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Abstract

In many problems involving tge solution of a system of non-
lipear equations, it 1s necessary to keep an approximation to
the Jacobian matrix which is updated at each iteration. Computa-
tional experience indicates that. the best updates are those that
minimize some reasonable measure of the change to the current
Jacobian approximation subject to the new approximation obeying
a secant condition and perhaps some other approximation properties

such as symmetry.

In this paper we extend the affine case of a theorem of

Cheney and Goldstein on proximity ﬁaps of conve# sets to show that

a generalization of the symmetrization technique of Powell always
generates least change updates. This deneralization has such broad
applicability that we obtain an easy unified derivation of all the
most successful updates. Furthermore, our techniques apply to in-
teresting new cases such as when the secant condition might be in-
consistent with some essential'approximation property like sparsity.
We also offer adviée on how to choose the properties which are to be
incorporated into the approximations and how to choose the measure

of change to be minimized.

Research supported by NSF MCS76-0032 and by an NSF Graduate Fellowship.



l. Introduction

Many problems require the numerical solution of a system of

n nonlinear equations in n unknowns:

n

given F:R" » R  find x, € R" such that F(x,) = 0. (1.1)

For examéle, (1.1) arises in optimization problems, and in finding
equilibrium points of nonlinégr systems. The numerical solution
of (1.1) is usually iterative, proceeding at each iteration from
an estimate x of x, to a better estimate X;. In most algorithms,
each iteration includes calculation of the Newton step,

N
F were linear. Our notation is

s, = -J(x)ﬁlF(x), the amount by which x would differ from x, 1if

.. i
J(x) « LY, gt - 935 , (1.2)

99X

fi the ith component function of F; %7 the jth component of the vector
X, J(k)ij the component of the matrix J(x) in row i and column j.

In many cases, such as when F(x) is the output from a subroutine
with input parameter x, calculation of J(x) or approximation by
finite differences is either impossible, prohibitively expensive or
very prone to human error. In these cases J(x) (or some portion
of it) is replaced by an approximation A, and at each iteration
the current A is updated to an approximation A+ of J(x+). Such
updates are the topic of this paper. To incorporate derivative
information the approximations usually are chosen to obey the secant

equation,



A, (x,-%) = Flx,) - F(x) (1.3)

(which holds exactly for linear F), and hence we call them secant
updates. We call the resultant algorithms, which replace the

Newton step *J(x)wlF(x) by the approximation ~A_1F(x), quasi-Newton.

If n 2 2 and X, =X # 0, many matrices will obey (1.3). There-
fore, if the Jacobian has spepiallproperties, such as symmetry
(which it does in optimization applications) or a significant number
of positions which are always zero (sparsity), then each AL is
further restricted to the subset &L,of matrices which have these desir-
able approximation properties. It has been found that the most
successful updates are the ones that then chose the A  which, for
some appropriate matrix norm, solves

min ||A -A[] subject to (1.3). (1.4)
A+ea
Update selection strategy (1.4) is.good because it helps preserve
information from previous iterations. The resultant updates could
be called least change secant updates (Dennis and Tapia [8]).

The leading Jacobian updates for various forms of problem (1.1)
are alllof the least change secant form (1.4), although this was
not the original motivation behind most of them. 1In this paper
we give a unified treatment of the derivation of all the important
updates, using a simple geometric property of affine sets. The
updates discussed have previouély been shown to be least change
secant updates [10,16,17,18,23,24] but the technigques of proof are

new and easier, and should facilitate the development of updates



for problems where the Jacobian approximation is required to have
different or additional properties. Furthermore, we have found
this viewpoint to be a very effective teaching device.

In section 2 we give an easy derivation of Broyden's (1965)
least change secant update [1l1}, the case when 62 in (1.4) is
L(Rn). In section 3 we derive a general techniqﬁe for adding ad-
ditional properties to the least change secant update (i.e., re-
stricting 62 in (1.4)), using the method of iterated projections.
In fact, our approach allows for important cases
when it is vital to choose our approximations from AZ even if
this means we can not exactly satisfy (1.3). When this happens
wé show how to get A+ € éz, as near as possible to satisfying (1.3).
Furthermore, our technique allows the derivation in section 4 of
other well-known updates including Powell's (1970) least change
symmetric secant [19] , the DFP [6], [13] and BFGS [2}, [12], [16],
[23] weighted least change symmetric secants, Schubert's (1970)
least change sparse secant [21] and Marwil's (1977) [18], Toint's
(1977) {24] least change symmetric sparse secant as easy conseguences.

In sectibn 5 we discuss the application of least change secant
updates to various nonlinear problems, pointing out which update
properties (i.e., choices of 62. in (1.4)) and which norms have
proven important for different types of problems, and giving gui-
dance to update selection for future problems.

The norms‘which appear useful in (1.4) are the Frobenius
norm,

n

n . e
-HMHF’* ( Z z (Mlj)2)1/2,M6L(Rn),
i=1 j=1
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and the weighted Frobenius norm
]leMW2||F, W, e L(R") nonsingular.

