tail) of dust are

used to generate a mass-loaded coronal wind. Last, we use results from our sungrazing comet

example to show how solar wind properties will appear to a solar probe passing downwind of a

cometary dust source.
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Tóth, for all their hospitality during my brief stay in Ann Arbor, Michigan and their continued

assistance with the SWMF and BATS-R-US code. Many of my results would not have been possible

without their help.

Last, I would like to thank all my close friends, who have supplied much support and encour-

agement over the years. In particular: Former/current officemates Lois Smith and João Hooks, who

were always there to grab tea or coffee with and always willing to listen during times of frustration;

Fellow mathematics friends Ben Dunham, Karen Farrell, Adam Fox, Jerrad Hampton, Phil Lenzini,



vi

Adam Rose, Amrik Sen, and Adrean Webb, who have always been great graduate school company,

whether it be outside the office on an adventure or while working hard together on our course and

prelim studies; My hometown friends Amanda Sharp, who helped me make my initial trek out to

Boulder for graduate school, and Manfred Mueller, Tatiana Mueller, Solveig Osborne, and Kevin

Pease, who make me feel like I still have second home outside Colorado.



vii

Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Mass-Loading Model for Cometary Atmospheres . . . . . . . . . . . . . . . . . . . 2

1.2.1 An Axially-Symmetric Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Mass-Loading Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Mass-Loading Solutions in Cometary Atmospheres . . . . . . . . . . . . . . . 6

1.3 Dust Distribution Modeling in the F-Corona . . . . . . . . . . . . . . . . . . . . . . . 8

2 A 1D Hydrodynamic Model for Mass-Loading in the Solar Wind 11

2.1 Mass-Loading Effects in a Compressible Flow . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Numerical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Formulating a Hyperbolic System . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Godunov’s Explicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Approximate Solution to the Riemann Problem . . . . . . . . . . . . . . . . . 20

2.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Mass-Loading in a Uniform Solar Wind . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Mass-Loading Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Mass-Loading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Higher-Order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Implicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



viii

3 Mass-Loading for a Spherically Symmetric Coronal Wind 31

3.1 Establishing a 1D Coronal Wind Model . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 The Parker Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Transition to a Physical Transonic Solar Wind . . . . . . . . . . . . . . . . . 33

3.2 Solving for a 1D Steady-State Coronal Wind . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Numerical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Steady-State Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Linking the Transonic Coronal Wind and Expanding Cometary Atmospheres 41

3.3 Mass-Loading Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Case 1: Pre-Sonic Point Mass-Loading Regions . . . . . . . . . . . . . . . . . 45

3.3.2 Case 2: Post-Sonic Point Mass-Loading Regions . . . . . . . . . . . . . . . . 45

3.4 Mass-Loading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Need for an Advanced Solar Wind Model . . . . . . . . . . . . . . . . . . . . . . . . 47

4 3D MHD Modeling 50

4.1 SWMF and BATS-R-US Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Model Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 A Solar Corona Component of SWMF . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 SC Component Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Computational Grid and Boundary Conditions . . . . . . . . . . . . . . . . . 58

4.2.3 A Steady-State Coronal Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Comparing 1D Hydrodynamic Results with MHD Simulations . . . . . . . . . . . . . 63

4.3.1 Differences Between 1D Hydrodynamic and 3D MHD Steady-State Winds . . 63

4.3.2 Mass-Loading Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Mass-Loading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



ix

5 A Cometary Dust Source Application 73

5.1 Sungrazing Comets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Mass-Loading Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Comet Lovejoy Orbital Characteristics and Mass Loss Estimate . . . . . . . . 74

5.2.2 Mass-Loading Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Mass-Loading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Dust Tail Dynamics and Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Mass-Loading Dust Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Syndyne/Synchrone-Defined Dust Tail . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 Mass-Loading Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Mass-Loading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 A Solar Probe’s View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Summary and Conclusions 94

Bibliography 100



x

Tables

Table

3.1 Comparisons of advective time steps versus source time steps, resulting from source

term splitting, with varying spatial steps N . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Mass-loading cases in the 1D coronal wind. . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Mass-loading cases in the 3D coronal wind. . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Mass-loading factor to local density ratios for the hydrodynamic cases. . . . . . . . . 66



Figures

Figure

1.1 A solution to the mass-loaded solar wind along the z-axis (in cgs units, with the ex-

ception of velocity) due to pick-up ions in a cometary atmosphere, with the cometary

nucleus to the right and the solar wind originating from the left. Images are repro-

duced from Biermann et al.[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Dust grain radial distributions from theoretical modeling of grain trajectories via

P-R drag and collisions. Distributions vary by dust grain composition and initial

orbital eccentricities. Images are reproduced from Mann et al.[28]. . . . . . . . . . . 9

1.3 Diagram demonstrating the dust-free zone that occurs in the corona near the Sun.

Dust particles are still capable existing in the dust-free zone via other means, such

at larger objects (e.g. sungrazing comets, asteroids) releasing dust particles through

evaporation and sputtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 A de Laval nozzle example, used to accelerate an initially subsonic compressible flow

to supersonic speeds. The subsonic flow is accelerated through a contracting cross-

sectional area until it becomes supersonic, at which point the the tube expands

to further accelerate the fluid. We also see how temperature and velocity change

throughout this process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



xii

2.2 Godunov’s scheme discretizes using initial condition data and cell-averaging across

each cell width to create a piecewise constant set of data. Discontinuities are formed

at each cell interface, requiring a solution to the Riemann problem at each one.

Image is reproduced from Toro[46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 New steady-states generated from mass-loading a uniform solar wind on the interval

1 × 104 km ≤ r ≤ 3 × 104 km. Shown are the solar wind velocity, mach number,

and mean molecular weight. The mach number shows that the solar wind becomes

supersonic at the end of the mass-loading region. . . . . . . . . . . . . . . . . . . . . 25

2.4 The effective area calculated for steady-states in Figure 2.3, composed primarily of

a contracting area across the mass-loading region, due to dust particles being loaded

into the solar wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 MUSCL-type schemes discretize using initial condition data and cell-averaging across

each cell width to create a piecewise linear set of data. Discontinuities are formed at

each cell interface, once again requiring a solution to the Riemann problem at each

one. Image is reproduced from Toro[46]. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The solution topology for the radial velocity of the solar wind, originally derived by

Parker[34], which includes the one transonic wind solution. The dashed curve shows

how the sound speed a changes with respect to r, where M is used for the proton

mass in this case. Image is reproduced from Parker[34]. . . . . . . . . . . . . . . . . 34

3.2 A radial velocity steady-state coronal wind solution using N = 100 and Q0 = 3 ×

105 erg cm−2 s−1. This steady-state solution not only provides a slower-than-desired

coronal wind, but also generates unwanted accretion near the solar surface. This is

an example of the negative effects of using a larger spatial step size ∆r. . . . . . . . 40

3.3 The steady-state coronal wind, solved as described using 1200 spatial steps. The

marked sonic point corresponds with choke point of the effective area. . . . . . . . . 42



xiii

3.4 Mach number curves (bottom left) and effective area curves (bottom right) pro-

duced in Gombosi et al.[11] for expanding cometary atmospheres, compared with

the coronal wind velocity and effective area. The various χ values represent dust

to gas production rate ratios and β values are friability parameters. The effective

area (in arbitrary units) for Figure 3.3 has been calculated and overlaid to show the

de Laval nozzle effect taking place in the solar corona. Like the expanding coronal

wind, expanding cometary atmospheres behave similar to a fluid passing through a

de Laval nozzle, but as a result of different physical processes. Bottom images are

reproduced from Gombosi et al.[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Steady-state solutions for radial velocity and mean molecular weight (assuming

micron-sized dust particles) with mass-loading occurring in four different spatial in-

tervals away from the Sun. Sonic points are marked for both the undisturbed coronal

wind and the new steady-states. Note the difference in deceleration/acceleration be-

tween cases when mass-loading starts before the undisturbed sonic point and when

it begins after the sonic point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 The effective area profiles (in bold) for all four mass-loaded steady-states and the

initial condition plotted against the velocity and mean molecular weight profiles

from Figure 3.5. The effective area uses arbitrary units and has been scaled to fit

within the plot ranges. In agreement with area expansion/contraction effects for

compressible flows, sharp changes between expanding Aeff and contracting Aeff in

the last two curves correspond with both the shocks and second sonic points in the

appropriate velocity profiles. For the first two mass-loaded curves we only get one

change in A′eff , corresponding with the single sonic point. . . . . . . . . . . . . . . . 49



xiv

4.1 Two examples of refined BATS-R-US grids: (top) a 3D grid with a 1x1x2 block

structure and 8x8x8 cell structure, and (bottom) a 2D grid with a 2x2 block structure

and 4x4 cell structure, both being partially refined. Images are reproduced from

Hansen et al.[14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Performance of BATS-R-US as a function of processors used when run on various

supercomputers. Image is reproduced from BATS-R-US and CRASH User Manual[5]. 55

4.3 A starting computational grid shown in the xz-plane for determining an initial stead-

state coronal wind. The initial AMR regions are located near the solar surface and

encompass the current sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 The radial velocity steady-state in the xz-plane from solving the SC component

(Equations 4.10-4.14) using the computational grid shown in Figure 4.3. The Sun’s

outline is drawn in the center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 The radial velocity steady-state from Figure 4.4 depicted along the +x-axis. Due to

symmetry from our boundary conditions, the radial velocity profiles should be equal

for any radial direction in the xy-plane. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Magnetic field lines plotted over the radial velocity steady-state from Figure 4.4.

The top panel shows magnetic field lines in the xy-plane, forming a spiral structure

resulting from solar rotation. The bottom panel shows the radial line structure in

the xz-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 The magnetic field strength B from the Figure 4.6 depicted in the slow solar wind

along the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Radial velocity (top) and mean mass (bottom) profiles for Case 1, mass-loading the

solar wind between 4.5R� ≤ r ≤ 5.5R�. Both profiles correspond to the subsonic

cases used in Figure 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 The spatial grid in the xz-plane used for the post-sonic point case, with a z-centered

AMR region encompassing the mass-loading region. . . . . . . . . . . . . . . . . . . 68



xv

4.10 Radial velocity (top) and mean mass (bottom) profiles for Case 2, mass-loading the

solar wind between 7R� ≤ r ≤ 8R�. Both profiles correspond to the supersonic

cases in Figure 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 Magnetic field lines plotted over the radial velocity in the xz-plane for both Case

1 (top) and Case 2 (bottom). A divergence of magnetic field lines around each

mass-loading region is evident in both cases. . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 The magnetic field strength B plotted along the x-axis for both Case 1 (top) and

Case 2 (bottom). Both cases show a magnetic buildup preceding each mass-loading

region, followed by a drop in field strength, corresponding to diverging magnetic field

lines in the regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 The growing coma and tail of Comet C/2011 W3, following a day after a close

approach to the Sun. Images are reproduced from Sekanina and Chodas[44]. . . . . . 74

5.2 Grid refinements in the xy-plane for three different comet locations, corresponding

the post-perihelion times tC = 12, 18, and 24 hours. . . . . . . . . . . . . . . . . . . 76

5.3 Radial velocity results from using the SC component to place a dust point source

along a sungrazing cometary orbit (white curve) in the xy-plane, with a mass loss

rate of 1.7× 104 kg/s. The four panels correspond to tC = 6, 12, 18, and 24 hours. . 78

5.4 The dust tail of Comet C/2006 P1 (McNaught), viewed from the Southern Hemi-

sphere in 2007. Views of its magnificent tail gained it the nickname the “Great

Comet of 2007”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xvi

5.5 Examples of a cometary synchrone (left) and syndyne (right). Dashed lines cor-

respond to particle trajectories for their respective synchrone or syndyne. For the

synchrone, each particle trajectory corresponds to a difference dust particle species,

with each species defined by their β value, but with all particles ejected at the same

time/location (perihelion, in the illustrated example). For the syndyne, all trajecto-

ries are for the same species of particle, but each corresponds to a different time of

ejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 An example of a syndyne/synchrone-defined dust tail along Comet C/2011 W3’s

orbit. The curves, corresponding to 4 hours after perihelion, are generated with the

assumption that various species of dust particles are ejected from the cometary body

at several points in time beginning at perihelion. . . . . . . . . . . . . . . . . . . . . 81

5.7 Tail-shaped mass-loading regions and particle distributions used to update results for

the four cases from Figure 5.3. The particles are colored according to their diameter

d, ranging from d = 0.1µm to d = 100µm. The solar surface, cometary orbit, and

outer boundary of the SC component domain are drawn. . . . . . . . . . . . . . . . . 83

5.8 A wider view of the tail-shaped mass-loading region and particle distribution for the

tC = 6 hours case, showing the dust tail in its entirety. . . . . . . . . . . . . . . . . . 84

5.9 Radial velocity results from using the SC component to place a dust tail-shaped

source along a sungrazing cometary orbit (white curve) in the xy-plane, using a

mass loss rate of 1.7 × 104 kg/s. The four panels correspond to tC = 6, 12, 18, and

24 hours after perihelion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Radial velocity results from using the SC component to place a dust tail source along

a sungrazing cometary orbit (white curve) in the xy-plane, using a mass loss rate

of 1.7 × 105 kg/s. The four panels correspond to tC = 6, 12, 18, and 24 hours after

perihelion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Undisturbed radial velocity plot of the solar corona in the xy-plane, with three SPP

approaches overlaid and the four post-perihelion cometary locations of our focus. . . 89



xvii

5.12 Radial velocity (left) and wind density (right) plots for tC = 12 and tC = 18 hours

from Figure 5.10. Each has their respective nearest downwind SPP path from Figure

5.11 plotted, along with three similar paths. . . . . . . . . . . . . . . . . . . . . . . . 90

5.13 The solar wind radial velocity (left) and density (right) as seen along the orbits

drawn in Figure 5.12 for tC = 12 and tC = 18 hours. . . . . . . . . . . . . . . . . . . 92

5.14 Magnetic field strength B along four solar probe paths for tC = 12 (top) and tC = 18

(bottom) hours from Figure 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Chapter 1

Introduction

1.1 Motivation

The dynamics of charged dust particles picked up by the solar wind and other plasma envi-

ronments is a growing area of interest, with several future space missions still focusing on exploring

dusty plasma environments. This is in addition to past and present work observing and model-

ing dusty plasma environments around planetary objects such as the Moon, planetary rings, and

comets (Horányi[18]). Understanding these dusty plasma environments around the solar system

is important for space exploration. Additionally, they are important for engineering applications

since dust impacts can cause physical damage to operating spacecraft.

In regards to observations, there are several current missions, such as the New Horizons and

the Cassini-Huygens space probes, where the Student Dust Counter (SDC) and Cosmic Dust Ana-

lyzer (CDA) instruments are helping build a better picture of dust environments in the solar system

(Horányi et al.[17]). Closer to the Sun, the Mercury Surface, Space Environment, Geochemistry

and Ranging (MESSENGER) mission is capable of measuring charged particles around and em-

anating from Mercury. Additionally, a number of missions, such as the Lunar Atmospheric and

Dust Environment Explorer (LADEE), are set to explore the dusty plasma environment around

the Moon (Grün et al.[13]).

Current exploration of dusty plasma environments omits charged dust particles from the dust

cloud forming the F-corona near the Sun. There are theoretical studies modeling the size, density,

distribution, and trajectories of dust grain particles migrating in towards the Sun (Mann et al.[28]),
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which can then be ejected as β-meteoroids. Dust particles can also find themselves in the outer solar

atmosphere, known as the corona, via larger bodies such as sungrazing comets, which release dust

and gas on approach to the Sun. Upon being ionized, these particles can eventually be detected

downstream by space probes such as the STEREO/WAVES instrument (S/WAVES) (Meyer-Vernet

et al.[30]). There are plans to explore the solar corona and take direct measurements, such as the

Solar Probe Plus (SPP) mission, but they will not begin for several years (SPP is not scheduled to

launch until 2018).

This timespan devoid of direct observations in the solar corona provides the opportunity

for further theoretical modeling of the coronal dusty plasma environment and the impacts dust

particles have on the coronal wind. Additionally, solar satellites such as the Solar and Heliospheric

Observatory (SOHO) are often discovering and observing sungrazing comets, which act as dusty

probes for the solar corona, providing useful observation data prior to any direct observations. For

example, a recent study of the sungrazing comet C/2011 W3 (Lovejoy) shows changes in its dust

tail revealing part of the Sun’s magnetic structure that were previously unobservable (Schrijver et

al.[43]).

