A Preconditioned L-BFGS Algorithm with Application to
Molecular Energy Minimization *

Lianjun Jiang Richard H. Byrd Elizabeth Eskow Robert B. Schnabel

Nov. 21, 2004

Technical Report CU-CS-982-04
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

ABSTRACT

The limited-memory BFGS method has been widely used in large scale unconstrained opti-
mization problems, such as the protein structure prediction problem. A major weakness of
the L-BFGS method is that it may converge very slowly for ill-conditioned problems. We pro-
pose a preconditioned L-BFGS method, where we form the preconditioner from parts of the
partially separable objective function. We report results of experiments in the context of the
protein structure prediction problem for four different proteins, using a protein energy model
as the objective function and multiple initial configurations for each protein. The results show
speed-ups with factors between 3 and 10 in terms of function evaluations and with factors
between 2 and 7 in terms of CPU time. The difference between CPU time and function eval-
uation speed-up is due to the extra overhead of calculating and applying the preconditioner.
We also compare the performance of this method to the preconditioned truncated Newton
method.

1 Introduction.

In the field of large scale unconstrained optimization, one of the most versatile, effective and
widely used classes of methods are limited-memory quasi-Newton methods. These are variants
of quasi-Newton methods that do not require calculation or storage of a full Hessian matrix,
which can be extremely expensive for many large scale problems. Limited memory methods are
often very effective, but they can be slow and sometimes have limited accuracy, especially for
ill-conditioned problems. Another class of methods, truncated Newton methods, are similar to
limited memory methods in terms of storage costs and computational overhead, and it is well
known that truncated Newton methods can be greatly improved by preconditioning the inner
conjugate gradient iteration. For limited memory methods, it is possible to perform a procedure

“Supported by National Science Foundation Grants CHE-0205170 and CCR-0290190 and Army Research Office
Grant DAAD19-02-1-0407

analogous to preconditioning, although there is much less computational experience with this
procedure.

In this paper, we examine some ways to precondition limited memory methods, focusing on
problems arising in predicting protein structure by potential energy minimization. Our exper-
imental results, with several proteins, show that preconditioning the limited memory update
significantly improves the performance of the method, and that this improvement can be en-
hanced by making advantageous choices in the implementation. The preconditioning considered
here is very similar to that considered by Xie and Schlick in [17], where they applied the precon-
ditioned truncated-Newton method to minimize the potential energy of proteins. They also did a
performance comparison between preconditioned L-BFGS and truncated-Newton. Their results
showed that the preconditioned L-BFGS reduced the number of iterations, but not significantly
enough to balance the cost of preconditioner calculation overhead. Our method forms the pre-
conditioner differently, which leads to much greater reduction in function evaluation, and thus
makes the preconditioning extremely effective. Furthermore, we predict that the benefit of using
a preconditioner will increase with the size of the problem.

1.1 Limited-Memory BFGS Method

The limited-memory BFGS method belongs to a class of methods called limited-memory quasi-
Newton methods. This class of methods is especially useful in solving large scale problems with
Hessian matrices that are too expensive to compute or too dense to store and manipulate easily.
The major advantage is that these methods don’t require the storage of the N x N full Hessian
matrix, where N is the number of variables; instead they only store 2m vectors of length V.
Usually, these vectors are applied to update a simple initial matrix, such as a multiple of the
identity, to form an approximation to the current Hessian. The same idea can be applied to
the inverse of the Hessian. Suppose at step k, we have stored m most recent correction pairs
(8iy9:),i =k —m,...,k—1, where

Si = Tj41 — Tj, (1.1)
yi = Vf(@iv1) — Vf(zi) (1.2)

We can construct an approximation to the inverse of V2 f;, by first selecting an initial inverse
Hessian approximation H,g, and then applying the update pairs to it:

Hj, = update(Hy, sk —m, Yk—m) (1.3)

H]Z+1 = update(H,i, Sk—m+j> yk—m-i—j) (14)

Finally we set H, = H}", and use Hj, to find the new direction py;:

pr = —Hjp * V f(zy) (1.5)

The next iteration is then given by

Tyl = Tk + apy (1.6)

where « is chosen by a line search method.

This approach works with a variety of update formulas. The most widely used in this context
is the BFGS inverse updating formula, given by:

update(H,s,y) = VI HV + pss’, (1.7)

where
p=1/yTs, V. =1— pys’. (1.8)

The matrix HY in (1.3) should be a rough approximation to the inverse of the real Hessian,
and usually is given by:
T
Sk 1Yk—1
yngyk71

Previous studies have shown that 3 < m < 7 is a reasonable choice, and increasing m doesn’t
necessarily imply improved performance. The main weakness of the L-BFGS method is that it
may converge very slowly in terms of number of iterations for ill-conditioned problems, which will
require a large number of potentially costly function evaluations to be performed. Our goal is to
find better choices of H,g that improve the speed of the method.