We will also use the £2 vector norm (the Frobenius norm of

an n X 1 matrix) and the induced matrix norm. Vector inner pro-
ducts will be denoted by uTv and <u,v>. We also use <A,B> =

trace (ATB) to denote the inner product of two matrices when stacked
) th

by columns and viewed as "long" n2vectors‘ We denoteé the i unit

vector by el. -

2. Deriving the least change secant update

We saw in section 1 that we are interested in updates to matrices
in L(Rn) which change the current Jacobian approximation as little
~as possible while obeying a secant equation and perhaps some other

properties. We will write the general secant eqﬁation for A, as

As =y, s5,Y ¢ R, s # 0

and define the set of matrix quotients of y by s by
O(y,s) = {M e L(R") | Ms = y}. (2.1)

(Recall that often s = X, = X and y = F(x+) - F(x)). The simplest
least change secant update is the one which minimizes ‘]A+ - AI}F
subject to A, e Q{y,s). -We give a straightforward derivation of
this update in Theorem 2.2, using Lemma 2.1 which gives the analytic
solution to the easy constrained optimization problem we encounter.
We show how to find the least change secant update in a weighted

Frobenius norm in Corollary'2.3.



It is possible to derive the updgtes of section 4 by solving
the appropriate constrained optimization problems (1.4) directly,
using the techniques of pseudoinverses for a special type of
linearly constrained problem (see [11,23]). However, the techniques
of section 3 are simpler and probably more easily applicable to

new situations.
Lemma 2.1: Let o ¢ R, Vv ¢ Ef& v # 0. Then the unique solution to

min_ ||x]|]., subject to v'x = a
n 2
XeR

is
X = av/<v,v>,

Proof: If a = 0, the lemma is trivially true. If o # 0, then x
must egual aw/<v,w> for some w € Rn, v'w # 0. Thus

2 2 2 2 . .
{|x}|2 = a”||w||“/<v,w>“, which is greater than or equal to
a2/<v,v> by the Cauchy-Schwartz inequality, with equality if and
only if w is a scalar multiple of v. Therefore l[x[lz is minimized
when w is a nonzero multiple of v, which means x = av/<v,v>, It
is interesting to note that a less elementary proof follows from

. ) T
the fact that v/<v,v> is the Moore-Penrose pseudoinverse [20] of v .

The next theorem characterizes the projector onto the affine

set Q(y,s).

Theorem 2.2: Let A ¢ L(Rn), S,y ¢ Rn, s # 0, Q(y,s) defined by

(2.1). Then the unique solution to



min [1a, - Al (2.2)
+ ‘
A eQly,s F
is
-
A, = A+ ly - As)s (2.3)
<g,s8>
Proof: Define C = A+ - A, ci'= row 1 of C. Then (2.2) can be
rewritten
n 2 T i
min igl”CiI'Q‘ subject to s c, = (y - As)”, i=1l,...,n.
CeL(R")

This can be broken up into n disjoint problems

min _ |]c. ||, subject to s'c, = (y - As)T, (2.4)
n i't2 i
c.eR
i
i=l,...,n. By Lemma 2.1, the solution to (2.4) is c, = (y - As)lsT/sTs.

Thus the solution to (2.2) is (2.3).

Update (2.3) was introduced by Broyden [1]. It has been the
most successful update for approximating the Jacobian when there
are no special features of J(x) which Avshould reflect. Successful
updates for various problems are discussed more fully in section 5.
There we will see that least change updates in weighted Frobenius
norms are sometimes more appropriate, and so we now derive the

weighted least change secant update. .

Corollary 2.3: Let A,s,y,Q(y,s) be defined as in Theorem 2.2, and

let W,W ¢ L(Rn) be non~singular. Then the unique solution to



nin W, - 2w, (2.5)
A cQly,s) ‘
is
T
N R e L (2.6)
<v,s>
Proof: Define B = ﬁAW, B+ = ﬁA+W.' Then (2.5) can be rewritten
min ||B,_ - B]]F subject to B, e Q(ﬁy,w_ls). (2.7)

By Theorem 2.2, the unique solution to (2.7) is

= -1 -1 .7
B =p 4+ AWy - BW 's)(W ’s) : (2.8)

+
ls,W ls>

<W

Substituting B = WAW, B, = @A+W into (2.8), pre-multiplying by Qﬁl

and post-multiplying by W~l gives (2.6).

3. Incorporating additional properties using iterated projections

In regions where the Jacobian matrix always has some special
property, such as symmetry or a known sparsity pattern, it seems
reasonable that the Jacobian approximation can be improved by in-
corporating this property. Since there are many'instances of problem
(1.1} with symmetric and/or sparse Jacobians, we are interested in
least change secant updates which choose from among the matrices pos-
sessing such properties. Below we will assume that such matrices
form an affine set 62“ as they do in the cases mentioned.

Suppose we have A ¢ 42, which approximates J(x), and want the

weighted least change secant update A+ which is also in 51. We



might proceed as follows: find the appropriately weighted least

change secant update U, to A; then find the nearest U, to U, such

1 2 1
that 02 € sz; then the weighted least change secant update U3 to
U2; then the nearest U4 to U3 such that U4 € 52,; ... (see Figure 3.1).
Q(y,s)
Uy
U

|
\\' AN ‘ Q

Fig. 3.1

What we are doing is projecting A onto the closest (in an appropriate

norm) U, € Q(y,s); then U

1 1
the closest U3 in Q(y,s),... . We might hope that this two step

onto the closest U2 € ;2,; then U2 onto

iterative projection process of elements of CZ- oﬁto Q(y,s) and back
to 6? has a limit A+, and that A+ @,Cl is the weighted leasﬁ change
update to A wﬁich is as close as possible to Q(y,s).

In Theorem 3.1 we show algebraically that the limit of the
iterated least change Frobenius norm projections from an A in an
affine set of approximants ij onto an affine subspace Q, then back
to Cz, is indeed the least change Frobenius norm projection of A
onto Q n L or the subset of CQ_ nearest Q. Using this we derive
in Theorem 3.2 a closed form for the least change secant update
reﬁaining in a general affine set Ciw)"in terms of the least change
projection operator onto CL. This is a powerful theorem which
allows for the easy derivation in section 4 of weighted least change

secant updates that retain desirable properties which define an
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affine subset of L(Igw.