1.2 A Mass-Loading Model for Cometary Atmospheres

A major motivating paper for our study is by Biermann et al.[4]. They introduced collisionless

mass-loading, the addition of mass via ionized particles (pick-up ions), in the solar wind, showing

the effects of a cometary atmosphere interacting with the solar wind, eighteen years before any

direct measurements were taken. Their work forms the foundation of our study modeling mass-

loading in a fluid solar wind.

Biermann et al.[4] use a purely fluid, or hydrodynamic, model for the stream of protons and

electrons that make up the solar wind. There are various fluid models for different circumstances,

such as the Navier-Stokes equations, which are often used in a terrestrial setting and involve incom-

pressible viscous flows. The supersonic solar wind is not incompressible, nor does viscosity play a

significant role. Instead, a more fundamental hydrodynamic model must be used, known as Euler’s
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equations.

Euler’s equations are a set of hyperbolic partial differential equations in space and time,

representing the conservation of mass, momentum, and energy for a fluid being being transported

in a control volume. In conservative homogeneous form, they are

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

∂ρu

∂t
+∇ · (ρu⊗ u + pI) = 0 (1.2)

∂E

∂t
+∇ · [u (E + p)] = 0, (1.3)

where ρ, u, and p are the fluid density, velocity vector, and pressure, respectively, and where ⊗ is

the tensor product, mapping Rn → Rn×n, used to represent each surface stress term. The energy

E is independently defined using these dependent variables,

E =
1

2
ρ|u|2 +

p

γ − 1
, (1.4)

allowing Equations 1.1-1.3 to be written in terms of either conserved variables (ρ, ρu, E)> or

primitive variables (ρ, u, p)>. The constant γ is the adiabatic index, or heat capacity ratio,1

which tells us how easily heat is dispersed within a fluid. Equations 1.1-1.3 also use the divergence

operator ∇, which in 3D Cartesian coordinates is

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)>
. (1.5)

Through the course of this study, we will see ∇ defined for various other coordinate systems.

It is important to note that Equations 1.1-1.3 are for a single-fluid case, which assumes

all particles making up the fluid have the same in size and mass. Multi-fluid models require an

additional set of conservation equations for each particle species in the fluid. The solar wind,

however, is made of at least two species of particles, protons and electrons, along with some minor

ions.2 To avoid using an extremely computationally-intensive multi-fluid model, one particle species

1 γ varies according to how well heat is exchanged in a fluid. For an adiabatic flow, where there is no heat
exchange, γ = 0. For an isothermal flow, where heat exchange is instantaneous (constant temperature), γ = 1.

2 A fluid of charged particles become susceptible to magnetic and electric fields, making it a magnetohydrodynamic
(MHD) fluid. A simpler hydrodynamic model serves as a starting point for the solar wind.
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is assumed, with the particle mass being the average of the particles present. Since the solar wind

has approximately equal quantities of protons and electrons with masses mp >> me, respectively,

the mean particle mass µ is assumed to be

µ =
1

2
mp. (1.6)

This single-fluid and mean particle mass assumption is used for the undisturbed solar wind in

Biermann et al.[4]. A mass-loaded solar wind has a varying mean particle mass.

1.2.1 An Axially-Symmetric Fluid Model

For the specific case of Biermann et al.[4], Equations 1.1-1.3 are altered for a solar wind/cometary

case. As a uniform solar wind approaches an approximately spherical cometary atmosphere and

body, or nucleus, the dead-on solar wind streamline will form an axis connecting the Sun to the

cometary nucleus (which they refer to as the z-axis, pointing positively away from the Sun). All

off-axis streamlines do not necessarily collide with the nucleus, but are allowed the change in a

radial direction. Hence, a simple 1D model would not be completely appropriate for this case, but

instead an axially-symmetric model is used.

An axially-symmetric model uses the cylindric ∇ operator and velocity vector u,

∇ =

(
∂

∂z
,

1

r

∂

∂r
r

)>
(1.7)

u = (uz, ur)
> , (1.8)

where r is the direction perpendicular to the z-axis. They also introduce a fourth conservation law

for solar wind particle number density n in cm−3 and collisionless3 mass-loading source terms

Sd = (Sd0, Sd1, Sd2, Sd3)> (1.9)

to get the set of axially-symmetric equations

∂n

∂t
+

∂

∂z
(nuz) +

1

r

∂

∂r
(rnur) = Sd0 (1.10)

3 The ionization process used, photoionization, involved no physical interactions, or collisions, between solar wind
particles and pick-up ion particles.
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∂ρ

∂t
+

∂

∂z
(ρuz) +

1

r

∂

∂r
(rρur) = Sd1 (1.11)

∂ρuz
∂t

+
∂

∂z

(
ρu2

z

)
+

1

r

∂

∂r
(rρuzur) = Sd2z (1.12)

∂ρur
∂t

+
∂

∂z
(ρuzur) +

1

r

∂

∂r

(
rρu2

r

)
= Sd2r (1.13)

∂E

∂t
+

∂

∂z
[uz (E + p)] +

1

r

∂

∂r
[rur (E + p)] = Sd3. (1.14)

Equation 1.10 for the conservation of particle number is present due to the addition of a third

species to the solar wind from cometary gas particles. All species of particles share the same ρ,

u, p, and n variables, but n and ρ can be used to calculate the local mean particle mass in the

mass-loaded wind, which allows an estimate of how many pick-up ions are present without resorting

to a multi-fluid model.4

1.2.2 Mass-Loading Model

The mass-loading source terms contained in Sd are used to account for changes in the solar

wind when particles are ionized and have their mass, momentum, and energy added to the flow.

Biremann et al.[4] focused on three primary modes of ionization: photoionization, charge exchange,

and electron impact. Mass-loading by photoionization means the particles add their mass to the

system and as a consequence, if they are moving with non-negligible velocity relative to the fluid,5

their momentum and energy as well. For the other two modes of ionization, interactions with solar

wind particles already in the flow make calculating their source contributions less trivial.

According to Biremann et al.[4], at the heliospheric distances within one astronomical unit

(AU), the distance used in their study, both charge exchange and electron impact become negligible

relative to photoionization, allowing the dust source terms Sd = (Sd0, Sd1, Sd2, Sd3)> to be defined

using only the photoionization process,

Sd0 = Pd (1.15)

Sd1 = Pdρd (1.16)

4 Later we will see that splitting ρ into a proton/electron density ρH and ionized dust density ρdi has the same
effect as introducing n.

5 For most cases in this thesis mass-loading particles are assumed to be traveling at negligible velocities relative
to the solar wind prior to ionization.
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Sd2z = Pdρdudz (1.17)

Sd2r = Pdρdudr (1.18)

Sd3 =
1

2
Pdρd|ud|2, (1.19)

where Pd, ρd, and ud = (udz , udr)> are the neutral dust particle number ionization rate (dependent

on the neutral particle density and probability of photoionization), mass density, and velocity

vector, respectively. From here on, Pdρd will be represented by the mass-loading factor,

Pml = Pdρd, (1.20)

defining the mass-loading rate per volume. This results from the ionization rate and mass density

appearing frequently together. The particle number density then becomes Sd0 = Pml/ρd.

1.2.3 Mass-Loading Solutions in Cometary Atmospheres

Figure 1.1 shows a particular solution of Equations 1.10-1.14 along the z-axis, using cometary

ion particle mass mC and velocity udz fixed values

mC = 30mp (1.21)

udz = −1 km/s, (1.22)

respectively, and undisturbed (denoted with a 0 subscript) solar wind parameters

ρ0 = 3mp/cm−3 (1.23)

uz0 = 400 km/s (1.24)

ur0 = 0 km/s (1.25)

p0 = 3.8× 10−11 dyn/cm2. (1.26)

The solution accurately portrays the structure of the outer cometary atmosphere sketched out in

their study, including the bow shock, where the solar wind initially transitions to a subsonic flow,

and the contact discontinuity, where streamlines originating from the Sun separate from those
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Figure 1.1: A solution to the mass-loaded solar wind along the z-axis (in cgs units, with the
exception of velocity) due to pick-up ions in a cometary atmosphere, with the cometary nucleus
to the right and the solar wind originating from the left. Images are reproduced from Biermann
et al.[4].
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originating from the comet’s nucleus. However, their solution ends at the contact discontinuity and

does not elaborate on what happens within the inner cometary atmosphere. The dynamics of the

inner atmosphere will be mentioned again in a later chapter and will be surprisingly relevant to

modeling the solar wind’s acceleration through the solar corona.

1.3 Dust Distribution Modeling in the F-Corona

A second motivating paper shows a dust cloud near the Sun, forming the F-corona, using

theoretical modeling (Mann et al.[28]). Originally theorized in observational studies, such as Mann

and MacQueen[27], Mann et al.[28] modeled how dust grains can migrate towards the Sun. Near

the Sun these dust grains can be observed via light scattering, alerting us to their presence. Sim-

ilar effects are observed in the form of the zodiacal light, or even on the lunar surface, an effect

called lunar horizon glow (Rennilson and Criswell[40]). The latter forms a major motivator for the

previously mentioned LADEE mission.

A dust grain’s ability to migrate towards the Sun depends on two forces: solar gravitation and

radiation pressure. Extremely small particles, sub-micron or less, have a large β ratio of radiation

pressure to gravity,

β =
Frad

Fgrav
, (1.27)

and can easily become overwhelmed by radiation pressure and be swept up in the form of β-

meteoroids. However, larger grains (1-100 µm in size, according to Mann et al.[28]) naturally

migrate inward due to Poynting-Robertson (P-R) drag, in which the radiation pressure affects the

angular momentum and energy of dust grains, causing them to slowly spiral towards the Sun.

Mann et al.[28] uses both P-R drag and collisions between particles to model dust grain

trajectories spiraling towards the Sun. Distributions with respect to radial distances from the Sun

are shown in Figure 1.2. Trajectories were modeled for a variety of dust grain sizes, compositions,

and initial orbital eccentricities. The abrupt cutoff occurring between 2-4 solar radii R� forms the

boundary of the dust-free zone, where particle-particle collisions dominate and the resulting smaller
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Figure 1.2: Dust grain radial distributions from theoretical modeling of grain trajectories via P-R
drag and collisions. Distributions vary by dust grain size, composition, and initial orbital eccen-
tricities. Images are reproduced from Mann et al.[28].
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Figure 1.3: Diagram demonstrating the dust-free zone that occurs in the corona near the Sun. Dust
particles are still capable existing in the dust-free zone via other means, such at larger objects (e.g.
sungrazing comets, asteroids) releasing dust particles through evaporation and sputtering.

particles get ejected as β-meteoroids.

Figure 1.3 shows the theorized dust-free zone. Dust grains spiraling towards the Sun that

reach this boundary get ejected (shown as hyperbolic dust particles and zodiacal dust particles

in the figure). However, larger objects passing very near the Sun, such as sungrazing comets and

asteroids, can deliver dust particles closer, where dust particles are ejected due to evaporation and

sputtering.

Our overall goal combines these two motivations: the idea of modeling mass-loading in the

solar wind and the known presence of dust near the Sun. We first aim to develop a 1D hydrodynamic

coronal wind model to use in conjunction with the mass-loading model by Biermann et al.[4]

and analyze the effects of a mass-loaded coronal wind. We will then expand on an existing 3D

magnetohydrodynamic (MHD) solar corona model to be used as a solar wind modeling tool for our

mass-loading problem.



Chapter 2

A 1D Hydrodynamic Model for Mass-Loading in the Solar Wind

Our primary goal is to develop a mass-loading component for a coronal wind environment.

Before jumping to such a complex plasma environment, it is necessary to begin modeling with the

most basic solar wind model. Like in Biermann et al.[4] it is best to begin with a uniform solar

wind, using the velocity, density, and pressure parameters from about 1 AU in the Sun’s equatorial

plane. Unlike Biermann et al.[4], having a generalized non-cometary mass-loading region such as

on a strictly radial interval (relative to the Sun) of pick-up dust particles allows for the reduction

to a simpler 1D hydrodynamic model.

The 1D version of Equations 1.10-1.14 is essentially the same, but with the only spatial

dimension being the radial distance1 r relative to the Sun. The resulting simplified conservation

equations for a flow through a cross-sectional area A = A (r) then become

∂n

∂t
+

1

A

∂

∂r
(Anu) = S0 (2.1)

∂ρ

∂t
+

1

A

∂

∂r
(Aρu) = S1 (2.2)

∂ρu

∂t
+

1

A

∂

∂r

(
Aρu2

)
+
∂p

∂r
= S2 (2.3)

∂E

∂t
+

1

A

∂

∂r
[Au (E + p)] = S3, (2.4)

where u is now the only velocity component and the Equations 2.2-2.4 are once again not dependent

on number density conservation, which is utilized to determine mean mass values. The source vector

S = (S0, S1, S2, S3)> retains only the mass-loading source terms S = Sd, which now only accounts

1 Note the change from the r used in the previous chapter.
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for a momentum source in the radial direction. These equations will form the basis of all our 1D

tests, with source term modifications introduced in the next chapter.

This chapter will demonstrate the basic mass-loading effects in a uniform solar wind, begin-

ning with a purely mathematical formulation, allowing for an initially qualitative description of the

effects a mass-loading source term can have. We will then describe a basic first-order numerical

method for solving Equations 2.1-2.4 and discuss results of adding a mass-loading region to the

domain. Last, we will discuss both potential higher-order numerical methods and potential implicit

schemes.

2.1 Mass-Loading Effects in a Compressible Flow

Prior to any numerical results, it is best to formulate a mathematical description that will

allow us to estimate the impact of suddenly adding mass to the system. While demonstrating

the dynamics of an inner cometary atmosphere, Gombosi et al.[12] showed that with a steady

flow through a cross-sectional area A and general sources in the momentum and energy equations

(S0 = S1 = 0), a single equation can be formed by eliminating dρ
dr and dp

dr to get

du

dr
= − u

1−M2

(
A′

A
+

1

p
S3 −

γ − 1

γ

1

pu
S4

)
, (2.5)

where M is the mach number

M = u

√
ρ

γp
. (2.6)

However, we are interested in the case where mass-loading source term are present in each conser-

vation equation. Using the same methods, we derive a more generalized form of Equation 2.5,

du

dr
= − u

1−M2

(
A′

A
− γ + 1

2γ

u

p
S2 +

1

p
S3 −

γ − 1

γ

1

pu
S4

)
, (2.7)

Having an equation in this form is useful for understanding the acceleration of a compressive

flow. For a steady flow through a cross-sectional area A we have ρuA = constant. Then

d

dr
(ρuA) = uA

dp

dr
+ ρA

du

dr
+ ρu

dA

dr
= 0 (2.8)

→ 1

ρ

dρ

dr
+

1

u

du

dr
+

1

A

dA

dr
= 0. (2.9)
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Combining the steady-state homogeneous (S2 = S3 = S4 = 0) mass and momentum equations

in 1D coordinates gives us ρududr + dp
dr = 0. Using the sound speed relation dp

dr = a2 dρ
dr (where we

introduce the sound speed a) and substituting into Equation 2.9 we get

du

dr
= − u

1−M2

1

A

dA

dr
. (2.10)

Now calling A in Equation 2.10 the effective area Aeff , we can compare it with Equation 2.7 and

form the relation

1

Aeff

dAeff
dr

=
A′

A
− γ + 1

2γ

u

p
S2 +

1

p
S3 −

γ − 1

γ

1

pu
S4, (2.11)

Where A is the purely geometrical area function. The source terms then have an effect on the area

that the flow sees, the effective area.

Changes in the cross-sectional area that a fluid flows through (or that it sees via the effective

area) is very important for compressible flows as it influences acceleration and deceleration. In

addition, the influences vary, depending on whether the flow is subsonic or supersonic. From the

relation in Equation 2.10, it is evident subsonic flows accelerate if and only if A is decreasing and

vice versa for supersonic flows. Figure 2.1 shows how this effect can be used to accelerate a flow

to supersonic velocities in a pinched tube called a de Laval nozzle. The compressible flow begins

subsonic and is accelerated to M = 1 at the bottleneck and is further accelerated with the following

area expansion.