HY) = I. (1.9)

1.2 The protein structure prediction problem

We will discuss ways to compute an initial H ,2 in the L-BFGS method specifically in the context of
energy minimization for protein structure prediction, which is to predict the 3-dimensional struc-
ture, or native state, of a protein, given its amino acid sequence. It is believed that, in most cases,
the native state corresponds to the minimum free energy of the protein. However, the energy
landscape of a realistic-sized protein has thousands of parameters and an enormous number of
local minimizers. This means that an efficient, large-scale global optimization method is required
to solve the problem. These global optimization approaches, including the one developed by our
group [10, 6], often rely heavily on local minimizations in the full parameter space (and possibly
smaller sub-spaces) of the problem. As this is a major cost in the global optimization method,
reducing that cost enables these expensive problems to be worked on much more efficiently.

Our global optimization approach is based on the use of an empirical energy potential, AM-
BER [4] , which is one of several commonly used potentials for proteins. Eanprr represents
the N Cartesian coordinates of the n atoms of the protein as a vector of length N = 3n, and
approximates the potential energy by a function of the form,

Vi
EavBer = Y Kp(ri —rieg)? + Y Ko, (00— 0re)® + D 5 [+ cos(nidr, —)]
bonds angles dihedrals

12 6
o o
+> ey [=2) —2(-2
J P oy
i<j g g

The energy function contains two types of interactions: bonded (the first three terms) and
non-bonded (the last two). The first term, the bond length potential, is a sum over all the bonds

+ CQi—_Q’?') . (1.10)

Tij

between neighboring atoms, and depends on the deviation of the distance ||r;|| from its equilib-
rium value. For each three atoms such that two atoms are both bonded to the third atom, the
second sum has a term depending on the bond angle 6 formed by the three atoms. The last
bonded summation includes terms depending on certain dihedral angles ¢ formed by sets of four
atoms connected by bonds. The dihedral angle is formed by two planes each containing a specified
set of three of the four atoms, and is a measure of the torsion of the configuration. The non-
bonded interactions are comprised of Lennard-Jones and electrostatic terms, respectively. These
non-bonded interactions occur between every pair (i, j) of atoms and depend on the distance ;5
between the pair of atoms, and on their charges ¢;q;.

An additional component of the energy model that is necessary for a good model is an em-
pirical solvation free energy term used to model the interaction of the protein with an aqueous
environment. We use a term, Fsorvarron, which models the hydrophobic (adverse to interac-
tions with water) effects as a two-body interaction between certain atoms of the protein, using a
sum of Gaussians.

(rij — cx)]’
Esovation = »_ Y hexp <— [u}) ; (1.11)

ij<Ne k<3 Wk

where the sum over ¢ and j is over the aliphatic carbon centers, and each of the 3 Gaussians is
parameterized by position (¢), depth (hy), and width (wg) so as to describe the minima and
barrier of the hydration energy [10]. The total energy that we minimize is thus Eayprr +
Esorvarion.

2 Preconditioned L-BFGS Method

The performance of the L-BFGS method relies upon having a good approximation to the actual
Hessian. The correction pairs are used to correct the behavior of H,g. So if we start with a better
H,g, we should expect a better approximation to the actual V2f !(z;), and hopefully, a more
quickly convergent L-BFGS method.

2.1 The algorithm

The L-BFGS algorithm does not need to form Hy explicitly. It only needs the vector HpV f(zy)
at step k. This can be computed by a two-loop recursion algorithm:

q=Vf(zk)
Fore=m-—-1,...,0

o = pistq (store «;)

q ‘= q— 05y
r= Hpq (2.12)

For¢=0,1,...,m—1

B = pylr

ro= r+si(a;—p)
Hka(fEk;) =T,

which is described in [12].

This two-loop recursion algorithm is an inexpensive computation, costing only 4mN multi-
plications and additions, plus one product with H ,2 in (2.12). Tt also has the advantage that the
computation involving H,g is isolated from the rest of the computations. Therefore one can chose
H}) freely at each L-BFGS iteration. Of course if we choose an initial matrix more complex than a
diagonal it is more practical to choose a matrix M}, that is like V2 f(z}) in some way and replace
(2.12) with the solution of the linear system:

Myr = q. (2.13)

It is worth noting that using M} as the initial matrix in this way is mathematically equivalent to
1

making the change of variables x — M ,fm, and then applying the correspondingly transformed
updates to an initial matrix equal to the identity. Therefore, it is appropriate to refer to this
approach as a preconditioned limited memory method.

For this approach to be appealing, M must have the following properties:

1. M must be inexpensive to calculate.
2. M must allow equation (2.13) to be solved easily.
3. M must be positive definite.

4. M should be a significant part of the real Hessian.

We will discuss how we resolve these issues in the following sections. Even though we are
using the protein structure prediction problem as our example, the approaches we take should be
applicable to other large scale problems.