The idea of iterated projections is not new, having been intro-
duced in this context by Powell [18] for the Special case of deriving
a symmetric secant update from the least change secant update, and
generalized by Dennis [7] to show how other symmetric updates could
be derived from weighted least change secant dates. In fact, Cheney
and Goldstein [4] is an earlier more general reference concerned

with convex sets.

Theorem 3.1: Let Al and A2 be affine subsets of R" and let Pl, P2

be their respective projections. If x « Al then lim (Plpz)lx = X,
i

exists and is the nearest point in A, to x for which the distance

1

from that point to A2 is the distance from A, to A.. Furthermore,

1 2

Pox, is the nearest point to x from the set of nearest points in

A, to A,.

2 1

The proof is just an algebraic realization of the idea of
figure 3.1. The new parts of the proof are the two statements

about x+,P being nearest x. Cheney and Goldstein [4] had shown

254
that the limit exists and X, is a neareét point in Al to Az.

There is no real complication introduced by allowing Al and A,

to be disjoint. We will prove a lemma which makes this clear by

1 nearest A2 and vice versa are

just a nonreflexive generalization of the intersection of Al and Az.

showing that the sets of points in A

= min llu -~ v|

As usual we take ![Al - A
ueAl,VeA2

I
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Lemma: Let A2 = {x ¢ A e liAl - a0l = |]x - Azlj} and

o

1
Aé = {y ¢ A, ||Al ~ A2|§ = liAl - y|]}. These are parallel affine
. 2 1 .
sets and if (u,v) ¢ A] X A, with [ = v]]| = ||Al - Az]] then
A2 = Al + (u~-v) =2aA, n [A, + (u - v)]
1 2 1 2 :

Proof: Note that the lemma remains true for any (u,v) ¢ Ai X A;

but that we do not require this generality. Let (u',v') ¢ Ai x A;

v

with [u' - v']] = ||a

1 AZH, and let 0 < t < 1. Then since A,,A,

are convex.

IA

A, - A [[tu' + (1 - t)u - [tv' + (1 - t)v]]]

211

"

[t = v) + (1 - t)(u - v)]]

A

tlla' = v [+ 1 - ) ]|u- v]]

it

12y = 2,11

But since the norm is strictly convex, the triangle inequality can

only be an equality if u' - v' = u'- v. Thus Ai and A; are parallel
. 2 _ .1 : .2 2 _
affine sets and Al = A2 + (u v). Also Al = Al n Al = Al n
1 .
[A2 + (u - v})] ¢ Al n [A2 + (u - v)]. If x ¢ Al n {A2 + u - v] then
X € Al and for some y ¢ Az, Xx =y +u-v, Thus x - y = u - v so
Plx = y]] = |ju=-v]| = 12, = A,||. Therefore x Ai and so
" .
Ay 2 A0 [A2 + (u - v)].

Proof of Theorem 3.1: Let u,v) be defined by the statement of the

preceeding lemma. Set Sl = Al - u, 82 = A2 - Vv, Si = Ai - u and
Sé = A; - v. These are four subspaces with the relationships
Sé = Si = Sl n 82 that follow easily from the lemma.
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Let Ql' Q2 be the projectors onto Sl and S? and let Q, Q“L re-
spectively be the projectors onto Sl n 82 and (Sl n 82)~L We know

from standard results (Rao-Mitra Chapter 5, [20]) that Qerﬁ QQ2 = Q

il

and Ql = Q + QlQL, Q2 = Q + Qle. Hence for any s e Sl' (QIQZ)S

0, (s + 0,0's) = 0%s + 0,0%0s + 00,0"s + 0,0"0,0"s = 0s + 0,0%0,0%s,

1

and similarly for any 1 > 0, s = (Qin)ls = Qs + (QlQleQl)ls.

. Lo . L 1oi . i_ .
Since §; n 82 n (Sl n Sz) = {0}, }1m (QlQ QZQ )" = 0, and lim s Qs.

i oo )

Now, let x ¢ A, and set 8= x - u. Let P_,P. and P be the

1 1’72
orthogonal projectors on Al,-Az and Ai respectively. Since Al =
’ ' 2 2
= = g . == - +
Sl + u, A2 52 + v, and Al Sl + u, we have Plz Ql(z u) u,

Q(z - u) + u for any z « rR". Thus,

it

Pzz = Q2(z - v) + v, and Pz

since v - u ¢ Sl n SL, we have sz = Q2(x - Vv) + v =

1 2
Qz(x - u - (v-u)) +v = st + v, and Plpzx = Pl(st + v) =
_ .. i i
Ql(QZS + v - u) + u = Qles + u. Similarly, for x= = (PlPZ) X,
xl = (Qle)ls + u = sl + u., Therefore lim Qs + u = Q(x - u) + u = Px.