For the specific case of a uniform 1D solar wind addressed in this chapter, there is a negligible

area expansion effect (A = constant),2 leaving the mass-loading terms to contribute solely to the

effective area. Furthermore, if the solar wind velocity is sufficiently large relative the neutral

particle speed, S2 will be the dominating source term of the three. This results in a contracting

contribution to the effective area due to mass-loading sources. Consequently, we should see a

decelerating supersonic wind and accelerating subsonic winds in any mass-loading regions.

2 On larger scales and/or at closer distances to the Sun, A cannot be ignored. Such situations will be discussed
in proceeding chapters
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Figure 2.1: A de Laval nozzle example, used to accelerate an initially subsonic compressible flow
to supersonic speeds. The subsonic flow is accelerated through a contracting cross-sectional area
until it becomes supersonic, at which point the the tube expands to further accelerate the fluid.
We also see how temperature and velocity change throughout this process.
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2.2 Numerical Description

We now describe a numerical method for solving Equations 2.1-2.4. There are numerous

numerical solvers for time-dependent PDEs, both implicit and explicit, with various orders of

accuracy. Explicit schemes advance the solution in time only using information from previous time

steps. A simple example is the first-order explicit upwind scheme for the linear advection equation,

∂u

∂t
+ a

∂u

∂r
= 0 a > 0, (2.12)

which becomes discretized as

un+1
i = uni −

a∆t

∆r

(
uni − uni−1

)
, (2.13)

where the subscript i is used for the computational cell index, the superscript n identifies the time

step index, ∆t is the time step, and ∆r is the spatial step. This scheme is first-order accurate in

space and time and has the necessary restriction

a∆t

∆r
≤ 1. (2.14)

for producing stable solutions, called the the Courant-Friedrichs-Lewy (CFL) condition.

The CFL condition is necessary, but not sufficient for stability. The stability of a scheme can

be checked using von Neumann analysis, where we assume the solution is composed of non-growing

Fourier modes,

uni = λneIki∆x, (2.15)

where k is the wavenumber and I =
√
−1. Necessary and sufficient restrictions on ∆t and ∆r for

stable solutions are revealed when substituting Equation 2.15 into Equation 2.13 and saying the

amplification factor λ must satisfy |λ| ≤ 1

Implicit schemes, however, have a different form, using values at t = (n+ 1) ∆t in their

spatial discretization(s). The implicit upwind scheme for Equation 2.12 is

un+1
i = uni −

a∆t

∆r

(
un+1
i − un+1

i−1

)
. (2.16)
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Finding un+1
i now involves solving an effectively explicit matrix equation, which will be elaborated

on towards the end of the chapter. Despite the added matrix computation, some implicit methods

are know for being unconditionally stable (no restrictions on ∆t or ∆r), which is a significant

advantage when high grid resolution is desired.

We will focus on describing an explicit scheme for solving Equations 2.1-2.4, primarily due to

their simplicity. This will require following a specific CFL condition we will introduce. Also, due to

the shock solutions seen by mass-loading a supersonic flow in Chapter 1, we will be implementing a

widely-used shock-capturing method called Godunov’s scheme. Shock-capturing schemes are able

to handle solutions with discontinuities without numerical oscillations.

As a simple test code for modeling mass-loading in the solar wind before transitioning to and

advance MHD model, we will keep our numerical method first-order accurate. Explicit schemes,

such as Godunov’s scheme, can be extended to much higher-order methods for much higher accuracy

and computational efficiency when reducing ∆t or ∆r. There are several higher-order extensions

and alternatives of Godunov’s scheme that can be implemented and are discussed at the end of this

chapter. Also provided at the end of this chapter is an overview of implicit schemes for advective

problems and how they can be useful with stiff sources. For both high-order and implicit extensions,

we will address advantages and disadvantages of applying them to our problem.

2.2.1 Formulating a Hyperbolic System

The basic Euler equations for conservation of mass, momentum, and energy (Equations 2.2-

2.4) form a hyperbolic system in the form

Ut + F (U)r = S, (2.17)

or

Ut + A (U) Ur = S, (2.18)
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with the latter showing its advective nature. Subscripts indicate the time and spatial derivatives

being used. U contains our conserved variables,

U =




ρ

ρu

E



, (2.19)

F is our flux function,

F (U) =




ρu

ρu2 + pI

u (E + p)



, (2.20)

and A is the Jacobian of F,

A (U) =




0 1 0

1
2 (γ − 3)u2 (3− γ)u γ − 1

1
2 (γ − 2)u3 − γ uEρ γEρ − 3

2 (γ − 1)u2 γu



. (2.21)

Having these equations in a conservative form such as Equation 2.17 is important for using the

proper numerical scheme to find time-dependent solutions. Scheme requiring equations to be rep-

resented in conservative form are call conservative schemes. Several conservative schemes for fluid

equation problems are described in Toro[46]. Among the subsets of conservative schemes are a type

called finite volume methods. Finite volume methods use volume integral representations of the

relevant set of equations to derive a scheme using the flux across computational cell (or volume)

interfaces.

There are two parts to solving hyperbolic equations in the form of Equation 2.17. The first

part is determining the particular discretization and extrapolation out to the cell boundaries. The

second part is determining the flux across the boundary using the extrapolated values. In most cases

the extrapolated values on either side of the interface results in a discontinuity, creating a Riemann

problem. Solutions to Riemann problems determine (or estimate) the numerical flux across the cell

interface. In the following section we will describe the following: an explicit discretization used
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by a method known as Godunov’s scheme, a method for solving the Riemann problem across cell

interfaces, and boundary conditions for a 1D supersonic flow. Although our main focus will be on

a first-order explicit scheme, implicit schemes and higher-order methods will be discussed at the

end of the chapter.

2.2.2 Godunov’s Explicit Scheme

One of the most popular explicit first-order conservative finite-volume methods is Godunov’s

scheme (Godunov[10]). Godonuv’s scheme takes non-linear systems of equations in the form of

Equation 2.17 and uses a seemingly simple discretization,

Un+1
i = Un

i +
∆t

∆r

(
Fi− 1

2
− Fi+ 1

2

)
+ Sni , (2.22)

where Fi± 1
2

= F
(
Ui± 1

2
(0)
)

are the numerical fluxes on either side of the ith cell.3 The most

important part of using Godunov’s Scheme (and other finite volume methods) is determining the

numerical fluxes. This involves finding a solution to a Riemann problem, which will be elaborated

on in the next section.

For an initial collection of data Godunov’s scheme averages values over each cell, forming a

piecewise constant initial condition, with a discontinuity at each cell interface (Figure 2.2). The

updated values after each time step then become the new averaged values and are extrapolated out

to the cell interfaces. The new left and right states are then used for finding the numerical fluxes

Fi± 1
2
.

Despite being considered a stable scheme for nonlinear hyperbolic systems, care still needs

to be taken for Godunov’s scheme to remain stable. With Godunov’s method for Equations 2.2-2.4

the CFL condition is

∆t ≤ ∆r

Snmax

, (2.23)

3 It should be noted that including source terms in this manner should not be done blindly. There is no issue
with the constant sources used in our current case, but as we move to the solar corona new source terms will require
additional numerical techniques to be implemented.
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5.3 Conservative Methods 177

x

u

1 i−1 i i+1 M

n
j

Fig. 5.5. Piece–wise constant distribution of data at time level n

5.3.2 Godunov’s First–Order Upwind Method

Godunov [216] is credited with the first successful conservative extension
of the CIR scheme (5.21) to non–linear systems of conservation laws. When
applied to the scalar conservation law (5.39) with f(u) = au, Godunov’s
scheme reduces to the CIR scheme, allowing for appropriate interpretation of
the values {un

i }.
Godunov’s first–order upwind method is a conservative method of the

form (5.42), where the intercell numerical fluxes fi+ 1
2

are computed by using
solutions of local Riemann problems. A basic assumption of the method is
that at a given time level n the data has a piece–wise constant distribution
of the form (5.47), as depicted in Fig. 5.5. The data at time level n may be
seen as pairs of constant states (un

i , un
i+1) separated by a discontinuity at the

intercell boundary xi+ 1
2
. Then, locally, one can define a Riemann problem

PDE : ut + f(u)x = 0 .

IC : u(x, 0) = u0(x) =

{
un

i if x < 0 ,
un

i+1 if x > 0 ,

This local Riemann problem may be solved analytically, if desired. Thus, at a
given time level n, at each intercell boundary xi+ 1

2
we have the local Riemann

problem RP (un
i , un

i+1) with initial data (un
i , un

i+1). What is then needed is a
way of finding the solution of the global problem at a later time level n + 1.

First Version of Godunov’s Method

Godunov proposed the following scheme to update a cell value un
i to a new

value un+1
i : solve the two Riemann problems RP (un

i−1, u
n
i ) and RP (un

i , un
i+1)

Figure 2.2: Godunov’s scheme discretizes using initial condition data and cell-averaging across
each cell width to create a piecewise constant set of data. Discontinuities are formed at each cell
interface, requiring a solution to the Riemann problem at each one. Image is reproduced from
Toro[46].
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where Snmax is the maximum wave speed at time tn, and can be approximated as

Snmax = max
i
{|uni |+ ani } , (2.24)

where ani is used for the sound speed at the ith cell and nth time step. The need for an approxi-

mation is a result of a complicated set of nonlinear waves present. Since Equation 2.24 is merely

an approximation, it is not a good idea to set ∆t to the right hand side. We therefore set a buffer

for our time step,

∆t = 0.5
∆r

Snmax

, (2.25)

which will be used for all our 1D cases. Next, we will finally cover the Riemann problem, including

what it is and a description of the Riemann solver we will use.

2.2.3 Approximate Solution to the Riemann Problem

A Riemann problem is formed when an initial condition for a hyperbolic equation, or set of

equations, in the form of Equation 2.17 has a discontinuity at r = r0 with left and right states UL

and UR to form the initial value problem

U (r, 0) =





UL if r < r0

UR if r > r0

. (2.26)

Solutions can be found using wave patterns that form as a result of characteristic interactions

from each side. For scalar hyperbolic equations the solutions can be relatively straightforward.

For systems of equations, such as Euler’s equations (Equations 2.2-2.4), the exact solution for the

Riemann problem becomes excessively difficult and computationally expensive. In fact, beyond one

spatial dimension the exact Riemann solution is not attainable with currently known techniques

(Toro[46]). It is for these reasons that many solvers utilize approximate Riemann solvers.

Approximate Riemann solvers are extremely useful, plentiful, and less computationally ex-

pensive. However, not all conservative schemes that rely on solutions to the Riemann Problem

can use approximate Riemann solutions. One example is the Random Choice Method (Chorin[7]).
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Fortunately, Godunov’s scheme does not rely solely on an exact solution to the Riemann problem.

There are several approximate Riemann solvers and Toro[46] goes through many of them in detail.

One of the most popular approximate Riemann solvers is the Roe solver, described by Roe[42],

which we will cover here and proceed to use.

The general premise of the Roe solver is to take the homogeneous nonlinear hyperbolic system

in Jacobian form,

Ut + A (U) Ur = 0, (2.27)

and replace the Jacobian matrix A (U) with a constant matrix Ã (UL, UR), dependent on the left

and right states at the cell interfaces. The resulting approximate Riemann problem for the linear

system

Ut + ÃUr = 0 (2.28)

is then solved with an exact Riemann solver. In determining the m×m matrix Ã, it must satisfy

the following properties:

• Real eigenvalues and m linearly independent eigenvectors

• The Jacobian and Ã must be consistent (Ã (U, U) = A (U))

• Quantities across discontinuities must be conserved (F (UR)− F (UL) = Ã (UR −UL)).

To find Ã, Roe[42] chose a vector Q such that U and F could be expressed in terms of Q.

Two additional matrices B̃ and C̃ are found such that

∆U = B̃∆Q (2.29)

and

∆F = C̃∆Q. (2.30)

Ã can then be found when Equation 2.29 and Equation 2.30 are combined to get

∆F =
(
C̃B̃−1

)
∆U, (2.31)
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where

Ã = C̃B̃−1. (2.32)

There exists a very convenient algorithm for finding B̃ and C̃ using the eigenspace of A, along with

the left and right states, described in Toro[46], which we will be utilizing for our 1D problems.

2.2.4 Boundary Conditions

The boundary conditions need to be chosen such that the fluid interacts with the domain

boundaries appropriately. Common types of boundary conditions include transmissive and reflec-

tive. Transmissive boundary are those that allow the flow through, as if no boundary existed.

Reflective boundaries act as a physical boundary that blocks the flow from leaving the computa-

tional domain, often resulting in disturbances being reflected back.

For the uniform supersonic solar wind in this chapter, we define transmissive boundary con-

ditions for inflow and outflow. The upwind boundary it determined by defining a fictitious cell, or

ghost cell, next to the most upwind cell. If the solar wind is uniform, then the upwind ghost cell

takes on the values of its neighbor. If the velocity of the most downwind cell remains supersonic,

then no ghost cell is required, as updated values will be determined by the upwind cell.

2.3 Mass-Loading in a Uniform Solar Wind

We now have a feasible numerical scheme for solving Equations 2.2-2.4 (Equation 2.1 can

be updated using the numerical fluxes calculated for Equations Equations 2.2-2.4). This section

will focus on our first solutions from numerically solving the 1D hydrodynamic equations with a

mass-loading term. Special care will be taken to verify the predicted nozzle effects describe earlier

in the chapter.
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2.3.1 Mass-Loading Setup

Prior to presenting solutions of a mass-loaded solar wind, we need to set up our one-

dimensional grid, solar wind parameters, and source terms. Our computational domain will cover

the interval 0 km ≤ r ≤ 105 km, and be composed of 1000 spatial steps. This is smaller than the

domain used by Biermann et al.[4] by about an order of magnitude, but is still fitting for a general

mass-loading event in the general heliosphere. Our undisturbed solar wind parameters (denoted

with subscript 0) will be similar to those in BIermann et al.[4], which mimic the solar wind at 1

AU.4 The solar wind parameters are then defined as

u0 = 400 km/s

ρ0 = 3mp

p0 = 3.8× 10−11 dyn/cm2.

From our defined solar wind density, our number density and mean mass become

n0 = 6 cm−3

µ0 = 0.5mp,

since we are using a single-fluid model.

For our source terms we will assume the particle velocities are negligible relative to the solar

wind velocity, allowing us to define ud = 0. This makes the our only non-zero source term the

mass-loading factor Pml in the mass conservation equation. Additionally, we will only use a small

region of our domain defined by 1× 104 km ≤ r ≤ 3× 104 km for Pml to be non-zero. This will act

as a band of potential pick-up ions or, in terms of effective area, a contracting cross-sectional area

the solar wind will see.

4 These values are for 1AU in the Sun’s equatorial plane. The solar wind varies with respect to latitude, which
will discussed in a later chapter.
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2.3.2 Mass-Loading Results

We now check to ensure a mass-loaded wind behaves as predicted by theory presented earlier.

In Figure 2.3 we have a new solar wind steady-state by solving the Equations 2.1-2.4 as previously

described, using Pml = 6.5 × 10−25 g cm−3 s−1.5 We see a quick deceleration and shock down to

subsonic speeds, followed by reacceleration back to supersonic speeds at the mass-loading region’s

outer edge. Additionally, the mean mass increases steadily and levels off downwind, reflecting the

increased concentration of pick-up ions as the solar wind passes through the mass-loading region.

This validates the predicted effects for the mass-loading contributions to effective area, which we

can calculate for this steady-state and plot against our results to show a decreasing Aeff in the

mass-loading region (Figure 2.4).

Note in Figure 2.3 that our mass-loading factor seems almost high enough to stop the solar

wind completely. This begs the question for if the solar wind can in a sense be broken with an

extremely high mass-loading factor. When Pml from our first results was increased by an order

of magnitude, this resulted in a nearly unchanged Mach number profile, but an extremely low

downwind velocity and high mean mass. This shows incredible resilience for the mass-loading

region to reaccelerate the wind back to supersonic speeds. The extent of testing with a large Pml

is unfortunately limited by our computational power, as it creates a much stricter CFL condition

due to an extremely high sound speed at a point just after the shock.