2.2 Preconditioner calculation

From the equation (1.10), the potential energy can be separated into two parts; bonded terms
(local terms) and non-bonded terms. Specifically, the bonded terms include the first three sums
of the equation(1.10). Correspondingly the Hessian may be serarated into

Vf(x) =V’ +Vfnp (2.14)

We will form the preconditioner M to approximate each part of the Hessian respectively.
Since the bonded term only involves adjacent atoms, the Hessian V2fp is expected to be banded
and sparse, if the variables are ordered properly. Therefore it is reasonable to include V2fg in
M, and we do so. On the other hand, V?fyp is dense, and expensive to compute. Rather than
ignoring V2 fyp entirely, we initially approximate V2 fyp by term of the form BI. Because

Vifnp ~y— V7 fps (2.15)

we let

_ly—V2f5 sl|

P=" (2.16)

We then form the preconditioner M by

M =V?fg+BI (2.17)

Including the S term in M makes a significant improvement in the performance of the algorithm,
as we show in Section 3.

The Hessian V2fp can be calculated either analytically or numerically. Two common ap-
proaches to obtain a numerical Hessian are finite differences and automatic differentiation. Both
techniques require in general O(N) gradient evaluations. However, since our preconditioner is
sparse, one can apply a coloring algorithm [5], to figure out the independent columns of the
Hessian, and thus greatly reduce the cost of both methods. For example, since V2fp is banded,
the number of coloring groups is dependent on the bandwidth. We found that no matter how
big the protein is, the upper bound for the number of colors is 66. That is, rather than needing
N gradient evaluations to calculate V2fp, it can be calculated in 66 gradient evaluations. In
our experiments, we used the automatic differentiation program ADIFOR [1] to automatically
generate the Hessian code from the gradient code for bonded terms, because ADIFOR is more
accurate than the finite difference method.

This preconditioner has the properties 1 and 4 mentioned above. Furthermore, since the
preconditioner should vary slowly between iterations near the solution, we also suggest that M
only be calculated at every Tth L-BFGS iteration. For the next T' — 1 iterations, we continue to
use the same M for equation (2.13). This allows the total cost of calculating the preconditioner
to be reduced by a factor of T'. The effect of using different 7" values is shown in Section 3.

2.3 Modification to the preconditioner

The matrix M formed by (2.17) is not guaranteed to be positive-definite, which is critical for the
L-BFGS method to generate decent directions. The preconditioner may need to be modified to
ensure positive definiteness. One way to do this is to use a modified Cholesky factorization to
form the triangular factor L such that

LL" = M + E where E is a diagonal matrix. (2.18)

Sparsity can be be maintained by using symmetric pivoting. Another approach is to use an
incomplete Cholesky factorization, such that the amount of fill-in occurring in L is limited, and
many of the nonzero elements of L in (2.18) are suppressed.

Using either approach allows the preconditioner to satisfy requirement 3. Furthermore if || E||
is small, then property 4 also is maintained. Both modified Cholesky and incomplete Cholesky
can be implemented to keep a certain degree of sparsity in L. This limits the cost of the back-
solving, which allows the preconditioner to retain property 2. As discussed below we can further
control this cost by reusing the preconditioner and its factorization for several iterations.

The code MAB7 [9] uses a version of the modified Cholesky method of Schnabel and Eskow
[16] to determine the diagonal modification. Sparsity is preserved by a pivoting strategy. The
incomplete Cholesky factorization code, ICF, by Lin and Moré [3] restricts fill-in explicitly by
allowing no more than pn elements to fill in, where p is user-defined. It uses the following
algorithm to find « such that M + aD is positive definite.

Choose ay > 0
Compute M = D~Y2MD~1/2 where D = diag(||Me;||2)
Set ap = 0 if min(7h;;) > 0; otherwise oy = — min(7h;;) +
For k=0,1,...,
Use incomplete Cholesky factorization on M, = M + oI
If successful set o = oy, and exit
Else set aj1 = maz(2ak, as)

A drawback of this approach is that it may need to run the factorization algorithm multiple times
before determining the correct . In these problems, since the V2 fp is banded, there is little
fill-in to the factor L, so we set p large enough to keep all the entries in L.

MADBT is a sparse solver which performs pivoting to maintain sparsity, and then applies the
modified Cholesky without pivoting to achieve positive-definiteness. Since ICF may need to run
multiple times to figure out the proper «, it is more expensive then MA57. However, since MA57
uses modified Cholesky without pivoting to maintain sparsity, the final F in (2.18) is much larger
than that computed by ICF, on average. The larger modification makes the preconditioner a
worse approximation to the Hessian and thus leads to more iterations. The experimental results
on the performance of these two approaches are shown in the Section 3.1. We concluded that
incomplete Cholesky is the better choice for our problem, at least until a version of modified
Cholesky is developed that balances pivoting for sparsity with pivoting to minimize the size of E.