L -roo
That P2x+ is the projection of x onto A% follows in the same way

since it is just Qs + v.
The next theorem shows that in the case A2 = Q(y,s) we can

reduce the problem of finding x, to a particular linear least

+
squares problem. Later, we will show how to solve this problem

explicitly for some important special cases of Ay

Theorem 3.2: Let s,y ¢ lf], s # 0 with Q(y,s) defined by (2.1) and

let CZ, be an affine subspace ofimnxnvdiﬁxs its parallel subspace.
If'%QI and PS are the orthogonal projections into 52, and S respectively

then for M ¢ anxnand A € 62,, 3§L(M) = A + PS(M—A). Let ?> be the

th €jST
nxn matrix . -whose j column is PS( = )s and let A ¢ 62,. If v is
s s
any solution to
min n§|$7v -y - As)||2 (3.1)

ve R
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or equivalently to

T .
vs
min | |P.(—=)s - (y - As) || (3.2)
veKJl S sTs 2
then
vs'
A+ = A + PS(“:F") (3.3)

8 8

is the nearest to A of all the nearest points of [2, to Q(y,s). If

the minimum is zero then A+ e‘éz,n Q(y,s).

~Proof: The relation between %CL and Pg is the one between P, and
Q2 we used in the last proof. It is straightforward and geometrically
obvious so we omit the proof. It is stated here as a formal reminder
for someone reading only the statements of the theorems. We will

also use the other standard properties of a projector. It follows

directly from Theorem 2.2 and this identity that if A ¢ éjL, then
Ay-as)s”
P, P (A) = A + P_(LT2815
O @ 5 5Ts
This establishes the i = 1 case of the induction hypothesis that

n
for somne v, € R,

.
. V.S
i _ i
(B B (8) = &+ Pg(—) ¢ a

Thus,
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i+l V‘ST
(P P.) (A) = (P P ){(P P 3 (a)y] = P [A + P (—)]
a @ a © . CZM i S s
v.s -
visT (y - (a + PS(STS ))s)s
= A + P_( ) + Pl ]
S sTs S s's
T
vis sT
= A+ P_([v, + (y - As - P_{( )s)] )
ST T
s s s's
v s' s'
Aa+p (2t ) op a1,
S T CZ- T
s's s s
o A s’ n vgs.sT n . g
‘Now Pg(——) = P (I ——l—) = 3 viP, (Jm) Thus { { o) Layy
s s j=1 s's j=1 s's sz
e.s’T
is a sequence in A + {the linear span of PS(~%~m)r j=1,...,n} and
s s

this is a closed set. Since by Theorem 3.1 the sequence converges,
. €-ST Vv.ST

] &
V*ps( ) = A + PS(
1 s s s s

).

o1

it must converge to a point A, = A + .
J
Remember also that A, is the nearest point in 62, to A which is also
a nearest point to Q(y,s).
Thus we have the minimum distance from 42 to Q(y,s) is the same
as the minimum distance to Q{(y,s) from the subset of 62, of matrices
of the form A + P ( TT). But we can splve this simpler problem by

s s
computing that distance as

.
. wWs

mmn[iPQ(A+ Ps(=-)) = (A + P (¥S ))I

we R s's s s

(y - As - Py (»~~)o)s

= min || s's K
we]Rr1 sTs F
_ |ly - As - PS( )s!lz
= min

weR" |lsl|2
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The minimum obviously corresponds to the minimum of the numerator
which is

n

. z (wge.)sT
. _ B j=1
min || (y - As) Py = )SH2
weR s s
: £is' e s’
=min_ ||(y - As) - (Pg ( 1 ys|...|Pgl ? ysiwl],.
welR - s s s 8

This establishes that every solution of the linear least squares
problem (3.1) or (3.2) put into (3.3) yields a nearest point from
CL to Q(y,s) and that v* must itself solve (3.1) since A* is a

nearest point. It also shows Q(y,s) n Cl # {} if the minimum is 0.
: vlsT v.,sT ,
gl—=—) = Py (—+—) for any pair
s s s s
of solutions to (3.1) or (3.2).

Now it remains only to show that P

v,,V

1772

Direct computation or properties of the trace yield the useful
identity <uvT,M> = uTMv where the matrix inner product is the sums

of the inner products of respective columns. Now let ViV, solve

: T
- v.)s
- . - e = l 2 I
(3.1). Then ?7v1 = ?sz 50 :P(vl vz) = 0 = PS( sTs )s. But,

since projectors are self-adjoint and idempotent,



_ v, s V.S 5 (v, - vz)s 5
[1Pg (=) = P (Z—) |7 = [|pg(——2)| |2
s s s s ; §'Ss

-4 1N

v. S8 V.S
Ly = p ¢

so P_( ) and the proof is complete.
Theorems 3.1 and 3.2 remain true when stated for least change
updates in a weighted Frobenius norm. However, we do not require

this generality here.

4. Deriving restricted least change secant updates

Using Theorem 3.2 we can now derive the least change updates
remaining in specific affine sets of approximants such as the spaces
of symmetric and/or sparse matrices. In:each case we first require
a lemma giving the least change Frobenius norm projection operator
P onto S, the subspace parallel to Cl. These P's turn out to be
easy to find. The application of Theorem 3.2 then requires only
solving the easier of the equivalent linear least squares problems
(3.1), (3.2). The respective weighted least change updates follow

as easy corollaries in a manner similar to Corollary 2.3.
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We begin by deriving the least change symmetric secant update

due to Powell (1970), [19].

Lemma 4.1: Let S, be the subspace of symmetric matrices in L(Rn).

1

Then the unique solution to

min M, - M||

n

.subject to M+ € S
M+eL(R )

+ F 1

is

_ T
M, o= (M4 M)/2 A Py (M), (4.1)

Proof: Let MlJ,Mij be the elements of M,M+ respectively. Then for

ij _ o Ji
any M+ € Sl’ M+ = M+ , so that

n - L - . . .
2 : : 4
M, - M2 = £t - ™2+ 1 ored? - w2 e ol - wh
+ F =1 + 1si<jsn + + :
- N (4.2)
Simple calculus shows that the minimum of (4.2) occurs when
= Mll, i=l,...,n, and Mij = (M13 + Mjlf/2, l<i<ij<n, so that

11
M,
T

M, o= M+ M)/2.