2.4 Higher-Order Methods

The numerical method used here is of course only an explicit first-order accurate scheme,

chosen to provide a simple example of a numerical solver for fluid equations. There exist several

high-order numerical schemes for solving Equations 2.1-2.4, many of which are described in detail in

Toro[46]. We will provide a brief overview of higher-order extensions and alternatives to Godunov’s

first-order scheme. We will begin with two basic conservative solvers capable of replacing Godunov’s

5 Several values were tested for Pml. The value for Pml in our presented results was chosen to demonstrate a
severely mass-loaded wind.
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Figure 2.3: New steady-states generated from mass-loading a uniform solar wind on the interval
1×104 km ≤ r ≤ 3×104 km. Shown are the solar wind velocity, mach number, and mean molecular
weight. The mach number shows that the solar wind becomes supersonic at the end of the mass-
loading region.
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Figure 2.4: The effective area calculated for steady-states in Figure 2.3, composed primarily of a
contracting area across the mass-loading region, due to dust particles being loaded into the solar
wind.
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scheme that actually do not rely on solutions to the Riemann problem, followed by more modern

methods relying on Total Variation Diminishing (TVD) schemes.

Earlier, we jumped straight in to using Godunov’s conservative method, which relies on

solutions to the Riemann problem to determine the intercell flux. There are two methods, typically

considered in conjunction with Godunov’s scheme for fluid equations. The first is the Lax-Friedich

scheme, which is based on splitting the uni term in the time derivative as 1
2

(
uni+1 + uni−1

)
. It is

second-order accurate in space, but only first-order accurate in time. It also does not require

solving the Riemann problem. One issue with the Lax-Friedrich scene is much higher numerical

diffusion present, one of two issues we do not want too much of in fluid problem.

The second method is the Lax-Wendroff scheme, described by Lax and Wendroff[25], which is

based on both upwind and downwind information in its discretization. The Lax-Wendroff scheme

has the advantages of being second order in both time and space and also not relying on solving a

Riemann problem. The main disadvantage of this method is the presence of oscillations near high

gradients or discontinuities, which is the other numerical effect we do not want to see in solutions

to Equations 2.1-2.4. Such oscillations are actually a common issue with high-order linear methods

(Toro[46]; Godunov[10]), which has led to modern methods using TVD schemes.

TVD schemes, described by Harten[15], are based on imposing constraints on discretization

coefficients, allowing monotonicity to be preserved, a property higher-order linear methods lack

(Godunov[10]). Resulting TVD criteria is then used with pre-existing higher-order schemes to

make them monotone, a property also preventing the growth and creation of local spatial extrema

over time and eliminating numerical oscillations near high gradients and discontinuities. Several

higher-order schemes shown to have TVD versions include the Weight Average Flux (WAF) method

(Toro[45]) and a family of schemes called Monotone Upstream-centered Schemes for Conservation

Laws (MUSCL).

MUSCL-type schemes are a natural higher-order extension of Godunov’s scheme. Recall

from Figure 2.2 that Godunov’s scheme relies on cell-averaged values forming piecewise constant

data, along with solutions to the intercell Riemann problems. MUSCL-type schemes instead rely
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on piecewise linear data extrapolated out from the cell-center average values (van Leer[50]), as

illustrated in Figure 2.5. One of the widely-used MUSCL-type schemes is the MUSCL-Hancock

Method (MHM). Others include the Piecewise Linear Method (PLM) (Colella[8]), Generalized

Riemann Problem (GRP) method (Ben-Artzi and Falcovitz[3], applied to Euler’s equations), and

Slope-Limiter Centered (SLIC) schemes. This is only a brief overview of the higher-order methods

mentioned so far. More detailed descriptions are provided in Toro[46] and references therein.

Many of the current higher-order methods used in solar wind and fluid modeling are still based

on higher-order extensions of the Roe-based Godunov’s scheme, particularly MUSCL-type schemes.

A related area of study still heavily researched is the development of flux (or slope) limiters, which

are used to construct TVD schemes for higher-order MUSCL-type methods. One particular study

by Kurganov and Tadmor[24] focuses on developing a high-order centered scheme for convection-

diffusion equations with the use of a flux limiter called minmod (also used in computational MHD),

with examples for higher dimensions.

Figure 2.5: MUSCL-type schemes discretize using initial condition data and cell-averaging across
each cell width to create a piecewise linear set of data. Discontinuities are formed at each cell
interface, once again requiring a solution to the Riemann problem at each one. Image is reproduced
from Toro[46].
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2.5 Implicit Schemes

Our focus in this chapter was also on an explicit numerical scheme for solving Equations

2.1-2.4. Using Godunov’s scheme required the selection of ∆t to adhere to its CFL condition to

maintain stability. There exist families of implicit schemes that are stable, eliminating or reducing

restrictions on the time step ∆t. In this section we will discuss some of these methods for finite

differencing and their advantages with source terms, but also a disadvantage when using Roe-based

methods.

We return to the linear advection equation

∂u

∂t
+ a

∂u

∂r
= 0, (2.33)

which can be solved with an upwind method, discretizing ∂u
∂r as

uni+1−uni
∆r for a < 0 and as

uni −uni−1

∆r

for a > 0. It still adheres to a CFL condition, requiring ∆t to be chosen such that characteristics

are contained in the domain of dependence. An implicit scheme is formed by using n + 1 data

discretization of ∂u
∂r ,

un+1
i = uni −

a∆t

∆r

(
un+1
i − un+1

i−1

)
, (2.34)

where a > 0 in this example. The scheme is now unconditionally stable and requires solving the

effectively explicit matrix equation,

Ax = b, (2.35)

where A is a lower bidiagonal matrix and

x =
(
un+1

0 , un+1
1 , . . . , un+1

I

)>
(2.36)

b =

(
un0 +

a∆t

∆r
un+1
−1 , un1 , . . . , u

n
I

)>
. (2.37)

I + 1 spatial cells and left ghost cell un+1
−1 are used. The the scheme now relies solving Equation

2.35. For bidiagonal matrix A, this is done efficiently with back-substitution.

Such an implicit method can be extended to finite differencing with Equation 2.17,

Un+1
i = Un

i +
∆t

∆r

[
F
(
Un+1
i−1

)
− F

(
Un+1
i+1

)]
+ Sn+1

i , (2.38)
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no longer resulting in a simple bidiagonal matrix A. An extension to the Roe-based Godunov

scheme would seem like a logical next step, however, an implicit scheme with Roe’s approximate

Riemann solver is very computationally costly and not widely used. A Roe-based MHD solver that

will be introduced in Chapter 4 does have an implicit option, but only for source terms.

Implicit schemes are also useful when solving a stiff system, which is a system of equations

with a source requiring a much smaller time step to maintain a stable solution than the rest of the

system. Iserles[19] shows several examples of using implicit methods for stiff ODEs. This situation

will arise in the next chapter when we add a diffusive term to our Euler equations, which will

require a much smaller time step than the CFL condition for Godunov’s scheme.

A common implicit scheme used for diffusive problems is the Crank-Nicolson scheme. This

scheme is demonstrated in Morton and Mayers[32] with the heat equation, where it is second-order

accurate in time and space. For a basic diffusion equation,

∂u

∂t
=

∂2u

∂t2
, (2.39)

the Crank-Nicolson scheme discretizes the diffusion term both explicitly and implicitly and averages

them,

un+1
i = uni −

∆t

2∆r2

(
uni+1 − 2uni + uni−1

)
− ∆t

2∆r2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
. (2.40)

Again, Crank-Nicolson is unconditionally stable for solving Equation 2.39 and results in the linear

system Ax = b, where A is now a tridiagonal matrix, that can be solved with the Thomas

algorithm.

The methods in the these last two sections are merely brief examples in the use of higher-order

and implicit schemes for Equations 2.2-2.4 and we will continue in the next chapter with finding

solutions in the solar corona with the first-order explicit Godunov’s scheme. A diffusive term will

be introduced, but a different method, called source splitting, is used to solve the resulting stiff

system.



Chapter 3

Mass-Loading for a Spherically Symmetric Coronal Wind

With the safety of a uniform 1D solar wind behind us,1 we now delve into the more compli-

cated solar corona region, extending from the top of the chromosphere near the solar surface, out

to tens of solar radii R� from the Sun. The solar corona is known for its incredible temperatures,

orders of magnitude hotter than the solar surface, and for being the launch point for solar storms

such as coronal mass ejections. As a result, the solar corona has spawned a significant subfield

in solar physics, with several mysteries yet to be solved. In moving from the solar wind model

used in the previous chapter to a model for the solar corona, our main challenge is adding several

physical processes, many of which are well-understood and some of which are still puzzling to solar

physicists.

In this chapter we will cover the basic coronal wind modeling and acceleration models leading

up to the 1D Euler equations with the appropriate source terms. We will then make the necessary

numerical adjustments for solving the Euler equations in the solar corona. Solving these equations

with mass-loading sources will involve various cases for subsonic and supersonic wind locations.

Last, we will discuss our 1D mass-loading results for the coronal wind and explain the need for

moving to a less simple but more accurate coronal wind model.

1 Or more accurately, downwind of us.
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3.1 Establishing a 1D Coronal Wind Model

We have already established and 1D hydrodynamic solar wind model in the previous chapter.

For distances closer to the Sun, as with the case of the solar corona, and for the spatial scales we

are dealing with, the wind is no longer flowing in a single Cartesian direction, but radially our from

the Sun (Parker[33]). In a physical sense this no longer makes the model 1D in space, but assuming

spherical symmetry makes it mathematically so, with r as the spatial variable. This section will

begin with describing the original Parker solution of the coronal wind and work up to establishing

a physical transonic wind (a wind traveling from the solar surface and becoming sup sonic soon

after).

3.1.1 The Parker Solution

A 1D starting point for modeling the transonic coronal wind is to begin with a very basic

hydrodynamic model, even more so than Equations 2.2-2.4. Meyer-Vernet[31] shows, in looking

for an outflowing steady-state solution, that assuming a purely adiabatic flow (γ = 5/3) in which

there is no heat exchange, a wind cannot be generated. On the opposite end of the spectrum,

assuming an isothermal flow (γ = 1) where heat transfers at an infinite rate makes the temperature

constant, a wind is generated outflowing from the Sun but is still nonphysical in certain aspects to

be explained shortly.

For both the adiabatic and isothermal flows Bernoulli’s principle is used,

u2

2
+

γ

γ − 1

kbT

µ
− M�G

r
= constant (adiabatic) (3.1)

u2

2
+
kbT

µ
ln ρ− M�G

r
= constant (isothermal), (3.2)

where T , kb, M�, and G are temperature, Boltzmann’s constant, solar mass, and the gravitational

constant, respectively. Each equation is the conservation of mass and momentum integrated for

a steady flow, with the equation of state p = ρkbT/µ to relate pressure with the other dependent

variables. The left sides of Equations 3.1-3.2 are constant along streamlines (extending radially in
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the 1D case) and equal the energy per unit mass. Meyer-Vernet[31] shows at large distances in the

adiabatic case

u2/2 ' constant, (3.3)

which is negative when using realistic coronal wind values in Equation 3.1, meaning no wind can

be produced. Performing the same on Equation 3.2, it is found that at large distances

u '
√

4a2 ln r2, (3.4)

where the sound speed a is defined as

a =

√
kbT

µ
. (3.5)

Since the right side of Equation 3.4 is always positive, then an isothermal solar wind exists.

Using Equation 3.2 with some fixed T and allowing the coronal base velocity to vary, an

entire family of solutions to the solar wind is found. Figure 3.1, taken from Parker[34], shows the

set of solutions. The critical radius r = rC is a crucial value in the solution space, as it is the

distance where either du/dr = 0 or the wind equals the sound speed (u = a). In the latter case

r = rC is called the sonic point. The solution passing through the sonic point and from region A

to region B represents the transonic Parker solution, often used as an initial condition for more

realistic solar wind models. The nonphysical issue facing this model is that u → ∞ as r → ∞,

which would require infinite energy.

The Parker solution is a great starting point, as it does generate a transonic coronal wind

with the right solar parameters. The next step is to make it a physically possible solar wind, by

keeping the kinetic energy at large distances bounded.

3.1.2 Transition to a Physical Transonic Solar Wind

There are two typical solutions used to address the problems in Parker’s solution. First, a

polytropic wind can be used, where instead of simply using either γ = 1 or γ = 5/3 a varying

adiabatic index is used to accommodate the spatial-dependence of heat transfer. The problem
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Figure 3.1: The solution topology for the radial velocity of the solar wind, originally derived by
Parker[34], which includes the one transonic wind solution. The dashed curve shows how the sound
speed a changes with respect to r, where M is used for the proton mass in this case. Image is
reproduced from Parker[34].

with this solution, as mentioned by Meyer-Vernet[31], is that it takes multiple physical processes

occurring in the solar wind and hides them in a single parameter. The second option is to include

extra physical processes in the hydrodynamic equations. We have reviewed several papers using this

second option in their 1D hydrodynamic models (Withbroe[51]; Pinto et al.[35]; Riley et al.[41]),

with the necessary included physical processes being heat transfer from conduction, radiative losses,

and some form of coronal heating.

Taking the latter solution to Parker’s problem, we can modify Equations 2.1-2.4 to include

not only additional source terms necessary to accelerated the coronal wind in a physical manner,

but also the spherical symmetry with an area expansion A = r2. The new set of equations becomes

∂ (An)

∂t
+
∂ (Anu)

∂r
= AS0 (3.6)

∂ (Aρ)

∂t
+
∂ (Aρu)

∂r
= AS1 (3.7)
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∂ (Aρu)

∂t
+
∂
(
Aρu2

)

∂r
+A

∂p

∂r
= AS2 (3.8)

∂ (AE)

∂t
+

∂

∂r
[Au (E + p)] = AS3. (3.9)

The partial derivatives in Equations 3.6-3.9 can be expanded and the area terms moved to the right

side to get the alternative form

∂n

∂t
+

∂

∂r
(nu) = S0 −

A′

A
nu (3.10)

∂ρ

∂t
+

∂

∂r
(ρu) = S1 −

A′

A
ρu (3.11)

∂ρu

∂t
+

∂

∂r

(
ρu2
)

+
∂p

∂r
= S2 −

A′

A
ρu2 (3.12)

∂E

∂t
+

∂

∂r
[u (E + p)] = S3 −

A′

A
[u (E + p)] , (3.13)

where

A′ =
dA

dr
. (3.14)

For the coronal wind, additional source terms Scor must be introduced, making S = Scor + Sd.

Necessary source terms near the Sun consist primarily of gravity and heat transfer. While

gravity is straightforward, heat transfer is not, as it must be split into multiple contributions. There

needs to be a heat conduction source, as well as a term for radiative losses. The other heat transfer

contribution is coronal heating. Modeling coronal heating, however, is an entire field on its own,

since the physics behind heating the corona are still not well-understood. Figuring out how to

model coronal heating is not a focus of this research and we will simply use the same power law

model presented by Pinto et al.[35]. The coronal sources Scor = (Scor1, Scor2, Scor3, Scor4)> are

then

Scor1 = 0 (3.15)

Scor2 = 0 (3.16)

Scor3 = −ρGM�
r2

(3.17)

Scor4 = −ρuGM�
r2

+∇ · (Qcond −Qcor)− n2Φ (T ) , (3.18)
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where we are now using the spherical divergence operator, along with Qcond, Qcor, and Φ (T ), which

are the collisional Spitzer heat flux, coronal heat flux, and radiative loss function, respectively. The

former two terms are defined as

Qcond = κ0T
5/2∂T

∂r
r̂ (3.19)

Qcor = Q0

(
R

r

)3/2

r̂, (3.20)

where κ0 = 10−6 and Q0 = 3 × 105 (in cgs). Collisional heat conduction becomes less necessary

beyond 5R�. As a result, it will multiplied by the following piecewise function:

Γ (r) =





1 r ≤ 5R�

2− 1
5R�

r 5R� < r < 10R�

0 r ≥ 10R�

. (3.21)

Within 5R� the collisional heat conduction term will be used normally, but will be eliminated

outside 10R�, with 5R� < r < 10R� being used as a transition region. Radiative losses is a much

more complicated function and is plotted in Meyer-Vernet[31] from observational data, accompanied

with a primitive formula model for Φ (T ). We instead use the model from Pinto et al.[35] due to

its ability to model observations better at low temperatures.