2.4 Line search modification

We are using the line search algorithm by Moré and Thuente [13] in our L-BFGS code. During
out initial experiments, there were several line search failures. These appear to be caused by very
high objective function values near poles of the objective. The problem is that the new upper
bound u of the line search interval [[,u] is sometimes set equal to «., the minimizer of a cubic
interpolant. If one of the interpolating values is extremely large, this sometimes shrinks too close
to the lower bound I, causing the line search to fail. We added a safeguard parameter minshrink
to prevent this from happening, and compute the new upper bound by the formula:

u — max(l + minshrink x (u — 1), «) (2.19)

Setting minshrink to 0.001 eliminates all the line search failures which occurred in our exper-
iments. We later discovered that Xie and Schlick had also observed this problem and suggested
the same solution in [18].

3 Computational results

We performed our experiments on a cluster of 65 nodes, each containing two Intel Xeon 2GHz
CPUs and 2 GB memory. We selected 4 different proteins with between 1779 and 13728 variables
to do experiments on. We denote these proteins by P1(SH3 prototype 1EOM), P2(HI0073 H.
influenzae 1N05), P3(HI1034, H. influenzae 1INO) and P4(F-actin capping protein a-1 subunit,
chicken 11ZN) [11]. Proteins P2, P3, and P4 were targets T130, T148, and T162 from the CASP5
competition. Several different starting points were used; however, due to the extreme nonlinearity
of the energy function, and the number of different local minima, it is very common for different

versions of a method with the same starting point to converge to different local minimizers. We
can get two strategies to converge to the same minimizer if the starting point is sufficiently good
(i.e. Vf(z) is small), and this provides the most precise comparisons of the strategies. However,
in practice much poorer initial points are used, and it would be more realistic to use many far
starting points and average the behavior for a given strategy.

To resolve this dilemma, we prepared two test beds for each protein. The first one contains
starting points which will converge to the same minimizer with respect to different methods. These
starting points are already close to the solution, in fact close enough that further minimization
produces changes in the objective in the third decimal digit, or smaller. However, this does allow
us to compare the various methods as they approach the same minimum. In this set, we used 16
starting points for P1 and P2, 8 starting points for P3 and only 4 starting points for P4. The
second test bed contains 16 starting points which are far from the solutions, and may therefore
converge to different minima. All the starting points were intermediate points from our global
optimizer described in [10]. For each experiment we computed the average run statistics over the
starting points. All the methods use the following stopping condition:

IV f (i)l

=1.0F — 2
max(1L0, [[zg) ~ & €= OE D (3.20)

3.1 Preconditioner factorization and positive definiteness

As discussed above, we tried two codes for sparse matrix factorization, the positive definite
modified Cholesky option of MA57 and the incomplete Cholesky factorization code of Moré. For
all of our tests, ICF resulted in smaller quantities added to the diagonal and fewer P-LBFGS
iterations. We believe this is due to the more expensive method used by ICF for computing
the multiple of the identity to add. Xie and Schlick [17], working with truncated Newton, also
observed that several different modified Cholesky approaches all add too much to the original
preconditioner. The following table shows the results from experiments on target protein P2
using the close starting points.

method | iter nfg time | add-on | factor time
ICF 337.38 | 454.08 | 280.05 | 20.44 6.62
MAS57 | 500.38 | 720.77 | 395.30 | 2194.32 3.27

Table 1: MA57 vs ICF. Values are averages of number of iterations, number of function and gradient evaluations
and CPU time in seconds for the run. The column add-on is the average value of the maximum amount added to
the diagonal, and factor time is the time in seconds for each factorization and back-solve.

The modification made by MABT clearly is much larger than that made by ICF. It appears that
ICF generates a better preconditioner, which leads to convergence in fewer P-LBFGS iterations.
Since the cost of either factorization is relatively small we use ICF in all subsequent experiments.

3.2 Time break down for the algorithm

One strength of the L-BFGS method is the low cost of the linear algebra for each iteration. The
cost of the standard L-BFGS method on these problems is dominated by the function and gradient
evaluation cost. However, in the preconditioned L-BFGS method, two other costs are involved:

preconditioner calculation and using the preconditioner (factoring and solving). Table(2) shows
the time (in seconds) for each operation for different problem sizes, based on average values over
a single run.

Targets N Nonzero(%) | fg eval | Adifor | ICF
P1 1779 1.77 0.038 0.15 | 0.03
P2 5676 0.57 0.438 0.52 | 0.15
P3 7944 0.40 0.820 0.72 | 0.23
P4 13728 0.23 2.62 1.26 | 0.24

Table 2: Time break down in seconds. N is the number of variables.Nonzero is the nonzero percentage in
the preconditioner. fg evals is the time for each function and gradient evaluation. Adifor is the time for each
preconditioner calculation using Adifor. ICF is the time for each factorization and back-solve.