The next theorem derives the Powell symmetric Broyden method

[19] as a least change update.

Theorem 4.2: Let s,y ¢ Rn, s # 0, Q(y,s) defined by (2.1). Let

Sl be the subspace of symmetric matrices in L(Rn), and let A « Sl'

Then the unique solution to

min | 1A, - Al

n

subject to A, e Q(y,s) n S
A+EL(R )

+ F 1

is
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r.s' + sr. ' -<s,rA>ssT
A, = A+ - - (4.3)
<s,8> <g,s58>°

where r, =y- As.

Proof: Let P, be given by (4.1). We seek v ¢ r" for which (3.1)

1
is solved. Since Cl,= Sl is itself a subspace, Pl = PS and
T T T T
+ +
.;) _ (els szls lgns sen")
2s's 25 s
1l T T T T
= + ¢ 50 ...]€ s +
o (e)s's eelsl le s s€_s)
s s
T
_ 1 SSs
s s

T X
Thus 4 has full rank and P L. ~%~ I - Sf 5 SO vy = ;D er =
s's (s s) :

T T
2r ss r v. S

A _ A solves (3.1) uniquely. Hence, from (3.3) A, = A + P_( 1
T T 2 + 1 T
s 8 (s s) v S s

)

which, using (4.1) yields (4.3).

Corollary 4.3: Let s,y, Q(y,s)., Sl, and A be defined as in Theorem

4.2 and let W e L(Rn) be symmetric and nonsingular. Then the unique

solution to

min |[[wn, - AW (4.4)

n subject to A« Q(y,s) n S
A+€L(R )

F 1

is

A+ + A+ - , V.= W Ts, (4.5)
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Proof: Define B = WAW, B+ = WA+W. Since W is symmetric, we have

B e S if and only if A, ¢ S.. Therefore (4.4) is

and B+ € S + 1

ll

equivalent to

1

. R -1
min [|B+ - B||F subject to B_ ¢ Q(Wy,W "s) n S,

B+€L(R )

which by Theorem 4.2 has the solution

s oop. Wy -l wte)T ¢+ wle) (wy - mwls)”
+
<W ls,W-ls>
<w”ls,wjy - B Y wts) (wts) T
- . (4.6)
<W“ls,wmls>2

Substituting B = WAW, B, = WA+W into (4.6) and then pre.and post-

multiplying by W“l yields (4.5)..

Update (4.3) was first derived by Powell [19], using a special
case of the method of iterated projections to symmetrize Broyden's
update. (2.3). It is thus refered to as the Powell-symmetric-Broyden
(PSB) update. It has been less successful than a specific case of
update (4.5), the Davidon-Fletcher-Powell update [5,13], which will
be discussed in section 5.

We now derive the least change update which preserves a specific
sparsity pattern. The method was indepéndently discovered by

Schubert [21] and Broyden [3] and analyzed by Marwil [18].

Lemma 4.4: Let Y ¢ L(Rn) be a matrix each of whose entries is 0
or 1 and define the subspace 32 of matrices in L(Rn) with zero pat-

tern Y as
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82 = {M ¢ L(Rn) { Mlj = 0 for all l<i,jsn such that Ylj = 0}.

Let Z be the operator

c L) -+ LR i3 .
Z: LR LORT), (Z2(M)) SIS RN (4.7)

Then the unique solution to
min I§M+ - M}IF subject to M, ¢ S,

is M+ = Z(M).

Proof: Define

I = {(i,3) | 1si,dsn, Y =0}, I, = ((4,3) | 1=i,3=n, ¥'3 = 1},
ij _ .
Then for any M+ € 82, M+ = 0 for all (1,3) € IO’ so that
i' . . s e
M, - uj|2 = o4 ot - w20 (4.8
PR . . +
(1,3)610 , (1,3)511

The unique minimum to (4.8) occurs when Mij = M) for all (i,7) « Il,

so that M+ = Z(M).

) . . . + -1 .
Below we will use pseudo-inverse notation: a = a 1 if a # 0

and O+ = 0. This should not be confused with the subscript +.

Theorem 4.5: Let s,y ¢ Efl, s # 0 and Q(y,s) be defined by (2.1).

Let Y and 82 be defined as in Lemma 4.4. Let Si be the vector formed

from s by setting its jth compeonent to 0 if vyt = 0, and let pt =

ddag((sTs)+,...,(sTs)+). The unique solution to
1 n

min N IIA+ - AIIF for A « S, nearest Q(y,s) (4.9)
A+€L(E{)‘
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4

: +
is A, =B+ 2(D (y - As)s ')

T t.T T
1(S£S) ei(y As)eisi. (4.10)

food

i

w

+
H 3¢ e

Proof: The proof follows simply from Theorem 3.2 and Lemma 4.4.

€.sT
The jth column of ;7 is Z(—l-w)s = _;m . and so
s's s's 3 .
/1:7 = 1 diag(sTs,sTs,...,sTs) ) L D. Thus,
T 1 2 n T
s s = = = s s
T n T \*.T ‘ +
v=1s51s8 I (SiS) E (y -— As)e 5 = (s's)D (y - As) is a least squares
j=1
/ vs ' n T T
solution to (3.1) and A+ = A + Z(—) = A + Z( Z (s.s) e.(y - As)e.s )
: T ] J
s s j=
from whence (4.10) is immediate.
There are some useful things to note about (4.10). The crucial

point is that although it involves a rank n correction to A, this
is of no computational significance. The formula is given in this
form because it suggests doing the update one row at a time and
because it makes clear that the amoﬁnt of work necessary is propor-
tional‘to tﬁe number of nonzeros.