3.2 Solving for a 1D Steady-State Coronal Wind

With the appropriate set of equations for a spherically symmetric coronal wind established,

we move to obtaining an initial steady-state for a mass-loaded coronal wind. This section will cover

amendments to our numerical methods used for a uniform 1D solar wind and present a steady-

state coronal wind solution. The resulting effective area curve will also be compared with that of

an expanding cometary atmosphere in Gombosi et al.[11].

3.2.1 Numerical Description

We still rely on the same first-order Godunov method used with Roe’s approximate Riemann

solver from the previous chapter. However, the solar corona presents new challenges with obtaining
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a stable and physical solution. First, our source term S is no longer a constant term, but is now

dependent on radial distance r in each coronal source term, as well as on time-dependent wind

parameters. Second, though we can set our outflow boundary such that the solar wind passing

through it is supersonic, the inner boundary is completely different from the previous chapter, with

the coronal wind beginning at rest. These are the two numerical issues we will address.

3.2.1.1 Source Term Splitting

Our source term S = Sd in the previous chapter only dealt with constant terms, which did

not impact our stability condition. Even with the introduction of the coronal source terms Scor,

most are only spatially-dependent, which again is not a problem to the stability of the scheme

we are using. The diffusive heat conduction term, however, does pose a problem, as it causes our

system to become stiff.

When solved numerically, stiff equations have an extremely restrictive time step requirement

in order to keep the solution stable (Iserles[19]). To show that the heat conduction term is making

our system stiff, we first note that by using p = ρkbT/µ and γ = 5
3 , ∂E

∂t can be expanded,

∂E

∂t
=

∂

∂t

(
1

2
ρu2 +

3

2
p

)
(3.22)

=
∂

∂t

(
1

2
ρu2

)
+
∂

∂t

(
3ρ

2µ
kbT

)
(3.23)

=

(
1

2
u2 +

3

2

kbT

µ

)
∂ρ

∂t
+ ρu

∂u

∂t
+

3

2

ρkb
µ

∂T

∂t
. (3.24)

Substituting into Equation 3.13 and isolating the partial temperature terms, we get the diffusive

contribution to the system,

∂T

∂t
=

4

21

µκ0

ρkb

1

r2

∂

∂r

(
r2∂T

7/2

∂r

)
. (3.25)

We call

c =
4µκ0

21ρkb
(3.26)
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and discretize similarly to the heat equation in Morton and Mayers[32] to get

∂Ti
∂t

≈ 3ci

r2
i+ 1

2

T
7/2
i+1 −

(
r2
i+ 1

2

+ r2
i− 1

2

)
T

7/2
i + r2

i− 1
2

T
7/2
i−1(

r2
i+ 1

2

+ ri+ 1
2
ri− 1

2
+ r2

i− 1
2

)
∆r2

. (3.27)

Assuming forward difference in time is still used, the condition on our time step becomes

∆t ≤ ∆r2

maxi

{
6ciT

5/2
i

} , (3.28)

which was also used by Filbet et al.[9]. If we take Smax from the CFL condition for Godunov’s

Scheme and assume

Smax ∼ 100 km/s, (3.29)

and then take 6cT 5/2 from Equation 3.28 and assume approximate inner boundary conditions for

density and temperature to be

ρ ∼ 10−16 g/cm3 (3.30)

T ∼ 106 K, (3.31)

then for ∆r ∼ 10−2 R�

∆r2Smax

∆r 6cT 5/2
∼ 0.1. (3.32)

This ratio only further decreases with decreasing ∆r. The temperature and density values used

are a best case scenario, since density decreases much faster than temperature as r increases. Even

though our advection portion requires a more reasonable time step, the heat conduction term causes

unnecessary computational work for our advective solver.

The solution to this conundrum is called source splitting (Toro[46]). The idea is to split the

system into an advective part,

Ut + F (U)r = 0, (3.33)

and a source part,

Ut = S. (3.34)
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We can advance Equation 3.33 one time step ∆t, as determined by the CFL condition for Godunov’s

Scheme, and proceed to advance Equation 3.34 to get our updated state Un+1. The stiff source

term problem is then resolved by taking the advective time step and dividing it into sub-time steps

∆tsrc such that ∆tsrc satisfies Equation 3.28. For each advancement of the advective part, we

actually advance the source part several ∆tsrc until an overall ∆t advancement is accomplished.

Additionally, with source splitting, there is a requirement for the overall scheme to be a

specific order of accuracy. The methods for advancing both the advective and source parts must be

at least that specified order. Currently, we are using first-order schemes. Should we choose to use

a second-order scheme, as described in the previous chapter, our method for advancing the source

part would need to be second-order as well. Another requirement for second-order source splitting

is to advance the source part half a time step ∆t, the adjective part a full time step, and the source

part a half time step once more.

3.2.1.2 Boundary Conditions

For our outer boundary condition, we can use the same transparent boundary condition

described in the previous chapter as long as the outflow is supersonic. This is accomplished by

placing our outer boundary far enough away from the sonic point. Previous studies (Vernet-

Meyer[31]; Pinto et al.[35]; Withbroe[51]) have shown the sonic point to be at about 4− 5R� from

the solar surface. We will then ensure our outer boundary is placed several R� out from 5R� by

choosing 10R� for all our 1D hydrodynamic cases.

The inner boundary is not so simple. It will need to absorb the wind without any disturbances

reflecting back. We take the boundary between the leftmost cell r0 and ghost cell r−1 to be r = R�,

where the inner boundary values ρ = ρ0, u = 0, and p = p0 are defined. We then make the flux at

the boundary close to zero by assuming ∂ρ
∂r = ∂p

∂r = 0 between r0 and r−1 and setting u−1 = −u0

(Lugaz et al.[26]).
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3.2.2 Steady-State Results

We are nearly set to generate a 1D steady-state coronal wind. The one selection yet to be

made it the spatial step size ∆r. Making ∆r arbitrarily small, while decreasing error in the solution,

requires significantly more computational resources. With the computational resources used, the

CPU time for finding a steady-state solution on our selected domain nears days for N greater than

2000. However, for low N (large ∆r) we not only get a less accurate solution, but also get an

accreting wind near the inner boundary (Figure 3.2, for example), which we try to avoid with a 1D

hydrodynamic model.

The significant rise in CPU time can be seen when varying N . Table 3.1 shows how the ratio

between time step ∆t and sub-time step ∆tsrc varies with N . On top of an increased CPU time
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Figure 3.2: A radial velocity steady-state coronal wind solution using N = 100 and Q0 = 3 ×
105 erg cm−2 s−1. This steady-state solution not only provides a slower-than-desired coronal wind,
but also generates unwanted accretion near the solar surface. This is an example of the negative
effects of using a larger spatial step size ∆r.
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due to higher N , the method must perform additional source loops as N increases. The number

of required source loops initially varies as ∆r2, but approaches a more linear relation for larger N ,

which is expected from Equation 3.32.

Table 3.1: Comparisons of advective time steps versus source time steps, resulting from source term
splitting, with varying spatial steps N .

N ∆t/∆tsrc
100 3
200 11
400 42
800 144
1600 408

To avoid an excessive amount of CPU time but obtain our desired steady-state solution a

compromise must be made. We can use a more reasonable spatial step size, but then adjust certain

source terms to compensate. We have a target outer boundary velocity of 350 km/s.2 Since our

coronal heating term Qcor is a source that is calibrated to generate our desired wind, we will simply

use the correct N and Q0 combination to allow this outflow velocity. We then choose N = 1200,

followed by testing various Q0 values to determine the correct coronal heating constant. This value

is found to be Q0 = 3× 105 erg cm−2 s−1.

Using the numerical method described in this chapter, a steady-state solution for the coronal

wind, with 1200 spatial steps and Q0 = 3 × 105 erg cm−2 s−1, is found and plotted in Figure 3.3.

The sonic point is marked at a little under r = 4R� (compared to r = 4.5R� with an isothermal

wind). This location will be important for where we place our mass-loading regions later in this

chapter.

3.2.3 Linking the Transonic Coronal Wind and Expanding Cometary Atmospheres

There is a notable link between the transonic coronal wind we just generated and the ex-

panding cometary atmospheres study referenced in the previous chapter. The link is created by the

2 Based on previous 1D hydrodynamic studies.
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Figure 3.3: The steady-state coronal wind, solved as described using 1200 spatial steps. The marked
sonic point corresponds with choke point of the effective area.

effective area and resulting acceleration for each situation. The effective area was calculated (in

arbitrary units) for results in Figure 3.3 and plotted in Figure 3.4, along with velocity and effective

area plots from Gombosi et al.[11]. For certain parameters in the cometary case, both have very

similar acceleration profiles as well as effective area curves that resemble the de Laval nozzle from

Figure 2.1.

Each situation, whether an expanding cometary atmosphere or coronal wind acceleration,

needs to have both contraction and expansion source terms to generate supersonic flows. In the

cometary atmosphere application these two terms come from the momentum loss due to interactions

with dust (contraction) and spherical area expansion, respectively. In the coronal wind case, the

stronger gravitational pull nearer the Sun replaces the dust interactions, and as it becomes weaker

further out the spherical expansion becomes dominant. Similar connections will be drawn as we



43

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

r (R)

u 
(k

m
/s

)

Radial Velocity

 

 

Transonic wind
Effective area
Sonic point

1 105 76 82 4 93

500

400

300

200

0

r [R]

U
r [

km
/s

]

100

Figure 3.4: Mach number curves (bottom left) and effective area curves (bottom right) produced in
Gombosi et al.[11] for expanding cometary atmospheres, compared with the coronal wind velocity
and effective area. The various χ values represent dust to gas production rate ratios and β values
are friability parameters. The effective area (in arbitrary units) for Figure 3.3 has been calculated
and overlaid to show the de Laval nozzle effect taking place in the solar corona. Like the expanding
coronal wind, expanding cometary atmospheres behave similar to a fluid passing through a de Laval
nozzle, but as a result of different physical processes. Bottom images are reproduced from Gombosi
et al.[11].
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introduce a mass-loading dust source into the solar corona.

3.3 Mass-Loading Setup

We can now solve Equations 3.10-3.13 with both coronal sources (Equations 3.15-3.18) and

mass-loading sources Sd. We will begin as in the previous chapter, by defining mass-loading regions

for different intervals, each 1R� in length. We will also assume again that we have a replenishing

dust source.

One significant deviation from our previous mass-loading runs will be the mass-loading factor

Pml. From Mann et al.[28], the dust forming the F-corona has a distribution that, in general,

increases with decreasing r, before being cut off completely a couple solar radii out. We then define

Pml such that it varies by the power law

Pml ∝
(

1

r

)1/2

. (3.35)

Once again, we are mainly looking for the effects a sudden mass-loading burst will have on the

solar wind. Pml is then set somewhat arbitrary such that

Pml (r = 5R�) = 5× 10−23 g cm−3 s−1. (3.36)

This is equivalent to loading the solar wind with 30 mp cm−3 s−1.

Previous mass-loading results were also limited to an initial solar wind that was purely

supersonic. With the coronal wind there are both supersonic and subsonic regions to play around

with. We will then also be splitting our mass loading regions into two cases:

• Mass-loading in a subsonic coronal wind

• Mass-loading in a supersonic coronal wind.

We will frame the setup for each case in the following subsection and find new coronal wind steady-

states, assuming a constant mass-source with respect to time.
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3.3.1 Case 1: Pre-Sonic Point Mass-Loading Regions

Our mass-loading results thus far have relied on an initially supersonic wind. What makes a

subsonic wind special is that information can now travel upwind. As a result, we would not expect

to get a standing shock, as we did in the previous chapter. The case of placing mass-loading regions

before the sonic point (or subsonic case) will allow us to observe a different effect than before. Each

mass-loading case will differ only by the mass-loading factor Pml. Pml was described previously to

follow the power law r−1/2. Pml will now only follow this law within our mass-loading regions and

be zero elsewhere,

Pml =





0 r < rL

Pml0

(
5R�
r

)1/2
rL ≤ r ≤ rR

0 r > rR

, (3.37)

where Pml0 is the constant

Pml0 = 5× 10−23 g cm−3 s−1,

described previously.

For the subsonic case, we will solve Equations 2.1-2.4 twice, with a different mass-loading

region for each, to test variations within the subsonic case. We will first assign rL = 2R� and

rR = 3R�, and then move the mass-loading each out 1R� such that rL = 3R� and rR = 4R�.

We then have a mass-loading region entirely within the subsonic region, and one that begins just

prior to the sonic point. Also, we will not go closer than 2R�, as that would be within the theorized

dust-free zone.

3.3.2 Case 2: Post-Sonic Point Mass-Loading Regions

For the supersonic case, we continue with gradually moving the mass-loading region outward

to generate two additional sub-cases. We assign rL = 4R� and rR = 5R� for the first supersonic

mass-loading region, which begins right after the sonic point in the undisturbed coronal wind.
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Following the established pattern, the other supersonic sub-case has rL = 5R� and rR = 6R�. All

cases are summarized in Table 3.2.

Table 3.2: Mass-loading cases in the 1D coronal wind.

rL rR

Case 1a 2R� 3R�
Case 1b 3R� 4R�
Case 2a 4R� 5R�
Case 2b 5R� 6R�

Due to the nature of the supersonic mass-loading case being located after the sonic point,

we do not expect much to change in the way of the post-sonic point wind profile, nor do we expect

the location of the first3 sonic point to change. Not having done a pre-sonic case in the previous

chapter, it will be interesting to observe how the sonic point is affected by the mass-loading regions

in that case.

3.4 Mass-Loading Results

Using the described amendments to our numerical techniques, we solved Equations 3.10-3.13

for the cases described in the previous section. The undisturbed solar wind and four new mass-

loaded steady-states are shown in Figure 3.5, along with corresponding mean molecular weight

plots. Prior to the undisturbed sonic point, mass-loading adversely affects the flow upstream,

but then accelerates it within the mass-loading region. As expected, if mass-loading takes place

after the wind passes through the sonic point, a shock is developed followed by re-acceleration,

creating two separate sonic points. This corresponds to how compressible flows behave with area

expansions/contractions.

For each steady-state solution in Figure 3.5, we calculated the effective area and plotted

them in Figure 3.6 against the velocity and mean mass curves, once again using arbitrary units.

Looking back to the previous section, it is again evident a mass addition (S2 > 0) would have an

3 We may now have solutions with two sonic points, as the mass-loading regions in Case 2 are expected to accelerate
the solar wind after a deceleration to subsonic velocities.
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area contracting, and thus choking, effect on the flow, forcing the wind to decelerate when it is

supersonic but then causing an acceleration of the subsonic wind. The magnitude at which the

wind is affected depends on the Pml0, which was set to demonstrate a clearly visible shock past the

undisturbed sonic point.

Looking at the downwind effect of mass-loading on the coronal wind, there is a clear trend

in how the mass-loading location affects both wind velocity and composition, the latter being

represented by mean molecular mass. In general, mass-loading will generate a slower and more

massive wind downstream, but the locations of mass-loading will vary the effects. Even though

the mass-loading rate is greater near the Sun in our simulations, mass-loading further out will

have a more significant effect on both aforementioned aspects of the solar wind. With increasing

heliocentric distance the mass-loading rate is not dropping as fast as the solar wind density, causing

a larger ratio of Pml to ρ further out. We should note that this effect can vary with mass-loading

rate models different from Equation 3.35. These results are presented in Rasca and Horányi[38].

3.5 Need for an Advanced Solar Wind Model

This is a fairly simplified model of the coronal wind. While the actual solar wind does behave

much like a fluid, it is also made up of charged particles mutually interacting with solar-originating

magnetic fields. The lack of magnetic fields B in a purely hydrodynamic model is reflected by the

lack of a magnetic pressure component. The total pressure should be the sum of the gas pressure

and magnetic pressure,

p = pgas + pmag, (3.38)

but the hydrodynamic model only includes the gas pressure p = pgas. Additionally, this model is

restricted to 1D, even though it captures the generally spherical geometry of the flow. Hence, we

cannot see how the magnetic field environment is changing in a 3D space due to the mass-loaded

solar wind. For these reasons we will apply the same mass-loading model to a 3D MHD code.