It is clear from Table 2 that function and gradient evaluation is an O(n?) operation, so as the
problem size doubled, the function and gradient evaluation cost quadrupled. However, the pre-
conditioner calculation cost is increasing linearly, so the ratio of evaluation cost to preconditioner
cost will increase as the problem size grows. In other words, the extra overhead we put into
the preconditioned L-BFGS method will be less significant as the problem size increases. The
factorization cost is clearly a minor cost compared to other two major costs. Hence for this
problem, it makes sense to choose ICF over MAb57, even though ICF requires more factorizations
than MASJ7, because it turns out to save P-LBFGS iterations. However, in a different context,
if factorization cost were more significant than the function and gradient evaluation cost, then
MAST7 might be a better choice. Finally, using the ratio of evaluation cost to preconditioner cost,
one can easily calculate the desired iteration reduction to make P-LBFGS a useful method. For
example, let »; = number of iterations to solve using L-BFGS, no = number of iterations to solve
using P-LBFGS, then for P1, P-LBFGS will be a better method only if:

ny < Cost fgeval B 0.038
n1 Costfgeval + COStadifm« + Costror ~0.038 +0.1511 4 0.03

=0.174 (3.21)

ie, a speed up of about factor 5.7 in terms of iterations. For P4, factor (3.21) is 0.636, thus
requiring a speed-up of 1.6 in iterations. Fortunately, as shown in the next section, this factor of
speed-up is commonly achieved, and thus makes P-LBFGS a competitive method.

3.3 Performance results

Now we consider a straightforward comparison between the performance of the standard L-BFGS
method and two preconditioned versions. Table 3 shows results for the standard method and for
L-BFGS with preconditioners based on a positive definite modification of V25 alone, and based
on a positive definite modification of (2.17) (P-LBFGS). For all these tests, we set the number
of correction pairs, m = 30, and we compute the preconditioner at each iterate. The following
two sections will show that greater improvements result from adjusting these parameters. For P1
with close starting points, the Z—f ratio is certainly much smaller than 0.174, and thus we have a
factor of two speed up in time. For the bigger problem, the function and gradient evaluation costs
become more dominant, and even though we see a bigger Z—f ratio, the time reduction becomes
greater still, rising to nearly a factor of 3.

Preconditioning by (2.17), which includes the approximation I to the non-bonded terms,
compared to preconditioning by V2 fp alone results in an additional reduction of more than 25%
in time and iterations for the close starting points and substantial but smaller reductions for the
farther start points. In [17]), Xie and Schlick use only V2fp in their preconditioned L-BFGS
tests, and this difference appears to be part of the reason that our preconditioning results in a
net time saving, while in [17] the preconditioning results in more computational time. Another
factor is the use of a modified Cholesky to make the preconditioner positive definite in [17], as
opposed to the more accurate and expensive approach used here.

Targets(Close): P1 P2 P3 P4
Methods iter nfg time | iter nfg time iter nfg time iter nfg time
L-BFGS 1758 1804 78.2 | 2537 2598 1124.7 | 3098 3168 2610.1 | 4239 4270 11424
L-BFGS w/V2fp | 157 175 46.2 | 409 467 564.0 | 621 822 1418.9 | 887 1063 4698.5
P-LBFGS 119 143 359 | 295 389 4429 | 451 613 1062 | 645 988 4039
Targets(Far): P1 P2 P3 P4
Methods iter nfg time iter nfg time iter nfg time iter nfg time
L-BFGS 21016 21433 962.0 | 19187 19558 8623.7 | 18174 18598 15778.4 | 43469 44282 117472.0
L-BFGS w/V?fp | 2118 2949 598.3 | 3119 4524 4390.0 | 3204 5033 7627.2 7644 10868 42862.4
P-LBFGS 1765 2462 489.5 | 2425 3576 3397.3 | 2985 4368 6628.1 6792 10226 39247.1

Table 3: Performance results for plain L-BFGS, and L-BFGS with two preconditioners. Shown for each problem
are: the number of L-BFGS iterations, the number of function and gradient evaluations, and the total CPU time
in seconds for the method to converge.

3.4 Preconditioner recalculation interval

Examination of Table 3 indicates that the reduction in time between L-BFGS and P-LBFGS
is not as sharp as the reduction in number of iterations, and from Table 2 it is clear that this
difference is due to the cost of computing the preconditioning matrix at each iteration. One way
to reduce the cost of computing V2 fp is not to compute it at each iteration, but to use the matrix
V2fp(zr) as a preconditioner at iterates xj;;i = 0,...,T — 1. Thus with a recalculation interval
of T we only compute V2 fp every T iterations. The results of our experiments with this strategy
are summarized in Table 4 below.

From these results, we make the following observations:

e increasing 7T' can sometimes make the preconditioner less accurate and may increase the
number of iterations. This is especially evident for the close starting points, but the effect
is not large or consistent.

e Increasing T results in the performance of much fewer preconditioner calculations, This
outweighs any increase in number of iterations, and significantly reduces total computational
time.

e Our results indicate that for problems of the sizes used in our experiments, T = 20 is a
reasonable value, but performance is not extremely sensitive to this parameter.