The other point to be noted concerns the possibility that
S, n Q(y,x) = {}. 1If sgs # 0 for every l<j<n then » has full rank
and so A, given by (4.10) is in 82 n Q{y,s). The intersection is
also nonempty in the important case when y = F(x + s) - F(x) for a
continuously differentiable F with Y chosen to reflect the sparsity

of F' over a convex set containing [x,x+s] since then

1
y.= [/ F'(x + ts) dt]ls = Ms (4.11)
0o

and M € Q(y,s) n S Of course, by Theorem 3.2 (4.10) is in the

20

intersection if anything is.



-22-

Next we derive the least change update which preserves symmetry
and a specific sparsity pattern. The method was independently de-
rived by Marwil [18] and Toint [24].

Lemma 4.6: Let Y. e LR") be a symmetric 0 - 1 matrix and define
S3 as the subspace of symmetric matrices in LﬂRn) with zeros in all
the positions where Y, is zero. If the operator 2 is defined by

)
(4.8) then for M ¢ L(R") the unique solution to

min [!M+ - M[IF for M, e S,

is

=1 Ty A
M, = 5Z2M+ M) 2 Po(M).

Proof: The proof is a straightforward combination of the proofs

of Lemmas 4.1 and 4.4.

Theorem 4.7: Let s,y ¢ R, s # 0, Q(y,s) be defined by (2.1). Let

YS' 53, P3, and Z be defined as in the statement of Lemma 4.6 and set

D = diag(<sl,sl>,...,<sn,sn>) using the notation defined in Theorem

4.5. If A ¢ YS’ and v is any least squares solution to

L+ 2ss))v =y - as, (4.12)
28 'S
then
vs'
A+ = A + P3("":F“”’) (4.13)
s s
solves

min IIA+ - AI[F among all A, ¢ S,

Ay

for which the distance from A, to Q(y,s) is equal to the distance

from S3 to Q(y,s). If SIS # 0 # Y;l for every i from 1 and n, then

D + Z(ssT) is symmetric and positive definite and (4.13) defines

A+ € Q(y,s) n 83.
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Proof: All that is really required here in light of so many similar
proofs, is to show that (4.12) is just the current specific incidence
of (3.1). Thus we need to show that the jth column of %[D + z(ssr)]

is P3(ejsT)s. The former is Ee.s?s. + s.sJ]% since the sparseness

3121 i
structure of YS is symmetric and the latter is
P (e.sT)s = Lz(e.sT + seT)s
3°73 2°°7) J
1 T ’ T 1 T 3
= ={(e.s. + s.e.}Js = ={e.s.8. + s8.8”).
27373 173 2737173 3 )

It is very easy to show that D + Z(ssT) 4G is positive definite.

Let I, A {(i,3) : 1l<i<j<n and ng = 1} and for each (i,3) « Iy
define the vector Sij to be 0 in all its components except the ith
and jth which are s° and st respectively. Thus, since the diagonal
of YS in all 1 and YS = Y;, G can be rewritten as

G = Zdiag((slbz,...,(sn)z) + T si,sl..
(i,3)ery *9 )
. , T
= diag(a, ;e..,0_) + z . .S. .,
1 n {ifj€¥l) i3 1)
51,53#0

where a; = 2(5;1)2 if s* # 0 and s;si otherwise, G 1s obviously symmetric

. T . . o . . .
and since no s;8; 1is 0, G is positive definite by the interleaving

eigenvalue theorem (see e.g. [25]); furthermore the smallest eigen-
value of G is at least min (sl)2 (and double then if no s' = 0).

1<isn

Note that if we define I, = {(i,3) : 1gi<j<n and ng = 0} then

G can also be written as

T

T
G = {(<s.8>I + ss8 ) = X 8,.8, .,
] (i,3)erg*d

where sijlis defined as above. Thus by the interleaving eigenvalue

theorem, the largest eigenvalue of G is less than or equal to the
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largest eigenvalue of <s,s>I + ssT, which is 2<s,s>, and so the 2%

condition number of G is less than or equal to 2<s,s>/ min (sl)z

l<izn

2

(or half this bound if no s = 0).

Update (4.13) was derived by Toint [24], who solved (4.12) by
directly considering the constrained optimization problem, and by
Marwil [18], who used the symmetrization process on update (4.10)
(without showing that this necessarily led to a least change update).
Toint élso demonstrated that G is positive definite under the stronger
assﬁmption that no si = 0. We feel that our proofs are significantly
more simple and may aid in the construction of an efficient algorithm

to compute G-lr for the sparse symmetric problem.

A
There has been considerable interest, but no known success, in
deriving 1east change symmetric sparse secant updates in general
weighted Frobenius norms. The difficulty stems from the fact that
for general symmetric W «¢ L(Rn), WAW does not have the same zero
pattern as A, even if W does. Thugvthe techniques of Corollaries
2.3 and 3.5 do not seem to apply, and the weighted least change
projectiqn operator onto the subspace of matrices with specified
zero pattern is hard to find. However, weighting by a diagonal
matrix does preserve the zero pattern, and so the diagonally weighted
least change sparse secant upﬁates; both symmetric and non-symmetric,

follow as easy corollaries to Theorems 4.1 and 4.7.