48

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

r (R)

u 
(k

m
/s

)

Radial Velocity

 

 

No mass−loading
Mass−loading 2R≤ r ≤ 3R
Mass−loading 3R≤ r ≤ 4R
Mass−loading 4R≤ r ≤ 5R 
Mass−loading 5R≤ r ≤ 6R
Sonic points

1 105 76 82 4 93

500

400

300

200

0

r [R]

U
r [

km
/s

]

100

1 2 3 4 5 6 7 8 9 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

r (R)

µ
 (m

p)

Mean Molecular Weight

1 105 76 82 4 93

0.8

0.7

0.6

0.4

r [R]

μ 
[m

p]

0.5

Figure 3.5: Steady-state solutions for radial velocity and mean molecular weight (assuming micron-
sized dust particles) with mass-loading occurring in four different spatial intervals away from the
Sun. Sonic points are marked for both the undisturbed coronal wind and the new steady-states.
Note the difference in deceleration/acceleration between cases when mass-loading starts before the
undisturbed sonic point and when it begins after the sonic point.
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Figure 3.6: The effective area profiles (in bold) for all four mass-loaded steady-states and the initial
condition plotted against the velocity and mean molecular weight profiles from Figure 3.5. The
effective area uses arbitrary units and has been scaled to fit within the plot ranges. In agreement
with area expansion/contraction effects for compressible flows, sharp changes between expanding
Aeff and contracting Aeff in the last two curves correspond with both the shocks and second sonic
points in the appropriate velocity profiles. For the first two mass-loaded curves we only get one
change in A′eff , corresponding with the single sonic point.



Chapter 4

3D MHD Modeling

We now venture away from the safety of 1D hydrodynamic modeling and move to using a full

3D MHD model. MHD modeling has numerous applications, not only for the solar wind, but for

the solar interior as well as both solar and planetary magnetospheres. There are multiple groups

worldwide developing such codes for heliospheric problems, many of which are utilized by the Com-

munity Coordinated Modeling Center (CCMC) for space weather modeling. One prominent model

is called the Space Weather Modeling Framework (SWMF), developed at the University of Michi-

gan’s Center for Space Environment Modeling (CSEM). Due to its reputation, easy accessibility,

and adaptability to additional heliophysics problems, the SWMF is the code we will be working

with for our MHD simulations.

In this chapter we will describe the SWMF used for several heliophysics-related problems,

with detailed information on a Solar Corona (SC) component used by SWMF for coronal wind

modeling. We will describe our modifications to the selected SC component in order to model

mass-loading in the solar wind. Last, we will set up and run the modified SC component code

for mass-loading cases similar to those in the previous chapter. These new results will allow a

comparison between the hydrodynamic and MHD models.

4.1 SWMF and BATS-R-US Description

The SWMF provides space weather scientists an excellent way to model phenomenon taking

place anywhere in the solar system due to its interwoven modular physical component structure.
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For example, the SWMF can have one of its physical components model a solar storm originating

from the corona and have a different component modeling its impact on planetary magnetospheres.

We provide a brief overview in this section of both the SWMF and an MHD code it relies heavily

on called the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US), as it pertains to

our particular problem. The SWMF and BATS-R-US are described in much more detail in Powell

et al.[36], Tóth et al.[47], and references therein.

4.1.1 Model Components

The SWMF is a collection of components that can be all coupled together. Each component

covers a different physical domain. The list of domains are:

• Solar Corona (SC)

• Eruptive Event Generator (EE)

• Inner Heliosphere (IH)

• Solar Energetic Particles (SP)

• Global Magnetosphere (GM)

• Inner Magnetosphere (IM)

• Radiation Belt (RB)

• Ionosphere Electrodynamics (IE)

• Upper Atmosphere (UA).

Many of these components are not relevant to our particular work, but are important to other

areas of space weather modeling. We are mainly concerned with the SC component, and to some

extent the IH component, as it is an extension of the solar corona domain. These, along with other

components such as the EE and GM, rely on the BATS-R-US MHD modeling code.
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BATS-R-US, originally described in Powell et al.[36], is a 3D MHD model based, similarly to

our 1D hydrodynamic code, on finite-volume upwind schemes and approximate Riemann solvers.

However, their set of MHD equations extends from Euler’s fluid equations to account for Maxwell’s

equations of electrodynamics. The basic set of 3D MHD equations (excluding external sources such

as gravity) are

∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

∂ρu

∂t
+∇ ·

[
ρuu +

(
p+

B2

2µ0

)
I − BB

µ0

]
= 0 (4.2)

∂B

∂t
+∇ · (uB−Bu) = 0 (4.3)

∂E

∂t
+∇ ·

[
u

(
E + p+

B2

2µ0

)
− (u ·B) B

µ0

]
= 0, (4.4)

where we now introduce the 3D velocity vector

u = (ux, uy, uz)
> , (4.5)

the magnetic field vector

B = (Bx, By, Bz)
> , (4.6)

the magnetic field strength

B = |B|, (4.7)

the permeability of free space µ0, and an updated energy definition,

E =
1

2
ρu · u +

p

γ − 1
+
B2

2µ0
. (4.8)

Instead of three equations, we now have a system of eight coupled equations.

Equations 4.1-4.4 form the backbone of SWMF components SC, EE, IH, and GM, and can be

tailored to suit a specific need. And unlike our 1D hydrodynamic model, BATS-R-US is a massively

parallel code and includes adaptive mesh refinement (AMR) for resolving regions of high gradients,

both of which take advantage of the grid block structure.
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4.1.2 Block Structure

BATS-R-US is run on a grid using a block tree structure. The grid is first divided into a

user-selected number of blocks, each one containing the same number of cells. A typical block

structure used with BATS-R-US is a 3D 4x4x4 structure, meaning the grid is initially split into 64

blocks, with four to a side. The user can then define the cell structure for all blocks. Again, say

the blocks all have a 4x4x4 cell structure. The grid is then composed of 64 blocks, each containing

64 cells, for an overall 4,096-cell grid. This is not limited to a Cartesian grid, though we did use

Cartesian subscripts for the u and B components in Equations 4.5 and 4.6, and can be applied to

non-Cartesian grid such as a spherical one.

If a grid needs to be refined, blocks are divided into eight self-similar blocks (four blocks for

2D), each retaining the same cell structure. Figure 4.1 (bottom) shows an example of a 2D grid

with a 2x2 block structure and 4x4 cell structure being refined three levels. It also shows a 3D

grid with a 1x1x2 block structure and 8x8x8 cell structure being partially refined (top), with the

inclusion of ghost cells. Regions of refinement can be user-selected or automatic by specific criteria.

For the SC component, refinement is initially performed in the current sheet and near the solar

surface, where large gradients exist.

4.1.3 Performance

BATS-R-US was created with high-performance, parallel computing in mind. The block tree

structure just described plays a very significant part in boosting the performance of BATS-R-US

when running in parallel. This is done by dividing the grid between processors according to blocks,

which all have the same cell structure. This reduces the amount of time needed for processors to

communicate with each other, freeing up computing power for solving on the individual blocks first.

Figure 4.2 shows how BATS-R-US performs on various supercomputers when the number of

processors is increased. Optimally, we would want performance to increase linearly with processors,

but code will always underperform as a result of more processors requiring more communication
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Figure 4.1: Two examples of refined BATS-R-US grids: (top) a 3D grid with a 1x1x2 block structure
and 8x8x8 cell structure, and (bottom) a 2D grid with a 2x2 block structure and 4x4 cell structure,
both being partially refined. Images are reproduced from Hansen et al.[14].
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Figure 4.2: Performance of BATS-R-US as a function of processors used when run on various
supercomputers. Image is reproduced from BATS-R-US and CRASH User Manual[5].
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between them. For BATS-R-US, the curves are very near linear as a result of processor communi-

cation relying on the number of blocks instead of the number of cells.

4.2 A Solar Corona Component of SWMF

In this study, we build on the coronal model of van der Holst et al.[49] for the SC component.

This model solves the coupled system of the MHD equations and a WKB equation for low frequency

Alfvén waves. The waves serve to accelerate and heat the plasma in open magnetic field lines

(Hollweg[16]). Although this model is capable of describing a two temperature (electrons+protons)

plasma, in this work we consider a single temperature plasma, since we wish to focus on the plasma-

dust interactions. For this purpose, we modify the model by van der Holst et al.[49] to account for

dust-wind interactions through mass-loading by extending it to a multi-species description. The

multi-species capabilities of BAT-S-RUS are described in Tóth et al.[48]. The multi-species aspect

generates an additional mass conservation equation as a result of splitting the mass density into

hydrogen density ρH (both protons and electrons) and ionized dust density ρdi such that

ρ = ρH + ρdi . (4.9)

We also have gas pressure p and energy E as the sum of hydrogen and dust contributions, but

would only be separated as in Equation 4.9 for a multi-fluid model.

4.2.1 SC Component Equations

The updated set of MHD equations, taken from van der Holst et al.[49] and modified for

multi-species use with dust particles, are

∂ρH

∂t
+∇ · (ρHu) = 0 (4.10)

∂ρdi
∂t

+∇ · (ρdiu) = Sρdi (4.11)

∂ (ρu)

∂t
+∇ ·

[
ρuu +

(
p+ pW +

B2

2µ0

)
I − BB

µ0

]
= Sρu (4.12)

∂B

∂t
+∇ · (uB−Bu) = 0 (4.13)
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∂E

∂t
+∇ ·

[
u

(
E + p+ pW +

B2

2µ0

)
− (u ·B) B

µ0
+
(
E+

W − E−W
)
uA

]
= SE , (4.14)

where uA is the Alfvén speed and Sρdi , Sρu, and SE are the dust density, momentum, and en-

ergy sources, respectively. The presence of Equation 4.11 replaces the need for a number density

conservation equation, since we can determine n from ρH and ρdi .

The wave energy densities of the Alfvén waves propagating parallel and anti-parallel to B are

denoted by E+
W and E−W, respectively, and the Alfvén wave energy density and pressure are defined

as

EW = E+
W + E−W (4.15)

and

pW = EW/2. (4.16)

The energy definition gets a second modification, extending from the basic MHD definition to

E =
1

2
ρu · u +

p

γ − 1
+
B2

2µ0
+ EW, (4.17)

with the Alfvén wave energy given by the time-dependent solution of

∂E±W
∂t

+∇ ·
[
E±W (u± uA)

]
= −p±W∇ · u−Q±, (4.18)

where the ± sign stems from two Alfvén wave solutions. Q± is the wave dissipation defined as

Q± =

(
E±W

)3/2

L
√
ρ

, (4.19)

where L is the perpendicular correlation length of the Alfvén waves. The non-zero source terms

for mass, momentum, and energy take into account mass-loading, gravity, thermal heat flux, and

angular motion of the Sun,

Sρd = Sd2 (4.20)

Sρu = Sd3 − ρ
[
GM

r3
r + Ω× (Ω× r) + 2Ω× u

]
(4.21)

SE = Sd4 −∇ ·Qcond + ρu ·
[
GM�
r3

r + Ω× (Ω× r)

]
. (4.22)

Qcond is the Spitzer thermal heat flux vector applied only within 10R� and Ω is the angular velocity

of the Sun.
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4.2.2 Computational Grid and Boundary Conditions

This model for the SC component is not only capable of utilizing a Cartesian grid, but a

spherical grid as well. This is a much better grid for 3D work, considering the spherical nature

of the corona and inner heliosphere. The spherical grid we will employ extends from the inner

boundary defined at the coronal base to the outer boundary defined at r = 24R�.

The inner boundary for the magnetic field uses the solar dipole field at 1R� with field strength

1.4G at the poles, while the remaining inner boundary values are determined using the Wang-

Sheely-Arge (WSA) model Arge and Pizzo[2], with the temperature and number density normalized

to 1.5×106 K and 108 cm−3 at the inner boundary. The radial distance for the outer boundary can

be arbitrarily chosen, provided the wind speed at that boundary exceeds the magnetosonic speed

(the sonic speed equivalent for a magnetized plasma) for outflow boundary conditions, which is

satisfied well within r = 24R�. The grid uses a 6x4x4 block tree structure, meaning the entire grid

is a collection of blocks with dimensions 6 by 4 by 4 cells in the radial, polar, azimuthal directions,

respectively.

Initially, the grid will be refined near the solar surface and in the current sheet, located in the

Sun’s equatorial plane. In these locations there exist large gradients in velocity, hence the reason

for refinement. Figure 4.3 shows our initial grid in the xz-plane. The the location and size of the

Sun is evident by the inner boundary of the grid surrounding (x, z) = (0, 0).

4.2.3 A Steady-State Coronal Wind

The general structure of the solar wind, without the inclusion of mass loading source terms

is illustrated in Figure 4.4, where we show results from a steady-state (in the co-rotating frame)

simulation run on the Janus supercomputer, operated by the University of Colorado at Boulder.

Color contours show the radial speed in the entire domain. Unlike our 1D model, the 3D solar wind

has a latitude-dependent structure. A fast wind blows above the poles, while a slow wind occupies

the equatorial regions. The 1D wind model is based on slow wind parameters, which is evident
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Figure 4.3: A starting computational grid shown in the xz-plane for determining an initial stead-
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tions 4.10-4.14) using the computational grid shown in Figure 4.3. The Sun’s outline is drawn in
the center.
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when observing the radial velocities from Figure 4.4 along the +x-axis (Figure 4.5).

Another significant addition with the MHD model is the presence of magnetic fields. Figure

4.6 shows the magnetic field structure from the steady-state solution in Figure 4.4, both in the xy-

(top) and xz-planes (bottom). In the xy-plane, we see the initial formation of Parker spirals, an

important result of the solar rotation terms in Equations 4.20-4.22. These cause objects further out

from the Sun to not see the solar magnetic field as straight radial lines, due to continued bending,

forming a spiral magnetic structure. In the xz-plane, the field lines do appear radial1 and switch

directions between the north and south hemispheres. Magnetic field lines in Figure 4.6 and later in

this chapter appear to cross at z = 0, forming v-shaped curves. Though there are closed magnetic

loops near the Sun’s surface, such connections further out are a result of numerical diffusion causing

magnetic reconnections between outgoing and ingoing field lines near z = 0. The drop in magnetic

1 The magnetic field lines still bend in the azimuthal direction.
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Figure 4.5: The radial velocity steady-state from Figure 4.4 depicted along the +x-axis. Due to
symmetry from our boundary conditions, the radial velocity profiles should be equal for any radial
direction in the xy-plane.
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top panel shows magnetic field lines in the xy-plane, forming a spiral structure resulting from solar
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the x-axis.

field strength B in the slow solar wind, along the x-axis is shown in Figure 4.7.

4.3 Comparing 1D Hydrodynamic Results with MHD Simulations

With a reasonable steady-state MHD coronal wind established, we can generate a mass-

loading coronal wind without the limitations of a simple 1D hydrodynamic model. In this section

we will set up mass-loading regions similar to those created in the previous chapter, but using the

modified SC component described above. Included will be several adjustments to the mass-loading

cases, due to differences in transitioning from a hydrodynamic to an MHD model. We will then

compare the 1D hydrodynamic and 3D MHD results obtained thus far.

4.3.1 Differences Between 1D Hydrodynamic and 3D MHD Steady-State Winds

The purpose of the 1D hydrodynamic results discussed in previous chapters were to illustrate

the outcome of a mass-loaded solar wind in the corona. The 1D aspect allows for a simple and
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convenient model to work with, but a full 3D MHD solar wind gives a better picture of the envi-

ronment being mass-loaded. Two major differences between the slow wind velocity profile depicted

in Figure 4.5 and the undisturbed wind velocity in Figure 3.3, while similar in shape and velocity,

are the outward shift of initial acceleration from a near-zero wind and the sonic point, located 1R�

further out, at around r = 5R� in the MHD velocity profile. These differences generate a few

changes in setting up similar mass-loading cases to those in Chapter 3, but now using the modified

SC component described in the previous section.