3.5 Number of saved update pairs m

Previous study has suggested that increasing m past about 30 may not improve the performance of
the L-BFGS method (see, e.g. [12]). Table 5 shows the performance results for the preconditioned

10

Targets(Close) P1 P2 P3 P4
T iter nfg time | iter nfg time | iter nfg time | iter nfg time
1 119 143 359 | 295 389 4429 | 451 613 1062.0 | 645 988 4039.0
3 132 163 21.7 | 331 442 3314 | 528 717 8787 | 642 955 3192.0
10 131 161 15.3 | 337 454 280.1 | 536 740 773.3 | 603 943 2889.7
20 140 171 145 | 333 459 270.3 | 517 732 7387 | 569 889 2719.9
30 155 197 153 | 349 457 266.2 | 571 805 792.5 | 600 958 2857.9
Targets(Far) P1 P2 P3 P4
T iter nfg time | iter nfg time iter nfg time iter nfg time
1 1765 2462 489.4 | 2425 3576 3396.9 | 2985 4368 6612.2 | 6792 10226 39247.1
3 1497 2104 204.9 | 2226 3222 2016.2 | 2870 4185 4551.0 | 5366 7998 24674.2
10 1535 2179 138.0 | 2295 3469 1757.4 | 2957 4376 4080.3 | 5919 9242 25889.7
20 1422 2072 1154 | 2294 3555 1711.1 | 3214 4790 42925 | 5411 8393 23094.8
30 1485 2238 118.6 | 2171 3373 1605.7 | 2799 4241 3776.6 | 5960 9120 24895.2
60 1401 2289 114.5 | 2448 4015 1859.0 | 2925 4565 4003.2 | 5296 8730 23654.5
Table 4: Varying the recalculation interval T’
version on P1-P3 for different m values:
Targets(Close) P1 P2 P3
M iter nfg time | iter nfg time | iter nfg time
1 156 186 42.9 | 525 646 686.4 | 1344 1714 2779.9
3 159 227 455 | 461 706 683.9 | 866 1292 2013.5
) 156 186 42.8 | 405 636 620.2 | 605 903 1446.9
10 130 180 39.0 | 367 548 558.1 | 509 725 1212.0
30 119 143 359 | 295 389 439.5 | 451 613 1062.0
60 118 134 35.8 | 303 367 439.3 | 492 659 715.0
120 111 122 33.9 | 267 302 388.5 | 521 686 739.6
180 103 112 31.7 | 258 282 373.6 | 420 543 610.8
240 101 110 31.3 | 253 272 368.0 | 424 551 621.5
Targets(Far) P1 P2 P3
M iter nfg time | iter nfg time iter nfg time
1 5049 5909 12354 | 7924 9616 9592.8 | 15237 20498 31416.5
3 2307 3168 610.4 | 4030 6187 5554.1 | 7539 12915 17877.5
5 2000 2706 530.0 | 3291 5007 4573.9 | 6035 9610 13775.0
10 1826 2441 482.2 | 2844 4277 3948.7 | 4580 6822 10180.9
30 1765 2462 473.6 | 2425 3576 3397.3 | 3142 4567 6946.0
60 1611 2484 449.3 | 2201 3184 3062.7 | 2351 3363 5273.6
120 1658 2868 486.2 | 1965 3066 2884.8 | 2392 3583 5521.4
180 1668 2981 496.9 | 2024 3127 3011.4 | 2411 3747 5739.2
240 1633 2957 492.8 | 1941 3181 2970.1 | 2248 3529 5455.0
300 1647 2999 513.0 | 1935 3222 3101.7 | 2308 3671 5803.0

Table 5: Varying the number of saved update pairs m for P-LBFGS

It is clear that performance of P-LBFGS improves steadily as we increase m up to about 240.

11

The number of iterations decreases with m, and the extra computational cost is small enough
that computational time decreases also. (Performance improves with m for the unpreconditioned
LBFGS also, but the improvement is less consistent.) Since performance stops improving in this
examples for m around 240, we use the value m = 240 in the rest of the paper.

3.6 Performance gain

Based upon the results of the previous two sections, we conclude that 7' = 20 and m = 240 are
good overall choices for P-LBFGS. We compared P-LBFGS with these settings to the unprecondi-
tioned LBFGS. For plain LBFGS, we either used the previous value m = 30 or m = 240 whichever
was better. (We did notice the unpreconditioned method getting better times for m = 1 for close
starting points on two problems, but this appears to be an artifact of the stopping tolerance, as
the function values were higher than with m = 30.) The following table shows the results of this
comparison.

P1 P2 P3 P4
targets(C) | iter nfg time | iter nfg time | iter nfg time | iter nfg time
L-BFGS 1758 1804 78.2 | 2537 2598 1124.7 | 3098 3168 2610.1 | 4239 4370 11424
P-LBFGS 106 117 12.0 | 266 293 199.7 | 358 418 482.0 | 468 570 1880.7
ratio 16.53 1540 6.56 | 9.54 8.88 5.63 8.67 7.59 5.42 9.06 7.67 6.07
P1 P2 P3 P4
targets(F) | iter nfg time | iter nfg time iter nfg time iter nfg time
L-BFGS | 12473 12575 686.7 | 14879 15020 7086.3 | 15698 15845 13927.5 | 32783 33096 89952.2
P-LBFGS | 1751 3291 188.3 | 2081 3499 1730.8 | 2351 3879 3585.7 | 4344 7324 20456.9
ratio 7.12 3.82 3.65 7.15 4.29 4.09 6.68 4.09 3.88 7.55 4.52 4.40

Table 6: Performance gain

The difference between the nfg ratio and time ratio reflects the overhead of the preconditioned
L-BFGS method. Note that, these two ratios are much closer than in the results shown in Table
3, a result primarily of using a larger recalculation interval.