S,’82 and 2 be defined as in
Theorem 4.5; let WD and Wé € L(Rn) be diagonal and non-singular;

let v = Wgzs; and let Dw = diag(<sl,v>,...,<sn,v>) using the notation

Corollary 4.8: Let s, v, Qly,s), Y
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defined in Lemma 4.5. The unique solution to

min HWI')(A+ - A)WDH

subject to A, ¢ S, nearest Q(y,s)
. n + 2
A+€L(R )

F

is

‘ + T
: . . + - . c s .
If s # 0 for every i,l<isn then DW = le. If in addition Y is sym-

metric and S3 is defined as in Theorem 4.7, then the unique solution

to

min | 1wy (A - a) W, ||

subject to A+ € S
'A+6L(R )

nearest Q(y,s)

F 3

is

_ + T T .+
A+ = A + Z(Gerv + VrAGW)'

If also Yll:bsnot 0 for every i,13i$n then G, is positive definite
and symmetric and G; = G%l.

W

Proof: Very similar to the proofs of Corollaries 2.3 and 4.3. Dw

is nonsingular because it equals diag(<tl,tl>,...,<tn,tn>),

A -1 _ =1 . T . e
t = WD s, and ti = WD Si # 0, i=1,...,n. To show that Gw is nonsin
gular, express it as GW = Wulé W Then éw = diag(<tl,t

p CwVpe >, .., <t ,tn>) +

1 n
Z(ttT), which is positive definite by the identical proof as for G

in Theorem 4.7.

The assumptions made here and elsewhere about nonzero components

of ¥ and s are sufficient to ensure that G is invertible and hence
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that a sparse and symmetric secant matrix exists but they are quite
unsatisfying and so Qe are pleased that our proof characterize

a Eest update without them. As in the unsymmetric case, (4.11) with
F =Vf, F' = V2f is a much more satisfactory way of ascertaining the
existence of a zero minimum for (3.1).

Of course, if one actually intended to solve Gv = T in order
to find A, defined by (4.13) then the property of positive definite-
ness of G would be useful indeed. We wonder if there is
any computational or theoretical advantage possessed by (4.13) over
A, = A+ %(C + ¢') where C is the sparse correction given in (4.10).
In short, if the limit of a particular iterated projection sequence
is expehéive, perhaps a useful correction could be found by stopping

short of the limit. In this case, one might stop after one projection

into the sparse secant matrices and back into the sparse symmetric ones.

5. Applications of least change secant updates

In practice, least change secant updates seem to be the most
successful ones to use when approximating the Jacobian matrix (1.2)
in the solution of a system of nonlinear equations (l1.1). Further-
more, it seems that it is advantageous to incorporate any special
structure of the Jacobian matrix into the Jacoﬁian approximations.

For example, in solving the nonlinear optimization problem

n

minn £{(x), £: R~ -+ 1R {(5.1)

*eR

one attempts to solve the system of nonlinear equations
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find x* ¢ R" such that VE(x*) = 0, Vf: R" » R . (5.2)

The Jacobian matrix for (5.2) is the Hessian matrix of f, sz(x),
which is always symmetric (for a twice continuously differentiable
f), and so one uses least change symmetric secant updates for this
problem.

However, two issues rema;n in the choice of Jacobian updates.
One is when the choice of a weighted Frobenius norm is appropriate.
The second is when to favor least change inverse-secant updates,

LIS A;l consistent

with the properties required of A, reasoning that it is A—l and

which make the smallest possible change from A~

not A which is used in the calculations of the quasi-Newton step
—A_lF(x). Computational experience seems to offer some guidance as
to how these two issges should be resolved.

In the standard nonlinear equations problem (1.1), when the
Jacobian has no special structure, the plain least change secant

update (2.3) seems to work best. It is easy to derive the least

change inverse-secant update, the A:l which minimizes {lA;l - A"l!iF
subject to A;ly = s. By direct application of Theorem 2.2,
-1 T
A;l - A 1, (s - A "y)y

<Y.¥y>

SO iong as A is nonsingular. However, this update, also introduced
by Broyden [1l], does not work as well as the least change secant
update (2.3). Various weighted least change secant updates of form
{2.6) have also been tried, but no results clearly superior to the

unweighted update have been reported. Thus ||(A, - A){IF seems to
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be the best measure of change for the unstructured nonlinear equations
problem.

The situation in solving the unconstrained optimization problem
(5.1) appears strongly different. Algorithms for solving this prob-
lem use local quadratic approximations to f(x), and thus a transfor-
mation of the problem which makes these approximations nicely behaved’
is desirable. In particular, 4if the Hessian matrix at the solution,

sz(x*), is positive definite, the transformation R = sz(x*ﬁ/zx,

which yields a variable space’for which the contour curves of the

A quadratic approximation around x* are circular, is ideal. This

transformation, which for the Hessian matrices corresponds to

weighting by sz(x“‘)“l/2 on either side, can be considefed the natural

scaling of problem (5.1), and thus it seems desirable that this

weighting be used in measuring change in Hessian approximations.
However, solving for the symmetric secant upaate which minimizes

"1/2] is impossible, because we do not

P
know x*. The next best thing seems to be to replace sz(x*) by some

llef(x*)"l/z(A+ - A) V2 (x*)

1 (Sl is the

subspace of symmetric matrices in L(Rn)), because this space is

matrix A from the feasible set of updates Q(y,s) n S

likely to contain our best approximation to sz(x*) thus far. This

==1/2

means using a weighting matrix W = A in (4.4). While this is

possible only if A is positive definite, we explain below that this
is a valid assumption. Then using Corollary 3.5, we see that the

solution to

min _ [|A7Y2a, - ma72)) (5.3)

subject to A+,i € Qly,s) n 8
A+€L(R )

F 1’

A positive definite
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is

T ‘ T T
A = A + (y — As)y + yv(y - As)  <s,y - A§>yy ] (5.4)

+ <y,s> <y,s>

Update (5.4), first introduced by Davidon [5] and clarified by
Fletcher and Powell [13], is known as the Davidon-Fletcher-Powell
(DFP) update.