To compare mass-loading results between using 1D hydrodynamic and 3D MHD models,

we need to change the locations of our mass-loading regions. The shock-generating mass-loading

regions used for results in Figure 3.5 are placed just downstream of the sonic point. Seeing that

the sonic point is now over 1R� further out with the MHD model, it is reasonable to place our

new mass-loading region further out as well. However, with changes in location (and model) also

come changes in wind density. Both factors cause the local solar wind density to decrease. For

example, ρ (5R�) in the MHD model is nearly an order of magnitude less than ρ (4R�) in the

hydrodynamic model. It is no longer reasonable to use the same mass-loading rate Pml value as

with the hydrodynamic model. We will instead select Pml such that the ratio of the mass per

volume being added to the solar wind over a fixed time and the initial local solar wind wind density

remains about the same.

Additionally, the spatial bounds on the mass-loading region will also need to be adjusted. As

evidenced in Figure 4.4, wind velocities in the MHD model are dependent on the polar angle. We

are only concerned with comparing the hydrodynamic results with results originating from similar

initial velocity profiles, so we will also restrict our mass-loading region to the slow wind near the

current sheet by placing bounds on the z coordinates. This results in a ring-shaped mass-loading

region. Since we expect a shock to form in results involving post-sonic mass-loading regions, we will

also use AMR to create a similarly-shaped refined grid encompassing any post-sonic mass-loading

regions to help better resolve the shock.



65

4.3.2 Mass-Loading Setup

Like with our 1D hydrodynamic model, we divide our first 3D MHD mass-loading tests into

two separate cases, but with each surrounding the magnetosonic point, which is at approximately

the same location as the hydrodynamic sonic point in our MHD steady-state (in any MHD context

we will refer to the magnetosonic point as simply the sonic point). Again, we have a subsonic case,

where the mass-loading region begins prior to the sonic point, and a supersonic case, where the

mass-loading region begins after the sonic point. We define the radial bounds of our mass-loading

regions by 4.5R� ≤ r ≤ 5.5R� for the subsonic case and by 7.0R� ≤ r ≤ 8.0R� for the supersonic

case, as summarized in Table 4.1.

Table 4.1: Mass-loading cases in the 3D coronal wind.

rL rR

Case 1 4.5R� 5.5R�
Case 2 7.0R� 8.0R�

As stated before, we will keep the ratio Pml/ρt=0 for the mass-loading regions similar between

the hydrodynamic and MHD cases. However, this ratio was not the same between the cases and

sub-cases in the previous chapter. The calculated ratios for the hydrodynamic cases are listed in

Table 4.2. Since we will not have sub-cases for each subsonic and supersonic MHD case, we will

need to choose which hydrodynamic sub-cases to match with Case 1 and Case 2 from Table 4.1.

MHD Case 1 will be matched with hydrodynamic Case 1b and MHD Case 2 will be matched with

hydrodynamic Case 2a. We then have mass-loading factors of Pml = 6 × 10−24 g cm−3 s−1 and

Pml = 4 × 10−24 g cm−3 s−1 at the inner radial mass-loading boundaries for MHD Case 1 and for

MHD Case 2, respectively.

4.3.3 Mass-Loading Results

We first solve Equations 4.10-4.14 to find new steady-states for the described subsonic case

(shown in Figure 4.4). We do not refine the grid further than in Figure 4.3 since we know from
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Table 4.2: Mass-loading factor to local density ratios for the hydrodynamic cases.

Pml/ρt=0

Case 1a 2.9× 10−5 s−1

Case 1b 1.0× 10−4 s−1

Case 2a 1.9× 10−4 s−1

Case 2b 2.9× 10−4 s−1

the previous chapter there will not be a resulting shock. Once again we look at the resulting radial

velocity and mean mass steady-state profiles, which are plotted in Figure 4.8.

For the supersonic case we refine the region to encompass our entire mass-loading region, in

order the better resolve potential shocks, similar to the supersonic cases in Figure 3.5. A cross-

sectional region of the refined grid in the xz-plane is plotted in Figure 4.9. Solving Equations

4.10-4.14 for this case yields the radial velocity and mean mass profiles plotted in Figure 4.10.

The first difference to point out is due purely to our additional AMR region for the post-sonic

case. The two jumps preceding the shock in the velocity curve are non-physical artifacts resulting

from larger numerical errors generated at the boundary between grids of different resolution. This

type of discontinuity is inherent in any discretization scheme with a non-uniform grid, and although

their magnitude can be reduced, they cannot be completely removed from our solutions. The same

discontinuity occurs when transitioning back to the coarser grid, though not as prominent. This

can be seen in both the radial velocity and mean mass profiles.

While the velocity profiles in Figures 4.8 and 4.10 share several similarities with Figure 3.5,

such as the shock and reacceleration for the post-sonic case and upwind velocities reduction for

the pre-sonic point case, there are dramatic differences in the mean mass profiles proceeding the

mass-loading regions. In the hydrodynamic model the greatest mean mass is accomplished with the

mass-loading region located furthest from the Sun and reaches approximately 0.75 mp. The mean

masses reached with the MHD model are not only much greater, but the trend is reversed, with

the pre-sonic point mass-loading region resulting in a greater mean mass. A likely contributing

factor is the lower undisturbed solar wind speed relative to the 1D hydrodynamic model, with an
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Figure 4.8: Radial velocity (top) and mean mass (bottom) profiles for Case 1, mass-loading the
solar wind between 4.5R� ≤ r ≤ 5.5R�. Both profiles correspond to the subsonic cases used in
Figure 3.5.
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increasing difference closer to the Sun. The lower velocities are less effective at transporting ionized

dust particles, allowing additional build-up in the mass-loading regions, though other factors may

contribute to the increased mean mass.

While Figures 4.8 and 4.10 are useful for comparisons with 1D hydrodynamic results from

Chapter 3, the MHD model allows us to look magnetic field properties of the mass-loaded solar wind.

Figure 4.11 shows the new magnetic field structure in the xz-plane for both cases. Magnetic field

lines tend to curve around the ring-shaped mass-loading regions, though this is more prominent for

Case 2 (bottom). Looking at the magnetic field strength along the x-axis for both cases (Figure 4.12)

shows a magnetic build-up preceding both mass-loading regions, followed by a drop in magnetic

field strength, which agrees with the diverging field lines within the mass-loading regions in Figure

4.11.

By using the mass-loading model presented in earlier chapters, we have successfully extended

the SC component described in van der Holst et al.[49], with the development of this modified SC

component described in Rasca et al.[39]. This opens up for a variety of coronal wind mass-loading

applications. For the remainder of this thesis we will explore one particular application, resulting

from bursts of dust particles into the coronal wind by sungrazing comets.
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Figure 4.11: Magnetic field lines plotted over the radial velocity in the xz-plane for both Case 1
(top) and Case 2 (bottom). A divergence of magnetic field lines around each mass-loading region
is evident in both cases.
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Figure 4.12: The magnetic field strength B plotted along the x-axis for both Case 1 (top) and Case
2 (bottom). Both cases show a magnetic buildup preceding each mass-loading region, followed by
a drop in field strength, corresponding to diverging magnetic field lines in the regions.



Chapter 5

A Cometary Dust Source Application

5.1 Sungrazing Comets

In addition to particle migration to the F-corona, another means for dust to find its way

into the corona is through sungrazing comets that emit dust and gas near the Sun. Comets

venturing in so close to the Sun can lose significant mass from a single pass, if they survive at

all. On December 15, 2011 Comet C/2011 W3 (Lovejoy) passed within 0.2R� of the solar surface,

significantly reducing its mass and leading to a cataclysmic fragmentation days later (Sekanina

and Chodas[44]). Such a loss in mass could potentially create observable impacts to the wind

velocity and composition. Modeling solar wind mass-loading from a sungrazing comet such as

Comet C/2011 W3 serves as our first application for modeling mass-loading within a full 3D MHD

environment.

5.2 Mass-Loading Point Source

With a functioning mass-loading component established with the SWMF, we move to ap-

proximating a mass-loading region as a single point source on a cometary path. However, when

working with computational grids, we must settle for a single computational cell acting as our

“point” source. This should be sufficient if the cell volume is comparable in size to a cometary

coma, the dusty atmosphere that can range in size from 104 to 105 km across.1 Images provided

in Sekanina and Chodas[44] and taken by Černý (Figure 5.1) show the head of Comet C/2011 W3

1 In the extreme case of 2007’s Comet 17P/Holmes, the coma expanded to a volume greater than the Sun.



74

Figure 5.1: The growing coma and tail of Comet C/2011 W3, following a day after a close approach
to the Sun. Images are reproduced from Sekanina and Chodas[44].

to be several 104 km in width a day after perihelion.

5.2.1 Comet Lovejoy Orbital Characteristics and Mass Loss Estimate

For the first simulations of our sungrazing comet application we place a dust source at various

locations along a cometary path using the same orbital characteristics as Comet C/2011 W3, but

restricted to the equatorial plane, eliminating the need to add extra refinement outside the current

sheet. Sekanina and Chodas[44] provide orbital characteristic for Comet C/2011 W3, which has a

perihelion distance of r = 1.2R�. We also use t = 0 as the reference time for its perihelion passage.

We will look as locations along its path and refine the grid such that each cell volume acting as our

“point” source will be approximately the same as a spherical coma with radius 104 km.

In addition to orbital characteristics, we obtain dust loss estimates for Comet C/2011 W3

from Sekanina and Chodas[44]. Using post-perihelion light curve data they find an effective cross-

sectional area Xd of the dust in the cloud. This is then used in their model to estimate the mass

loss indicated by the scattered sunlight by dust particles of diameter d with a size distribution d−k,

Md =





2(k−3)
3(4−k)ΘρbulkXdd

k−3
min d

4−k
max 3 < k < 4

2(k−3)
3(k−4)ΘρbulkXddmin k > 4

, (5.1)

which is an overestimate due to the contribution of sodium ions in the light curve. Equation 5.1 is

for a specific range in dust particle sizes, from dmin to dmax, and where ρbulk = 0.4 g cm−3 is the
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bulk dust density for dust from Comet C/2011 W3 and Θ is the coefficient

Θ =
1− (dmin/dmax)|k−4|

1− (dmin/dmax)k−3
. (5.2)

Sekanina and Chodas[44] state particles smaller than 0.1 µm contribute very little to the mass,

making dmin = 0.1 µm. For dmax, multiple values are used in their study, but we set dmax = 100

µm since it is an upper limit for dust particles getting picked up by the solar wind, and k = 3.5,

which also gives an upper estimate for the total mass. Due to the light curve being much stronger

post-perihelion than during pre-perihelion, the dust is presumed to be released during the two days

following perihelion. With these parameters we have a total mass loss of approximately 3× 109 kg

over that time period.

5.2.2 Mass-Loading Setup

We set up our simulations for modeling mass-loading due to a sungrazing comet in the

following manner. We assume the estimated mass loss of 3× 109 kg is evenly distributed between

post-perihelion times t = 0 and t = 48 hours, which gives a mass loss rate of about 1.7× 104 kg/s.

This mass loss rate will be used as the mass-loading rate in the computational cell acting as our

“point” source. Then, at four points on the orbit between perihelion (x = 1.2R�) and the edge

of our domain (r = 24R�), time-independent solutions are found using the specified mass-loading

rate.

For each point used along the orbit that is not contained in a cell satisfying the volume

requirement discussed earlier, their blocks will be refined until such condition is met. Figure 5.2

shows the refined grid in the xy-plane for three cometary time locations tC we will be using, which

are tC = 12, 18, and 24 hours (post-perihelion). A fourth location we will look at, at tC = 6 hours,

is close enough to the Sun that no extra refinement is needed.
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Figure 5.2: Grid refinements in the xy-plane for three different comet locations, corresponding the
post-perihelion times tC = 12, 18, and 24 hours.
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5.2.3 Mass-Loading Results

Figure 5.3 shows solutions from our four different time locations, tC = 6, 12, 18, and 24

hours. This source orbits counterclockwise in the xy-plane, as viewed from above, and much like

with our previous results a sudden localized deceleration occurs, with reacceleration downwind.

The panels start at tC = 6 hours since any effects much closer to the Sun will become lost due to

the much higher solar wind density. For example, at tC = 6 hours, only minute changes can be

seen in the velocity contours beyond r = 10R�. For tC = 18 and tC = 24 hours, the resulting drop

in velocity remains approximately the same, even though a drop in the solar wind density with

increasing r should result in a more pronounced velocity change if the mass-loading rate remains

constant.

5.3 Dust Tail Dynamics and Formation

On the spatial scales used, our assumption of a cometary body being a dusty point source

seems reasonable. However, in a more realistic situation dust particles may survive being picked-

up long after ejection from their cometary parent. This has been clearly evident over centuries of

observations, in which light scattering off dust particles generates occasionally magnificent cometary

tails, such as with Comet C/2006 P1 (McNaught) in Figure 5.4.2 Here we will cover how dust tails

are dynamically formed, defining a new mass-loading region we can use in our MHD simulations.

Particles ejected from their cometary parent are subject to two basic forces: gravitational

forces from the Sun and forces resulting from radiation pressure. The ratio of the two forms a

particle’s β value, defined in Equation 1.27, and tells us the dominating force on a particle. Each

particle of a specific size and mass has its own β value, which we will use to distinguish between

dust particle species. Smaller particles have a large β, while larger, more massive particles have a

very small β. Consequently, β determines the type of orbit ejected particles will inherit: elliptical

(β < 1), hyperbolic (β > 1), or simply a straight path resulting from balancing forces (β = 1).

2 A cometary body actually forms two types of tails: a curved dust tail and a plasma ion tail, the latter being made
of ionized gases released from the comet, pointing directly away from the Sun. However, we will only be concerning
ourselves with dust tails for now, since different physical processes are involved with mass-loading ion tails.
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Figure 5.3: Radial velocity results from using the SC component to place a dust point source along
a sungrazing cometary orbit (white curve) in the xy-plane, with a mass loss rate of 1.7× 104 kg/s.
The four panels correspond to tC = 6, 12, 18, and 24 hours.
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Figure 5.4: The dust tail of Comet C/2006 P1 (McNaught), viewed from the Southern Hemisphere
in 2007. Views of its magnificent tail gained it the nickname the “Great Comet of 2007”.

Now imagine particles of various sizes being ejected at t = t0 from Comet C/2011 W3’s

orbit with zero relative velocity. While initially occupying the same location in space, variations in

post-ejection trajectories separate the particles over time, forming an elongating curve of particles

corresponding to the ejection time. Several of these curves, called synchrones, exist for each time

of dust particle ejections. Another curve, called a syndyne, is also formed, but instead consists of

dust particles of the same species but ejected at various times. Unlike with synchrones, for a time

tC in the cometary orbit all syndynes remain connected to the cometary orbit.

Figure 5.5 shows an example of a synchrone curve at time tC > t0 along the cometary orbit,

with dust particles being initially ejected at the comet’s perihelion (t = t0), and a syndyne curve

also at tC , formed by all the particles of a specific β ejected during t0 ≤ t ≤ tC . Varying β for

syndyne curves and varying the ejection time for synchrone curves creates a tail region, like the one

shown in Figure 5.6. This syndyne/synchrone-generated dust tail is what is seen in images such as

Figure 5.4 when light is scattered by the dust particles, and their construction is also described by

Mendis et al.[29]. Dust tails generally remain in the comet’s orbital plane, but migrate away from
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Figure 5.5: Examples of a cometary synchrone (left) and syndyne (right). Dashed lines correspond
to particle trajectories for their respective synchrone or syndyne. For the synchrone, each particle
trajectory corresponds to a difference dust particle species, with each species defined by their
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it further out due to perturbations and non-zero relative speeds during ejection.

5.4 Mass-Loading Dust Tail

Defining a dust tail in the previous section now provides a more realistic mass-loading region

than the point sources used previously. A series of syndyne and synchrone curves, such as those in

Figure 5.6, define the new mass-loading regions for revisiting the post-perihelion mass-loading cases

from earlier in the chapter. And fortunately, we need not concern ourselves too much with particle

drift outside the orbital plane. Our grids introduced in Figure 5.2 will actually help account for

any slight particle drift outside the orbital plane since the cell dimensions increase with distance

from the cometary body and therefore cover more volume outside the orbital plane.