3.7 Comparison with truncated Newton method

Another method used very commonly for molecular energy minimization is the truncated-Newton
method. This method computes an inexact solution to the classic Newton equation:

V2 f(xr)pe = =V fi (3.22)
Normally the method uses an iterative solver, and terminates at
V2 f (w)pr + Vf (@)l < mel [V f (2], (3.23)

or because of an inner iteration limit. The most common choice of the iterative solver is the con-
jugate gradient method, which doesn’t require the computation of V2 f(z}), but only requires the
Hessian-vector product. This can be computed either analytically or simply by finite differencing:

Vf(z+ed) — Vi(z)

V2f(z)d ~ -

(3.24)

12

In the CG method, preconditioning is crucial to improve the speed of the convergence. Schlick
and Fogelson have implemented a preconditioned truncated Newton package TNPACK, and we
have made some comparisons with PLBFGS. Following [17], we used the UMC option in TNPACK
and the more lenient line search option [18] to get the best performance of TNPACK. TNPACK
also allows the user to set the maximum number of conjugate gradient iterations allowed per outer
iteration. This parameter, called here mazxcg, can have a significant effect on efficiency and can
be difficult to determine. Xie and Schlick suggest that the optimal value for mazcg is problem
dependent, and that a bad mazcg value can lead to slow convergence. We used their suggested
value of 40 and also tried another value 100 in our experiments. For the P-LBFGS method, we
used the preconditioner recalculation interval 7' = 20 and number of correction pairs m = 240.
We only used the close starting points for this experiment, and for P3, 2 out of 8 starting points
fail in TNPACK due to line search failures, so we only average the results for 6 starting points of
P3. The results are shown in Table (7):

P1 P2 P3

targets iter nfg time iter nfg time iter nfg time

TNPACK(40) 11.4 362.63 23.92 | 29.62 1006.08 546.6 | 35.5 1256.67 1226.11
TNPACK(100) | 7.31 389.69 24.23 | 15.46 983.62 503.61 | 16.5 1152.67 1100.27
P-LBFGS 106.31 117.13 11.92 | 265.85 292.62 199.7 | 357.5 417.5 481.96

Table 7: Comparison with TNPACK. TNPACK (40) and TNPACK(100) use maxcg values of 40 and 100. iter is
the number of L-BFGS iterations for P-LBFGS method and the number of outer iterations for TNPACK.

The results shows that TNPACK has a much lower outer iteration count, which would mean
fewer preconditioner calculations than straightforward P-LBFGS with T' = 1. However, using the
larger recalculation interval T' = 20, P-LBFGS has a similar number of preconditioner calculations
to TNPACK(100) on these problems. Then the performance difference is reflected on the number
of function and gradient evaluations, which TNPACK requires at each inner CG iteration. We see
P-LBFGS is two times faster on these problems than TNPACK in terms of CPU time. However,
these results are not meant to offer a conclusive comparison between P-LBFGS and TNPACK
on this class of problems, as this is best done by more comprehensive testing. It is possible that
we have not made optimal use of TNPACK in spite of considerable experimentation. In [17]
the relative performance of TNPACK is better than preconditioned LBFGS. The difference is
probably due to the more careful positive definite modification used in ICF, the extra SI term
in the preconditioner here, and certainly the larger recalculation interval used here. It is also
possible the TNPACK performance would be better if an exact Hessian were used, as it was in
[17]. The results appear to indicate, at the least, that P-LBFGS is a competitive choice on these
problems.

3.8 Impact on global minimization algorithm

Our global minimization algorithm presented in [10, 6] is heuristic and requires large amounts
of computation time. The dominant cost is the full dimensional local searches, which take more
than 90% of the total cost. Use of the faster local minimization method described in this paper,
should result in significant performance improvement on our global algorithm as well. We made
two experiments to test this. In the first experiment, we require the old method and the new

13

method to do a similar number of local searches (around 180). The new method utilizing P-
LBFGS reduces the total computational time by a factor of 4. This factor is very close to the
factor seen in the performance gain section. In the second experiment, we set the number of
local searches so that both methods take similar computational time (around 16 hours). The
new method is able to do 115 local searches whereas the old method only does 35. Since using
the P-LBFGS method in our global algorithm enables it to explore more space with the same
amount of time compared to the old method, the new method should be more likely to get lower
minimizers. In the experiment, we found 7 minimizers that are lower in energy than the lowest
one found by the old method.