The DFP update was the mogt successful update for problem (5.1)
for a number of years. Another reason besides invariance with re-
spect to linear ££ansformations of the variables which may explain
- its apparent superiority to the PSB (4.3) is that if <y,s> > 0, then
A, is positive definite as long as A is. It seems desirable that
each Hessian approximation A to sz(x) be positive definite, because
then the local quadratic approximation to f(x) has a unique minimum,

lVf(x) are guaranteed

énd small steps in the quasi-Newton direction -A
to decrease f. Therefore the assumption in (5.3) of a positive
definite A is warranted, and in pradtice the DFP update is used

to generate a series of positive definite Hessian approximations.

Although the DFP update works reasonably well, since 1970
we have learned that an apparently superior update for unconstrained
optimization comes from choosing the symmetric secant update A,
-1

which minimizes (A+ - Awl) in the proper weighted Frobenius norm.
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Since the ideal weighting of the Hessian approximation is by sz(x*)“
the ideal weighting of the inverse-Hessian approximation is by
sz(x*)l/z, and so reasoning as above we solve
min ]lﬁl/z(A;l - Ahl)il/zllF subject to A+,£ e Qly,s) n S,
A+eL(R ) _ (5.5)
A positive definite
where A is assumed nonsingular. Straightforward application of
Corollary 4.3 shows that the solution to (5.5) is
-1 T , ! _ a1 T
'Ail -2 1 + (s - A "y)s + s(s - A y) _ <y,s A “y>ss (5.6)
<s,y> <g,s8>

Update (5.6) was introduced by Broyden [2], Fletcher [12], Goldfarb
[16] and Shanno [22], and is-referred to as the BFGS update. It too
has the property that A+ is positive definite if A is positive de-
finte and <y,s> > 0.

Thus in making secant updates to Hessian approximations, the

1 Aml)w, where W is some

best measure of change seems to be W(A1
symmetric matrix which transforms the variable space x into a new
space & = Wx for which the local guadratic approximation ko the
problem near the solution is well—behavéd. While such advice may
seem ad-hoc, it is supported by computational experience, and pro-
bably bears consideration when constructing updates for similar
types of problems

Interesting new applications arise in cases where the Jacobian

matrix has two components Jl(x) + Jz(x), only one of which need be

approximated (the other being calculable). The affihe space CZ is

1/2
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the calculated component plus the approximators of the other. The
experience of Dennis, Gay, and Welsch [9] on the nonlinear least
sQuares problem seems to show that in the construction of the re-
quired approximations A, it is beneficial to take as full advantage
of the structure of the matrix being approximated as is possible.
This is true in the selectioﬁ of the space of quotients Q(y,s), and
in the inclusion of additional properties, such as symmetry. In
these problems the quantity A"l may have no meaning, and so selection
of an update which minimizes some norm of (A+ - A} may be preferable.
In an optimization-related problem (such as nonlinear least squares),
selection of a weighted norm which corresponds to making the model
fuhctionvwell shaped seems appropriate.

Richard McCord and Michael Heath of Stanford University observed
to us that in taking- full advantage of structure to make the Jacobian
matrix approximation better, one might preclude the significant
arithmetic savings in solving for the quasi-Newton step that comes
from keeping certain of the updates in factored form [15]. The
rationality of this observation is completely clear but we illustrate
with simple examples.

Cenerally if we can compute the entire Jacobian matrix, it is
worthwhile to do so even though the Newton steb will cost O(n3) arith-
metic operations rather than the 0(n2) ﬁecessary for the guasi-Newton
step when the Broyden sequence {A,} is carried along as {QERZ}.The
reason we choosé Newton's method is that we generally make enough
fewer iterations to overcome the handicap of extra work per iter-
ation. If, on the other hand, we can compute one or two elements

of the Jacobian matrix, we would probably be better off to ignore
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this rather than to incur the order of magnitude increase in work
per iteration likely to result from straightforward application of
the techniques given here. If we could compute all but one or two
elements of the Jacobian, the reverse would almost certainly be
true. The reader will, of course, recognize all this as the same
sort of decision one makes in deciding whether or not to use sparse
methods for a specific linear ‘system. As in that case, the correct
answer is problem dependent and identifying classes of problems and
types of structure for which answers can be given is an interesting
and fruitful research area.

We have not included in Section 3 derivations of the updates of
Da&idon'[6} and Gay and Schnabel [14] which have the additional pro-
perty of presérving past secant information in A, (i.e., including
in CL past quotient spaces Q(9¢,8), or related spaces). These are
intereéting updates, although it is not yet clear whether they repre-
sent an improvement over the correspondiné updates discussed above,
the BFGS and Broyden's update. They are easily derived using the
techniques of section 3. In general, we hope that the techniques of
sections 2, 3, and 4 will prove helpful in deriving least change
updates for problems with various kinds of structure, and that the
advice of section 5 will aid in the choice of which least change

updates to use.
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