In addition to the newly-defined mass-loading region, mass distribution in the tail needs to

be considered. The mass distribution is determined by two factors. First, the trajectories of various

species of dust particles make the particle distribution non-uniform. Second, the distribution of

particle size, which was introduced in the previous section, must be used in conjunction with particle

number distribution to determine final mass distribution estimates, which we then use in new MHD

simulations.

5.4.1 Syndyne/Synchrone-Defined Dust Tail

To determine new tail-shaped mass-loading regions and particle distributions for the tC =

6, 12, 18, and 24 hour cases from our point source results, we first assume uniform ejection of dust

particle size, once again ranging from d = 0.1µm to d = 100µm.3 For each case, we then eject

particles periodically along the cometary orbit between t = 0 and t = tC , assuming the only forces

acting on the particles result from solar gravity and radiation pressure. At t = tC , synchrones for

each ejection time and syndynes for each particle species are determined, along with coordinates

for tracked dust particles.

Figure 5.7 shows distributions for ejected dust particles at each of our four post-perihelion

3 Particles smaller than 0.1µm behave differently due to more influence from magnetic fields.
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Figure 5.7: Tail-shaped mass-loading regions and particle distributions used to update results for
the four cases from Figure 5.3. The particles are colored according to their diameter d, ranging
from d = 0.1µm to d = 100µm. The solar surface, cometary orbit, and outer boundary of the SC
component domain are drawn.
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Figure 5.8: A wider view of the tail-shaped mass-loading region and particle distribution for the
tC = 6 hours case, showing the dust tail in its entirety.

times tC . The particles are colored according to particle diameter d. Being mostly influenced

by gravity, the massive particles (in red) remain near their cometary parent. The least massive

particles (in blue) form hyperbolic orbits that take them far from the Sun astonishingly fast. While

the entire tails are not shown in Figure 5.7, Figure 5.8 shows an example of the whole tail for tC = 6

hours, with the outer boundary r = 24R� drawn, showing the extent of the outward migration of

the smallest dust particles.

5.4.2 Mass-Loading Setup

Using the mass-loading regions just defined for the four time cases tC used in our point source

MHD simulations, we rerun the SC component with a more realistic spread of dust particles. This

is done by taking the particle distributions in Figure 5.7 and reading them into our modified SC

component described previously. The initial particle size distribution d−k, with k = 3.5, is then used

to determine the overall mass distribution within the region, which we calculate our mass-loading
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source with.

We initially keep the overall mass loss rate the same as in our point source simulations, where

dust is lost to the solar wind at a rate of 1.7×104 kg/s during the first two days following perihelion.

This is done by normalizing our mass-loading source and scaling it to allow the appropriate mass-

loading rate. The result is a mass-loading rate equal to that used with our point source, but spread

out across our new mass-loading region.

5.4.3 Mass-Loading Results

Figure 5.9 shows the new radial velocity steady-state solutions from using the SC component

with the tail-shaped mass-loading regions described. The mass-loading rate remains the same as

in Figure 5.3, but the mass is more spread out. The result is only a slight change in radial velocity,

the drop maxing out at around 100 km/s for tC = 18 and tC = 24 hours, with no visible change

for tC = 6 hours. Additionally, we do no see any visible effect that the shape of the mass-loading

region is having on the radial velocity. The results could easily be mistaken for mild mass-loading

point sources.

The next question anyone working with numerical models would ask is, what happens if we

scale up the mass-loading source further? Figure 5.10 partially answers that question, where our

mass-loading source Sd has been multiplied by a factor of 10. Since cometary bodies can vary

greatly in both size and evaporation, an order of magnitude difference in mass loss is reasonable.

The next major sungrazing comet, Comet C/2012 S1 (ISON), is estimated to be much larger than

Comet C/2011 W3, possibly large enough to survive perihelion (Knight and Walsh[23]). The mass-

loading results are now similar to those from Figure 5.3, though there are still no features indicating

the tail-shaped aspect of the mass-loading region.

Finally, we check if the tail-shaped mass-loading region is an improvement on the point source

method. We know the realistic spread of the dust particles is great enough to reduce the impact on

the solar wind, which we must assume for the time being is closer to the actual impact a sungrazing

comet would have. However, the area that is clearly affected by the sungrazing comet in our radial



86

  

  
 

 

 

 

 

 

 

0

100

200

300

400

 

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

nx= 12288,   1, it=  122000, time=      0.0000

-5-15 -10 0-20
X [R]

0

10

15

20

5

Y
 [

R
]

tC = 6 hours

Ur [km/s]

300

400

200

100

0

  

  
 

 

 

 

 

 

 

0

100

200

300

400

 

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

nx= 13440,   1, it=  243000, time=      0.0000

-5-15 -10 0-20
X [R]

0

10

15

20

5

Y
 [

R
]

tC = 12 hours

Ur [km/s]

300

400

200

100

0

  

  
 

 

 

 

 

 

 

0

100

200

300

400

 

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

nx= 15096,   1, it=  252000, time=      0.0000

-5-15 -10 0-20
X [R]

0

10

15

20

5

Y
 [

R
]

tC = 18 hours

Ur [km/s]

300

400

200

100

0

  

  
 

 

 

 

 

 

 

0

100

200

300

400

 

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

Ur [km/s]

-20 -15 -10 -5 0
X

0

5

10

15

20

Y

nx= 14520,   1, it=  302000, time=      0.0000

-5-15 -10 0-20
X [R]

0

10

15

20

5

Y
 [

R
]

tC = 24 hours

Ur [km/s]

300

400

200

100

0

Figure 5.9: Radial velocity results from using the SC component to place a dust tail-shaped source
along a sungrazing cometary orbit (white curve) in the xy-plane, using a mass loss rate of 1.7 ×
104 kg/s. The four panels correspond to tC = 6, 12, 18, and 24 hours after perihelion.
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Figure 5.10: Radial velocity results from using the SC component to place a dust tail source along
a sungrazing cometary orbit (white curve) in the xy-plane, using a mass loss rate of 1.7× 105 kg/s.
The four panels correspond to tC = 6, 12, 18, and 24 hours after perihelion.
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velocity plots is the same for both types of mass-loading regions, meaning the number of particles

still concentrated near the cometary body outshines the number of particles carried further away by

their trajectories. To actually see a velocity drop affecting the solar wind in a curving tail region,

our mass-loading source would need to be scaled up ×103, but then the solar wind immediately

surrounding the cometary body becomes backed up enough to begin flowing upwind.4 In a sense,

we would be “breaking” the solar wind by the time we see a curving dust tail in the radial velocity

results.

5.5 A Solar Probe’s View

We now address the planned Solar Probe Plus (SPP) mission, which will be taking direct

observations of the solar corona within the next decade. Planned to launch in 2018, SPP will

spend seven years orbiting the Sun, making several passes through the solar corona. SPP’s closest

approach will take it near 8.5R� from the solar surface[1]. Figure 5.11 shows a radial velocity plot

in the xy-plane with three SPP approaches overlaid and the four tC points in the cometary orbit

we have been looking at.

The three approaches shown in Figure 5.11 highlight the potential for taking observations

near a mass-loaded coronal wind. If a sungrazing comet is upwind of a passing solar probe, it may

be capable of detecting the changes in the solar wind we have been modeling. With two of the SPP

passes being immediately downwind of two of our cometary locations,5 we can look at the changes

in the solar wind such a probe may detect. For the tC = 12 and tC = 18 hour cases from Figure

5.9, we plotted their nearest respective downwind SPP paths, along with three shifted paths from

the original, in both radial density and solar wind density6 plots (Figure 5.12). The additional

paths give us an idea of how changes in the solar wind appear to the probe with distance from a

cometary source.

4 Results not shown.
5 The case for tC = 6 hours is omitted since it does not generate a significant observable impact on the coronal

wind.
6 We do not look at the mean molecular mass for these cases, as we are no long assuming only three species of

particles, but instead a spectrum of dust particle sizes. Looking at the overall density relative to the undisturbed
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Figure 5.11: Undisturbed radial velocity plot of the solar corona in the xy-plane, with three SPP
approaches overlaid and the four post-perihelion cometary locations of our focus (tC = 6, 12, 18,
and 24 hours).
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Figure 5.12: Radial velocity (left) and wind density (right) plots for tC = 12 and tC = 18 hours
from Figure 5.10. Each has their respective nearest downwind SPP path from Figure 5.11 plotted,
along with three similar paths.
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Figure 5.13 shows the changes in the solar wind a solar probe such as SPP would see along the

paths in Figure 5.12. The radial velocity plots show fairly typical changes, with drops in velocity,

increasing in magnitude nearer the cometary source. However, solar wind density changes are a bit

more interesting. Further downwind, changes seen along the path actually occur as a drop in solar

wind density, contrary to what has been observed in previous chapters. This is the result of a wake

seen only in the density plots of Figure 5.12. It is not until we get nearer to the cometary source

that the results turn into a spike in solar wind density. This transition from a drop to a spike also

involves increases in density on either side of the drop. This is seen best for tC = 18 hours in Figure

5.13, where we actually get three distinct density peaks along Orbit 3, before having only one peak

in Orbit 4.

Also, as with our mass-loading tests in Chapter 4, we can look at how the magnetic field

strength is affected along the solar probe’s path. Figure 5.13 shows the magnetic field strength

B along all four paths for tC = 12 (top) and tC = 18 (bottom) hours. Changes in B correspond

closely with changes in density, showing a build-up and magnetic wake downwind of the cometary

source, even containing the same number of peaks in each respective curve. These again agree with

results from the previous chapter.

These results, which are partially presented in Rasca and Horányi[37], are of course for our

exaggerated mass-loading tail results in Figure 5.10. Variations in mass-loading rates would alter

the strengths in the velocity and density drops/peaks observed. For example, results in Figure 5.9

for tC = 12 and tC = 18 hours only show velocity drops to around 350 km/s, which would still be

a prominent change to the surrounding solar wind, but not to the extent shown in Figure 5.13.

wind density is an adequate substitute for indicating the presence of mass-loading particles.
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Figure 5.13: The solar wind radial velocity (left) and density (right) as seen along the orbits drawn
in Figure 5.12 for tC = 12 and tC = 18 hours.
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Chapter 6

Summary and Conclusions

This thesis was motivated by the lack of a solar corona model capable of modeling effects of

mass-loading by dust and by the potential for direct observations in the future. The presence of

dust in the solar corona is already known through theoretical modeling and remote observations.

Theoretical data obtained from the Solar Corona (SC) component modified for mass-loading can

be used to predict how changes indicating a dust source in the coronal wind will appear, with the

longterm goal being to eventually compare these results to direct observations.

In Chapter 2 we introduced the concept of mass-loading in a compressible hydrodynamic flow,

while also mathematically deriving its nozzle-like effects. We also described a numerical solver for

the time-dependent system of compressible 1D hydrodynamic equations (Euler’s equations). The

effects of mass-loading were demonstrated computationally with a uniform solar wind, using wind

parameters appropriate for the slow solar wind at 1 AU from the Sun. These results also showed

how a shock forms, forcing the solar wind to drop to subsonic velocities, followed by a mass-loaded

subsonic solar wind mimicking the acceleration through a de Laval nozzle.

In Chapter 3 we moved to mass-loading the coronal wind with a spherically symmetric hy-

drodynamic model. We began by introducing the coronal wind with the first historical model,

Parker’s solution, and demonstrating that Euler’s equations, with the appropriate heat transfer

source terms, produce a more realistic coronal wind. The additional source terms introduced for

the solar corona, namely heat transfer from collisional heat conduction, required amendments to

numerical techniques introduced in Chapter 2. Mass-loading was then introduced at various dis-
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tances from the Sun. These not only showed a similar effect to those in Chapter 2, where the region

begin after the undisturbed sonic point, but also showed how a mass-loaded solar wind changes

when it begins further upwind, where the coronal wind is still subsonic. In the latter case we get

no shock, but a decelerated upwind flow.

In Chapter 4 we began our work with the Space Weather Modeling Framework, which contains

a Solar Corona component based of the MHD BATS-R-US model. We described the SWMF

and BATS-R-US code and proceeded to modify code for the SC component, originally a single-

temperature model using Alfvén waves to accelerate the coronal wind, to make it multi-species (two

separate mass conservation equations, one for hydrogen and the other for dust) and have it contain

mass-loading source used in our 1D hydrodynamic model. We used the modified SC component

to run mass-loading cases similar to those performed in Chapter 3. The effects on the corona

wind velocity and mean molecular mass profiles shared several similarities to those in Chapter

3, but trends in the mean molecular mass were reversed with respect to mass-loading distance.

The likely contributing factor to these discrepancies is variation in wind velocity between the 1D

hydrodynamic and MHD models.

In Chapter 5 we used the modified MHD code from Chapter 4 to model changes in the

coronal wind resulting for a sungrazing cometary dust source. First, using orbital characteristics

and mass-loss estimates of Comet C/2011 W3 as an example, we treated the mass-loading region

as a point source where the cometary body is located. This was done with four post-perihelion

cometary locations within our SC domain. Each resulted in drops in wind velocity that stretch

back to form radial tail features, increasing in strength with cometary distance from the Sun.

Second, we repeated our computational runs using a tail source (a tail-shaped mass-loading

region) as opposed to a point source. Particle trajectories for ejected dust grains of various sizes

were used to draw syndyne and synchrone curves, forming arcing dust tail regions. Using these

updated mass-loading regions for the cometary source, and using both the same mass-loading rate

as with our point sources and a ×10 scaled mass-loading rate, we were able to make the following

claims:
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• With much of the ejected mass still near the cometary source, we get a similar imprint on

the coronal wind velocity as with the point source. However, with the mass still spread

out, the drop in velocity is significantly less.

• An order or magnitude increase of the mass-loading source term is enough to account for

the dispersion of mass and regain comparable results to the point source results.

• Neither type of mass-loading region reveals a distinct arcing dust tail in any plots. For

the tail source cases, the source term must be increased by a factor of 103 for any arcing

feature to become evident in the radial velocity, but at this point the solar wind becomes

severely disrupted near the cometary source.

Looking ahead to planned exploration of the solar corona, we looked at what a solar probe

might see when traveling downwind of a sungrazing comet. The results show a general drop in

radial velocity, decreasing in magnitude with distance from the cometary body. When looking at

the wind density and magnetic field strength, features along a solar probe orbit reveal the presence

of a wake further out, with multiple jumps in density nearer the cometary body.

The basic framework to compare future in-situ observations with theoretical modeling is

established, but the next logical direction is to move from a multi-species code to a full-fledged

multi-fluid code, motivated by the difference in particle size/properties between the native solar

wind and dust. For work done in Chapter 4, this would split the solar wind into two fluids, one for

the native solar wind particles and another for whichever species of dust particles we are interested

in (micron-sized dust particles with the cases covered in Chapter 4). Unlike the multi-species model,

where only the number of mass conservation equations is multiplied, we would need to solve an

entire set of fluid equation for each fluid involved. For the cometary source application, this could

become a difficult task, since we dealt with a spectrum of dust particle sizes. Similar multi-fluid

work has been done using BATS-R-US, but as it applied to the Saturnian moon Enceladus (Jia et

al.[22]; Jia et al.[21]; Jia et al.[20]).

Another direction, most likely post-multi-fluid, would be a fluid-kinetic model. This would
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be one of the more useful directions to go, as the solar wind is well-modeled as a fluid, but a

population of dust particles are large and few, relative to native particles in the solar wind (protons

and electrons). There is work currently in progress at CSEM to couple BATS-R-US to a kinetic

dust model, which would likely be ideal for dust modeling in the solar corona.

Two possible physical aspects that can be explored with the cometary application involve

the plasma tail and a better look at the time evolution of a mass-loading cometary tail. First,

the plasma tail is a second cometary tail composed of ionized gases and points radially away from

the Sun instead of arcing like a dust tail. Both tails result in a mass-loaded solar wind, making

their combined impacts a topic of possible discussion. Second, with Comet C/2011 W3’s perihelion

in 2011, observations showed its dust tail vanishing, reappearing, and interacting with the Sun’s

magnetic fields at close-range (Schrijver et al.[43]). Incorporating a similar time evolution of the

dust tail (and possibly the plasma tail) near and after perihelion with the mass-loading MHD

simulations could reveal more interesting dynamical results.
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