4 Conclusion

We have presented a preconditioned L-BFGS algorithm and its application to the protein structure
prediction problem. P-LBFGS utilized the preconditioner created from the partially separable
objective function, and greatly reduced the number of function and gradient evaluations. Because
of that, we got a speed up factor of at least 3.6 in terms of CPU time. The results indicate the
importance of preconditioning in L-BFGS method. Overall, we believe the following conclusions
can be drawn from this study.

e Preconditioning can significantly enhance the performance of limited-memory quasi-Newton
methods.

e When gradients are expensive, it is worth spending effort to get a precise positive definite
modification to the preconditioner factorization.

e Evaluating the preconditioner only every few iterations can significantly improve efficiency.

e Large values (200) of the number of saved secant pairs can be very effective for the pre-
conditioned limited memory method.

e Preconditioned limited memory is at least competitive with preconditioned truncated New-
ton on molecular problems.

Given the impressive efficiency gains shown in this paper we believe that more effort can be
put into improving preconditioned limited memory methods, particularly in using preconditioners
involving more of the Hessian, in more precise positive definite factorization modification, and in
more efficient methods for preconditioner modification.

Acknowledgments

Computer time was provided by equipment purchased under NSF ARI Grant #CDA-9601817
and NSF sponsorship of the National Center for Atmospheric Research.

The authors appreciate several helpful conversations with Ian Duff, Jorge More and Jorge
Nocedal.

14

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

Christian Bischof, Alan Carle, Paul Hovland, Peyvand Khademi, Andrew Mauer, ”ADIFOR
2.0 User’s Guide (Revision D),” March 1995. Revised: June, 1998.

R. H. Byrd, J. Nocedal and R. B. Schnabel, “Representation of quasi-Newton matrices and
their use in limited memory methods”, Mathematical Programming 63, 4, 1994, pp. 129-156

Chih-Jen Lin and Jorge J. More’, Incomplete Cholesky factorizations with limited memory,
SIAM Journal on Scientific Computing, 21, pages 24-45, 1999.

W.D. Cornell, P. Cieplak, C.I. Bayly, LLR. Gould, K.M. Merz, D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell and P.A. Kollman, A second generation force field for the
simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117, (1995)
5179-5197.

T.F.Coleman and J.J.More, ”Estimating of sparse Jacobian matrices and graph coloring
problems”, STAM Journal on Numerical Analysis, 20(1983), pp. 187-209

S. Crivelli, E. Eskow, B. Bader, V. Lamberti, R. Byrd, R. Schnabel, and T. Head-Gordon,
” A physical approach to protein structure prediction”, Biophysical J. 82, (2002), 36-49.

Das B, Meirovitch H, Navon IM, ”Performance of hybrid methods for large-scale uncon-
strained optimization as applied to models of proteins” Journal of Computational Chemistry
24 (10): 1222-1231 JUL 30 2003

P. Derreumaux, G. Zhang, B. Brooks, and T. Schlick, ”A Truncated-Newton Method
Adapted for CHARMM and Biomolecular Applications”, J. Comp. Chem., 15:532-552, April
(1994)

L. Duff, “MA57 — a code for the solution of sparse symmetric definite and indefinite systems”,
ACM Transactions on Mathematical Software 30 (2004): 118-144.

E. Eskow, B. Bader, R. Byrd, S. Crivelli, T. Head-Gordon, V. Lamberti and R. Schnabel
” An optimization approach to the problem of protein structure prediction,” to appear in
Mathematical Programming series A (2004).

L.N. Kinch, Y. Qi, T.J.P. Hubbard, and N.V. Grishin, ?CASP5 target classification”, Pro-
teins: Structure, Function, and Genetics 53(Supplement 6):340-351, 2003.

D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization
methods”, Mathematical Programming 45 (1989): 503-528.

J. J. Moré and D.J. Thuente (1990), “On line search algorithms with guaranteed sufficient
decrease”, Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne
National Laboratory (Argonne, IL).

J. Nocedal, “Updating quasi-Newton matrices with limited storage”, Mathematics of Com-
putation 35 (1980): 773-782.

15

[15] T. Schlick and A. Fogelson, "TNPACK - A Truncated Newton Minimization Package for
Large Scale Problems: I. Algorithm and Usage”, ACM Trans. Math. Softw., 18:46-70, March
(1992)

[16] R.B. Schnabel and E. Eskow, ” A revised modified Cholesky factorization algorithm”, STAM
Journal on Optimization, volume 9, number 4, pp. 1135-1148

[17] D. Xie and T. Schlick, ”Efficient Implementation of the Truncated Newton Method for Large
Scale Chemistry Applications”, STAM J. Opt., 10: 132-154 October (1999)

[18] D. Xie and T. Schlick, ”Remark on the Updated Truncated Newton Minimization Package,
Algorithm 702”, ACM Trans. Math. Softw., 25, 108-122, March (1999)

[19] X. Zou, I. M. Navon, M. Berger, P. K. H. Phua, T. Schlick and F. X. Le Dimet, "Numerical
Experience with Limited-Memory and Truncated Newton Methods”, STAM J. Opt., 3:582-
608, August (1993)

16

